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Problem Description
GPUs are becoming increasingly more suitable for general scientific computing.
For instance, NVIDIA® CUDA™ (Compute Unified Device Architecture) is a new programming
interface that lets users program NVIDIA General Purpose GPUs (GPGPUs) in a C-like fashion for
data parallel intensive computation.
Numerical libraries such as NVIDIA CUBLAS and CUFFT have also recently become available.

In this project, the student will look at a seismic application that uses a filter bank for the
directional decomposition of images to remove noise from a ground image.
The goal is to investigate GPU technologies for this problem.
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Abstract

Directional decomposition of an image consists of separating it into several com-
ponents, each containing directional information in some specific directions. It
has many applications in digital image processing, such as image improvement or
linear feature detection, and could be used on seismic data to help geophysicists
finding faults. In this thesis, we look at a directional filter bank (DFB) introduced
by Bamberger and Smith and how to implement it efficiently on CPU and GPU.
Graphics Processing Units (GPUs) are becoming increasingly more suitable for
general scientific computing, and applications with suitable properties run much
quicker on a GPU than a CPU. For instance, NVIDIA R© CUDATM (Compute Uni-
fied Device Architecture) is a new programming interface that lets users program
NVIDIA General Purpose GPUs (GPGPUs) in a C-like fashion for data parallel
intensive computation.

We translate the DFB algorithm from a theoretical signal processing descrip-
tion to an algorithmic description from computer scientists’point of view, includ-
ing a readable C implementation. Tools are developed to ease our DFB investiga-
tion, including a tailored library to manipulate images in suitable text-based and
binary formats and for generating test images with suitable properties. Several
implementations of 1D filter banks are also provided.

Finally, part of the Bamberger DFB is implemented efficiently using the CUDA
environment for NVIDIA GPUs. We show that directional filter banks can effi-
ciently be executed on GPUs and demonstrate that the CPU-GPU bandwidth af-
fects performance considerably. Hence, care should be taken to do as many steps
as possible on the GPU before returning results to the CPU.
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Chapter 1

Introduction

In this thesis, we take a close look at an algorithm for directional decomposition
of images, and describe it and the underlying theories in detail so that it is made
accessible to computer scientists without a strong signal processing background.

Directional decomposition of an image consists of separating it into several
components, each containing directional information in some specific directions.
Directional information represent the visual direction of the patterns of the im-
age. For example, a digital image representing a path in a forest might have more
directional information in the direction of the path and the vertical direction (the
tree trunks) than other directions. Decomposing an image into directional compo-
nents can be applied in most areas of image processing [1, 2]. It has for example
successfully been used for feature extraction and pattern recognition[3].

Graphics Processing Units (GPUs) are pieces of integrated circuits originally
designed to process graphic data. GPUs are in a period of fast evolution and they
are now suitable for non graphic computation, a concept called General Purpose
GPU. The interest in GPGPUs have raised all the more that new programming
concepts and tools have been developed to ease GPU programming.

In this thesis, we will study a specific directional decomposition algorithm and
investigate how to implement it as a traditional CPU program and on a GPU.

Section 1.1 describes the motivation for this project and its goals. We shall
then give an outlook of the thesis in Section 1.2. The intended audience of this
thesis are professionals in the large field of computer science. Mathematics are
recommended to understand this thesis, and we will introduce the digital signal
processing concepts needed.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation and Problem Description

Geophysicist typically need to analyse ground images obtained by various explo-
ration geophysics methods such as reflection seismology. They manipulate ground
data in two or three dimensions through specialized interactive software such as
Petrel Geophysics, and typically apply various transformation and filters on the
data and want to visualize the result. Directional decomposition could be used to
highlight faults in a ground image [4].

In the history of directional decomposition of images, Bamberger and Smith
made a milestone in 1992 by introducing [1] a filter bank using a polyphase fil-
ter bank that achieves both directional decomposition and maximally decimation.
This means that all the subbands together have the same size than the original
signal.

When geophysicist analyse ground data, they do not want to wait too long for
the result of an operation, though filtering takes time. The result should therefore
be computed quickly. Three solutions hold:

• Run the DFB on the local PC, using the CPU.
This is the easiest solution, but also probably the less efficient.

• Run the DFB on a remote powerful server, such as a cluster.
This could give very good performance and is already used in practice for
other image operations, at Schlumberger for example. Limitations come
from the bandwidth between the client and the server. Additionally, the
client need be connected to the server and cannot perform the job alone.

• Run the DFB on the local PC, using advanced hardware features, and GPU
in particular. Using a GPU to filter would improve the wall-clock time of the
operation, while freeing the CPU at the same time, which could therefore
improve the overall performance of the system.

The original goal of this thesis was to parallelize an implementation of the
Bamberger directional filter bank (DFB) and investigate GPU technologies for
this algorithm. However, this became much more challenging than expected be-
cause we did not find an initial implementation. We hence ended up studying the
algorithm from signal processing papers in order to implement a CPU (serial) ver-
sion from scratch first. The focus of this thesis is therefore to investigate how to
implement the Bamberger DFB both on CPU and GPU.
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1.2 Outline
This thesis is structured as follows:

• Chapter 2 Gives digital image processing background including a presenta-
tion of the Bamberger directional decomposition filter bank. In this chapter,
we will first present the theoretical tools needed to understand the filter bank
algorithm. We seek to give an intuitive understanding of what a directional
filter bank does and how it works. The 2-band filter bank which we focus
on is presented in detail, and a review of different methods to use it in a
N-band filter bank is given.

• Chapter 3 introduces general programming on GPU, including a presenta-
tion of GPUs. Emphasis is put on presenting CUDA technology for GPGPU
programming.

• Chapter 4 presents implementation issues of filters, and describes step
by step how to implement the 2-band Bamberger DFB from a computer-
scientists’point of view. The tools and programs developed during this the-
sis are then introduced. These include a toolkit library for image manipula-
tion, some code in octave, C implementations of a 1D non-polyphase filter
bank, a 1D polyphase filter bank, a 2-band Bamberger DFB, and eventually
the CUDA implementation of horizontal and vertical 2D convolution used by
the Bamberger DFB.

• Chapter 5 presents the results of the programs developed and compares
performance of the CPU and GPU versions.

• Chapter 6 summarizes the contribution of this thesis and suggests future
work.

In addition to the above, appendices include practical information related to
this thesis:

• Appendix A presents the most important papers and books of the bibliog-
raphy, including those which might be important for a possible future work.

• Appendix B gives an overview of the programs developed during the thesis.
Important parts of the programs are listed, including the core of the DFB and
GPU code.



Chapter 2

Image Processing

This chapter gives digital image processing background including a presentation
of the Bamberger directional decomposition filter bank. In Section 2.1, we present
the theoretical tools needed to understand a 1D polyphase filter bank algorithm.
In Section 2.2, we seek to give an intuitive understanding of what a directional
filter bank does and how it works. The 2-band filter bank which we focus on is
presented in Section 2.3, and a review of different methods to use it in a N-band
filter bank is given.

2.1 1D Filters

This section is an overview of 1D signal processing basics. Concepts needed to
understand a polyphase filter bank are introduced.

2.1.1 Fourier Related Transforms and Convolution

The below subsection presents some mathematical background of 1D filters, in-
cluding four transforms and the concept of convolution.

Fourier analysis is a pillar of signal processing. Many transforms derive from
the Fourier transform. They transform a function into an other. Instead of func-
tions, we can think of signals. If we note x the input signal, it is common to use
the corresponding capitalized letter to represent its transform: X . It is a habit in
signal processing to use the expressions time domain (or space domain) to refer
to the domain of the original signal, and frequency domain (or Fourier domain)
to refer to the domain of the transformed signal. All Fourier-related transforms
used here are invertible. x and X are therefore just different ways to represent the
same signal. These transforms do not lose or add any information, but reorganize

4



2.1. 1D FILTERS 5

it. Information organization matters because it permits to process it according to
a semantic need, including compression, filter, and extraction.

These transforms are presented in many (digital) signal processing books. In
addition to definitions and properties, Deller gives in his paper Tom, Dick, and
Mary Discover the DFT [5] a deep understanding of the relationship between the
FT, DTFT and DFT, three of the transforms presented below.

FT

If we note x(t) a continuous signal with t ∈ R, then its Fourier transform XFT (t)
is:

XFT ( f ) =
Z

∞

−∞

x(t) e−i2π f t dt with f ∈ R

Here and thereafter, i denotes the imaginary unit (i2 = −1). The corresponding
inverse Fourier transform is:

x(t) =
Z

∞

−∞

XFT ( f ) ei2π f t d f

Figure 2.1 shows in the left column some basic signals, and in the right column
their Fourier transform.

DTFT

The signals with which we work are discrete. Therefore, a suitable transform is
used: the discrete-time Fourier Transform (DTFT)[5, 6, 7]. The DTFT is closely
related to the continuous FT in that if x[n] are regular spaced samples of the con-
tinuous signal x(t), then the DTFT X(ω) of x[n] is a scaled periodic replica of the
Fourier transform XFT ( f ) of x(t) [5]1. The definition of the DTFT is2:

X(ω) =
∞

∑
n=−∞

x[n]e−iωn
ω ∈ R

Because we work with time-limited signal (i.e. null outside of a close sub-
set), the summation can be done only for n = 0, . . . ,N−1. It is obvious from this
formula that the DTFT is periodic with period 2π (because ei(ω+2π) = eiω). Rea-
soning and evaluating X(ω) on one period is sufficient. We will use the period
[−π,π].

1From [5] equation (20): XDT FT ( f ) = ∑
∞
n=−∞ XFT ( f − n fs), with fs the sampling frequency

( fs = 1
Ts

and x[n] = x(nTs)) and ω = 2πTs f .
2[5] gives a slightly different definition which emphasize the relation to the continuous FT:

X( f ) = ∑
∞
n=−∞ x(nTs)e−i2π f nTs with the notation of the previous footnote.
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Time domain Frequency domain

sin(t)

sin(t)+0.1sin(30t)

sinc(t) gate

gate sinc( f )

Figure 2.1: Example of Signals and their Fourier Transform
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The DTFT is invertible and its inverse is:

x[n] =
1

2π

Z
π

−π

X(ω) · eiωn dω

From now, we will mainly work with the DTFT, and X(ω) represent the DTFT
of x[n]. Like many other places in the literature, we will sometime abusively use
the term Fourier transform or FT to refer to the DTFT.

DFT

The DTFT transforms a discrete signal into a continuous signal. If this permits to
represent nice spectra which make reasoning easy, it is not directly possible for a
computer to work with discrete signals. However, computing only N well chosen
samples of the DTFT, N being the number of sample of the time domain signal,
is enough to recover the original time-domain signal[5]. This samples are called
the discrete Fourier transform (DFT). If we note x[n] a discrete signal, its discrete
Fourier transform XDFT [k] is:

XDFT [k] =
N−1

∑
n=0

x[n]e
−2iπ

N kn k = 0, . . . ,N−1

It is invertible and the inverse is:

x[n] =
1
N

N−1

∑
k=0

XDFT [k]e
2πi
N kn n = 0, . . . ,N−1

The DFT is no more than samples of the DTFT with ω = 2π

N k, the important
result being that these samples are enough to recover the time-domain signal (see
[5] and [8]).

FFT

It is easy to program a DFT function on a computer. A straight-forward imple-
mentation typically has a complexity of O(N2). However, less time-consuming
algorithms exists. Much research has been done both to find faster algorithms and
to program them efficiently. The most known DFT algorithm is called the fast
Fourier transform (FFT) [9] and has a complexity of N log(N). The most efficient
freely available implementations of the FFT are FFTW [10] and djbfft [11].
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Convolution

The convolution, noted u ? v of two discrete3 signals u and v is a signal y such
that ∀n, y[n] = (x ? v)[n] = ∑k u[n]v[n− k]. It is commutative, associative, and
distributive.

The convolution theorem states that the Fourier transform of a convolution
product is the point-wise product of the transformed signal4: if y = u ? v then
Y = U ·V .

When one wants to compute a convolution comes the choice to compute it
in the time domain, using a straightforward use of the convolution definition, or
in the frequency domain, by transforming the signals, computing the pointwise
product of the convolution theorem, and transforming back the result. We shall
explore the trade-off between of these two methods later (in 2.1.2).

Z-transform

The Z-transform transform a signal x into XZ according to:

∀z ∈ C,XZ(z) = (Z(x))(z) = ∑
n

x[n]z−n

It is revertible5. It is noteworthy that the DTFT is a specific case of the Z-
transform[6], evaluated on the unit circle6. We will abusively note X(z) the Z-
transform and X(ω) the DTFT7. The Z-transform domain is also called frequency
domain. Some properties of the Z-transform are presented in Table 2.1. The Z-
transform is the discrete equivalent of the Laplace transform.

2.1.2 LTI Systems and Filters
LTI Systems

“To study multidimensional systems productively, it is necessary to
restrict our investigations to certain classes of operators which have
properties in common. Linear shift-invariant (LSI) discrete systems

3Equivalent definition and results hold for continuous signal
4Using any of the transforms. If the frequency domain is continuous, then the normal product

is used.
5From [12], the reverse Z-transform is x[n] = Z−1(X(z)) = 1

2πi
H

C X(z)zn−1dz, where C is
a counterclockwise closed path encircling the origin and entirely in the region of convergence
(ROC).

6XZ(eiω) = ∑n x[n]e−iωn = XDT FT (ω)
7It is common in the literature to use the same notation for both transforms. So do [1]. A more

formal way is to note X(z) the Z-transform and X(eiω) the DTFT.
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Table 2.1: Z-transform Properties

Time domain Frequency domain
(Z-transform)

notation x[n] X(z) = XZ(z)
linearity a1x1[n]+a2x2[n] a1X1(z)+a2X2(z)
time shifting x[n− k] z−kX(z)
time reversal x[−n] X(z−1)
convolution theorem x1[n]? x2[n] X1(z) ·X2(z)

are the most frequently studied class of systems for processing dis-
crete signals of any dimensionality. These systems are both easy to
design and analyse, yet they are sufficiently powerful to solve many
practical problems.” – Dudgeon and Mersereau [13]

A Linear Time-Invariant (LTI) or Linear Shift-Invariant (LSI) system8 S is a
system whose output signal y is linked to the input signal x according to:

• linearity: if ∀n, x[n] = ax1[n]+ bx2[n], and S(x1) = y1 and S(x2) = y2 then
∀k y[k] = ay1[k]+by2[k]

• time invariance: ∀n,T , S(x[n−T ]) = y[n−T ]

A LTI system can be completely characterized by a function h called impulse
response, which is the output of the system when the input is the Dirac function
δ[n]. The output of the system is obtained by convolution of the input signal x and
the impulse response h: y = x?h.

Using the convolution theorem (see 2.1.1) and noting H the Fourier transform
of h, we get Y = X ·H. Therefore, H also characterises the system. It is called the
transfer function. Similarly, it can be characterized by the Z-transform HZ of h,
and YZ = XZ ·HZ .

Digital filters

Lutovac et al. [7] define a digital filter as

“a discrete-time system that alters the spectral information contained
in some discrete-time signal x producing a new discrete signal y.”

8LTI is the general term, whereas LSI is the name of the concept while dealing with discrete-
time signals[14].
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Considering LTI systems, we can express the result by the linear difference equa-
tion:

y[n] =
N

∑
k=1

bkx[n− k]−
N

∑
k=1

aky[n− k]

If ∃k,ak 6= 0, the filter is said to have an infinite impulse response (IIR). If
∀k,ak = 0, the filter has a finite impulse response (FIR). Because IIR filters are
difficult to design and implement[4], we will use FIR filters.

Frequency Domain

It can be helpful to reason in the frequency domain about the effect of a filter.
For example if one wants to attenuate some frequency component of the signal
or amplify other frequencies. Audio devices often show the Frequency domain
representation of their equalizer. The value of H(ω) shows by how much the filter
multiplies the frequency ω of the signal. Finding a transfer function H with good
properties is part of the design of filters [7]. For example, a pass-band filter keeps
only some frequencies, which corresponds to a multiplication by 1, and stop all
the others, which corresponds to a multiplication by 0.

Because the N DFT samples XDFT [k] fully represent the signal, such a filter
can be implemented by:

1. computing the DFT of x[n]: XDFT [k] = X(2π

N k)

2. multiplying every value by the transfer function: YDFT [k] = XDFT [k]·HDFT [k]

3. computing the inverse DFT of YDFT [k]: y[n]

Using good implementations of complexity N log(N) of the DFT, the total
filter has a complexity of N log(N).

Time Domain

Filtering in the time domain is pretty easy, since it consists in doing a convolution
between the signal x and the impulse response h. If h has NB_COEF coefficients,
convolving implies doing N ∗NB_COEF multiplication and N ∗ (NB_COEF −
1) additions (derived from the convolution definition 2.1.1). The complexity is
therefore in O(N ∗NB_COEF).

If filters are most of the time designed in the frequency domain, a choice has
to be made whether to implement it in the time or frequency domain. Because in
many applications, NB_COEF = N or NB_COEF is big, using the frequency do-
main method is common, and it is called Fast convolution [15, 16, 17]. However,
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Low-pass filter High-pass filter
H0(ω) H1(ω)

Figure 2.2: Low-pass and High-pass Filter Transfer Functions

using the normal convolution algorithm gives better performances when the size
of the filter is small. The choice is therefore case specific.

The targeted architecture should also be taken in consideration. In the time
domain algorithm, the signal is used as a stream, whereas in the frequency domain,
it can be computed block by block in parallel for example.

Note that this discussion will take place as well when we will study 2D signals,
and the conclusions may differ.

High-Pass and Low-Pass filter pair

Two specific types of pass-band filters are widely used: high-pass filters stop the
low frequencies of a signal, and low-pass filters stop the high frequencies. It is
a habit to call h0 the low-pass filters and h1 the high-pass filters. The frequency
domain of an ideal low-pass and high-pass filters are shown in Figure 2.2. Recall
that the frequency domain is periodic. We show only one period of the filters. The
limit frequency of their pass-band region is called cut-off frequency.

It is common to use a pair of low-pass and high-pass filters with the same cut-
off frequency, so that they separate the signal into two complementary subbands.

The inverse FT of a gate is a cardinal sinus (sinc) function (See Figure 2.1
for an illustration), so the impulse response coefficients h0[n] are regularly spaced
samples of a sinc.

2.1.3 Filter Banks and Polyphase Filter Banks
Filter banks

A filter bank is a group of filters that separates the input signal x into components
that contains subband frequencies. Figure 2.3 describes (a) a 3-channel filter bank
and (b) a 2-channel filter bank. In the figures of this report, We shall represent
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x[n] y2[n]

y1[n]

H2(ω) y3[n]

H1(ω)

H0(ω)

H1(ω)

H0(ω)

y2[n]
x[n]

y1[n]

(a) 3-channel filter bank (b) 2-channel filter bank

Figure 2.3: Basic 1D Filter Banks

the filters by the name of their transfer function (e.g.: H(ω)) in a box, sometime
showing a sketch of it beside the box.

We will now consider the two-channel filter bank of Figure 2.3 (b). It separates
the input signal x into its low frequency subband y0 in the first band and high
frequency subband y1 in the second band. Trying to recover x from its subbands
yi is called reconstruction. If we note x̂ the resulting signal, the filter bank is said
to be perfect reconstruction [2] if x̂[n] = x[n]. The process of decomposing the
signal into subbands is called analysis whereas the phase to reconstruct the signal
is called synthesis. The filters of the synthesis part are noted G0(ω) and G1(ω).
Daubechies wrote [18] in a tutorial on wavelets: “The purpose of subband filtering
is of course not to just decompose and reconstruct. The goal of the game is to do
some compression or processing between the decomposition and reconstruction
stages.” We will present some applications of a filter bank in the 2D case in 2.2.

Signals y1 and y2 have the same size N than x. Therefore, we need two times
more space for the output of the filter than for the input. It can be shown that
by removing half of the samples, we can still get perfect reconstruction [19], as-
suming that each filter passes half of the original spectrum. This step is called
downsampling the signals, is done by keeping every other sample, and is noted
by a a downward arrow followed by the downsampling factor (in our case: 2) on
the Figures. The signals need to be upsample back to their original size in order
to reconstruct the signal. The term maximal decimation is used when the set of
subbands has the same amount of samples than x. For example, in a k-channel
filter bank, each subbands contains N

k samples. Figure 2.4 shows a complete filter
bank including decimation and reconstruction.

There have been done much research on design of good and appropriate filters.
In particular, we seek a filter pair that permits perfect reconstruction. Quadrature
mirror filter (QMF) are often used when aliasing cancellation is considered [1].
Deller et al. [19, page 494] explain the design of a filter bank using QMF filters
having the properties summarised in Table 2.2.
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H1(ω)

G0(ω)

G1(ω)

x̂[n]
↑2

↑2

↓2

↓2
x[n]

H0(ω) y1[n]

y2[n]

Figure 2.4: 2-channel Filter Bank with Reconstruction and Decimation

Table 2.2: Properties to Get Perfect Reconstruction

Time domain Frequency domain
Mirror h1[n] = (−1)nh0[n] H1(ω) = H0(ω−π)
Quadrature | H0(ω) |2 + | H1(ω) |2= 1

g0[n] = 2h0[n] G0(ω) = 2H0(ω)
g1[n] =−2h1[n] G1(ω) =−2H1(ω)

Polyphase Filter Banks

In the filter bank describe in the previous section and represented in Figure 2.4, we
compute the filters on signals of length N just before throwing half of the result in
the downsampling phase. In order to save computation, the concept of polyphase
filter bank has been introduced, where the signal is downsampled before being
filtered, thus saving about half of the computation of the filters. However, special
care need to be taken. First, if we downsample the signal and process the output
on the two channels, it would mean that the sample thrown are really lost and
not recoverable. The solution is to process every even sample in the first band
and every odd sample in the second band. Second, we would like the subbands
to be the same as previously in the non polyphase filter bank. For that, we need
to combine the result of the two filters together. The polyphase filter bank used
here is the one presented by Vaidyanathan in [20, 21] and summarized in [19].
This filter bank is shown on Figure 2.5. The sign ⊕ represent the addition of two
signals and 	 the negation of one signal. Using the Z-transform notation and
its properties summarized in Table 2.1, we note z−1 a time delay of one sample.
Similarly, a downsample can be represented by z2 and an upsample by z

1
2 .

Deller et al. [19] present which filters to use in this filter bank:

p0[m] = h0[2m]
p1[m] = h0[2m+1]
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x̂[n]
↑2

↑2

P1(ω)

P0(ω)

P0(ω)

P1(ω)

↓2

↓2
x[n]

y1[n]

y2[n]
z−1

z−1

Figure 2.5: Polyphase 1D Filter Banks. This figure is a combination of Figure 8 in
[21] and Figure 7.50 in [19]. We use the same subbands than [21], whereas they
are inverted in the synthesis part of [19].

with m = 0, · · · , N
2 .

In this project, we have implemented both the 1D simple filter bank and the
1D polyphase filter bank in standard C.

2.2 Directional Representation of Images
This section explains what is directional information of an image and what is the
aim of directional filters.

Directional decomposition of images is a process which consists in decompos-
ing an image into several subbands, each representing directional information or
energy along one direction. As in the 1D case, the inverse process can be applied
on the subbands in the process of reconstruction.

A directional decomposition can be used in many fields in image processing
[2, 1, 22], for example for common automatic target recognition, texture analysis,
segmentation, and classification, image denoising and enhancement, linear feature
or edge detection, computer vision, determining the direction of a wave or a plane.
In particular, a directional decomposition of image can help removing ground roll
or detecting faults in seismic data.

To help understanding what is directional decomposition of an image, let us
consider the three images of Figure 2.6. Both images (a) and (b) have information
in only one direction. If we combine these images taking for each pixel of the
output image the average of the corresponding pixels on the input images, we get
image (c). A perfect directional decomposition of image (c) along two dimensions
would give two subbands which represent images (a) and (b).

2.2.1 Image coding

A raster graphic image, as opposed to vector graphic image, is a two dimensional
array of pixels. Each pixel color is coded by a number (float or integer) in a given
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(a) (b) (c)

Figure 2.6: Simple Directional Decomposition Example. (a) and (b) have infor-
mation in directions π/4 and 3π/4 respectively (see Figure 2.8). (c) is an average
of (a) and (b).

range.
In this thesis, we work with grey images that have 256 levels of grey. A

pixel color is thus represented by an integer between 0 and 255. However, as we
process these images, operations may return non integer pixels. In the example
above (Section 2.2 Figure 2.6), taking the average of two pixels may return a real
number. While processing images, pixels will be represented by floating numbers.
They are converted to the output format at the end of the process. In the theoretical
parts, we consider real numbers.

2.2.2 Frequency Domain and Direction Information

An image is viewed as a discrete two dimensional signal x[n], with n =
(

n1
n2

)
.

The one-dimensional Discrete Fourier Transform has been generalized to the mul-
tidimensional case and many properties remain true. A short introduction to the
processing of multidimensional digital signals can be found in [23], whereas [13]
covers the subject in great details. Since images are discrete signals, they are pro-
cessed with the Discrete Fourier Transform (DFT) instead of the standard Fourier
transform. Deller explains in [5] the relationship between continuous and discrete

Fourier transforms. If we note n =
(

n1
n2

)
and ω =

(
ω1
ω2

)
, the (2D discrete)

Fourier transform X [ω] of a signal x[n] is defined by :

X [ω] = ∑
n∈Γ

x[n]e− jωT n

with Γ the integer lattice of points.
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(a) (b)

Figure 2.7: Representation of a 2D Space Signal (a) in 3D, (b) in 2D.

Again, as in the 1D case, the Fourier transform still fully represent the time
domain signal. No information is lost, and recovering the time domain signal
is possible using the inverse transform. It is just another way to represent the
information.

Let us consider the signal x[n] = sin(−3n1 + 3n2). We can represent it by
a three dimension graph as in Figure 2.7 (a). However, because we work with
images, we will thereafter represent such a signal by a 2D image in which the
pixel grey levels represent the third dimension. Thus, Figure 2.7 (b) represents
the same signal.

The Fourier transform X [ω] = X [
(

ω1
ω2

)
] of a two dimensional signal x[n] =

x[
(

n1
n2

)
] is also a two dimensional signal and can similarly be represented by

a 3D graph or a 2D image. We will use only image representation. Note that
Frequency domain images in the figures of this document are not exact. They
have not been calculated (computing a DFT) but drawn.

As drawings say more than a long text, we show several 2D signals and their
Frequency domain equivalent to illustrate some 2D Fourier transform properties.
Figure 2.8 shows how the FT of a signal represent directional information. Figure
2.9 shows that low frequencies are near the center and higher frequencies are
more far. Figure 2.10 shows that an image have different directional information
according to its components. With Figure 2.11, we want to be closer to real word
images by showing the FT of lines of different width. A comparison is done with
the 1D case.

This section’s aim was to give a feeling of how locality information in a
Fourier transform image represent directional information of the corresponding
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Direction 0π/4 Direction 1π/4

Direction 2π/4 Direction 3π/4

Figure 2.8: 2D Signals and their Fourier Transform: Directions

Time domain Frequency domain

Low frequency

High frequency

Figure 2.9: 2D Signals and their Fourier Transform: Frequencies
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Time domain Frequency domain

Figure 2.10: 2D Signals and their Fourier Transform: superposition of a sinus of
direction 3π/4 and frequency f and a sinus of direction π/4 and frequency 3 f .
In the second image, the low frequency sinus is with coefficient 1 and the high
frequency with coefficient 3. Both sinuses are with the same coefficient in the
first image.

time domain image.

2.2.3 Directional Decomposition
Definition and Notation

Decomposition is the process of separating the input image into several compo-
nents, each one containing a set of frequency subbands. These sets of frequency
subbands can be represented in the frequency domain by partitioning the 2D spec-
trum. Figure 2.12 (a) shows such a decomposition into five components. Each of
the component is obtained by applying a 2D filter to the image. The filter to sep-
arate the fourth component can be represented as in Figure 2.12 (b), where the
pass-band region is dark and the stop-band region is white. If we call F4 this filter,
F4(ω) = 1 where the point ω is dark, and F4(ω) = 0 everywhere else. The decom-
position described in Figure 2.12 (a) is done by a 5-band filter bank represented
by Figure 2.13.

Spectrum Partitioning

The DFB introduced studied in this project has wedge shaped passband regions,
as in Figure 2.14
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1D 2D
Time FT Time FT

sinc(n) gate

gate sinc(ω) thin line

gate sinc(ω) wide line

Figure 2.11: 2D Signals and their Fourier Transform: Line

4

5

3

2

1

(a) (b)

Figure 2.12: 2D Spectrum Partitioning. (a) is a possible 5-band partition of an
image FT, and (b) represent the filter F4(ω) that extracts the fourth subband region.
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x[n]

F0(ω)

F1(ω)

F2(ω)

F3(ω)

F4(ω)

y1[n]

y2[n]

y3[n]

y4[n]

y5[n]

Figure 2.13: The 2D 5-band Filter Bank, corresponding to the partitioning of
Figure 2.12

11

2

2

4

1

1

4

3 2

32

1

3456

8

3 4 5 6

7

81

2

7 2

(a) (b) (c)

Figure 2.14: Conventional DFB Spectrum Partitioning for (a) two subbands, (b)
four subbands, (c) height subbands
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w2

w1

w2

w1

w2

w1

(a) (b) (c)

Figure 2.15: Different DFB Spectrum Partitioning: (a) Conventional (Bamberger
and Smith), (b) Steerable pyramid (Simoncelli et al.), (c) Pyramidal (Do et al.).
The idea for this figure was taken from Figure 2.6 in [2]

Though this partitioning is common, it has been criticised[2]. Most of the en-
ergy of an image is in the low frequencies. Therefore, the filters need to be very
sharp at the center because a small perturbation could have a significant impact.
Other directional partitioning have been proposed that takes this phenomenon into
account. Figure 2.15 shows two other solutions. However, algorithms for these
partitioning are less computationally efficient [4], and the conventional partition-
ing is often used in practice. A high pass filter can possibly be applied on the
image before, in order to remove the very low frequencies too close to the cen-
ter (0,0) [2, page 28].

2.3 2D Filter Banks
This section extends to the 2D case the theory presented in Section 2.1 for the 1D
case, and present the Bamberger polyphase filter bank.

2.3.1 Fourier Related Transforms, Convolution, and Resam-
pling

Some mathematical background of 2D filters is presented.

DFT

As seen in 2.2.2, the 2D DFT is:

X(ω) = ∑
n∈Γ

x[n]e− jωT n
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Convolution

The convolution, noted u?v of two 2D signals u and v is a signal y such that ∀n =(
n1
n2

)
∈ N2, y[

(
n1
n2

)
] = (x? v)[

(
n1
n2

)
] = ∑k1 ∑k2

u[
(

k1
k2

)
]v[
(

n1− k1
n2− k2

)
].

It is commutative, associative, and distributive.
As in the 1D case (see 2.1.1 page 8), The convolution theorem states that

the Fourier transform of a convolution product is the multiplication of the Fourier
transforms: if y = u?v then Y =U ·V . Thanks to this result, a convolution product
can be computed in the time domain or frequency domain, as we shall discuss
later.

Z-transform

The two-dimensional Z-transform XZ of a signal x is defined as:

XZ(z) = XZ

(
z1
z2

)
= ∑

n1

∑
n2

x
[

n1
n2

]
z−n1

1 z−n2
2

The two-dimensional Z-transform has many of the properties of its one-dimensional
equivalent. Some of them are presented in Table 2.3. These properties are detailed
in [13] .

Downsampling

Downsampling [1, 13, 2], sometime referred as decimation [23, 2] is an opera-
tion consisting in removing some of the values of a signal and rearranging the
values kept. The resulting signal is smaller, but information has been lost. A
simple downsampling would be to keep only values with even coordinates. The
resulting image would be four times smaller (two times in each direction). The
downsampled signal xd of a 2D signal x is characterized by a 2×2 matrix µ and:

xd[n] = x[µn]

An example of downsampling operation is in Figure 2.16 where the image is

downsampled by µ =
[

1 −1
1 1

]
Upsampling

Upsampling [1, 13, 2], sometime referred as expansion [2] (and related to inter-
polation [23]) is an operation consisting in expanding a signal by rearranging the
values and adding zeroes. The resulting signal is bigger, but no information has
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Table 2.3: 2D Z-transform Properties. We use both the vertical and horizontal no-

tation, though it would be more rigorous to use the transpose (n1,n2)T =
(

n1
n2

)
Time domain Frequency domain

(Z-transform)

notation x[n] = x
[

n1
n2

]
= x[n1,n2] X(z) = XZ(z) = XZ

(
z1
z2

)
= XZ(z1,z2)

separable signals x[n] = v[n1]w[n2] X(z) = V (z1)W (z2)
linearity a1x1[n]+a2x2[n] a1X1(z)+a2X2(z)
linearity a1u[n]+a2v[n] a1UZ(z)+a2VZ(z)
time shifting x[n+ k] zk1

1 zk2
2 X(z)

x[−n1,n2] X(z−1
1 ,z2)

reflexion x[n1,−n2] X(z1,z−1
2 )

x[−n1,−n2] X(z−1
1 ,z−1

2 )
modulation an1bn2x[n] X(a−1z1,b−1z2)
convolution theorem u[n]? v[n] U(z) ·V (z)

(a) (b)

Figure 2.16: Downsampling Operation: (a) Periodic Lena image (b) Lena is

downsampled by
[

1 −1
1 1

]
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(a) (b)

Figure 2.17: Resampling Operation: (a) Lena image (b) Lena is resampled by

R =
[

1 0
1 1

]
. Here, |R|= 1.

been added. The upsampled signal xu of a 2D signal x is characterized by a 2×2
matrix Λ and:

xu[n] =
{

x[Λ−1n], if Λ−1n is in the integer lattice of points
0 otherwise.

A simple upsampling operation would be to double both dimensions of an image x

and copying its pixels in xu such as xu[n1,n2] =
{

x[n1
2 , n2

2 ] if n1 and n2 are even,
0 otherwise.

The resulting image would have three times more zeroes than other values. There-
fore, a downsampler followed by an upsampler lose information. A solution to
get the upsampled image nice looking is to do interpolation. The Bamberger fil-
ter bank do not need interpolation because by combining the upsampled signals
of all subbands, we get back all the information. However, upsampling and then
downsampling a signal with the same matrix (Λ = µ) returns the input signal9.

Resampling

Resampling [2, 22] consists in rearranging the organisation of the values of a
signal. It is actually no more than up or downsampling by an unimodular matrix
R (|R|=±1). An example of resampling operation is shown in Figure 2.17.

9because xd [n] = xu[µn] = x[Λ−1µn] = x[µ−1µn] = x[n]. Note that we escape the zeroes because
we know that Λ−1µn is in the integer lattice of points.
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Diamond filter pair Hour-glass filter

(a) (b) (c) (d)

Figure 2.18: Ideal Frequency Response for Diamond and Hour-glass Filters.

2.3.2 Introduction to the Bamberger Directional Filter Bank
(DFB)

The Bamberger DFB can separate an image into a power of two of subbands, using
the wedge shape passband regions shown by the spectrum partitioning of Figure
2.14. This can be achieved by cascading 2-band filter banks whose partitioning is
the one of 2.14 (a). Figure 2.18 (c) and (d) shows the two hourglass filters used in
this 2-band filter bank.

These two filters are not implemented directly. Instead, it is equivalent to
shift the signal by π in the horizontal direction of the frequency domain and fil-
ter it with the diamond filters shown in Figure 2.18 (a) and (b). We shall see
later how to design the diamond filter pair. The frequency shift is expressed by
(ω1,ω2) −→ (ω1−π,ω2), which correspond to multiplying the signal by e−iπn1

in the time domain10. Note that e−iπn1 = (−1)n1 so the frequency shift is as sim-
ple as multiplying by −1 every odd column of x. Figure 2.19 shows the building
block of a N-band DFB. (a) and (b) are equivalent.

Cascading

The original filter bank introduced by Bamberger and Smith [1] needs another
2-band filter bank building block with different passband in order to cascade the
filters. In [24], Park, Smith and Mersereau introduce a new cascading structure
which uses only the 2-band filter bank with hourglass passband. In [3], the authors
(including Smith) use a slightly modified version which again uses only the hour-
glass filter bank. In Figure 2.20, we show a complete process of an height-band

10If X = DFT (x) is the Fourier transform of x, then a frequency shift by (θ1,θ2) is expressed
by X(ω1−θ1,ω2−θ2) = DFT (x(n1,n2)eiθ1n1+iθ2n2). It correspond thus in the time domain by a
multiplication of the signal by eiθ1n1+iθ2n2
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x[n]

y1[n]

y2[n] H1(ω)

y1[n]

y2[n]

x[n]

e−iπn1

H0(ω)

(a) (b)

Figure 2.19: Analysis Part of a 2-Band DFB Using (a) Hour-glass and (b) Dia-
mond Filters. (b) needs a frequency shift to be equivalent to (a).

DFB. In order to use the same 2-band filter bank for every stage, a resampling op-
eration must be done between stages to reorganize information. The resampling
operations are represented by a box containing the name of the resampling matrix
used. The resampling matrices Ri used are shown in Table 2.4. The downsampling

matrix used is Q1 = µ =
(

1 −1
1 1

)
.

Table 2.4: Resampling Matrices. Taken from [24, 22].

R1 =
(

1 1
0 1

)
R2 =

(
1 −1
0 1

)
R3 =

(
1 0
1 1

)
R4 =

(
1 0
−1 1

)

Diamond Filter bank

The diamond Filters are not applied directly but on the downsampled images. As
shown in Figure 2.16, the downsampling matrix considered also rotates the images
counterclockwise by 45 degrees (π/4 radians). Because of this rotation, the filters
to apply now have a checkerboard passband, as shown in Figure 2.21. This two
filters are separable. This mean that we can apply first an horizontal filter and
then a vertical filter. Separable filters have less computation complexity than non
separable filters. We use the notation H(ω1) and H(ω2) to designate a filter on
the rows and on the columns, respectively.

Polyphase Filter Bank

The Bamberger DFB use a polyphase structure similar to the 1D polyphase filter-
bank described in 2.1.3 and summarized in Figure 2.5. The signals are downsam-
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(a) (b)

Figure 2.21: Ideal Frequency Response for Checkerboard Filters.
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Figure 2.22: 2D Polyphase DFB

pled first, then filtered, and then combined to produce the two subbands, as shown
on the analysis part of Figure 2.22. In the 1D case, we took the even samples on
the first band and the odd samples on the second band. In the 2D case, a delay
of one pixel is applied on the second band, which is represented by z−(1,0)T

. The
analysis and synthesis parts of the 2-band Bamberger filter bank is shown on Fig-
ure 2.22. The filters P0 and P1 are the 1D filters presented with the 1D polyphase
filter bank in 2.1.3. Bamberger explains in [1, section IV] why using the filters
P0 and P1 along with the downsampling and combine operations produces the ex-
pected subbands. It can be noticed that unlike in the 1D case, there is no straight
forward non-polyphase filter bank equivalent. Such a filter bank would need to
implement the diamond filters directly.

The polyphase filter bank described here has been implemented in standard
C and partly in CUDA. Implementation issues of the 2-band Bamberger filter bank
presented here are detailed in 4.2.



Chapter 3

GPGPU

GPGPU is a short-hand notation for General-purpose computing on graphics pro-
cessing units. The idea is to use the computation power of the GPU to execute
non-graphical computation. It can significantly improve the computation time
of a program, including removing CPU load. What makes using GPUs for gen-
eral computing possible and worthwhile are their performance, price, availability,
bandwidth, memory, and architecture.

We will first have a look at a typical GPU architecture, then see how to pro-
gram them.

3.1 GPU

The GPU, or Graphics Processing Unit is a chip whose aim is to help the CPU
handle graphic-related computations. It is often on a computer graphic card and
has its own memory and a direct access to the video memory where the computer
screen frame buffer is.

GPUs used to be highly specialized processors. They have evolved to imple-
ment 2D primitives in hardware in the 1980’s and 3D in the 1990’s. They also
offered more and more functions, as OpenGL and DirectX evolved, and became
quicker. Currently, GPUs are performant for many applications including graphics
rendering, 3D imaging and visualization, games, vector graphic viewers, Adobe
Postscript, PDF, and Flash, Video and audio coding and manipulation, numeri-
cal simulation, virtual reality, and even less obvious applications such as stock
options pricing determination.

29
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3.1.1 GPU Architecture
Internally, a GPU differs from a traditional processor in that it contains many
Floating Point Units (FPU), fewer logic, and very small caches. The architecture is
designed to allows many threads to run at the same time in a SIMD fashion (Single
Instruction, Multiple Data), for example one per pixel of the screen. GPUs are also
designed to have a good bandwidth between their memory and their computing
units.

Two GPU manufacturers dominates the market: NVIDIA and AMD (through
their purchase of ATI). GPU evolution, which has long been driven by computer
gaming, has now evolved to focus on other markets as well. Until recently, there
were two types of processors in a GPU, specialised for vertex and fragment pro-
cessing respectively. These architectures are adapted to the graphic pipeline, that
is the different computational steps needed to compute the color of a pixel on
the screen or a frame buffer. Larsen gives in [25] a very good introduction to
GPU history and non-unified GPU architecture. NVIDIA introduced the concept
of unified architecture in November 2006 with its GeForce 8 series. They only
have one type of processor, sometime referred to as a unified shader or a stream
processor. The GeForce 8800 has 128 processors, which is four times more than
previous generation GPUs from NVIDIA [25]. The unified architecture improves
performance both by giving the same features available for fragment and vertex
shaders, and by allowing a better utilization of the cores. Additionally, it comes
along with a new programming model as we shall see in next section.

3.1.2 GPU Programming
GPUs are traditionally difficult to program, and that is changing. Before, the way
to program GPUs was to use a graphic API whether the program was intended
for graphic purpose or not. People used a shading language (Cg, HLSL, OpenGL
Shading Language) along with OpenGL or DirectX. Tricks to do general-computing
on non-unified architecture are given in [26]. We also recommend A Survey of
General-Purpose Computation on Graphics Hardware [27] from Owens et al.,
published in 2005.

High level APIs or programming languages designed specifically for general-
purpose computing have been developed:

Microsoft Research Accelerator Project [28] provides a high-level data-parallel
library to simplify GPU programming.

Brook [29] is a stream programming language extended from C and designed
for general programming on GPU. BrookGPU is a compiler and runtime
implementation of Brook. This project is lead by Stanford University.
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Sh [30] is a library to program GPUs with hardware abstraction. The project
was lead by University of Waterloo and is no longer maintained. Sh is
RapidMind predecessor.

RapidMind [31] is a platform that makes easy to program in a multithreaded
environment. They claim to have good performance over many hardware
components: modern NVIDIA GPUs (over CUDA) and ATI graphic cards,
IBM CellBE, AMD and Intel CPUs. RapidMind’s two strengths are to ease
multithreading programming and provide hardware portability, at the cost
of being dependant of their platform. The programming model uses three
basic types: Values (floats, integers), Arrays (1D, 2D, 3D), and Programs
(Kernels, working on arrays). It uses the data-parallel model, which they
call SPMD1 stream programming model.

Larrabee [32] is a project of processor by Intel. Michael Feldman, HPCwire
editor, described [33] Larrabee processors as:

“a manycore (i.e., more than 8 cores) device [...] based on a sub-
set of the IA instruction set with some extra GPU-like instructions
thrown in.”

Larrabee processors may be released in 2009.

Close to Metal [34], also known as CTM, is a hardware interface for stream pro-
cessing developed formerly by ATI and now by AMD.

Cell Broadband Engine [35], or CellBE, is a processor from IBM which include
a PowerPC core called PPE (Power Processor Element)and height RISC
cores called SPE (Synergistic Processing Elements). Cell has shown[36]
good performances for scientific applications. It is regarded as powerful but
difficult to program.

CUDA [37] (Compute Unified Device Architecture) is a new programming in-
terface that lets users program NVIDIA GPGPUs in a C-like fashion for
data parallel intensive computation. The programmer has access to on-chip
memory and run a thousands of kernel into threads. CUDA will be intro-
duced in more details in the next section.

Some of these technologies are moving from GPU to CPU, and others takes
the inverse path. NVIDIA, AMD, Intel and IBM each come with a complete
hardware + software platform, whereas BrookGPU, Sh and Rapidmind are hard-
ware independent. Among these technologies, some are still immature (MRAP,

1Single Program, Multiple Data
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Larrabee, CTM) or outdated (Sh). Two pure software solutions and two complete
solutions remain. CUDA is used in this project because it is easy to program and
because NVIDIA cards are the most commons.

3.2 CUDA
CUDA is NVIDIA’s answer to the GPGPU trend. It is a software framework
running on GeForce 8 series and later NVIDIA hardware. The aim is to ease pro-
gramming GPGPUs and open new markets. Because some clients are interested
in the performance of GPUs for other purpose than printing images on the screen,
NVIDIA has released a set of cards called Tesla which are virtually graphic cards
with powerful GPUs, but without screen plugs. They are designed only for scien-
tific computing. CUDA is also usable on GeForce 8 graphic cards and QuadroFX
4600/5600 graphic cards. CUDA is a young technology and will probably gain
maturity over the time.

GPUs traditional task, graphic rendering, is a highly parallel, compute-intensive
task. Since the control and cache parts take about half the surface of a CPU, they
can be greatly reduced on a GPU, therefore leaving place for computation cores.
These cores are actually FPUs (Floating Point Unit), so they are small, and there
can be many on the same chip. A GPU has many (128) small FPUs, and very few
logic and cache, whereas a CPU has only a few (4) cores, a huge cache and control
part. Finally, GPUs have ten times more computational power and ten times more
memory bandwidth than typical CPUs [38, page 15].

CUDA capable devices, such as the NVIDIA GeForce 8800 GTX used in this
project have cores that are grouped by eight to form multiprocessors. A GeForce
8800 GTX has 16 multiprocessors, so 8 ∗ 16 = 128 cores. The 8 cores of a Mul-
tiprocessors share 213 32-bit-registers (average of 1KB/core), 16KB of shared
memory, and two 8KB caches for constants and textures. A multiprocessor has
one Instruction Unit and works in a SIMD2 manner. All multiprocessors share
the Device Memory. Figure 3.1, taken from the CUDA programming guide [39],
shows a CUDA device (Graphic card or Tesla) architecture.

The CUDA programming guide [39] is a good document to learn program-
ming using CUDA. Examples of programs are provided with the CUDA SDK.

2Single Instruction, Multiple Data
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Figure 3.1: CUDA 1.x Capable Device Architecture. This Figure comes from the
CUDA programming guide [39] and is used with permission. For the GeForce
8800 GTX, N = 16 and M = 8.



Chapter 4

Implementation Issues

This chapter presents implementation issues of filters, and describes step by step
how to implement the 2-band Bamberger DFB from a computer-scientist point of
view. The tools and programs developed during this thesis are then introduced.

4.1 Filter Implementation Issues

4.1.1 Using Periodic Extention

Let us consider a 1D signal. When convolving [13] it, the output signal is wider
than the input signal, by FILT ER_SIZE−1. This is rather inconvenient for sev-
eral reasons. First, it takes more disk place to store the result and more memory
to process the signal. The performance might suffer, especially in a tree struc-
ture when the signal is getting bigger and bigger at every stage. Additionally, it
makes programming harder. In the 2D case, the same problem occurs. In addi-
tion to the 1D problems, maximal decimation ease visual subband analysis and
some application like image classification [24]. The solution is to consider the
periodic extension of the signal, because convolving a periodic signal gives a pe-
riodic signal with the same period. If we consider only one period, the size remain
constant.

4.1.2 Filter Coefficients

In this thesis, we have used the filter coefficients of Tables 4.1 and 4.2. They
come from [19] and represent a half band low pass filter. We use them for h0[n]
and compute the other filter coefficients from h0, as described in Chapter 2.

34
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Table 4.1: QMF Filter Bank Coefficients of Length 8: copy from Table 5.5 in [19]

.93871500e−02
−.70651830e−01

.69428270e−01

.48998080e+00

.48998080e+00

.69428270e−01
−.70651830e−01

.93871500e−02

Table 4.2: QMF Filter Bank Coefficients of Length 16: copy from Table 5.5 in
[19]

.10501670e−02
−.50545260e−02
−.25897560e−02

.27641400e−01
−.96663760e−02
−.90392230e−01

.97798170e−01

.48102840e+00

.48102840e+00

.97798170e−01
−.90392230e−01
−.96663760e−02

.27641400e−01
−.25897560e−02
−.50545260e−02

.10501670e−02
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4.2 Complete Bamberger DFB Algorithm
This section present step by step the path taken by a 2D signal in the Bamberger
filter bank. We will follow the path a matrix takes within the DFB.

The image is represented by a matrix matA1. For this example, let us use the
following matrix:

matA1 :

3 M N O P
2 I J K L
1 E F G H
0 A B C D

0 1 2 3
We do a frequency shift of π. Since

x(n1,n2)e jθ1n1+ jθ2n2 ↔ X(ω1−θ1,ω2−θ2)

the frequency shift corresponds to multiplying each value in the matrix by e jn1π =
(−1)n1 .

Our matrix thus becomes:

matA2 =


M −N O −P
I −J K −L

E −F G −H
A −B C −D


In order to downsample, we consider the periodic extension of the image:

matA2b =

G −H E −F G −H E −F G
C −D A −B C −D A −B C
O −P M −N O −P M −N O
K −L I −J K −L I −J K
G −H E −F G −H E −F G
C −D A −B C −D A −B C
O −P M −N O −P M −N O
K −L I −J K −L I −J K

matA2b is periodic with periodicity matrix [23, 13]:
(

4 0
0 4

)
.

4.2.1 Downsampling

We use downsampling matrix µ =
(

1 −1
1 1

)
whose inverse is µ−1 = 1

2

(
1 1
−1 1

)
.

After downsampling, mat3.1 and mat3.2 are periodic. Different periodicity
matrices are possible, and we have the choice of which fundamental period to keep
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for filtering. The fundamental period should be rectangular. In the example, we
can chose a 2×4 or a 4×2 fundamental period. We keep only one period because
of implementation limitation, but in theory, the filter is done on the infinite plan.
Therefore, we will take 4×2 period for horizontal filtering and the 2×4 period for
vertical filtering. This is possible because the filters do not change the periodicity.

The 4×2 fundamental period corresponds to the following periodicity matrix:(
4 2
0 2

)
.

The downsampling operation appears to be the only step that limits the algo-
rithm to square images. Downsampling non-square images works fine, but their
is not a possible rectangular fundamental period in both directions1.

4.2.1.1 LPF

We downsample matA2 with µ: matA3.1(n) = matA2(µn).
The result is:

matA3.1 :

C −H I −N C −H I −N C −H
−P A −F K −P A −F K −P A

I −N C −H I −N C −H I −N
−F K −P A −F K −P A −F K

C −H I −N C −H I −N C −H
−P A −F K −P A −F K −P A

matA4.1 :
−H I −N C

A −F K −P

4.2.1.2 HPF

For the high pass filter, we apply the zk1 transformation, which k1 being a coset

vector of µ. If we take the first coset vector
(

1
0

)
, we get:

matA3.2 :

−D E −J O −D E −J O −D E
M −B G −L M −B G −L M −G
−J O −D E −J O −D E −J O

G −L M −B G −L M −B G −L
−D E −J O −D E −J O −D E

M −B G −L M −B G −L M −G

1If the input image has size W ×H, then its periodic extension has periodicity matrix P =(
W 0
0 H

)
. Then the downsampled signals have periodicity matrix µP =

(
W −W
H H

)
.
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matA4.2 :
E −J O −D
−B G −L M

4.2.2 Filtering
When filtering, we apply the filter on one period of the downsampled images.
Because we take periodicity into account, the output has the same periodicity as
the input.

The output of horizontal filtering would hence give two matrices of the form:

matA5.1 :
m n o p
i j k l and matA5.2 :

e f g h
a b c d

Since both of these matrices have periodicity matrix
(

4 2
0 2

)
, we can also

use other fundamental period (see 4.2.1). For vertical filtering, we use a vertical
fundamental period and will apply the filter on:

matA6.1 :

o p
k l

m n
i j

and matA6.2 :

g h
c d
e f
a b

And get the result :

matA7.1 :

oo pp
kk ll

mm nn
ii j j

and matA7.2 :

gg hh
cc dd
ee f f
aa bb

4.2.3 Combining
The last step is to combine them so that they represent directional information:
matA8.1 = matA7.1+matA7.2 and matA8.1 = matA7.1−matA7.2.

Finally, we get two matrices which represent each information in one of the
two hourglass region:

matA8.1 :

OO PP
KK LL

MM NN
II JJ

and matA8.2 :

GG HH
CC DD
EE FF
AA BB
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4.3 Tools
We developed several tools specifically for this project. Among these is an image
manipulation library called GRIM. This application can be used by including the
header file grim.h and linking to the static library libgrim.a. The name GRIM
comes from the fact that it manipulates GRey IMages. We have also developed a
program called grim2x that converts image files between different formats. This
section describe these tools.

4.3.1 Image Representation
The images manipulated are grey images. A pixel is represented by a number
between 0 (black) and 255 (white).

In a program

The simplest way to represent a 256 grey level image in a C program is to create
a C structure as in Figure 4.1, and store in it the dimensions of the image and an
array of pixel. Because we need more precision than 256 levels when processing
the images, we will use a similar structure using an array of float. These two
structures are called grim and fgrim and defined in Figure 4.1.

1 typedef struct {
2 int w; /* width of image */
3 int h; /* height of image */
4 bit8 *pix; /* array of pixels */
5 } grim;
6

7 typedef struct {
8 int w; /* width of image */
9 int h; /* height of image */
10 float *pix; /* array of pixels */
11 } fgrim;

Figure 4.1: grim and fgrim: Two Structures to Represent an Image. bit8 is
defined as a char. It could be a uint8_t (defined in stdint.h in C99)

As a file

We also need file formats to store and manipulate images.
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We have created our own format, called grim, to store and load images. This
format is a direct extension of the grim structure of Figure 4.1.The width and
then height of the image are stored as 32-bit unsigned integers, using little endian
representation. Starting just after, at the ninth byte of the file, the pixel array is
dumped in the file. Each pixel is represented by an unsigned 8-bit integer and they
are stored line by line. Files have a .grim extension.

Because we would like to exchange images with the rest of the world, we
also use the BMP (bitmap) format [40], also known as DIB (Device Independant
Bitmap). There are actually several different BMP file formats, and they contain
information in their header to determine which representation they use. We use
the Windows V3 version to be able to read files created by the GIMP software. We
use the .bmp extension for BMP files. A BMP file begins with a 14-bytes file
header, then a DIB header containing information about the image and the way it
is represented. The DIB header is 40-bytes long in the Windows V3 format. In
it, we indicate in a field that we use a 256 color representation. After the DIB
header comes a palette, where the 256 colors are defined in the RGB format. In
the palette, we indicate that color i in the pixel array represent the color RVB(i,i,i).
Then, starting at byte 1078 (14 + 40 + 256 ∗ 4) is the bitmap data. Each pixel is
represented by a 8-bit unsigned integer. The total length of a file is then (1078 +
width ∗ height) bytes. As this format is pretty easy, the reader can refer to our
implementation (see file grim.c) to understand it, and use an hexadecimal editor
to analyse images.

For debugging purpose, it is nice to print the numbers of an image. We print
on a first line the width, a space, and the height of the image. Then, we print
every image line on a new line, and pixel numbers are separated by spaces. When
printed in a text file, we give it a .grtxt extension.

We have used the octave software for numerical computing (see Section 4.4).
To exchange images with octave, we have used a specific text format. An example
is given in Table 4.3.

Note that in an image, lines are from bottom to top (i.e.: pixel (0,0) is at the
lower left corner) whereas in memory and text representations, lines are from top
to bottom (i.e.: pixel (0,0) is at the upper left corner).

Transform Between Formats

The GRIM library provides a set of C functions to transform image formats. Note
that there exists many graphic libraries available that allow to manipulate im-
ages, and in particular BMP images. Because we need only a few functions, we
have found simpler to write our own small library. This also allows us to use
multiple platforms without installing large libraries. Among graphic libraries,
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Table 4.3: Image Representation

image (BMP) text (file.grtxt) file.mat (octave)

4 4
0 16 32 48
64 80 96 112
128 144 160 176
192 208 224 240

# Created by hand
# name: by16_4x4
# type: matrix
# rows: 4
# columns: 4

0 16 32 48
64 80 96 112
128 144 160 176
192 208 224 240

we could have use GTK+ (glade, Glib, Gazpacho) [41], ImageMagick2 [42] or
GraphicsMagick [43]3, imlib [44], DevIL [45]. Most of them are released un-
der the GNU Lesser General Public License (LGPL) [46], which allows to link to
the licensed library without restricting the program license4.

Using the GRIM library, internal representation of images can be converted
with the functions:

int grim\_to\_fgrim(grim *in, fgrim *fout);
int fgrim\_to\_grim(fgrim *fin, grim *out);

Input output in different formats are done by the functions:

int grim_write(grim *img, FILE *fpout);
int fgrim_write(fgrim *fimg, FILE *fpout);
int grim_print(grim *img); // to stdout
int fgrim_print(fgrim *fimg); // to stdout
int grim_write_bmp(grim *img, char* bmp); // (&img, "img.bmp");
int grim_read_bmp(char* bmp, grim *img); // ("img.bmp", &img);
int grim_write_grim(grim *imgin, char* fileout);// (&img, "img.grim");
int grim_read_grim(char* filein, grim *imgout); // ("img.grim", &img);
int grim_text_read(char* filein, grim *imgout); // ("img.grtxt",&img);

2ImageMagick is a software suite rather than a library, and uses a GPL compatible licence.
MagickWand and MagickCore are tools and libraries to convert, compose, and edit images from
C programs.

3GraphicsMagick is a fork of ImageMagick.
4However, changes of the library itself must be made public.
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The two following functions draw the curve corresponding to one row of the
input signal. It is typically used to visualise in 2D a 1D signal. The horizontal axis
is the column index in the row (n) and the vertical axis is the value of the pixel
(x[n]).

int grim_line_to_2d(grim *fin, int line, grim *out_2d);
int fgrim_line_to_2d(fgrim *fin, int line, grim *out_2d);

The grim2x program permits to transform images between different file for-
mats. It uses the GRIM library.

* Description:
Convert grey image in different formats :
* GRIM image.grim
* BMP image.bmp
* text image.grtxt

* Format:
grim2x [-h] [-o <image_out>] <conv> <image_in>
-h : print help and exit
<conv> the conversion to make: one of "grim2bmp", "bmp2grim",

"grim2grtxt", "grtext2grim", "grim_print", "bmp_print"
<image_in> is the name of input image to convert
<image_out> is the name of output converted image.

Default is out.grim, out.grtxt, out.bmp, or stdout

4.3.2 Image Manipulation
The following tools are functions of the GRIM library.

Basic Manipulation

int grim_create(grim *img, int width, int height);
int grim_free(grim *img);
int grim_copy(grim *in, grim *out);
int fgrim_create(fgrim *fimg, int width, int height);
int fgrim_free(fgrim *fimg);
int fgrim_copy(fgrim *in, fgrim *out);

Image Comparison, Sizing, and Sinus

int grim_diff(grim *im1, grim *im2); // difference in %
float fgrim_diff(fgrim *fim1, fgrim *fim2); // difference in %



4.4. USING OCTAVE 43

grim g;
int w = 80;
int h = w;
grim_create(&g, w, h);
grim_set_sinus(&g, WHITE, 1*PI/4.0, 5);
grim_write_bmp(&g, "sinus_image.bmp");
grim_free(&g);

(a) (b)

Figure 4.2: Example of Use of fgrim_set_sinus: (a) code and (b) result

int grim_cmp(grim *im1, grim *im2); // return 1 iff equals
int grim_scale(int fact, grim *in, grim *out); // scale by fact
int grim_set_color(grim *img, bit8 color); // set all pixels to color
int grim_set_sinus(grim *img, bit8 color, float direction,int period);
int fgrim_set_sinus(fgrim *fimg,bit8 color,float direction,int period);
int grim_resize(grim *in, grim *out, int new_w, int new_h); //crop/pad

Figure 4.3 explains how the function fgrim_set_sinus works and Figure 4.2
shows how to use it.

4.4 Using octave

Octave has been used to produce processed images, as a proof of concepts, and
to plot graphics (such as the 3D sinus of Figure 2.7 (a) page 16 and the 2D sinc
functions of Figure 2.8).

Octave, also known as GNU Octave, is a numerical computing software. It
is free5 and open-source, since it uses the GPL Licence. Octave has a scripting
language highly compatible with Matlab and offer similar services. It can be used
with gnuplot (and many other plotting software) to produce 2D or 3D graphics in
many formats including the Xfig format. It has many possibilities like libraries,

5Octave is free both as in free speech (freedom) and as in free beer (price). See the Free
Software Foundation (FSF) definition of free software: http://www.gnu.org/philosophy/
free-sw.html

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
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(d)

d

M

O

M’teta_M

d = [angle] direction
O = [point] origin: (0,0)
(d) = [line ] line through O with direction d
M = [point] (i,j)
M’ = [point] orthogonal projection of M on (d)
teta_M = [angle] angle of point M in polar coordinates = atan(j/i)
M_norm = [distance] distance between O and M = sqrt( i^2 + j^2 )
Mp_norm = [distance] distance between O and M’= M_norm * cos(teta_M-d)
Color of point M = 255/2 * ( sin(Mp\_norm * 2 PI / period)+1 )

Figure 4.3: Explanation of fgrim_set_sinus

debuggers, etc... most of the time through extensions (sometime compatible with
Matlab).

We have used a text format to exchange images outside the software. The
method is presented in Figure 4.4. Inside Octave, an image is represented by a
matrix.

We have chosen to use Octave because it is easy to use, and its scripting
language6 gives, for instance, the resulting numbers of a convolution without the
need for compilation and printing tools. We have used it as a proof of concepts
and to adjust the filter offsets. Used with small matrices, the computation steps
can be verified by hand or the numbers can be tracked across the operations, for
example to see how a downsampling operation reorganize the matrix and if an
upsampling operation is the exact inverse of a downsampling. If big matrices are
used (we provide some in .mat files), it is convenient to disable the output of the
intermediate results by ending the function calls by a ; (semicolon).

Each function is in a file with a .m extension. They must be loaded (e.g.:
source(’downsample.m’);) before to be used (e.g.: [matA4b1,matA4b2] =
downsample(matA2);). The files dfb.m, rev_dfb and main1.m load and use
several functions. The complete filter bank is not implemented in octave because
we have stopped using it when we have understood all the concepts. The only

6octave is both the name of a software and of the scripting language it uses.
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1 shell$ octave
2 octave:1> a = [1 2;3 4]
3 a =
4

5 1 2
6 3 4
7

8 octave:2> save -text a.mat a
9 octave:3> exit
10 shell$ cat a.mat
11 # Created by Octave 2.9.12, Sun Jan 06 14:27:28 2008

CET <jerome@woobo >
12 # name: a
13 # type: matrix
14 # rows: 2
15 # columns: 2
16 1 2
17 3 4
18 shell$ octave
19 octave:1> load(’a.mat ’);
20 octave:2> a
21 a =
22

23 1 2
24 3 4
25

26 octave:3>

Figure 4.4: A Method to Export and Import an Image with Octave

steps missing is using a different offset for filtering the second time and using
proper filter coefficients.

However, Octave is slow, like its competitors. This is because it uses an inter-
preted language, uses general tools rather than specialized, do not take advantage
of specific hardware (The version we have used has been compiled for any x486
processor). Octave passes function arguments by copy. When the argument is
a matrix, it is easy to understand that it is not the right tool to use when seeking
performance. Some compilers exist, like there exist Matlab or Java compilers that
produce assembly (or C) code, but it is not the primary aim, and Octave remains a
very high level language that cannot compete with other technologies. If it served
us during this project, we moved on and now use C and CUDA.
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4.5 Using C
This section describes the structure of our C implementation of the three filter
banks developed during the thesis: 1D non-polyphase ands polyphase FB and the
Bamberger DFB.

The code has been designed to be portable. It has been tested on Linux Ubuntu
7.10 32 bits, Linux Ubuntu 7.10 64 bits, and Windows XP using Cygwin. Early
versions of the GRIM library and the 1D non polyphase filter have been tested on
Windows XP using Visual C++.

Figure 4.5 summarizes the algorithms implemented. The name of the signals
throughout the process are indicated. For example, in Figure 4.5 (a), the filter
H0(w) transform the signal E1 into E2b1. Signals of the first and second band
of the filter-banks have the suffix b1 and b2 respectively. In the code, the signal
have the prefix s and are of the type fgrim describe previously (see Figure 4.1).
For example, signal C5b1 is declared by fgrim sC5b1;. Filters operate in place
on the signals. Signals C3b1 and C4b1 are therefore represented by the same
variable, called sC3a4b1 (a for and). In (a) and (b), signals have a width of 1
(they are 1D signals). In (c), signals are square.

The three algorithm implemented and described in Figure Figure 4.5 (a), (b),
and (c) are:

(a) 1D non-polyphase Low-pass High-pass filter bank – Implemented in
1d_filter.c. If the macro NODOWNUP is defined during the compilation,
the downsampling and upsampling operation are skipped. This filter bank
has been used to ensure the validity of its polyphase version.

(b) 1D polyphase Low-pass High-pass filter bank – Implemented in
1d_polyphase_filter.c. By achieving perfect reconstruction and giving
exactly the same intermediate results than its non-polyphase version, this
filter bank permits to validate the concepts of implementation issues related
to QMF filters (see 2.1.3) and polyphase FB. In particular, it validates the
coefficients for P0(ω) and P1(ω).

(c) 2D 2-band polyphase hourglass filter bank (Bamberger DFB) – Implemen-
ted in 2d_polyphase_filter.c and called by the main() function in dfb.c.
The difference between the signals A5b1 and A6b1 is that the later is a ver-
tical tile of the periodic extension generated by the former. In other word, it
is reorganized from horizontal to vertical, as described previously in 4.2.1.
Appendix B describes the program structure and lists some important parts
of the code.

Most functions used by the three programs are implemented in filter.c.
Emphasis have been put on the clarity of the code rather than performance. The



4.5. USING C 47

E
2
b
1

E
2
b
2

E
4
b
1

E
4
b
2

E
5
b
1

E
5
b
2

E
3
b
1

E
3
b
2

E
6

E
1

H
1(

ω
)

G
0(

ω
)

G
1(

ω
)

x̂[
n]

↑2 ↑2

↓2 ↓2

H
0(

ω
)

y 1
[n

]

y 2
[n

]
x[

n]

(a
)1

D
no

n-
po

ly
ph

as
e

L
ow

-p
as

s
H

ig
h-

pa
ss

fil
te

rb
an

k

C
3
b
2

C
3
b
1

C
4
b
1

C
4
b
2

C
5
b
2

C
5
b
1

C
6
b
1

C
6
b
2

C
7
b
1

C
7
b
2

C
8
b
1

C
8
b
2

C
9

C
2

x̂[
n]

↑2 ↑2

P 1
(ω

)

P 0
(ω

)

P 0
(ω

)

P 1
(ω

)

↓2 ↓2

y 1
[n

]

y 2
[n

]
z−

1

z−
1

x[
n]

(b
)1

D
po

ly
ph

as
e

L
ow

-p
as

s
H

ig
h-

pa
ss

fil
te

rb
an

k

A
4
b
1

A
4
b
2

A
6
b
1

A
6
b
2

A
5
b
2

A
5
b
1

A
7
b
1

A
7
b
2

A
8
b
1

A
8
b
2

A
9
b
1

A
9
b
2

A
1
1
b
1
A
1
2
b
1

A
1
2
b
2

A
1
3

A
1
0
b
1

A
1
1
b
2

A
1
0
b
2

A
2

A
1

A
1
4

P 0
(ω

2)

P 1
(ω

2)
P 0

(ω
2)

P 1
(ω

2)

1 0
z−

(
)

↑µ
P 0

(ω
1)

z−
(

)1 0

↓µ ↓µ
P 1

(ω
1)

P 0
(ω

1)
P 1

(ω
1)

↑µ

e−
iπ

n 1

y 1
[n

]

y 2
[n

]

e−
iπ

n 1

x[
n]

x̂[
n]

(c
)2

D
2-

ba
nd

po
ly

ph
as

e
ho

ur
gl

as
s

fil
te

rb
an

k
(B

am
be

rg
er

D
FB

)

Fi
gu

re
4.

5:
Fi

lte
r

B
an

k
Im

pl
em

en
ta

tio
n:

A
lg

or
ith

m
an

d
N

am
e

of
In

te
rm

ed
ia

te
Si

gn
al

s.
T

he
se

th
re

e
sc

he
m

es
re

pr
es

en
tt

he
sa

m
e

al
go

ri
th

m
s

th
an

Fi
gu

re
s

2.
4,

2.
5

an
d

2.
22

.



48 CHAPTER 4. IMPLEMENTATION ISSUES

code is therefore rather slow. For example, we duplicate signals before filtering
whereas the filters work in place. Two function have been optimized because we
want to compare them against their GPU counterpart: filter_periodic_horizontal
and filter_periodic_vertical.

4.6 Using CUDA
As convolution is a common task, it has already been studied. In particular,
NVIDIA provide an example of separable convolution in the CUDA SDK 1.1
separableConvolution sample. The sample, unlike our application, performs
non-periodic convolution and is a standalone application that creates random data
before processing them. We have used parts of this code in our CUDA implemen-
tation, and most of the concepts they describe in the documentation [47].

Parts of our program is listed in Subsections B.2 and B.3



Chapter 5

Results

In this chapter, some signals and their process through the different filter banks
are shown and discussed in Section 5.1 and 5.2 . Performance analysis is then
presented in Section 5.3.

5.1 1D signal analysis

From the Nyquist-Shannon sampling theorem [48], the maximum frequency that
can be represented in a signal has a period of two pixels. A half-band filter would
therefore cut a frequency corresponding to a period of 4 pixels. We have applied
the 1D 2-band low-pass high-pass filter banks on signals composed of sinuses,
to be able to analyze better the result. The differences around the period of 4
pixels was observed. An example of signals processed by the filter bank, including
intermediate ones, are described below. We used the function fgrim_line_to_2d
of the GRIM library to draw these signals.

Table 5.1 presents the input signal E1 processed. The intermediate signals of
the 1D non polyphase filter bank are shown in Table 5.2. The name of the signal
are the same as in Figure 4.5. First, the input E1 and the output E6 are exactly
the same, using either the fgrim_diff function or the unix diff utility on the
BMP files produced. Note that the later method accepts small errors because
of the rounding. The filter coefficients have the properties needed to get perfect
reconstruction. Second, it is visible from the signals (e.g. E4bx) that band 1 keeps
the low frequencies and band 2 the low frequencies. Table 5.3 shows the output
signal (E6) of the filter bank when one of the two subbands E3bx is set to zero.
The filter bank has nearly separated the high frequency sinus from the two low
frequency sinuses.

Using the polyphase filter bank, we also get perfect reconstruction, and the
subbands C5b1 and C5b2 are exactly the same than E3b1 and E3b2 respectively.

49
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Table 5.1: 1D Filter Bank Example: Input Signal. Note that s1 appears like 3
lines, but is actually a sinusoid whose period is so small that only 3 pixels per
period is printed.

s1: period of 3 pixels s3: period of 60 pixels

s5: period of 100 pixels E1: 0.5s1 +1s3 +1.5s5

Setting one band to zero produces the same results as in the non polyphase case.
From this analysis, we are confident that the 1D filter banks work correctly.

5.2 2D signal analysis
We present the results of the 2-band DFB implemented on an image of size 2562.
The application is called by ./dfb MA256.grim. The intermediate signals of are
shown in Table 5.4. The name of the signal are the same as in Figure 4.5. The CPU
and GPU versions of the DFB always give exactly the same results. Therefore,
this section applies to both cases.

The filter bank gives perfect reconstruction. Images A1 and A14 are the same,
as well as A2 and A13. However, the subbands images do not seem to contain
directional information. Table 5.5 (a) and (b) shows the output signal of the filter
bank when one of the two subbands A8bx is set to zero. Again, we do not really
see directional information. If we apply the same image on the filter bank without
doing the frequency shift before and after, we get the two subbands (c) and (d).
These two images show high frequencies in (d) and low frequencies in (c) as they
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Table 5.2: 1D Filter Bank Example: Intermediate Signals

E1

E2b1 E2b2

E3b1 E3b2

E4b1 E4b2

E6
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Table 5.3: 1D Filter Bank Example: Reconstructed Subbands.

E6 reconstructed from E3b1 only E6 reconstructed from E3b2 only

should do. However, we cannot conclude whether they really correspond to the
diamond shape filters as they should. If they do, then the problem is probably the
frequency shift. This problem does not affect the computation load of the filters,
so the performance analysis in next section is valid.

5.3 Performance

5.3.1 Test Machine and Methodology
The machine used for the test is described in Table 5.6. The CPU cores can run
at a frequency of 3.20 GHz, but usually run at 2.8 GHz to save power, and switch
to a higher frequency when needed. This makes measurements very unstable. We
have therefore forced the cores to run at their top speed (3.20 GHz) using the
command:

cpufreq-selector -g performance # set core 0 frequency to max
cpufreq-selector -g performance -c 1 # set core 1 frequency to max

The code have been compiled with version 4.1.3 of gcc and g++. Version 4.2
has been tested too but did not give us any better results. The code have been
compiled with the flag -O3 for optimization, -march=pentium4 for architecture
specific optimisation, -mfpmath=sse for using SSE2 instruction set. The graphic
card used for the computation was also running the X server. Shutting X or having
another graphic card for the screen might give better performance.

The graphic card is a GeForce 8800 GTX. Its characteristics are in Table 5.7.
The theoretical bandwidth between the CPU and the GPU is 4 GB/s. However,
we have measured a bandwidth of only 980MB/s. We were expecting about two
times more from the web. All the more, the bandwidth is unstable, and not better
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Table 5.4: Bamberger DFB Example: Intermediate Signals

A1 A2

A4b1 A4b2

A5b1 A5b2

A6b1 A6b2

A7b1 A7b2

A8b1 A8b2
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Table 5.5: Bamberger DFB Example: Reconstructed Subbands. In (c) and (d),
the filter bank do not include the frequency shifts before and after. (b) and (c) are
smooth.

band 1 band 2

(a) (b)

(c) (d)
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Table 5.6: Test Platform Description

Operating System Linux Ubuntu 7.10
Kernel 2.6.22-14 i686
Processors Dual core Pentium 4, 3.20 GHz
Cache size 2048 KB
RAM 1011 MB
Compiler for C gcc 4.1.3 prerelease (also tried 4.2)
Compiler for C++ g++ 4.1.3 prerelease (also tried 4.2)
Compiler for CUDA nvcc, release 1.1 (V0.2.1221)
Graphic card NVIDIA GeForce 8800 GTX
Graphic card drivers 169.09 (January 2008)
CUDA Toolkit 1.1 (December 2007)

for page-locked memory. The same problems have been reported [49] by several
people on the NVIDIA forum. No reasons have been found. It may come from
the operating system settings or from the mother board.

The tests have been run 10 times each. The highest and lowest result have
been removed to compute the mean. Care have been taken to keep a low stan-
dard deviation. The tested application is dfb, whose main function is in the
file dfb.c. The macro noGPU, TIMER, and noSAVE_IMAGES have been set in
2d_polyphase_filter.c to compile for the CPU, and GPU, TIMER, and
noSAVE_IMAGES to compile for the GPU. The filter size used by the convolution
is 8. That is, h0 and h1 are 16 numbers long, but we convolve with the polyphase
filters p0 and p1, which are two time smaller.

As can be seen from the code in Figure 5.1, only the horizontal and vertical
filters have been timed. Indeed, the rest is only implemented on the CPU.

For timing, we have used the timer clock() from time.h and gettimeofday()
from sys/time.h. The former appeared to have a resolution of 10 ms, which was
too low for our comparisons. The later gives result with a detail of 0.001 ms.
We have also used the x86 assembly instruction RDTSC which returns the number
of ticks of the processor. For the results below, the timer gettimeofday() have
been used.

5.3.2 CPU Version
Table 5.8 present the result of the tests for convolution on CPU, and Figures 5.2
(a) and (b) shows the corresponding curves. The horizontal axis of the graphics
is the side of the images used for the tests. It is the square root of the number
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Table 5.7: Graphic Card Description: NVIDIA GeForce 8800 GTX

Global memory 768 MB (GDDR3)
Multiprocessors 16
Processors 128 = 16×8
Bandwidth CPU-GPU 4 GB/s in theory
Memory bandwidth 86.4 GB/s in theory
Clock 575 MHz
CUDA compute capability 1.0
Shared memory 16 KB per multiprocessor
Transistors 681 millions (480 mm2 die surface, 90 nm)
Power 185 Watts
Bus Two connectors PCI Express (x16)

1 TIMER_BEGIN;
2 MACRO_filter_periodic_horizontal(&sA4a5b1 , &p0_coef , offset1);
3 MACRO_filter_periodic_horizontal(&sA4a5b2 , &p1_coef , offset1);
4 TIMER_END("horizontal")
5 SAVE(&sA4a5b1 , "sA05b1.bmp"); SAVE(&sA4a5b2 , "sA05b2.bmp");
6 reorganize_h2v(&sA4a5b1 , &sA6a7b1);
7 reorganize_h2v(&sA4a5b2 , &sA6a7b2);
8 SAVE(&sA6a7b1 , "sA06b1.bmp"); SAVE(&sA6a7b2 , "sA06b2.bmp");
9 TIMER_BEGIN;
10 MACRO_filter_periodic_vertical(&sA6a7b1 , &p0_coef , offset1);
11 MACRO_filter_periodic_vertical(&sA6a7b2 , &p1_coef , offset1);
12 TIMER_END("vertical ")

Figure 5.1: Extract of the Analysis Part of the 2D Polyphase Filter, in
2d_polyphase_filter.c. The functions within the timer run on the CPU or
GPU depending whether the GPU macro is defined or not.
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Table 5.8: CPU Results: Wall-clock Time in ms for Horizontal and Vertical Filters
on Different Image Size.

Horizontal convolution
Image side (pixel) 256 512 1024 1920 2048 7680(∗)
Maximum time 2.35 9.08 25.21 78.16 84.33 4542.89
Minimum time 1.35 5.09 20.57 72.14 83.45 4542.89
Average time 1.99 6.14 21.93 73.8 83.81 4542.89

Vertical convolution
Image side (pixel) 256 512 1024 1920 2048 7680(∗)
Maximum time 2.78 12.13 145.88 133.26 550.77 8536.42
Minimum time 1.55 7.4 133.28 123.27 531.63 8536.42
Average time 2.16 9.69 137.01 127.14 544.72 8536.42

(∗) The CPU tests have been run only once on the 7680×7680 image, because the whole
program (though not the timed functions) is too slow for that size.

of pixels of the image. The first remark is that the results are consistent in that
the different measurements of the same test are very similar. We will therefore
consider only the average time.

Let us first consider the horizontal convolution. Convolving an image has a
complexity of N2 (with a fixed size filter), N being the side of the image. Without
being evident, at least the curve (a) do not mismatch the complexity, especially.
For an image of 19202, a naive algorithm of three for loops takes 440ms. Our
optimized version now takes 75ms. A similar speedup has been observed for
other matrix sizes.

The results of vertical convolution are more surprising. If we ignore the 19202

image, the curve has the same shape than for horizontal convolution but about
5 times slower. It is not surprising that vertical convolution is slower because
it has a bad memory access pattern. Indeed, it reads the values by column, so
it gets a cache miss at least for every new value read, whereas the horizontal
convolution access memory sequentially and nearly always hit the cache. Recall
that convolution is y[n] = ∑k x[n + k]h[k], with h the filter (of size 8 in the tests).
The memory address read increased by 1 height times and decrease by 7 one time,
and increase again. Let us now consider the value for 1920. It is definitely not an
accident because it has been reproduced many times. Here also, the explanation
could be the cache. We do not know the number of lines of the cache, but we
suppose that the other images used have a width which is a multiple of the number
of cache lines. Then, every value of a column would want to be in the same line
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Horizontal Vertical
CPU

(a) (b)
GPU

(c) (d)
Both CPU and GPU

(e) (f)

Figure 5.2: Performance Comparison
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Table 5.9: GPU Results: Wall-clock Time in ms for Horizontal and Vertical Filters
on Different Image Size.

Horizontal convolution
Image side (pixel) 256 512 1024 1920 2048 7680
Maximum time 2.04 3.81 11.05 35.04 39.52 1066.2
Minimum time 1.91 3.74 10.87 34.76 39.29 601.01
Average time 1.93 3.77 10.93 34.88 39.38 874.76

Vertical convolution
Image side (pixel) 256 512 1024 1920 2048 7680
Maximum time 1.9 4.2 11.25 34.99 39.72 537.3
Minimum time 1.77 3.59 10.73 34.57 39.13 534.06
Average time 1.8 3.63 10.8 34.77 39.23 534.86

of the cache, and we would always miss the cache. For the 19202 matrix however,
the distance in memory between two values of a column is not a multiple of the
line number, so the values are shifted in the cache and arrive on different lines.
Therefore, the 7 previous values are still there (on other lines) and we have only
one miss per pixel. We did not have time to investigate further cache issues, nor
have we used a cache profiler such as Cachegrind in this thesis. Some tricks
could be used to optimize the code further. A first idea is to allocate a new place
in memory of the size of the image and copy the input image while transposing it.
Then the reads would virtually always hit the cache.

5.3.3 GPU Version
Table 5.9 present the result of the tests for convolution on GPU, and Figures 5.2
(c) and (d) shows the corresponding curves. Same as before, the different mea-
surements of the same test are very similar so we consider only the average times.
The curves are consistent as well with the N2 complexity.

There is no specific cache issue here because the image is first accessed se-
quentially to send it to the device, then in parallel by block of width 16 from the
global memory as described in section 4.6.

It is worth noticing that the horizontal and vertical convolution takes the same
time. On the graphics of Figure 5.3, it is not possible to distinguish these two
curves.

We have run several tests on the 19202 image commenting different parts of
the code to find the bottlenecks. We have found one: the bandwidth. Of 35 ms,
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Figure 5.3: Performance Comparison: CPU vs. GPU. In (b), the CPU vertical
convolution curve is not shown. In (a) and (b), the two GPU curves for horizontal
and vertical convolution overlap.

(a) (b)

about 5 ms are used to allocate device memory, 15 ms to transfer the input image,
and 15 ms to load the result back. The computation itself takes less than 1 ms
(measured with the CUDA toolkit timer). 19202 floats represents 14 MiB, which
would mean that the bandwidth is about 19202∗4

15∗10−3 /106 = 983MB/s. The theoretical
bandwidth is 4 GB/s. Running the bandwidth test of the CUDA SDK gives similar
results, both for paged-blocked and non paged blocked host memory, as discussed
previously. We were surprised that the kernel needs less than 1 ms to run, even on
quite large images. It result from this result that emphasis should be put more on
the code surrounding the kernel. We had not notice it early, as we have developed
the application mainly using a simulator on a machine without CUDA graphic
card. To summarize this paragraph, the bottleneck is the bandwidth.

5.3.4 GPU-CPU Comparisons
Figure 5.3 (a) shows the curves for CPU and GPU, horizontal and vertical convo-
lution. On (b), the vertical curve has been removed, which permits a better com-
parison between CPU and GPU. The speedup observed for the GPU is about 2.
This is rather low and should be qualified. This result represent a worse case be-
cause (a) the C implementation against which it is compared is rather fast (see the
description in Section 4.5 and the results in 5.3.3), (b) the bandwidth of the test
platform is abnormally slow, and (c) only a small part of the algorithm has been
implemented on the GPU so the arithmetic intensity is not very high.

(a) The speedup for the vertical convolution is much higher than for horizontal,
as can be seen in Table 5.10.

(c) The key to get a good overall speedup for the application is to keep the
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Table 5.10: Speedup of the Filter Steps for GPU vs. CPU for Different Image Size

Image side (pixel) 256 512 1024 1920 2048 7680
Horizontal speedup 1.03 1.63 2.01 2.12 2.13 5.19
Vertical speedup 1.2 2.67 12.69 3.66 13.89 15.96

images on the GPU between computation steps. The other steps than filtering
(downsampling, period reorganization, combine, upsampling) should also be pro-
grammed on the GPU, not only to increase their execution time, but also to avoid
transferring data between the CPU and the GPU. Allocating two times the size of
the image should be enough, and the buffers can be used alternately as input or
output of each steps. The most important step to program on the GPU is the reor-
ganization. The reason is that it is between the two steps that benefit the most of
the GPU: filters. It could be possible to avoid the reorganisation steps by changing
the reading part of the vertical analysis filters and the writing part of the vertical
synthesis filters. In most applications, only the analysis or the synthesis part is
considered and the subbands need to be transferred. However, for a simple known
operation on one of the subbands, it could be done on the GPU too. If this oper-
ation is set one of the subbands to zero, then half of the first combine steps can
be skipped as well as half or the whole of the second combine step (which would
add or subtract zero), depending on the band set to zero.



Chapter 6

Conclusions and Future Work

In this chapter, we summarize our research findings and look at potential future
work.

6.1 Conclusion

In this thesis, we looked at the Bamberger directional filter bank (DFB) algorithm
and how to implement it efficiently on CPU and GPU. We have translated the al-
gorithm from a theoretical signal processing description to a practical computer
scientist language, including a readable C implementation. Tools have been devel-
oped to ease DFB investigation, including an independent library to manipulate
images in different formats and to generate test images with suitable properties,
as well as different implementations of 1D filter banks. The most compute in-
tensive steps of the Bamberger DFB were implemented efficiently with CUDA
to run on GPU. It was shown that the bandwidth is the bottleneck. We observed
for different size of images a speedup of 2 in the worse case, that is comparing
horizontal convolution with an optimized CPU version. The speedup for vertical
convolution was much better and would still be better with a more optimized CPU
version. Our platform had a bandwidth about two times slower than bandwidths
reported on the Internet. It is likely that running the program on a platform with-
out this problem gives a much better speedup, since for medium size images, the
transfer represents more than 80% of the time spent by the functions tested. Our
results indicate that the overall performance of the DFB could significantly benefit
from being implemented on the GPU. Given that the stages of the DFB may all
benefit from the GPU, we predict an overall performance of 5-10, depending on
the system bandwidth, for a full DFB implementation. Directional filter banks can
efficiently been executed on GPUs.
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6.2 Future Work
As a computer science student with limited background in signal processing, the
journey of developing these implementations from scratch was a lot of work, but
a very educational one. Hopefully, future students and others interested in opti-
mization of filter bank implementations will benefit from this journey.

Unfortunately, the time allocated for this thesis was limited, and the lack of an
initial implementation of the Bamberger DFB moved back the starting point of the
thesis. In this section, we provide some pointers to ideas that could be explored
further.

• On a digital processing side, a deeper analyze of intermediate results should
be done to determine if they are what is expected or not, and why. Look-
ing at the pre-processing and post-processing frequency shifts might be an
issue.

• Again on a digital processing side, some work need to be done to see how
to use this filter bank in a real-world application. There is probably a trade-
off between desirable visual results and computation time. The choice of
the Bamberger filter-bank was made to satisfy the need of efficiency. This
choice could be reconsidered or some improvements to the algorithm as
described in this thesis could be made. It has for example been suggested[1,
2] to apply a low pass filter on the image first to get rid of the border aliasing
near the center of the frequency plan.

• Only chosen steps of the DFB have been implemented on the GPU, and we
predict that the overall program would benefit from GPU implementation.
Such a task would need to be made if this project was to be continued. Some
other GPU technologies could be investigated, for example to be vendor
independent, so that the user is not tied use a graphic card from NVIDIA.

• Many personal computers do not have an advanced graphic card, and do-
ing a performant CPU implementation of the DFB would also make sense
for these cases. Using SSE instructions could be a starting point for opti-
mization, but the key bottleneck to analyze is undoubtedly the use of the
cache. Because multi-core CPUs are now common, investigating a multi-
threaded version of the algorithm would also be worthwhile, for example
using pthread.
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Appendix A

Annotated Bibliography

This appendix presents the most important papers and book of the bibliography,
including those which might be important for a deaper study.

Signal Processing and Digital Image Filters

An excellent presentation of the discrete Fourier transform (DFT) and its relation-
ship with the continuous (FT) and continuous-time (CTFT) Fourier transforms is
made by Deller in its paper Tom, Dick, and Mary discover the DFT [5, 14 pages].

A crach introduction from 1983 of periodic image processing is given by
Mersereau and Speak in The processing of periodically sampled multidimensional
signals [23, 4 pages].

Reading Chapters 1, 2, 3 and 8 of Filter design for signal processing [7] is
probably enough to give a deep view of digital filter design.

However, we are more interrested in filter implementation than design, and
interest ourselve to 2D signals. Multidimensional Digital Signal Processing [13]
is a very good book from Dudgeon and Mersereau. It begins with a presentation
of multidimensional signals and systems and discrete Fourier analysis (including
many transforms), and then present in detail the design and (serial) implementa-
tion of 2D FIR and IIR filters.

In order to understand the concepts of quadrature mirror filters (QMF) and
polyphase filters, Discrete-time processing of speech signals [19] from Deller and
al. have been used, in particular the Appendix 7.A.

Finally, A Study Guide for Digital Image Processing [50] from Smith and
Docef looks a promising book, though only the QMF filter bank coefficients of
Table 5.5 have been used in this thesis.
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Directional Filter Bank

In 1992, Bamberger and Smith published the article A filter bank for the direc-
tional decomposition of images: theory and design [1] presenting a novel algo-
rithm for directional decomposition of images. This algorithm has many prop-
erties that made it known: efficient computation, maximally decimation, perfect
reconstruction, separable filtering, tree structure.

In 1999, Sang-il Park, Smith and Mersereau improved this algorithm in A
new directional filter bank for image analysis and classification [24]. They add
resampling matrices to get visualizable directional subbands. The additional cost
of the resampling matrices can be reduced by combining all resampling matrices
together at the end of each bank-bands. They also gives many hints and design
parameters to implement such a filter bank, provided the simple 2-band diamond
filter bank.

The Bamberger filter-bank has been appreciated by the scientific community,
as acknowledged by a paper from Rosiles and Smith in 2003: A low complexity
overcomplete directional image pyramid[51]. They also present in this paper an
undecimated DFB based on the Bamberger maximally decimated DFB. Using
undecimated subbands permit them to design a filter with additional properties,
such as shift invariance and an easy structure.

Hyperspectral image segmentation using filter banks for texture augmentation
[52, 2004] uses an octave-band DFB for appending texture information to hyper-
spectral images in order to ease good classification.

Directional filter bank-based fingerprint feature extraction and matching [3,
early 2004] uses the Bamberger DFB to extract feature vector from fingerprint
images and compare them against a set of other fingerprint feature vector to find
a possible match. This article presents in Figure 4 the complete path from the
root to a leaf of the decomposition tree for an eight-band decomposition. We have
extended this tree in Figure 2.20 page 27 of this report.

One of the latest publications on the subject is the PHD thesis of Truong
Nguyen in 2006: [2] The multiresolution directional filter banks. In this docu-
ment, Nguyen gives a global view of the DFB field. He presents the properties a
DFB can have and discuss them, and present a novel algorithm and new results.
Chapter 2 is a review of the fields. In particular, it presents the Bamberger DFB
as the father of most others, and summarize the three critics that can be made to
it.
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GPU, GPGPU, CUDA
Many presentation slides can be found on the Internet that introduce with GPUs
and the concept of GPGPU. However, the website gpgpu.org [53], and in partic-
ular the Tutorial section, is probably one of the best ressources to start learning
practical GPGPU programming technologies. In A Survey of General-Purpose
Computation on Graphics Hardware [27], Owens et al. give an excellent overview
of GPGPU issues as of 2005. It presents the hardware mechanisms, programming
concepts and current technologies, and applications. Each language and technol-
ogy (OpenGL, Cg...) has its own acknowledged didactic programming book of
choice. For CUDA, it is currently the programming guide [39]. The SDK samples
are worth looking at, and some of them come along with a description guide in
the doc/ directory.



Appendix B

Description of the dfb program

The code of the project is organized into several directories. The GRIM library and
grim2x application are in grim/, the octave code is in octave/, and the 1D and
2D filters are in dfb/. The 1D non-polyphase filter bank is in 1d_filter.c and
the polyphase version in 1d_polyphase_filter.c. The Bamberger DFB is im-
plemented in the function polyphase_filter_2d defined in
2d_polyphase_filter.c and in Section B.1 and the main program is in dfb.c.
The command line to process the DFB on an image is dfb [-h] [-o <output_image>]
<input_image>. In 2d_polyphase_filter.c, the macros GPU, TIMER and SAVE_IMAGES
control at compilation time wether to compile the CPU or GPU version, wether
to time the executions of the filters, and wether to input intermediate signals as
BMP images. All intermediate images are generated in the directory images/.
The length of the QMF half-band low pass filter h0 to use is defined in filter.h.
Remind that the length of the polyphase filters p0 and p1 are two times smaller.
The filter banks use the following functions defined in filter.c:

1 void init_coef(fgrim *filter_coef);
2 void free_coef(fgrim *filter_coef);
3 int pair_filter_coef(fgrim *lpf, fgrim *hpf);
4

5 int frequency_shift_PI(fgrim *fimg);
6 int downsample_quincunx_q2(fgrim *in,fgrim *outb1 ,fgrim *outb2);
7 int upsample_quincunx_q2(fgrim *out, fgrim *inb1 , fgrim *inb2);
8 int filter_periodic_horizontal(fgrim *fg, fgrim *coef , int

offset);
9 int filter_periodic_vertical(fgrim *fg, fgrim *coef ,int offset);
10 int reorganize_h2v(fgrim *fin, fgrim *fout);
11 int reorganize_v2h(fgrim *fin, fgrim *fout);
12 int polyphase_combine(const fgrim *ib1, const fgrim *ib2, fgrim

*ob1, fgrim *ob2);
13 int amplify(fgrim *signal , float gain);
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The host parts of the CUDA filters are in dfb_cuda.cu. The CUDA code to run
on the device are in dfb_kernel.cu. In dfb_cuda_gold.cpp, it is still another
version of a C implementation of the DFB.

The host and GPU code of the GPU version of the horizontal periodic filter
are listed in Sections B.2 and B.3 respectively. We have used some code from the
NVIDIA CUDA SDK 1.1 sample convolutionSeparable. The license autho-
rizes us to use it and deny all liability. The license also states that we must include
it in the code and the documentation of our program. Since this appendix is the
documentation, we include NVIDIA disclaimer in Figure B.1.

B.1 DFB code
Below is the code in 2d_polyphase_filter.c, whose function
polyphase_filter_2d is the core of the DFB.

1 /*******************************************************************************
2 * Author: Jerome (J’er^ome) Dubois
3 * Email : Jerome.Dubois@ensimag.imag.fr, jerome@stud.ntnu.no
4 * Created: 2008-01-15
5 * File : 2d_polyphase_filter.c
6 * Copyright 2008 Jerome Dubois
7 *
8 * Goal: Compute a 2D polyphase filter. Signals are 2D signals.
9 ******************************************************************************/
10

11 #include <stdlib.h> // exit, EXIT_SUCCESS
12 #include <stdio.h> // printf, FILE. Already included in grim.h
13 #include <assert.h> // assert
14 #include <time.h> // clock()
15 #include "filters.h"
16 #include "stopwatch.h" // Timer stuff: code around gettimeofday() of sys/time.h
17

18 // Function declaration
19 extern int polyphase_filter_2d(fgrim *in, fgrim *out, fgrim *h0_coef); // here
20 // In a_my_convolutionSeparable.cu:
21 extern int filter_periodic_horizontalGPU(fgrim *fg, fgrim *coef , int offset);
22 extern int filter_periodic_verticalGPU( fgrim *fg, fgrim *coef , int offset);
23

24 #define IMAGES "../images/" // path to the images (to read and create)
25 #define noGPU
26 #define TIMER
27 #define SAVE_IMAGES
28

29 #define DEFINED
30 #undef UNDEFINED
31

32 #ifdef GPU
33 #include <cuda_runtime.h> // for cudaMallocHost
34 #endif
35

36 /*############################################################################*/
37 /*# various MACROS #*/
38 /*############################################################################*/
39
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Copyright 1993-2007 NVIDIA Corporation. All rights reserved.

NOTICE TO USER:

This source code is subject to NVIDIA ownership rights under U.S. and international
Copyright laws. Users and possessors of this source code are hereby granted a nonexclusive,
royalty-free license to use this code in individual and commercial software.

NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IM-
PLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE.

U.S. Government End Users. This source code is a "commercial item" as that term is de-
fined at 48 C.F.R. 2.101 (OCT 1995), consisting of "commercial computer software" and
"commercial computer software documentation" as such terms are used in 48 C.F.R. 12.212
(SEPT 1995) and is provided to the U.S. Government only as a commercial end item. Consistent
with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all U.S.
Government End Users acquire the source code with only those rights set forth herein.

Any use of this source code in individual and commercial software must include, in the
user documentation and internal comments to the code, the above Disclaimer and U.S. Govern-
ment End Users Notice.

Figure B.1: We have used some code from the NVIDIA CUDA SDK 1.1 sample
convolutionSeparable. The license authorizes us to use it and deny all liability.
The license also states that we must include it in the code and the documentation of
our program. Since this appendix is the documentation, we include here NVIDIA
disclaimer.
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40 #ifdef SAVE_IMAGES
41 #define SAVE(sig,file) fgrim_write_bmp((sig),(IMAGES file))
42 #else
43 #define SAVE(sig,file)
44 #endif
45

46 // Timer 1: clock() of time.h
47 #define TIMER_1_DECLARE clock_t start , stop; float time;
48 #define TIMER_1_BEGIN start = clock();
49 #define TIMER_1_END(direction) \
50 stop = clock(); \
51 time = ((float)stop - start) / CLOCKS_PER_SEC * 1000; \
52 printf( direction " filtering of both bands: Timer 1: %f ms\n", time);
53 #define TIMER_1_DELETE
54

55 // Timer 2: gettimeofday() of sys/time.h through stopwatch.h
56 #define TIMER_2_DECLARE float stopwatch_time;
57 #define TIMER_2_BEGIN stopwatch_reset(); stopwatch_start();
58 #define TIMER_2_END(direction) \
59 stopwatch_stop(); \
60 stopwatch_time = stopwatch_getTime(); \
61 printf( direction " filtering of both bands: Timer 2: %6.4f ms\n", \
62 stopwatch_time );
63 #define TIMER_2_DELETE
64

65 #ifdef TIMER
66 #define TIMER_DECLARE TIMER_1_DECLARE TIMER_2_DECLARE
67 #define TIMER_BEGIN TIMER_1_BEGIN TIMER_2_BEGIN // 2 has prio
68 #define TIMER_END(direction) TIMER_2_END(direction) TIMER_1_END(direction) // id
69 #define TIMER_DELETE TIMER_1_DELETE TIMER_2_DELETE
70 #else
71 #define TIMER_DECLARE
72 #define TIMER_BEGIN
73 #define TIMER_END(direction)
74 #define TIMER_DELETE
75 #endif
76

77 #ifdef GPU
78 #define MACRO_filter_periodic_horizontal(signal ,coef ,offset) \
79 filter_periodic_horizontalGPU((signal), (coef), (offset));
80 #define MACRO_filter_periodic_vertical( signal ,coef ,offset) \
81 filter_periodic_verticalGPU( (signal), (coef), (offset));
82 #else
83 #define MACRO_filter_periodic_horizontal(signal ,coef ,offset) \
84 filter_periodic_horizontal((signal), (coef), (offset));
85 #define MACRO_filter_periodic_vertical( signal ,coef ,offset) \
86 filter_periodic_vertical( (signal), (coef), (offset));
87 #endif
88

89 /*############################################################################*/
90 /*# various functions #*/
91 /*############################################################################*/
92 #ifdef GPU
93 int cudaMalloc_fgrim_create(fgrim *fimg , int width , int height);
94 int cudaMalloc_fgrim_free(fgrim *fimg);
95

96 int cudaMalloc_fgrim_create(fgrim *fimg , int width , int height){
97 fimg ->w = width;
98 fimg ->h = height;
99 cudaMallocHost( (void**) &fimg ->pix, width * height * sizeof(float) );

100 return EXIT_SUCCESS;
101 }
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102 int cudaMalloc_fgrim_free(fgrim *fimg){
103 fimg ->w = 0;
104 fimg ->h = 0;
105 cudaFreeHost(fimg ->pix);
106 return EXIT_SUCCESS;
107 }
108 #endif // #ifdef GPU
109

110 /*############################################################################*/
111 /*# 2d_polyphase_filter #*/
112 /*############################################################################*/
113 int polyphase_filter_2d(fgrim *in, fgrim *out, fgrim *h0_coef){
114 int i, offset1 , offset2;
115 int w, w2; // width of the signals
116 int fs, fs2; // size of the filters
117 fgrim p0_coef , p1_coef; // polyphase filter coefficients
118 TIMER_DECLARE;
119

120 /* preparation */
121 w = in->w;
122 fs = h0_coef ->w;
123 assert(0 == w%2);
124 assert(0 == fs%2);
125 assert(w == in->h);
126 w2 = w /2;
127 fs2 = fs/2;
128

129 // coefficient preparation
130 fgrim_create(&p0_coef , fs2, 1);
131 fgrim_create(&p1_coef , fs2, 1);
132 for (i=0; i<fs2; i++){
133 p0_coef.pix[i] = h0_coef ->pix[2*i ];
134 p1_coef.pix[i] = h0_coef ->pix[2*i+1];
135 }
136 offset1 = 0; // assert( abs( offset1)<w ) ?
137 offset2 = fs2-offset1 -1; // assert( abs( offset1)<w ) ?
138

139 // bank preparation
140 fgrim *sA1, sA2, *sA13a14; // legend: sA13a14 = signal A13 and A14
141 fgrim sA4a5b1 , sA6a7b1 , sA8b1 , sA9a10b1 , sA11a12b1; // band 1
142 fgrim sA4a5b2 , sA6a7b2 , sA8b2 , sA9a10b2 , sA11a12b2; // band 2
143

144 sA1 = in; // pointer copy
145 fgrim_create(&sA2, w, w);
146 //fgrim_create(&sA4a5b1 , w , w2); fgrim_create(&sA4a5b2 , w , w2);
147 fgrim_create(&sA8b1 , w2, w ); fgrim_create(&sA8b2 , w2, w );
148 #ifdef GPU // We allocate page-locked memory to improve the bandwidth
149 //cudaError_t err; err = cudaMalloc...
150 //printf( cudaGetErrorString( err ) ); printf("\n");
151 cudaMalloc_fgrim_create(&sA4a5b1 , w , w2);
152 cudaMalloc_fgrim_create(&sA4a5b2 , w , w2);
153 cudaMalloc_fgrim_create(&sA6a7b1 , w2, w );
154 cudaMalloc_fgrim_create(&sA6a7b2 , w2, w );
155 //cudaMalloc_fgrim_create(&sA9a10b1 , w2, w );
156 //cudaMalloc_fgrim_create(&sA9a10b2 , w2, w );
157 //cudaMalloc_fgrim_create(&sA11a12b1, w , w2);
158 //cudaMalloc_fgrim_create(&sA11a12b2, w , w2);
159 fgrim_create(&sA9a10b1 , w2, w ); fgrim_create(&sA9a10b2 , w2, w );
160 fgrim_create(&sA11a12b1 , w , w2); fgrim_create(&sA11a12b2 , w , w2);
161 #else
162 fgrim_create(&sA4a5b1 , w , w2); fgrim_create(&sA4a5b2 , w , w2);
163 fgrim_create(&sA6a7b1 , w2, w ); fgrim_create(&sA6a7b2 , w2, w );
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164 fgrim_create(&sA9a10b1 , w2, w ); fgrim_create(&sA9a10b2 , w2, w );
165 fgrim_create(&sA11a12b1 , w , w2); fgrim_create(&sA11a12b2 , w , w2);
166 #endif
167 sA13a14 = out; // pointer copy
168 fgrim_create(sA13a14 , w, w);
169

170

171 /* analysis */
172 SAVE(sA1, "sA01.bmp");
173 fgrim_copy(sA1, &sA2); // Not optimal, but we don’t want to modify sA1
174 frequency_shift_PI(&sA2);
175 SAVE(&sA2, "sA02.bmp");
176 downsample_quincunx_q2(&sA2, &sA4a5b1 , &sA4a5b2);
177 SAVE(&sA4a5b1 , "sA04b1.bmp"); SAVE(&sA4a5b2 , "sA04b2.bmp");
178 TIMER_BEGIN;
179 MACRO_filter_periodic_horizontal(&sA4a5b1 , &p0_coef , offset1);
180 MACRO_filter_periodic_horizontal(&sA4a5b2 , &p1_coef , offset1);
181 TIMER_END("horizontal")
182 SAVE(&sA4a5b1 , "sA05b1.bmp"); SAVE(&sA4a5b2 , "sA05b2.bmp");
183 reorganize_h2v(&sA4a5b1 , &sA6a7b1);
184 reorganize_h2v(&sA4a5b2 , &sA6a7b2);
185 SAVE(&sA6a7b1 , "sA06b1.bmp"); SAVE(&sA6a7b2 , "sA06b2.bmp");
186 TIMER_BEGIN;
187 MACRO_filter_periodic_vertical(&sA6a7b1 , &p0_coef , offset1);
188 MACRO_filter_periodic_vertical(&sA6a7b2 , &p1_coef , offset1);
189 TIMER_END("vertical ")
190 SAVE(&sA6a7b1 , "sA07b1.bmp"); SAVE(&sA6a7b2 , "sA07b2.bmp");
191 polyphase_combine(&sA6a7b1 , &sA6a7b2 , &sA8b1 , &sA8b2);
192 SAVE(&sA8b1 , "sA08b1.bmp"); SAVE(&sA8b2 , "sA08b2.bmp");
193

194

195 /* processing */
196 //fgrim_set_color(&sA8b1, BLACK);
197 //fgrim_set_color(&sA8b2, BLACK);
198 //SAVE(&sA8b1, "sA08b1bis.bmp"); SAVE(&sA8b2, "sA08b2bis.bmp");
199

200

201 /* synthesis */
202 polyphase_combine(&sA8b1 , &sA8b2 , &sA9a10b1 , &sA9a10b2);
203 SAVE(&sA9a10b1 , "sA09b1.bmp"); SAVE(&sA9a10b2 , "sA09b2.bmp");
204 filter_periodic_vertical(&sA9a10b1 , &p1_coef , offset2);
205 filter_periodic_vertical(&sA9a10b2 , &p0_coef , offset2);
206 //filter_periodic_verticalGPU(&sA9a10b1, &p1_coef, offset2); // no offset
207 //filter_periodic_verticalGPU(&sA9a10b2, &p0_coef, offset2); // no offset
208 SAVE(&sA9a10b1 , "sA10b1.bmp"); SAVE(&sA9a10b2 , "sA10b2.bmp");
209 reorganize_v2h(&sA9a10b1 , &sA11a12b1);
210 reorganize_v2h(&sA9a10b2 , &sA11a12b2);
211 amplify(&sA11a12b1 , 2);
212 amplify(&sA11a12b2 , 2);
213 SAVE(&sA11a12b1 , "sA11b1.bmp"); SAVE(&sA11a12b2 , "sA11b2.bmp");
214 filter_periodic_horizontal(&sA11a12b1 , &p1_coef , offset2);
215 filter_periodic_horizontal(&sA11a12b2 , &p0_coef , offset2);
216 //filter_periodic_horizontalGPU(&sA11a12b1, &p1_coef, offset2);
217 //filter_periodic_horizontalGPU(&sA11a12b2, &p0_coef, offset2);
218 amplify(&sA11a12b1 , 4);
219 amplify(&sA11a12b2 , 4);
220 SAVE(&sA11a12b1 , "sA12b1.bmp"); SAVE(&sA11a12b2 , "sA12b2.bmp");
221 upsample_quincunx_q2(sA13a14 , &sA11a12b1 , &sA11a12b2);
222 SAVE(sA13a14 , "sA13.bmp");
223 frequency_shift_PI(sA13a14);
224 SAVE(sA13a14 , "sA14.bmp");
225 SAVE(sA13a14 , "sA00.bmp");
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226 float diff = fgrim_diff(sA1, sA13a14);
227 printf("diff=%f percent\n", diff );
228

229

230 /* ending */
231 sA1 = NULL;
232 fgrim_free(&sA2);
233 //fgrim_free(&sA4a5b1 ); fgrim_free(&sA4a5b2 );
234 fgrim_free(&sA8b1 ); fgrim_free(&sA8b2 );
235 #ifdef GPU
236 cudaMalloc_fgrim_free(&sA4a5b1 ); cudaMalloc_fgrim_free(&sA4a5b2 );
237 cudaMalloc_fgrim_free(&sA6a7b1 ); cudaMalloc_fgrim_free(&sA6a7b2 );
238 //cudaMalloc_fgrim_free(&sA9a10b1 ); cudaMalloc_fgrim_free(&sA9a10b2 );
239 //cudaMalloc_fgrim_free(&sA11a12b1); cudaMalloc_fgrim_free(&sA11a12b2);
240 fgrim_free(&sA9a10b1 ); fgrim_free(&sA9a10b2 );
241 fgrim_free(&sA11a12b1); fgrim_free(&sA11a12b2);
242 #else
243 fgrim_free(&sA4a5b1 ); fgrim_free(&sA4a5b2 );
244 fgrim_free(&sA6a7b1 ); fgrim_free(&sA6a7b2 );
245 fgrim_free(&sA9a10b1 ); fgrim_free(&sA9a10b2 );
246 fgrim_free(&sA11a12b1); fgrim_free(&sA11a12b2);
247 #endif
248 sA13a14 = NULL;
249 fgrim_free(&p0_coef); fgrim_free(&p1_coef);
250 TIMER_DELETE;
251

252 return EXIT_SUCCESS;
253 }

B.2 GPU Horizontal Periodic Filter: host CUDA code
Below is the code of the function filter_periodic_horizontalGPU in dfb_cuda.cu.

1 int filter_periodic_horizontalGPU(fgrim *fg, fgrim *coef , int offset)
2 {
3

4 float *h_Kernel , *h_Data; // host kernel and i/o data
5 float *d_DataI , *d_DataO; // device global memory: i/o data
6 TIMER_DECLARE;
7

8 int data_w = fg->w;
9 int data_h = fg->h;
10 int data_size = data_w * data_h * sizeof(float);
11

12 /* Preparing data */
13 h_Data = fg->pix;
14 cudaMalloc( (void **)&d_DataI , data_size);
15 cudaMalloc( (void **)&d_DataO , data_size);
16 // ~5 ms for both malloc and free for 2 calls
17

18 /* Preparing filter coefficients */
19 h_Kernel = coef ->pix;
20

21 /* Copy data and kernel to device */
22 cudaMemcpyToSymbol(d_Kernel , h_Kernel , KERNEL_SIZE);
23 cudaMemcpy(d_DataI , h_Data , data_size , cudaMemcpyHostToDevice); // 2 calls: ~15

ms
24
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25 /* Prepare execution */
26 dim3 blockGridRows(iDivUp(data_w , ROW_TILE_W), data_h);
27 dim3 threadBlockRows(KERNEL_RADIUS_ALIGNED + ROW_TILE_W + KERNEL_RADIUS);
28

29 /* GPU convolution */
30

31 cudaThreadSynchronize() ;
32 TIMER_BEGIN; // takes less than 1 ms
33 convolutionRowGPU <<<blockGridRows , threadBlockRows >>>(
34 d_DataO , // result
35 d_DataI , // data
36 data_w ,
37 data_h
38 );
39 cudaThreadSynchronize() ;
40 TIMER_END("horizontal");
41

42 /* Reading back GPU results */
43 cudaMemcpy(h_Data , d_DataO , data_size , cudaMemcpyDeviceToHost);
44

45 /* Shutting down */
46 cudaFree(d_DataI);
47 cudaFree(d_DataO);
48 TIMER_DELETE;
49

50 return(EXIT_SUCCESS);
51 }

B.3 GPU Horizontal Periodic Filter: device CUDA
code

Below is the code of the function convolutionRowGPU in dfb_cuda_kernel.cu:
1 __global__ void convolutionRowGPU(
2 float *d_Result ,
3 float *d_Data ,
4 int dataW ,
5 int dataH
6 ){
7 //Data cache
8 __shared__ float data[KERNEL_RADIUS + ROW_TILE_W + KERNEL_RADIUS];
9 //Current tile and apron limits, relative to row start
10 const int tileStart = IMUL(blockIdx.x, ROW_TILE_W);
11 const int tileEnd = tileStart + ROW_TILE_W - 1;
12 const int apronStart = tileStart - KERNEL_RADIUS;
13 const int apronEnd = tileEnd + KERNEL_RADIUS;
14

15 //Clamp tile and apron limits by image borders
16 const int tileEndClamped = min(tileEnd , dataW - 1);
17 const int apronStartClamped = max(apronStart , 0);
18 const int apronEndClamped = min(apronEnd , dataW - 1);
19

20 //Row start index in d_Data[]
21 const int rowStart = IMUL(blockIdx.y, dataW);
22

23 //Aligned apron start. Assuming dataW and ROW_TILE_W are multiples of half-warp
size, rowStart + apronStartAligned is also a multiple of half-warp size,
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thus having proper alignment for coalesced d_Data[] read.
24 const int apronStartAligned= tileStart - KERNEL_RADIUS_ALIGNED;
25

26 int loadPos = apronStartAligned + threadIdx.x;
27 //Set the entire data cache contents. Load global memory values, if indices are

within the image borders, or initialize with values of the other side of
the matrix for periodicity

28 if(loadPos >= apronStart){
29 const int smemPos = loadPos - apronStart;
30 if ((loadPos < apronStartClamped) || (loadPos > apronEndClamped))
31 loadPos = (loadPos + dataW) % dataW ; // periodic rows
32 data[smemPos] = d_Data[rowStart + loadPos];
33 }
34

35 //Ensure the completness of the loading stage, because results, emitted by each
thread depend on the data, loaded by another threads

36 __syncthreads();
37 const int writePos = tileStart + threadIdx.x;
38 //Assuming dataW and ROW_TILE_W are multiples of half-warp size, rowStart +

tileStart is also a multiple of half-warp size, thus having proper
alignment for coalesced d_Result[] write.

39 if(writePos <= tileEndClamped){
40 const int smemPos = writePos - apronStart;
41 float sum = 0;
42 for(int k = 0; k <= KERNEL_RADIUS; k++) // k<=2*KERNEL_RADIUS
43 sum += data[smemPos + k] * d_Kernel[k];
44 d_Result[rowStart + writePos] = sum;
45 }
46 }
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