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Sammendrag

Målet med denne masteroppgaven var å bestemme de statiske aerodynamiske kreftene på
en kontaktledning, presentert som statiske koeffisienter og i form av Strouhalnummeret.
De statiske koeffisientene ble brukt i en galopping-analyse på en Finite Element-modell av
en jernbanestrekning i Norge.

Den første fasen av prosjektet var å designe modellen. To forskjellige tverrsnitt ble vurdert;
oppskalering av 5 og 10 ble sammenlignet. Beslutningen baserte seg på stabilitetsbereg-
ninger for vindtunneltesting og estimering av kreftene som skulle måles. Modellen som
ble valgt var en AC-120 kontaktledning skalert 5:1.

Den andre fasen var å bygge modellen. Kontaktledningsdelen av modellen skulle egentlig
lages i plastskum, men skaleringen tillot ikke dette. Modellen ble til slutt 3D-printet av
Sintef Ocean AS i Trondheim. 3D-printene ble montert rundt et aluminiumrør i laben ved
Institutt for konstruksjonsteknikk. Sprekkene i modellen ble tettet med lim, og spraymal-
ing ble brukt som overflatebehandling.

Den tredje fasen var vindtunneltestingen som ble utført i Strømningsteknisk laboratorium
ved Institutt for Energi og Prosessteknikk, NTNU. Tre vindhastigheter ble testet; 4, 6 og
10 m/s. Hastighetene ble testet ved angrepsvinkler fra -75 til 75◦. Modellen ble rotert i en
rig designet av Institutt for Konstruksjonsteknikk. Egenfrekvensen til modellen ble også
estimert.

Den siste fasen besto av behandling av resultatene fra vindtunnelen samt utførelse av
galopping-analysen. De statiske koeffisientene ble plottet mot angrepsvinkel og Reynold-
stall. Resultatene ble også presentert i form av Glauert-Den Hartog stabilitetskriteriet for
galopping. Strouhalnummeret ble bestemt fra en tidsserie med økende vindhastighet fra
0 til 10 m/s. Gallopping-analysen ble utført på to forskjellige måter med forskjellige ut-
gangspunkt.

De statiske koeffisientene var avhengig av Reynolds tall og angrepsvinkel. Økende vin-
dhastighet reduserte dragkoeffisienten. Absoluttverdien til løftkoeffisienten økte stort sett
med økende vindhastighet. Momentkoeffisienten økte med økende vindhastighet for neg-
ative angrepsvinkler, og motsatt for positive vinkler. Stabilitetskriteriet ga mulige ustabile
angrepsvinkler ved alle vindhastighetene som ble testet. De ustabile vinklene inkluderte
vinkler fra -74 til -57◦, noen vinkler rundt 0◦, noen vinkler mellom 16 og 26◦, og noen
vinkler fra 55 til 64◦. Strouhalnummeret ble estimert til 0.194. Galloping-analysen ga
mange kritiske angrepsvinkler kombinert med kritiske vindhastigheter. De fleste vinklene
stemte overens med stabilitetskriteriet, men en av analysene ga vinkler som ikke gjorde
det. Mange av de kritiske modeformene var vertikale. Noen av de større angrepsvink-
lene ga utslag i både vertikal- og horisontalretningen. Det er altså muligheter for ustabile
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vibrasjoner på jernbanestrekningen, men kritisk angrepsvinkel og vindhastighet må skje
samtidig. En begrensning for analysen var at den ene hastigheten i vindtunnelen, som ble
brukt i analysen, ga virvelavløsninger på modellen. En annen svakhet ved analysen var at
alle elementene i kontakledningsanlegget ble beskrevet med koeffisientene til kontaktled-
ningen.
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Abstract

The objective of this master thesis was to determine the static aerodynamic forces on a
contact wire, presented as static coefficients and the Strouhal number. The static coeffi-
cients were used in a galloping analysis on a Finite Element model of a real life catenary
system in Norway.

The first phase of the project was to determine the design of the wind tunnel model. Two
different cross-sections were considered; up-scaling of 5 and 10 were compared. The de-
cision was based on stability calculations for wind tunnel testing and estimations of force
measurements. The final design was an AC-120 contact wire scaled 5:1.

The second phase was to build the model. The original idea was to make the contact
wire cross-section with a plastic foam material, but the scaling didn’t allow for the right
processing to this material. So, the contact wire shape was 3D-printed by Sintef Ocean AS
in Trondheim. The 3D-print was assembled around an aluminum pipe in the laboratory at
the Department of Structural Engineering. The cracks in the model were sealed with glue,
and spray paint was used as surface treatment to obtain constant surface properties.

The third phase was the wind tunnel testing which was performed in the Fluid Mechanics
Laboratory at the Department of Energy and Process Engineering, NTNU Gløshaugen.
Three wind velocities were tested; 4, 6 and 10 m/s. The velocities were tested at angles of
attack from -75 to 75◦. The flow angles were demonstrated by rotating the model in a rig
designed by the Department of Structural Engineering. A natural frequency test was also
performed.

The final phase consisted of processing the wind tunnel results as well as performing the
galloping analysis. The static coefficients were plotted versus angle of attack and Reynolds
number. The results were also presented in the form of the Glauert-Den Hartog stability
criterion for galloping. The Strouhal number was determined from a time series with wind
velocities from zero to 10 m/s. Two approaches were made to the galloping analysis.

The static coefficients were dependent on Reynolds number and angle of attack. The drag
coefficient decreased with increasing velocity. The magnitude of the lift coefficient gener-
ally increased with increasing velocity. The moment coefficient increased with increasing
velocity for negative angles of attack, and decreased for increasing velocity at positive an-
gles of attack. The Glauert-Den Hartog stability criterion gives possible instabilities for all
wind tunnel velocities tested. The possibly unstable angles of attack were from about -74
to -57◦, at some angles close to zero, at some angles from 16 to 26◦, and lastly for some
angles from 55 to 64◦. The Strouhal number was estimated to be 0.194.The galloping
analysis provided many critical angles of attack coupled with critical velocities. Most of
these angles were consistent with the Glauert-Den Hartog stability criterion, but one of the
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analyses found some that were not. The critical mode shapes showed many vertical modes
for both small and large angles. Some of the large angles exhibited cross-wind movement
at certain velocities. So, there’s a possibility of galloping on this railway stretch, but all
conditions must occur at the same time for this to happen. One limitation to the galloping
analysis was the occurrence of vortex shedding in the wind tunnel. The calculations had a
source of error when including the other elements of the catenary system. All the elements
were assigned the same coefficients as the contact wire.
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Chapter 1
Introduction

1.1 Background

With an increasing need for environmentally friendly and effective transportation, it’s im-
portant to understand all aspects of railway transport. New railway stretches are being
build, old ones are reconditioned to fit new solutions. High speed trains are incorporated
to a larger extent. The contact wire is one of the most important components, providing
electricity to the train or tram. This transfer of energy should not be interrupted. Many
have studied the dynamic relationship between the contact wire and the receiver on the
train. Aerodynamic studies are becoming more and more important for this relationship.
Wind effects are worth studying because of the long spans and low damping characteris-
tics of the catenary system. Wind loading can lead to aerodynamic instabilities that, in
addition to disturbing the energy transfer, can lead to wear on the contact wire system.
Normal wear and tear of the contact wire can also lead to a change in aerodynamic con-
stants (Stickland and Scanlon (2001)).

Galloping instabilities have occurred in e.g. the UK where part of the catenary system was
experiencing galloping at wind velocities as low as 17.9 m/s (Stickland et al. (2003)). Gal-
loping is also linked to ice build up, where the aerodynamic characteristics are changed.
This has happened in North America, China, France, Japan, and Korea among others
(Heyun et al. (2012) and Xie et al. (2014)).

High speed trains are, as mentioned, being introduced in several variations with differ-
ent speeds. In China, wind effects have been a limiting factor when it comes to further
increasing these speeds (Song et al. (2018)). This demonstrates the increasing need for
understanding aerodynamic effects when introducing new technologies.

The understanding of the aerodynamic characteristics of the contact wire cross-section
starts with the static coefficients for drag, lift and pitching moment. Wind tunnel testing
can determine the coefficients and other aerodynamic characteristics. The coefficients can

1



Chapter 1. Introduction

be used to investigate galloping instabilities.

1.2 Objectives
The main objectives are

1. Determine static aerodynamic coefficients of an AC-120 contact wire

2. Express the results with a stability criterion

3. Determine Strouhal number for the contact wire

4. Perform a galloping analysis on a finite element model of a catenary system to de-
termine if galloping can occur

1.3 Approach
The drag, lift and moment coefficients are determined by wind tunnel experiments for
different angles of attack of the flow and for different wind velocities. The coefficients are
also determined for different Reynolds numbers with angle of attack equal to zero. The
stability criterion chosen to plot the results was the Glauert-Den Hartog criterion. The
Strouhal number for the contact wire is also determined from wind tunnel results for an
angle of attack of zero. The galloping analysis is performed on an Abaqus-model of a real
catenary system using the determined aerodynamic coefficients.

1.4 Structure of the Master Thesis
The structure of the remaining chapters is as follows.

Chapter 2: Necessary theory including overview of a catenary system, theory on aerody-
namic instabilities, buffeting theory, scaling laws, and random vibration theory

Chapter 3: Design of the wind tunnel model

Chapter 4: Methods for the wind tunnel experiment

Chapter 5: Description of the galloping analysis and its elements

Chapter 6: Results and discussion of the aerodynamic coefficients, the stability criterion,
the Strouhal number calculations, and the galloping analysis

Chapter 7: Conclusion and suggestions for further work

2



Chapter 2
Theory

2.1 Overview of the Catenary system
The catenary system consists of the elements shown in figure 2.1. The components of the
system are all part of the transfer of electrical energy to the electrical current collecter on
the train, the pantograph. The contact wire transfers electricity to the train. The messenger
wire’s task is to support the contact wire. It distributes the tension forces in the wires
with help from the droppers which connects the messenger wire to the contact wire . The
support poles supports the wires with carrying poles. The carrying poles have registration
arms connected to steady arms which holds the contact wire. The stitch wire is connected
to the droppers and hangs below the messenger wire at support poles. The bracket supports
the messenger wire.

Figure 2.1: The catenary system
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Chapter 2. Theory

2.1.1 The Contact Wire

The transfer of energy through the contact wire needs to be steady and uninterrupted. The
cross-section area and material is dependent on the speed of the train. The material is
copper or a copper alloy. An example of a contact wire cross-section is shown in figure
2.2. The contact wire is exposed to wind. The grooves in the contact wire can lead to

Figure 2.2: Example of contact wire cross section

aerodynamic forces which in turn can lead to aerodynamic instabilities. These instabilities
can interrupt the energy transfer.

2.2 Static Wind Forces

The static forces considered are shown in figure 2.3. The forces are considered in 2D as a
simplification because the most interesting case is the response when the wind flow comes
in perpendicular to the structures longitudinal axis. Drag force is a force induced on a
body by a fluid in the direction of the flow . The drag force can be divided into a pressure
and a shear (or friction) component. Pressure drag is because of difference in pressure
upstream and downstream of the immersed body. Shear drag is caused by the viscosity
of the fluid and the boundary layer profile of the flow around the body. Lift is a force
induced on a body perpendicular to the flow. As for drag, both friction and pressure make
contributions on the lift force. The aerodynamic moment considered in 2D is the pitching
moment which is applied at the aerodynamic center of the cross-section. Equation (2.1)
describe drag force, lift force and pitching moment.

FD =
1

2
ρU2CDDL (2.1a)

FL =
1

2
ρU2CLBL (2.1b)
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2.3 Aerodynamic Instabilities

Figure 2.3: Static forces in 2D.

FM =
1

2
ρU2CLB

2L (2.1c)

where ρ is the density of air, U is the wind velocity, D is the height of the cross section,
B is the width of the cross section and L is the length of the body. The forces can be
measured in a wind tunnel experiment to determine the drag, lift and pitching moment
coefficients denoted CD, CL and CM . The coefficients are dependent on the angle of
attck, α (eq.(2.2)).

CD(α) = CD(α) + αfC
′

D(α) = CD + αfC
′

D (2.2a)

CL(α) = CL(α) + αfC
′

L(α) = CL + αfC
′

L (2.2b)

CM (α) = CM (α) + αfC
′

M (α) = CM + αfC
′

M (2.2c)

where α is the mean value and αf is the fluctuating part of the attack angle. C
′

D, C
′

L

and C
′

M are the slopes of the coefficients at mean angle of attack. (Tamura and Kareem
(2013))

2.3 Aerodynamic Instabilities
Aerodynamic effects can be arranged into two categories; wind induced and motion in-
duced response. Wind induced response consist of buffeting and vortex induced response.
Buffeting theory describes a structures response to the fluctuating component of the wind,
which is divided into a static and fluctuating part. Buffeting theory is described in section
2.4. Vortex induced response is a result of flow separation at the surface of a body im-
mersed in flow. Motion induced instabilities cause large changes in the structure response
based on small variations in loading. Examples of this is static divergence, galloping and
flutter. Galloping is the most relevant instability for a structure consisting of cables or
wires.
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2.3.1 Vortex Shedding
The vortices are created at the separation points of a body immersed in flow. Since the body
has two separation points at the sides of the body, the vortices are created and released in
an alternating and periodic manner. The change in pressure from the vortices give way to
fluctuating forces exciting the body to oscillate. The oscillation is mainly from fluctuating
lift forces, but there’s also smaller fluctuating drag forces. Vortex shedding occurs in
steady, laminar flow where the periodic behaviour isn’t interrupted. The oscillation occurs
when the shedding frequency, fs is equal to the natural frequency of the body, fn. The
shedding frequency is linked to wind velocity through the Strouhal number (eq. (2.3)).

St =
fsD

V
(2.3)

Equation (2.3) can be used to find the critical velocity for vortex shedding when fs = fn. A
phenomenon called lock-in occurs in an interval around the critical velocity. What happens
is that the shedding frequency remains constant and equal to the natural frequency, i.e.
equation (2.3) is not valid. The oscillation from vortex shedding is self-destructive since
larger displacement at lock-in interrupts the cause. Vortex induced vibration is a small-
amplitude oscillation. The response is nominal when the shedding frequency isn’t equal to
a natural frequency. The displacement is larger around natural frequencies, but still much
smaller than the diameter of the cross-section.

2.3.2 Galloping
Galloping is a one dimensional instability in the cross-wind direction. In contrast to vortex
shedding, galloping is a large-amplitude oscillation where the displacement ranges from
one to more than ten times the diameter of the cross section. The oscillations are motion
induced meaning that the motion causes a variation in angle of attack which in turn causes
changes to the cross-wind forces. These changes are in phase with the motion yielding
larger and larger oscillations. Galloping is closely related to the damping. Galloping
occurs when the magnitude of the aerodynamic damping is larger than the mechanical
damping (see section 2.4 and 2.3.2). Galloping can occur in laminar and turbulent flows.

The Glauert-Den Hartog Stability Criterion

The Glauert-Den Hartog criterion is derived from the one-dimensional equation of motion
of a system subjected to wind (eq. (2.4)).

m(ÿ + 2ξωẏ + ω2y) = −1

2
ρV D

(dCL
dα

+ CD

)
doty (2.4)

Where the right hand side is an expression for the aerodynamic damping. Moving this
expression to the left hand side gives an expression for the total damping shown in equation
2.5.

ctot = 2mξω +
1

2
ρV D

(dCL
dα

+ CD

)
(2.5)

The system is unstable if the total damping is negative. For this expression to be negative,
the term in the aerodynamic damping shown in equation (2.6) must be fulfilled. This
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2.4 Buffeting Theory

applies because the mechanical damping ratio, ξ, is positive. It’s worth repeating that the
mechanical damping must be smaller than the magnitude of the aerodynamic damping so
that ctot < 0, in addition to the criterion in equation (2.6). (Stickland and Scanlon (2001))

dCL
dα

+ CD < 0 (2.6)

Flutter

Flutter follows the same concept at galloping, where energy is added to the oscillation so
that a system experiences larger and larger oscillations. But flutter is more complex than
galloping because it involves displacement in two or more degrees of freedom. Flutter is
usually a combination of vertical and torsional modes where the mode shapes and natural
frequencies are similar.

2.4 Buffeting Theory
The equation of motion for a multi-degree of freedom system is shown in equation (2.7).

M r̈(x, t) + Cr̈(x, t) +Kr(x, t) = F (t) (2.7)

Where M is the mass matrix, K is the stiffness matrix, C is the damping matrix, r(x, t) is
the displacement vector, and F (t) is the external force vector. x is the position along the
longitudinal axis of the structure. Modal analysis can be applied to the equation of motion
by introducing the replacement of r(x, t) with the substitution in equation (2.8).

r(x, t) =

ryrz
rθ

 = φ(x) · η(t) (2.8)

where φ(x) is the mode shape matrix calculated in the still-air eigenvalue problem, and
η(t) is a vector with generalized coordinates. This substitution leads to an alternative form
of the equation of motion (eq.(2.9)).

M̃ η̈(t) + C̃η̇(t) + K̃η(t) = Q̃tot(t) (2.9a)

M̃ =

∫
L

φT (x)Mφ(x)dx, C̃ = 2M̃ωξ, K̃ = ω2M̃ (2.9b)

where ω and ξ are assumed known from the still-air eigenvalue problem. The matrices M̃ ,
C̃ and K̃ are the uncoupled modal system matrices, which means that they are diagonal.
Q̃tot(t) is the modal load vector defined as (eq.(2.10))

Q̃tot(t) =

∫
L

φT (x)qtot(t)dx (2.10)

where qtot(t) is the cross-sectional load vector which contains the drag, lift and moment
loads (eq. (2.11)).

qtot(t) = [qy qz qθ]
T
tot (2.11)
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Chapter 2. Theory

Figure 2.4 shows the necessary displacements, angles and velocities to fully define the
cross-sectional load vector. The convention, when considering wind contributions to the

Figure 2.4: Cross-section of body immersed in flow with velocities and displacements. The static
forces in equation (2.1) are also included.

load vector, is to decompose the wind speed into a mean and a fluctuating part (eq.(2.12)).
The mean is time-invariant and the fluctuating wind velocity is considered as a zero-mean
variable.

Vtot(x, t) = V (x) + v(x, t) = V +

[
u
w

]
(2.12)

In figure 2.4, V is the mean speed of the wind field. And u and w are components of the
fluctuating velocity, v(x, t). The mean wind causes an initial displacement, r. The fluctu-
ations occur about this initial displacement and is denoted r. The fluctuating displacement
have derivatives ṙ and r̈. α is the attack angle of the flow to the horizontal axis of the cross
section. β is the dynamic wind angle which is caused by the fluctuations.

As a result of the wind decomposition, the cross-sectional load vector is decomposed into
a flow induced and a motion induced component (eq. (2.13)).

qtot(t) = q(x, t) + qae(x, t, r̈, ṙ, r) =

qy(x)
qz(x)
qθ(x)

+

qy(x, t)
qz(x, t)
qθ(x, t)

 (2.13)

Assuming small angles and neglecting higher order terms. The cross-sectional load vector
takes the form (eq. (2.14))

qtot(x, t) = q(x, t) +Bq(x) · v(x, t) + Cae(x) · ṙ(x, t) +Kae(x)r(x, t) (2.14)
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2.4 Buffeting Theory

The different components of the cross-sectional load vector are defined in equation (2.15).

q =
ρV 2B

2

(D/B)CD
CL
BCM

 (2.15a)

Bq =
ρV B

2

2(D/B)CD ((D/B)C
′

D − CL)

2CL (C
′

L + (D/B)CD)

2BCM BC
′

M

 (2.15b)

Cae = −ρV B
2

2(D/B)CD ((D/B)C
′

D − CL) 0

2CL (C
′

L + (D/B)CD) 0

2BCM BC
′

M 0

 (2.15c)

Kae =
ρV 2B

2

0 0 (D/B)C
′

D

0 0 C
′

L

0 0 BC
′

M

 (2.15d)

The modal load vector is now expressed as shown in equation (2.16).

Q̃tot(t) =

∫
L

(
φT q + φTBq · v + φTCaeφ · η̇(t) + φTKaeφ · η(t)

)
dx (2.16)

Cae and Kae are the aerodynamic damping and stiffness matrices. They are linked to the
displacement vector, r = φ · η. This leads to a rearrangement of the generalized equation
of motion (eq. (2.9a)). The rearrangement is shown in equation (2.17).

M̃ η̈ + (C̃ − C̃ae)η̇ + (K̃ − K̃ae)η =

∫
L

(
φT q + φTBq · v

)
dx = Q̃(t) (2.17)

Where C̃ae and K̃ae are the generalized aerodynamic damping and stiffness matrices. The
buffeting theory is taken from Strømmen (2010).

2.4.1 Polynomial Eigenvalue Problem
The new equation of motion with zero load vector, Q̃(t), can be expressed as the polyno-
mial eigenvalue problem (eq.(2.18)). The eigenvalue problem is no longer linear because
it includes damping. Dowell (2014).

s2 · M̃ + s · (C̃ − C̃ae) + (K̃ − K̃ae) = 0 (2.18)

The solution to the this eigenvalue problem is of the form shown in equation (2.19), where
s is the eigenvalue. The eigenvalue is complex and its components are represented in
equation (2.20). ξ is the damping ratio, ωn is the natural frequency of an undamped system
and ωd is the damped frequency.

y(t) = est s = a± ib (2.19)
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a = real(s) = −ξ · ωn b = imag(s)ωd = ωn ·
√

1− ξ2 (2.20)

The polynomial eigenvalue problem will result in complex mode shapes as well. Here
the displacement is dependent on both amplitude and phase angle, unlike real (normal)
modes. The complexity is physical, but can also be partly numerical. The physical part
is a result of non-proportional damping, aerodynamic effects, and other non-linearities.
Numerical complexity can be a result of errors in the process of estimating the frequencies
and mode shapes. One method of plotting complex mode shapes with real values is shown
in equation (2.21).

φ = X · est (2.21)

WhereX is the complex mode shape, t is a time vector which is necessary because of the
complexity ofX and s.

2.5 Scaling Laws

2.5.1 Reynolds Number

When performing wind tunnel tests it’s important that the Reynolds number is kept con-
stant. So an upscaling of the cross-section which leads to a increased deterministic length
must lead to a corresponding reduction in the wind velocity to keep the Reynolds number
in equation (2.22) constant.

Re =
ρV D

µ
(2.22)

ρ is the density of air(fluid body is immersed in), V is the wind velocity (velocity of fluid
around body), D is the characteristic length of the body (in this case the diameter of the
contact wire (diameter is the height), and µ is the dynamic viscosity of air (fluid).

2.5.2 Strouhal Number

The Strouhal number can be determined with wind tunnel testing on a scaled cross-section.
The Strouhal number found in a wind tunnel experiment is equal to that of the normal scale
geometry. Vortex shedding occurs in laminar flow, which is easy to accomplish in a wind
tunnel. The experimental flow velocity must be close to where vortex shedding is most
likely.

2.6 Random Vibration Theory

Analysis of random vibration is often performed in the frequency domain. The concepts of
Fourier transformation and spectral densities are useful tools for analyzing the frequency
content of measurement data.

10



2.6 Random Vibration Theory

2.6.1 Fourier Series and Fourier Transform
A Fourier Series can describe any periodic behaviour by a series of sine and cosine terms
multiplied with a constant.

x(t) = a0 +

∞∑
k=1

(
akcos

2πk

T
t+ bksin

2πk

T
t

)
= a0 +

∞∑
k=1

(akcosωkt+ bksinωkt)

(2.23)
where a0, ak, bk are the constants also known as the Fourier coefficients. And ωk = 2πk

T .
The Fourier series becomes a Fourier integral if the period T →∞.

x(t) =

∞∫
0

2 (A(ω)cosωt+B(ω)sinωt) dω (2.24)

where

A(ω) =
1

2π

∞∫
−∞

x(t)cosωtdt ∧ B(ω) =
1

2π

∞∫
−∞

x(t)sinωtdt (2.25)

are the components of the Fourier transform. Equation (2.24) is the inverse Fourier trans-
form. In random vibrations it’s necessary to define a complex version of the Fourier trans-
form (eq. (2.26)).

X(ω) = A(ω)− iB(ω) =
1

2π

∞∫
−∞

x(t)e−iωtdt (2.26)

For a sampled signal, xr the Fourier transform becomes discrete, DFT (eq.(2.27)).

Xr =
1

N

N−1∑
r=0

xre
−i(2πkr/N) k = 0, 1, 2, ..., (N − 1) (2.27)

Where xr consists of N sample values. (Newland (2005))

2.6.2 Correlation
Two variables are said to be correlated to some degree if the change of one leads to a
distinct change in the other. The correlation coefficient is defined in equation (2.28).

ρxy =
E [(x− E[x])(y − E[y])]

σxσy
(2.28)

It represents the existence of a straight regression line in a plot of x and y values. ρ can
take values from +1 to -1. If ρxy = ±1 there is a perfect correlation between x and y, if
ρxy = 0 there’s no correlation between the variables.
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2.6.3 Auto-Correlation Function
The auto-correlation function, Rx, describes the correlation of a time series, x(t), with
itself after a time lag, τ .

Rx(τ) = E [x(t)x(t+ τ)] (2.29)

The auto-correlation is only dependent on τ because the process is stationary. The function
is even in τ .

2.6.4 Cross-Correlation Function
The cross-correlation function describes the correlation of a time series x(t) with another
time series y(t+τ ).

Rxy(τ) = E [x(t)y(t+ τ)]
Ryx(τ) = E [y(t)x(t+ τ)]

(2.30)

The cross-correlation function is also only dependent on τ given that the two processes are
stationary, but not even in τ . Note that Rxy 6= Ryx (Newland (2005)).

2.6.5 Spectral Densities
Auto Spectral Density

The auto spectral density of a time series, x(t), is defined as the Fourier transform of the
auto-correlation function of x (eq. (2.31)).

Sx(ω) =
1

2π

∞∫
−∞

Rx(τ)e−iωτdτ (2.31)

The Fourier transform can only be evaluated if the process x(t) has a mean value of zero,
or else the integral in equation (2.31) will be equal to ∞. So, to inspect the frequency
content of a stochastic process one should standardize x(t), given that the process is without
periodic components (Newland (2005)).

Cross Spectral Density

The cross spectral density is defined as the Fourier transform of the cross-correlation func-
tion of two stochastic processes, x(t) and y(t) (eq.(2.32)).

Sxy(ω) =
1

2π

∞∫
−∞

Rxy(τ)e−iωτdτ (2.32)

Here, it’s also important to remember that Sxy 6= Syx, but we do have the relation in
equation (2.33). Where * denotes the complex conjugate.

Syx(ω) = S∗xy(ω) (2.33)
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The spectral densities are density functions, which means that the areas below the func-
tions are important.

Area =

∞∫
−∞

Sx(ω)dω = Rx(τ = 0) = E [x(t)x(t)] = σ2 (2.34)

Note that equation (2.34) is valid for a process with zero mean. This equation shows a
relation between the spectral density and the standard deviation of x. Therefore, looking
at the frequency content of a sample through the spectral densities can give important sta-
tistical information on the process x(t) at different frequencies.

The Fast Fourier transform (FFT) is a more efficient way of determining the spectral den-
sity of a time series compared to calculating the DFT of the correlation. The method finds
the spectral density straight from the time series itself, without determining the correlation
first (Newland (2005)). The auto spectral density of a signal, x(t), would be as expressed
in equation (2.35)

Sxx(ω) =
X(ω) ·X∗(ω)

∆ω
(2.35)

where X(ω) is the FFT of x(t), X∗(ω) is the complex conjugate, and ∆ω = 2π
T where T is

the length of the time series.

2.6.6 Sampling frequency
A measurement is a discrete quantity of points sampled with a time spacing in between.
The time spacing is crucial to representing the signal sufficiently. And the position and
number of measuring points, as well as choice of hardware is important to guarantee a
successful representation of the system and its characteristics. The sampling frequency
should be equal to or higher than the Nyquist sampling rate, which is defined as twice the
maximum frequency in the signal, fNyquist = 2fmax. The sampling frequency is found
from the time spacing as fs = 1

∆t . If the sampling frequency is lower than the Nyquist
frequency, aliasing occurs. Unnecessary information is stored if the sampling frequency is
higher than the Nyquist frequency (Newland (2005)).

13



Chapter 2. Theory

14



Chapter 3
Wind Tunnel Model

A few different properties were considered in making of the wind tunnel model. Two dif-
ferent cross-section were considered; up-scaling of 5 and 10 were compared. Firstly, the
scaling of the cross-section is important for obtaining good measurements. Good mea-
surements would be large enough to be properly picked up by the loading cells. So this
means that the cross-section had to be large enough to present sufficient resistance to the
flow in the wind tunnel. Previous contact wire wind tunnel studies have used e.g. the scale
2:1 (Xie et al. (2014)) and scale 10:1 (Stickland and Scanlon (2001)).

Since the plan was to make the contact wire cross-section in a plastic foam material one
has to add stiffness to the model. This is done by adding an aluminum pipe. The contact
wire shape is hollow below the grooves to fit the pipe. Also, the loading cells are designed
to hold a circular cross section with a diameter of 40 mm. So the pipe doubles as a connec-
tion between the contact wire shape and the mountings in the wind tunnel. Two aluminum
pipes with thickness 1 mm and 3 mm were compared.

After the design was chosen, the production of the contact wire part was altered. It was
supposed to be a Gurit R© PVC material, but the dimensions around the aluminum pipe
were so small that it was proposed to 3D-print the contact wire cross-section instead. A
3D-printed part would mean that the model would be much heavier than anticipated.

3.1 Alternatives to Model Design

3.1.1 Material and Section Properties
The materials considered for the model were initially Gurit R© PVC 60 and aluminum. The
material constants used in calculations for model design are shown in table 3.1. The pipe
is part of the final model, and it also works as the connection between the cross-section
shape and the loading cells. A 40 mm aluminum pipe fits into the mounting part on the
loading cells in the wind tunnel. The calculations made uses the stiffness of the aluminum
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pipe as the total stiffness (eq. (3.4)-(3.3)).

Table 3.1: Material properties. [1]: Gay and Gambelin (2008), [2]: Gurit (n.d.).

Aluminum [1] Gurit R© PVC 60 [2]
Et [MPa] 70e3 100
ρ [kg/m3] 2800 60

Table 3.2: Section properties

CW shape with 40 mm hole Aluminum pipe
Scale 5:1 Scale 10:1 t = 1 mm t = 3 mm

D [m] 0.06562 0.1313 40e-3 40e-3
A [m2] 1.73466e-3 0.01070855 1.2252e-4 3.487e-4
Iy [m4] 6.1471293e-7 1.302283066e-5 2.330983e-8 6.00665e-8
Iz [m4] 5.577679e-7 1.080924204e-5 2.330983e-8 6.00665e-8

3.1.2 Stability Calculations
A few properties were calculated and compared when designing the model. First the nat-
ural frequency was estimated from the equation (3.1) for a simply supported beam.

fn =
π

2

√
EI

mL4
(3.1)

The total mass of the model is calculated in table 3.3 by using equation (3.2) and cross-
section properties given in table 3.2. And the stiffness EI is provided by the aluminum
pipe as indicated in equation (3.3) and (3.4).

mtot = mALU +mGURIT (3.2)

E = EALU (3.3)

I = IALU (3.4)

Table 3.3: Calculation of total mass

Aluminum pipe t = 1 mm Aluminum pipe t = 3 mm
[kg/m] Original CW Scale 5:1 Scale 10:1 Scale 5:1 Scale 10:1
mALU - 0.343 0.343 0.97636 0.97636

mGURIT - 0.1040796 0.642513 0.1040796 0.642513
mtot 1.08 0.4470796 0.985513 1.0804396 1.618873
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The critical wind velocity for vortex shedding was calculated with equation (3.5) based on
the Strouhal number of a cylinder, St = 0.2 and setting the vortex shedding frequency, fs,
equal to the natural frequency.

VCR = fs ·
D

St
(3.5)

The Scruton number was calculated to determine aerodynamic stability during testing.
The Scruton number represents mass-damping effects in the structure. And can indicate
the risk of lock-in effects. A low Scruton number indicates that the model is more easily
excited and susceptible to lock-in (Flamand (1995)). The Scruton number is also linked to
across-wind vibration amplitude; an increase in Scruton number will decrease the ampli-
tude (Ammann et al. (2011)). So a larger Scruton number is wanted. The Scruton number
is calculated from equation 3.6.

Sc =
2δsme

ρb2ref
(3.6)

where ρ is the density of air (here: 1.225 kg/m3), bref is the characteristic width which
is the diameter, me is the mass per unit length, and δ is the logarithmic decrement of the
structural damping.

Table 3.4: Stability calculations for different scale-pipe combinations.

Aluminum pipe t = 1 mm Aluminum pipe t = 3 mm
Scale 5:1 Scale 10:1 Scale 5:1 Scale 10:1

mtot [kg/m] 0.447 0.986 1.08 1.62
fn [Hz] 12.73 8.58 13.15 10.74

VCR [m/s] 4.18 5.63 4.3 7.05
Sc (ξ = 0.5 %) 5.3 2.9 12.9 4.8

Sc (ξ = 1 %) 11 5.9 25.7 9.6
Sc (ξ = 5 %) 53 29 128.6 48.14

3.1.3 Estimate of Force Measurements

Estimates of measured drag force (eq.(2.1a)) was also calculated to ensure sufficiently
large measurements, with drag coefficient, CD = 1. The calculations are shown in table
3.5. One can see that it’s necessary to test for wind velocities of at least 3 m/s and 4 m/s
to get measurements larger than 1 N. The scale 10:1 is limited to testing velocities above
3 m/s.
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Table 3.5: Estimate of drag force measurements, FD [N].

V [m/s] Scale 5:1 Scale 10:1
1 0.11 0.22
2 0.43 0.88
3 0.98 2.0
4 1.7 3.5
5 2.7 5.5
6 3.9 7.9
7 5.3 11
8 7.0 14
9 8.9 18

10 11 22
11 13 27

3.1.4 Conclusion from Stability Calculations

Based on the stability calculations presented in table 3.4, the scale-pipe combination cho-
sen was a scale of 5:1 with aluminum pipe with 3 mm thickness. The critical velocity is
lower than for the scale 10:1, which might give smaller amplitude vibration during vortex
shedding. The critical velocity is also smaller than 6 m/s which will be one of the wind
tunnel velocities tested (6 m/s is analogous to 30 m/s on a real life contact wire using scale
5:1). The lowest critical velocity is for the scale 5:1 with 1 mm aluminum pipe, but this
option has lower Scruton numbers, so a possible instability might be worse. There’s also
an issue with the scaling 10:1 considering the Reynolds number equivalence. The ’normal’
wind velocities in Norway are up to 30 m/s. For scale 10:1 this equals 3 m/s in the wind
tunnel, which is very low. It’s also of interest to test a lower velocity. This means that
the scaling 10:1 will probably not provide satisfactory measurements. A test with such
a low wind velocity will probably not generate large enough forces in the loading cells.
So the low velocity testing cancels out the effect of a larger cross-section when in comes
down to measuring drag forces. The larger scaling option is discarded. And the scale 5:1
seems to give large enough drag force measurements. The final cross-section shape of the
contact wire part of the model is shown in figure 3.1. The model is based on the shape of
an AC-120 contact wire, and the scale is 5:1.
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Figure 3.1: Final design of contact wire part of wind tunnel model. The outer shape is equal to an
AC-120 contact wire, scaled 5:1. [mm]

3.2 Material Change

Some complications arose after choosing the final design. The original idea was to make
the contact wire cross-section with a Gurit R© PVC 60 material. This scaling with a 40 mm
hole in the middle turned out to be a challenging shape. The model was to be milled and
the process is demanding with such thin walls. The thinnest part is the distance from the
innermost part of the grooves to the hole made to hold the aluminum pipe. The weight of
the model wasn’t an issue since the scope was to measure static forces. It was therefore
decided to 3D-print the contact wire shape. A 3D-print gives a heavier model rendering
some of the calculations in section 3.1.2 useless. A heavier model gives an even larger
Scruton number, which is a positive trait. The stiffness of the plastic in the 3D-print was
not known, so new calculations for critical velocity for vortex shedding was not made.
But the stiffness is larger than for the Gurit R© material. The stiffness can be determined in
a natural frequency test. And possible vortex shedding instabilities can be controlled by
people holding the model.
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3.3 Building the Model
The contact wire part of the model was printed by Nils Arne Snekvik at Sintef Ocean AS
in Trondheim. The print consisted of 12 parts; half-shells to be assembled around the
aluminum pipe. The cross-section shape of the half-shells is shown in figure 3.2. Ten of
the half-shells were of the same length, the other two were shorter. The parts used in the
final section model are presented in table 3.6.

Figure 3.2: Cross-section shape of 3D-printed half-shells.

Table 3.6: Model parts

Part Purpose Dimension

Aluminum pipe
Stiffness contributor
Correct dimensions for
mounting in the wind tunnel

40x3 mm, length 2730 mm

3D-printed plastic parts
Contact wire shape
Stiffness contributor

10 pcs. length 490 mm
2 pcs. length 230 mm

Araldite Standard Ultra Adherent and crack filler
Spray paint Surface treatment

The assembly of the model was done in the laboratory at the Department of Structural
Engineering with help from Gøran Loraas. First the 3D-printed parts were filed to remove
rough edges. This was necessary as one can see in figure 3.2. The plastic parts and the
aluminum pipe were cleaned. The 3D-printed plastic parts were glued around the alu-
minum pipe. The half-shells have notches and fillings to ensure proper joining of all the

20



3.4 Model Characteristics

pieces. One of the fillings can be seen in figure 3.2. The half-shells were glued together
at the ends and to the aluminum pipe as shown in figure 3.3. The aluminum pipe is longer
than the 3D-printed parts so there’s 2.5 cm of uncovered aluminum pipe on each side. The
parts were held together with clamps, and taped together to ensure a tight fit since the glue
expands. The glue takes about 8 hours to dry, so the model was left as shown in figure 3.4.

There were cracks in the model after the glue had dried, so it was necessary to fill these.
The same glue used doubled as a crack filler. Before and after crack filling is shown in
figure 3.5. Excess glue was removed with a file after drying. The glue and the 3D-print
have very different surface properties. The model was coated with spray paint to make the
surface roughness constant, and to mask the stickiness of the glue. The model can’t be
disassembled.

Figure 3.3: Gluing of 3D-printed parts to aluminum pipe.

3.4 Model Characteristics
The model has the lengths shown in figure 3.6. The aluminum pipe is 2.73 meters long,
and the plastic contact wire is 2.68 meters long. The total weight is 7.951 kg. Where the
pipe makes up 2.665 kg and the plastic contact wire shape makes up 5.286 kg. Mass per
length is 2.912 kg/m.
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Figure 3.4: Tape holds the parts together while the glue dries.

Figure 3.5: Filling cracks with glue.
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3.4 Model Characteristics

Figure 3.6: Drawing of lengths, [mm]. Assembly seen from above.
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Chapter 4
Wind Tunnel Experiment

The wind tunnel testing was performed in the Fluid Mechanics Laboratory at the Depart-
ment of Energy and Process Engineering, NTNU Gløshaugen. The purpose of the wind
tunnel testing was to obtain aerodynamic coefficients which could be used to complete
aerodynamic instability analyses. Figure 4.1 shows the model during a random testing
sequence. The rotation simulates a positive angle of attack. The flow comes from the left.
The model was tested at three wind velocities at angles of attack ranging between -75 to
75◦. A natural frequency test was also performed.

Figure 4.1: Random testing sequence.

4.1 Equipment
The equipment used in the experiment is a Pitot probe, digital thermometer, the wind tun-
nel, and a rig with loading cells constructed by the Department of Structural Engineering
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at NTNU. The model is mounted on the loading cells and is fixed at both ends. The rig
can be programmed to move, in this case to rotate the model about its longitudinal axis.
One of the loading cells has a master rotor while the other has a slave rotor (fig. 4.2). The

Figure 4.2: CW-model mounted on the loading cells in the wind tunnel

rig measures voltage in the two loading cells placed on opposite sides of the wind tunnel
width. The loading cells can measure forces in the horizontal, lateral, and vertical direc-
tion as well as moments about all three axes, so there is in total six force measurements in
each loading cell. The software of the rig can move the model in the vertical and lateral
directions as well as rotation about the horizontal (longitudinal) axis. The anemometer
(fig. 4.3) is placed behind the model in figure 4.2 so that it measures the wind speed before
the flow reaches the model.

Figure 4.3: Pitot probe mounting
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4.1 Equipment

It’s important to assemble the parts correctly when mounting the model in the loading
cells. The parts are marked with “+X” and “+Y” to ensure axis alignment (fig. 4.4). The
marks for positive y-direction were pointed upwards on both loading cells. The marks for
positive x-direction were pointing in different directions since the loading cells are facing
each other. This means that the lateral measurements from the loading cells should be of
equal magnitude, but with different sign.

(a) Positive y-direction (b) Positive x-direction

Figure 4.4: Indications on parts to ensure alignment with the vertical and lateral axes.

The software used is LabVIEW. It logs forces as voltage measurements and wind velocity
measurements from the anemometer on an USB flash drive. The user input is temperature
and calibration coefficient for the anemometer. The software calculates air density and
can plot the measurements in Volts or Newton. The user interface is shown in figure 4.6.
The buttons circled with red are “Zero Bias” and “Start Logging”. It’s important to zero
out bias before the data is logged. The section called “Log File Setup” is where the user
defines how the data are stored on the flash drive. The section called “Wind Velocity” is
where the user types in temperature and calibration coefficient. This section is magnified
in figure 4.5.
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Chapter 4. Wind Tunnel Experiment

Figure 4.5: Section of user interface for input of temperature and calibration coefficient.

4.2 Test Description

The anemometer and the software for the rig were calibrated. And the rotations for dif-
ferent attack angles were run before mounting the model into the loading cells, in case of
errors. The model can break if there’s an error in these scripts.

Three different wind velocities were tested; 4 m/s, 6 m/s and 10 m/s. Three different
scripts were run on the software for each wind velocity. The scripts had intervals with
different angles of attack to be tested. The scripts performed a rotation of the loading cells
about the horizontal axis. Both loading cells had to be rotated in the same direction to
avoid twisting the model. The scripts covered all integer angles from -75◦ to 75◦. The
model was kept at all integer angles for about six seconds. The first script had angles
ranging from -75◦ to -25◦. The second script had angles from -25◦ to 25◦. And the third
script tested angles from 25◦ to 75◦. Figure 4.7 shows a selection of the model rotations.
The wind flow in the tunnel comes in from the left-hand side towards the right.
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Chapter 4. Wind Tunnel Experiment

(a) -75◦ (b) -50◦ (c) -25◦

(d) 25◦ (e) 50◦ (f) 75◦

Figure 4.7: A selection of model rotations to simulate different angles of attack. The wind flow in
the tunnel comes in from the left-hand side towards the right.

Bluff bodies can gallop at small flow angles since the flow separation point changes drasti-
cally with small changes in angle. Previous wind tunnel tests have included mostly smaller
intervals of flow angles, like Stickland and Scanlon (2001) who tested from -10 to 20◦.
One exception is Xie et al. (2014) who tested between -90 to 90◦. This wind tunnel test
chose to include an interval in between these two.

The loading cell measurements are in local coordinates which means that the weight distri-
bution of the model changes direction during rotation. A solution to this measurement bias
is to reset the system like one does with a kitchen weight. Therefore it’s necessary to run
the scripts for rotation and measure with zero wind. These data must be subtracted from
the measurements with wind flow to remove effects in the loading cells from the weight
shift. So the resulting data gives the response influenced by wind.

The measurements for the three wind velocities included the run-up time of the wind tun-
nel fan. So measurements were started in still air before turning on the wind tunnel. The
three scripts for different angles of attack were run after the wind tunnel stabilized around
the correct wind velocity.

A natural frequency test was also performed for comparison of the calculations from the
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4.3 Data Processing

model design in chapter 3. The test is a simplified form of an impact test executed with
zero wind. One starts measurements and then simply taps on the model to cause a slight
vibration, but not to forcefully. The impact causes free vibrations which are measured
until they die out. The measurements can be used to identify the natural frequency of the
model. Including this, in total 13 measurements were used in the data processing.

4.3 Data Processing
The measurements were taken with a sampling rate of 200 Hz. The data were stored in
an excel-file; this file was later converted into a .mat-file by a script written by Ole Andre
Øiseth. The .mat-file has a structure with different sections for general properties, mea-
sured data and processed data. The properties give the air density and shows the data from
user input. The measured data consists of six force components from each loading cell,
measured displacements, and measured wind velocities in Volts. The forces, displace-
ments, and flow velocity is SI units must be calculated; this is the processed data.

As mentioned, measurements were taken in still-air to be subtracted from the other data.
To do this the two time series must be aligned with each other, since the rotation of the
model is performed at different times during the two tests. Following this, the data is put
through a low-pass filter. The static coefficients are calculated with equation (2.1), where
the drag force is force component 1 plus force component 7, the lift force is component 3
plus 9, and the moment is component 5 plus component 11.
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Chapter 5
Description of the Galloping
Analysis

A galloping analysis consists of solving the polynomial eigenvalue problem to determine
critical wind conditions and system characteristics for an instability to occur. In this case, a
critical wind velocity, a critical angle of attack and a critical frequency is to be determined.
An instability can happen in a system if the real part of its eigenvalue is positive. The real
part of an eigenvalue is an expression including the damping (see equation (2.20)). So if
this expression is positive then the damping is also positive. Positive damping means that
the systems displacement is increasing; an instability has occurred.

Several factors change the solution of the polynomial eigenvalue problem. The aerody-
namic damping and stiffness matrices are a key component to this. These matrices are
determined by the slope and mean value of the drag, lift and moment coefficients. These
coefficients change for different wind velocities and for different flow angles of attack.
Still-air modes of the system are also needed in the analysis. It’s therefore necessary to
solve the eigenvalue problem considering all these changing variables.

So contributions from an finite element analysis and from the wind tunnel experiment
are needed in a galloping analysis. A frequency analysis was performed on a model of a
catenary system in Abaqus to determine the still air modes. The still air modes can be used
as estimates for the mode shapes in a dynamic analysis. The Abaqus analysis provides the
generalized modal system matrices as well. The wind tunnel experiment is relevant for
determining the drag, lift and moment coefficients.

5.1 The FE-model

The Abaqus model of a real catenary system is modelled after a railway stretch in Norway.
A section of the model is shown in figure 5.1. The model includes a contact wire, stitch
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wires (16 of them), droppers, and a messenger wire. The length of the stretch is 1260
m. Approximately 1260 m is a common/standard length of a contact wire in Norway
(Jernbaneverket (2012)). The transition to the next contact wire is done by an overlap, but
this is not included in the model. Table 5.1 shows the cross-section details for the contact
wire (CW), messenger wire (MW), stitch wire (SW), and droppers. The choice of using
circular cross-sections for e.g. the messenger wire is a simplification which may affect the
results. Table 5.2 shows the material constants used. The CuMg02 material is assigned
to the droppers, stitch wire and messenger wire. The CuAg01-material is assigned to the
contact wire.

Figure 5.1: A random section from the Abaqus model.

Table 5.1: Cross-section properties

r [m] A [m2] I11 [m4] I12 [m4] I22 [m4] J [m4]
CW - 12.097e-5 1.3442e-9 0 1.1189e-9 1.8446e-9
MW 0.004577
SW 0.002778

Droppers 0.001748
Data generated by Abaqus for circular cross-section
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5.2 The Wind Tunnel Results

Table 5.2: Materials constants for the FE-model.

CuAg01 CuMg02
Damping Alpha 0.062

Beta 6.13e-006
Mass Density [kg/m3] 8890
Elastic Type Isotropic

Young’s Modulus [GPa] 120 108
Shear Modulus [GPa] 44.78 -
Poisson’s Ratio 0.34

Expansion Type Isotropic
Reference Temperature [◦C] 20
Alpha Coefficient 1.7e-005

The Abaqus analysis was performed by Petter Røe Nåvik and included a tension and grav-
ity step followed by a frequency step. The tension and gravity step simulates gravity forces
as well as the tension put on the system during the building process. This step establishes
the correct base for the frequency step. The results from the analysis is written to a .dat-
file. The results from the frequency step are used in the galloping analysis. The data were
extracted from the .dat-file by using a MATLAB-script developed by Ole Andre Øiseth.
Eigenvalue outputs and node outputs were extracted. Eigenvalue outputs include the natu-
ral frequencies and the modal mass matrix. The node outputs give the node coordinates of
the model and the still air mode shapes.

5.2 The Wind Tunnel Results
Three wind velocities were tested for different angles of attack in the wind tunnel. The
galloping analysis uses the real CW-geometry, meaning that the tested velocities are anal-
ogous to 20 m/s, 30 m/s and 50 m/s. Linear interpolation was performed to include results
for the wind velocities in between. This interpolation provides some error, but it’s better
to include more velocities than those tested. And the interpolation is not performed out-
side of the velocities tested, i.e. it doesn’t include velocities below 20 m/s or above 50
m/s. The simplification is necessary to be able to perform velocity iterations. The static
coefficients were split into a mean and a fluctuating part. This is necessary to calculate the
local aerodynamic stiffness and damping matrices.

5.3 Coordinate Transformation
The components of the analysis have different coordinate systems. The static coefficients
from the wind tunnel experiment give the aerodynamic damping and stiffness matrices
in local coordinates (eq. (2.15c) and (2.15d) in section 2.4), which is represented by the
red coordinate system in figure 5.2. The mode shapes from the Abaqus model are in
global coordinates. The Generalized equation of motion and the corresponding polynomial
eigenvalue problem has to be solved in a global coordinate system. So it’s necessary to
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Figure 5.2: Description of the two coordinate systems. Red: local coordinate system, black: global
coordinate system.

transform the aerodynamic matrices to the global coordinate system. The transformation
between the two systems is done with the rotation matrix, T. In this case, T is defined
as shown in equation 5.1. Where rL and rG represent the local and global coordinate
systems.

rL = T · rG T =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 (5.1)

The expression for the global aerodynamic matrices is shown in equation 5.2. Where
T = T (x), and x is the position along the catenary.

Kae,global = TT ·Kae,local · T (5.2a)

Cae,global = TT · Cae,local · T (5.2b)

5.4 The Solution Method

The criterion in section 2.3.2 indicates galloping. The galloping analysis consists of check-
ing for galloping with the velocities and angles from the wind tunnel experiment, and de-
termining the critical values for onset of galloping. Galloping occurs when the real part
of the eigenvalue is positive. The onset of galloping is determined by the lowest damping
possible, preferably as close to zero damping as possible. The reason is that this state rep-
resents the onset of galloping, when the damping changes sign from negative to positive.

Two different approaches were made to determine critical values for galloping. The first
approach was to plot the real part of the eigenvalue (real(s)) vs. the wind velocity with
values between 20 and 50 m/s. The second approach was to iterate over wind velocity
to identify onset galloping with criteria for the damping (real(s)), CriteriaRe, and for the
velocity step, CriteriadV.
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5.4 The Solution Method

The concept of the first approach is that one can determine at what velocity real(s) be-
comes positive. The analysis was carried out including different still-air modes. Real(s)
was calculated and plotted including:

1. Random modes between 1 and 70: mode 1, 2, 4, 7, 10, 11, 16, 17, 23, 24, 30, 31,
32, 40, 45, 47, 51, 53, 55, 58, 59, 60, 62, 65, and 70

2. Random modes between 1 and 297: combination 1 and mode 72, 74, 80, 87, 88, 89,
95, 97, 101, 102, 110, 112, 115, 120, 125, 130, 131, 133, 139, 145, 146, 152, 157,
161, 168, 169, 174, 175, 189, 192, 199, 205, 207, 213, 216, 227, 228, 235, 237, 239,
242, 247, 248, 257, 266, 270, 271, 272, 279, 284, 287, 290, and 297

3. All still air modes, mode 1-297

The second approach iterates over different velocities to find more exact critical values for
onset of galloping. This is done including criteria. One criterion for the damping, which
should be close to zero. And one criterion for the velocity iteration step, which defines
how precise the critical velocity should be, i.e. how many digits included after the decimal
point. The analysis was performed for different values and combinations of these criteria.
The script checks the polynomial eigenvalue solution calculated for each angle of attack
and velocity iteration. The analysis is stopped if real(s) < CriteriaRe, and real(s) > 0,
and dv < CriteriadV. If not, a velocity iteration is carried out. The iteration is different
depending on if real(s) is positive or not. If real(s) is positive V = V - dV. If real(s) is
negative V = v + dV.

The mechanical damping was set to ξ = 0.005, and the density of the air equal to that
measured in the wind tunnel.

One source of error is that the messenger wire, droppers and stitch wire are assigned the
same static coefficients as the contact wire when determining critical values. The messen-
ger wire, droppers and stitch wire are not included in plotting of the mode shapes.
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Chapter 6
Results and Discussion

6.1 Natural Frequency Test

Figure 6.1 shows the time history for the force in the z-direction for one of the loading
cells. The three impacts where executed approximately at the 9, 30 and 52 second-marks.

Figure 6.1: Force measurements in z-direction during the natural frequency test

Figure 6.2 shows the spectral density of the forces in the x-, z-, and θ-directions. The
vertical peaks are the most interesting in this case considering vortex induced vibration
which is in the vertical direction.
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Figure 6.2: Spectral density from natural frequency test

Table 6.1 shows the peaks picked from the spectral density plots in figure 6.2. The fun-
damental natural frequency is 12.5 Hz. This has been confirmed later on in the process
of determining the Strouhal number. The natural frequency from the wind tunnel is close
to the natural frequency calculated in chapter 3. The calculation was based on the model
being of a Gurit R© material instead of the final 3D print. The final model is both heavier
and stiffer than the initial design. These characteristics still give a natural frequency close
to the calculation which was based on the initial foam material. So the stiffness-weight
ratio must be approximately the same for both the initial design and the final model.

Table 6.1: Frequency peaks picked from the spectral density plots [Hz]

Lateral peaks Vertical peaks Torsional peaks
11.65 12.47 11.65
12.38 13.21 12.47
13.21 13.21

20.6

6.2 Strouhal Number
The Strouhal number is determined from the measurement where α = 0 and the wind
velocity increases from about 0 to 10 m/s. The time series for the wind velocity and the
lift force was split into N segments as indicated in figure 6.3. It’s noted from figure 6.3 that
wind velocities below 4 m/s don’t generate significant lift forces. The standard deviation of
the lift force for each segment was calculated and plotted. It was plotted versus V

Df which
is the inverse of the Strouhal number. V is the mean wind velocity for the segment, D is
the diameter of the WT-model and f is the frequency of vortex shedding. The maximum
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6.2 Strouhal Number

point on the standard deviation- plot is used to determine the Strouhal number (Strømmen
(2010)). The Strouhal number was determined for N = 32, 66 and 133. The standard
deviation-plot for 133 segments is shown in figure 6.4. Table 6.2 shows the Strouhal
numbers calculated from different number of segments.

Figure 6.3: Splitting time series into segments.

Table 6.2: Strouhal numbers calculated from different number of divisions

N Strouhal number
32 0.192
66 0.197

133 0.194
Mean 0.194
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Figure 6.4: Standard deviation of the lift force vs. the inverse Strouhal number

The largest N provides the most accurate Strouhal number. One can see from figure 6.3
that the wind tunnel fan accelerates from 0 to 10 m/s in about 30 seconds. The mean
velocity is the basis of the calculation of the Strouhal number. The maximum standard
deviation is plotted against V

Df where V is the mean wind velocity. So, a larger number of
divisions gives a more precise mean wind velocity for each segment which in turn gives
a more accurate Strouhal number. The standard deviation of the lift force for N = 133 is
shown in figure 6.4. The largest N gives the Strouhal number as St = 0.194. The mean of
all calculations is the same.

Spectral density plots confirm the natural frequency of the WT-model by demonstrating
the lock-in effect. Spectral densities for selected segments for N = 32 are shown in figure
6.5. The behaviour is dominated by a single frequency when the wind velocity is between
3.7573 and 4.7695 m/s. The dominant frequency is the frequency of oscillation. Lock-
in occurs when the frequency of oscillation is equal to the shedding frequency. In other
words, when the natural frequency of the WT-model is equal to the shedding frequency.
So lock-in vibration at 12.5 Hz confirms the natural frequency determined in section 6.1.
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Figure 6.5: Spectral density of the lift force for selected segments around lock-in

6.3 Drag, Lift and Moment Coefficients
Following are the plots for the drag, lift and moment coefficients plotted against angle of
attack and Reynolds number. The plots for different angles of attack show all measure-
ments made, so there’s multiple measurements at all angles of attack. The legends describe
the wind tunnel velocities. Real life velocities for an unscaled contact wire are respectively
20, 30 and 50 m/s.

Coefficients vs. Angle of Attack

Figure 6.6 shows the drag coefficients calculated from the wind tunnel tests. One can see
that the graphs for 6 and 10 m/s show more of the same tendencies, than that for 4 m/s. The
reason for this is most likely because of the vortex-induced vibrations at 4 m/s. The drag
coefficient decreases with increasing wind velocity, as is also the tendency in the report by
Xie et al. (2014). The scaling is 2:1 in this report which makes the values a bit different,
the cross-section tested is AC-150 not AC-120. The drag coefficient at 10 m/s (20 m/s
with real CW) in Xie et al. (2014) is most comparable to the drag coefficient at 4 m/s (20
m/s for real CW) in this report. They have the same value at -75◦ which is about 1.3. But
the other values differ, possibly because of the vortex-induced vibrations which occurred
in the testing for this report.
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Figure 6.6: Drag coefficient for different wind tunnel velocities

Minimum drag is for α equal to approximately 50◦ for all velocities tested. Maximum
drag is for a negative angle of attack. For WT-velocity 4 m/s at α ' -65◦. For 6 m/s at
α ' -55◦. And for 10 m/s at α ' -50◦. So, the point of maximum drag shifts towards
more positive angles of attack with increasing wind velocity.

Figure 6.7 shows the lift coefficients calculated from the wind tunnel tests. All graphs

Figure 6.7: Lift coefficient for different wind tunnel velocities

for the lift coefficient seem to have the same tendencies except for a discrepancy between
about 0 and 15 degrees. The question is why the measurement at 4 m/s differs more from
the other velocities for drag than it does for lift when it comes to following tendencies for
maximums and minimums. The velocities of 6 and 10 m/s have almost the same extremal
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points. It might be that the vortices push the cross-section in the opposite lateral direction
when they’re shed, so that the drag coefficient deviates from the other measurements.

Increased wind speed leads to increased magnitude of lift at several angles. The opposite
is also observed, but this happens at angles where the different velocities give different
directions of lift. All velocities give negative lift somewhere between α = −70◦ and
α = −45◦. After this it’s mostly the measurements for V = 4 m/s which exhibits a small
value of negative lift. Different directions of lift at different velocities occurs because of
changes in the position and size of the wake. The wake is the area behind the flow separa-
tion point. Different velocities gives different pressure distributions downstream, therefore
different magnitude of lift. Different velocities can also cause a new point of reattachment,
which shifts the wake in a new position above or below the body causing a change in di-
rection of lift. Changes in sign can cause galloping Tamura and Kareem (2013).

Maximum lift for V = 4 m/s and V = 6 m/s occur at an angle of attack approximately
equal to -75◦. Maximum lift for V = 10 m/s is at angle of attack approximately equal to
55◦.

The lift coefficient is asymmetric about the y-axis as is expected because of different pres-
ence of grooves. For example an angle of attack equal to 75◦ hides the grooves from the
oncoming flow. But in spite of different groove-placements, there is significant peaks at
both -60◦ and 60◦. The absolute value of the lift coefficient is a bit larger for α = 60◦.
There are larger lift coefficients for positive angles in general. Positive angles of attack
give positive lift, some negative angles of attack give negative lift. This is because the
groove facing the flow is directed downward at negative rotations. The positive angles of
attack provide more area of resistance to the flow in the upwards vertical direction, with
the groove directed upwards.

Figure 6.8 shows the pitching moment coefficients calculated from the wind tunnel tests.
The moment coefficient increased with increasing velocity for negative angles of attack
and decreased for increasing velocity at positive angles of attack.

It can be observed from figure 6.6-6.8 that the coefficients have a greater ’span’ at differ-
ent angles of attack when the wind tunnel velocity is 4 m/s. This is because the critical
velocity for vortex-induced vibration is approximately equal to 4 m/s. This leads to a
larger variation in deflection which leads to a larger variation in the forces measured by
the loading cells. Wind tunnel testing at velocities close to and around the critical values
for vortex shedding are usually avoided for determining static coefficients. But it’s neces-
sary for determination of the Strouhal number. The scaling of the model and the desired
wind velocity interval made it difficult to avoid a vortex-induced instability when testing
to determine static coefficients. Wind velocities in Norway rarely exceed 30 m/s (NRK
and MET Norway (2013)) and it was therefore of interest to test wind velocities below and
up to 30 m/s. A diameter-scaling of 5:1 changes 30 m/s to 6 m/s in the wind tunnel tests.
This value is low and measurements at even lower velocities (e.g. 3 m/s) were expected
to be poor. The reason for this is that the loading cells wouldn’t be able to measure the
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Figure 6.8: Moment coefficient for different wind tunnel velocities.

corresponding low forces very well. It was not desired to test for wind velocities lower
than 4 m/s. And since it was of interest to test a velocity below 6 m/s the measurements at
4 m/s were performed. The measurement at WT-velocity of 10 m/s was also performed to
see the response at higher velocities. This corresponds to 50 m/s on a real life contact wire.

A confirmation of the results is the values of the coefficients at the angle of attack, α =
75◦. The part of the model facing the flow is equal to that of a cylinder. One can see from
figure 6.6 that the value of CD is approximately equal to 1.2 at this angle of attack, and
from figure 6.7 that the value of CL is equal to zero. A cylinder doesn’t experience lift and
1.2 is the drag coefficient of a cylinder (Cengel and Cimbala (2006)).

The drag and lift graphs are almost identical at certain angles of attack, e.g. between -
45 to -5◦. This is because some angles of attack introduce the corners of the grooves to
the flow, causing separation no matter what the Reynolds number is. Also between angles
of 50 to 75◦ the contact wire is ”hiding” the grooves, so the area facing the wind is cylin-
drical, and the velocities all give roughly the same drag and lift coefficients.

There is a big jump in the CM graph for 4 and 6 m/s when going from measurement -
25-25 to measurement 25-75. The jump decreases with increasing wind tunnel velocity.
The reason for the jump could be that the values of the moment coefficients are low. This
means that the loading cells measure very low forces which makes the measurements more
unreliable.

The lift, drag and moment coefficients are difficult to compare to other research. It’s
difficult to compare the measured moment coefficient to other measurements since most
research papers only include the drag and lift coefficients. And it’s difficult to compare the
drag and lift coefficients because most research papers communicate their results in the
Glauert-Den Hartog Stability Criterion. The criterion is the most important manifestation
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of the results in practice. The moment coefficient is not included in the mentioned stability
criterion.

Changing alpha leads to a change in the boundary layer of the flow around the body.
The flow will separate from the surface at different points when changing the angle of
attack of the flow. The contact wire cross section is circular. Flow separation occurs at
high curvature which means that the contact wire is highly vulnerable to the effects of
flow separation. The grooves are also a trigger for flow separation. The flow separation
creates a pressure difference with higher pressure downstream of the separation point. The
separated region, also known as the wake, contributes to the static coefficients. Early sepa-
ration cause a larger wake area which is less steady (turbulent) and can cause fluctuations.
Flow separation is dependent on Reynolds number, turbulence and surface roughness. The
grooves on the contact wire changes the flow separation point. The grooves can also cause
separation bubbles which means that the flow separates then reattaches later on. Tamura
and Kareem (2013).

Coefficients vs. Reynolds Number

Figure 6.9 shows the drag coefficient at α = 0 plotted for different Reynolds numbers.
The Reynolds number is calculated from velocities of 4.0 m/s up to 10.9 m/s.

Figure 6.9: Drag coefficient vs. Reynolds number at α = 0◦

It seems like the drag coefficient has reached Reynolds number independence. One can
see from figure 6.9 that the drag coefficient decreases with increasing Reynolds number,
which was also evident at most angles of attack in figure 6.6. This is because of reduced
flow separation, the separation occurs further back on the cross section, which makes the
wake smaller. The smaller wake has higher pressure than a larger wake, which reduces
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the drag by behaving as an opposite force. The measured drag coefficient seems to stabi-
lize around CD ' 1. The measurements stop at Reynolds number below 2e5 so it’s not
possible to see if a drop will occur like it does for cylinders at Re = 2e5 (drop from 1.2 to
0.3). This drop could occur earlier for a certain angle of attack on a contact wire, but the
ups and downs on figure 6.6 aren’t as extreme as the drop on a cylinder. Also, the effect of
the grooves are not directly comparable to the effect of the Reynolds number and surface
roughness on a cylinder.

Figure 6.10 shows the lift coefficient at α = 0 plotted for different Reynolds numbers.
The lift coefficient might have reached Reynolds number independence. The coefficient
experiences an increase in lift as the Reynolds number increases. This is followed by a
region where the lift is reduced before it seems to stabilize at CL ' 0.3. The turning point
is at Re ' 2.5e4. Change in wake because of flow separation and reattachment can effect
the lift. The lift can change rapidly with different positions of reattachment, both with
respect to magnitude and direction. The increase in positive lift is a result of increased
pressure at the bottom of the cross-section. This can be a result of the flow separation
point being placed further back on the bottom of the cross-section than on the top, so that
the wake is oriented towards the top. The wake has lower pressure. The top of the contact
wire has grooves which can interrupt trailing edge flow, while the bottom is circular so the
flow can follow the cross-section surface further along.

Figure 6.10: Lift coefficient vs. Reynolds number at α = 0◦

Figure 6.11 shows the moment coefficient at α = 0 plotted for different Reynolds numbers.
The moment coefficient has also reached Reynolds number independence.
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Figure 6.11: Moment coefficient vs. Reynolds number at α = 0◦

6.4 The Glauert-Den Hartog Stability Criterion

Figure 6.12 shows the Glauert-Den Hartog Stability Criterion for the wind velocities tested
in the wind tunnel. The values were determined at all integer angles of attack. So part of
the calculation was to find the mean of the static coefficients at all flow angles. Figure 6.13
shows the stability criterion for V = 4 m/s. One can see from figure 6.13 that the stability
criterion varies significantly more than for the other wind velocities and has a more messy
nature (vortex-induced vibration). Figure 6.14 shows the stability criterion for V = 6 m/s.
Figure 6.15 shows the stability criterion for V = 10 m/s.

Figure 6.12: The Glauert-Den Hartog Stability Criterion for different wind tunnel velocities
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Figure 6.13: The Glauert-Den Hartog Stability Criterion for V = 4 m/s

Figure 6.14: The Glauert-Den Hartog Stability Criterion for V = 6 m/s
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Figure 6.15: The Glauert-Den Hartog Stability Criterion for V = 10 m/s

It can be seen that the stability criterion d = dCL

dα + CD is significantly less negative for
increasing velocity. d < 0 the most for V = 4 m/s, but this is expected because of the
vortex shedding. The danger of galloping is present for V = 6 m/s which equals 30 m/s for
a real contact wire. A wind velocity of 30 m/s is defined as a violent storm on the Beaufort
scale, and rarely occurs on land in Norway. This velocity in the mountains is followed by
closing roads and railway lines. The WT-results at 10 m/s are for real life wind velocities at
50 m/s, which is classified as hurricane. Hurricane conditions very rarely occur in Norway
(NRK and MET Norway (2013)). But if they occur, there’s a probability of galloping at
50 m/s at certain angles of attack. There’s also a danger of galloping at wind velocities
between 30 and 50 m/s not tested here.

6.5 Galloping Analysis on a Real Catenary System

6.5.1 Approach 1: Plotting Real(s)

The three different combinations used in the analysis were:

1. Random modes between 1 and 70: mode 1, 2, 4, 7, 10, 11, 16, 17, 23, 24, 30, 31,
32, 40, 45, 47, 51, 53, 55, 58, 59, 60, 62, 65, and 70

2. Random modes between 1 and 297: combination 1 and mode 72, 74, 80, 87, 88, 89,
95, 97, 101, 102, 110, 112, 115, 120, 125, 130, 131, 133, 139, 145, 146, 152, 157,
161, 168, 169, 174, 175, 189, 192, 199, 205, 207, 213, 216, 227, 228, 235, 237, 239,
242, 247, 248, 257, 266, 270, 271, 272, 279, 284, 287, 290, and 297

3. All still air modes, mode 1-297
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The calculation and plotting takes a long time when including all still air modes (combina-
tion 3). The challenge is to decide which modes to include for an efficient analysis. Only
angles of attack with positive real(s) were plotted.

Table 6.3 shows the results from the calculation. Combination 1 and 2 give the same
results, and almost identical plots. Combination 3 is quite different. The combination ex-
cludes some of the angles from 1 and 2, and it introduces a lot of new critical angles and
velocities. Combination 3 gives curious results when one compares it to the Glauert-Den
Hartog stability criterion. It introduces some angles which are not unstable according to
the criterion, e.g. α’s between -50 and -34, as well as between 38 and 48. Although,
it’s worth noting that the criterion is close to zero at these angles. Some of these curious
results also note ”stable after 30”, which indicates that maybe they only appear because
of the vortex shedding during WT-testing. Combination 3 changes some of the critical
velocities at certain angles as well, e.g. at α = 59◦.

One example of a plot for the angles of attack who note ”stable after 30” is shown in
figure 6.16. The plot is taken from combination 1 and is similar for α = -74, -63, -60 and
-57◦. α = 25 and 55◦ are a bit different, but have the same tendency. The plot indicates
that the measurement at 20 m/s (WT-velocity 4 m/s) can be unstable.
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Table 6.3: Critical angles and velocities for combination 1, 2 and 3.

Combination 1 and 2 Combination 3
αCR [◦] VCR [m/s] Notes on real(s) αCR [◦] VCR [m/s] Notes on real(s)

-74 20 stable after 30 -73 20 stable after 30
-72 20 always positive -72 20 stable after 30
-71 20 always positive -70 20 always positive
-70 21 still unstable at 30 -69 20 always positive
-69 20 always positive -68 20 always positive
-68 20 always positive -67 20 always positive
-67 20 still unstable at 30 -65 20 always positive
-65 22 still unstable at 30 -64 20 still unstable at 30
-64 20 still unstable at 30 -62 22 still unstable at 30
-63 20 stable after 30 -61 20 always positive
-62 20 stable after 30 -60 20 still unstable at 30
-60 20 stable after 30 -59 20 always positive
-57 20 stable after 30 -58 20 always positive
15 25 still unstable at 30 -57 20 stable after 30
16 20 still unstable at 30 -56 20 always positive
17 24 still unstable at 30 -55 20 always positive
19 28 still unstable at 30 -54 20 still unstable at 30
20 27 still unstable at 30 -52 22 still unstable at 30
21 28 still unstable at 30 -51 20 still unstable at 30
22 28 still unstable at 30 -50 20 stable after 30
23 26 still unstable at 30 -49 20 stable after 30
25 20 stable after 30 -48 20 stable after 30
55 20 stable after 30 -46 20 stable after 30
56 20 always positive -43 20 stable after 30
57 20 always positive -34 46
58 20 always positive 16 20 stable after 30
59 20 always positive 20 20 stable after 30

38 25 still unstable at 30
39 20 still unstable at 30
40 24 still unstable at 30
42 29 still unstable at 30
43 27 still unstable at 30
44 28 still unstable at 30
45 28 still unstable at 30
46 26 still unstable at 30
48 20 stable after 30
59 46
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Figure 6.16: Plot of real(s) for α = −62◦. Combination 1.

Several plots have similar shape to that shown in figure 6.17. The shape is similar for α =
-71, -68, -67, -65, 17, 19, 20, 21, 22, 23 and 56◦. These have the note ”still unstable at 30”
and ”always positive”.

Figure 6.17: Plot of real(s) for α = 15◦. Combination 1.

A plot worth mentioning is the one for α = 59◦ for combination 1 (fig. 6.18). Real(s) is
always positive, but stays at a low value until it reaches V = 30 m/s, and it grows rapidly.
One possible conclusion of this is that the critical velocity at α = 59◦ is VCR = 30m/s,
since the measurements below form a straight line, and then increases from 30 m/s.
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Figure 6.18: Plot of real(s) for α = 59◦. Combination 1.

Figure 6.16-6.18 are for combination 1 and 2. Figure 6.19 how different the plots can
be for combination 3. The angle of attack equal to 59◦ is stable until V = 46 m/s with
combination 3.

Figure 6.19: Plot of real(s) for α = 59◦. Combination 3.

Mode Shapes

A critical velocity and its angle of attack gives many eigenvalues and mode shapes. The
interesting mode shape out of these is the one for minimal, positive damping, i.e. the mode
shape for the eigenvalue where real(s) has the lowest, positive damping.

Note that the mode shapes are highly distorted since the FE-model is 1260 meters long,
and mode shapes are plotted for this length. The FE-model has 19 bracket-nodes within
the span, so 20 sections in total over 1260 meters. So, a drawn mode shape looks like it
has a lot of half waves, but in reality there’s not many half waves per section.
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One assumption is that the mode shapes for galloping velocities will show cross-wind
movement. Galloping is often called cross-wind galloping (Dowell (2014)). For example
at very large angles of attack the mode shape is assumed to be mostly lateral since the flow
is almost vertical, see figure 6.20 for illustration. This might be correct in some cases,
but in reality there are many factors that affect the direction of movement in the catenary
system, not just the direction of the flow. The direction of flow affects the movement when
considering the grooves. The contact wire isn’t circular so the grooves may change the di-
rection at different α. The flow direction doesn’t change the fact that the catenary system
consists of many restrictions. The Abaqus model is for a contact wire of length 1260 m,
where several support poles are present as boundary conditions. The boundary conditions
limit the movement. So, the mode shapes may not follow the assumption on cross-wind
movement. But a large angle of attack may give a larger lateral contribution than a small
angle of attack.

Figure 6.20: Assumed movement at α = −75◦.

Table 6.4 shows the nature of the mode shapes for all critical angles of attack and their
critical velocities. The α’s in table 6.3 that are still unstable at 30 m/s have two mode
shapes, one for V < 30 m/s and one for V = 30 m/s. Although there’s reason to believe
that the measurement at 20 m/s is unreliable one can’t rule out that some of the critical
velocities for certain angles of attack are close to 20 m/s. Some might be low since the
catenary system has relatively low mechanical damping (Kaczinski (1998)). Many of the
mode shapes were found in the FE-model. The mode shapes in table 6.3 have a critical
frequency which was compared to the frequency of the still-air modes. Shape was also
evaluated in the comparison. The details of the comparison can be seen in appendix B.

There is no obvious pattern when it comes to mode shape direction and angles of attack.
Both large and small angles of attack give vertical mode shapes. But the smallest angles of
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attack, 15-17◦ have mode shapes with mostly vertical components, which coincides with
the cross-wind mode shape assumption. And the mode shapes denoted ”Vertical and lat-
eral” are represented by mostly larger angles of attack(except for α = 20◦ for combination
1 & 2), which can also be roughly cross-wind movement.

Table 6.4: Mode shapes for different critical velocities and angles of attack

Combination 1 & 2 Combination 3
Mode shape VCR αCR [◦] VCR αCR [◦]

Vertical 20 -74, -72, -69, -68, 20 -73, -72, -69, -68,
-67, -64, -63, -60, -67, -65, -64, -60,
-57, 55, 58, 59 -57, -50, -49, -43, 20

24 17 30 -62, -61
25 15
26 23
27 20
28 21, 22
30 15, 16, 17, 19,

20, 21, 22, 56, 59
Vertical, 20 -62, 16, 25, 57 20 -70, 16

small lateral 30 -72, -65 22 -62
30 -64, -65

Lateral 30 -70 20 -61, -59, -58, -56, -55,
-54, -51, -48, -46, 48

22 -52
24 40
25 38
27 43
28 44, 45
29 42
30 -70, -59, -58, -55,

-54, 38, 39, 40,
42, 43, 44, 45, 48

46 -34
Vertical 20 -71, 56 20 39

and lateral 21 -70 26 46
22 -65 30 -69, -68, -67, -60,
30 -71, -69, -68, -67, -56, -52, -51, 46

-64, 21, 57, 58 46 59

The following figures show some of the mode shapes encountered. Figure 6.21 shows a
vertical mode shape that appears three times for combination 1 & 2 with α equal to 15,
19 and -68◦. It appears nine times for combination 3 with α ranging from -43 to -73◦ as
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well as α = 20◦. The mode shape is identical to still-air mode shape 1 in the Abaqus model.

Most of the mode shapes denoted ”Lateral” are like the one shown in figure 6.22. The
mode in figure 6.22 appears a total of 29 times for combination 3, raising the question of
whether it’s an actual problem or a numerical error. It could be a numerical error since
many of the angles of attack associated with the mode are not critical in the Glauert-Den
Hartog stability criterion (fig. 6.12). The modes in figure 6.22 are equal to still-air mode
61 and 62. Combination 3 includes still-air mode 61 which is not present in combination
1 & 2, this might cause a numerical error. If the mode shape represents an instability, it’s
only present in one section between two support poles. It’s the second section from the
end for both modes. The FE model has 20 sections. The support poles are not included,
but there’s 19 nodes representing the contact point between the messenger wire and the
brackets.

Figure 6.21: Vertical mode shape. Appears three times for combination 1 & 2, nine times for
combination 3. The mode shape is the same as still-air mode 1 in the FE-model.
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(a) Mode shape equal to still-air FE-mode 61. (b) Mode shape equal to still-air FE-mode 62.

Figure 6.22: Mode shape that appears a lot for combination 3 (29 times), and once for combination
1 & 2.

One mode shape appears with different orientation for different angles of attack in com-
bination 1 & 2. The angles of attack have approximately the same value and opposite
sign. They’re also associated with approximately the same wind velocities. These plots
show that the sign of α alone can have an influence on the mode shape orientation. Figure
6.23a has a larger lateral contribution than figure 6.23b, so higher α gives a larger lateral
contribution in these cases.

(a) V = 22 m/s, α= -65◦. (b) V = 20 m/s, α= 56◦.

Figure 6.23: Same mode shape, different orientation at different α. For combination 1 & 2.

Combination 3 introduces a new lateral mode shown in figure 6.24. The shape fits
still-air mode 48 which is dominant for the messenger wire. The displacement is smaller
for the contact wire. The messenger wire, droppers and stitch wire is not included in the
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mode shapes shown in figure 6.21-6.24.

Figure 6.24: Mode shape, V = 20 m/s, α = -54, 48◦. Combination 3. The mode shape is the same
as still-air mode 48 in the FE-model.

The mode shapes denoted ”Vertical and lateral” in table6.3 were difficult to find in the
still-air FE-model. Some were a fit in one direction only, others could possibly be a com-
bination of two. Some were not found at all. It can be a challenge to compare modes when
the polynomial eigenvalue modes are plotted for the contact wire while the FE-model
includes the messenger wire, stitch wire and droppers. The aerodynamic stiffness and
damping are not expected to change the still-air solution significantly. The off-diagonal
terms contribute to changes, and these might be more significant for the α-V-combinations
encountered here. A computer will probably be better at recognizing similarities. One ex-
ample is shown in figure 6.25, where the vertical contribution is similar to still-air mode
37.
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(a) 3D-plot

(b) Vertical contribution

(c) Lateral contribution

Figure 6.25: Oblique mode shape. V = 20 m/s, α = 39◦. V = 30 m/s, α = -60◦.

The oblique mode shape shown in figure 6.26 appears four times for combination 3. A
very similar shape is seen three times in combination 1 & 2.
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(a) 3D-plot

(b) Vertical contribution

(c) Lateral contribution

Figure 6.26: Oblique mode shape. V = 30 m/s, α = -52, -51, 46◦. V = 26 m/s, α = 46◦.

6.5.2 Approach 2: Iterations with Criteria

The results presented for the second approach was obtained using the still-air modes de-
scribed in combination 1. A certain number of still-air modes must be included to obtain
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results at all, for example including mode 1 to 10 doesn’t yield any results. Including
mode 1 to 20 yields results. Combination 1 includes a large span of modes without be-
ing to many. Including all 297 still-air modes would be very computationally expensive.
The same analysis was performed at all angles of attack. The analysis checks for positive
real(s). The critical value is found if real(s) is positive and less than CriteriaRe, and dV <
CriteriadV. If not, a velocity iteration is carried out. The iteration is different depending
on if real(s) is positive or not.

Table 6.5 shows the results from an analysis with CriteriaRe = 0.01 and CriteriadV =
0.05. The analysis is performed with different wind velocity starting values. One can see
that different start values, V0, give different results. Some critical velocities aren’t picked
up when start value is low even though the iterations go through all integer V with dV = 1
(e.g. VCR = 49.03125 m/s at α = 56◦). One reason for changing start values is that the
measurements for the static coefficients at V = 20 m/s are not as trustworthy because mea-
surements were taken during vortex shedding. The measurements at 6 m/s, corresponding
to 30 m/s in real life, are more trustworthy. And the analysis is performed with V0 = 31
m/s to exclude critical values below 30. V0 = 30 m/s gave critical values of e.g. 29.03125
m/s. Still, as mentioned before, one can’t with certainty exclude the lower critical values.

Table 6.6 shows the results from an analysis with CriteriaRe = 0.01 and no criteria for
the velocity step. The analysis is performed with different wind velocity starting values.
Also here it’s evident that different start values, V0, give different results. Some new an-
gles of attack are introduced compared to table 6.5. E.g. α = -74, -57 and 25◦. Some of
the critical velocities are larger than in table 6.5, some critical velocities are lower. So the
criterion for the velocity step is important for the determination of the critical velocity.

Table 6.5: Galloping analysis with CriteriaRe = 0.01 and CriteriadV = 0.05.

VCR [m/s]
α [◦] V0 = 20 V0 = 25 V0 = 31 V0 = 40 V0 = 50
-70 20.28125
-68 20.03125
-65 21.21875
-64 31.03125
-48 47 47 47 47
15 25.09375 25.09375
17 23.65625 24.03125
19 28.3125 28.3125 30.03125
20 26.71875 26.71875 39.03125
21 27.28125 27.28125
22 27.3125 27.3125 49.03125
23 25.6875 25.6875 49.03125
56 49.03125
59 24.03125 30.03125
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Table 6.6: Galloping analysis with CriteriaRe = 0.01, no CriteriadV

VCR [m/s]
α V0 = 20 V0 = 25 V0 = 30 V0 = 40 V0 = 50

-74 20
-70 20.5
-68 20.5
-65 21.5
-64 30
-57 20
-48 47 47 47 47
15 26 26
17 24 24.5
19 29 29 30
20 27 27 40
21 28 28
22 28 28 50
23 26 26 50
25 25
56 20
59 20 25 30 50

Table 6.7 shows galloping analysis with different criteria for the real part of the eigenvalue,
i.e. the criteria for damping. One can see that increasing the criteria for the damping in-
cludes more unstable angles and velocities. The goal of the analysis is to determine critical
characteristics, and the onset of galloping happens when the damping goes from a nega-
tive to a positive value, i.e. when the damping is equal to zero. So a strict CriteriaRe with
value as close to zero as possible is desirable. It’s also important to not be too strict with
the criterion, in order to discover possible instabilities. So checking for different criteria
is important because it might introduce new critical angles and velocities not found other-
wise. One can see from table 6.7 that most angles introduced with increasing CriteriaRe
are already discovered. The exceptions are the instabilities at α = −72◦ and α = 16◦.
The instabilites at angles of attack α = 15◦, 17◦, 20◦− 23◦ and α = 56◦ are discovered at
lower critical velocities. But the critical velocities larger than 30 m/s might be important
because the WT-data is more trustworthy at V > 30 m/s, as mentioned above.
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Table 6.7: Galloping analysis with CriteriadV = 0.05 and different CriteriaRe, V0 = 31 m/s.

CriteriaRe = 0.01 CriteriaRe = 0.05 CriteriaRe = 0.1
α VCR α VCR α VCR

-64 30.03125 -64 30.03125 -72 30.03125
-48 47 -48 47 -64 30.03125
19 30.03125 15 30.03125 -48 47
59 30.03125 19 30.03125 15 30.03125

20 30.03125 16 30.03125
21 30.03125 17 30.03125
22 30.03125 19 30.03125
23 30.03125 20 30.03125
59 30.03125 21 30.03125

22 30.03125
23 30.03125
56 30.03125
59 30.03125

Challenges with plotting mode shapes

One of the challenges with plotting mode shapes is choosing what still-air modes to include
in the calculation. The transformation from the polynomial eigenvalue solution to the
final mode shape plot is done with a coordinate transformation applying the still-air mode
shapes. So, the final result should be strongly influenced by the choice. Two alternatives
are discussed:

• Alternative 1: Still air mode 1, 2, 4, 7, 10, 11, 16, 17, 23, 24, 30, 31, 32, 40, 45, 47,
51, 53, 55, 58, 59, 60, 62, 65 and 70

• Alternative 2: All 297 still-air modes

The galloping analysis to find critical values was done including random still-air modes
depicted in alternative 1. There are 297 still-air modes in total, and using all of them is
alternative 2. The galloping analysis did not include all of them because the calculations
would take a long time. But plotting the mode shapes takes less time which means that
more modes can be included. The challenge with this is that including different number of
still-air modes yields different mode shapes. One example is for VCR = 20.2813 m/s at
α = −70◦ shown in figure 6.27. When using the same modes as in the calculation (a few
random still-air modes) the mode shape is dominant in the vertical direction (fig.6.27a).
This contradicts the assumption that a high angle of attack gives a larger lateral contri-
bution. But when the mode shape is plotted including all 297 still-air modes, the mode
shape is more oblique with lateral and vertical contributions (fig.6.27b). The opposite is
observed for VCR = 30.03125 m/s at α = −72◦ (fig.6.29).

The vertical and lateral contributions of the mode shape including all still-air modes is
shown in figure 6.28. The difference in plotted mode shapes might be because the ran-
domly selected still-air modes don’t include the matching lateral modes to represent the
lateral contribution completely.
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Table 6.8 shows the mode shapes associated with the lowest critical velocities determined,
i.e. the onset galloping mode shapes. Some angles of attack are linked to two different
critical velocities; one velocity below 30 m/s and one velocity greater than 30 m/s. The
reason for this is, as mentioned before, is the trustworthiness of the wind tunnel results.

Depending on usage of alternative 1 or 2 one can see that the negative α’s are associ-
ated with mode shapes with both lateral and vertical contributions. The α’s ”closer” to
zero and with greater positive values are associated to vertical mode shapes, with smaller
lateral contributions. The grooves contribute to the flow around the cross-section. A neg-
ative and a positive angle of attack present very different surfaces to the wind flow. A
large negative angle of attack puts the top of the contact wire cross-section, and therefore
also the grooves, in the middle of the surface facing the flow (fig.4.7a). A large negative
angle of attack ”hides” the top and grooves from the oncoming flow (fig.4.7f). Also, as
mentioned before, the support poles and the other catenary wires suppress movement in
certain directions.
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Table 6.8: Mode shapes at the lowest critical velocities, calculated using alternative 1 or 2.

Mode shape description
α VCR Alt.1 Alt.2

-74 20 Vertical Vertical
-72 30.03125 Both vertical and lateral Mostly vertical
-70 20.28125 Vertical Both vertical and lateral
-68 20.03125 Vertical Both vertical and lateral
-65 21.21875 Identical

30 Vertical Vertical, small lateral-64 31.03125 Vertical Mostly vertical
-57 20 Vertical Vertical
-48 47 Both vertical and lateral Both vertical and lateral

25.09375 Identical15 30.03125 Identical
16 30.03125 Vertical Vertical

23.65625 Identical17 30.03125 Vertical Mostly vertical
28.3125 Identical19 30 Vertical, small lateral Vertical, small lateral

26.71875 Identical20 30.03125 Vertical Mostly vertical
27.28125 Identical21 30.03125 Vertical, small lateral Vertical, small lateral
27.3125 Identical22 30.03125 Vertical, small lateral Vertical
25.6875 Identical23 30.03125 Vertical Vertical, small lateral

25 25 Vertical, small lateral Mostly vertical
20 Vertical Vertical, small lateral56 30.03125 Vertical Vertical
20 Vertical, very small lateral Vertical, small lateral59 30 Vertical, small lateral Vertical, small lateral

No new angles of attack are introduced compared to approach 1. But some angles of attack
exhibit larger critical velocities. E.g. at α = -64◦ the lowest critical velocity found is 30
m/s. All angles of attack, except for α = -48◦, satisfy the Glauert-Den Hartog stability
criterion. Approach 2 leads to a decrease in many of the critical velocities from approach
1, since velocity iterations with smaller time steps are used.
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(a) Alternative 1.

(b) Alternative 2.

Figure 6.27: Onset galloping mode shape at VCR = 20.2813 m/s and α = −70◦.
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(a) Vertical mode shape

(b) Lateral mode shape

Figure 6.28: Onset galloping mode shape at VCR = 20.2813 m/s and α = −70◦ ans using
alternative 2.
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(a) Alternative 1.

(b) Alternative 2.

Figure 6.29: Onset galloping lateral mode shape at VCR = 30.03125 m/s and α = −72◦.
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Chapter 7
Conclusion

This report carried out a wind tunnel test on an upscaled contact wire. Angles of attack
ranged from -75 to 75◦. Three wind velocities were tested; 4, 6 and 10 m/s. The re-
sults were plotted in the form of static aerodynamic coefficients versus angle of attack
and Reynolds number. The results were also presented in the form of the Glauert-Den
Hartog stability criterion for galloping. The Strouhal number was determined. The static
coefficients were used to investigate galloping instabilities on a FE-model of a real life
Norwegian railway stretch.

The static coefficients were dependent on Reynolds number and angle of attack. The
drag coefficient decreased with increasing velocity. This was also evident in the plot ver-
sus Reynolds number, for α = 0. Minimum drag was for a flow angle of attack equal to
approximately 50◦. Maximum drag was for angles of attack between α’s between -65 and
-50◦. The magnitude of the lift coefficient generally increased with increasing velocity.
This is also seen in the plot versus Reynolds number. The sign of the flow angle and the
sign for the lift coefficient were mostly the same. The moment coefficient increased with
increasing velocity for negative angles of attack and decreased for increasing velocity at
positive angles of attack. The plot against Reynolds number showed a decrease in the lift
coefficient for increasing velocity.

The Glauert-Den Hartog stability criterion gives possible instabilities for all wind tun-
nel velocities. The criterion experiences the largest amount of negative values for wind
tunnel velocity V = 4 m/s, a bit less for 6 m/s and the least amount of negative values for
V = 10 m/s. The possibly unstable angles of attack range from about -74 to -57◦, at some
angles close to zero (only for V = 4 m/s), at some angles from 16 to 26◦, and lastly for
some angles from 55 to 64◦.

The Strouhal number was determined from a time series with wind velocities from zero to
10 m/s. The mean Strouhal number from three calculations was 0.194. This value is close
to that of a cylinder.
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The galloping analysis was performed at all angles of attack from -75 to 75◦. It provided
many critical velocities at multiple angles of attack. The first approach plotted the real part
of the eigenvalue at velocities from 20 to 50 m/s, to determine when the damping becomes
positive. Many of the instabilities had critical velocities at 20 m/s. Some in between 20
and 30 m/s. Only one instability had a critical velocity above 30 m/s. Mode shapes were
made for all critical velocities, and also for V = 30 m/s for some angles of attack, because
of vortex shedding during wind tunnel testing. Most mode shapes were vertical at both
low and high angles of attack. Some mode shapes showed vertical and lateral contribu-
tions at higher angles of attack. The aim of the second approach was to determine critical
values for onset of galloping. No new critical angles of attack were introduced compared
to approach 1. Many critical velocities were reduced as a result of a smaller velocity step.

Both the critical angle of attack and the critical velocity must occur at the same time for
galloping to happen. So, although many critical values are found, galloping may still not
occur. It may also not occur even if the critical values are present. Some angles of attack
might not be probable to pair with some velocities. Galloping instabilities on catenary
systems have not been recorded in Norway. The Glauert-Den Hartog criterion must also
be satisfied for galloping to occur, and this excludes some of the critical values found in
approach 1 combination 3.

One of the main limitations of the project is the vortex shedding at wind tunnel veloc-
ity 4 m/s. The measurements create many uncertainties in the galloping analysis. Another
is that some of the galloping analyses performed include the messenger wire, droppers and
stitch wire which are assigned the same static coefficients as the contact wire. This is of
course not correct coefficients for these cross-sections.

Recommendations for further work:

• Short term:

– Perform the second approach of the galloping analysis with even more still-air
modes, and/or other combinations of modes.

– Plot some of the mode shapes for sections instead of for the whole model. To
avoid distorted mode shapes and to better understand the physical shape.

– Investigate what realistic angles of attack are.

• Medium term:

– When determining the Strouhal number, run the wind tunnel from 0 to 10 m/s
with longer intervals of constant velocity. E.g. increase velocity a little bit, run
at constant velocity for a while, increase velocity again, run that velocity for a
while, and so on.

• Long term:

– Find a model scaling that can be tested at WT-velocities corresponding to real-
life velocities below 30 m/s without vortex shedding.
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– Make alterations to the model to simulate effects like wear or ice build up. It’s
necessary to make a larger cross-section to simulate wear on the bottom of the
contact wire. The distance from the aluminum pipe to the surface is to small
on the current model.
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Chapter 7. Conclusion
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URL http://www.ebook.de/de/product/19297684/walter_j_
ammann_hans_g_natke_hans_nussbaumer_anthony_j_pretlove_
johann_h_rainer_vibration_problems_in_structures.html

Cengel, Y. A., Cimbala, J. M., 2006. Fluid Mechanics: Fundamentals and Applications.
Boston: McGraw-HillHigher Education.

Dowell, E. H., 2014. A Modern Course in Aeroelasticity. Springer International Publish-
ing.
URL http://www.ebook.de/de/product/25037937/earl_dowell_
earl_h_dowell_a_modern_course_in_aeroelasticity.html

Flamand, O., jul 1995. Rain-wind induced vibration of cables. Journal of Wind Engineer-
ing and Industrial Aerodynamics 57 (2-3), 353–362.

Gay, D., Gambelin, J., 2008. Modeling and Dimensioning of Structures: An Introduction.
ISTE LTD.
URL http://www.ebook.de/de/product/7498545/daniel_gay_
jacques_gambelin_modeling_and_dimensioning_of_structures_
an_introduction.html

Gurit, n.d. Datasheet / gurit R© pvc - structural foam core (v9). Web page.
URL http://www.gurit.com/Our-Business/Composite-Materials/
Structural-Core-Materials/Gurit-PVC

Heyun, L., Xiaosong, G., Wenbi, T., mar 2012. Icing and anti-icing of railway contact
wires. In: Reliability and Safety in Railway. InTech.

Jernbaneverket, 2012. Slik fungerer jernbanen. Web page.
URL http://www.banenor.no/Jernbanen/
Jernbanedrift---eit-komplisert-samspel/

75

http://www.ebook.de/de/product/19297684/walter_j_ammann_hans_g_natke_hans_nussbaumer_anthony_j_pretlove_johann_h_rainer_vibration_problems_in_structures.html
http://www.ebook.de/de/product/19297684/walter_j_ammann_hans_g_natke_hans_nussbaumer_anthony_j_pretlove_johann_h_rainer_vibration_problems_in_structures.html
http://www.ebook.de/de/product/19297684/walter_j_ammann_hans_g_natke_hans_nussbaumer_anthony_j_pretlove_johann_h_rainer_vibration_problems_in_structures.html
http://www.ebook.de/de/product/25037937/earl_dowell_earl_h_dowell_a_modern_course_in_aeroelasticity.html
http://www.ebook.de/de/product/25037937/earl_dowell_earl_h_dowell_a_modern_course_in_aeroelasticity.html
http://www.ebook.de/de/product/7498545/daniel_gay_jacques_gambelin_modeling_and_dimensioning_of_structures_an_introduction.html
http://www.ebook.de/de/product/7498545/daniel_gay_jacques_gambelin_modeling_and_dimensioning_of_structures_an_introduction.html
http://www.ebook.de/de/product/7498545/daniel_gay_jacques_gambelin_modeling_and_dimensioning_of_structures_an_introduction.html
http://www.gurit.com/Our-Business/Composite-Materials/Structural-Core-Materials/Gurit-PVC
http://www.gurit.com/Our-Business/Composite-Materials/Structural-Core-Materials/Gurit-PVC
http://www.banenor.no/Jernbanen/Jernbanedrift---eit-komplisert-samspel/
http://www.banenor.no/Jernbanen/Jernbanedrift---eit-komplisert-samspel/


Kaczinski, M. R., 1998. Fatigue-resistant design of cantilevered signal, sign and light sup-
ports (NCHRP report). National Academy Press.

Newland, D. E., 2005. An Introduction to Random Vibrations, Spectral & Wavelet
Analysis: Third Edition. DOVER PUBN INC.
URL http://www.ebook.de/de/product/3100727/d_e_newland_
an_introduction_to_random_vibrations_spectral_wavelet_
analysis_third_edition.html

NRK, MET Norway, 2013. Vindpiler og -skala. Web page.
URL http://om.yr.no/symbol/vind/

Song, Y., Liu, Z., Duan, F., Lu, X., Wang, H., 2018. Study on wind-induced vibration
behavior of railway catenary in spatial stochastic wind field based on nonlinear finite
element procedure. Journal of Vibration and Acoustics Vol. 140.

Stickland, M. T., Scanlon, T. J., 2001. An investigation into the aerodynamic characteris-
tics of catenary contact wires in a cross-wind. Proc Instn Mech Engrs Vol 215 Part F,
311–318.

Stickland, M. T., Scanlon, T. J., Craighead, I. A., Fernandez, J., 2003. An investigation
into the mechanical damping characteristics of catenary contact wires and their effect
on aerodynamic galloping instability. Proc. Instn Mech. Engrs Vol. 217 Part F: J. Rail
and Rapid Transit, 63–71.

Strømmen, E., 2010. Theory of Bridge Aerodynamics, 2nd Edition. Springer.

Tamura, Y., Kareem, A. (Eds.), 2013. Advanced Structural Wind Engineering. Springer
Japan.

Xie, Q., Wang, W., Zhang, H., Zhi, X., 2014. Wind tunnel test on aerodynamic force
characteristics of ice coating contact wire for high speed railway. China Railway Science
Vol. 35 No.1.

76

http://www.ebook.de/de/product/3100727/d_e_newland_an_introduction_to_random_vibrations_spectral_wavelet_analysis_third_edition.html
http://www.ebook.de/de/product/3100727/d_e_newland_an_introduction_to_random_vibrations_spectral_wavelet_analysis_third_edition.html
http://www.ebook.de/de/product/3100727/d_e_newland_an_introduction_to_random_vibrations_spectral_wavelet_analysis_third_edition.html
http://om.yr.no/symbol/vind/


Appendix

77



78



Appendix A
Acronyms

CW Contact wire

DFT Discrete Fourier transform

FFT Fast Fourier transform

MW Messenger wire

ST Stitch wire

WT Wind tunnel
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Appendix B
Mode Shape Details

Table B.1 shows the mode shape details for the first approach of the galloping analysis.
The results are for combination 1 & 2.

Table B.1: Mode shapes from galloping approach 1, and matching with still-air modes from the
FE-model. Combination 1 and 2.

α [◦] VCR [m/s] fCR [Hz] FE mode fFE [Hz]
-74 20 0.8765 8 0.87679
-72 20 2.1807 103 2.1806

30 3.4177 192 3.4117
-71 30 1.4993 y: 51, z: 63 y1.4372 , z1.4865

20 4.8289 y: 270 4.8291
-70 21 0.9649 y: 11, z: 14 y0.96465 , z0.99896

30 1.4864 61/62 1.4833/1.4837
-69 20 1.1126 41 1.1129

30 1.4499 difficult, 53 1.4359
-68 20 0.7629 1 0.76272

30 1.0103 difficult, z: 29 1.0388
-67 30 1.4474 difficult, 52/53 1.4431/1.4508

20 3.1782 179/180 3.1712/3.1779
-65 22 1.028 difficult, y: 19, z: 25 y1.0311, z1.0371

30 3.8806 210 3.8947
-64 30 1.0302 19 1.0311

20 1.6601 70 1.6601
-63 20 3.2282 182 3.2277
-62 20 4.6232 262 4.6234
-60 20 1.7096 71 1.7096
-57 20 0.9992 14 0.99896
15 25 0.7628 1 0.76272

30 2.2481 106 2.248
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16 30 3.1777 179/180 3.1712/3.1779
20 4.1079 242 4.1081

17 24 0.8372 6 0.83714
30 2.6477 129 2.6478

19 28 0.7628 1 0.76272
30 1.114 42 1.1139

20 27 0.8143 5 0.81419
30 1.8571 74 1.857

21 28 0.8769 8 0.87679
30 1.4637 55 1.4636

21 30 2.2062 105 2.2061
28 0.8769 8 0.87679

22 30 1.5303 67 1.5302
23 26 0.8143 5 0.81419
25 20 1.4912 64 1.4909
55 20 1.5684 68 1.5684
56 20 1.032 y: 19 y1.0311,

30 2.7205 133 2.7201
57 30 1.4968 difficult, z: 63 z1.4865

20 4.0481 236 4.0482
58 30 1.5022 difficult, z: 63 z1.4865

20 2.0791 101 2.0792
59 20 0.877 8 0.87679

30 0.877 8 0.87679

Table B.2 shows the mode shape details for the first approach of the galloping analysis.
The results are for combination 3.

Table B.2: Mode shapes from galloping approach 1, and matching with still-air modes from the
FE-model. Combination 3.

α [◦] VCR [m/s] fCR [Hz] FE mode fFE [Hz]
-73 20 0.7628 1 0.76272
-72 20 2.1807 103 2.1806
-70 20 1.0343 19 1.0311

30 1.4864 61/62, 65/66
1.4833/1.4837,
1.5080/1.5100

-69 20 1.1126 41 1.1129
30 1.4499 difficult, 53 1.4359

-68 20 0.7629 1 0.76272
30 1.0103 difficult, z: 29 1.0388

-67 30 1.4474 difficult, 52/53 1.4431/1.4508
20 3.1782 179/180 3.1712/3.1779

-65 20 0.7625 1 0.76272
30 3.8806 210 3.8947

-64 30 1.0302 19 1.0311
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20 1.6601 70 1.6601
-62 30 0.7627 1 0.76272

22 3.9903 233 3.9903
-61 30 0.7627 1 0.76272

20 1.4837 61/62 1.4833/1.4837
-60 30 1.0587 difficult, y: 37 1.0577

20 1.7096 71 1.7096
-59 20 1.4841 61/62 1.4833/1.4837

30 1.4865 61/62 1.4833/1.4837
-58 20 1.4838 61/62 1.4833/1.4837

30 1.4945 61/62 1.4833/1.4837
-57 20 0.9992 14 0.99896
-56 30 1.0508 difficult, y: 37 1.0577

20 1.486 61/62 1.4833/1.4837
-55 20 1.4837 61/62 1.4833/1.4837

30 1.4923 61/62 1.4833/1.4837
-54 20 1.4209 48 1.4253

30 1.4962 61/62 1.4833/1.4837
-52 30 1.4745 difficult, z: 63 1.4865

22 1.4815 61/62 1.4833/1.4837
-51 30 1.4799 difficult, z: 63 1.4865

20 1.4849 61/62 1.4833/1.4837
-50 20 0.7621 1 0.76272
-49 20 0.7621 1 0.76272
-48 20 1.484 61/62 1.4833/1.4837
-46 20 1.484 61/62 1.4833/1.4837
-43 20 0.7626 1 0.76272
-34 46 1.4824 61/62 1.4833/1.4837
16 20 4.1079 242 4.1081
20 20 0.7626 1 0.76272
38 30 1.4836 61/62 1.4833/1.4837

25 1.4838 61/62 1.4833/1.4837
39 20 1.0533 difficult, z: 32 , y: 37 z1.0395, y1.0577

30 1.4799 61/62 1.4833/1.4837
40 24 1.4824 61/62 1.4833/1.4837

30 1.4824 61/62 1.4833/1.4837
42 30 1.4818 61/62 1.4833/1.4837

29 1.4825 61/62 1.4833/1.4837
43 30 1.4811 61/62 1.4833/1.4837

27 1.4825 61/62 1.4833/1.4837
44 30 1.4789 61/62 1.4833/1.4837

28 1.4811 61/62 1.4833/1.4837
45 28 1.4818 61/62 1.4833/1.4837

30 1.4831 61/62 1.4833/1.4837
46 26 1.4759 difficult, 63 1.4865
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30 1.4807 difficult, 63 1.4865
48 20 1.4206 48 1.4253

30 1.4791 61/62 1.4833/1.4837
59 46 1.5186 difficult, z: 60, y: 55 y1.4636, z1.4832
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