
August 2007
Keith Downing, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Incrementally Evolving a Dynamic
Neural Network for Tactile-Olfactory
Insect Navigation

Øyvin Halfdan Thuv

Incrementally Evolving a Dynamic Neural Network

for Tactile-Olfactory Insect Navigation

Øyvin Halfdan Thuv

August 6, 2007

Contents

1 Introduction 1

1.1 The AI field . 1

1.2 Navigation and minimally cognitive behaviour 3

1.3 The tactile sense . 6

1.4 Neural networks for robot control 8

1.5 Genetic algorithms and incremental evolution 9

1.6 Summary . 11

1.6.1 Further reading . 12

2 Background 13

2.1 Work on neural networks . 13

2.1.1 Standard Artificial Neural Network (ANN)s 13

2.1.2 Extensions to the standard ANN 17

2.1.3 Walknet - Training a manually designed ANN 21

2.1.4 Intelligence as Adaptive Behavior 23

iii

CONTENTS CONTENTS

2.1.5 On the dynamics of small Continuous-Time Recurrent
Neural Network (CTRNN)s 27

2.2 Work on genetic algorithms 29

2.2.1 Center-crossing CTRNNs for the evolution of rhyth-
mic behavior . 29

2.2.2 Incremental evolution of general complex behaviour . 31

2.3 Summary . 33

2.3.1 Further reading . 33

3 Design of the Genetic Algorithms 35

3.1 Methods . 36

3.1.1 Incremental evolution 36

3.1.2 Genotype representation 40

3.1.3 Evolving a rhythmic CTRNN (t11) 43

3.1.4 Evolving a locomotion controller (t12) 51

3.1.5 Evolving turning (t2) 59

3.1.6 Evolving obstacle avoidance (t3) 64

3.2 Results . 69

3.2.1 Evolving a rhythmic CTRNN (t11) 69

3.2.2 Evolving a locomotion controller (t12) 77

3.2.3 Evolving turning (t2) 82

3.2.4 Evolving obstacle avoidance (t3) 86

3.2.5 A comparative analysis of incremental evolution . . . 89

iv

CONTENTS CONTENTS

3.3 Discussion . 97

3.3.1 On focus . 97

3.3.2 When not to use center-crossing networks 97

3.3.3 Seeding with bifurcative neurons increases complexity 99

4 Conclusions 101

4.1 Center-crossing CTRNNs . 102

4.2 Bifurcative neurons . 104

4.3 Incremental evolution . 105

5 Appendix 107

5.1 Source code excerpts . 107

5.1.1 CTRNN bifurcation points 107

5.1.2 Euler “leaky-integrator” 107

5.1.3 Euler CTRNN integrator 108

5.1.4 CTRNN firing frequency 108

v

CONTENTS CONTENTS

Preface and acknowledgments

I think that free experimentation is the key method for both exploring a
specific field of computer science, and for providing something new to it. I
would like to thank my supervisor, professor Dr. Keith L. Downing, for pro-
viding excellent advice in this context. Thanks for helping me maintain new
ideas while at the same time clarifying the necessary elements of scientific
work.

I would also like to thank Arild for engaging in the tedious job of proofread-
ing the drafts of this document. He also provided valuable insights from the
angle of another scientific discipline.

Lastly I would like to thank my wife Rakel for supporting me throughout
more than a year long, time-consuming, thesis work. Thank you for devoting
so much time and enthusiasm to this.

vi

CONTENTS CONTENTS

Abstract

This Masters thesis gives a thorough description of a study carried out in
the Self-Organizing Systems group at the Norwegian University of Science
and Technology. Much Artificial Intelligence research in the later years
has moved towards increased use of representationless strategies such as
simulated neural networks. One technique for creating such networks is
to evolve them using simulated Darwinian evolution. This is a powerful
technique, but it is often limited by the computer resources available.

One way to speed up evolution, is to focus the evolutionary search on a more
narrow range of solutions. It is for example possible to favor evolution of a
specific “species” by initializing the search with a specialized set of genes.
A disadvantage of doing this is of course that many other solutions (or
“species”) are disregarded so that good solutions in theory may be lost. It
is therefore necessary to find focusing strategies that are generally applicable
and (with a high probability) only disregards solutions that are considered
unimportant.

Three different ways of focusing evolutionary search for cognitive behaviours
are merged and evaluated in this thesis: On a macro level, incremental
evolution is applied to partition the evolutionary search. On a micro level,
specific properties of the chosen neural network model (Continuous-Time
Recurrent Neural Networks) are exploited. The two properties are seeding
initial populations with center-crossing neural networks and/or bifurcative
neurons. The techniques are compared to standard, naive, evolutionary
searches by applying them to the evolution of simulated neural networks
for the walking and control of a six-legged mobile robot. A problem simple
enough to be satisfactorily understood, but complex enough to be a challenge
for a traditional evolutionary search.

Keywords

Neuro-Evolution. Incremental Evolution. Genetic Algorithms. Dynamic
Systems Theory. Neural Networks. Adaptive Behaviour. CTRNN. Insect
Navigation. Neuroethology. Stick Insect. Evolution. Machine learning.

vii

CONTENTS CONTENTS

Acronyms used

ADT Abstract Data Type

AEP Anterior Extreme Position

AI Artificial Intelligence

ANN Artificial Neural Network

ANNs Artificial Neural Networks

CL Common Lisp

CPG Central Pattern Generator

CPGs Central Pattern Generators

CTRNN Continuous-Time Recurrent Neural Network

CTRNNs Continuous-Time Recurrent Neural Networks

DNA Deoxyribonucleic Acid

DPE Dynamical Parameter Encoding

EA Evolutionary Algorithm

ESP Enforced Segregated Populations

GA Genetic Algorithm

GAs Genetic Algorithms

GP Genetic Programming

GOF-AI Good Old-Fashioned-AI

LC Locomotion Controller

NTNU Norwegian University of Science and Technology

ODE Open Dynamics Engine

PEP Posterior Extreme Position

RC Resistor Conductor

SANE Symbiotic Adaptive Neuro-Evolution

viii

Chapter 1

Introduction

We should be careful to get out of an experience only the wisdom that is in
it – and stop there; lest we be like the cat that sits down on a hot stove-lid.
She will never sit down on a hot stove-lid again – and that is well; but also

she never sit down on a cold one anymore.

- Mark Twain (Following the Equator)

1.1 The AI field

I recently learned from the news that robots had been deployed at the local1

university hospital. Their task was to move goods like clothes and medical
equipment between different hospital departments. A job previously done
by humans. Disappointingly, though not surprisingly, the robots differed
somewhat from the humanoid robots that are often found in science fiction
literature. They had wheels, and not legs, for example. From their visual
appearance it seemed that they were just another set of standard, special-
ized, industrial robots of the sort that are gradually taking over tasks to
humdrum for humans to endure.

Moving objects around in a predictable, static environment has become a
typical example of a robot task. Humans do not enjoy this kind of work,

1St. Olavs hospital, Trondheim, Norway.

1

1.1. THE AI FIELD Introduction

and programming robots to do these tasks is relatively easy. It also seems
that there are few limits for how complex the tasks can be, as long as they
can be accurately and unambiguously described. Systems like the Kuala
Lumpur driver less trams, is a typical example. The trams have been trans-
porting people around Kuala Lumpur for a few years now. A complex, but
predictable job. The trams run up and down the same track every day.
Picking up passengers at predefined stops. Ensuring that the doors open
after stopping, and keep them closed while the tram is moving. Only a
limited number of exceptions from normal operation can happen. Perhaps
the doors will not close for some reason, or some other train may have had
a breakdown further down the track. Engineers have probably (hopefully!)
planned explicitly for what the train should do if any such exceptions should
occur.

Watching the report on the hospital robots, I soon found out that their tasks
were actually a bit more complex than what I first thought. The robots did
not run along predefined paths specially prepared for them. They had to
drive around the existing hospital corridors along pretty much the same path
the humans before them had trodden. This is much more difficult than driv-
ing up and down a rail road, because, in the corridor, the most unforeseen of
events may happen at any time. People might get in the way, for example,
and robots running down patients or doctors are not what we want in an
hospital. There were also several robots driving around at the same time, all
sharing the same floor, the same elevators and even the same tasks. They
were also not allowed to end what they were currently doing just because an
exception to the normal procedure occurred. That would probably fill the
corridors with cold dinner plates and dirty laundry rather quickly. The hos-
pital robots were therefore forced to re-plan all the time, finding new ways
to solve their task if anything unusual should happen. This environment
was clearly far more complex and dynamic than the environment that the
driverless trams had to cope with.

It was clear that these machines had to do quite a bit of complex reasoning
to be able to achieve what they did! But how is it possible for an engineer to
come up with all possible situations that the robot may fall in to? Can new
information be constantly added to it whenever the problem gets harder? If
the hospital is partially rebuilt, would the robot cope with that? What if the
robot was sent on a mission to mars, could the engineer possibly think of all
the problems that may occur there? Is it possible to just keep adding more
and more processing capabilities until the robot knows everything, ensuring

2

Introduction 1.2. NAVIGATION AND MINIMALLY COGNITIVE BEHAVIOUR

that it is capable of always doing perfect planning? And, if it really could
do perfect planning, would that be artificial intelligence?

Many definitions for Artificial Intelligence (AI) have been proposed. The
New Oxford American Dictionary define it as “the theory and development
of computer systems able to perform tasks that normally require human
intelligence”. The same dictionary defines intelligence as “the ability to ac-
quire and apply knowledge and skills”. Within AI-literature, definitions such
as Alan Turnings “imitation game” (from the 1950ies) has been proposed.
Turing postulates that a machine is intelligent if a human interrogator (com-
municating over some textual device) cannot distinguish a computers’ an-
swers from a humans’ answers.2 Other researchers, such as Beer [1990],
define AI as the ability to adapt behaviours to some environment. Others
again, such as Brooks [1986] have more humoristic definitions, such as “ when
nobody has any good idea of how to solve a particular sort of problem (e.g.
playing chess) it is known as an AI problem.”. A professor at a introductory
AI-class here at Norwegian University of Science and Technology (NTNU)
concluded that AI could perhaps be defined as “whatever AI-scientists are
working at”. Because definitions differ, and uncertainty isn’t desirable in a
masters thesis, I have settled on my own fixed definition of AI. It is not
meant to be anything revolutionary, but should serve as a means of evalu-
ating the performance of the applied methods in this thesis. It is a mixture
of the definitions above, an it goes like this: AI is a machines capability of Definition:

AIacquiring knowledge and skill, and applying this knowledge and skill to new
problems. So it emphasizes an aspect of intelligence that can be observed
in any animal from tiny insect, burnt cat or sapient human: The ability to
generalize knowledge gained by experience so that the it can adapt to new
problem situations.

1.2 Navigation and minimally cognitive behaviour

Up until the 1980ies, most work in AI was focused around building AI sys-
tems that would store increasing amounts of information in some internal
memory representation. The idea was that proper manipulation of these
(symbolic) knowledge representations would eventually result in intelligent
behaviour if only the information was accurate enough, and the procedure

2See Luger [2002] for a more complete discussion of the Turing-test.

3

1.2. NAVIGATION AND MINIMALLY COGNITIVE BEHAVIOUR Introduction

for storing it was efficient enough. An artificially intelligent robot could
then for example apply logics to its internal world-representation, and de-
duce exactly what to do in a given situation using standard mathematical
deduction. During the 1980 some researchers begun to question this strategy
of achieving intelligent behaviour. Most notable of the researchers were (ar-
guably) Rodney A. Brooks. In his papers A Robust Layered Control System
For A Mobile Robot and Intelligence without representation ([Brooks, 1986]
and [Brooks, 1987]) he suggested a major paradigm change for AI. Brooks
idea was that the complex behaviour that real intelligent creatures exhibit,
does not necessarily result from complex internal representations. Com-
plex behaviours may equally well be a result of interaction with a complex
environment.Terminology:

layered approach,
incremental,
subsumption,
sub symbolic

Brooks suggested that AI therefore should move away from pondering with
different representations, and rather rely on layered interfaces to the real
world. He claimed that the best path towards creating complete AI systems,
would be to incrementally - part by part, that is - build representation-free
systems in a bottom-up fashion. One should start with the simplest possible
behaviours first, composing the lowermost, easy layer to begin with. For a
walking robot, the bottom layer might be responsible for aimless walking.
That should be an achievable task. Later on, when the walking behaviour
was sufficiently developed and tested, new layers could be added in top
of the existing one. The new layer could provide for example planning
capabilities, that could enforce walking in some particular direction. Even
more layers could be added on top of this layer, making the robot capable
of avoiding obstacles, or communicating with other robots. By continuously
adding new layers of more and more advanced behaviour, whilst continuously
testing each layer extensively in the environment that it is to perform in,
higher level intelligent behaviour should ultimately emerge. Brooks named
this strategy the subsumption architecture, as higher layers subsume lower
layers. The field in itself is often referred to as sub symbolic AI, because it
goes “below” manipulation of symbolic representations.

It will not be claimed here that a fundamentalist cling to Brooks strategy
is the only way of proceeding when building artificially intelligent computer
systems. Perhaps such systems cannot even be created this way, because
at least some representation is necessary. Nevertheless, much can surely be
learned from parts of it, as the subsumption architecture does not suffer
badly from the problem of ever growing internal representations. It has also
been shown that animal-like behaviours in mobile robots (including naviga-

4

Introduction 1.2. NAVIGATION AND MINIMALLY COGNITIVE BEHAVIOUR

tion behaviours) can actually be made up from the interaction between (and
subsumption of) several simpler behaviours (see e.g. Beer [1990], which is
described in more detail in the next chapter). All this without much inter-
nal representation. Systems resulting from such strategies typically have the
advantages of being small, clear and having a comprehensible configuration.
They provide an easy way of splitting cognition into manageable parts, each
part possessing minimally cognitive behaviour. Terminology:

agent,
environment,
task,
reactive,
deliberative

In AI-agents parlance - which will be much used throughout this thesis -
a navigating mobile robot is referred to as an agent that perform naviga-
tion in an environment. Navigation is said to be the agents task in this
case. An agent strictly following the paradigm of Brooks, is called a reactive
agent, since all its actions are direct re-actions to sensory input. An agent
following the Good Old-Fashioned-AI (GOF-AI) paradigm is referred to as
deliberative, since its actions rely on the result of deliberation (on an inter-
nal representation), and only indirectly on sensory input. When creating
navigation systems close to a reactive paradigm, it is to be expected that
they require varying degrees of memories. This will depend on the degree of
deliberation required for the navigation system to perform well. For a robot
trying to navigate down a crowded corridor, it could for example be of great
use for it to remember the placement of stationary obstacles. There is no
reason for it to run into one of the hospital equipment more than once!

The amount of representation that a navigation system require, depend
somewhat on the type of sensor used. Sensors range from simple gyroscope
readers, through sonars, Doppler sensors and complete visual perception
systems [Borenstein et al., 1996]. The most prominent of these is probably
the last-mentioned one. For this reason it may be tempting to choose visual
sensing when designing mobile robots. The advantages of vision can be easily
found in nature where many animals use some form of visual sensing system.
Typically, such systems allow them to perceive objects at a distance, and this
undoubtedly allows for very proactive behaviour: A bird might catch sight
of a predator very early, and then plan how to avoid it before real threat is
encountered. As Borenstein et al. [1996, p. 207] point out, visual sensing “is
potentially the most powerful source of information among all the sensors
used on robots to date”. Much would have been achieved if machines like
the hospital robots could make use of some of these advantages.

Looking back to the subsumption architecture it is not apparent, however,
that vision would be the ideal “bottom layer” of intelligent behaviour. In-

5

1.3. THE TACTILE SENSE Introduction

deed, some AI systems based on visual perception have emerged in the later
years. Autonomous vehicles, traffic monitoring systems and aerial naviga-
tion systems are some examples of real systems that do real work (see [Clark,
2005] for an overview). But do these systems provide a solid foundation for
further scientific research? Do they represent proper “bottom-layers” for
more complex AI-systems? Although they prove that artificial visual sens-
ing have some value in real AI systems, this does not necessarily imply
that other sensory systems should be disregarded in all circumstances. The
cost of highly proactive behaviour is extended deliberation, implying that
the above mentioned advantages of low system complexity, high clarity and
comprehensibility will suffer. From the view of someone trying to under-
stand the workings of navigation, the simple rather than the complex model
is to be preferred. A simple model should be easier to create and to test
extensively in the real world, because the number of variables in it is min-
imized. We should therefore be careful when choosing where to start the
study of minimal cognitive behaviour.

1.3 The tactile sense

It should be evident from the previous section, that visual sensing is an ex-
ample of a perception technique that is probably best avoided when studying
navigating agents. It is expected to both require much representation, and
to be very complex. Following the line of Brooks, this thesis suggest iterating
through other perception techniques, and start with one where deliberation
is sparse, and complexity is low. Preferably, the simplest one that is still
complex enough to be interesting, should be chosen.

An obvious place to start the search for simple navigation systems in nature,
would be in the simplest known animals. Insects, that is. If the “simple”
behaviours of such animals can be understood (or at least modeled), they
may be both applied to real-world AI-systems directly, and they may help
understanding (or modeling) higher level behaviours successively. Insects
came along rather early in the evolution of life on earth - about 450 million
years ago [Brooks, 1987]. Assuming that simple life forms arrived before
complex life forms, much about simple systems could be learned from the
workings of insects. Despite their simplicity they still adapt remarkably well
to complex and differing environments. If a cockroach looses a leg, for exam-
ple, the walking gait is immediately adapted to the new body configuration,

6

Introduction 1.3. THE TACTILE SENSE

and it continues to walk using a new stable gait [Beer, 1990]. Many other ex-
amples of adaption are to bee seen every day. An insect flying around before
landing on water or perhaps a wall, before effortlessly walking upside-down,
is one. Creating an artificial system exhibiting all these behaviours would
be quite an achievement, even though insects are usually considered lower
level animals.

As will be outlined in the subsequent chapters, one reason for success within
such a wide range of behaviours, seems to be that elegant physical body
layout is strongly intertwined with cognitive processes. Highly realistic sim-
ulations of six-legged insect walking, for example, can be achieved through
the training of a simple ANN. Such techniques have been shown to yield a
well-performing (in terms of robustness and similarity to real insects) reac-
tive sensor-motor system in Cruse et al. [1998]. As some researchers have
pointed out, there seem to be a connection between six-legged walking and
the tactile sense (“touch”) and proprioception (“body awareness”) in at
least some insects. Specifically the walking gait is related to sensors react-
ing to foot-position (Cruse et al. [1998] and Beer [1990]) and also between
the movement pattern of active tactile sensors and leg position [Dürr et al.,
2001]. The insects can therefore generate stable walking gaits using very
simple cognitive functions, almost in a completely reactive manner.

Compared to other sensor techniques such as audition or vision, the tac-
tile and proprioceptive senses may not seem very impressive at first glance,
and this is perhaps one reason that comparatively little research have been
made on them. According to Dürr et al. [2001] the tactile sense is proba-
bly the least studied of all insect senses. The success of artificial walking
with reactive agents and the close relation between walking and tactile sens-
ing, does however suggest that the tactile sense may be a better candidate
for a “bottom layer” of navigational research than other senses. Its seem-
ingly simple impression, simplicity, becomes it’s largest advantage. Existing
research has shown that (close to) reactive mobile robots using passive tac-
tile probes can exhibit impressive cognitive features. By “subsuming” an
artificial insects walking controller, Beer [1990] showed that navigational
behaviours like turning, recoil and gradient following in search for simulated
food-patches, were indeed possible.

7

1.4. NEURAL NETWORKS FOR ROBOT CONTROL Introduction

1.4 Neural networks for robot control

Artificial Neural Network (ANN)s have become popular for controlling au-
tonomous agents. ANNs are loosely based on real neural systems. The idea
is to use machines to simulate the processes that take place for example
in the human brain or spinal chord. It is of course a bit ambitious trying
to simulate a complete human brain, but the study of even small ANNs
have shown that they can achieve impressive things using only very sparse
amounts of computer power [McLeod et al., 1998]. They perform particu-
larly well for problems where the task is to estimate a set of output values
based on a set of uncertain input values. For robot control this means es-
timating proper motor force (output values) from sensory readings (input
values). For a simple robot driving down a corridor, the inputs could be for
example range sensors measuring the distance from surrounding walls. The
robot must then find out how much force should be applied to for example
right and left motors, to ensure crash-free driving down the corridor.Terminology:

neurons,
synapses Conceptually, an ANN can be seen as a number of separated, but inter-

connected processing units. The parallel to real neural networks, is that
the processing units correspond to brain cells, or neurons. The connections
between the processors correspond to real world synapses. Some of these
processing units can be connected to robots sensors, and other processing
units can be connected to motors. The interplay of all these units - by
passing messages over the connections - can then result in behaviours like
crash-free driving, if the correct neurons are interconnected by adequate
connections.

There are two features of ANNs that make them especially interesting for
the research in this thesis. They provide a solution to the two major chal-
lenges that were introduced in the previous sections: Building representation
less AI system bottom-up (incrementally, that is), and handling unforeseen
events. It is easy to see why this is true, by considering the hospital robots:

For the robot, there is always a potential risk that one of the range sensors
provide erroneous data. Even worse, it may report slightly wrong values only
part of the time. Mostly, the sensor is fine. This can be a problem, because
the robot may seem fine during testing. Then, at the most unfortunate time,
the sensor fails (perhaps due to inference from other robots) and the robot
crashes into some critical hospital equipment. Because ANNs distribute

8

Introduction 1.5. GENETIC ALGORITHMS AND INCREMENTAL EVOLUTION

processing across many neurons, the one, failing, sensor need not result in
a complete system crash. It is the calculations of all processing units, and
all sensors that result in an approximate set of outputs from the network.
A short sensor disruption may not even be noticed at all on the overall
results of the ANN. The result is a system that is robust to at least minor
perturbations.

The other problem, building AI systems bottom-up, is a more complex issue,
and is a major focus of this thesis. A random set of neurons interconnected
by random connections, does of course not result in a working robot. Actu-
ally, if connections have real-valued strengths, there are an infinite number
of ways to interconnect any set of neurons. This makes it very difficult to
design ANNs manually, even when starting with very small “bottom layer”
ANNs. As the ANN grows larger it usually gets less and less apparent what
purpose a single neuron or connections has. A human designer will in such
cases only be able to create a rough approximation of network topology.
Something like “Each sensor must have one sensor neuron, and each mo-
tor should have a motor neuron. In between these, there should be some
other neurons...”, is more realistic. Luckily, several training techniques have
come into existence to remedy this problem. Some techniques are back-
propagation, Hebbian learning and genetic algorithms. The last mentioned
technique is the primary focus of this thesis.

1.5 Genetic algorithms and incremental evolution
Terminology:
individual,
population,
gene,
genome,
recombination,
fitness,
selection,
mutation,
local/global optima

Nature seem to have had success in creating neural networks like the human
brain through evolution, and it would therefore be likely that something
about creating artificial neural networks could be learned from that process.
Genetic Algorithm (GA)s are loosely based on Darwinism, and provide a
form of artificial evolution. The algorithm is conceptually similar to its real-
world counterpart. In a GA, several (pseudo)random solutions to a problem
make up individuals in a population. Each such individual carry a genome3

that describe its solution to the problem. Two or more such genome can
go through recombination to see if parts of their solutions - single genes
- can be combined into a even better complete solution. Typically, the
solutions that perform best with regard to a fitness measure are selected to

3Animal genome are Deoxyribonucleic Acid (DNA).

9

1.5. GENETIC ALGORITHMS AND INCREMENTAL EVOLUTION Introduction

be recombined. By continuously replacing poor quality solutions with new
well-performing solutions, recombination moves the population from a set
of random performing solutions to a set of better performing solutions.

There also exist mutation operators, making small changes to the existing
genome. Mutation provide a means to introduce new subproblem solutions
that did not exist in the initial population. GAs are vulnerable to getting
stuck in so called local optima, where performance of the population is get-
ting very good, but is still not completely optimal. In a local optimum,
all of the genome will be very similar, and the success of recombination
will slowly begin to halt. This happens because the best performing in-
dividuals are all near the local optimum, but not very different from each
other. Recombination of two similar individuals does not result in individu-
als very much different from the rest of the population, and change towards
the better is therefore difficult. Mutation can help overcome this situation
by making new recombinations sufficiently different from existing genome,
by means of randomness. The population may then move forward towards
better solution spaces that (hopefully) contain a global optimum.

It should be evident that GAs provide an interesting way of creating ANNs.
Genes can correspond to network connection strengths, and other variables
of the network. By testing each network description (individual or genotype)
by creating a ANN (the corresponding phenotype) placed in a simulated
robot, it should be possible (given lots of time) to evolve a proper neural
network. For the evolution of cognitive behaviour in artificial life, the size of
the neural networks to evolve may however be very large. Due to the time
required by current computers to evaluate the fitness of a certain network,
only smaller networks can be evolved. In nature, several individuals of
a population are “evaluated” in complete parallel over several millions of
years. This is opposed to the situation that the researcher finds her/himself
in. Simulations are usually only partially in parallel, and computation power
is (always to) sparse. The precision of the simulation environment is some
discrete value - because computers are discrete - rendering the real-world
quality of a evolved creature questionable. Not least, a researcher do not
want to spend a few million years for a simulation, only to find out that
“Murphys law” had been maintained. For these reasons, techniques to speed
simulated evolution has become of great demand.

One strategy for evolving animal-like behaviour faster, is to cut the task
at hand into smaller subtasks. This is much the same spirit as that of

10

Introduction 1.6. SUMMARY

Brooks layered control architecture. For the evolution of legged walking,
for example, typical requirements are that an individual is 1) capable of
moving its legs, 2) that it is able coordinate this movement between several
legs, and 3) that it has some Central Pattern Generator (CPG) that starts
off movement of each leg at some interval. The probability that a population
of random individuals contain one or more outstanding individuals with all
these behaviours at the same time is very low. Applying recombination on
such a population is futile, since it is impossible do decide which creatures
to select for recombination. Only by selecting parents among the really
well-performing individuals (which requires knowing which individuals are
well-performing), can recombination be effective. The probability that one
of the subtasks, for example just moving the legs, exist in the population is
of course much higher.

Incremental evolution (exemplified by Gomez and Miikkulainen [1997]) pro-
vide the necessary means for dividing a task such as walking or navigation
into subtasks. Just like in Brooks layered architecture, simple behaviours
may be evolved first, and then new behaviours may be added on top. Be-
cause inputs to neural networks can be outputs of other neural networks, it
is very easy for one network to later “subsume” another. The most striking
difference between incremental evolution is that any evolved subtask may be
changed as new behaviours are evolved later. Old solutions may therefore
adjust to being subsumed, even though they are “extensively tested in the
real-world”. In the following chapters, incremental evolution, together with
other techniques will be described in detail, and applied to the problem of
evolving navigation.

1.6 Summary

• AI can potentially enable robots to work reliably in unpredictable
(dynamic) environments.

• This thesis follows the tradition of Brooks [1986]: AI is an emergent
property of many (small) interacting modules.

• Artificial Neural Network (ANN)s are ideal for such modules, but they
are not straight forward to design.

• Artificial Neural Network (ANN)s can be created with the help of

11

1.6. SUMMARY Introduction

Genetic Algorithm (GA)s, but GAs have problems with things like
local optima, and are generally computationally expensive.

• This thesis provides experimental results from trying out strategies for
helping GAs to evolve AI:

- Incrementally evolving complex behaviour from several mini-
mally cognitive behaviours (bottom-up design).

- Choosing proper behaviours to evolve in this process (as simple
as possible, but still complex enough to be challenging for a GA).

- Choosing proper level of detail for the representation for the
ANN to evolve.

1.6.1 Further reading

For a summary of biological based approaches to robotics, see Beer et al.
[1997].

12

Chapter 2

Background

As outlined in the introduction, this thesis looks into techniques for effi-
ciently evolving higher level cognitive behaviour from many minimally cog-
nitive behaviours using Genetic Algorithm (GA)s. Tactile-olfactory navi-
gation is proposed as a proper start-off point for a bottom-up evolutionary
process, leading to gradually more complex cognition.

Many researchers have already studied minimally cognitive behaviours, and
the interplay of these. Much work has been done in manually creating ANNs
or similar distributed controllers. Other work has been done on partial
design of ANNs, that are later trained (e.g. using back-propagation) to
carry out a specific task. Since about the mid 1990ies, major focus has
been brought to the study of processes that can automate the design of
distributed controllers. A brief outline of relevant work in these areas, and
the major challenges of each, is given in this chapter.

2.1 Work on neural networks

2.1.1 Standard Artificial Neural Network (ANN)s

Real animals use neural networks for calculations: A brain is an aggregate
of interconnected neural cells called neurons. Neural networks are robust

13

2.1. WORK ON NEURAL NETWORKS Background

to perturbations such as random cell death, minor chemical interference
or faulty sensor readings. Because the calculations of a complete network
depend on many neuron cells, a single faulty neuron has only limited effect
on the total result of the network. Neurons also work in parallel. This means
that complex computations can be carried out very fast without any single
neuron having negative effect on the overall speed of the system. Features
like this, make ANNs attractive for the control of mobile robots.

A common way of simulating neural networks using computers, is to map
each neuron into some small computational unit (such as an object and
related methods in an object-oriented programming language). The unit
usually holds information about two things: The neurons’ current activation
level, and the neurons’ synaptic connections from other neurons.

A neurons activation level is a measure of a neurons’ state, or degree of
“activity”, and can be represented using a real value. The higher neuron ac-
tivity, the higher the value is. This neuron-activity can in turn influence the
activity of other neurons by sending messages over synaptic connections.
Synaptic connections are often called synaptic weights in ANN literatureTerminology:

activation level,
weights/synapses

(e.g. Beer [1995]) and the value of the weight decides how much one neu-
ron can affect another. This is analogous to the strength of real synaptic
connections. A very simple example ANN is shown conceptually in figure
2.1a, on page 15, where two neuron units, A and B, are connected using a
synaptic weight. Here, the activation of unit A depend on the activation of
unit B, since there exist a synaptic weight from A to B.

The simulation environment is usually discrete, so time is partitioned into
small steps. The activity of each neuron unit is computed at every such time
step, taking into account each neurons’ incoming connections. The most
common way of doing this calculation is to sum all the input connections,
and normalizing the sum into some range (typically the range [0 1]). The
value of every input connection is calculated by multiplying the weight value
by the connected neurons’ activation level, a process quite similar to the
summing that goes on in real neurons.

In addition to be influenced by other neurons, an external input such as a
sensor reading can also affect a neurons activation. Neurons that depend
on external input are often referred to input neurons. Corresponding output
neurons, are those whose activation level can be interpreted as a network
output. The network can therefore be considered a mathematical function,

14

Background 2.1. WORK ON NEURAL NETWORKS

Figure 2.1: Example networks.

B Asynapse

(a) Simple network, where the activation of neuron A de-
pend on neuron B.

h-1

h-2

h-3

i-1

i-2

i-3

o-1

o-2

(b) A more complex (feed-forward) network where the activation
of the output neurons depend on the hidden layer, which again
depend on the input layer.

15

2.1. WORK ON NEURAL NETWORKS Background

mapping a set of input values to a set of output values.

A common way of arranging neurons in a network, is to connect them in a
layered fashion. In such networks, computations are done in stages. One
layer may pre-process sensor input before it is sent to the next layer1 The
layer of input neurons only have connections from sensors, and is called the
input layer. Another neuron layer has synaptic connections from the input
layer neurons, and therefore depend only indirectly on sensors. Several
successive layers may be added this way, so that all neurons always connect
to neurons in the previous layer. The last layer added, makes up the the
output layer (an example network is shown in figure 2.1b, page 15). Multi
layered networks can compute complex mappings between a large set of
input and output values very fast, because of the simplicity of each neurons
activation function, and the aforementioned advantage of parallel processing.

The layered topology of these networks, is also the basis for how activation
is calculated in all the networks’ neurons. The process is often referred to
as spreading activation, and it involves starting to calculate the activation
of the input neurons, and then spreading the resulting activation forward
through each layer of the network. A typical spreading of activation goes
on like this:

1. In figure 2.1b the activation of neurons i − 1, i − 2 and i − 3 are
calculated first. This is done by applying the sum of any external
input to the neurons activation function. The sigmoid function (see
figure 2.2) is often used as an activation function (e.g. Beer [1995]),
always yielding an activation level in the range [0 1].

2. When all input neurons have been activated, the next layer (neurons
h − 1, h − 2 and h − 3) is considered. The activation calculation
performed here is the same as for the input layer, except that external
inputs do not exist. Instead, synaptic inputs from the input layer are
used. The value of each synaptic input is calculated by multiplying
connection strength with the connected input neurons activation.

3. When all neurons in the hidden layer have been activated, the same
activation process is performed for the output neurons.

1This also happens in real life, for example in the human brain. Sensory input from
the eyes retina is preprocessed by the visual lobe before sent further on. [McLeod et al.,
1998].

16

Background 2.1. WORK ON NEURAL NETWORKS

4. The activation of the output neurons are finally read as the network
output.

Networks that spread activation from inputs, always feeding activation for-
ward towards the output neurons are called feed forward networks. Very
large feed forward networks can be created without much hassle, and com-
plex mappings between a set of inputs and outputs can be computed with
relative ease.

A typical complete setup for an ANN controlling a simulated agent is shown
in figure 2.3 (page 15). Sensors are connected to the networks input neurons,
and output neurons connect to motors. A simulated agent cannot usually
perceive all of its environment, and sensors are sensitive to environmental
noise or may even fail. Because ANNs are relatively robust to uncertain or
noisy inputs, they can still perform quite well under these circumstances.
At each step in time the ANN can calculate an approximate set of motor
forces depending on sensor input. Small errors in sensory readings does not
matter much, because a single neuron play only a minor part in the complete
calculation. The agents reaction to a given environment is therefore always
a good estimate to the best possible action to perform.

2.1.2 Extensions to the standard ANN

While the simplest ANNs perform very well for reactive agents, they are
not that suitable for deliberative agents. If neurons do not remember the
activation from each time step, there is no way to keep state in them. This
means that the output always depend directly on sensory readings. A com-
mon addition of such networks is therefore to allow neurons to have synaptic
connections either to themselves, or back to previous layers. Such networks
are called recurrent ANNs. By maintaining a state for each neuron acti-
vation, one network activation can then influence a later activation. This
allows the agent to maintain state, and thereby allowing deliberative be-
haviour.

In addition to allowing recurrent connections inside ANNs, it may be inter-
esting to make time a factor that influence the state of each neuron. In time
dependent ANNs, a neuron may have to be activated several times before
the activation level rises significantly. This can help an agent ignore sensory

17

2.1. WORK ON NEURAL NETWORKS Background

Figure 2.2: The sigmoid activation function, activation(t) = 1
1+e−t , used by many

ANNs). The sum of neuron inputs are applied to this function, and then mapped
into a neuron activation. Here, the saturation toward 0 and 1 is exemplified by
visualizing the inputs from -10 to 10 to the function.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5 0 5 10

ac
tiv

at
io

n
("

fir
in

g
fr

eq
ue

nc
y"

)

input

Figure 2.3: A complete sensor-motor setup. Motor force is a function of two sensory
inputs.

i-2

i-1

o-2

motor

sensor

sensor

o-1

18

Background 2.1. WORK ON NEURAL NETWORKS

input until it has been active for a prolonged amount of time, for example.
It also allows for short term memories, since a memory (represented by a
certain network state) may fade over time.

Continuous-Time Recurrent Neural Network (CTRNN)s are, as should be
obvious from the name, capable of both recurrent connections and time-
dependent calculations as described above. In a CTRNN each node of a
network keep two values: 1) A bias (θ), and 2) a time-constant (τ). The
bias may be regarded as a variable deciding how sensitive the neuron is to
connections from other, neurons. The time-constant decides how fast (time
relative) a neuron should change its state (ẏ). As described above, the state
of the neuron is stored between every time the state of the network neurons
are updated (every time step). At each update, the neuron state change
for each time step is calculated. Given that each incoming connection (or
weight factor) to a neuron is named wji, the equation governing the state of
each neuron is:

ẏi =
1
τi

(−yi +
N∑

j=1

wjiσ(yj + θj) + Ii) (2.1)

where the function σ is the standard logistic function from figure 2.2:

σ(t) =
1

1 + e−t
(2.2)

and Ii is an external input to the neuron, such as a sensor reading.

In the current implementation this equation is solved discretely using Eu-
ler’s forward method for differential equations. This gives an approximately
correct solution, and the resolution (correctness) of it can be adjusted by
setting the integration time step to an adequate value (currently 10 mil-
liseconds). The most crucial factor here, is that the integration time step
is smaller than the time-constant of the neurons. Otherwise neuron state
may change faster than the integration resolution will indicate, and unpre-
dictable behaviour may result. Therefore, all time-constants are kept higher
than the integration time step in this thesis.

If CTRNNs are allowed to be infinitely large and complex, they can in

19

2.1. WORK ON NEURAL NETWORKS Background

Figure 2.4: Neurons. Real and simulated.

(a) Real neurons
(Picture taken from URL
http://serc.carleton.edu/images/cismi/neuroscience/neurons.jpg (last
visited 25.04.2007). Following the Copyright on URL
http://serc.carleton.edu/serc/terms of use.html
(last visited 25.04.2007))

(b) Morphological characteristics of real neurons
(Picture taken from URL
http://training.seer.cancer.gov/module anatomy/unit5 2 nerve tissue.html
(last visited 25.04.2007))

20

Background 2.1. WORK ON NEURAL NETWORKS

theory (approximately) simulate any dynamic system. They are arguably
the simplest such model available [Beer, 1995]. Due to their simplicity,
such networks are relatively easy to evolve (as compared to e.g. the leaky-
integrator model used in Beer [1990]) because the number of interdependent
variables are minimized. Only two variables are to be evolved for each
neuron, and only one variable for each connection. There is only one type
of connection in this model, and the connection may be either inhibitory
(negative) or excitatory (positive) or effect-free (zero). Terminology:

Dendrites
firing-frequency,
membrane potential,

The connections between neurons are referred to as synapses, just like for
standard ANNs. Further, the list of such synaptic connections into a neuron
are referred to as dendrites (connections points), and the activation of each
neuron is referred to as firing-frequency. Finally the state of the neuron is
referred to as membrane potential. This should clarify the possible biological
interpretation of the model.

Except from the advantages of the CTRNN model as outlined above, a few
other factors make such networks attractive for the implementation of in-
sect nervous systems: CTRNNs can be used for associative memories [Beer,
1995]; a CTRNN is also similar enough to the leaky-integrator model used
by Beer [1990] that much of those results can be used here more or less di-
rectly. Especially the locomotion controller is interesting here; much other
research have been put into figuring out the dynamics of CTRNNs, meaning
that other research to build upon is readily available.

2.1.3 Walknet - Training a manually designed ANN

General idea and design

Walknet [Cruse et al., 1998] is a computer system that simulates insect
walking. The system was developed at the department of Biology, University
of Bielefeld, Germany. As may be guessed from its origin, the system is not
primary a study of how to develop an AI-device. Rather, its goal is to create
a scientific tool for the study of insect walks. Nevertheless, the system is of
great interest also for the study of cognitive behaviours, because it is in fact
an autonomous, decentralized, adaptive (simulated) robot system capable
of moving around in dynamic environments.

21

2.1. WORK ON NEURAL NETWORKS Background

Walknet is a modular ANN, and each module is in itself an ANN. Every
of the artificial insects six legs are controlled by one separate ANN. They
are therefore distinguishable from the rest of the neural system. All the
leg modules are interconnected, so they can interfere with each other and
coordinate into stable walking gaits. There are some conceptual similari-
ties to Brooks layered subsumption architecture, but there is not really any
hierarchy of “subsuming” modules (they can rather be viewed as coopera-
tive). Each leg module in Walknet consist in itself by smaller cooperative
networks. There are for example one ANN responsible for controlling the
leg during leg stance (providing support and propulsion for the insect), and
another network responsible for swinging the leg forward. A third net (the
selector net) is responsible for choosing whether the stance or the swing net
should be in control of the leg motors. That is, whether a leg should be
moved forwards or backwards.

Being a reactive sensor-motor system, Walknet decides what to do based
on sensor input. To achieve the leg swing movement, for example, the
swing net takes as inputs three coordinates representing the current leg
position and three coordinates representing the desired leg position at the
end of the swing. The output values that result from this represent three
angular velocities. One for each of the legs three joints. The actual leg
angles are continuously measured, and fed back into the net as the swing
progresses. The selector net will eventually turn the swing net off (and the
stance net on), based on a sensor that registers when the leg has reached its
Anterior Extreme Position (AEP) (the position where the leg is maximally
backwards). When six such legs are interconnected, the insect is capable of
walking.

Results and possibilities

Walknet exhibits several interesting features seen from an AI-perspective.
First of all it is an actual implementation of a working system. The simulated
walking is hard to distinguish from the walking of a real insect2 (unless
you are I biologist, I suppose). What is even more interesting is that the
system is robust to perturbations, such as legs crashing into obstacles for
example. This allows the artificial insect to walk steadily even in highly

2Example videos are downloadable from the URL http://www.uni-
bielefeld.de/biologie/Kybernetik/research/walk results.html (last checked 03.04.2007).

22

Background 2.1. WORK ON NEURAL NETWORKS

dynamic environments or environments that were not presented to it during
training. In other words: The system generalizes its specific knowledge
(limited knowledge acquired during training) to fit new situations. This
type of generalization is a key feature of an AI-system, when considering
the initial definition of AI in the introduction.

Cruse et al. [1998] mention some minor drawbacks (minor from an AI-
perspective, probably of larger concern for the biologists) of their system.
Leg amputation does not result in gait transition (as observed in real insects
by Graham 1977). Walknet also has some problems separating AEP sensing
from obstacle sensing when swinging the legs forward, making some walks
unrealistic. There are also some discussion of whether the ANNs used for
simulation are similar enough to real neural networks that any comparison
between the two is defensible. Real neurons do not simply sum their inputs,
like the neurons in Walknet do. There is a lot more complexity in real life.

Of larger concern from the AI-perspective is that the network is created by
training a hand coded network with empirical data, using back-propagation.
That means that a set of empirical data is required for training the network
(= adjusting the network weights) until it performs close (enough) to a real
system. Such data is not always available. It would be better if the system
was told what (not how) to do, and then learned the “how”-part by it self.
Then we wouldn’t need the empirical data. A side-effect of training an
ANN with empirical data is also that the ANN may fit too much to the
training data. This problem is known as over-fitting, and may result in
bad performance on any other environment than the training environment.
Over fitting is a known drawback of supervised learning algorithms such as
backpropagation.

2.1.4 Intelligence as Adaptive Behavior

General idea and design

In his book [Beer, 1990], Randall D. Beer suggests an alternative view of
intelligence, exemplifying his claims using a simulated insect. His view is
alternative with regard to what was at the time the prevalent AI methodol-
ogy. He claims that the traditional view, copying the intelligent behaviour of
humans, has been to heavily focused on deliberative reasoning. He therefore

23

2.1. WORK ON NEURAL NETWORKS Background

suggest Adaptive Behavior as a more appropriate definition of intelligence.
Beer argues that [Beer, 1990, p. 11]:

(...) it is adaptive behavior, the much broader ability to cope with
the complex, dynamic, unpredictable world in which we live, that
is, in fact, fundamental.

Throughout his book, the artificial insect - Periplaneta Computatrix - is
used to exemplify how intelligent behaviour can be realized though adap-
tive behaviour. P. Computatrix is a model of a real cockroach (Planeta
Americana), and it is built up in a stepwise fashion. By manually designed
dynamic neural networks, walking behaviour is implemented. The walking
network is later extended (subsumed) by new neurons to make the insect
capable of more complex behaviours such as turning, edge-following and
recoil. Many behaviours which form the basis of navigation.

Neural model and the locomotion controller

Among the findings in Beer [1990], the P. Computatrix locomotion controller
is of great interest for this thesis. The insect walks by means of a sensor-
motor system that depend on two factors: 1) time and 2) tactile (or perhaps
more correctly proprioceptive) sensor input. This is interesting because, as
found by Dürr et al. [2001], there are temporary connections between the leg
movements and antennal movements of real insects such as the Carausius
Morosus.

The system that lies between the sensors and motors in Beers’ insect, is a
recurrent, time-dependent ANN, based on the leaky-integrator model. Just
like for CTRNNs, the leaky-integrator model calculates neuron activations
based on a membrane potential, not just sums of input. The membrane
potential is adjusted every 5 msec, and is increased or decreased by some
proportion to the sum of neuron inputs. Additionally, for each time step,
a “leak-current” is subtracted from the membrane potential, so as to sim-
ulate the conductance of real cell membranes. The resulting ANN model,
according to Beer, is modeled so that it “(..)strikes the proper balance be-
tween the complexity of biological nervous systems and the requirements and
constraints of our simulation.” Beer [1990][p.49]. By addition of so-called
intrinsic currents (similar to self-weights of CTRNNs), he describes how the

24

Background 2.1. WORK ON NEURAL NETWORKS

neural model can be used to create neurons capable of pulse-behaviour. This
pulse-behaviour is central to the P. Computatrix locomotion controller.

Based on Pearson ([Pearson, 1976a and Pearson et al., 1973] in Beer [1990])
the pacemaker is used to create a locomotion controller capable of statically
stable hexapod walking. The ANN topology is shown in 2.5. The basic idea
is as follows:

1. A singe pacemaker neuron (P in figure 2.5) generates rhythmic bursts.

2. The stance (determining propulsion force) and foot neuron (determin-
ing down pressure of leg) is usually active.

3. When the pacemaker fires, the stance and foot neurons are inhibited.
Lifting the leg, and ensuring that it does not provide propulsion.

4. When the pacemaker fires, the swing neuron is exited, and therefore
the leg is moved forward.

5. By the rhythmic nature of the pacemakers, the leg is capable of step-
ping rhythmically.

6. To properly time the transition between stance and swing phases, pro-
prioceptive sensors may interfere with the stepping cycle:

- When the leg is in its AEP, swing is inhibited and the pacemaker
is reset. The foot is pressed down, and stance begins.

- When the leg is in its Posterior Extreme Position (PEP), pace-
maker is reset (exited to start a new cycle).

- These tactile sensors fine-tune the centrally generated stepping
rhythm.

To coordinate the stepping of all six legs, all pacemakers are interconnected
by inhibitory connections, so that adjacent legs are discouraged from swing-
ing at the same time. Thereby generating statically stable gaits.

Results and possibilities

The locomotion controller reliably produces successful walking when embed-
ded in the P. Computatrix body. Beer also stresses that the controller - in

25

2.1. WORK ON NEURAL NETWORKS Background

Figure 2.5: The leg and locomotion controller of the P. Computatrix.

stance

foot

swing

P

f.s.

b.s.

LC

-

+

-
+

-

- +

+
+

(a) The leg controller, each leg has one such net. ’b.s.’
and ’f.s.’ are backward and forward angle tactile/pro-
prioceptive sensors. ’P’ is a pacemaker cell, and ’LC’ is
a special controller neuron that is shared by all leg con-
trollers.

L1

L2

L3

R1

R2

R3

-

-

-

-

-

-

-

-

-

-

-

-

-

-

(b) Inhibitory connections of all the
leg controllers pacemakers.

26

Background 2.1. WORK ON NEURAL NETWORKS

addition to producing stable gaits - reproduces a wide range of insect like
gaits. He claims that the design was never motivated by a desire to repro-
duce this range of features from insect locomotion. The similarity with a
real P. Americana was therefore an unexpected result that he owes to the
close attention to biological details.

From the view of evolving a navigation system, the locomotion controller
also exhibit some other interesting behaviours. First of all it is an example
of a working sensor-motor system. The stepping pattern is dependent on
tactile/proprioceptive sensors, and it is a result of continuous interaction
between body (sensor input) and the ANN. Neither would have any value
without the other. Secondly, the controller is very robust to perturbations.
As shown in the lesion studies of Beer [1990], the locomotion controller
is robust to small perturbations such as artificial injection of current into
neurons, removing some sensory neurons or removing some connections.
Also (as will be used in this thesis) the removal of all connections from the
LC-neuron did not have any effect on the tripod gait.

The robustness of the locomotion controller makes it ideal for inclusion into
a navigation system, because it should be able to work reliably in a wide
range of environments. Because it is implemented using a leaky-integrator
ANN, it should also be possible to create a similar CTRNN with only limited
effort. The fact that the controller is implemented using an ANN is also an
advantage. It makes it easy to subsume it with higher-level behaviours by
adding new synaptic connections.

2.1.5 On the dynamics of small CTRNNs

General idea

In an effort to understand the dynamical properties of CTRNNs, Randall
D. Beer in Beer [1995] did several numerical experiments and elementary
analyzes of smaller CTRNNs. His work was specifically motivated by the
increasing usage of CTRNNs for modeling nervous systems of autonomous
agents. The paper provides extensive insight into many of the dynamical
properties of CTRNNs, and one of particular concern in this thesis, is the
study of what conditions that must be fulfilled for CTRNN neurons can
have several equilibriums. An equilibrium is the “membrane potential(s)” a

27

2.1. WORK ON NEURAL NETWORKS Background

neuron will fall into if all inputs are kept unchanged for a sufficient amount
of time. Mathematically, an equilibrium point is reached when a transition
from one time-step to another leads to no change in the membrane potential.
That is when the equation for membrane change, shown in section 2.1.2,
evaluates to 0:

0 = ẏi =
1
τi

(−yi +
N∑

j=1

wjiσ(yj + θj) + Ii) (2.3)

Results and possibilities

The observation that a single CTRNN neuron can have two stable equilibri-
ums (and additionally one unstable between these two) [Beer, 1995] is based
on the fact that if a neuron has a strong enough self-connection, then even
in the absence of any external input, it can still self stimulate enough to
remain active. This behaviour is natural, if we consider a specific moment
in time where a positive external input is removed from a neuron: Naturally,
the neuron will not become active after that time if it was inactive before
that time (there is no positive input present). If it indeed was active at that
time, it can remain so because (self) stimuli now is present. It is shown in
Beer [1995] that this condition can occur for neurons with a self connection
w > 4.

Beers results are interesting for evolving navigation (and possibly many
other behaviours) because the presence of more than one equilibrium point
in some or all neurons of a network extends the possible steady states of
the network as a whole. The network should therefore be expected to ex-
hibit a wider range of dynamical features. Because CPGs can be created
by neurons that continuously force each other into changing state [Chiel
et al., 1999], they are of particular interest in this regard. When evolving
CPGs it should be very likely that neurons capable of forcing each other
in this manner would exist more frequently in a population of networks of
bifurcative neurons, as each neuron is already capable of falling into several
equilibriums. It would therefore be interesting to see the effect of enforcing
bifurcative neurons in a GA for evolving CPGs.

28

Background 2.2. WORK ON GENETIC ALGORITHMS

2.2 Work on genetic algorithms

2.2.1 Center-crossing CTRNNs for the evolution of rhyth-
mic behavior

General idea

In 2002, researchers Boonyanit Mathayomchan and Randall D. Beer set out
to test another of the strategies for faster evolution that were suggested
in Beer [1995]. Namely seeding initial GA populations with individuals
corresponding to center-crossing recurrent neural networks. The dynamic
properties of center-crossing CTRNNs are described in more detail in section
3.1.3. For now it should suffice to say that a center-crossing network is a
network where all neurons are maximally sensitive to each other.

Networks that have the center-crossing property are in theory more likely to
exhibit a wider range of dynamic properties (including oscillation) than ran-
dom networks [Mathayomchan and Beer, 2002]. Rhythmic behaviour should
therefore evolve faster from a population of such networks. To test this hy-
pothesis, Mathayomchan and Beer used GAs seeded with center-crossing
networks for the evolution of a fully interconnected five-neuron Central Pat-
tern Generator (CPG) with a population of 100 individuals, each represented
by a vector of 35 real numbers (each neuron has two internal parameters and
five weights). The CPG controlled a one-legged creature, whose fitness was
measured by the distance walked withing a given amount of simulation time.
They then compared several evolutions of the CPG with different mutation
probabilities ([0.05 - 3.0]%). For each mutation probability, they observed
the performance with and without center-crossing networks in the initial
population (all other things being kept equal).

Results and possibilities

Mathayomchan and Beer [2002] showed that evolutionary searches that
were seeded with individuals corresponding to center-crossing networks, per-
formed better than random searches for all mutation variances tested. The
resulting CPGs in itself performed better, and at the same time evolution
was faster. The difference was especially striking at small mutation vari-

29

2.2. WORK ON GENETIC ALGORITHMS Background

ances, where GAs starting with center-crossing individuals performed about
twice as good as an equal search initiated with random networks. On av-
erage (for 100 evolutions) the performance curve (best performance as a
function of generation number) for center-crossing searches also started off
higher than the curve for random searches. It also rose much faster, and
always showed better performance than the curve for the random networks.
From this, Mathayomchan and Beer [2002] read that center-crossing net-
works were generally better fit for evolving CPGs, and mutation only fine-
tuned the walking behaviour for these evolutions. Random networks, on
the other hand, were generally unfit, and required mutation to recover from
poor initial conditions to perform successfully. This they further supported
by a test, where they generated 10000 random center-crossing networks, and
10000 completely random networks: Of the center-crossing networks, 26.6%
produced oscillations, whereas for the corresponding random networks, only
1.2% did.

Considering the importance of CPGs in lower level insect behaviours such
as walking (e.g. Beer [1990]), it should be apparent that the use of center-
crossing networks would be of great value for the evolution of navigation.
Looking at the rationale for the increased performance - the wider range of
dynamic properties in the initial population - it should in theory be pos-
sible to take advantage of center-crossing networks also for other GAs. As
Mathayomchan and Beer [2002] note:

Since nothing about the center-crossing condition is specific to
walking, it is likely that a similar improvement would be found
on any oscillatory task. In fact, all other things being equal, our
results suggest that seeding evolutionary searches with center-
crossing networks may always be beneficial, since a wider range
of dynamics is more likely to be easily accessible from a popula-
tion of center-crossing networks than from a random population.

It would therefore be interesting to test this strategy also on other parts of
the search for navigation behaviours in general.

30

Background 2.2. WORK ON GENETIC ALGORITHMS

2.2.2 Incremental evolution of general complex behaviour

General idea

So, how are the advantages of the mentioned strategies for faster evolution
best combined? Both the use of bifurcative neurons and the use of center-
crossing networks suggest placing an initial population into a fruitful region
of a genetic search space. A third strategy that also does this is incremental
evolution. In a work done by Gomez and Miikkulainen [1997], the evolution
of prey capture behaviour is studied using this technique.

Prey capture is an example of a very general behaviour, compared to for
example rhythmic behaviour. According to Gomez and Miikkulainen [1997],
simulated evolution of such complex behaviours are very difficult to evolve,
because evolution often end up with mechanical strategies that are tied to
specific environments. They claim that these strategies are ineffective, do
not appear to be believable and generalize poorly to new environments.
The reason for this, they claim, is that the general strategy is too difficult
to evolve directly.

To support their claims, Gomez and Miikkulainen [1997] evolve prey capture
behaviour in a stepwise fashion. The prey capture task consists of (at least)
two agents, say A and B, where A tries to capture B, while B tries to escape.
The agent to evolve here is agent A, and it is controlled by an ANN. Because
agent A have limited sensing capabilities, B may (at least temporarily) go
“out of sight” from A, so A must have some memory about where B went
out of sight, and must figure out how to approach B again. The overall task
is therefore non-trivial.

To solve the problem, Gomez and Miikkulainen [1997] separate the task into
easier tasks as follows:

1. Capture of a stationary prey within (short) sensory range is evolved.

2. Capture of a stationary prey, moved a bit further away, is evolved.
This is more difficult, because the agent will “die” if it cannot reach
the prey (= “food”) quickly enough.

3. Point 2 is repeated two more times, forcing the agent to go further
and further.

31

2.2. WORK ON GENETIC ALGORITHMS Background

4. Four more subtasks are evolved. They let the prey move, gradually
faster for each task.

The ANN is represented using a set of chromosomes3, and the resulting pop-
ulation after the first subtask is saved. Between each subtask, the necessary
change to these chromosomes are stored instead of storing new chromosomes.
This strategy is called delta-coding, and the string representing change from
original chromosomes is called delta-chromosomes. All recombination and
mutation is applied to the delta-chromosomes, and not to the original ones.
This allows each evolution to explore the “neighborhood” of earlier evolved
solutions. This also allows further evolutionary stages to continue unhin-
dered of convergence in earlier tasks, because only delta-chromosomes have
become converged.

Results and possibilities

Gomez and Miikkulainen [1997] successfully evolves prey capture behaviour
using incremental evolution. They also show that a non-incremental ap-
proach for the exact same task, fails every time (for 10 runs). On average,
the non-incremental approach improves slightly the 20 first (of 200) gener-
ations, but then gets trapped in a local optima where not even basic skills
have been evolved.

Partitioning a task in this manner could be a very interesting strategy for a
complex task such as navigation. As Gomez and Miikkulainen [1997] note,
artificial life is particularly well suited for progressing through increasingly
difficult tasks, because complex tasks are naturally separable into subtasks,
as exemplified by Brooks [1986]. Navigation has already been proved to
be separable for manual design of ANNs [Beer, 1990], so it should be pos-
sible also to do this in an evolutionary setting. It would be interesting if
incremental evolution would be applicable for this. Intuitively, it should be.

3Note that they evolve chromosomes, not singe genes. This is because they use a form
of SANE [Moriarty and Miikkulainen, 1996] called ESP [Moriarty and Miikkulainen, 1998]
where individual neurons are evolved instead of complete networks.

32

Background 2.3. SUMMARY

2.3 Summary

• ANNs are commonly used to control AI-agents. They are easily layered
into “Brooks-style” layers.

• Walknet and P. Computatrix are examples of such systems. Their
designs are good pointers for how the problem of navigation can be
split up into manageable parts.

• CTRNNs, time-dependent, recurrent ANNs, are capable of maintain-
ing internal state and biological-like dynamics, thereby allowing short-
term memory and other deliberative behaviours. They are therefore
ideal for control of agents with complex behaviours.

• Genetic algorithms have been used to design such networks, but they
are still slow and suffer from convergence towards local optima.

• To speed evolution of CTRNNs, at least two techniques have been
proposed:

- Incremental evolution.

- Seeding initial populations with center-crossing networks.

- Both techniques provide a means to initialize genetic search in
an area of the search space where the desired behaviour is likely to
evolve.

• Work is still required:

- Does center-crossing networks provide any advantage for evolving
other networks than CPGs?

- Can evolutionary search benefit from other properties of CTRNNs,
such as enforcing bifurcative neurons?

- Incremental evolution should in theory be ideal for evolving this
in a layered fashion. Does it provide an advantage over “head-on”
evolution?

2.3.1 Further reading

Some research has influenced this thesis without finding its way into this
background chapter. Particularly, some techniques for evolving adaptive

33

2.3. SUMMARY Background

behaviour is barely mentioned (e.g. Dynamical Parameter Encoding (DPE)
and delta-coding). For more information on issues, see Beer and Gallagher
[1992], Gomez and Miikkulainen [1997]. Also, researchers Meyer and Kod-
jabachian have provided insight into evolution of insect controllers by means
of a Genetic Programming (GP)-like technique. See Kodjabachian and
Meyer [1998] and Kodjabachian et al. [1998] for more about this. Pavel
Petrovic here at the Department of Computer Science, NTNU, has recently
carried out a study that involves incremental evolution for the generation of
finite-state automata Petrovic [2006].

There are other ways to create dynamic neural networks Beer [1990] use the
leaky-integrator model (see appendix for example code) and Beer [1996] use
a CTRNN model with a slightly different equation that the one used in this
thesis.

34

Chapter 3

Design of the Genetic
Algorithms

This chapter is divided into three separate sections. The methods used
are described first. These include a description of the actual simulation
setup used, and the mathematical and philosophical background for each
evolutionary task.

The method section is followed by a description of the results obtained for
carrying out the experiments, and possible interpretations of these results.
For each evolutionary task, a comparative analysis is done where each evolu-
tionary technique (center-crossing networks, bifurcative neurons and incre-
mental evolution) is compared to traditional, random-seeded, evolutionary
searches. For each of the tasks, two major questions are considered: 1)
Does the evolutionary search technique provide a usable solution for the
task? and 2) Does the technique provide a solution faster and/or better
than other (traditional) techniques?

Finally a discussion of the theoretical limitations and possibilities of every
technique is provided.

35

3.1. METHODS Design of the Genetic Algorithms

3.1 Methods

With the current state of computers, evolving a tactile-olfactory navigation
system is a task that is probably too hard for one single GA to solve. It
is simply too difficult to design a fitness measure that ensures that signifi-
cant selection pressure is applied to the population to make it evolve in a
desirable direction. Such a fitness measure would be required to encour-
age recombination of individuals that perform outstanding in a plethora of
behaviours, all of these at the same time. Chances are that a random pop-
ulation do not contain many such outstanding individuals - if any at all. As
a result, the GA may converge towards some sub-optimal maxima (perhaps
equaling one of all the desired behaviours) and never find a globally optimal
solution to the problem! But what if all individuals in the population were
placed as close to a proper solution as possible before evolutionary search
was started? What if the initial population consisted solely of individuals
that had a high probability of making up a well-performing solution?

In this thesis several techniques for guiding evolution are considered. This
section describes the scientific experiments that were carried out in order to
collect empirical data on each of a set of chosen techniques. On a macro-
level, incremental evolution was applied so that increasingly complex be-
haviours could be gradually evolved. On a micro-level, particular properties
of the chosen representation model, CTRNNs, were exploited. Specifically,
these micro-level techniques were seeding an initial population with center-
crossing neural networks to a large extent made up from bifurcative
neurons.

3.1.1 Incremental evolution

Evolving a CTRNN for controlling limb movement, memory and other nav-
igational properties at the same time results in an enormous search space
for a GA. Since computational power is a limited resource, it is necessary
to find ways to properly partition the problem at hand into manageable
parts. As outlined in the background (chapter 2) Gomez and Miikkulainen
[1997] suggest incremental evolution as a way of partitioning the evolution
of general complex behaviour into smaller, successive, tasks. Incremental
evolution begins by finding solutions to at least one of these smaller parts
first. When a solution to one of the parts is found, the problem to solve is

36

Design of the Genetic Algorithms 3.1. METHODS

made more challenging, and a new evolutionary search is begun using the
previous result as a start-off point. For the navigational robot example in
chapter 1, learning to drive could be the first “easy” part. Learning how
to avoid crashing into walls could be an appropriate subsequent task. The
parallels to the subsumption architecture of Brooks [1986] should be fairly
evident: Low-level behaviours are created before higher level behaviours;
each module is tested extensively in “the real world” before a new level is
allowed on top of it; many new layers can be added on top of this one again,
etc.

Mathematically, incremental evolution can be considered a set of tasks T ,
where the solution of the task can be defined as the sum of the solutions of
all N possible subtasks [Gomez and Miikkulainen, 1997]:

T =
N∑

i=1

ti (3.1)

where each such subtask, ti can be partitioned to new subtasks, tti (just like
T it self is partitioned).

So how should the process of evolving a tactile-olfactory navigation system
commence? T is of course evolving a complete navigation system, but what
subtasks exist? Incremental evolution is applicable only to problems that
can be decomposed into a sequence of increasingly complex subtasks, and
the problem of identifying this sequence is still left to the researcher. Luckily,
as Gomez and Miikkulainen [1997][p.15] notes:

(...) at least for Artificial Life and robot control, the task se-
quences are usually easy to come by, because the goal-task often
subsume natural layers of behavior (...)

Because this thesis looks into how evolution can be properly guided to evolve
a specific task (and not so much into how a physical robot creature should
be created), results from earlier research have been used to help identifying
these “natural layers of behavior”. Particularly the layering of ANNs have
been inspired by other work in artificial life (Beer [1990], Cruse et al. [1998],
Chiel et al. [1999]) , but also the physical layout of the simulated robot
has been designed after earlier work in biology and artificial life (Ekeberg
et al. [2004]). The choices for each layer of behaviour, each subtask, will be
described in the following subsections.

37

3.1. METHODS Design of the Genetic Algorithms

t1 Walking along a straight line

The first subtask chosen, was to learn how to walk along a straight line.
Wandering is the lowest layer described in Brooks [1986], but that was not
the only reason that walking was chosen as the first task to evolve here. The
work of Beer [1990] also uses walking as a start-off point for further studies
of higher level behaviours. Because Beer [1990] use a neuron model similar
to CTRNNs (the leaky-integrator model) much of his work can be used in a
corresponding CTRNN controller with only minimum of effort of mapping
his neuron layout into a CTRNN network. Additionally, Cruse et al. [1998]
has built a walking controller around some of the same principles as Beer
[1990] - namely six inhibiting leg-modules that are capable of cooperating
to create stable tripod gaits. Both the works of Beer [1990] and Cruse et al.
[1998] are made up using a modular layered design, which can be easily
subsumed by adding new layers on top. There is also another advantage for
both of the architectures: They do walking along a straight line. Differing
from the (aimless) walking controller of Brooks [1986], the quality of straight
line walking is very easy to measure. Basically, the fitness of an agent that
walks in a straight line is equal to the distance traveled from start to end.
Long walks are good walks. It is not clear how to make a similar measure
for an aimless agent.

The walking controller of Beer [1990] is based on separate leg modules that
cooperate to generate stable walking gaits. It is known from biology that
insects use Central Pattern Generators (CPGs) to generate pulses that drive
other behaviours (see e.g. Beer [1990] and Bässler and Büschges [1998]),
including the control of legs. The simulated leg controllers in Beer [1990]
are based on such CPGs. Each leg controller is in itself controlled by an
internal pacemaker neuron, that “drives” the stepping rhythm of the leg.
Because the evolution of pacemakers is anything but an easy task (see for
example Chiel et al. [1999]), the task of walking along a straight line, t1, is
split into two subtasks:

• t11 : Creating a pacemaker (CPG) for controlling individual legs.

• t12 : Coordinating pacemaker controlled legs into stable gaits.

So pacemaker behaviour is considered most “primitive”, and coordination
(which depend directly on pacemakers) is considered the subsequent task.

38

Design of the Genetic Algorithms 3.1. METHODS

t2 Control of walking into a specific direction

Considering the design of the leg controller (an ANN), it should be an easy
task to subsume it into force walking into a specific direction. Any neu-
ron can be subsumed by adding a sufficiently strong (positive or negative)
synaptic connection to it, so by properly subsuming the right neurons, mov-
ing into a specific direction should be possible. Turning will then be the
most basic navigational task provided by the robot.

Looking at the earlier works in creating walking controllers (Beer [1990]
and Cruse et al. [1998]), there are two possibilities for controlling turning
that have already been explored: Beer [1990] uses a force that provides
lateral propulsion on the fore legs; Cruse et al. [1998] uses a more complex
simulation model with a leg model that allows individual legs to pull the
insect into the proper direction. A third, unexplored scheme, is to enforce
differences in the stepping frequency between the two sides of the body. This
scheme is suggested by Beer [1990][pp.109-110], but he does not implement
it due to the inaccurate physical model of the P. Computatrix.

Because the simulation environment in this thesis is physically accurate
[Klein, 2006], it should be possible to use a scheme pretty close to what
would work in the real world. Therefore, walking in a specific direction is
following the suggestion by Beer [1990] about enforcing different stepping
rhythms between the two sides of the body. As a side note, the approach of
Cruse et al. [1998] would require an even more complex neuron model (and
physical model too), because it involves more joints (four joints on each leg,
versus one joint on each leg for Beer [1990]). The turning model of Cruse
et al. [1998] is therefore disregarded here.

The turning task is not further split into easier subtasks.

t3 Avoiding obstacles

Just like for the robot in Brooks [1986], it should be possible to both force
walking into a proper direction, and avoid obstacles at the same time, using
different layers of behaviour that subsume each other. In Brooks [1986],
avoiding contact with other objects is the bottom behaviour of the robot
control system. For reasons described in the previous subsections, it is

39

3.1. METHODS Design of the Genetic Algorithms

not desirable for incremental evolution to start off with obstacle avoidance.
It would make fitness measuring (and therefore applying proper selection
pressure) difficult. To make up a sequence of tasks that allow for a easy
measuring of fitness, obstacle avoidance is here evolved as the third sub-
task. Evolution should therefore be able to start off with a creature that
walks pretty well toward some goal, but needs to adapt its walking to avoid
obstacles, using tactile sensing.

It should be possible to evolve obstacle avoidance as a single task. It is
however also possible to make the task easier/more difficult, for example by
evolving avoidance of stationary obstacles before avoiding moving obstacles
(as successfully done by Gomez and Miikkulainen [1997]).

3.1.2 Genotype representation

To make incremental evolution work, the resulting genome from one evo-
lutionary search must be easy transferable into subsequent searches. This
should make it possible to use the result of one evolutionary task as a start-off
point for later more complex tasks. As outlined in section 2.2.2, there exist
techniques such as delta-coding that are very suitable for e.g. Symbiotic
Adaptive Neuro-Evolution (SANE) with Enforced Segregated Populations
(ESP) [Moriarty and Miikkulainen, 1996] and [Moriarty and Miikkulainen,
1998]. In this thesis, a even simpler approach is taken to transferring
genome: All genes are represented by 24-bit integers (equaling any value
from 0 to 224, about 16.8 million values). The complete genome is therefore
a vector of such 24-bit integers. This has the following advantages:

• When starting off a new evolution, results from earlier evolutions can
be injected directly into the population. This is done by setting the
first part of the new genome (vector) to the result from earlier evo-
lution. To ensure population width, the values can be randomized
(e.g. by adding/subtracting some small value from every gene) before
insertion.

• Since all genes are equal, they can be mixed freely by recombination.
There are no special considerations to take for different gene-types
or similar. Simple one- or two-point crossover, or other well known
recombination techniques, can be used.

40

Design of the Genetic Algorithms 3.1. METHODS

• The same advantage applies to mutation. One, standard, mutation
operator that works the same way for all genes.

It should also be noted that this simple genotype representation does not
exclude any solutions. Other techniques, such as DPE (see a very relevant
example in Beer and Gallagher [1992]) may remove half of the solutions after
a predefined number of evolutions (e.g. start to focus when an optimum
is approached). This can be done to increase precision for the remaining
generations, but at the cost of discarding all the other solutions that are not
focused on. Because of this last point, DPE has been disregarded here.

Recombination

Because of the advantages mentioned above, the recombination operator
used here was two-point crossover for all the GAs. It is loosely based on the
recombinations done with DNA in nature. It works like this:

Lets say two genes, A and B, are to be recombined into two offspring. We
have:

A : [0, 12, 3, 34, 643, 2, 232, 532] and B : [13, 4, 23, 143, 23, 43, 243, 1].

Two random crossover points are chosen within the length of these genome.
Say, 3 and 6. The offspring, C and D, are then produced by creating genome
C from genes 0-2 of A, genes 3-5 of B, and finally genes 6-7 of A. The
opposite procedure is used to form genome D. We therefore end up with:

C : [0, 12, 3, 143, 23, 43, 232, 532] and D : [13, 4, 23, 34, 643, 2, 243, 1].

Mutation

Mutation was applied by tampering with one gene. To exemplify, lets say
we want to mutate gene D, above, before we insert D into the population.
To do this, we pick a random number within the length of gene D, say 4. We
then pick a random number within some range (e.g. -10000 to 10000), say
304, to subtract from gene 4. Unless the result would be outside the range

41

3.1. METHODS Design of the Genetic Algorithms

of a 24-bit integer, the calculation is performed, and the resulting genome
is returned:

D : [13, 4, 23, 34, (643− 304), 2, 243, 1] → [13, 4, 23, 34, 339, 2, 243, 1].

Genotype to phenotype conversion

In order to convert 24-bit genes into phenotype values, a standard set of
equations were used. Genes could be mapped into three different values,
either: 1) (Synaptic) Weights(wij), 2) Biases (θ) or 3) Time-constants (φ).

In any CTRNN, one continuously maximum-firing synaptic connection have
the same effect on a neuron as the bias have (this can bee seen from equation
2.3, page 28). Therefore, one common function was used both for mapping
weight and bias genome into real values:

θ = −20 +
gene
224

40

(3.2)

This, of course, resulted in phenotype values (weight/bias values) between
−20 and 20. Because CTRNNs use sigmoid activation (that saturates to-
wards 0 and 1 for -20 and 20), one maximally weak/strong connection is
capable of completely inhibiting/exhibiting a neuron.

For the time-constants, a similar function was used:

θ = −16 +
gene
224

16

+ t (3.3)

where t was the CTRNN integrator time step (0.01 sec).

Basically the same equation as for the weights, but converting the gene to
a value in the range 0.010 to 16.01. Reasons for keeping the value above t
is due to the correctness of the simulation results (see also section 2.1.2). A
maximum of 16 has also been used in similar research earlier (CPG evolution
in Mathayomchan and Beer [2002] use [0.5 10] for their two-neuron circuit)
and should provide a sufficient range here.

42

Design of the Genetic Algorithms 3.1. METHODS

3.1.3 Evolving a rhythmic CTRNN (t11)

Many animals use some form of pacemakers to drive other behaviours. Pace-
makers create rhythmic bursts that can signal things like for example the
contraction of an animals heart muscle. Insects use pacemaker circuits to
create complex coordinated rhythmic behaviour, such as the leg stepping
rhythm. In Beer [1990]s research, special pacemaker cells are used to coor-
dinate a hexapod robots legs into stable gaits.

Pacemakers that control other neural networks are often called Central Pat-
tern Generators (CPGs) in relevant literature. Because of the wide applica-
bility of CPGs, much work have been put into using CTRNNs and GAs to
create them. CTRNNs are in theory able to simulate any dynamical system
(if sufficiently large, (Funahashi and Nakamura 1993) in [Chiel et al., 1999]),
and CPGs should be no exception. A GA should therefore be able to evolve
any CPG given an infinitely large population or infinite time and infinite
network size.

Reality is however somewhat different from theoretical GAs with infinitely
large populations and no time constraints. The probability that a random
network population of moderate size (say 100 individuals) should contain one
or more CTRNNs exhibiting pulse behaviour is of course rather small (actu-
ally very small, see Mathayomchan and Beer [2002] for a statistical analysis
of this question), since each individual in the population could represent any
of a very wide range of dynamical systems. Even a large population cannot
be guaranteed to contain any genome close to one corresponding to a pulse
network. As a result, evolution may have to run for a long time before any
improvement towards desired behaviour is observed. If it happens at all.

Fortunately, several researchers have suggested ways to guide evolution into
faster discovery of near-optimal CPGs. An approach similar to Mathay-
omchan and Beer [2002] have been used in this thesis. It takes advantage
of so-called center-crossing CTRNNs to start evolutionary search in fruitful
regions of the genetic search space. Also, some mathematical background
from Beer [1995] and Chiel et al. [1999] have been used to further guide evo-
lutionary search: Namely the theory of bifurcative neurons, ensuring that
all neurons in the initial networks are capable of generating pulses - even
before any evolutionary search is started.

The network topology chosen here is a network that fulfills both the center-

43

3.1. METHODS Design of the Genetic Algorithms

Figure 3.1: Topology of the pacemaker circuit to evolve. One neuron can be con-
sidered an input/output(IO) neuron. The firing frequency of this neuron can be
read as the pacemakers state. The other neuron is “hidden”, and its function is
to constantly force the IO neuron to change its firing frequency. The complete
network can then produce rhythmic pulses, if the neuron and weight properties of
both neurons are set properly.

4 - 164 - 16

-20 20

-20 20

crossing, and the bifurcation properties. The basic layout can be seen in
figure 3.1. The following sections provide an elaboration on this design.

Population initialization

Center-crossing networks
Seeding an initial population with center-crossing CTRNNs have been proved
to greatly improve both the frequency of pulse-circuits occurring in a pop-
ulation, and the speed that high fitness pulse-circuits are evolved [Math-
ayomchan and Beer, 2002]. A center-crossing CTRNN is a CTRNN where
the null-surfaces of all neurons intersect at their exact centers of symmetry
[Mathayomchan and Beer, 2002]. The null-surface of a neuron, is where the
neuron bias and all synaptic inputs sum to 0. And - because CTRNNs use
sigmoid activation - a neuron has a firing frequency of 0.5 at its null-surface
(σ(0) = 0.5). Center-crossing networks therefore consist of neurons that on
average have firing frequencies around this value. Example firing frequencies
of the neurons in a “pseudo random” center-crossing network can be seen in
figure 3.2.

As can be seen from the sigmoid activation function in figure 2.2, only
small changes in synaptic inputs around the null-surface can lead to a very
different neuron firing frequency. Changes within the range [−5, 5] actually
correspond to firing frequencies covering almost all of the neurons firing
range. Outside this range, the change of net input has only sparse effect
on the firing frequency. Because center-crossing networks consist only of

44

Design of the Genetic Algorithms 3.1. METHODS

Figure 3.2: Firing frequencies of the neurons in a pseudo-random neural network
that satisfies the center-crossing requirement (topology in figure 3.1). Note that
both neurons share the condition that they have firing frequencies centered around
their null-surfaces (0.5).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000

fir
in

g
fr

eq
ue

nc
y

milliseconds

IO neuron
Hidden neuron

Null-surface

neurons whose activation functions are exactly centered around the range of
net input the neuron receives, they can be viewed as networks of maximally
sensitive neurons. It is to be expected that such networks exhibit a wider
range of dynamical behaviours than random networks would. They should
also be easier to interact with for other networks, because input/output
neurons are also maximally sensitive. For these reasons, center-crossing
networks should be more frequently fit to the fitness measure, than random
networks.

Bifurcative neurons
In Beer [1990], the locomotion controller of the P. Computatrix insect is
driven by special pacemaker neurons. These pacemaker neurons exhibited
behaviour similar to real pacemakers that were described first by Kandell in
1976 (Kandell 1976 in Beer [1990]):

1. When a pacemaker cell is sufficiently hyper-polarized1, it is silent.

2. When it is sufficiently depolarized2 it fires continuously.
1A hyper-polarization is a decrease in membrane potential, leading to a lower firing

frequency.
2A depolarization is equal to an increase of membrane potential and indirectly an

45

3.1. METHODS Design of the Genetic Algorithms

Figure 3.3: The equation controlling the state change of every CTRNN neuron. τ
is the time constant of i, yi is the current membrane potential, wji is the weight
of the synapse from neuron j, yj is the current membrane potential of neuron j,
θj is the bias of neuron j and finally I is a (constant) external input, and σ is the
standard logistic activation function (sigmoid).

ẏi =
1
τi

(−yi +
N∑

j=1

wjiσ(yj + θj) + Ii) (3.4)

3. Between these two extremes it rhythmically produces a series of rel-
atively fixed-duration bursts and the length of the interval between
bursts is a continuous function of the injected current.

4. A transient depolarization which causes the cell to fire between bursts
can reset the bursting rhythm.

5. A transient hyper-polarization which prematurely terminates a burst
can also reset the bursting rhythm.

Since pacemaker neurons are central components of the locomotion con-
troller of the P. Computatrix, it is desirable that the pacemaker evolved
here have similar properties. This should ensure that the pacemaker evolved
will be suitable for inclusion in the evolution of the rest of the locomotion
controller. To increase the probability that such pacemakers were evolved,
some theory from Beer [1995] was used:

According to Beer [1995], a CTRNN-neuron can have two different steady-
state membrane potentials (two solutions to equation 3.5, page 48) if it has
a self-connection with a weight > 4. Such neurons are called bifurcative
neurons. Which of the two membrane potentials a bifurcative neuron will
converge towards at some point in time, depend on the neuron potential it
had before that point in time. The input from another neuron can also help
pull the membrane potential of a bifurcative neuron into another steady-
state membrane potential [Beer, 1995]. Other neurons can therefore provoke
a state switch in another neuron by means of synaptic connections.

increase in firing frequency.

46

Design of the Genetic Algorithms 3.1. METHODS

For a two neuron circuit like the one in figure 3.1, the pulse state can be
read as the firing frequency of one of the neurons (e.g. one neuron serves
as an output neuron). If this neuron is bifurcative, it should in theory be
possible to affect its neuron state using a sufficiently positive/negative input
into one or both of the neurons. This means that observations 1 and 2 of
Kandell (1976) should be possible to fulfill.

It should also be possible for such a network to produce fixed duration bursts.
This will happen to networks where the neurons continuously push or pull
each other into switching between their two possible states. If the initial
population is seeded with center-crossing networks, both neurons should be
maximally sensitive to change, and therefore also maximally easy to push
or pull. Hopefully (probably), this combination of bifurcative and center-
crossing seeding will lead to higher probabilities of pulse networks occurring
in the initial population. If it does, then at least some of point 3 of Kandell
(the length of the interval bursts depend much on the time-constants, and
cannot be controlled this way) should be possible to fulfill.

A transient depolarization or hyper-polarization of either neurons in the
network of bifurcative neurons should also be able to reset the bursting
rhythm. If either of the neurons are hyper/depolarized for a short period
of time, both neurons are ultimately affected, and the rhythmic behaviour
should cease until both neurons again fall into one of their steady states,
restarting the cycle. Points 4 and 5 of Kandell should therefore also be
possible to achieve.

Putting it all together
As proved in Beer [1995] the center crossing condition occurs when the
neuron biases of all neurons are set to half of the negative of the sum of
input weights (see equation 3.5). This means that the bias exactly out-
weight the sum of all synaptic inputs when the connected neurons have
a firing frequency of 0.5. In other words we should have a network with
neurons that on average are firing about 0.5. In yet other words, the network
should consist of neurons that are in maximally sensitive states most of
the time. It can be seen from equation 3.5 that either biases or weights must
be adjusted to ensure center-crossing networks.

Since at least self-weights are forced to be > 4 (because of the bifurca-
tion requirement), it should be easier to adjust biases rather than weights.
This strategy allows for setting all other networks properties (weights and

47

3.1. METHODS Design of the Genetic Algorithms

Figure 3.4: Equation for the bias of any neuron in a center-crossing network.

θ =
−

∑N
j=1 wij

2
(3.5)

time-constants) to random values. If the bias is afterward set according to
equation 3.5, the null-surfaces of the neurons membrane potentials should
be moved into intersection.

One bifurcative neuron should in theory be able to exhibit pulse behaviour
solely through self stimulation (using one self connection). One neuron is
not sufficient for the center-crossing condition to occur, however. For several
null-surfaces to intersect as described above, at least two null-surfaces are
required! Therefore, at least two neurons must be interconnected to form a
center-crossing network. These are the reasons for suggesting a minimally
complex network as shown in figure 3.1 (page 44).

To summarize, the resulting strategy for seeding the initial population was:

1. Create a set of random genome. Each genome is represented by a
vector of length 8 (2 time-constants, 2 biases, 4 weights) with 24-bit
unsigned bytes for each gene (equaling values in the range 0 to 224 for
each byte, see section 3.1.3 for details).

2. Setting the self weights to genes corresponding to a weight in the range
[4, 16] (ensuring bifurcation).

3. Setting all other genes corresponding to values in the range [−20, 20].

4. Adjusting the bias gene so that a center-crossing network will result,
using equation 3.5.

5. Additionally setting the time-constants to random bytes corresponding
to a time-constant in the range [0.44, 0.58]. This is done to ensure that
the neurons exhibit pulse behaviour close to the required pulse of about
1 second (the stepping frequency of a real Carausius Morosus [Dürr
et al., 2001]).

The genome structure is visualized in figure 3.5

48

Design of the Genetic Algorithms 3.1. METHODS

Genotype to phenotype conversion

The phenotype to be evolved consisted of a two-neuron CTRNN where each
neuron had one self-connection, and one connection to the other neuron (see
figure 3.1). In genotype → phenotype conversion, each byte in the genotype
vector was converted into exactly one phenotype variable3 . This of course
meant that changing one of the genes in the vector could be seen as a direct
change in one aspect of the corresponding phenotype.

Because biases below/above -20/20 are irrelevant (the sigmoid activation
function saturates towards 0/1 for net inputs of these values), the 24-bit gene
was scaled into a value between -20 and 20. Similarly, the time-constants
were scaled into values in the range [t, 16] where t corresponds to the inte-
gration time-step used by the Euler-method CTRNN integrator (see section
3.1.2 for more about the range chosen).

As for all other evolutions, the genotype only encoded the CTRNN. The
physical model was hand-coded.

Figure 3.5: The genome layout. Each gene is a 24-bit unsigned byte, allowing for
224 (approximately 16.8 million) different values. For the pacemaker, each gene
corresponds to exactly one feature in the phenotype.

θIO−neuron τIO−neuron θH−neuron τH−neuron

WIO→IO WH→IO WH→H WIO→H

Fitness evaluation

The evolution of the rhythmic network differed a bit from the evolutions
shown later with regard to fitness evaluation. A highly specialized creature
was used for quantifying performance, and fitness was considered the length
that this creature could walk using the evolved CTRNN. A snapshot of the
pacemaker creature is shown in figure 3.6. It had four wheels (a bit like
a car), but it also had one leg. The leg pointed straight out behind the
creature, and could be pushed back and forth by applying force to it. To
ensure that the leg touched the ground only when moving backwards, it also
had one joint. The joint was bended with the same “muscle” that pushed

3This does not have to be the case. As will be shown in later evolutions, one gene may
correspond to several features of the phenotype.

49

3.1. METHODS Design of the Genetic Algorithms

the foot back. Applying force therefore led to a lowering of the leg, and then
an extension (to provide propulsion). The joint was also straightened out
when the leg was pulled forward, lifting the leg up when negative force was
applied. This allowed for just one (positive/negative) force controlling foot
extension/retraction: Activating the muscle lead to a lower-leg-and-push
action, deactivating it lead to a lift-leg-and-retract action.

To ensure equal simulation settings for each fitness evaluation, a new crea-
ture was moved into a pre-defined starting position with the leg retracted.
A CTRNN that corresponded to the genome to evaluate was then created,
and connected to the creatures leg. The creature was then allowed to move
for 8 seconds (800 CTRNN integrations). The maximum/minimum force
that was allowed, was set so that foot extension would take a little less than
one second at maximum force (that is: the time of maximum firing of the
IO-neuron. An adequate value was found by manual experimenting with dif-
ferent forces applied). Foot retraction was a lot faster that foot extension.
Far less than a second with the same force, because there was no friction. In
sum a maximally efficient extension-retraction cycle took about one second.
A maximally efficient creature would therefore have a pacemaker circuit that
fired rhythmically with burst of about one second length. A frequency of
about one second is desirable, because that is the stepping frequency of a
real Carausius Morosus.

Because of the wide range of dynamics of the different individuals, a wide
range of solutions to fast walking should exist in this setting. Some individ-
uals may not move the creature at all. Others may move it by extending the
leg once during the whole life-time of the creature. Others again may move
it by taking several steps. The reason for evaluating the phenotype for as
much as eight seconds, was to give the last mentioned type of individuals
a competitive advantage, even if they do not perform exceptionally at first.
For extremely short fitness evaluations (e.g. just one second), an individual
that takes just one step would perform more or less equally as an individual
capable of taking several exceptionally good one-second steps. For fitness
evaluations of two seconds the multi-step creatures would start to outper-
form all other creatures. Using eight seconds, evolution would mostly be
concerned about different multi-step creatures competing. Even creatures
with many weak steps would outperform all non-multi stepping creatures in
such an environment.

50

Design of the Genetic Algorithms 3.1. METHODS

Figure 3.6: The pacemaker creature with the leg at its two extreme positions (re-
tracted/extended). The number at the top left corner is the simulation time in
seconds.

The genetic algorithm

The genetic algorithm parameters are summarized in table 3.1.

3.1.4 Evolving a locomotion controller (t12)

Leg coordination for hexapod walking is not as easy as it may look. In
addition to providing propulsion, the legs must be able to coordinate in
stable gaits, so that the insect does not fall. Also, it should be possible not to
do only forward walks, but also to move sideways or backwards. The system
must also be robust to perturbations so that it can adopt to unpredictable
real-world environments. The last point being the very philosophical basis
for AI in this thesis.

Luckily, hexapod walking has been an active research area for some time,
including connectionist models since the 1980-90s. Most notable of these
are perhaps the pioneering works of Beer [1990] and the impressive work
of Cruse et al. [1998]. Both which are described in more detail in chapter
2. The model used here is based on Beers work for a simulated Periplaneta
Americana (American cockroach), which he have named Periplaneta Com-
putatrix [Beer, 1990]. The insect here is simply called Quickbeam, because it

51

3.1. METHODS Design of the Genetic Algorithms

Table 3.1: Parameters of the GA for evolving a rhythmic CTRNN
Function Description
Fitness evaluation Longest walk using a simulated, one-

legged, creature.
Genotype representation Vector of 8 24-bit unsigned bytes (one

byte per gene).
Initialization Random center-crossing CTRNNs with

bifurcative neurons.
Mutation Random add/subtract x (where 0 <

x < 10000) from gene.
Mutation probability 5% of the offspring.
Number of offspring 2
Parent selection 2 from best quartile of population (=

2/10 = 20% of best).
Population size 40 individuals
Recombination Two-point crossover.
Recombination probability 100% of selected parents.
Survival selection Replace worst 2 in population.
Termination condition 150 generations elapsed.

through evolution will end up being the fastest of the slow, tree-like agents.

The physical model

The physical model resembles a Carausius Morosus, sometimes referred to
as the laboratory stick insect, Indian stick insect, or just the “walking stick”.
There were several reasons for choosing the C. Morosus as a biological basis:

• The antennas have only two joints:
This point is essential, because the fewer joints, the simpler the an-
tenna is to control, and the smaller the search space for the GA is.

• The joints are both hinge joints (as opposed to ball joints):
They still seem to be complex enough for real Carausius Morosuses to
live just fine. This basically boils down to the “as simple as possible”
point in the introduction. Just like few joints are desirable, limiting the

52

Design of the Genetic Algorithms 3.1. METHODS

Figure 3.7: “Quickbeam”, the physical model that the CTRNN is to control. It
resembles a real Carausius Morosus. The axes that leg joint revolve around, are
marked by black lines. TC is the thorax-coxa joint, CF is the femur-tibia joint,
TT is the tibia-tarsus joint. Only the TC- and CF-joints were unlocked here.

TC
CF

FT

TT

movement of each joint makes the physical layout even simpler. For a
detailed description (measuring) of real Carausius Morosus antennal
system, see Krause and Dürr [2004] and Dürr et al. [2001].

• Antennal (and leg) movement data are available:
Actually, the C. Morosus is (by 2004) the only insect of which unre-
strained three-dimensional antennal movement data is available, [Krause
and Dürr, 2004]. This is potentially useful for evaluating simulation
quality.

• C. Morosus actively move the antennas:
This allow for studies of antennal control systems, and perhaps insight
into the connection between stepping patterns and antennal move-
ment.

The P. Computatrix of Beer [1990] wanders around in a two-dimensional
environment with simplified Newtonian physics. In this thesis, a three-
dimensional simulation environment called Breve is used. The Breve en-
vironment have (approximately) realistic physical features [Klein, 2006], so
there are a few things to consider before trying to use Beers’ controller
directly:

53

3.1. METHODS Design of the Genetic Algorithms

• Legs here have weight. In Beers environment they don’t.

• Legs here have exact angles. Legs are either up or down in Beers
environment.

• Inertia influence walking a lot. Beers environment is inertia-free.

• The walking gait of the C. Morosus is a lot slower than the gait(s) for
the P. Computatrix.

• The body layout of the C. Morosus cannot be assumed to equal the
body of the P. Computatrix (e.g. legs differ in length).

The task of the GA here was therefore to find proper weights, biases and
time constants so that the P. Computatrix controller could make Quick-
beam walk properly. To make this task as simple as possible, all but the
absolutely necessary joints of the C. Morosus were locked (see figure 3.7).
Also, the movement of the legs were limited so that stable gaits could be
“easily” achieved. Note that the last constraint here may seem superfluous,
or perhaps too limiting since a fitness function may easily penalize unstable
gaits anyway. The strategy does however allow semi-stable gaits to exist in
the population longer (e.g. not only “near-perfect” solutions will survive in
the beginning), so that population diversity is easily maintained. Addition-
ally, since the walking task is made “easy”, a faster convergence towards an
optimal solution is to be expected.

The exact layout of the physical model is drawn in figure 3.7 (page 53) . The
weights and length of all limbs are set according to measures from [Ekeberg
et al., 2004].

Population initialization

As already described in the method for evolving a highly fit CPG, seed-
ing the initial population with center-crossing CTRNNs should theoretically
improve both the quality and the speed of evolving a CTRNN. A central
question in this thesis is whether this theory can be applied also to other
evolutionary tasks.

During pacemaker evolution, all neurons were initialized so that they would
on average be maximally sensitive. In such networks, all neurons can easily

54

Design of the Genetic Algorithms 3.1. METHODS

affect other neurons. The network as a whole will therefore exhibit a very
wide range of dynamics compared to random networks [Mathayomchan and
Beer, 2002].

As can be seen from the network topology in figure 2.5 (page 26) it is not
possible to create a true center-crossing network for the locomotion con-
troller. The reason for this is that not all neurons have synaptic inputs
(sensor neurons do not, for example) so some neurons will be unaffected
by the rest of the network. Looking at the major point of center-crossing
networks, however, the reasons for their success may not be only that all
neurons are set up in a mutually advantageous interconnection. Single neu-
rons may benefit from being maximally sensitive anyway. A network of
such neurons will still yield a network of neurons that are more likely to give
useful (strong) responses to change in input, and therefore exhibit a wider
range of behaviours than random networks.

It would therefore be interesting to try and apply the bias adjustment (equa-
tion 3.5, page 48) at least to the neurons that do have incoming connections.
The point of maximum sensitivity should be at the negative of middle of the
sum of all inputs, just like for center-crossing neurons. In theory, this bias
should then out weight all inputs (on average) always keeping the neurons’
activity close to its null-surface.

To test this theory the bias of some neurons in the leg-controller network
were adjusted according to equation 3.5. Just like for the pacemaker genome,
the bias adjustment was done after all other genome values were set to ran-
dom or pseudo random values. The pseudo random values were calculated
in two ways:

1. An approximation to values of synaptic weights that were known from
the leg controller of the P. Computatrix [Beer, 1990][pp. 178-180] was
made. In other words: The genes were randomized to some value close
to the values of Beer [1990] (see calculations below).

2. For the pacemaker part of the genome, the resulting genome from the
best pacemaker evolution (task t11) was injected. These values were
also randomized a “neighborhood” of the earlier result.

The only neurons with synaptic inputs were motor neurons (M). The calcu-
lations (using equation 3.5) for the biases were (based on values from Beer

55

3.1. METHODS Design of the Genetic Algorithms

[1990]) were as follows:

Mfootθ =
−(−4 + 10)

2
= −6/2 = 3 (3.6)

Mstanceθ
=

−(−10 + 10)
2

= 0/2 = 0 (3.7)

Mswingθ
=

−(10 +−15)
2

= 5/2 = 2.5 (3.8)

Because the genotype representation consists of values between 0 and 224,
and since these values are scaled into the range [−20 20] in genotype →
phenotype conversion, the resulting values to initialize the genes for these
neurons must be a reverse mapping of the genotype→ phenotype conversion.
The calculations are therefore the exact opposite of equation 3.2 (page 42):

Mfootθ = (GeneMfootθ
)− 224 40

224
) + 20

=⇒

GeneMfootθ
=

Mfootθ − 20
40
224

+ 224

=
3− 20

40
224

+ 224 =
48234496

5

= 9646899 +
1
5
→ 9646899 + e

Mstanceθ
= (GeneMstanceθ

)− 224 40
224

) + 20
=⇒

GeneMstanceθ
=

0− 20
40
224

+ 224

= 8388608

Mswingθ
= (GeneMswingθ

)− 224 40
224

) + 20
=⇒

GeneMswingθ
=

5/2− 20
40
224

+ 224

= 9437184

56

Design of the Genetic Algorithms 3.1. METHODS

Where e is an additional factor to add, so that the insect actually applies
enough force to stand when no other neurons are firing (found through trial
and error with the breve simulation).

As stated above there are no synaptic inputs for sensor neurons. There
is however one external current for each sensor: The sensory reading. By
flipping this value between some positive value (sensor on) or the exact
opposite negative value (sensor off) 4 the calculation of a proper bias can
still be estimated. The external input can be considered equal to a incoming
connection, and because this connection is equally strong and weak, the sum
of inputs must be 0. Referring again to equation 3.5 the bias corresponding
to the null surface of these neurons must always be:

Sθ =
−0
2

= 0 (3.9)

Or, no bias. The value for the gene should therefore be somewhere (ran-
domized) around:

GeneSθ
==

0− 20
40
224

+ 224 = 8388608 (3.10)

Genotype to phenotype conversion

The genotype to phenotype conversion for locomotion controller evolution
was very much like the one for pacemaker evolution. The first genes of the
genome were actually identical to the pacemaker genome, so the result from
t11 could be directly injected into the locomotion controller genotype. The
genome was however a bit longer (because there were many more neurons
and synapses), and that it converted some of the genes into several features
in the phenotype. This last point was due to the fact that it was known from
Beer [1990] that all legs were created equal, and all sensor neurons shared
the exact same properties. The genome structure is shown in figure 3.8.

4The external current of a sensory neuron is positive when sensory input is received.
This causes the firing frequency to go towards 1. When no sensory input is received, the
external current is set to a negative value of the same magnitude as the positive one,
rather than setting it to 0. This ensures that the firing frequency saturates towards 0,
rather than 0.5.

57

3.1. METHODS Design of the Genetic Algorithms

Figure 3.8: The genome layout for locomotion controller evolution.
<pacemaker genes> <locomotion controller genes>

(a) The basic layout of the genome, after addition of the locomotion
controller genes.

θstance τstance θswing τswing θfoot τfoot θsensors τsensors

(b) The layout of the locomotion genes part of the genome. Each gene is a 24-
bit unsigned byte. Note that some of the genes are shared; they each result in
realization of several features in the phenotype. All legs are equal, and the sensor
neurons inside each leg equal too. This narrows the search space substantially.

Fitness evaluation

Good performing creatures should walk using stable gaits. To reflect this
requirement in the fitness evaluation, the following simulation setup was
used:

At each fitness evaluation, a new Quickbeam body was initialized, and a new
CTRNN (corresponding to the genome to test) was connected to the body.
Right legs were placed in a forward direction, while the opposite was true
for the left legs (so that every fitness evaluation started off equally). The
creature was then allowed to try to walk on a flat surface for 2500 CTRNN
integrations (25 seconds), and the distance from start to end of this walk
was measured.

To add some extra selection pressure, an artificial force that could potentially
push the creature backwards was applied whenever anything but the legs
were touching the ground. Falling was therefore penalized quite hard, but
still not hard enough to remove the creature if it was able to get up again
and continue walking. The idea of this fitness scheme, was to quickly remove
the creatures who just fell and never rose again, and still maintain a wide
population of other solutions. Good walks with occasional falling could
possible improve to become very good walks if properly recombined. There
is also a possibility that non-falling solutions could improve using some genes
from the falling-solutions.

58

Design of the Genetic Algorithms 3.1. METHODS

Table 3.2: Parameters of the GA for evolving leg coordination.
Function Description
Fitness evaluation Longest walk for 500 neural network in-

tegrations.
Genotype representation Vector of 24-bit unsigned bytes (one

byte per gene).
Initialization Pseudo-random genes. First genes

were placed close to result from by
pacemaker evolution. Other were ad-
justed according to the P. Computatrix
controller. Others again were placed
close to center-crossing networks.

Mutation Random add/subtract x (where 0 <
x < 100000) from gene.

Mutation probability 5% of the offspring.
Number of offspring 2.
Parent selection 2 from best quartile of population (=

2/25 = 8% of best).
Population size 100 individuals
Recombination Two-point crossover.
Survival selection Replace worst 2 of population.
Termination condition 150 generations.

The genetic algorithm

A summary of the different GA parameters can be found in table 3.2.

3.1.5 Evolving turning (t2)

Turning is an essential behaviour for an agent to aim for a specific target
in it’s environment. A turning system has at least one sensor, and this
sensor must affect locomotion so that the insect moves properly as a function
of the sensory input. Since other behaviours, such as obstacle avoidance
ultimately depend on the quest for a specific target, it would be natural to
evolve turning on top of straight locomotion, before other behaviours are
considered. It is therefore the first real navigational task evolved here, and

59

3.1. METHODS Design of the Genetic Algorithms

is numbered t2 in the sequence of incremental steps.

In this thesis an olfactory sensor model will be used to aim at targets (see
Kodjabachian and Meyer [1998] for results from evolving a similar (though
based on GP) insect controllers using olfactory sensing). The real Carausius
Morosus uses the flagellum of its antennas to sense pheromones, and a solu-
tion inspired on this will be used here. There are several ways to implement
an apparatus for turning it self. As already mentioned in section 3.1.1 it
is possible to achieve turning by interfering with the stepping frequency on
each side of the insect (e.g. slowing down and/or increasing stepping fre-
quency for one side of the body). It is not apparent how to do this, however,
so a rough approximation is suggested here, and the rest is left to evolution.

Population initialization and network structure

The task at hand was to make odor sensing affect the direction Quick-
beam walked. From this requirement, the following network structure was
suggested (with no other biological basis than that differing the stepping
frequency is desirable):

Because there are two olfactory sensors, there must be two sensor neurons.
If these sensors can affect the middle legs, then turning should be possible.
This is true, because if the middle leg is affected (by a synaptic connec-
tion), then the pacemaker of that leg is indirectly affected, because front
and back legs sensors will be tilted out of sync with the walking gait (Beer
[1990][pp.109-110]). It may also be that the insect will learn to step back-
wards with one leg (if the synaptic connection is strongly negative) while the
legs on the other side of the body is pushing the insect forward in the normal
manner. That would definitively result in turning on the spot. Evolution
may of course also end up with a totally different design, but that OK too
of course, as long as i works.

So how should the connection between the sensors and the legs be? One
possible solution is to consider the required direction to turn as a function of
the difference between the sensor values of the two antennas. Two examples
can be considered to see that this will hold: 1) If the sensors fire equally
strong (the same amount of odor is present on both sensors), then the target
must be either right in front of the insect, or right behind it. 2) If one sensor
is firing stronger than the other, then the odor source must be on the side

60

Design of the Genetic Algorithms 3.1. METHODS

Figure 3.9: A suggestion for a neural network controlling turning by subsuming the
locomotion controller. S1 and S2 are the two sensory neurons. O1 and O2 are two
“hidden” neurons keeping a temporal memory. L2 and R2 are the (stance neurons
of) the left and middle legs locomotion controllers, respectively.

S1 S2

O1 O2

L2 R2

that is firing strongest. To allow evolution to make use of this, an additional
layer of neurons were introduced, so that the odor sensing could change the
state of two (possible bifurcative) neurons that again affect walking. If these
neurons were bifurcative they could potentially adapt four stable states (left
on and right off or right on and left off, etc.). The creature would then be
able to keep a temporary memory (one memory per network state) about
where it is/was walking, and it should therefore be robust to perturbations.
The suggested network can be seen in figure 3.9.

The population was seeded with networks of this type, and the following
gene adjustments were done to improve the evolutionary search:

1. Weights from output neurons (O1 and O2 in figure 3.9) to middle legs
were initialized negative. This was done to encourage solutions where
the middle leg is slowed down or even moved backwards.

2. Additional weights were added to ensure that the output neurons were
bifurcative. They should therefore be able to keep state by flipping
between several network states (four states: neuron O1 “on” and O2

61

3.1. METHODS Design of the Genetic Algorithms

“off”, O1 “off” and O2 “on” etc.). These weights were initialized to
some value > 4, ensuring that they were initially bifurcative.

3. All earlier evolved genome were set to values close to what had been
evolved in t1.

4. The network was initialized as center-crossing. Note that this included
readjusting the earlier evolved bias of the leg-controller stance neuron,
as it now had an additional connection on it (from either of the output,
O, neurons).

Genotype to phenotype conversion

The genotype to phenotype conversion was similar to that of the two earlier
evolutionary searches. The exception was that the genome was a bit longer
(see figure 3.10).

Figure 3.10: The genome layout for turning evolution.
<pacemaker genes> <locomotion controller genes>

<turning controller genes>
(a) The basic layout of the genome, after addition of the turning
controller genes.

θS1/S2
τS1/S2

θO1/O2
τO1/O2

Si → Oi Si → O+/−1 Oi → Oi+/−1 Oi → L/R− leg
(b) The turning controller part of the genome. Note that some genes are
shared by several phenotype features.

Fitness evaluation

The task was to make the insect walk towards some odor source. To measure
the fitness of this, the following simulation setup was used:

At each evaluation, a new Quickbeam was created and a new CTRNN cor-
responding to the genome was connected to the creature, just like for earlier
evolutions. In addition to this, a food patch was introduced in the simulated

62

Design of the Genetic Algorithms 3.1. METHODS

world. Quickbeam could “smell” the odor from this patch using the flagel-
lum. A mathematical function describing the distribution of“odor” from the
food was set to be the simulated sensory reading of each of the antennas.
The function was:

150−Adistance(target)

150
· 5 (3.11)

for each antenna (A). Considering a sensor range of about 300 (Breve mea-
sure of length) the sensor reading was therefore in the range −5 (for a
distance of 300) to 5 (for a distance of 0). This allows for a high sensitivity,
because the range is within the most sensitive range of a sigmoid activated
neuron. A snapshot from the simulation is shown in figure 3.11.

Quickbeam was allowed to walk two times for 400 neural network integra-
tions (four seconds) in this environment, and the decrease in distance to the
food-patch was measured every time. The first walk was with the food-patch
to the left, the second was with the food-patch to the right. This double-
evaluation scheme was used to avoid the population to converge toward a
local optima where all creatures are good at walking just to the left/right.
This could happen if the initial position of the legs was abused, for example.
The aggregated decrease in distance to the food was finally returned as the
fitness of the creature.

Because the population was initialized with creatures that were close to
walking in a straight line, there should exist many creatures that would
do walking. Most should just wander somewhere, perhaps only marginally
affected by the sensory readings, and will over time become extinct. The
walks would however be expected to be quite different, because the dynamics
of the (center-crossing and bifurcative) networks should in theory be wide.
Because not all those who wander are lost, the search will over time begin
to focus only on individuals that actually approach the food-patch.

The genetic algorithm

A summary of the different GA parameters can be found in table 3.3.

63

3.1. METHODS Design of the Genetic Algorithms

Figure 3.11: A creature beginning to approach a simulated food-patch.

3.1.6 Evolving obstacle avoidance (t3)

In the real-world, it is not always possible to walk directly toward some goal.
There may be obstacles that force an agent to at least temporarily walk in
a different direction before the goal is reached. To allow Quickbeam to cope
with such environments, a system for enforcing walking around obstacles is
necessary.

Population initialization and network structure

To enable Quickbeam to extract tactile information from his environment,
appropriate sensing devices are required. Just like for olfactory sensing, the
system should be able to turn in specific directions based on sensory input,
so a tactile sensor was added to each of the antennas. The sensors were then
connected to two sensor neurons, so that antennal contact would lead to a
increase in membrane potential of each sensor neuron. No contact would
lead to a decrease in the potential. If the sensor input should have any
effect on turning, it must in some way interfere with the legs. Because the

64

Design of the Genetic Algorithms 3.1. METHODS

Table 3.3: Parameters of the GA for evolving turning.
Function Description
Fitness evaluation Highest ability to approach a food-

patch for 400 neural network integra-
tions.

Genotype representation Vector of 24-bit unsigned bytes (one
byte per gene).

Initialization Pseudo-random genes. First genes
were placed close to result from by
pacemaker evolution. Other were ad-
justed according to the P. Computatrix
controller. Others again were placed
close to center-crossing networks.

Mutation Random add/subtract x (where 0 <
x < 100000) from gene.

Mutation probability 5% of the offspring.
Number of offspring 2.
Parent selection 2 from best quartile of population (=

2/25 = 8% of best).
Population size 100 individuals
Recombination Two-point crossover.
Survival selection Replace worst 2 of population.
Termination condition 250 generations elapsed.

insect is already composed of a set of subsuming modules (e.g. individual
legs subsumed by locomotion, locomotion by olfactory turning) it should
be straightforward to subsume the olfactory turning system too. This way
it should be possible to refuse the olfactory turning system to turn in a
specific direction when tactile sensing reveals that it is not actually possible
to walk in that direction. A synaptic connection going from the tactile
turning system into the output neurons of the olfactory system should be a
sufficient minimum to achieve this.

To keep a temporal memory of tactile information, a set of interconnected
hidden neurons were also added, analogous to what was done in the olfactory
turning controller. These neurons should then together be able to take on
several network states. The output of these hidden neurons were then fed
into the output neurons of the olfactory turning controller to subsume it.

65

3.1. METHODS Design of the Genetic Algorithms

In addition to the network topology described above, another small addition
to the network was made. Because the position of the front legs can tell
something about the direction the insect is walking in, it can be interesting
to include angle information from the fore legs. If the left leg is in a forward
position, then the insect is (potentially) moving right, for example. Indeed,
real C. Morosuses do at least have temporal connections between the fore
legs and their antennas ([Krause and Dürr, 2004] and [Dürr et al., 2001]).
For this reason, one connection from each of the forward angle sensors to
every hidden neuron was added. The complete suggested network topology
is shown in figure 3.13.

Genotype to phenotype conversion

The genotype to phenotype conversion was similar to that of earlier evolu-
tions. The only difference was conversion of the newly added genes. The
complete gene can be seen in figure 3.12.

Figure 3.12: The genome layout for evolution of obstacle avoidance.
<pacemaker genes> <locomotion controller genes>

<turning controller genes> <obstacle avoidance genes>
(a) The basic layout of the genome, after addition of the obstacle avoidance
genes.

θS1/S2
τS1/S2

θH1/H2
τH1/H2

Si → Hi Hi → Oi L1 → H1 R1 → H2 Hi → Hi

(b) The obstacle avoidance controller part of the genome. Note that
some genes are shared by several phenotype features.

Fitness evaluation

To evaluate the fitness of the creature, the following simulation setup was
used:

For each fitness evaluation a new Quickbeam was created and a CTRNN
corresponding to the genome was created. In addition to the food-patch in
the evolution of turning, two obstacles were added. The creature had to find

66

Design of the Genetic Algorithms 3.1. METHODS

Figure 3.13: A network for avoiding obstacles. S1 and S2 are tactile sensors. L1 and
R1 are (forward angle sensors of) the front leg controllers. H1 and H2 are “hidden”
neurons that merge sensory information and keep a temporal tactile memory. O1
and O2 are the output neurons of the olfactory turning system.

S1 S2

H1 H2

O1 O2

L1 R1

Figure 3.14: Avoiding two obstacles.

67

3.1. METHODS Design of the Genetic Algorithms

the way around these. To encourage the evolution of temporal memory, the
obstacles were placed next to each other, with the second obstacle slightly
more in the way than the first one. Temporal memory is useful in this
situation, because remembering to keep straight for a while after the first
contact would be beneficial. The ideal path is to just slightly touch the first
obstacle, then remember to keep straight on and then slightly touch the
second obstacle. The environment did also penalize creatures not subsuming
the olfactory turning controller quite hard. If the insect blindly followed
odor scent, it would crash into the obstacles, and most probably get stuck
between them.

It was further assumed that the creature was now capable of turning both
right and left, and for this reason only one direction was tested for each
evaluation. There was however a 50/50 chance for the wall to be on either
the right or the left side of the creature. The returned fitness measure was
the difference in start-off distance to the food-patch, and end distance to
the food-patch. The simulation was run for 2500 CTRNN time-steps (25
seconds). A snapshot from the simulation can be seen in figure 3.14.

68

Design of the Genetic Algorithms 3.2. RESULTS

3.2 Results

As mentioned in the introduction of this chapter, there are basically two
questions to answer when evaluating the results of the evolutions: 1) Does
the evolutionary search technique provide a usable solution for the task?
and 2) Does the technique provide a solution faster and/or better than
other (traditional) techniques?

In an attempt to elaborate on these two questions a series of compara-
tive analyses are presented here. Using naive search (random and/or non-
incremental) as a basis for comparison, each of the techniques are evaluated
in turn.

3.2.1 Evolving a rhythmic CTRNN (t11)

The solutions applicability to the task

The task of evolving a rhythmic CTRNN was to generate a CPG for each leg
controller of the simulated C. Morosus insect. Because it was not desirable
to do this evolution in the body of the C. Morosus directly, a surrogate
referred to as the “pacemaker creature” was used. To provide reliable results,
the GA was run 15 times using this creature, and on every of these runs,
highly fit rhythmic CTRNNs were found, and the creatures managed to
“walk” reliably using several steps with these networks. Even at the first
generation, the populations’ best individual walked using several steps, but
the fitness also continued to increase toward generation 150. The average
fitness improvement for all 15 runs is shown in figure 3.15.

Because a surrogate for the C. Morosus creature was used, it is difficult to
evaluate the solutions applicability to the final task. The background from
Beer [1990] does however provide a set of observations from real pacemakers
(Kandell 1967 in Beer [1990]). These observations make up a very good
basis for at least comparing this pacemaker to the pacemaker of Beer [1990].
The argument for this is simple: If the pacemaker evolved here exhibit the
same properties as the single pacemaker cell of Beer [1990], then it should
work similarly in a similar leg controller.

69

3.2. RESULTS Design of the Genetic Algorithms

Figure 3.15: Fitness (Breve measure of length traveled) of best individual in pop-
ulation, averaged over 15 runs.

 3.05

 3.1

 3.15

 3.2

 3.25

 3.3

 0 20 40 60 80 100 120 140 160
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

fit
ne

ss

po
pu

la
tio

n
w

id
th

generation

fitness of best
population width

To study the existence of any of these properties, artificially injected cur-
rents were applied to the pacemaker. The purpose of these currents were
to simulate synaptic inputs to the cell. The effect on the membrane poten-
tial and firing frequencies of the cells were then observed, and the resulting
behaviour of the circuit can be seen figure 3.16. This behaviour can be
interpreted as follows, based on Kandells observations (printed in italic):

* A sufficiently hyper polarized cell is silent.
This is certainly true. When injected with a current of -15, the cell is turned
completely silent (milliseconds 4000 to 7000). A value of -15 is strong, but
plausible, as the connections to the pacemaker have a weight in the range
[−20 20] .

* A sufficiently depolarized cell fires continuously.
This is certainly true. When injected with a current of 15, the cell fires
continuously (milliseconds 13000 to 16000).

* Between these two extremes, it rhythmically produces a series of relatively
fixed duration bursts, and the length of the interval between bursts is a con-

70

Design of the Genetic Algorithms 3.2. RESULTS

Figure 3.16: Behaviour of the pacemaker circuit (IO-neuron reading), depending
on injected current into the IO-neuron.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

fir
in

g
fre

qu
en

cy

milliseconds

pacemaker frequency

-15

-10

-5

 0

 5

 10

 0 5000 10000 15000 20000 25000 30000 35000 40000

m
em

br
an

e
po

te
nt

ia
l

milliseconds

pacemaker membrane potential

-15

-10

-5

 0

 5

 10

 15

 0 5000 10000 15000 20000 25000 30000 35000 40000

ex
te

rn
al

 c
ur

re
nt

milliseconds

pacemaker external current

71

3.2. RESULTS Design of the Genetic Algorithms

tinuous function of the injected current.
The first part is certainly true. The cell(s) successfully produces fixed du-
ration bursts. The other part of the question is debatable. There does not
seem to be any continuous dependency between injected current and burst
frequency. At least not when current is injected only into the IO-neuron
(and not into the hidden neuron as well) (milliseconds 16000 to 40000).

* A transient depolarization which causes the cell to fire between bursts can
reset the bursting rhythm.
This is true. After a 4 second depolarization that makes the pacemaker fire
prematurely (milliseconds 11000 to 15000), the network falls back into a new
rhythm.

* A transient hyper polarization which prematurely terminates a burst can
also reset the bursting rhythm.
This is true also (milliseconds 4000 to 8000).

It therefore seems that to some extent, the GA provide a usable solution to
the task. The results from the evolution of the locomotion controller (section
3.2.2) will show if this functionality is actually sufficient for coordinating legs
into stable gaits.

Comparative analysis

The second major question to ask, is if the results really are a consequence
of the seeding techniques applied. Do they really lead to faster evolution
of a CPG? Is the quality of it any better than for solutions from other
techniques? To approach an answer for either of these questions, it can be
interesting to compare the average quality of different techniques, using a
random (non-seeded) evolutionary search as a common reference. To collect
data for comparison, additionally 15 evolutionary searches without each of
the techniques were run. So, all other things being equal, 15 runs without
center-crossing networks were run, 15 runs without bifurcative neurons were
run, and finally 15 runs without neither of the techniques were run. The
results are shown in figure 3.17, 3.18 and table 3.4.

As can be read from the graphs, the results of seeding the population with
center-crossing networks are very promising. The fitness of the best CTRNN
is more than twice the best of the random CTRNNs. This is true even after

72

Design of the Genetic Algorithms 3.2. RESULTS

Figure 3.17: Best individual, averaged over 15 runs.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160

fit
ne

ss

generation

seeded with center crossing networks and bufurcative neurons
without bifurcative neurons (but using center-crossing networks)
without center crossing networks (but using bifurcative neurons)
without neither center crossing networks nor bifurcative neurons

Table 3.4: Best pacemaker circuit after 1 and 150 generations (G) using different
search techniques. Values are in mean (µ), standard deviation (σ). Additionally
the standard deviations percentage of the mean (relative standard deviation / co-
efficient of variation, Cv) is included for easier comparability.

Center-Crossing Non-Center-Crossing
Bifurcative Non-Bifurc. Bifurcative Non-Bifurc.

G 1 150 1 150 1 150 1 150
µ 3.081 3.282 2.451 2.807 1.100 1.342 1.200 1.293
σ 0.300 0.219 0.407 0.251 0.347 0.583 0.353 0.354

Cv 9.725% 6.661% 16.61% 8.930% 31.52% 43.47% 29.39% 27.40%

73

3.2. RESULTS Design of the Genetic Algorithms

Figure 3.18: 15 runs averages

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160

po
pu

la
tio

n
w

id
th

generation

seeded with center crossing networks and bufurcative neurons
without bifurcative neurons (but using center-crossing networks)
without center crossing networks (but using bifurcative neurons)
without neither center crossing networks nor bifurcative neurons

(a) Difference between best and worst individual per generation (population width).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160

fit
ne

ss

generation

seeded with center crossing networks and bufurcative neurons
without bifurcative neurons (but using center-crossing networks)
without center crossing networks (but using bifurcative neurons)
without neither center crossing networks nor bifurcative neurons

(b) Worst individual per generation.

74

Design of the Genetic Algorithms 3.2. RESULTS

the first generation, so the GA has arrived at better results faster too. It
also seems that center-crossing networks really help for maintaining pop-
ulation width. From figure 3.17 it can be seen that the center-crossing
searches generally continue to introduce better solutions for a larger num-
ber of generations than the other searches. It can also be seen from 3.18b
that the center-crossing searches continue to introduce worse solutions. The
random/bifurcative-only solutions seem to not introduce much new at all,
which is a result of convergence into a local optimums. This is also seen
from the extremely high standard deviation for the last generation of these
searches. The results should come as no surprise, as they correspond well
to what has been found on earlier research of center-crossing CTRNNs (see
Mathayomchan and Beer [2002]).

Another, perhaps even more interesting result (with more novelty value), is
that populations with bifurcative neurons outperform non-bifurcative
neurons qualitatively. As stated in section 3.1.3, it was expected that a
population with enforced bifurcative neurons should have a “head start” of
other neurons because they were already capable of maintaining two possible
states to flip between. It was somewhat surprising that bifurcative neurons
were still ahead of non-bifurcative neurons after 150 generations. After all,
neither the bifurcative condition nor the center-crossing condition were en-
forced throughout the search, the neurons were only placed in a estimated
fruitful region of the search space. In theory the center-crossing networks
should also be able to reach this region of the search space, though perhaps
a bit slower. The center-crossing-only search does however not appear to
approach the same performance as the search with both center-crossing and
bifurcative neurons.

The increased performance when seeding with bifurcative neurons could
be due to the more complex dynamic properties of the networks (several
steady states per neuron), which would result in higher diversity (figure
3.18a), and therefore allow recombination to make better progress (avoid
local optimums, see section 1.5). However, this does not explain the much
better fitness already after generation 1 (two of the searches, 3 and 7, already
found an optimum at generation 1). So there must be other factors that
make a difference too.

A more elaborative explanation is that a rhythmic CTRNN with this topol-
ogy must have at least one bifurcative neuron to exhibit pulse behaviour. As
outlined in section 3.1.3 (page 43), the working of such a rhythmic CTRNN

75

3.2. RESULTS Design of the Genetic Algorithms

can then at least be simply explained. This assumption also allows for some
other plausible interpretations of the graphs:

• If at least one bifurcative neuron is required, then providing several
such neurons in the initial population should be highly beneficial. If
these neurons additionally are maximally sensitive to change, the neu-
rons can easily cooperate into pacemaker behaviour. This explains why
the seeded searches are initially good, but shows only slight improve-
ment for the remaining generations (the neurons are already placed in
or near an optimum).

• If at least one bifurcative neuron is required, then a genetic search
not seeded with bifurcative neurons will have to find one through re-
combination and/or mutation. This explains why the search seeded
with center-crossing networks (but without bifurcative neurons) per-
form quite well, but uses longer time to improve. It also explains the
slower convergence of the population as a whole for non-bifurcative
populations.

• It is natural that populations seeded with bifurcative neurons do not
perform well unless they are combined with center-crossing networks.
Bifurcative neurons alone cannot easily realize their true potential un-
less the bias of each neuron is in a range where the neuron respond
to input. Non-responding neurons will simply never be able to flip
between states. This explains why only some of the bifurcative-only
searches (table 3.4) reach a proper result, while most of the searches
perform poorly. The result is a very high standard deviation from the
average result.

As a summary, the genetic search seeded with both center-crossing networks
and bifurcative neurons have a high probability of resulting in a population
that represent a wide range of good solutions to a pacemaker CTRNN. It
is natural that this leads to good fitness values in a genetic search that is
focused on the evolution of a pacemaker. As can be seen from table 3.4, this
combination not only produces the best results on average. It also provides
results most steadily of all searches (it has a high probability of converging
toward a good solution).

76

Design of the Genetic Algorithms 3.2. RESULTS

Figure 3.19: Fitness of best creatures when evolving the locomotion controller.
Averaged over 15-runs.

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

 0 50 100 150 200 250
 0

 50

 100

 150

 200

 250

fit
ne

ss

po
pu

la
tio

n
w

id
th

generation

fitness of best
population width

3.2.2 Evolving a locomotion controller (t12)

The solutions applicability to the task

The task of this evolution was to find proper weights, biases and time-
constants to make the locomotion controller of Beer [1990] work for a sim-
ulated Carausius Morosus. A GA was run 15 times on this problem, and
every one of these searches succeeded in making the insect walk reliably.
The resulting fitnesses can be seen in figure 3.19 and table 3.5.

Comparative analysis

The network topology of the locomotion controller was copied from the con-
troller of Beer [1990]. For reasons explained before (section 3.1.4, page 51)
the technique of enforcing bifurcative neurons did not apply to this evolu-
tion. It is also difficult to enforce center-crossing networks, when many of

77

3.2. RESULTS Design of the Genetic Algorithms

Table 3.5: Fitness of best after 1 and 250 generations (G) for populations with and
without individuals with bias adjusted to the center-crossing equation. Values are
the mean (µ), standard deviation (σ) and relative standard deviations (Cv) for 10
runs.

With c.c. bias Without c.c. bias
G 1 250 1 250
µ 134.9 219.8 18.58 40.60
σ 17.61 28.32 9.828 26.96

Cv 13.06% 12.88% 52.90% 66.41%

the neurons are sensor neurons (which are not influenced by other neurons).
The two techniques left to be inspected were therefore the use of incremen-
tal evolution and adjustment of bias (as if we had center-crossing networks,
see section 3.1.4) for some of the neurons. Incremental evolution is best
compared together with the other incremental tasks, and will be considered
in section 3.2.5. The only interesting result left here is therefore about the
enforced bias.

To find differences between evolutions with and without enforced center-
crossing-like bias, the same experimental technique was applied as for the
pacemaker evolution. 15 evolutionary searches were run with the bias ad-
justed according to equation 3.5 (page 48), and 15 evolutionary searches
with random biases were run. For all of these runs, the pacemaker part
of the genome was randomized in the neighborhood of the earlier evolved
result. In sum, anything but the bias adjustment was kept equal for the two
different types of evolution.

From figure 3.20 we can see that, just like for pacemaker evolution, bias
adjustment according to the center-crossing equation (3.5) leads to a search
that significantly outperforms populations with random biases. Even after
the first generation, the population with adjusted biases have individuals
performing about three times better than the best individual in a random
population does after 250 generations. For generation 250 of the search with
adjusted biases, the performance has reached almost five times the fitness
of the random search.

For reasons described earlier (chapter 1), it should in general be benefi-
cial for a genetic search to maintain a diverse population. It may sound

78

Design of the Genetic Algorithms 3.2. RESULTS

Figure 3.20: Comparing the evolution of a leg controller. Averaged over 15 runs,
with and without adjusting the bias according to the center-crossing equation.
Showing best individual in population.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

fit
ne

ss

generation

with center-crossing neurons
random neurons

79

3.2. RESULTS Design of the Genetic Algorithms

Figure 3.21: Same as in figure 3.20 but showing:

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

po
pu

la
tio

n
w

id
th

generation

with center-crossing neurons
random neurons

(a) Population width.

-150

-100

-50

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

fit
ne

ss

generation

with center-crossing neurons
random neurons

(b) Worst individual in population.

80

Design of the Genetic Algorithms 3.2. RESULTS

counter-intuitive that a specific enforcement (of bias) actually helps main-
tain diversity, but the averages of figure 3.21a shows that this holds for the
evolutionary search done here, just like it did for the pacemaker evolution.
Already in generation one the population with adjusted biases has more
than twice the width of the random population. It also maintains a higher
width throughout the whole search. Why does this happen?

Looking at figure 3.20 and 3.21 hints at an answer. From graphs 3.20 and
3.21b, it can be seen that populations with adjusted bias have a steady
removal of bad-performing individuals.5 The random search, on the other
hand, seem to follow a “platform progression” where improvement is done
in stages. From this it seems that random genome tend to converge
towards local optima. This is also supported in table 3.5 where it can be
observed that random searches end up in a very wide range of fitnesses (very
large ratio of standard deviation), while seeded searches generally end up in
a more narrow range (low ratio of standard deviation) of (better) results.

An explanation of this effect, is that random searches at times find network
parameters (biases) that makes one (or a few) neurons capable of exhibiting
interesting (improved) behaviours. The search then quickly approaches a
CTRNN where this situation is maximally abused (an optimum). No further
progress is then made until the same happens again for some other neuron.
Given the 5% mutation rate, and the very low chance of actually properly
mutating the correct gene (there are only 4 biases, but 25 genes total), it
should be quite evident that chances are small that any further improvement
will happen within 150 generations.

For the searches with biases adjusted to the center-crossing equation, the
story is quite different. All such searches already have neurons that are
maximally sensitive. The evolutionary search is therefore mainly focused on
moving biases (just enough) away from this situation to have an optimum.
It is natural that this progresses in a more steady manner, because the biases
of all neurons are moved at away from sensitivity at the same time. Such
a search will not suddenly jump into better fit regions and drop population
width. The searches therefore generally end up in a narrow range of much

5Remember that replacement is done by swapping the worst two individuals in the
population with the new offspring of the best quartile of the population. This replace-
ment scheme is the same both for evolution with and without adjusted biases, of course.
The performance of the worst individual therefore points to how diverse solutions recom-
bination creates for each generation.

81

3.2. RESULTS Design of the Genetic Algorithms

better-performing results.

3.2.3 Evolving turning (t2)

The solutions applicability to the task

The task for evolving turning was to learn to move towards a simulated
food patch. A GA was run 10 times on this task, and for every of these runs
evolution succeeded in finding CTRNN properties that made the insect walk
significantly closer to the food patch. The fitnesses did however differ some
for each run. A graph for the fitness of the best performing individuals, and
a statistical sum up of the 10-runs, are shown in figure 3.22 and table 3.6
(page 82).

Figure 3.22: Performance of best individuals averaged for 10 evolutionary searches.

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 0 50 100 150 200 250
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

fit
ne

ss

po
pu

la
tio

n
w

id
th

generation

fitness of best
population width

The solution seems applicable to the task, but why did evolution end up
with exactly this solution? As outlined in section 3.1.5, the general idea
was to have a network of two neurons that could force each other into dif-
ferent states depending on the difference between the two sensory readings
(right/left). This way the network should be able to switch between inhibit-

82

Design of the Genetic Algorithms 3.2. RESULTS

Figure 3.23: Studying the behaviour of the turning controllers’ subsumption of the
locomotion controller.

 0

 50

 100

 150

 200

-200 -150 -100 -50 0

y-
po

si
tio

n

x-position

path
food

(a) The path chosen.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

fir
in

g
fr

eq
ue

nc
y

milliseconds

left neuron
right neuron

(b) The firing frequency of the neurons in the turning lobe.

83

3.2. RESULTS Design of the Genetic Algorithms

Table 3.6: Performance of best individuals. Mean (µ), standard deviation (σ) and
relative standard deviation (Cv) for 10 runs.

Center-Crossing Non-Center-Crossing
Bifurcative Non-bifurc. Bifurcative Non-bifurc.
G. 1 G. 250 G. 1 G. 250 G. 1 G. 250 G. 1 G. 250

µ 74.25 122.8 71.93 121.6 61.39 92.73 42.98 84.87
σ 22.81 24.84 14.64 16.95 29.09 26.00 9.562 30.18

Cv 30.71% 20.23% 20.34% 13.94% 47.38% 28.04% 22.25% 35.56%

ing the right/left middle leg, and thereby enforce the insect to turn or just
walk straight forward. To inspect whether this was what was really going
on in the network, the following mini-study was done, based on the best
genome from any of the runs (run 2):

• Two artificial “probes” were connected to the right and left hidden
neurons in the insects turning lobe, so that the neurons firing frequen-
cies could be read.

• A slightly adjusted fitness evaluation run was set up: The creature
was allowed to walk for 70 seconds, and during that time the following
happened:

- At time step 0, a food patch was put to the left of the insect.

- After 2.50 seconds, the food patch was moved to the right of the
insect.

- After additionally 3.75 seconds, the food patch was moved back
to the left again.

- Between seconds 14 and 15 the patch was moved swiftly (1/2
second) right → left → right to simulate a sensor disruption.

- For every 0.5 seconds the position of the insect was recorded
(figure 3.23a).

The resulting behaviour of the insect can be seen in figure 3.23. At initial-
ization, both neurons for a short time seem to adopt a non-firing state. The
insect soon start to fire strongly on the left neuron though, because of the
strong left sensor reading. The insect then starts to move left. After 2.5
seconds the food patch is moved to the right and after some short period

84

Design of the Genetic Algorithms 3.2. RESULTS

of time the insect drops the commitment to move left, and shortly there-
after starts to excite the neuron that will force the locomotion controller to
walk right instead. The food is however moved back to the left again, before
movement to the right is really begun. The insect then moves neither right
nor left for nearly 10 seconds. This most probably happens because both
neurons fire quite strong now (the insect is nearer the food), so neither of
the neurons strongly suppress the other. After some time the left neuron
takes over though, and the insect starts moving left until the food-patch is
right in front of it (about second 45). The sensory readings are then more
or less equal for a while, so both neurons eventually adopt their non-firing
state, and the locomotion controller can move straight forward without be-
ing subsumed.

As can be seen from figure 3.23b, the short “sensor disruption” have no
visible effect on the left hidden neuron of the turning lobe. Walking is not
altered, so the net seems quite robust to at least minor disruption.

Comparative analysis

It is very interesting to study the evolution of turning when populations
are initially seeded with bifurcative neurons and center-crossing networks.
Looking at the comparison between the best performing individuals per
generation (figure 3.24), it bears a clear resemblance to the evolution of the
CPG from section 3.2.1. The best performance is when bifurcative neurons
are combined with center-crossing networks. Next to this is the center-
crossing-only search, and then the bifurcative-only search. Random search
perform worst.

From figure 3.25 is is again quite clear that evolutions that are not seeded
with center-crossing networks remove bad individuals faster than the best
are improved. Just like for the earlier evolutions, random search proceed
in stages, where the GA converge toward “platforms” of locally optimal
solutions. These optima may differ a lot in quality, and the result from
this can be seen in table 3.6 where the ratio of standard deviation is very
high for such searches. They actually end up in a wider range of results
than they start with. This happens because the searches converge toward
local optimums, and the fitnesses of these optima vary a lot from search to
search. The evolutionary searches seeded with center-crossing networks

85

3.2. RESULTS Design of the Genetic Algorithms

Figure 3.24: Comparing the evolution of a turning controller. 10 runs average.
Showing best individual in population.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 50 100 150 200 250

fit
ne

ss

generation

with center-crossing and bifurcative neurons
with bifurcative neurons

with center-crossing networks
random neurons

seem to avoid local optima, and the worst individual is removed about
equally fast as the best is improved. The fully seeded search (bifurcative
neurons and center-crossing networks) can therefore continue to improve,
even though it starts off with solutions that perform about equally well as
the best random solutions. As a result, these searches end up in a narrow
range (low ratio of standard deviation) of well-performing solutions.

3.2.4 Evolving obstacle avoidance (t3)

The solutions’ applicability to the task

The task for evolving obstacle avoidance, was to approach a simulated food
patch at the same time as avoiding obstacles that could be sensed using
tactile probes (antennas). An evolutionary search was run 10 times, and
throughout all of these runs, the insect improved its walk so that it could
get closer to the food.

86

Design of the Genetic Algorithms 3.2. RESULTS

Figure 3.25: Same as 3.24, but showing:

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

fit
ne

ss

generation

with center-crossing and bifurcative neurons
with bifurcative neurons

with center-crossing networks
random neurons

(a) Width of populations.

-100

-50

 0

 50

 100

 150

 0 50 100 150 200 250

fit
ne

ss

generation

with center-crossing and bifurcative neurons
with bifurcative neurons

with center-crossing networks
random neurons

(b) Worst individual in population.

87

3.2. RESULTS Design of the Genetic Algorithms

Figure 3.26: Best performing individuals for 10 evolutionary searches.

 135

 140

 145

 150

 155

 160

 0 50 100 150 200 250
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100
fit

ne
ss

po
pu

la
tio

n
w

id
th

generation

fitness of best
population width

(a) Best performing individual in population, averaged over 10 runs.

Best in generation 1 Best in generation 250
µ 136.6 156.9
σ 8.747 7.208

Cv 6.402% 4.594%
(b) Performance of best individuals. Mean (µ), standard deviation (σ)
and ratio of standard deviation from mean (Cv). Averaged over 10 runs.

Comparative analysis

The evolution of obstacle avoidance was quite similar to the evolution of
turning. For space and time considerations, the GA was therefore only run
10 times using both center-crossing networks and bifurcative neurons. The
result of which can be seen in figure 3.27(b). As can be seen in the table
of the figure this leads to searches that in general starts off within a wider
range of results than it ends with (it ends with a lower ratio of standard
deviation). This is analogous with the other evolutions using these two
techniques. The comparison of incremental versus non-incremental evolution
of obstacle avoidance is described in section 3.2.5.

88

Design of the Genetic Algorithms 3.2. RESULTS

3.2.5 A comparative analysis of incremental evolution

The results from evolutions that makes use of incremental evolution has
already been described. Each step successfully generated working neural
networks. Gomez and Miikkulainen [1997] have already shown that parti-
tioning complex behaviour in a similar manner can make a difference be-
tween a good result, and no result at all. Is that true in this thesis also?
Does incremental evolution actually make a difference? Does incremental
evolution result in faster discovery of well-performing solutions?

In an attempt to answer these questions, an approach similar to the com-
parisons of the other techniques was chosen. Leaving everything6 but the
seeding with earlier genome untouched, a series of non-incremental evolu-
tions were run. Three steps were taken to obtain results for comparison:

1. Evolving a leg controller without seeding it with the result of pace-
maker evolution genome.

2. Evolving turning without seeding it with the result of pacemaker +
leg controller evolution genome.

3. Evolving obstacle avoidance without seeding it with the result of pace-
maker + leg controller + turning evolution genome.

A summary of results can be found in table 3.7. Plausible interpretations
of these results follow in the next sections.

Locomotion

The result of incremental/non-incremental evolution of locomotion is shown
in figure 3.27a (page 92). The incremental approach to evolving locomotion
started off seeded with genes that were taken from the best pacemaker evolu-
tions. To make up for the 150 evolutions elapsed for evolving the pacemaker,
the non-incremental search was allowed a head start of 150 generations. This
is reflected in the figure, where no data are presented for the incremental
approach before generation 150.

6There are exceptions to everything. Sometimes with regard to evaluation time, some-
times with regard to population size. The exceptions are described explicitly.

89

3.2. RESULTS Design of the Genetic Algorithms

Table 3.7: Results from evolution of different behaviours after the last generation of
each evolution (250 generations for incremental locomotion, 400 generations for non-
incremental locomotion, 250 generations for incremental turning, 650 generations
for non-incremental turning, 250 generations for incremental obstacle avoidance,
900 generations for non-incremental obstacle avoidance). Values are mean (µ) with
standard deviation (σ), and relative standard deviation (Cv).

Locomotion Turning Obstacle avoidance
Inc. Non-inc. Inc. Non-inc. Inc. Non-inc.

µ 219.8 200.0 122.8 70.35% 156.9 116.1
σ 28.32 30.22 24.84 54.05 7.208 12.30

Cv 12.88% 15.11% 20.23% 76.83% 4.594% 10.59%

With the exception of (not) seeding the population with genes from t11 , the
two approaches were kept as similar as possible. There are however some
obvious exceptions to this. The non-incremental approach have to evolve a
pacemaker at the same time as evolving the rest of the leg, while most of
this job is already done for the incremental approach. A question therefore
arises: Is it possible to evolve a pacemaker in this setting?

The fitness measure of pacemaker evolution was designed specifically for
evolving pacemakers. On the other hand, the pacemaker was meant to be
an integral part of a leg controller! It is therefore difficult to state one of
the measures as clearly better than the other. 150 generations of evolution
in the exact environment the pacemaker is supposed to work in, can be just
as good as 150 generations in a surrogate creature.

There was also one quantifiable difference that is known to affect quality
of evolution in general: Pacemaker evolution had a population size of 40
individuals. The locomotion controller population had a size of 100. It is
generally advantageous to have a larger population, because it increases the
likeliness of having good genome available. A larger population does how-
ever take longer to converge, because it takes more generations to replace
bad genome. Considering the elitist selection scheme used, this should have
minimum effect here though. Bad performing individuals are never recom-
bined anyway (only the best quartile is). It is therefore probable that the
non-incremental approach actually had a slight advantage in this regard.

As can bee seen from figure 3.27 and table 3.7, the incremental searches

90

Design of the Genetic Algorithms 3.2. RESULTS

quickly catch up with the non-incremental searches. The results are also
better on average, and the searches end up at these good values more steadily
(12.88% versus 15.11% ratio of standard deviation) than the non-incremental
searches. Even though it is clear from figure 3.27 that incremental evolution
outperforms non-incremental evolution on average, it should be noted that
both strategies evolve into working locomotion controllers.

Olfactory turning

The result of incremental/non-incremental evolution of turning is shown
in figure 3.27b (page 92). Just like for the evolution of locomotion, there
were a minimum of differences between incremental and non-incremental
evolution. Actually there are no differences except the seeding with earlier
evolved genome, and no head-start in the incremental one. The two should
therefore be easily comparable.

As can be read from the graph in figure 3.27b, the incremental approach
outperforms the non-incremental approach by a factor of about two after
the last generation. For generation 401, where the incremental approach
starts, the best individual in the incremental population is already better
than that of the best non-incremental one. It should be noted that the
incremental evolutions also generally ended up in a more narrow range of
results. There ratio of standard deviation is about 20% of the mean for the
incremental approach, whereas the non-incremental approach has a standard
deviation ratio of 77% (!) of the mean. In practice this means that it is
neccesary to run several non-incremental GAs to ensure that at
least one GA reaches a usable result.

It should be noted that even though the graph show improvement also for
the non-incremental approach, the resulting genome does not correspond to
individuals exhibiting normally expected behaviours. In general, the evolved
genome correspond to individuals that “twitches” toward the food-patch by
exploiting some specific property of the environment (e.g. inertia of limbs).
Some individuals do movements similar to walking, but they are not stable
walks (perhaps with one exception, where the walk was quite stable, but that
individual walked in the wrong direction). It is natural that these searches
end up in very different results, as can be read from the high standard
deviation of these searches.

91

3.2. RESULTS Design of the Genetic Algorithms

Figure 3.27: Comparing non-incremental (green) evolutions to incremental (red)
ones.

 100

 120

 140

 160

 180

 200

 220

 0 100 200 300 400 500 600 700 800 900

fitn
es

s

generation

(a) Evolution of locomotion. 15-runs averages. The non-incremental approach has a head-
start of 150 generations to make up for pacemaker evolution.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 100 200 300 400 500 600 700 800 900

fitn
es

s

generation

(b) Evolution of turning using olfactory sensing. 10-runs averages. The non-incremental
approach has a head-start of 400 generations to make up for pacemaker (150) and locomotion
controller (250) evolution.

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 100 200 300 400 500 600 700 800 900

fitn
es

s

(c) Evolving tactile obstacle avoidance. 10-runs averages. The non-incremental approach
has a head-start of 650 generations to make up for evolution of pacemaker (150), locomotion
(250), and olfactory turning (250). 92

Design of the Genetic Algorithms 3.2. RESULTS

It is of course perfectly fine that evolution finds solutions that differ from
what is expected from the designers point of view. After all, finding “unimag-
inable” solutions is perhaps the most prevalent advantage of GAs. There
is however a potential problem with this when evolving more complex be-
haviours. As Gomez and Miikkulainen [1997] point out, evolution of too
complex behaviour may end up in discovering mechanical strategies that
are unable to generalize to new environments. If evolution discovers such
solutions, further steps in the incremental build sequence up may be difficult
to take, because the discovered behaviour only performs well in the exact
fitness setting that it was evolved in. In other words: Specific solutions to
a task is desirable, but it is even better if it can be as general as possible.

The solutions found by incrementally evolving the olfactory turning system,
is however not exploiting the physical properties of the exact environment
that fitness evolution is carried out in. Rather, strategies that exploit the
rest of the neural system is found. It is natural that such strategies are
discovered in an incremental search, because all individuals are initially ex-
hibiting (or close to exhibiting) rhythmic, coordinated, stepping behaviour,
and other minimally cognitive behaviours. These behaviours are therefore
already available for the evolutionary search to exploit.

Obstacle avoidance

Similarly as for olfactory turning, the incremental evolution of obstacle
avoidance outperforms the non-incremental approach. The results can be
seen in table 3.7, and they are also visualized in figure 3.27c (page 92).
As can be seen from the graphs, the difference between incremental and
non-incremental evolution shows a clear resemblance to the two other incre-
mental approaches. For the first step (locomotion), the incremental search
“catches up” and eventually outperforms the non-incremental search. For
the second step (turning) the incremental search starts off as good as the
non-incremental ends. Finally, for the third (obstacle avoidance) step, the
incremental step starts off much better than the non-incremental step ever
gets. Evolution then brings the difference in performance even further away
from the non-incremental approach.

Also, just like for locomotion and turning evolution, the incremental evo-
lutions seem not only to provide much better results. It also provide these

93

3.2. RESULTS Design of the Genetic Algorithms

good results in a more stable fashion. The ratio of standard deviation is
4.594% versus 10.59% for this task. As for the other evolutions, a simple yet
plausible explanation exist: It is almost impossible to evolve any complex
behaviour (such as obstacle avoidance) before other dependent minimally
cognitive behaviours (e.g. walking) are already evolved. There are at least
two reasons that the minimally cognitive behaviours do not emerge. First of
all the number of behaviours increase, and the fitness measure must reflect
(and reward) all these behaviours. Designing such a fitness measure is diffi-
cult, and the fitness measure used here is at least not sufficient. Secondly, the
search space gets larger and larger for every extension of the genome. The
population size is however not increased in pace with this (not increased at
all here), and therefore the probability of having an initial population with
any creature at all that exhibit all these behaviours, decreases.

Other general interpretations

Like for the other two techniques - seeding with bifurcative and/or center-
crossing networks - the enforcement of some genes leads to higher population
width (see figure 3.28, 3.29 and 3.30, page 95). This may sound somewhat
surprising, because it is counterintuitive that an enforcement into one area
of the population leads to higher diversity! One explanation for this phe-
nomenon is that the incrementally evolved population has some very few
individuals that perform much better than the average population, but this
cannot be the whole story. Looking at figure 3.27, the best performing indi-
vidual has an average fitness of about 80 for the evolution of turning, while
the population width is about 170 for the non-incremental evolution. This
means that the incremental evolution starts off with both better and worse
individuals than the non-incremental evolution.

While this is indeed an interesting phenomenon, it does have a plausible
explanation. For non-incremental evolution, the simulations are generally
focused on a “dead” bug. It is hardly twitching at all, and certainly not
moving very far. This is not very surprising, because chances are small that
any individual in such a population should be able to walk. Whenever one or
more creatures actually do walk, the population will quickly converge toward
an optimization of this behaviour, because it is an easy way of increasing
fitness. For the incremental approach, simulations are generally focused on
moving in the right direction. Even at start time, most individuals manage

94

Design of the Genetic Algorithms 3.2. RESULTS

Figure 3.28: Width comparison for the evolution of locomotion. 15-runs averages.
The non-incremental approach has a head-start of 150 generations to make up for
pacemaker evolution.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

po
pu

la
tio

n
w

id
th

generation

incremental width
non-incremental width

to move at least a little bit. Moving in the wrong direction is however hardly
penalized, and therefore these creatures may actually perform - according
to the fitness measure - worse than a “half-dead bug” just lying there. As
a result, such a population will often have individuals that are both better
and worse than a random population.

This only stresses how difficult it is to create a fitness measure for complex
behaviour. The measure works well for evolving turning if the creatures are
close to walking, but it does not work well where several behaviours are to
be evolved at the same time. It simply does not apply enough selection
pressure to such a population, and it is difficult to imagine a measure that
would do so.

95

3.2. RESULTS Design of the Genetic Algorithms

Figure 3.29: Width comparison for the evolution of olfactory turning. 10-runs
averages. The non-incremental approach has a head-start of 400 generations to
make up for pacemaker (150) and locomotion controller (250) evolution.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100 200 300 400 500 600

po
pu

la
tio

n
w

id
th

generation

incremental
non-incremental

Figure 3.30: Width comparison for the evolution of tactile turning. 10-runs aver-
ages. The non-incremental approach has a head-start of 650 generations to make
up for pacemaker (150), locomotion controller (250) and olfactory turning (250)
evolution.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900

po
pu

la
tio

n
w

id
th

generation

incremental
non-incremental

96

Design of the Genetic Algorithms 3.3. DISCUSSION

3.3 Discussion

3.3.1 On focus

The techniques suggested in this thesis are all about focus. GAs are often
associated with needle in a haystack problems, and following this analogy,
a focusing of evolutionary search can be compared to something like “look
through the bottom of the stack”. Usually a good suggestion, but not always
so (it would not be smart when searching for a light needle made out of bone,
for example).

Anyone who has ever worked on machine learning, will know this problem
as the problem of choosing proper bias: If you search for something in one
direction, you are not searching in all the other directions. At the same
time, if you do not add any bias, you will not be able to find anything! The
focus, and therefore the search bias, is very strong in this thesis. In most of
the experiments, very large portions of the genome was placed into a very
narrow portion of the search space by copying results from earlier incre-
mental steps. Center-crossing networks, and also networks with bifurcative
neurons make up a very narrow portion of this space again. And, probably
“worst” of all, all the networks were hand-coded into what was believed to
be good approximations, loosely based on biological observations and what
is believed to be common sense. It should be apparent from this, that there
are an infinite number of solutions that have not been explored.

In this chapter I will therefore endeavour to evaluate each of the search
techniques, and elaborate on whether or not the applied bias can be consid-
ered generally applicable. That is: Will this kind of focusing apply to other
problems as well?

3.3.2 When not to use center-crossing networks

There is a possibility that the use of center-crossing networks in some cir-
cumstances can (at least theoretically) leads to slower evolution. This may
happen in a CTRNN where one or more neurons are supposed to be very
resilient to change. One example of such a network could be a logical AND-
network as shown in figure 3.31 where the output neuron is supposed to fire

97

3.3. DISCUSSION Design of the Genetic Algorithms

Figure 3.31: An example network for representing logical AND. Initially adjust-
ing the bias of the output neurons according to the center-crossing equation will
potentially mislead (slow down) an evolutionary search.

I-1

I-2

O

10

10

only when both two input neurons fire strongly at the same time, and not
to fire when only one or none of the input neurons are firing.

If the bias of the output neuron in figure 3.31 is adjusted according to the
center-crossing equation (equation 3.5), the bias would be:

θ =
−

∑N
j=1 wij

2

=
−(10 + 10)

2
= −10

Given a situation where neuron I − 1 is firing strongly (1.0), and neuron
I − 2 is firing weakly (0.1) then the output neuron would indicate that the
AND-condition is fulfilled (firing > 0.5), which is most probably (depending
on the interpretation of the resulting firing frequency of course) an incorrect
result. A more proper bias should be close to -20 (requiring that both input
neurons fire strongly), which is the double of the bias given by the center-
crossing equation.

Initially seeding a population with knowingly incorrect solutions is intu-
itively not a good idea. It is theoretically possible for a GA to overcome

98

Design of the Genetic Algorithms 3.3. DISCUSSION

this situation, but it is hard to see how evolution could benefit from it.

3.3.3 Seeding with bifurcative neurons increases complexity

For a neuron to be bifurcative, it is necessary for it to be able to self stimulate
(see section 3.1.3). This self stimulation is done using a self connection, and
a neuron is bifurcative when this connection has a weight > 4 [Beer, 1995].

For all evolutions with bifurcative neurons in this thesis, the effect of enforc-
ing bifurcative neurons was compared to other evolutions using a very naive
approach: Either evolving networks where self-weights are > 4 or evolving
networks with random self-weights.

This approach is naive, because there is sparse proof provided that self-
weights are actually necessary at all. Removing the weights completely
would shorten the genome by at least one gene (if the gene is shared by all
self-weights) or maximally by the number of self-weights (if all self-weight
have individual genes). Shorter genome are desirable, because it allows re-
combination to explore a larger number of solutions faster. There is therefore
one interesting question left after these experiments: Would perhaps evo-
lution without self-weights be faster than evolution with self-weights that
allow bifurcation?

It is not within the scope of this thesis to provide an answer for this, but
a short elaboration on the topology of the evolved pacemaker should still
provide some insight for further work. It is difficult to see that a pacemaker
is actually possible to construct without self weights (see section 3.1.3), so
the alternative would, at least for the pacemaker, be to add more neurons.
Lets consider the simplest possible solution: Adding one neuron. For one
neuron to have any effect on the circuit, it would need at least one incoming
synaptic connection, and one output connection. As a result, at least four
(2 connections + 1 bias + 1 time-constant) would be required (unless these
uses shared genes, but that goes for self-connections too).

It may therefore seem that, at least for the evolution done here, the addition
of self-weights > 4 is a relatively cheap way of extending the dynamical
properties of the CTRNN. It may very well be that this is true for many
other network evolutions as well.

99

3.3. DISCUSSION Design of the Genetic Algorithms

100

Chapter 4

Conclusions

As stated in the introduction, there are many benefits of using Artificial
Neural Networks (ANNs) for cognitive tasks like robot control. Some of the
mentioned advantages were robustness, ability to generalize and adapt to
real-world (unpredictable) environments, modularity and thereby the pos-
sibility of distributing processing and maintaining robustness just like real
animals do.

The major question that arises from claims like these is of course “how
are such networks created?”. Several researchers have tried to make ANNs
for simulating cognitive behaviours. Among the mentioned successful ap-
proaches was the work of Cruse et al. [1998] that focused on creating real-
istic insect walks. Also, the work of Beer [1990] made up a detailed study
of a biologically realistic neuron setup for an artificial insect. Both of these
approaches included manually designed ANNs and Cruse et al. [1998] ad-
ditionally trained the network using a supervised training technique (back-
propagation).

Much contemporary work on creating ANNs (and other controllers) for min-
imally cognitive behaviour has turned toward automated design by means
of Genetic Algorithms (GAs) - or simulated Darwinian evolution. GAs are
powerful, and two important examples of work in this area was described.
One was the work of Gomez and Miikkulainen [1997] that evolved the com-
plete topology of a network for complex general behaviour (prey capture).
Another was the work of Mathayomchan and Beer [2002] that evolved net-

101

4.1. CENTER-CROSSING CTRNNS Conclusions

work weights in a network for rhythmic behaviour (a key feature of many
biological neural systems). Though the two examples had quite different ap-
proaches to evolving cognitive behaviours, they both addressed two major
shortcomings of GAs that were emphasized in the introduction: GAs are
computationally expensive, and they tend to converge toward local optima.

In this thesis I have tried to pursue this research on GAs further. This has
been done by applying a conglomeration of contemporary strategies to a
sufficiently complex (but still manageable) problem: Insect navigation.

A nervous system for tactile-olfactory navigation was sketched, and synaptic
weights and other neural parameters for it were then evolved. Throughout
the process I followed a two-layered approach. On a macro level I used in-
cremental evolution much like Gomez and Miikkulainen [1997]. This allowed
me to successfully evolve “easy” tasks and evaluate these before continuing
with more complex tasks. On a micro level I used the mathematical theory
of Beer [1995] (bifurcative neurons). I also used and extended the technique
of Mathayomchan and Beer [2002] (center-crossing networks) to speed up
and improve each evolutionary subtask.

4.1 Center-crossing CTRNNs

Seeding initial populations with center-crossing networks was suggested by
Mathayomchan and Beer [2002]. A center-crossing network is a Continuous-
Time Recurrent Neural Network (CTRNN) where all neurons have activa-
tion functions that are centered around the net input each neuron receives.
The network is therefore made up from maximally sensitive neurons. For
an interconnected network (all neurons are connected to each other) this
implies that there exist an equilibrium point where all neurons fire one half
of their maximum firing frequency. Mathayomchan and Beer [2002] showed
through experiment that an evolutionary search for highly-fit oscillatory
CTRNNs was significantly improved by seeding the initial population with
center-crossing networks. They suggested that this technique may be bene-
ficial for any search for CTRNN weights, because the range of dynamics in
such a network are wider than in a random network.

In this thesis, I have investigated the use of center-crossing networks for the
evolution of several new network topologies. Extending the work of Math-

102

Conclusions 4.1. CENTER-CROSSING CTRNNS

ayomchan and Beer [2002] the networks used in this thesis now also included
non-oscillatory networks and networks that were not fully interconnected.

Through experimentation and comparative analysis (comparing to random
networks) I first verified that evolving a pacemaker greatly benefited from
being seeded with center-crossing networks. This was done through the
evolution of a simple two-neuron pacemaker circuit. The results showed
similar improvement as found in the (only slightly different) approach of
Mathayomchan and Beer [2002].

I further that evolution of networks that were not fully interconnected still
benefited from parts of the theory presented in Mathayomchan and Beer
[2002]. It is not always desirable to have completely interconnected net-
works. In this thesis, for example, a network topology based on Beer [1990]
was used for controlling locomotion. The network in Beer [1990] was not
fully interconnected, and it seemed exaggerated to add more connections
just to fill the center-crossing requirement. I therefore extended the earlier
work of Mathayomchan and Beer [2002] and set out to test if some of the
underlying causes of the success of seeding with center-crossing networks
might still be used in a network that was not completely interconnected.

Networks that are not fully interconnected are of course not capable of main-
taining any equilibrium like fully interconnected networks do. The network
can therefore not make use of the complete range of extended dynamics
that Mathayomchan and Beer [2002] originally argue for. Despite this, it
is still possible to adjust the neurons biases of any network as if we had a
center-crossing network. As a result, all neurons are still maximally sensi-
tive. By evolving weights for a locomotion controller based on Beer [1990],
I showed that seeding the network with networks created this way had a
significant effect on evolution. The evolved controller performed much bet-
ter, and the results when running several searches more frequently ended up
with good solutions to the problem.

The technique of seeding initial populations with center-crossing networks
was also applied to the evolution of an interconnected, non-oscillatory net-
work. As for the other two searches, this evolution also greatly benefited
from the technique. The resulting network performed significantly better
with regard to the fitness measure. Statistical evidence also showed that
the search also more frequently ended up with good solutions, compared to
random searches.

103

4.2. BIFURCATIVE NEURONS Conclusions

As a general rule, the seeded searches converged steadily toward a good so-
lution and avoided getting trapped in local optimums. The equal random
searches tended to improve in stages where the search “jumped” from op-
tima to optima and eventually stagnated in some local optimum, resulting
in highly different (sub-optimal) results for each different evolution. The
results here therefore support the suggestion of Mathayomchan and Beer
[2002] that seeding evolutionary searches with center-crossing networks may
always be beneficial. It also seemed that setting an initial bias just to make
neurons maximally sensitive is beneficial, even for networks that are not
fully interconnected.

4.2 Bifurcative neurons

When single neurons in a CTRNN have a self-connection with a weight
factor > 4, the neuron is capable of maintaining several steady-states [Beer,
1995]. I therefore suggested to seed initial populations with networks made
up from neurons with self-weights > 4 to further improve the evolution of at
least oscillatory networks. The idea was that an oscillatory network would
benefit from having individual neurons that could flip between two states.
This should also be an inexpensive way of extending the dynamic behaviour
of the network compared to adding additional neurons.

To measure the effect of seeding initial populations with bifurcative neurons,
a set of experiments were run. Using the same task (fitness measure), evo-
lution with and without bifurcative neurons were run. Additionally, some
evolutions were seeded with center-crossing networks. From the experiments
with the oscillatory task (pacemaker evolution) it was clear that the popu-
lations seeded with bifurcative neurons reached better solutions faster than
searches without bifurcative neurons. The difference was however most sig-
nificant when the networks were center-crossing at the same time as they
contained bifurcative neurons.

I further affirmed that the evolution of a navigational turning controller
based on olfactory sensing highly benefited from the seeding with bifurcative
neurons. For the network evolved here, a solution comprising a temporal
memory was evolved. It was shown through experiment that even this very
simple circuit was capable of maintaining a “commitment” toward different
goals (directions) by adopting different network states. The evolution of

104

Conclusions 4.3. INCREMENTAL EVOLUTION

such states was facilitated by some of the neurons being capable of taking
on more than one steady-state.

An overall observation from all evolutions was that none of them was made
slower or worse performing by setting self-weights to values larger than 4 (ful-
filling the theoretical bifurcation requirement [Beer, 1995]). To the contrary,
most evolutions were made faster and/or better. I therefore suggested that
actually adding self-connections to neurons that have no self-connections
may be advantageous for many evolutions, even if it increases complexity:
The addition of self-connections is a simple way of leveraging network dy-
namics with only minimal increase of genome complexity. The results in
this thesis indicate that further research in the area of evolving networks
containing bifurcative neurons could turn out to be very fruitful.

4.3 Incremental evolution

Throughout this thesis I have demonstrated that it is possible to evolve at
least some complex behaviours incrementally. In contrast, I showed that
for the example task an equal, non-incremental, approach was slower and
produced solutions that performed less good. Incremental evolution also
facilitated acquaintance and thorough evaluation of parts of the complex
cognitive task of navigation, since the task was evolved in a stepwise fashion.

The task of evolving navigation was partitioned into three subtasks (walking,
turning and obstacle avoidance). The first of these tasks was also partitioned
further into two even smaller tasks (a pacemaker and locomotion). By com-
paring incremental evolution of these behaviours with non-incremental coun-
terparts, it was shown that it was possible to evolve higher level behaviours
(turning and obstacle avoidance) when a non-incremental approach was un-
successful. The partitioning also made it easier to present the problem and
its solutions in a comprehensible manner.

For the three experiments carried out here, I further showed that the more
complex the behaviour was (e.g. higher up in the subsumption hierarchy,
and longer genome), the more the incremental approach outperformed the
non-incremental approach.

105

4.3. INCREMENTAL EVOLUTION Conclusions

106

Chapter 5

Appendix

5.1 Source code excerpts

For the complete source code, please see the attached Steve (*.tz) and Com-
mon Lisp (CL) (*.lisp) source code files. A few code excerpts are included
here. They are of potential interest for anyone working with CTRNNs. For
people unfamiliar with CTRNNs (but familiar with CL) they may provide
insight into the workings of CTRNNs.

5.1.1 CTRNN bifurcation points

(defun b i fu r ca t i on−po in t s (se l f−weight b ia s)
”Return the two b i f u r c a t i o n po int s o f a neuron . ”
(mapcar
#’(lambda (p lus /minus)

(realpart
(− (∗ (funcall plus /minus 2)

(log (/ (+ (sqrt se l f−weight) (sqrt (− se l f−weight 4))) 2)))
(/ (funcall plus /minus

se l f−weight
(sqrt (∗ se l f−weight (− se l f−weight 4))))

2)
b ia s)))

(l i s t #’+ #’−)))

5.1.2 Euler “leaky-integrator”

(defmethod update−membrane−potential ((n neuron))
”Find and s e t membr . p o t en t i a l o f n us ing Euler ’ s i n t e g r a t i o n method . ”
(incf ; I n c r ea s e and s e t p o t e n t i a l by e s t ima t i n g change f o r ∗ t ime−s tep∗
(neuron−membrane−potential n)

107

5.1. SOURCE CODE EXCERPTS Appendix

(∗ ∗ time−step∗ ; Eu ler t ime s t e p
(/ (+ (loop ; Add sum o f s y n a p t i c c u r r en t s

f o r s a c ro s s (neuron−dendrites n)
sum (∗ (synapse−strength s)

(neuron−snapshot− f ir ing− frequency (synapse−from−neuron s))))
(loop ; Add sum o f i n t r i n s i c c u r r en t s
f o r i a c r o s s (neuron− in t r ins i c−currents n)
sum i)

(neuron−external−current n) ; Add e x t e r n a l c u r r en t
(− ; − Sub t r a c t t h e l e a k cu r r en t

(∗ (neuron−membrane−potential n) (neuron−membrane−conductance n))))
(neuron−membrane−capacitance n))))) ; Div . by c apa c i t an c e = pot . change

5.1.3 Euler CTRNN integrator

(defmethod update−membrane−potential ! ((neuron neuron))
” Ca lcu la te and modify neuron cur rent membrane po t en t i a l . ”
(unless (> (neuron−membrane−potential neuron) ; Re s t ra in from be ing enormous .

(neuron−maximum−membrane−potential neuron)) ; may cause o v e r f l ow
(incf
(neuron−membrane−potential neuron)
(∗ ∗ t imestep∗ ; The i n t e g r a t i o n t ime s t e p

(∗ (/ 1 (neuron−time−constant neuron)) ; 1/ tau
(+ (− (neuron−membrane−potential neuron)) ; Neg . o f t h e curr . po t .

(neuron−external−current neuron) ; Ext . curr .
(loop f o r synapse in (neuron−dendrites neuron) ; Synap t i c curr .

sum (∗ (synapse−strength synapse)
(neuron−snapshot− f ir ing− frequency
(synapse−from−neuron synapse))))))))))

(defmethod update−membrane−potential ! : around ((neuron motor−neuron))
” Cal l the a s s o c i a t ed motor func t i on . Return energy consumed . ”
(call−next−method) ; Update membrane p o t e n t i a l f i r s t
(funcall (motor−neuron−motor−function neuron) (f i r i ng− f r equency neuron)))

(defmethod update−membrane−potential ! : b e f o r e ((neuron sensor−neuron))
”Read the connected sensor be f o r e updating sensor neuron mem. pot . ”
(funcall (sensor−neuron−sensor− function neuron)))

5.1.4 CTRNN firing frequency

(defmethod f i r i ng− f r equency ((neuron neuron))
”Return f i r i n g f requency based on membrane po t en t i a l . ”
(/ 1 (+ 1 (exp (− (+ (neuron−membrane−potential neuron)

(neuron−bias neuron)))))))

108

Bibliography

Randall D. Beer. Intelligence as adaptive behavior: an experiment in com-
putational neuroethology. Academic Press Professional, Inc., San Diego,
CA, USA, 1990. ISBN 0-12-084730-2.

Randall D. Beer. On the dynamics of small continous-time recurrent neural
networks. Adaptive Behavior, 3:469–509, 1995.

Randall D. Beer. Toward the evolution of dynamical neu-
ral networks for minimally cognitive behavior. 1996. URL
http://vorlon.case.edu/ beer/Papers/SAB96.pdf.

Randall D. Beer and John C. Gallagher. Evolving dynamical neural networks
for adaptive behavior. Adaptive Behavior, 1:91–122, 1992.

Randall D. Beer, Roger D. Quinn, Hillel J. Chiel, and Roy E. Ritzmann. Bi-
ologically inspired approaches to robotics. what can we learn from insects?
Communications of the ACM, 40:31–38, 1997.

Dr. Johann Borenstein, Commander H. R. Everett, and Dr. Liqiang Fleng.
Navigating Mobile Robots: Sensors and Techniques. A. K. Peters, Ltd.,
Wellesley, MA, 1996.

Rodney A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, RA-2 No. 1:14–23, 1986.

Rodney A. Brooks. Intelligence without representation. Artificial Intelli-
gence, 47:139–159, 1987.

Ulrich Bässler and Ansgar Büschges. Pattern generation for stick insect
walking movements - multisensory control of a locomotor program. Else-
vier, Brain research reviews, 27:65–88, 1998.

109

BIBLIOGRAPHY BIBLIOGRAPHY

Hillel J. Chiel, Randall D. Beer, and John C. Gallagher. Evolution and
analysis of model cpgs for walking i. dynamical modules. Journal of Com-
putational Neuroscience, 7:99–118, 1999.

Adrian F. Clark. Applications of machine vision. 2005. URL
http://www.bmva.ac.uk/apps/index.html.

Holk Cruse, Thomas Kindermann, Michael Schumm, Jefferey Dean, and
Josef Schmitz. Walknet - a biologically inspired network to control six-
legged walking. Neural Networks, 11:1435–1447, 1998.

Volker Dürr, Yvonne König, and Rolf Kittmann. The antennal motor system
of the stick insect carausius morosus: anatomy and antennal movement
pattern during walking. Journal of Computational Physology, 187:131–
144, 2001.

Orjan Ekeberg, Marcus Blümel, and Ansgar Büschges. Dynamic simula-
tion of insect walking. Arthropod Structure and Development, 33:287–300,
2004.

Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex
general behavior. Adaptive Behavior, 5:317–342, 1997.

John Klein. Breve: a 3d environment for the simulation of decentralized
systems and artificial life. 2006.

Jerome Kodjabachian and Jean-Arcady Meyer. Evolution and development
of neural controllers for locomotion, gradient-following, and obstacle-
avoidance in artificial insects. IEEE Transactions on Neural Networks,
9:796–812, 1998.

Jérôme Kodjabachian, Christophe Corne, and Jean-Arcady Meyer. Evolu-
tion of a robust obstacle-avoidance behavior in khepera: A comparison of
incremental and direct strategies. 1998.

Andre F. Krause and Volker Dürr. Tactile efficiency of insect antennae with
two hinge joints. Biological Cybernetics, 91:168–181, 2004.

George F. Luger. Artificial Intelligence 4th edition. Pearson Eucation Lim-
ited, Edinburgh Gate, Harlow, Essex CM20 2JE, England, 2002. ISBN
0-201-64866-0.

Boonyanit Mathayomchan and Randall D. Beer. Center-crossing recurrent
neural networks for the evolution of rythmic behavior. Neural Computa-
tion, 14:2043–2051, 2002.

110

BIBLIOGRAPHY BIBLIOGRAPHY

Peter McLeod, Kim Plunkett, and Edmund T. Rolls. Introduction to Con-
nectionist Modelling of Cognitive Processes. Oxford University Press,
Great Clarendron Street, Oxford OX2 6DP, 1998. ISBN 0-19-852426-9.

David E. Moriarty and Risto Miikkulainen. Efficient reinforcement learning
through symbiotic evolution. Machine Learning, 22:11–33, 1996.

David E. Moriarty and Risto Miikkulainen. Forming neural networks
through efficient and adaptive coevolution. Evolutionary Computation,
5, 1998.

Pavel Petrovic. Comparing finite state automata representation with gp-
trees. IDI Technical Report, 4, 2006. ISSN 1503-416X.

111

