
July 2007
Richard E. Blake, IDI
Agnar Aamodt, IDI
Toril A. Nagelhus Hernes, SINTEF

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Segmentation of Medical Images Using
CBR

Christian Marshall Rieck





Problem Description
Segmentation of images has always been an application dependent and difficult task.
There have been several attempts, but artificial intelligence (AI) has never been able to really solve
the problem of segmentation.
This work will focus on using case based reasoning (CBR), a recent AI method, for controlling the
segmentation and improve it if necessary.
The challenges that must be met are comparison of cases, judging the segmentation result
automatically and to choose the appropriate action to correct it should the result be poor.

Assignment given: 12. January 2007
Supervisor: Richard E. Blake, IDI





Preface

This report is written as a Master's Thesis at the Norwegian University of
Science and Technology (NTNU).

I would like to express gratitude to my supervisor Richard E. Blake (NTNU)
as well as my co-supervisors Agnar Aamodt (NTNU) and Toril Hernes (Sintef)
for helping me with strategic choices in system design and for good advice in
writing of this report. I also want to thank Frank Lindseth (Sintef) for helping
me with technical issues in ITK as well as system design.

In addition, a huge �thank you� to my invaluable proof-readers.

Trondheim

Christian Marshall Rieck.





Abstract

This paper describes a case based reasoning system that is used to guide the pa-
rameters of a segmentation algorithm. Instead of using a �xed set of parameters
that gives the best average result over all images, the parameteres are tuned to
maximize the score for each image separately. The system's foundation is a set
of 20 cases that each contains one 3D MRI image and the parameters needed for
its optimal segmentation. When a new image is presented to the system a new
case is generated and compared to the other cases based on image similarity.
The parameters from the best matching case are then used to segment the new
image. The key issue is the use of an iterative approach that lets the system
adapt the parameters to suit the new image better, if necessary. Each iteration
contains a segmentation and a revision of the result, and this is done until the
system approves the result. The revision is based on metadata stored in each
case to see if the result has the expected properties as de�ned by the case.

The results show that combining case based reasoning and segmentation can be
applied within image processing. This is valid for choosing a good set of starting
parameters, and also for using case speci�c knowledge to guide their adaption.
A set of challenges for future research is identi�ed and discussed at length.





Contents

1 Introduction 1

1.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Intensity-based . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Edge-based . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Region-based . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Model-based . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Case Based Reasoning (CBR) . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Retrieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Revise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Retain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Research 10

2.1 CBR and Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Evaluating a Segmentation . . . . . . . . . . . . . . . . . . . . . 12
2.3 Comparison of Images . . . . . . . . . . . . . . . . . . . . . . . . 14

3 System Architecture 16

3.1 Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Image Processing Module . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Case Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Case Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 The Segmentation Method . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 The subvolume . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 The First Threshold . . . . . . . . . . . . . . . . . . . . . 23
3.5.3 The Second Threshold . . . . . . . . . . . . . . . . . . . . 24

3.6 Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Building the Case Base . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Evaluation of the System . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Rejected Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Case Library 29

4.1 The Subvolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Two Scores? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Repair 32

5.1 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Detecting Failures . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 First Attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Second Attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4.1 ReviseFirst . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.2 ReviseSecond . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Three Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5.1 Repairing Case 4 . . . . . . . . . . . . . . . . . . . . . . . 37

i



5.5.2 Repairing Case 112 . . . . . . . . . . . . . . . . . . . . . . 39
5.5.3 Repairing Case 15 . . . . . . . . . . . . . . . . . . . . . . 41

6 Retrieve 43

6.1 Internal Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Discussion 46

7.1 Is CBR Applicable? . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Known Short-comings . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Learning by Doing . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3.1 Learning by failure . . . . . . . . . . . . . . . . . . . . . . 48
7.3.2 Learning by success . . . . . . . . . . . . . . . . . . . . . 50

7.4 Harmful Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.5 Size of Case Base . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.6 Extending the System . . . . . . . . . . . . . . . . . . . . . . . . 52
7.7 Case Based Adaption . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.8 Perfecting the Result . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.9 General Domain Knowledge . . . . . . . . . . . . . . . . . . . . . 55
7.10 Reaching the Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Further work 57

8.1 The Bigger Picture . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A IBSR data sets and names 61

B Full Scores 62

C Matching Scores 65

D Top 3 Matching Results 68

E Average Intensity-based Adaption 70

F Di�erence in Size 71

ii



1 Introduction

The computer has made life a lot easier in a number of ways, but in a few areas it
still has a way to go. When it comes to analyzing images and retrieving semantic
information, it can not do all the work for us. It is good at acquiring and
displaying the images, but has little idea of what it is. Because of this somebody
has to evaluate the image and attach the desired semantical information to
it, often proven to be very time consuming. When the information needed is
intended to guide noninvasive surgery, for example, the patient is left waiting
while this is taking place. If a computer could do it in a matter of minutes or
seconds the operation would begin sooner.

The area of research that deals with interpreting images to give semantic infor-
mation is called machine vision. It can be divided into a number of sequential
steps with its own task, preparing the data for the next step. A common pipeline
is shown in �gure 1.

Figure 1: In machine vision it is common to send the input image through a

series of steps before determining what the image represents.

The �rst step is usually image enhancement where the objective is to prepare it
for segmentation. The most common operation is to reduce any noise present.
Noise is artifacts introduced into the image by the image capturing device and is
not part of the object being captured. This might obscure edges or boundaries
and make segmentation harder. Another operation that might be done is to
normalize the image with respect to color, or center it around a known point in
the image. The next step in the pipeline is the segmentation. Its objective is to
divide the digital image into regions, or segments, that correspond to objects in
the natural world. This can be a car from a road scene, a tree from a picture
of the country-side or a cruise missile from a surveillance satellite image. At
this step it is not known that it is a car, tree or missile, it is only known that
this set of pixels de�nes an object that is not the same as the neighboring one.
The result is an image where each pixel is assigned to a segment. The last
step takes the di�erent segments and uses a classi�er to determine what real
world objects they represent. This step is now considerably easier because of
the segmentation. The problem has been divided into several smaller problems,
each problem being one segment. Without this the classi�er would have to
identify the image as �a room with a chair and a desk with a phone on it�. After
segmentation the classi�er can determine �room�, �chair�, �desk� and �phone�
separately, a much easier job. The outcome of this classi�cation is heavily
dependent on the outcome of the segmentation step. If the regions correspond
poorly with their real life counterparts the task of identifying them may be
impossible. It is therefore very important that the outcome of segmentation is
as good as possible.

There has been much research into segmentation algorithms, and many attempts

1



have been made to build systems that utilize them best. A problem with this is
that the algorithms often come with a number of parameters to be set, and these
parameters in�uence the result signi�cantly. If a system is to work without hu-
man intervention it has to set these itself. As even experts �nd this task hard it
is not evident how to get the computer to do it. In the 1980's a popular attempt
was to use a rule-based approach. An analysis of the domain in question would
give a set of rules that determined what should be done in di�erent situations.
Depending on the domain, this may be very hard and time consuming. Since
then Case Based Reasoning (CBR) has emerged. Instead of relying on rules ex-
tracted from a domain CBR tries to use speci�c, relevant lessons learned earlier.
This makes it appropriate for domains where the theory is not fully understood
and thus such rules are hard to extract. Segmentation is one such domain.

This work will focus on using CBR to realize automatic segmentation. The
parameters needed will be provided by earlier cases, possibly with some modi�-
cation to suit the new problem better. The speci�c questions it hopes to answer
will be presented later, in section 1.3, followed by the research methodology.
However, to make the reader familiar with both segmentation and case based
reasoning these two topics will be introduced. If this is familiar ground they
can safely be skipped.

1.1 Segmentation

According to Pal [29], there is no single best segmentation algorithm. To further
complicate it, there might not even be a best segmentation of an image, because
it depends on what you are looking for. When �nding the car in the road scene
mentioned earlier, is it satisfactory just to �nd the car? Or are the di�erent
parts of the car such as wheels, doors and windows of interest? Di�erent levels of
detail may require di�erent algorithms or at least di�erent settings of parameters
for one.

There are many di�erent segmentation methods. To give the reader an intro-
duction to segmentation some di�erent categories will be explained, based on
[43]. All algorithms or systems mentioned are explained in this book unless
any other references are given. Anyone familiar with segmentation can skip this
section. Surveys on the topic can be found in [29, 33].

1.1.1 Intensity-based

The simplest of segmentation algorithms consider nothing but the intensity of
a pixel. This can be done by setting a threshold and consider all pixels with
less intensity to be background, and the rest as foreground. In a controlled
environment this is a quick and e�cient way of segmenting dark objects on a
light background. Such a setting is common in simple quality control in factories
where the silhouette of the object is found and compared to a known norm.

The key to getting good results is to set the threshold correct. This can be
tricky, but any a priori knowledge can guide the search. If it is known how
many percent of the image belong to the object the threshold can be set so that

2



this percentage is met. Di�erent objects may have di�erent colors and thus
a sensible threshold is somewhere between these colors. This can be done by
inspecting the image histogram.

1.1.2 Edge-based

A segment can be de�ned both by its region and its borders. If the borders
are known the segment is within these, and if the region is known the border
outlines it. So one method of �nding a segment is to �nds its borders, or
edges. Such techniques are called edge-based and are some of the oldest in
segmentation. They examine the image and look for discontinuity in gray level,
colors, texture, etc assuming this indicates the end of a region. In color and
gray level the derivative of the image will reveal borders, and several operators
to �nd these have been de�ned. They are convolved with the image matrix and
some examples can be seen in �gure 2.

[
0 1
1 0

]
(a) Roberts
operator

 1 1 1
1 −8 1
1 1 1


(b) Laplacian oper-
ator

 1 2 1
0 0 0
−1 −2 −1


(c) Sobel operator


0 0 −1 0 0
0 −1 −2 −1 0
−1 −2 16 −2 −1
0 −1 −2 −1 0
0 0 −1 0 0


(d) Mexican Hat

Figure 2: Di�erent edge detection operators

Many images have some noise present that will show up as edges in the result
and hence images are usually smoothed prior to convolution to produce better
results. After the convolution the result is usually thresholded to remove spu-
rious edges. When only the strongest edges remain a post processing step is
executed to connect edge parts that correspond with objects in an image. The
Hough-transform is an example of this, designed to discover lines or circles in an
image based on a partial match after edge detection. It has later been extended
to �nd arbitrary, prede�ned shapes.

1.1.3 Region-based

These methods try to locate regions in an image that are homogeneous with
respect to some property. In the end the result must satisfy these conditions:

• All pixels in a region are homogeneous.

• The merging of two adjacent regions will not result in a homogeneous
region.

Two simple approaches are to start with the image as one region and split it
recursively until the conditions are met, or to start with each pixel as one region
and merge as much as possible. Large homogeneous (in gray levels) regions
appear as �at areas in a landscape where the height is de�ned by the color
value. This observation has led to the development of watershed algorithms,
modeled after how water �ows. When it rains all the water will �ow downhill

3



until it �nds a minimum where it gathers and forms a pond. If the rain continues
these pools will grow and eventually merge. Where they merge a dam will be
built to keep them separated, and the rain continues until the world is �ooded.
Each pond now represents one region, and the dams their borders. Region
growing methods accept one or more seed points from where a region will be
grown. If one of its neighbors passes the homogeneous test it is included in the
region. This is repeated until none of the region's neighboring pixels pass this
test.

1.1.4 Model-based

Some systems have left the realm of all-purpose segmentation and focused on
a small area. They focus on one or more speci�c objects to be found and have
substantial information to aid the search. The low level techniques previously
mentioned consider only a local property of the image and can thus make mis-
takes on a larger scale. With a model several edges can be judged as to how
they �t together on a larger scale than just their individual strength.

Deformable models combines both a top-down approach based on a priori

knowledge with a bottom-up approach based on image features [26]. First a
model with the size and form of the expected region is placed at the expected
location. This model comes with physical properties, usually tension and rigid-
ity. Based on the image to be segmented, desired features are extracted and
used to create the image forces. These forces can be seen as gravity, trying to
pull nearby mass (the model) towards its lower (darker) regions. Based on the
tension and rigidity of the model the image forces will deform the model, pulling
the contour towards edges in the image. When the internal and external forces
are equal the model will stop to deform and the intended object is assumed seg-
mented. For this to work it is very important that the initial contour is placed
correctly, or else it may be drawn towards the wrong image features.

1.2 Case Based Reasoning (CBR)

Case Based Reasoning had its beginning in Roger Schank's work in psychology
and research on how humans use experience from speci�c episodes when solving
problems [39]. It has since been adopted by other �elds and thus �CBR� has
di�erent meaning to di�erent people. Aha [4] lists three alternatives.

1. A psychological model for cognitive processing

2. A method for problem solving

3. A design model for expert systems

It is in the second alternative CBR will be used in this project. Aamodt et al
[3] divided the overall process into the four smaller consecutive tasks Retrieve,
Reuse, Revise and Retain, popularly named the four RE-s. Each of these will
be explained separately in the following sections, based on [3, 7]. How they
interact can be seen in �gure 3.

4



Figure 3: The CBR-cycle with the four REs. Retrieve receives the incoming

case and �nds the most similar case from the case base. This case is given

to Reuse which applies the solution to the problem. Revise makes sure the

solution worked and Retain is responsible for storing any lessons learned to the

case base.

1.2.1 Retrieve

The system starts with the retrieval of an old case from the case base. The goal
is to retrieve the case that is most suitable for solving the new problem at hand.
This requires the user of the system to provide a description of the problem.
Based on this the similarity to all earlier cases are calculated and the best one
is chosen. Various indexing schemes and a multi layered approach may speed
up the search and avoid comparing all cases to the original. For instance, in
the Protos[34] system each case is associated with a category. The problem
description is �rst examined and the best category is found, and then the cases
under this category are examined more closely. Due to the fact that all cases
are not examined the best may be missed.

There are a number of di�erent ways to assess similarity, ranging from simple to
sophisticated and knowledge-based. A very simple one could iterate through the
indices and increment a counter each time the two cases have the same value
for an index. The case that obtains the highest count wins and is selected.
More advanced methods try to analyze the situation and understand the actual
di�erence between cases. Based on a semantic web and a domain speci�c model
it may be established that �car� and �Toyota� are related words and should be
considered somewhat equal. Creek [2] combines CBR with a domain speci�c
model to explain any di�erences. One such explanation could be �it is OK that
case A has a descriptive feature i (��at battery�) that case B lacks, because
B's feature j (�left with lights on overnight�) is known to cause i.� In this
manner two features can be matched and their actual di�erence computed. In
this scenario the system can conclude that the two cases are more similar than
they �rst appeared. Other systems that combine domain knowledge with CBR
are Cabata [22], Cabaret [37] and SaxEx [5]. For more information on these
and others, see [25].

It is common to assume that the most similar case is the best case for solving
the new problem, but it is not the only option. Sometimes the most similar

5



case can be hard to adapt to the new case. This has spurred some research in
adaption-guided retrieval where domain speci�c adaption knowledge is used to
guide the search. In systems that recommend products based on a search or
earlier shopping history, the most similar products may in fact be too similar. To
combat this challenge one may use diversity-conscious retrieval mechanisms to
ensure a good selection. Another way to go is to use compromise-driven retrieval
if no cases match the initial query. Some similar cases may have important parts
missing and are not acceptable and should thus not be presented to the user.
No matter what similarity measure or search strategy is used, Retrieve results
in a case that will be used to solve the new problem, which is the task of Reuse.

1.2.2 Reuse

After a case is selected from the case base it is time to apply its solution to the
new case. This can essentially be done in two ways. One option is to just copy
the solution, the other is to adapt the solution. To copy the solution is often
used in classi�cation systems where the new case is assumed to be of the same
class as the most similar.

If decided to adapt the solution, instead of copying, a new choice appears, the
choice between derivational reuse and transformational reuse. In transforma-
tional reuse some changes are done to the solution before it is accepted. Domain
speci�c knowledge is used to create rules for such changes and index them ac-
cording to di�erences in the cases. Then the system can detect di�erences in the
two cases and apply the appropriate rule. The making of adaption knowledge is
a hard task. In fact Khan et al [18] states that creation of the necessary adap-
tion rules is a major bottleneck in development of CBR systems. Leake [20] says
the problem is so hard that many drop the adaption step altogether. Therefore
there has been some research into automating it based on the contents of the
case base. See the survey be Mantaras et al [7] for more.

The other option when using adaption, derivational use, is to use the problem
solving method itself instead of the solution. For this to work each case contains
how it arrived at a solution in addition to or instead of the solution. This can
be traces of goal/subgoal decomposition and what operators were used to solve
each subgoal. Afterwards these steps are redone on the new problem.

1.2.3 Revise

After Reuse the system has generated an answer to the given problem. It is the
responsibility of Revise to make sure this solution is correct. Some systems like
CHEF[36] have an internal model which can simulate the solution, but often
this step is done in the real world. The result must be entered into the system
when it is known whether it works or not. Depending on the nature of the
problem, it may take months to verify this. In the meantime the case can be
stored and tagged as non-veri�ed and not be used. It may also be tagged as
�unveri�ed� and get a less favorable status in the system, but it will be available
if no other case is better.

6



If the solution is wrong there is a good chance that the system may learn from
this experience. Given an explanation to its failure, from internal simulations
or external users, rules can be created to avoid making this error in the future.
These rules will then be utilized in the Reuse-step of later executions of the
system. After Revise fails the solution is modi�ed to provide a correct answer.
This is usually followed by a second Revise-step to make sure the new solution
is correct.

1.2.4 Retain

Retain is the step where the system learns. Every case encountered gives the
system a possibility to use this experience later. Properly indexed failed cases
can tell the system never to try a particular solution on this problem again. This
information will be given be the Revise step if it concludes the initial proposed
solution cannot be adapted to solve the new problem (and thus through simi-
larity assessment, solve similar problems). Another option is to change the best
case found to indicate that it also solves problems of this new kind. Sometimes
the user must specify a solution in the Revise-step. Here the incoming case with
its new solution can be saved as a new case and thus expand the number of avail-
able cases and solutions in the future. Sometimes the most important thing is
to save how the solution was created and modi�ed from another solution.

The next problem is to decide what indices will be created to help the system
�nd the new case later. How similarity is determined plays a large role in this
part. Where the case is represented as a vector with key/value pairs saving this
vector is adequate. If the case base is hierarchical, such as in Protos, the case
must be analyzed and put in the correct place. Creek has weights that tell
which features are most important when judging similarity for a case. These
weights must be updated.

When CBR was in its infancy it was believed that every case learned would
improve the system. As more systems were implemented this assumption proved
to be false. The utility problem appeared as the increasing size of a case base
would degrade the systems performance, most notably at retrieval time. At
some point the new experience learned is of less value than the increased cost in
matching. At this point it is time to prune the case base and delete unnecessary
cases. Care must be taken to ensure that the overall competence of the case
base is not reduced as a result. Examples of case base maintenance can be seen
in [21, 42].

1.3 Goal

The goal is to investigate segmentation guided by CBR principles. A CBR
system will be built where the case base is a collection of earlier images and
the necessary parameters to be able to reproduce the segmentations. When
confronted with a new case one solution from the case base will be retrieved and
used as a basis for solving the new problem. The system will be fully automatic
from the user has entered the incoming problem and until the solution has been
presented.

7



Retrieve and Revise will be given special attention, and in particular there are
two questions that must be answered:

1. How to assess similarity between two cases?

2. How to use a priori knowledge extracted from a case to

(a) Help Revise judge the output from Reuse

(b) Guide the adaption of the solution

For question 1 the usefulness of the best case found is what matters. The time
it takes to search the case base will not be an issue. Question 2 contains two
subproblems that a�ect each other. The goal is to show that by a joint e�ort
between Reuse and Revise the program can correct its own mistakes and execute
proper repair methods.

Retain is not focused in this work. The system may create a new case based on
the newly solved problem, but any case base maintenance will be excluded.

1.4 Methodology

The questions stated in the last section will be answered by empirical research.
Two di�erent ways of matching cases will be tried and their ranking of cases
will be tested to see whether they sort cases in the correct order. If one method
orders cases 2,3,5,4 (in that order) as most similar to case 1, will the result of
using case 2 to solve 1 be better than 3,5,4? How the di�erent methods perform
will be analyzed in light of the domain chosen. The conclusion may not hold
for other types of images.

In the matter of a priori knowledge the investigation will start with no adaption
at all. Based on how the attempts fail new a priori information will be added
to help Revise determine if Reuse's output is plausible or not.

How the system is performing will be monitored by comparing the output with
a ground truth for each image.

1.5 Outline

The next section will present previous research that focused on CBR and seg-
mentation. It will also include research originally intended for other areas but
can be used here, such as image comparison. Section 3 will present the system
that is being built. It will show how the experiments are set up, conducted
and the results measured to help any interested party in reproducing the re-
sults. This section includes what segmentation algorithm was chosen and why,
contents of each case and an introduction to the Repair-cycle that will enable
the system to react to segmentation failures and take countermeasures. This is
followed by a presentation of the cases in the case base. How Repair is imple-
mented will be presented in section 5. It also shows how this part of the system
performs, with scores given for all cases and with three of them being explained
in detail. Section 6 contains results from the comparisons of two di�erent ways

8



to match cases during retrieve. The combination between CBR and image pro-
cessing is fairly new and many thoughts emerged throughout the project. These
are presented in the discussion in section 7 and some �nal words on future work
are given in section 8.

9



2 Related Research

The system as de�ned will use CBR in image segmentation. Broken down
this means �nding a solution to the four RE-s. For retrieval it is interesting
to see what can be found on image comparison, and if it can be used as a
similarity metric. More on this in section 2.3. The reuse will simply be to use
the parameters found in the best case in the already determined segmentation
method. More interestingly is Revise, who's job it is to see if the proposed
solution is in fact a solution. It will need a way to judge the outcome of Reuse
in an objective manner. Earlier research will be discussed in 2.2. But �rst
earlier approaches to a combined use of CBR and image segmentation will be
presented.

2.1 CBR and Images

It is evident that there is a lot of literature on image processing in the �eld, and
an increasing number of papers on CBR are published. However there is sur-
prisingly little overlap between these �elds, only a few papers and systems have
been found. In [31] Perner arguments for why CBR should be used to segment
images and also describes the architecture for such a system. She claims that
compared to what CBR can o�er, the recent segmentation systems are lacking
in both �exibility and robustness. Traditional systems try to get a set of optimal
parameters that work well with its chosen domain. This will guarantee a best
�t over the available test data, but does not guarantee an optimal segmentation
per image. The SCINA system [12] was designed to interpret SPECT1 images
and assess coronary artery disease. The end result is not a segmented image,
rather it is a diagnosis for the eye. No segmentation takes place. In the case
base each case is stored as a 6× 6 matrix of integer values that corresponds to
the level of tracer �uid in the eye. For the input image this matrix is compared
against all other matrices to exclude all but a few cases for further comparison.
The matrix to matrix similarity measure uses weights for the importance of ar-
eas in the eye and combines this with use of a polar data map. After this the
remaining cases can be adapted to look more like the input case. This part is
rule driven.

Ficet-Cauchard et al [9] built a CBR system to reuse existing image processing
knowledge on new images. The sought output is a plan to be executed on the
image in order to get the desired result. One case does not contain every step
of a plan, nor does a plan reside in one case alone. Some cases contain a plan
for a particular small task while others de�ne a task/subtask decomposition in
a tree structure and let other cases solve each subtask. This may go on for
several decompositions. While matching it is the top-level case of a plan that
is matched. After this the tree is traversed and subtrees might be changed. To
allow this every case has information regarding its position in the tree, under
what circumstances it is applicable and what it does. If the retrieved plan has a
step for �smoothing noisy images� and it is known that the new image is already

1Single Photon Emission Computed Tomography. The patient is injected with a radioactive
isotope which decays and emits gamma rays in the process. These rays are used as a source
of information to render a 3D image [13].

10



smoothed, the plan is adapted to remove this step. The similarity assessment
is done using a weighted average of the similarity between criteria, see equation
(1).

Φt(S, T ) =
Σ(αCr × φCr(S, T ))

ΣαCr
(1)

αCr is the weight for criteria Cr and φCr(S, T ) is the similarity function for Cr
giving a similarity [0, 1] between S and T. In Ficet-Cauchard's model several
φCr are implemented, such as:

1. If T=S then 1, else 0

2. A gradual score from 0 to 1 based on some distance

3. The distance between S and T in an ordered set

4. The number of common elements in a set

In this way di�erent criteria might have di�erent similarity functions.

A system for the interpretation of Computed Tomography (CT)-images has
been developed called ImageCreek[11]. It does not segment the image but
rather works on a segmented image and tries to give semantical meaning to the
segments. The system is divided into two layers where one is driven by the
other, both using CBR. On top is the holistic layer which is responsible for the
interpretation of the image as a whole. Beneath is a segment layer that receives
a segment and works on this as an isolated case. The result will be reported
back to the top layer. It is the job of the holistic layer to ensure that these
results �t together according to domain speci�c rules. Both layers work in a
Propose-Verify-Critique-Modify manner. Propose proposes a set of solutions to
the task at hand. These are veri�ed in the next step to make sure they actually
solve the problem. If the verifying fails it is the job of the critique step to �gure
out how to adapt the failed solution so it can be veri�ed. The last step, modify,
executes the adaption strategy from the critique step.

In [24] Lorenzo-Valdes et al describe how to segment the left and right ventricles
of the heart. Previous images of the heart are segmented and the results are
combined into an atlas where each region is de�ned. This is then warped to look
like the incoming image, usually by registration (will be explained in section 3.4).
Each region in the new image will now overlap with the regions in the atlas,
and thus the segmentation can be copied into the new image. It is important
that the warping produces two similar images for this to work, and therefore
they cannot be too dissimilar at the start of the process. With hearts and other
human organs this is not always easy as there can be large di�erences between
individuals. Lorenzo-Valdes solves this by creating a population-speci�c atlas
by basing the atlas on �normal adults�, same as the test subject. If this is to be
used on a child a di�erent atlas must be used. This can be seen as a weak form
of CBR where the problem is mapped to the best available a priori knowledge
of problems of this sort.

In [30] Perner has designed a system to give a ratio of brain vs liquids in CT
images. A case base of previously processed images is created, and along with

11



the original image the case contains the optimal parameters for how to segment
it. The segmentation algorithm is the same in all cases, but the parameters
vary. Case matching was done by using both image and non-image data. For the
non-image data the sex and age of the patient together with the slice thickness
and number of slices (in the image) were used. Similarity of image data was
computed with a distance function by Zamperoni et al [46], and one was based
on statistical features. In the statistical approach the eight features given in
table 1 are extracted and stored within each case.

Mean ḡ =
∑

g g · H(g) Variance δ2
g =

∑
g(g − g)2H(g)

Skewness gs = 1
δ3

g

∑
g(g − g)3H(g) Kurtosis gk = 1

δ4
g

∑
g

(
(g − g)4H(g)

)
− 3

Var. Coe�. v = δ
g

Entropy ge = −
∑

g H(g) log2[H(g)]

Centroid x x =

∑
x

∑
y x·f(x,y)

gS
Centroid y y =

∑
x

∑
y y·f(x,y)

gS

g = intensity value, N(g) = # pixels of color g, S=total number of pixels

Table 1: The eight statistical features extracted from an image in Perner's

image CBR system.

Upon retrieval these features are extracted from the new image and the distance
between the cases is calculated with the following equation:

dista,b =
1
k

K∑
i=1

wi

∣∣∣∣ CiA − Ci,min

Ci,max − Ci,min
− CiB − Ci,min

Ci,max − Ci,min

∣∣∣∣ (2)

where CiA is the feature value of feature i for image A and Ci,min, Ci,max are the
minimum and maximum values for that feature over the entire case base. wi is
the feature weight, all set to 1 in her paper. The statistical similarity assessment
has a better result in addition to being much faster. No comparison with other
systems is o�ered but the author claims it gives �superior performance�.

2.2 Evaluating a Segmentation

Unfortunately it is not straight forward to judge the output of a segmentation.
In addition, both [29] and [6] states that research in this area has received much
less attention than the segmentation algorithms themselves. These evaluation
methods can be divided into three groups. One is the analytical group, where the
algorithm itself is analyzed in terms of functionality, principles and properties.
The two remaining groups, goodness and discrepancy methods, are both types of
empirical methods. Goodness methods examine the output for di�erent features
known to a good segmentation such as low intra region variance or high inter
region variance. Based on how the result complies with such measures a score is
calculated. The third group, discrepancy methods, uses a known �ground truth�
or �gold standard� that is the best segmentation of the image in question. (A
best segmentation for the application at hand). This is often a segmentation
done manually by an expert.

Somewhere in the middle of discrepancy and goodness methods is a system by
de Graaf et al [6]. They describe a method based on the cost of editing a result

12



from an automatic segmentation, segment distribution, to a gold standard, object
distribution. This requires that the segmentation algorithm has the capability
to create a �xed number of segments. An example of this is region growing
methods. Two types of editing are permitted, splitting and merging of regions,
with an individual associated cost kM and kS . These costs should be based on
the available tools for these operations, as the object is to minimize the time
needed for manual editing of the result later. The segmentation algorithm is run
with an increasing number of segments. Each result is judged by the equation
(3).

Qs =
1
N

Ns∑
i=0

N(si)∑
j=0

T (j ⊂ si) (3)

Ns is the number of segments and N(si) is the number of pixels in segment i.
These pixels may overlap with a number of segments from the object distribution.
One of these, segment j, has the biggest overlap. T() then equals 1 if the pixel
in segment si overlaps with a pixel from segment sj , 0 otherwise. All, if any, of
the segmentation results with Qs higher than a threshold Qthr will have its cost
of manual editing computed. The one with the lowest editing score is deemed
the best. In the paper ([6]) an example is shown with a slice from a Magnetic
Resonance (MR) scan of a person's head. The object distribution has three
segments and the best segment distribution found has eight. The quality of
the print makes it hard to judge if the result would be good if these eight are
combined in a sensible fashion and reduced to three.

Huo et al [14] have a fairly simple evaluation, they use the percent of overlap
between the automatically segmented regions and an expert segmentation.

Sim(A,B) =
A ∩B

A ∪B
(4)

This is not used to evaluate a speci�c segmentation as good or bad and hence
request a new segmentation, rather they use it to evaluate the segmentation
method itself for a particular domain. Three radiologists segment 96 mammog-
raphy images by hand and evaluate if any mass lesions are malign or benign. For
the automatic segmentation the algorithm is given a 5122 region of interest cen-
tered on the abnormality in question. From there it segments the image based
on a region-growing technique. From each segment/lesion in these images four
features are extracted and combined with an arti�cial neural network to give a
probability of it being malign or not. The same is done with the automatically
computed segments. A comparison on a segment-to-segment basis shows that
the computer undergrows the regions, on average only marking about 75% of
the pixels the radiologists do. Despite this the results from the feature extrac-
tion and classi�cation based on the computer generated segments are not much
worse than the ones based on the manually marked segments. Based on this
they conclude that even if the segmentation results are not perfect the algorithm
used is adequate for solving this problem. ImageCreek used domain knowl-
edge to judge the result from the segmentation. Its overall goal was to give
semantic meaning to the segments, which corresponds with the classi�cation
step in the image processing pipeline. If, however, the system was unable to

13



infer something reasonable from the output it could ask for a new segmentation
as it believed the current one to be �awed. This can be seen as a success/failure
judgement of the result.

Through the a priori nature of CBR both goodness and discrepancy method are
candidates for Revise. Features from a particular output can be extracted and
stored with the case in addition to the solution. Based on this features from the
outcome of the new problem can be compared to the expected values. There
might even be a possibility to store the segmentation result itself in a case and
use this as ground truth when judging the new case.

2.3 Comparison of Images

As with segmentation, a comparison of images is not straight forward. To
provide an overview of the literature some systems and methods will be discussed
from three di�erent approaches to the problem. These are matrix-based, feature-
based and structural similarity.

In the matrix-based approach the data to be compared are the intensity values
of the image. The simplest is just a subtraction of one image from the other.
If the result is an image where all pixels have intensity 0, the images are equal.
Another example is the Hausdorrf distance [15] [45]. It is de�ned as

H(A,B) = max(max
a∈A

min
b∈B

||a− b||) (5)

where || ? || is an arbitrary function (here a − b) on the points in A and B,
e.g. the Euclidean distance. For each coordinate the distance from a pixel in A
to the nearest pixel in B is calculated. In the sense of Euclidean distance, the
distance will in a 2D image be the distance in the 3D space based on coordinates
and intensity. To save time it is common to only compare pixel a ∈ A to the
pixels b ∈ WB where WB is a subwindow of B. The distance is also calculated
for each pixel b ∈ B to a ∈ WA. The largest of all these distances will be the
distance between the two images. Mutual information [8] uses statistics to assess
the similarity. Given two images A and B to be measured, mutual information
tries to establish if there is a dependency between the intensities of pixels at
coordinates (x, y) in A and B. If the images are equal then an intensity x in
image A will always yield intensity x in image B as well. A major advantage
is that the proximity of the intensities in a color space does not matter. For
instance, say you invert the colors of image B. There is still a strong dependency
between them, the intensity i at (x, y) in A will still always predict intensity j
at (x, y) in B. And thus they contain the same information and are semantically
the same.

The feature-based approaches try to extract either numeric or symbolic features
from the image and use existing machine learning algorithms to evaluate simi-
larity. Santini [38] developed a similarity measure called Fuzzy Feature Contrast

based on Tversky's Feature Contrast [44]. Whereas in Tversky's measure the
features were binary, Santini would represent the absence or presence of a fea-
ture on a scale [0, 1] where 0 is not present and 1 is present. The objective

14



of the research was to provide a similarity measure that assessed similarity in
the same way as humans do, that it ordered a set of images in the same way
human test subjects did. They claim it is the perceptual distance that matters,
as if they are to be called �intelligent� they must give the same answer as a
human would. In [32] Perner describes a system for automatic classi�cation of
airborne fungi. From the image attribute/value pairs such as color = brown

or contour=double contour are extracted and fed to a CBR system. This will
then match the new case to the cases in the system and classify it. If it is too
dissimilar from existing cases it might be determined that it is a new type of
fungi and give it a new classi�cation and thus learn. Mehrotra [27] retrieves
images with similar shapes as the query. All images are processed in advance
to obtain the shape boundaries. These are processed and turned into a scale,
translation and rotation invariant point in multidimensional space. The user
can then search for an exact match (useful for �nding shapes in CAD-models,
computer graphics or other non-noise environments) or a similar match (useful
in real life data). In [40] Smeulders et al give an extensive survey of content
based image retrieval systems designed before 2000. This contains an in depth
discussion on similarity between features, object silhouettes, structural features
and salient features. Puzicha et al [35] give an empirical study of nine dissimi-
larity measures for color and texture and conclude that they found no over-all
winner or loser. Each task requires its own tool.

In structural similarity one may use an attributed graph to represent the im-
age. VisualSEEk [41] extracts information on the size, color(s), relative and
absolute position of di�erent regions and saves this in a database. A user may
later build a query by positioning di�erent regions on a grid an let the system
�nd similar settings in the database by graph matching.

15



3 System Architecture

Figure 4: How di�erent parts of the program are connected.

The system will contain three parts, a case based reasoning part called CBR, an
image processing part named ITK and one Repair part. How they are connected
can be seen in �gure 4. CBR is responsible for accepting a problem descrip-
tion from the user and to retrieve the case it judges as best. Named after the
image processing library, ITK will be responsible for all image processing. The
third part, Repair, is responsible for coming up with adjustments to the pro-
posed solution should Revise decide that the attempt failed. It takes whatever
information needed from the case and analyzes the segmented image to decide
what should be done. Repair will be further explained in section 3.6. How they
interact during the execution of the program will be explained in the rest of this
chapter.

3.1 Program Flow

Figure 5 shows the �ow through the system. The system will to some degree
follow the traditional lines of CBR systems. Each new case, in this setting a
3D MRI volume, is given to the system as the problem description. The task
is now to �nd the solution s from a set of solutions S that segments the new
case best. S contains tried and tested solutions that are known to segment a
previously encountered volume in a satisfactory way. How these solutions are
found and how they work is elaborated in section 3.7.

The way to get s is to go through the image volume s is connected to. This is
illustrated with the �rst arrow in the �gure, the matching of the new volume to
the others. Further details on matching will be explained in section 3.4. The
most similar volume, msv, has a pointer to a solution s. Since it is known that
s segments msv in a satisfactory way, and the new case and msv are similar it
can be assumed that s segments the new case in a satisfactory way as well. s
is then retrieved and given to ITK for execution. This is illustrated by arrows
2 and 3 in the �gure. How ITK applies the solution is detailed in section 3.5.1.
After this the result is sent to Revise to be approved.

16



Figure 5: A simpli�ed �ow chart of the system. Each new case will be

compared to older cases and the solution associated with the most similar case

is retrieved and used. Thereafter the system will make changes to the solution

if deemed necessary until a satis�able result emerges.

Before the rest of the system is explained it should be mentioned what kind
of data the system will work on. The volumes used were downloaded from the
Internet Brain Segmentation Repository (IBSR) 2. The IBSR is a web resource
that o�ers real life data sets of medical images. Because of the requirement
for patient privacy such images are in general hard to obtain. In addition, a
hand segmented version of each volume is provided. As stated in section 2.2, an
automatic evaluation of the result without a ground truth to compare with is
di�cult. With the inclusion of the segmented version researchers can test their
proposed methods on the raw data and get an evaluation of its accuracy by
comparing it with the solution. In fact the purpose of IBSR is to give researchers
real life data and a solution with which they can verify their research. The other
option would be to segment the raw data and then get a trained radiologist to
comment on the accuracy at a later stage.

3.2 Image Processing Module

All image processing will be done with the Insight Toolkit (ITK) [1]. It is an
initiative of the US National Library of Medicine of the National Institutes of
Health and was started in 1999 and is still in development. Since it is open
source software anyone can use and expand it as they like.

3.3 Case Architecture

A case needs two obvious elements. It needs a description of the problem it
exempli�es, and the solution to this problem. The description of the problem

2The 20 normal MR brain data sets and their manual segmentations were provided by
the Center for Morphometric Analysis at Massachusetts General Hospital and are available
at http://www.cma.mgh.harvard.edu/ibsr/.

17



must be in a form that makes it possible to compare it to another description
and determine if they are equal. If a particular problem is �open jar� the solution
attatched to a problem indexed as �how to shower� is of no interest. Only cases
indexed as relevant to jars are of interest. This system deals with segmentation
of images and hence all cases stored in the case base are going to be examples
of and solutions to �how to segment this image�-problems. Because of this the
chosen description of a problem is the image the solution segments.

The solution is in the form of a set of parameters for the segmentation method.
This set is known in advance to segment the image in the case in the best way
possible. Finding these solutions and to build a case base is an important step
in developing CBR systems, as without previous cases to be reused the system
can not function. Section 3.7 describes how the sets were found.

There are two additional parts of each case beside the image and the solution.
One is information used to verify the solution in Revise. This will be explained
in section 5. The last piece of information stored in each case is the ground
truth segmentation of the image. This is not used in the CBR process itself but
rather in the evaluation of the system, explained in section 3.8 and is placed
there for convenience. Figure 6 gives a graphical explanation to the content of
each case. Note that only a 2D slice from the 3D data set is pictured in the
�gure.

Figure 6: The contents of a case.

3.4 Case Matching

If the proposed solution is to be of any help, the input volume has to be similar
to the volume just presented as a new case. As an example of this, see �gure
7. In this case data set 13 to the right has been segmented using a threshold.
The marked region (white) maps good with the ventricles, the desired structure.
To the left data set 4 is segmented with the same threshold, and the failure is

3Unless otherwise stated, data set # refers to an IBSR data set. See appendix A for a
mapping from number to name of �le.

18



Figure 7: An example of what can happen if the proposed solution is tuned

to an image too di�erent from a new image. Left is wrong, right is correct.

The same threshold is used in both images.

obvious. Voxels not members of the ventricle have been falsely marked as such.
The cross sections chosen were number 140 in data set 1 and 152 in data set
4. A di�erent slice from each volume is necessary to show the same view in
both volumes, as the content on slice x from one volume does not necessarily
match with the contents of the same slice in another volume. If this was true it
would be known that the ventricles were to be found on slices XX through YY,
simplifying things greatly.

The fact that slice x in one data set is not at the same location in the head as
slice x in another data set introduces some problems. In voxel-to-voxel based
matching two identical heads positioned at di�erent coordinates in the encapsu-
lating volume will not be judged similar at all. The modi�ed Hausdorrf distance
by Zamperoni et al [46] takes this into account by matching a voxel to a nearby
set of voxels in the other image. This problem with displacement will not occur
with feature based similarity measurement. The values extracted will be iden-
tical as long as the features are not position dependent. The features suggested
in Perner's work [30] are based on gray levels and are position independent.

Figure 8: Points in image A are mapped onto points in image B by transform

T.

19



Transform VersorRigid3DTransform
Optimizer VersorRigid3DTransformOptimizer
Sim. function MeanSquaresImageToImageMetric
Interpolator LinearInterpolateImageFunction
Max iterations 200

Table 2: The classes from ITK used for registration.

As will be evident in section 3.5.1 it is important that the two volumes are not
only similar, but that the heads' position in them are aligned. This can be
ensured by a process called registration. Registration means to �nd a transform
T that transforms a set of points in one image to a set of points in another
image. A simpli�ed example of this is shown in �gure 8. In this example T is
a simple rotational matrix that needs to rotate image A 90◦ to correspond to
image B.

In registration-speci�c terms image A is known as the moving image and B as
the �xed image. This is because it is A that is transformed to match image B,
which is stationary. Although it is easy for a human to spot a simple transform,
like the one in the example, it is much harder for a computer. A computer has to
guess an initial transform and apply it to the moving image. Then it must decide
if the alignment is a better or worse match than before the transformation, and
this is done with an image similarity function as explained earlier. Until the
moving image has a close enough similarity with the �xed image this process
is repeated. A natural question is to ask how to choose a new guess for the
transform at any given point in time. It is the job of an optimizer function to
decide this.

So regardless of the matching function chosen the new image and the image from
the most similar case have to be registered. This will be done with ITK. The
ITK Software Guide [16] page 400 describes the set up for a registration in 3D.
This can be seen in the �le Examples/Registration/ImageRegistration8.cxx
that is included in the ITK installation. All registrations done in this work are
based on this �le. The details of the function are given in table 2. The transform
handles both translation and rotation, meaning that the moving image can be
moved around in the encapsulating volume and/or be rotated. The optimizer
is a special optimizer designed for this transform. To compute the distance
between two images the similarity function is used. The distance between two
images are here computed as the square of the di�erence in intensity values
voxel by voxel. Since voxels are seldom aligned between the two images after
the moving image has been transformed an interpolator is used. A voxel in the
�xed image ends up intersecting one or many voxels in the moving image. The
interpolator computes a value to be compared to the voxel of the �xed image
based on these intersecting voxels. Max iterations is the maximum number of
iterations the registration process can make before it gives up and accepts its
current transform as its best.

Since the registration process starts by computing a similarity, makes adjust-
ments, computes similarity etc until it is satis�ed it will at the same time give
a measure of how similar the images are. The score given after the registration

20



has been �nalized can be used as a similarity measure between cases and is given
automatically by a process that is needed anyway. Therefore this score is one
option for computing similarity between cases. The other that will be used in
this work is the one from Perner [30], extended to three dimensions. They will
not be used at the same time but will rather be given the same tasks and have
their results compared.

3.5 The Segmentation Method

When choosing a segmentation method two aspects were taken into consid-
eration, results and simplicity. The results a method produces are obviously
important. If it can not solve the task at hand in a satisfactory manner nothing
else can justify its use. Secondly the simplicity of the method was considered.
Upon failure Repair has to make adjustments to the parameters of the method
in a way it deems �t. When done manually this is done by an analysis of the out-
put and based on the operator's prior experience some parameters are adjusted.
This is usually a trial-and-error based search for a good result. When done
automatically there must be some structures that decide how these adjustments
are done. In order to design these the system designer has to understand the
problem domain fully, and be able to implement this knowledge in the system.
The simpler the segmentation method, the simpler this task will be.

Based on this a thresholding technique was chosen. The results were adequate
and the method is fairly simple in its design. Other rejected methods are men-
tioned at the end of this chapter, section 3.9, where the rejection will be justi�ed
by the two considered aspects.

3.5.1 The subvolume

One of the parameters from the case is the coordinates of a subvolume of the
entire volume. Why is this necessary? Thresholding works by judging each
voxel against a threshold, hence its name. In this case it is appropriate because
the ventricles have on average a noticeable lower intensity than its surrounding
tissue, see �gure 9(a). But other brain tissues do have as low intensities. Some
of these are marked in �gure 9(b). If the whole image was thresholded it would
contain non-ventricle parts as foreground, which would be an undesirable e�ect.
One solution, and the one adopted here, is to only threshold a part of the image.
This part should be set such that all voxels of intensity lower than x belong to
the ventricles. Note that an optimal setting would be the ventricle itself, as you
are guaranteed not to include anything outside of it. In this case the problem of
segmentation would be solved already and no thresholding would need to take
place. To conclude, the subvolume should be easy to calculate and contain as
few uninteresting voxels as possible.

Unfortunately it is not always as easy as to just use the bounding box blindly.
The problem is illustrated in �gure 10. The bounding box of the ventricles in
image A may not enclose the ventricles in image B. (The size of A's ventricles
was determined by the author, not a quali�ed radiologist.) This will happen
if the bounding boxes have di�erent size or are located di�erently. Since A

21



(a) Ventricles are darker than sur-
rounding the tissue

(b) Dark regions that are not part of
the ventricles

Figure 9: Examples to illustrate some problems with thresholding the images.

The image is frontal slice 28, data set 112.

and B have been through the registration process they should be aligned and
hence their ventricles in corresponding locations. At this point three outcomes
are possible, the proposed subvolume is too small, perfect or too big. The
perfect one is of course not a problem. The second best alternative is the too
big subvolume. It may include a number of non-ventricle voxels which the
segmentation algorithm can misclassify, but it is theoretically possible to get a
perfect segmentation. When the subvolume is too small however some parts of
the ventricle will have no chance of being detected as they would be outside the
area of interest.

Figure 10: The bounding box of the ventricle in one image does not neces-

sarily match another. Leftmost image is axial slice 124 from data set 1. The

center and rightmost is axial slice 174 from data set 202.

The problem with di�erent size in bounding boxes is recognized as a problem
with this approach but will not receive any focus in this work. Two amendment
strategies are either to include the necessary information in each case to be able
to detect it mathematically, or to investigate along the boundary to see if it
splits obvious regions. In the rightmost image in �gure 10 the right border, top
half, can be seen to have equal intensity on both sides and this could indicate an

22



Figure 11: The white region marked 1 is a correctly marked ventricle. The

region marked 2 is falsely marked as ventricles and is the region targeted for

removal.

error. But as unwanted regions should be cut in such a fashion it is not straight
forward.

3.5.2 The First Threshold

The chosen method was developed through a series of modi�cations to the orig-
inal idea of thresholding the image. Even with the use of a de�ned subvolume,
dark intensity voxels not belonging to the ventricles were present. They are
largely present in one corner of the subvolume as can be seen in �gure 11 and
combined they usually outnumber the voxels of the ventricle. Once this was
established a task was introduced to remove this region from the image before
searching for the ventricles. The solution found was as follows:

1. Threshold the image with threshold Tbg.

2. Identity all voxels belonging to the biggest region.

3. Set those voxels to white.

It is important that as much as possible is removed, which means setting the
threshold Tbg so high that the resulting region contains as many unwanted voxels
as possible. A hidden danger is that there are a number of small resulting
regions from this �rst step, among them part of the ventricles. If Tbg is too high
these will melt together and become part of the biggest region and will thus be
removed. Figure 12 illustrates this. In a) Tbg is 101 and in b) it is set to 102.
Neither of them is perfect, however, as in a) the white region in the center of
the image is in fact part of the ventricles and should not have been marked.
Still, it is far better than b) where much more is falsely marked white.

Why white? At �rst this may not be obvious. Remember that the thresholding
accepts values below a certain value. As white has full intensity the only pos-
sibility of these regions to be found is by thresholding at maximum intensity.
This will set the whole image to foreground and will never be done. Thus the
white regions will not be taken for ventricles ever again.

23



(a) Threshold set at 101 (b) Threshold set at 102

Figure 12: The e�ect of increasing the �rst threshold. At some point in time

the ventricles will be considered part of the unwanted region.

3.5.3 The Second Threshold

After the �rst threshold the largest dark region in the image contains the desired
object. Now the threshold Tv has to be found in such a way that it captures
as much as desired, but not more. The �ne thing however is that because of
the �rst step Tv can be higher than it was before that step. Remember that
Tbg was set just before the unwanted, big region BG and the wanted region V
merged together. This means that what separates them are one or more voxels
at Tbg + 1, a set of voxels called D. If the �rst step was not taken D separates
two dark regions, V and BG, that will fuse at threshold Tbg + 1. If the �rst
step indeed was taken, D now separates one dark region V and one white region
BG. Increasing Tv to Tbg + 1 will only fuse D and V , not BG as it is set higher
than any threshold that will be used. In this fashion Tv can be increased until
the next time it is too large and accepts neighboring tissue.

3.6 Repair

Repair is inspired by the automatic revision of plans in Chef. It is not a
step in CBR like the four RE-s, it is rather the name given to the extended
cooperation between Reuse and Revise. After a solution to the initial problem
has been found Revise will determine internally if it is sound or not. If not sound
the solution has to be modi�ed. Since this system uses derivational reuse the
problem solving method will be altered, not the actual result. This is reapplied
and the new result will be tested again and if necessary new modi�cations to
the segmentation algorithm are made. Until the result is deemed acceptable the
result will not be shown to the user. How Repair �ts into the CBR-cycle can
be seen in �gure 13.

This focus on Repair is not customary in CBR. Also uncommon for CBR sys-
tems, the cause of failure will not be identi�ed and incorporated into the case
base. Properly indexed, knowledge from such failures can aid the retrieval of
new cases in the future. Through a failure it can be learnt that case X does
not solve problem Y and the next time Y or a similar problem comes along X
is not used, even though it may be the most similar case. During the discussion
in section 7 this topic will be dealt with again. This project will not focus on
either detecting, utilizing or saving such knowledge. It is because the cause of
failure is too hard to detect that this solution for Repair is used. Chef can

24



Figure 13: The Repair-module in the CBR-cycle

rely on lessons learnt from old failures in adaption and avoid making the same
mistakes again.

This model for iterative improvement is in�uenced by earlier knowledge based
systems such as [23]. The intention is to make the system aware of its own
mistakes and to act upon them. This is the minimum requirement for a sys-
tem that hopes to be seen as intelligent. Instead of relying on general domain
knowledge as the aforementioned system does, knowledge will be based on case
speci�c information. So instead of knowing that feature X is generally found in
an area Y, X is now expected to be at a speci�c location. This may of course
be allowed to vary due to individual di�erences, but with good case matching
this di�erence should not be too great.

Adaption will be guided by a small set of rules found by trial and error. If the
mass center of the region found is correct but it is too small, a threshold can be
incremented to capture more voxels. If the mass center is far from the expected
location a wrong region may have been marked. Based on earlier experience it
can be decided how to react. How this is done will be explained in section 5.

3.7 Building the Case Base

Before a CBR system can be used to any degree the case base has to be con-
structed. Since a case is a problem/solution pair, a solution to the problem at
hand has to be found. This takes form as the parameters needed in the seg-
mentation algorithm. The chosen segmentation algorithm is fairly simple and
has only two parameters, the thresholds. Also, the thresholds must be in the
same range as the gray values it is possible to encounter in the image. Since the
intensities in the images are scaled to be within the range 0, 255 this is a small
enough parameter space to be brute forced. The best thresholds will be the set
that maximize the overlap [14] of the proposed solution and ground truth. That
is;

25



Tbg, Tv = argmax
Tbg,Tv

A ∩B

A ∪B
. (6)

where A is the segment from the thresholding and B is from ground truth.

An easy way to �nd the optimal thresholds is to try them all and compute the
overlap for each. To the contrary, which part of the entire volume to apply
the thresholding to can not be found in this way. The ground truth is used to
do this. By traversing the voxels of the ground truth and noting the indices
where the voxels belonging to the ventricles are it is an easy task to compute
the bounding box. The space between the minima and maxima of the ventricles'
position in the X,Y and Z dimensions de�nes the subvolume to use. It can not
be smaller because then the sought object would not be segmented entirely. To
increase the size will only include more voxels outside the sought object that
potentially can be misclassi�ed.

To summarize, the solution associated with each case will be found accoring to
the following steps:

1. Locate bounding box of ventricles in ground truth.

2. Set this as the region of interest in the corresponding raw data.

3. For all possible thresholds, test and compute overlap.

4. Save the optimal set of thresholds.

3.8 Evaluation of the System

The evaluation of segmentation results are not always easy and as mentioned
earlier, it usually employs a kind of ground truth. But as Kapur [17] discusses,
the ground truth itself is not always easy to acquire. In the case of brain tissue
segmentation the ground truth does indeed exist, but in a form that is hard to
extract. Inside the patient's head the brain tissue has physical borders, but we
are unable to extract them perfectly. With this in mind, she lists �ve di�erent
methods of segmentation validation;

1. Visual inspection.

2. Comparison with a manual segmentation.

3. Testing on syntactical data.

4. Use of �ducial marks on patients.

5. Use of �ducial marks on cadavers.

Visual inspection is the simplest of the �ve methods. It is subjective and has
problems when it comes to segmenting volumes as people cannot see the inside
of the object. A comparison with a manual segmentation is also relatively
simple. One drawback with this method is that the manual segmentation is
not necessarily correct. Kapur claims di�erent experts can have as much as
15% variation in classi�cation. With syntactical data the boundaries are known
exactly, but it is di�cult to generate models that capture the full complexity

26



of the brain. As for alternative number four and �ve, �ducial marks can be
inserted into patients/cadavers in known places. These can later be used as
known samples to compare against the segmentation. This approach is highly
invasive.

At the moment no trained radiologist is available to comment on the result, and
this excludes visual inspection. The obvious lack of patients and/or cadavers
also eliminates these options. This leaves manual segmentations and syntactical
data as the only real options. Since manual segmentations were provided with
the raw data sets from IBSR, method number 2 will be used. It will not be
used in an application where an actual di�erence in the manual segmentation
and absolute ground truth is catastrophic.

When the type of method is determined, the use of it remains to be explained.
The system will be evaluated with leave-one-out cross validation. Each case will
be removed from the case base and will be used as a new and unseen case. The
score for each segmentation will be computed with the same formula used to
build the case base, see equation (6).

3.9 Rejected Algorithms

The Inside Toolkit comes with a large manual [16] describing various aspects
of its design and it explains how ITK works in great detail. One of its chap-
ters is dedicated to segmentation algorithms and contains an introduction to
segmentation as a �eld as well as how to accomplish this in ITK. The methods
considered were taken from this chapter and experimented with, starting with
a region growing method.

Region Growing Method

This attempt was based on the itk::NeighborhoodConnectedImageFilter

class, which is a region growing method. Like the thresholding method it has
two thresholds, but also requires a seed point from where the region will grow.
This was found manually by looking at the di�erent images. Depending on the
input image, several seed points were needed.

Although fairly simple, an automatic adaption, or movement, of the seed points
is not easy. The seed points are supposed to be put into the ventricles, a dark
part of the image. If placed outside the ventricles, in a light part of the image,
the seed point is often outside the thresholds itself and nothing happens. It is
easy to deduce that something went wrong, but where to move the seed point
for a better result is hard. If it was known where the ventricles were it would
be simple to move them here, but as the task is to �nd the ventricles this is not
known.

Registration

The process of registration was explained earlier in this chapter. In this setting
it was suggested that one image A was to be registered with another image
B, where the solution to B was available. As the images now are aligned the
solution to B could be copied into A and used directly. Because of limited time
available it was decided to only try rigid registration. That is, the incoming
image was only rotated and moved and not stretched or warped in any way.

27



(The time required to get su�cient knowledge of non-rigid registration was the
limit,since the running time of the program has never been an issue.)

The results were not acceptable even after manual adjustments had been tried.
Thus a case base with proper solutions could not be built and the method was
abandoned. A more advanced version was tried.

Registration and Level Set Methods

The solution from B copied into A did not �t perfectly and could not be expected
to due to the rigid process. But the solution can serve as an initial guess to be
modi�ed, just what Repair tries to do. A family of segmentation methods called
level set functions are appropriate for this task. Some of these functions can
take an initial guess at a segmentation and try to evolve it based on the contents
of the image and thus seemed like a natural choice to use. One problem with
this approach was that the level set methods required its own set of parameters,
more than six, making the task of optimizing them very hard.

Like the results from the pure registration the scores were not satisfactory. This
is most probably caused by inexperience and wrong parameters. In addition to
the parameters of the registration the method topped 10 parameters, too high
a number. As a result no usable sets of parameters for each case were found
and the method was abandoned.

For the record, the level set methods tried from ITK were:

• itk::ThresholdSegmentationLevelSetImageFilter

• itk::CannySegmentationLevelSetImageFilter

• itk::LaplacianSegmentationLevelSetImageFilter

For a more thorough introduction the reader may consult chapter 9.3 of the
ITK Software Guide [16].

28



4 Case Library

The next step after �nding the segmentation method is to put it to use and build
the case base, or case library. This means �nding a solution to the available
problems and put them in a form that allows them to be used later.

4.1 The Subvolume

The subvolumes were easily extracted from the available solutions. A quick
script iterated through the �le and checked the indices of each ventricle voxel,
noting the minimum and maximum along the x, y and z axes. These values are
stored in each solution.

4.2 The Thresholds

After the subvolumes were found what was needed was the two thresholds bbg

and bv. Because the segmentation takes a short time it was decided to try all
possible combinations of bbg and bv. The best thresholds for each case can be
seen in table 3.

Dataset First Threshold Second Threshold Full Score Score
1 100 116 0.59 0.71
2 80 94 0.50 0.63
4 64 72 0.60 0.67
5 0 54 0.71 0.74
6 0 54 0.69 0.75
7 125 133 0.58 0.71
8 106 122 0.46 0.58
11 106 122 0.67 0.76
12 112 118 0.65 0.76
13 113 130 0.41 0.52
15 0 52 0.68 0.74
16 0 52 0.62 0.65
17 23 87 0.47 0.63
100 119 124 0.53 0.67
110 119 135 0.44 0.50
111 82 112 0.47 0.59
112 94 124 0.53 0.68
191 125 132 0.47 0.67
202 42 91 0.65 0.73
205 78 102 0.66 0.74

Table 3: The thresholds and scores for each dataset

There seems to be no clear pattern. The �rst threshold varies from 0 to 125,
the second from 52 to 135. For dataset 12 the di�erence between them is six,
in 17 it is 64.

29



Figure 14: The white square is the parts used to compute �score� while the

rest is used for �full score�. The blue squares are just to highlight regions that

might be hard to see.

Datasets 7, 15 and 16 have very low scores and this can to some extent be
explained. Remember that only the biggest region after the second threshold
is considered ventricles and is marked as such. In these instances there are two
halves that will not fuse into a single region before the last threshold is a bit too
high. At this point it will also have some leaking and mark neighboring tissue
as ventricle. By having a lower second threshold and keeping the two largest
regions the score will be higher. This was not done in order to keep the method
simple and thus the adaption will be easier.

4.3 Two Scores?

Table 3 shows two scores called �Full Score and �Score�. The di�erence can
be seen in �gure 14. The thresholding method has its shortcomings and some
sacri�ces were made to optimize the score for the biggest region.

In its current state the segmentation method with two iterations of thresholding
will only detect the largest segment. This will of course a�ect the resulting score,
as shown in the table. An attempt was made to extend the method so it could
detect the two largest missing regions as well. For the volume in �gure 14 one
is marked in square 2 and the last one in both 1a and 1b. The remaining blue
squares outline other, smaller parts of the ventricles that may be hard to see in
the image/printout. This quickly became a trade o� between complexity and

30



score.

In the second threshold more regions than the largest can be kept. There did
not seem to be a clear pattern as to which (sorted by size) these were. In one
image it was 1,3,9 and in another 1,5,7. It could also be accomplished by a third
or fourth thresholding with their own thresholds. This would complicate Repair
even more, and that was not wanted. It was decided to keep the segmentation
method at its current complexity and accept the loss of these regions. The focus
will be on the detection and automatically repairing of segmentation results
using a priori knowledge from a CBR environment, and not the development
of a segmentation method that will be better than the ones already developed.

The score marked �Score� is the result of comparing only the computed segment
with the parts of the ventricle in the solution that are within the subvolume
de�ned by the white square in �gure 14. The resulting score is higher, but on a
global scale not more correct. If the part sought covers 75% of the ventricles a
perfect segmentation would give a score of 0.75 when comparing the result with
all of the ventricles. By only comparing with the solution in the subvolume a
score of 1.0 can be achieved. Thus more of the scale from 0-1 is used with this
method. Due to individual variations the parts shown in the blue squares vary
in size from person to person. In the datasets where the Full Score and Score
are fairly equal these parts are small and does not a�ect the score as much.

31



5 Repair

The following chapter will present the implementation of the Revise/Repair
cycle. Although this cycle happens after matching chronologically it would be
natural to compare the matching results both in terms of the initial score and the
score after repairing. Thus the Repair must be presented before the matching
results to put it into context.

5.1 Metadata

Before the results from Repair are presented it is in order with a presentation of
the information in each case that makes Repair possible. Some information from
the two regions to be found are present, size and mass center. The mass center
(centroid) is represented as a 3D coordinate and �the ventricle coordinates� will
refer to this. Another descriptor for the ventricles tries to say something about
its shape, as they normally look the same. Three dimensional moments [10] were
chosen because they are invariant to translation and rotation. Under registration
the moving image may be rotated for a better �t so it is important that the
descriptor can handle this. The selected moment is computed as follows:

J3 = µ200µ020µ002 + 2µ110µ101µ011 − µ002µ
2
110 − µ020µ

2
101 − µ200µ

2
011 (7)

where

µpqr =
X∑ Y∑ Z∑

(x− x̄)p(y − ȳ)q(z − z̄)rf(x, y, z).

where X,Y and Z refer to the three axis in the image, x̄, ȳ and z̄ are the centroid
of the object and f(x, y, z) is the image intensity at x, y, z.

5.2 Detecting Failures

The above mentioned metadata is used by Revise to verify that a region is
somewhat reasonable. Based on this Revise may determine the following errors:

• Region is too large

• Region is too small

• Region's mass center is not reasonable

• Region has funny shape

A region is considered �ne if it is between a factor of either 0.75 and 1.5 or 0.5
and 2.0 from the size given by the used case (when each factor is used will be
explained shortly). This is a trade o� between wanting to give the system a small
as possible range to evaluate sizes in, and having to accept di�erences in size
between cases. Unfortunately images with big ventricles do not always register

32



best with other images with big ventricles. This can be seen in appendix F where
the ventricle size from the incoming case are compared to its best matches.

Furthermore, a centroid is reasonable if |φnew − φold| < 5 for all φ ∈ x, y, z. If
it is the centroid it is said �to be found�. Shape is determined by the value of
J3 and is also approved if it less than double the predicted value. No test for if
this is too small has been devised as it was not necessary (at least with the test
cases available). The limits used were decided after some trial and error and
seem to work �ne, but no thorough investigation has been conducted.

5.3 First Attempt

The �rst attempt at an adaption strategy was based on the average image
intensity. Cases with high thresholds tended to have a high average intensity
in their images, and vice versa. Thus it seemed reasonable that the thresholds
could be adjusted with the di�erence in their average value. It was simple, quick
and gave bad results. They can be seen in appendix E.

The next attempt tried to analyze and classify the �nal output into a set of
outcomes, such as �found ventricles, but also much more�. Each such outcome
would have an amendment strategy that modi�ed one or both of the thresholds.
This did work better than the last attempt in some cases but also wreaked
havoc in others. The main culprit found was that more than one chain of events
could lead to a similar outcome. Therefore more than one strategy was needed
in some outcomes and there was really no way to choose from them. Should
both thresholds be adjusted, as was needed in case X, or only the last one as
in case Y? To make this work the problem had to be broken down into two
subproblems.

5.4 Second Attempt

In the second attempt it was decided to divide the original problem into two
smaller subproblems. Instead of judging the �nal output and arrive at a sensible
amendment strategy for both thresholds, each threshold will now be approved
independently. The �rst step locates the unwanted region and removes it before
letting step two �nd the ventricles, as illustrated with the following pseudo-code:

do{
Attempt = Threshold ( Image , Case )
Verd ict = Rev i s eF i r s t (Attempt , Case )

} whi l e ( Verd ict != ` `OK' ' )

SecondImg = Threshold ( Image , Case )

do{
Attempt2 = Threshold ( SecondImg , Case )
Verd ict = ReviseSecond (Attempt2 , Case )

} whi l e ( Verd ict != ` `OK' ' )

33



ReviseFirst and ReviseSecond is responsible for modifying the thresholds in the
case on each iteration.

5.4.1 ReviseFirst

ReviseFirst takes the thresholded image along with the case under consideration
and returns its verdict on the image. On the �rst iteration the case is classi-
�ed with respect to four common situations and is placed in a state designed
to improve this particular situation. Which situations these are and how the
classi�cation is done can be seen in �gure 15. From the starting state there
are four possibilities, �Increasing at chance�, �Avoiding Ventricles�, �Increasing
Region� and �Decreasing Region�. �Increasing at chance� is the least tangible of
the four and happens when the �rst threshold does not produce any region at
all, or if it is very small and at a location that does not make sense. For the �rst
situation and most common for the second the correct thing is to increase the
threshold. �Avoiding Ventricles� may sound like the wrong thing to do, after all
it is these structures we want to �nd. But that is the task of the second step,
after this step has found and removed the unwanted region. Because of this,
when a region found is believed to cover parts of them steps must be taken to
leave them alone. The third, �Increasing Region�, happens when the correct re-
gion is found, but is deemed to be too small. Its opposite, �Decreasing Region�,
has found the correct region and is trying to decrease it. Four of the cases do
not remove a �rst region and can thus not have any information on its center
or size. When these are used ReviseFirst �nishes immediately.

Actually, when the region is deemed too big or small based on size, the size is
compared to the size of the ventricles from the best case. This may seem strange,
but it does work better. A short analysis suggested that the �rst region's size
varies too much between cases to be useful. Also, in ReviseFirst the factors 0.75
and 1.5 are used to de�ne the acceptable range.

Figure 15: The state machine representing the Repair-cycle for the �rst

threshold. 1: No useful coordinates found and a small region OR no region

found. 2: Coordinates for ventricles found. 3: Found correct coordinates, but

small region. 4: Too large region found. 5: Found correct coordinates. 6:

Coordinates for ventricles found.

34



�Increasing Region�, see �gure 16(a), is responsible for increasing the size of
a region if it is deemed to be in the correct place. To increase the size the
threshold must be increased, allowing more voxels to join this region. Hence,
for each iteration in this state the �rst threshold is increased by one. It is
possible to come to this state at once if the centroid of the region is reasonable,
or from �Increasing at chance�. It will stay in this state until one of three
things occur: 1. Region now became too big. 2. The coordinates now indicate
ventricles. 3: Coordinates do no longer make sense, and indicate that the region
have expanded in a strange fashion and has pulled the centroid with it. In all
cases ReviseFirst uses the threshold from the last iteration (it passed these tests)
and quits.

Its inverse, �Decreasing Region� in �gure 16(b), can only be reached from the
starting state. The test triggers on size alone and keeps on decreasing the
threshold till the centroid makes sense. If the centroid moves to indicate that
ventricles are found the state is changed to �Avoid Ventricles�, specialized for
this situation. Should the centroid now indicate that the correct region is found
a second test on size is conducted. If acceptable it quits, otherwise it continues.

(a) 1: From Start. 2: From �Increasing
at Chance�. 3: Found ventricle coordi-
nates OR Lost correct coordinates OR
Region became too big. 4: Correct co-
ordinates and acceptable size

(b) 1: From Start. 2: Correct coor-
dinates and acceptable size 3: Found
ventricle coordinates, go to �Avoid Ven-
tricles�. 4: Correct coordinates and too
large region.

(c) 1: From Start. 2: go to �Increas-
ing Region�. 3: Found ventricle coordi-
nates. 4: Default.

(d) 1: From Start. 2: From �Reducing
Region�. 3: Found correct coordinates.
4: Default.

Figure 16: A more detailed look on each state from Figure 15

Sometimes the centroid of the �rst region does not make any sense, or a region
was simply not detected. �Increasing at chance�, �gure 16(c), was introduced
to cope with these situations. If no region is found it makes perfect sense to
increase the threshold to capture any voxels. Why it is correct in the �rst
case might be hard to see. This is the last test to be performed on the region
found, and will only be done if none of the other tests have triggered. Since the
region is not big enough for �Decreasing Region� to be activated, the threshold
is probably too low. Thus the threshold is incremented to see what happens. If

35



the region's centroid changes to match the ventricles the threshold has become
too high, and ReviseFirst quits using the last known good threshold. Should
the centroid match the region to be removed the case is taken into �Increasing
Region�, the state designed for this situation.

�Avoid Ventricles�, �gure 16(d) is designed to make sure that the �rst region does
not cover the ventricles. The reason is that this region will be removed and can
thus not be found by ReviseSecond later. By observation the correct action in
these situations is to lower the threshold, and this is done until the centroid
indicates that the �rst region is found. As the threshold was just lowered and
the correct region was found because of it, it is of no use to try and increase
the threshold hoping to remove more of this region. So instead of �Increasing
Region� it quits.

5.4.2 ReviseSecond

Figure 17: The choices made during the second Repair-cycle. 1: Too small

size 2: Too big size 3: Y and Z coordinates �ne, but not X 4: Too high J3, but

size is OK.

Unlike ReviseFirst, ReviseSecond is more of a mix between a state machine
and a rule based system. The state machine part is shown in �gure 17. Each
iteration starts by checking size and moment and reacts to these, possibly setting
the case in a new state but repeating the test next time over. Depending on the
tests that trigger (too big/too small) the threshold will be updated. Too small
or big here are determined by the factors 0.5 and 2.0. Only if these tests fail
will the state of the case have any in�uence.

Reduce Size �rst tests to see if the centroid indicates that ventricles have been
found. If this is not the case it just keeps on decreasing. If the centroid is correct
it will test against J3 to see if the shape is as expected. If it is ReviseSecond
quits happily, or else continues decreasing. Increase Size does what its name
implies and quits if the size or J3 becomes too big. Moment3 Testing decreases
the threshold until J3 is below a maximum limit.

Half Ventricle mode is especially designed to �re when only one half of the
ventricle is found. This is either the left or right half, seen from above, and
is caused by a too low threshold. The two halves are found as two separate
regions and the smallest of them is discarded by the segmentation algorithm.

36



Two of three coordinates of the centroid do not change from full ventricles to half
ventricles, only the X element is a�ected. Thus if the centroid is correct along
the Y and Z axes the system believes the region to be half the ventricles and
enters this mode. It will stay here until the region is too large or the centroid
is correct along all three axes.

5.5 Three Examples

To show the reasoning done by the system while repairing a solution three
cases will be presented and explained. One will be where the score drastically
improves, one with no adaption and one where the repairing actually does dam-
age. Many of the iterations will have an image that shows what the system is
presented with and works on at that particular point in time. The 3D-nature
of the images makes it hard to present them in a really good way. They are all
taken from the same view and each voxel can be thought of as a small cloud.
One voxel is rather small and will not be noticed against the black background,
but where there are many voxels between the point of view and the background
red shapes will appear. Each surface voxel is colored blue and hence blue regions
indicate that you are looking along a �at side going in the depth-direction. (The
program used to make the images does not allow me to alter these colors into
something that may be easier to see on the black background.)

5.5.1 Repairing Case 4

Both the matching functions presented in section 3.4 agree that case 2 is the
most similar case to case 4. After the registration the parameters 80 and 96 are
applied giving a score of 0.0002. ReviseFirst is set to work and concludes:

Thresholding at 80

Computed: [30, 17, 13] To remove: [29,24,8] Ventricle: [33,12,14]

No tests on centroid was fired. Size?

Region found is very big compared to size from case.

Suspecting white-out.

At this step the region to �nd is the one on
the middle-right, not the ventricles on the cen-
ter/left. �White-out� is an internal term indicat-
ing the �rst threshold is too high and the �rst
region is too large. As this region is set to white
a very large region would result in the image be-

ing �lled with white, �white-out�. Note that the computed centroid is close to
the ventricle's centroid.

The next step is:

Thresholding at 79

Computed: [30, 18, 13] To remove: [29,24,8] Ventricle: [33,12,14]

Centroid still makes no sense. Keep lowering.

37



This also happens with 78. At 77 the following happens:

Thresholding at 77

Computed: [31, 13, 14] To remove: [29,24,8] Ventricle: [33,12,14]

Ventricles found from whiteout. Enter escape-ventricles mode.

As the threshold has been lowered the resulting
region has been modi�ed and its centroid has
now moved a little. Its new position is closer
to the ventricles than before and thus the �have
we found the ventricles-test� �res. This changes
the state and the system works to escape the

ventricles. It stays in this mode from threshold 76 to 24, where things start to
happen:

Thresholding at 24

Computed: [34, 8, 15] To remove: [29,24,8] Ventricle: [33,12,14]

Still finding ventricles

---------------------------NEW First ROUND----------------------------

Thresholding at 23

Computed: [34, 6, 13] To remove: [29,24,8] Ventricle: [33,12,14]

No tests on centroid was fired. Size?

Region found is very small compared to size from case.

Increasing (without just cause).

---------------------------NEW First ROUND----------------------------

Thresholding at 24

Computed: [34, 8, 15] To remove: [29,24,8] Ventricle: [33,12,14]

Increased and found ventricles, backing down and leaving it at that

At threshold 24 most of
the region has gone, but
the centroid still indicates
ventricle. This is not the
case at threshold 23, even

though it is clearly the same region, only smaller, that is found. At this point
ReviseFirst quits after having reduced the �rst threshold from 80 to 23. Seen
from the system a higher threshold �nds ventricles and a lower threshold gives
a very small region. At this point ReviseSecond starts with its revision. The
�rst attempt with threshold 94 gives:

Thresholding at 94

Score: 0.284048 Intersection/Union: 4847/17064

Moment: 338537 vs wanted: 76234.6

Computed: [29, 18, 12]Ventricle: [33,12,14] (To remove: [29,24,8])

Big leak suspected detected by size. Lowering.

38



Note that the score is now printed, and the mo-
ment J3 is presented. Already the score has gone
from the initial 0 to 28% but the system believes
the resulting region is too big. This result is very
much the same as the initial region at threshold
80 at the start of ReviseFirst, only with a little

bigger region. It keeps on decrementing the threshold and at 74 the following
is found:

Thresholding at 74

Score: 0.630408 Intersection/Union: 4138/6564

Moment: 179519 vs wanted: 76234.6

Computed: [31, 13, 14]Ventricle: [33,12,14] (To remove: [29,24,8])

Big leak suspected detected by size. Lowering.

The score is now at its peak at 63%. Unfortu-
nately the system is not happy with the size of
the region. The reasoning agent is of course not
allowed to see the score and does not detect a
slight drop in it at the next iteration. Finally it
comes to rest at threshold 63, having lost some

of the score:

Thresholding at 63

Score: 0.588541 Intersection/Union: 3513/5969

Moment: 126492 vs wanted: 76234.6

Computed: [32, 13, 14]Ventricle: [33,12,14] (To remove: [29,24,8])

Size ok, 1008 <= 3992 <= 4032

Moment ok, 126492 <= 152469

Reduce leak-mode

Centroid approved.

The size is now approved, followed by an ap-
proval of the centroid and J3. In this case the
result came out a lot better than what was the
case before the repairing took place. This is in
spite of ReviseFirst not doing its job properly.
Exactly how this a�ects the score will be further

explained in the discussion, section 7. Figure 18 shows how the score evolves
from the initial try and through the course of ReviseSecond. The jump about
halfway through happens when the troublesome region is removed.

5.5.2 Repairing Case 112

The next example chosen is one where the case match and parameters are ex-
cellent to begin with. It is where the image from case 112 is presented to the
system and matched (with the registration based matcher) to case 110. A case
where everything works may seem somewhat of little interest, but it does in-
troduce a problem that must be discussed. Without any form of adaption the
result is:

39



Figure 18: The score obtained with case 4 as it changes with ReviseSecond's

revision and repairing.

Thresholding at 119

Removed: 9021

Thresholding at 135

Score: 0.658905 Intersection/Union: 3056/4638

This is a very good result in itself, but the only way the system may know this
is if Revise says it is. (�Removed� indicates how many voxels were set to white
after the �rst threshold.) Therefore ReviseFirst starts and investigates.

Thresholding at 119

Computed: [36, 10, 9] To remove: [33,12,11] Ventricle: [28,16,26]

Found to-be-removed at first try. Too much?.

Size looks fine, increasing.

This image may be hard to interpret, but the region
depicted is a large region not containing the ventricles.
The region found is classi�ed as the correct one and
its size is also within acceptable limits. As the goal
of the �rst step is to maximize this region ReviseFirst
tries to increase the size. This is done until the size-
test fails and says that the region is now too big. It
backs down and uses the last known good threshold.

Thresholding at 135

Score: 0.658905 Intersection/Union: 3056/4638

Moment: 319670 vs wanted: 5.46247e+006

Computed: [34, 13, 33]Ventricle: [28,16,26] (To remove: [33,12,11])

Size ok, 2851 <= 3591 <= 11404

Moment ok, 319670 <= 10924940

40



This is the result as it is accepted. Since none of the
size or moment-tests �ag the case is not put in any
state in ReviseSecond. It runs to completion and re-
turns. In this situation the acceptable size covers a
very wide range, giving the test very little to work
with. This is of course not desirable. The moment,
J3 is below its acceptable limit meaning the shape is
probably �ne. During the discussion, the topic re-

garding the large allowed size will be given emphasis.

5.5.3 Repairing Case 15

The last example shows that the system may misinterpret a situation completely
and do more damage than good during Repair. It is the situation where case 15
is matched to 16, which is the best match for 15 according to the registration
based matcher. Before anything is done, the following is produced:

Thresholding at 0

Removed: 0

Thresholding at 52

Score: 0.3141 Intersection/Union: 2221/7071

After this the system tries to verify that this is
something useful and ReviseFirst starts. But
case 16 has the �rst threshold at 0 and does
not remove any region and hence has no in-
formation available to verify any �rst region
with. ReviseFirst recognizes this as a special
case and quits. ReviseSecond starts and gets
the same result at its �rst try. To help with

an interpretation of the image it can be said that it contains the same parts as
the image from �Repairing case 4, thresholding at 94� on page 38. The ventricles
are to the left, in this image only visible in the lower half of the picture, and
there is a region to the right that is not supposed to be there. ReviseSecond
concludes

Thresholding at 52

Score: 0.3141 Intersection/Union: 2221/7071

Moment: 3.39467e+006 vs wanted: 209927

Computed: [29, 10, 15]Ventricle: [29,14,21] (To remove: [99,99,99])

Size ok, 1584 <= 5471 <= 6338

Leak detected by Moment 3. Lowering

The moment J3 is very high compared to what is wanted, which is good. It does
indicate that the shape of what is found does not resemble ventricles which it
does not. This is usually �xed by lowering the threshold so fewer non-ventricle
voxels are included in the region. Here the case is set in the �Moment3 Testing�
state and the threshold reduced. This does improve the results somewhat, as
the score rises to 0.323 over the next two iterations. Then the failure introduces
itself.

41



Thresholding at 49

Score: 0.00333916 Intersection/Union: 21/6289

Moment: 193675 vs wanted: 209927

Computed: [25, 8, 5]Ventricle: [29,14,21] (To remove: [99,99,99])

Size ok, 1584 <= 2489 <= 6338

Moment ok, 193675 <= 419854

Here the threshold is set so that the
link between the wrong region and the
ventricles is severed, but instead of the
desired e�ect the wrong region is re-
moved. The ventricles are at this point
the smallest region and are removed.
Interestingly, a test for the centroid on
this region would clearly have revealed

that ReviseSecond was wrong. The reason why this is not done is due to the
fact that the case is in �Moment3 Testing�-mode where the centroid is not part
of the tests. Again, it is usually not necessary, but in this case it clearly would
be. Another thing to take note of is that J3 now is OK, even though the shape
clearly does not resemble any ventricles.

So this case actually introduces three important issues:

1. The �nal centroid does not make sense.

2. J3 approves something it should not.

3. Case 15 registered to case 16 fails.

What caused these issues and what can be learned from them will be analyzed
in the upcoming discussion in section 7. How Repair performs in other cases is
shown in appendix B with the graphs of the scores during the adaption. This
shows the evolution of the scores. All the �nal scores will be presented in the
next section. The �gures in the appendix are divided in three. First is the ten
cases where both matchers agree on the best case. The two last are the ten
remaining cases and the scores they get when using the best case from both
matching functions. The rationale for dividing them in short and long repair-
cycles is that when put together the short ones are hard to discern in the graph.
Almost every graph points upwards. There are some examples where Repair
does not work, as in the example above.

42



6 Retrieve

In section 3.4 two di�erent methods of matching cases were introduced. The
�rst was based on di�erences in values in statistical features extracted from
each image, before the most similar image was used as the �xed image in the
registration. This is referred to as the statistical-based matcher. The second
proposal was to use the similarity between the two images after registration as
determined by the registration process itself. This will be called the registration-
based matcher. Both have been applied to the case base and the results can be
seen in table 4. Unsurprisingly they return a lot of the same results. For ten
of the twenty cases they return the same case as the best one. In only nine out
of forty cases are one function's best not present in the other's top three. The
actual distance from the input case to the best case along with distances to all
other cases can be found in appendix C.

Case Statistical Registration

1 17 8 191 17 7 5
2 4 17 5 17 4 16
4 2 17 5 2 5 16
5 16 17 15 16 6 4
6 16 5 15 5 16 17
7 8 191 202 1 17 8
8 7 112 191 7 191 1
11 12 110 111 12 13 111
12 11 13 111 11 13 111
13 110 111 112 111 11 110
15 6 5 16 16 6 5
16 5 6 17 5 2 4
17 7 191 202 2 1 5
100 110 111 202 110 202 112
110 13 111 100 112 100 205
111 110 13 12 110 202 13
112 13 110 111 110 205 191
191 7 8 17 205 112 8
202 191 205 7 205 111 100
205 202 191 7 202 191 112

Table 4: The three most similar cases found in the case base when using the

statistical measure and the registration distance.

More interesting is how the retrieved case solves the new problem. This part
is divided in two sets, the scores before and after Repair respectively, showing
if the matching function found a similar case and one that is easy adaptable.
Table 5 shows these values for the best match for each case together with the
optimal score for each case. Both before and after Repair the statistical-based
matcher does a better job, on average. The di�erence is not that great, however.
Both matchers have one incident where the repairing does more damage than
good and lowers the score. This is of course very unfortunate and should not
happen. One of these cases, 15's descent from 0.31 to 0, was explained in detail

43



in section 5.5.3.

Statistical Registration
Original

Case Before After Before After best
1 0.54 0.54 0.54 0.54 0.71
2 0 0.50 0.58 0.58 0.63
4 0 0.59 0 0.59 0.67
5 0.62 0.67 0.62 0.67 0.74
6 0.71 0.71 0.72 0.72 0.75
7 0.64 0.64 0.35 0.65 0.71
8 0 0.38 0 0.38 0.58
11 0.38 0.38 0.38 0.38 0.76
12 0.07 0.68 0.07 0.68 0.76
13 0.03 0.24 0.05 0.26 0.52
15 0.44 0.74 0.31 0 0.74
16 0.59 0.59 0.59 0.59 0.65
17 0.03 0.41 0.03 0.55 0.63
100 0.17 0.45 0.17 0.50 0.67
110 0.27 0 0.19 0.32 0.50
111 0.01 0.50 0.01 0.50 0.59
112 0.63 0.62 0.66 0.66 0.68
191 0.62 0.62 0.03 0.02 0.67
202 0 0.62 0.03 0.51 0.73
205 0.49 0.61 0.49 0.61 0.74
Average 0.31 0.52 0.29 0.49

Table 5: These are the results from the segmentation when using the statisti-

cal matching function. It shows the score both before and after the Repair-cycle

has been utilized.

It is not easy to draw any conclusions based on the scores. Out of the cases
where they disagree the statistical-based has the highest score in only 40% of
the situations, yet it produces a higher score on averge. Both matchers have
bad results in case 110. Upon inspection it has a high resulting registration
score to almost every case. Could it be that the case base does not have the
necessary competence to deal with this case? Overall the results are not very
far from the best possible. The top results are close to the best possible, but
they are all missing some points for perfection. This is unfortunate but can to
some extent be explained. Repair can only detect failures and try to �x them.
It has no means of telling which of two acceptable segmentation that would be
best. Problems with �ne tuning to get the optimal result is discussed in section
7.8.

6.1 Internal Ordering

Both matchers in general �nd a case that can be used to segment the new case,
and with the help of Repair the score ends up decent in the majority of the

44



cases. But is the case with the best match in fact the best case to use? To
investigate this the best three matches for each matcher were used to solve the
new case, and the results can be seen in appendix D. With registration the
average scores before Repair are 0.29, 0.11 and 0.17 respectively, meaning that
the cases ranked third are better than the ones marked second. After Repair
the scores are correctly ranked with 0.49, 0.44 and 0.42. With the statistical-
based matcher both rankings of average scores are correct, 0.31, 0.31 and 0.16
pre processing and 0.52, 0.46, 0.34 post. However, for each case the ordering
may not be correct. Case 5 when matched on statistics has the following scores
for top three: (0.62, 0.67), (0.18, 0) and (0.73, 0.73). The third case is best,
the second worst and the �rst in between the other two. With registration the
for case 191 reads: (0.03, 0.02), (0.02, 0.60) (0.58, 0.58). So it is clear that
the matchers indeed do not order the retrieved cases in the correct order. But
overall, they seem to work acceptably.

One advantage of using feature-based versus voxel-to-voxel similarity assessment
is speed. When using registration it takes between three and ten minutes to get
a score, depending on how well the images match. At the moment the case base
only contains 20 cases, giving 19 comparisons with each new case. Some hacks
can be introduced to save time like abort if the starting registration score is
too high. Worst case runtime remains the same though, at about 19× 7 = 133
minutes. This will improve as computers become faster, but it still takes a very
long time. One solution can be parallel computing where each node does one
comparison. Even though this system does not save any new cases, that is how
CBR systems learn. Over time the case base will grow with more cases and
number of comparisons done in matching increases. If the average time for one
comparison is seven minutes it puts a substantial limit on the case base size.

6.2 Conclusion

Both matchers return a case which in most instances solves the incoming case
adequately. There are some unfortunate exceptions meaning that neither of
them are perfect. Furthermore, both have some trouble with retrieving the
theoretically best case. This is evident as sometimes the second or third best
case does a better job than the assumed best. The average score for both
matchers are pretty much equal, with the score from the statistical matcher
slightly better. This matcher is also vastly quicker and that tilts the scales in
its favor. Based on this the conclusion is that Perner's [30] matching function
based on extracted statistical features is the best choice for matching images,
of the two considered.

45



Case Score Tested As good
or better

1 0.54 4900 1508
2 0.58 4900 223
5 0.62 7925 327
6 0.72 7925 92
7 0.64 7427 323
15 0.44 7925 512
16 0.59 Data lost
112 0.66 10775 771
191 0.62 6125 660
205 0.49 4900 52

Table 6: How many combinations of parameters tested for each case, and the

number of them giving the same or higher score than what was produced by

CBR.

7 Discussion

This chapter includes thoughts on a number of topics that can be divided into
two parts. Is the CBR method applicable for controlling image segmentation
parameters, and can the system retrieve enough information from earlier cases
to detect and �x segmentation failures? Secondly, which lessons were learned
from the experiments conducted? These issues will be answered in that order
and to sum up there will be a conclusion to the questions that were stated in
the project's goals in the introduction.

7.1 Is CBR Applicable?

Can the usual methods from CBR be applied to segment images, i.e. Re-
trieve, Reuse, Revise and Retain without the focus for an iterative improvement
through Repair? Based on the initial scores presented in the last chapter, be-
fore Repair was put to work, it is our opinion that yes, it can. This is based
on comparisons to the best results found in the process of building the case
base. These results are the optimal results for this segmentation algorithm, and
serve as a benchmark. Between the two matchers ten cases have a score above
0.40, and eight cases above 0.50. Could this be incidental? Table 6 suggests
the opposite. When building the case base each image was segmented with a
number of di�erent thresholds to �nd the optimal pair. From this it is easy to
count the number of combinations that give the same or higher score than what
was obtained after using the best case. Only the cases with high scores have
been included. Based on this it seems highly unlikely that the high scores are
incidental.

With Repair there seems to be no doubt that a new image can be segmented
automatically based on information in previous cases. Repair is able to intervene
when the �rst attempt at a segmentation is wrong and take actions to correct
it. Sometimes the system produces wrong results. What this actually means is

46



that Repair is not capable of adapting all solutions to any given new image. If
all scores were perfect regardless of which case was chosen to solve the task there
would be no reason to use CBR. This would imply that Revise is able to classify
segmentation failures independently of any information (presently) stored in the
cases since the choice of case, and hence information, does not matter. But since
the choice of case does matter the case based nature of Revise is proven. It was
not designed to work with all cases, it was designed to work with the best case.

With this is mind there is no doubt that the methodology of CBR is well suited
for controlling the parameters of a segmentation algorithm. The rest of this
chapter will be about how the system can be improved, and lessons learned
that other researchers should be aware of when constructing their own systems.

7.2 Known Short-comings

This system has some short-comings. ReviseFirst does not always work. The
main reason is that all cases do not react the same when the �rst threshold is
changed. The tests devised covered most of the situations encountered while
analyzing the di�erent failures, but it is hard to detect them all and make
rules for them. Fortunately the consequences in this system are not too big.
The highest possible score for a case drops somewhat, but the system may still
perform an acceptable segmentation.

While Repair is highly iterative in nature, there is no communication between
the iterations. Sometimes the size of a region is cut in half by adjusting the
threshold, but stays within the acceptable size. The centroid remains in the
same position and thus Revise does not really detect any changes. But such big
leaps in size indicate that something strange happened and in fact should be
investigated. Another example is where, during ReviseFirst, the ventricles are
found. ReviseFirst ends when the centroid has moved su�ciently far away from
the centroid given in the incoming case. This happened in the �rst example
in section 5.5.1 on page 38 between thresholds 23 and 24. At threshold 24 the
ventricles are detected and at 23 they are not, according to the centroid. But
by comparing the two regions it is clear that they are the same, however with a
slight variation in size. Based on this the system should have concluded that the
region found was still ventricle and continued to lowering the threshold. This
shows that more than just the information from the best case can be used.

Any failure in the registration of two images has much more dire consequences.
Figure 19 illustrates the problem. This shows the result when case 15 is reg-
istered to case 16, the best case based on the registration based matcher. It
can be seen that the ventricles are outside the subvolume in every dimension.
This possible outcome was mentioned in section 3.5.1 and it was stated that
this system would do nothing to assure that the alignment is a good one.

Figure 19 can to help explain what happened in the Repair section where this
situation was the last of the three examples to be presented. The region found
initially is both the region to be removed and the ventricles, merged to one single
region. When the second threshold was lowered su�ciently this region splits into
two regions, where the region corresponding to the ventricles is the smallest. In
e�ect this removes the ventricles and not the larger, wrong region. This is not

47



Figure 19: When registering 15 to 16 the resulting subvolume is wrong.

surprising when the middle and the rightmost images clearly show that a large
portion of them are not in the subvolume which the system is working in. Even
if the unwanted region was removed the resulting region would be very small
and hence not be approved by ReviseSecond, based on the size. Increasing the
threshold to make the ventricles bigger would not be an option either as that
would bring the unwanted region back.

Since the wrong subvolume was extracted the system can not produce a sat-
isfactory result. With this subvolume, no thresholds will be correct and the
only amendment is to get another subvolume.One solution could be to modify
the current subvolume to include the ventricles and expand it in all directions
hoping it will have the desired e�ect. Or the system could try to analyze the
subvolume and expand it in the correct direction only. Maybe a better solution
would be to accept that this subvolume will never work, and learn from this
experience.

7.3 Learning by Doing

The authors of Creek say that every case presented to the system will give
it a chance to learn. The same should be attempted here. If a retrieved case
is successfully adapted and solves the new case the system has done its job.
However, what the system did, and equally important, why it acted the way
it did, ought to be learned. In the opposite case when it failed miserably the
system should learn something it can use to avoid this failure later. To continue
from the scenario above where the wrong subvolume is found, what to do when
the system fails will be discussed �rst. What to do in case of success follows
thereafter.

7.3.1 Learning by failure

In Chef the program that veri�es the recipe does not only say what went wrong.
It also says why. The example given is a modi�cation of a stir fry dish where
chicken is replaced by beef to satisfy the user's needs. But contrary to the
chicken, when the beef is stir fried it will result in much �uid in the pan. This
�uid a�ects the vegetables in the pan and makes them soggy. This sogginess
is what makes the adaption fail since the recipe speci�es that the vegetables
should be crisp. But the reason is that beef leaves �uid in the pan. Based on

48



this Chef learns that beef and (in this case) broccoli should not be cooked in
the same pan at the same time. This information in cause and e�ect is saved and
the next time the system tries to adapt a recipe and is just about to make the
same mistake, this incident is remembered and appropriate actions are taken.

What would be required to accomplish something similar in this work? From the
example of solving case 15 with 16 the system ended up with a result that made
no sense. In this situation a simple check for centroid would reveal the error,
but it may not always be that simple. But for now, let us assume such a check
exists, and the result just produced failed it. A task must be de�ned to learn
from this experience and avoid it in the future. One possibility could be to save
the subvolume that did not work as a special type of case. This information
are ignored during matching and are brought into play after the registration
between the new image and the one from its best case. The subvolume that
now will be extracted and used must undergo a screening against the �known to
fail�-cases. If the proposed subvolume is more similar to a �known-to-fail�-case
than some limit the system has a good reason to believe that this will only
lead to failure. The correct action could be to reject the best case. Instead the
second best case is promoted to best case and used as a basis for the new case.
This process is repeated until the subvolume passes the test. Compared to the
original example from Chef, this would be like saving the recipe with the soggy
vegetables as a failure, but not knowing why it failed. What is known is that if
you want beef and broccoli, use another case since this will fail. Of course, there
is no guarantee that this set up will end with a perfect result. However, one
thing that indicates success is the following observation: Amongst the top three
cases from each matcher one case usually gives good results when used as the
best case. Based on registration distance case 191 is solved with case 205 with
failure as the outcome. The second best case, 111, �nishes with a score of 0.60.
Based on statistical features case 5 is the most similar one to case 15. After
Repair the score is 0. The second best case is number 6, giving a score of 0.74.
With this in mind it seems reasonable that a �nal check should be conducted to
make sure that the adapted region is correct, and use the second best case if not.
By saving the �known-to-fail�-subvolume and reject incoming subvolumes with
a similarity to this, time could be saved because the segmentation and adaption
will not take place. In systems where the segmentation algorithm takes longer
time to run, this might by substantial.

To verify the �nal result makes perfect sense and should have been introduced
in this work. It would have been the last test to ensure that the result is valid.
In the normal CBR-cycle this is the job of Revise. However, in this work Revise
is part of Repair and as some examples show, Repair sometimes provides a
wrong result if the current best case is not applicable to the current problem.
To conduct a �nal veri�cation after Repair would in fact be to introduce a
second Revise step. But since the Revise in Repair just approved the result for
some reason, the second Revise must test for some di�erent property than (in
this work) ReviseSecond used to approve the result. With this in mind a new
CBR-cycle emerges, seen in �gure 20. Revise has been moved out of Repair
and has assumed its usual responsibility of checking whether the result in fact
is a solution to the problem. To keep up with the naming tradition a new step
called React has been introduced in Repair. React is a more appropriate name
for this task than Revise since it is given an external stimuli (Reuse's result) and

49



Figure 20: The new CBR-cycle suggested used for image processing CBR.

reacts to this by adjusting some parameters. However, to avoid confusion, for
the remainder of this discussion �Revise� will still be referred to as the second
part of Repair besides Reuse.

7.3.2 Learning by success

As with normal CBR, solved cases can give valuable information for the future.
If the system segments an incoming image correctly it can save this case for later
use, together with the relevant parameters and necessary metadata. When the
next image is fed into the system this new case is now a part of the case base
and is available as basis for new solutions. This is the usual way for systems to
learn from experience.

Under the right circumstances a success/failure detection can be used to guide
retrieval. For the moment all statistical features are weighted the same, as they
were in Perner's [30] work. But let us say that case X is matched with case
Y and the end result is a success. If one feature (Z) has a smaller di�erence
between the two cases than another feature (W), then this can indicate that Z
is more important than W for determining similarity. Based on this Z can be
weighted to have a greater impact than W in future matchings. For a failure the
features that are most similar do in fact not produce a good match and could be
weighted down. If there is some hidden dependency between the features this
approach may not work, but it is food for thought.

7.4 Harmful Cases

The example where case 16 is used to solve case 15 introduces yet another pitfall.
Let us say the result passes a �nal test and is deemed acceptable. Let us also say

50



that the new image, the coordinates for the subvolume and the thresholds are
retained as a new case along with any metadata the system requires. (This is a
hypothetical situation since the system in its current state does not retain any
new cases). The best possible scenario now would be that by manual inspection
the result reveals the failure and the case can be deleted by the operator. Worst
case would be that, the case remains in the case base and wreaks havoc. Any
case matched to it is very likely to fail, since it literally is a recipe for failure.

Such harmful cases must be kept out of the case base. An easy remedy is to
let an operator approve upfront any cases to be retained. The operator would
recognize a bad result without problems and take actions. It could be added
to the �known to fail�-cases if implemented or simply deleted. However, this
removes some of the automaticity from the system, and does not solve the
problem in any fashion related to arti�cial intelligence. Once a harmful case
has been retained an automated process would have an impossible task ahead,
i.e. to remove any cases where the subvolume does not contain ventricles. To
know where this is the case the process must be able to segment each subvolume
and determine if the ventricles are there or not. If this process knew how to
do that it should tell the rest of the system and save everybody a lot of time.
However, since the system presently does not retain cases this has not been an
issue, but may become one for future research in this topic.

7.5 Size of Case Base

The utility problem aside, more cases mean more solutions to pick from. As the
number of cases increases the probability that one of them solves a particular
problem rises as well. It also gives the matching function more responsibility,
but that is not considered here. A perfect matcher is assumed. Another issue
that is a�ected is the adaption strategy. It can go from general to more speci�c
as it can assume that the proposed solution is not completely o� to begin with.
A speci�c example is how Revise uses the ventricle size from the old case in
the adaption of the new case. An exact match in size is not expected and thus
a range around the given size must be accepted. Here this accepted range is
either 0.75/1.5 or 0.5/2.0 times the size from the case base. From the case with
the biggest ventricles (case 11) this means that sizes between 6430 and 12861
will be deemed acceptable. This is a very big range and prohibits Revise to
use the size test as e�ectively as it should. Maybe a �xed di�erence could have
been used instead? What would such a constant be? For some of the cases
± 200 would su�ce, for others ± 3300. With more cases it could be assumed
that the best case in fact would match better in size. And for that matter, as
would the moment J3 and any other descriptor. A better match means a smaller
allowed range and hence gives the reasoner a more detailed plan to work from.
Generalization is traded against specialization. As an example, test were done
to narrow down the acceptable range in size in ReviseSecond to the same factors
as in ReviseFirst. The results were as expected. Some of the results improved
while other became worse. Is this because those who improved had a better
match than the others?

A somewhat general adaption strategy worked for a lot of the cases in this work.
Is this good enough? Could a specialized adaption step have been applied after

51



this general adaption? Yes, it could and it was tried with a variance-based test
in ReviseSecond (section 7.8). But the whole point of case based reasoning is
to select a similar looking case and work from this. If we start to �x every
retrieved solution from rubbish to slightly better, then adequate, then good,
then the point of using CBR is gone. The point is not to begin from scratch
every time. Sometimes it has to be done because no other option is available,
but we would rather not.

7.6 Extending the System

At the moment this system is geared towards segmenting MRI images of heads
and to extract the ventricles. What would it take to make it able to handle
images of knees, shoulders, abdomen or, for that matter, cars? This is best
answered by the 4 RE-s from the CBR-cycle.

For Retrieve the number of domains covered does not really matter. It extracts
the necessary statistical features and computes similarity over these. A voxel-
to-voxel based similarity measure should also cope with this nicely, given that
the two images have the same size. To help Retrive along cases could be divided
into sets which the user can choose from when entering a new case. �I am looking
for knees�, and thus only cases marked with knees are searched.

Reuse would mind. As the number of domains covered increases it is probable
that the existing algorithm will not work for all. Instead of only parameters for
the segmentation algorithm, the solution would have to specify its own algorithm
as well, or contain a plan for how to use the existing one in a new way. With
a large internal library of algorithms the case could contain a pointer to one or
a set of these. It will resemble the work of [9] where the plan is a tree of tasks
solved by a particular algorithm. This will not a�ect Reuse's position in the
CBR-cycle, only give it more power to do its work.

Revise must be altered as well. Currently it uses mainly size and centroid to
detect failures and classify them. But in other tasks the goal might be a set of
regions, not just one like here. Then it could be useful to consider the scene as a
whole and not a collection of regions with nice centroid and size. This introduces
a lot of new situations besides �too big� and �too small�. And the correct action
to take regarding parameters is highly dependent on the algorithm Reuse is using
at the moment. One possibility is to have failure classi�cations and amendment
strategies sorted by topic as was suggested above in the discussion on Reuse.
Something similar is described in [4] where CBR is used to control a robot. This
robot is supposed to be autonomous and must handle mechanical failures on its
own. This is done by a CBR system that monitors what parts are functional
and �nds the optimal set of rules for this con�guration. Should something break
down then the system will use the remaining functional parts to index a new
set of rules that operates the robot without the missing component.

Retain would not need much alteration. As long as the matching is done image-
to-image no indices need to be found and created. If a partition of cases into sets
is used, then at the start the user will specify which set this new case belongs to,
and Retain can store this along with the image. This happens only for storing

52



new cases as they are entered and successfully solved. Retaining experiences
from adaption and failures is another matter. It was discussed in section 7.3.

To conclude, Reuse and Revise must be updated to handle new domains. Revise
must have a set of rules to handle the di�erent situations. This could be solved
by having a set of rules and choosing the appropriate one for each domain. The
question is whether this would be just several systems intended for di�erent
domains packed together to look like one entity. Optimally the system should
be able to, or at least have the option to, use and adapt knowledge from other
domains in the current one. Such cross-use might not have been the intention
of the system's creator but may still make sense. One possibility for such use
can be by adding a new and di�erent type of cases to the system.

7.7 Case Based Adaption

In [20] Leake describes Dial, a CBR system that focuses on how to learn from
experiences in adaption. Dial is a tool for disaster response planning where the
cases contain plans of action in various disasters such as chemical spills. When
a new case is retrieved and the need for adaption is present then the system
�rst searches among speci�c adaption cases that handles a similar adaption. If
this fails the system falls back to regular rule-based adaption. If the rule-based
approach produces a satisfactory adaption this is saved as a new adaption case
for later use. Their example shows how the system deals with an air quality
problem at a school and retrieves a similar problem from a factory. One step
in that plan was to inform the workers' union. But the school-children do
not have a union and the rule-based approach suggests alerting their parents
instead. This transformation is saved and is put into use at a second example
with a chemical spill in a school. The system detects that the children do not
have a union and bases its adaption on the adaption case previously created.

A major di�erence in these scenarios is that with images the �nal adaption is
not very useful. In one case it would be correct to alter the parameters by x,y
and z, but in another situation the correct alteration would be by χ, Ψ and ζ. In
the system presented here this problem was solved by adjusting the parameter
by the smallest modi�cation possible and test if the need for alteration was still
there. So all the system can learn through an adaption is which alterations to
which parameters that will give a small change in the desired direction. This
is assuming there is such an adaption to the present algorithm, and that there
is only one way of doing it. If there are several ways, more control information
must be entered to choose the correct one. This leaves any adaption cases with
the information about how to a�ect the outcome of a segmentation in a small
direction. And this is exactly what the rule/state machine driven adaption in
Repair contains now. With each new segmentation algorithm entered into the
system a set of rules or cases would be added to tell the system how it should
behave. Indexed by algorithm this e�ectively becomes the system discussed in
the last section with a set of rules for each algorithm or situation. What was
desired was a system that could use knowledge from other algorithms should
it be of bene�t. To do this with the case based approach sketched above new
adaption would be required, now to adapt the adaption knowledge. If the case
needed for a current algorithm does not exist, is there a case for another �edge-

53



based, region-growing, noise-suppressing� algorithm in the case base? Could it
be adapted to adjust the current algorithm for the new case?

One other point Leake[20] makes in his paper is that the learned adaption cases
can a�ect Retrieval. When the retrieval criterion is similarity it is due to the
fact that it is assumed a similar case �ts the new problem best and is the easiest
to adapt. With speci�c knowledge available about what can easily be adapted
this could mean that less similar cases are easier to adapt. It is not known how
to incorporate this into the similarity assessment used here.

7.8 Perfecting the Result

Repair seems to be able to detect big errors and �nd the correct region. Once
found though, it has problems with the �ne tuning and to stop at the correct
threshold. This is evident in cases 4, 8, 13, 111 and 202. (See graphs of their
scores in appendix B.) When ReviseSecond ends the score is lower than it was
at its maximum. It is also reasonable to believe that the scores that end while
increasing are not at their maximum. The likely reason is that the available
information from the cases are not adequate. This topic was touched upon
whilst discussing the case base size, i.e. that more cases may allow smaller
ranges to check against and thus render possible higher accuracy. A second
reason is that Repair only quits in a transition from bad to good, or the other
way around. This means that the accepted results are always very close to not
being good enough. A solution to this is not known. One could attempt to
note such a transition from bad/good and continue with the present adaption
(increasing, decreasing the threshold) a number of times and hope the results
will improve.

Another option is to add more specialized a priori knowledge to the cases.
It was tried at the end of ReviseSecond to assume that the region was found
correctly, but that the �nal tweaking was somewhat insu�cient. The choice fell
upon the nine statistical features used in matching because of their availability.
But instead of extracting them from the whole volume or even the subvolume, it
was extracted from what was believed to be ventricles. That is, only the voxels
determined to be ventricles were used when extracting the features. To �nd
which ones to use the �nal segmentation from each case was matched with the
solution from IBSR to show which voxels were correct, false negatives or false
positives. If the correct voxels have a rim of false positives the �nal threshold was
probably too high, and vice versa. After it was manually determined whether
the �nal result was too big or too small it was compared with the statistical
features gathered to look for a connection. The feature that seemed to agree
best with the manually found result was the variance. Therefore a new state
was introduced in ReviseSecond, �Variance Checking�. It was placed as the last
step, when ReviseSecond was �nished Variance Checking became active. The
state can be seen as a ReviseThird step. The case had no way out of this state
until the computed variance was between a factor of 0.8 and 1.2 of the variance
given from the best case. This helped in some cases but did the same amount
of harm to others and was dropped.

Maybe each case can store the result of the segmentation. Then when the case

54



is used to solve a new problem the two results can be compared. This, like
with the other methods, depends on how good the initial match of cases are. If
there can not be established a clear connection between the similarity in shape
of ventricles as the similarity between cases increases, the allowed di�erence
between the results would have to be so big that it would be useless. A di�erent
problem is how to make the comparison. How to compute similarity between
3D objects has received a lot of attention lately, mostly for use in search engines
that aim to �nd similar objects. The main problem with using these is that the
algorithms o�ered try to distinguish between di�erent classes of objects and not
necessarily between objects for the same class. As an example, Novotni et al
[28] compute similarity by aligning 3D models and then compute their distance
histograms. They conclude that the system delivers a measure on the overall

similarity.

A �nal idea is to use the result of this segmentation as the starting point for
another segmentation. One of the rejected segmentation algorithms (section 3.9)
tried to use a level set function based on the solution of the best case. Here the
correct solution from IBSR was planned to be used, but in reality two options
are available. One is to use the result from the best case, as planned. The other
would be to use the outcome from Repair. The level set function would easily
correct any mistakes where the subvolume cuts o� part of the ventricles, given
that Repair has found the rest. If the parameters for this level set function
should be set by another round of CBR or not is not known.

7.9 General Domain Knowledge

There are few systems under development today that try to be exclusively a CBR
system. As more research has been conducted, advantages of domain speci�c
knowledge outside the cases have been noted. By combining di�erent research
areas a synergetic e�ect is achieved as one area's strengths may compensate
another's weaknesses. So by combining rule-based and case-based systems the
best from both can be harvested. During the development of the system pre-
sented here care has been taken to avoid using other information than what is
found within each case. Sometimes Repair increases one of the thresholds to
a value that is outside any reasonable limits. Why it does this may vary, but
until one test says �enough� it will continue. Based on the thresholds found,
one could conclude that the second threshold will never be above 200. There
is presently no test in Revise that test for 200 and �ags an error should this
value be detected. The test to see if half a ventricle has been found relies on
a comparison between centroids. An observation made is that J3 is negative in
such situations. Such general knowledge is not case speci�c and therefore not
stored in any cases. Hence it is neither the basis for the test it would have been
perfect for.

Creek uses domain knowledge during Retrieve to investigate the semantic dif-
ference between two indices, not the lexical di�erence. This cannot be done here
since the cases are matched on extracted features, and no knowledge exists to
explain what di�erences here actually mean for the similarity between images.

55



7.10 Reaching the Goals

At the start of this project three questions were presented, to which this work
wanted to answer. For convenience they are reproduced here:

1. How to assess similarity between two cases?

2. How to use a priori knowledge extracted from a case to

(a) Help Revise judge the output from Reuse

(b) Guide the adaption of the solution

When it comes to similarity assessment both proposals that were presented on
average produced good results. The one based on feature extraction was deemed
the best both in terms of speed and the results its retrieved cases produced. For
comparing images in CBR it is a very good choice for a similarity function. It
is however not perfect and sometimes retrieves suboptimal cases and on rare
occasions cases that do more harm than good. One of the cases it deems as
top three usually does a good job, and a plan to take advantage of this was
presented. The size of the case base is not very large and how it a�ects the
retrieval is not known. Without further research in this area it can only be
speculation whether more cases would add confusion or more clarity.

There is no doubt that information can be stored in a case that lets Revise
classify an output as good or bad. By �nding some properties a good result
should have, and if the properties can be represented internally so Revise can
reason with them, it is easy for Revise to judge the output of a case. Based on
an expected centroid, size and a statistical moment,J3, this system can usually
conclude that something has gone wrong. It is harder to say when something
has gone as it should, though. Due to individual variations the values are not
expected to match perfectly, but within an acceptable range. As long as it
stays within this range it is hard to know if one result is better than another.
Some thoughts and possibilities were o�ered on the subject in the preceding
discussion. When it comes to guide the adaption based on information from a
case alone, there are two options. One is to store it in the cases that exist in the
system already. It would be in the form of �if region is too big compared to X,
reduce the second threshold�. This would then be duplicated into every case in
order to give each case the a priori knowledge needed to guide adaption. If one
test must be adapted it would have to be done in all cases. Compared to the
present system it will accomplish the same, but in a less elegant manner. The
second option is to use adaption cases. Indexed by the segmentation algorithm
and problem at hand the information on how to adapt is in fact coming from a
case.

In concluding remarks on adaption, a �nal point should be made. Until a deeper
understanding of segmentation is available, adaption can not be indexed to solve
a particular problem like �lower threshold by X�. X can not be determined by
analyzing the images alone and must therefore be found by search. This is the
essence of Repair, small repeated steps until a set of criteria is met. What these
steps will be is the job of the adaption knowledge.

56



8 Further work

The discussion introduced many areas where CBR for image segmentation could
be improved. Some of these are active research areas for improving the CBR
methodology itself, like adding case based adaption, incorporating general do-
main knowledge and letting adaption knowledge in�uence retrieval. Since the
mix between image processing systems and CBR is fairly new it should be ex-
plored how they could work together in a more �standard� CBR cycle �rst.
Based on this further work, either with this system or others, should focus on:

• Verifying the �nal result.

• Rejection of wrongly retrieved cases.

• Fine tuning.

• Retention of new cases.

With the new CBR-cycle from �gure 20 a new Revise-step has been introduced
to examine the �nal result. It must be based on other properties than what is
used in React, and this introduces some problems. Say there is a test Θ in Revise
that is not used in React and which is able to judge success/failure. Hence there
is some information that React does not have, and which could possibly allow
it to do a better job. The same can be said for all tests proposed for Revise.
So unless Revise is done manually by an expert, React must renounce some
tests for the greater good of the system. Research should be conducted in what
React must sacri�ce in order to have a Revise step. The second task of Revise
must not be forgotten either. It is unlikely that Repair can give a perfect result
independent of image and the assumed best case. When a failure occurs it must
be used to prevent the same failure again. As argued the exact reason for failure
is not likely to be found, so inferior solutions must be devised instead. Here it
was proposed to save the subvolume as an example of something that did not
work. For other segmentation algorithms this is not feasible, they would need
their own solutions. If a system is to be general and learn both new domains
and algorithms during its operation an algorithm independent solution must be
found.

Because it is not realistic to develop a perfect similarity function, controls that
deal with cases retrieved out of order are needed. This is in image processing
hard to do since it is not known what features you should look for in advance to
detect this. How Retain solves knowledge of failure, as mentioned above, plays a
major role in this. To compare with �known-to-fail� subvolumes was introduced
as an idea, but it is only applicable with this segmentation algorithm. For others
it is not known, and more research is needed to improve this topic.

React only checks to see if the result is wrong and thus can not say how correct
it is. It is either correct or belongs to a failure category. To �nd a measure
for correctness is what every researcher in segmentation wants, and thus is not
readily available. Maybe a larger case base means that better solutions will be
found and that �ne tuning is not needed. This raises another issue, namely
how case base size a�ects results is not known. Overall, the impact of case base
size should be investigated. Optimization of parameters is not a new problem,
nor is it restrained to CBR. It is a research �eld of its own and many attempts

57



have been made, simulated annealing [19] being one of them. A variation of this
might be applicable where React adjusts the acceptable range a property can
deviate from a given value depending on the number of iterations Repair has
done. In the beginning the property is allowed to vary by a (reasonably) large
amount. As more adaption is done, the parameters are assumed to match better
and the allowed deviation is reduced. Another possibility is to hand over the
result over to a very specialized segmentation algorithm for further processing.
This may or may not be part of another CBR cycle.

This work has not done any work in retention. Retain saves any information
gathered by Revise regardless of success or failure. Failure was discussed above
for Revise, so only successful cases are mentioned here. Research in this CBR-
step is much more than just saving a new case. Dumping the new image together
with metadata and the correct parameters is not hard to do. What is more
di�cult is to avoid the utility problem, storing too many cases and degrading
the system. More intelligent control for storing is needed, and the theory behind
it. When are two images so similar that only one needs to be in the case base?
Or should the cases somehow be merged? The need for work in retention is
obvious, but this work does not provide any answers to it. Answering such
questions must be done if a future system is to operate over a long period of
time, learning from each problem solved.

8.1 The Bigger Picture

How does this system �t into the image processing pipeline from the intro-
duction, reproduced below for convenience? Grimnes built ImageCreek to

Figure 21: The steps in machine vision, reproduced from section 1.

interpret segmented images and his work is thus placed in the classi�cation
step. Each segment is classi�ed independently and later their internal position-
ing and properties are viewed together. If this holistic view does not match any
domain knowledge the segmentation is deemed to be wrong and a new one is
asked for. This is the last resort of the program and it is not speci�ed how the
new segmentation is done di�erently from the previous one. To summarize, it
was a classi�cation system that could go back to segmentation in the pipeline.
This work represents a tighter coupling between the two last image processing
steps. Neither the segmentation algorithm nor the classi�cation step has been
very advanced, instead the focus has been on the cooperation. How would it
be to use this system and ImageCreek together? Put in sequence the synergy
is lost. Reuse produces a �rst attempt and expects React to inform it of fail-
ures and guide it further. ImageCreek expects a near perfect segmentation
and asks for a new only as a last resort. Two important assumptions, one in
each system, are not met. Instead ImageCreek could be modi�ed to work in
an iterative way. It is perfect for determining whether the segmentation was

58



correct or not, but does at this point in time not guide the resegmentation. If
put in React together with the proper adaption knowledge the result given to
Revise would be a �nished segmentation together witn an interpretation of the
image. What is left is a system that merges segmentation and adaption to help
one guide the other.

This merging must be given special attention. What is needed is an appropriate
control structure that can modify the segmentation based on the classi�cation's
output. This is, in our opinion, the single most important step for the success
for such an iterative approach, whether used in a CBR-system or not.

59



60



A IBSR data sets and names

Unless otherwise stated a referense to �data set #� refers to an IBSR data
set. More spesi�cally the IBSR data set is downloaded from http://www.cma.

mgh.harvard.edu/ibsr/ (registration required) and is marked �20 Normal Sub-
jects: T1-weighted MR Image data with gray/white/other expert segmentations
(3.1mm slice thickness)� The mapping from �data set #� to an actual data set
is:

1 1_24.img
2 2_4.img
4 4_8.img
5 5_8.img
6 6_10.img
7 7_8.img
8 8_4.img
11 11_3.img
12 12_3.img
13 13_3.img
15 15_3.img
16 16_3.img
17 17_3.img
100 110_23.img
110 110_3.img
111 111_2.img
112 112_2.img
191 191_3.img
202 202_3.img
205 205_3.img

To view these data sets one can use imageJ or VolView (amongst others) and
open the accompanying .hdr-�le for each .img-�le.

61



B Full Scores

Below are �gures that show how the scores for each data set evolve through the
course of Repair. The reason for dividing the short and long cycles into two
�gures is to show the short ones clearer.

Figure 22: The scores during Repair for the best cases where both matching

functions agree.

62



Figure 23: The scores during Repair for the best cases as determined by the

statistical-based matching function.

63



Figure 24: The scores during Repair for the best cases as determined by the

registration-based matching function.

64



C Matching Scores

The following tables show the similarity between all cases as determined by both
matchers. It can be seen that some cases have a very high score towards almost
every other cases, and some cases have low scores on average.

65



1
2

4
5

6
7

8
1
1

1
2

1
3

1
5

1
6

1
7

1
0
0

1
1
0

1
1
1

1
1
2

1
9
1

2
0
2

2
0
5

1
×

7
9
8

9
3
2

7
2
3

8
9
2

7
1
6

1
0
5
2

2
2
5
8

2
3
1
5

2
1
9
1

1
6
9
3

9
8
2

5
6
8

1
7
9
9

1
7
9
1

2
0
4
3

1
5
2
7

1
2
4
2

1
6
4
6

1
3
0
2

2
8
3
0

×
5
4
5

6
9
7

9
5
1

1
0
3
6

1
4
2
7

2
5
6
4

2
5
7
9

2
6
0
5

1
6
0
5

6
1
1

5
3
7

2
1
1
6

2
1
7
1

2
2
2
6

1
9
1
5

1
3
0
4

1
6
2
3

1
3
1
9

4
9
5
7

5
3
9

×
6
3
0

9
3
2

1
3
3
9

1
5
6
1

2
7
9
6

2
9
2
6

2
8
9
3

1
5
5
4

6
4
4

8
2
0

2
2
8
7

2
4
3
4

2
4
0
8

2
1
7
7

1
6
2
4

1
9
3
8

1
5
9
0

5
7
5
3

7
1
0

6
4
1

×
5
4
7

1
1
1
4

1
4
2
6

2
6
6
3

2
8
5
5

2
6
7
0

1
2
2
0

4
9
2

7
8
8

2
0
1
6

2
1
9
8

2
3
2
4

1
9
8
0

1
5
9
2

1
8
5
4

1
5
3
1

6
9
2
3

9
4
7

9
3
5

5
4
7

×
9
9
1

1
2
9
4

2
3
6
6

2
4
7
2

2
4
4
5

1
1
5
9

7
2
5

9
2
0

1
7
9
1

1
9
7
6

2
0
0
6

1
6
8
4

1
2
6
4

1
6
6
5

1
3
2
8

7
7
2
0

1
0
0
7

1
3
1
8

1
0
8
5

9
7
2

×
9
0
1

2
1
8
5

2
1
9
8

2
0
6
8

1
9
2
8

1
4
3
8

8
2
1

1
7
3
7

1
6
5
7

1
9
7
1

1
4
3
5

1
1
5
1

1
7
2
3

1
2
7
1

8
1
0
5
0

1
4
1
2

1
5
2
7

1
3
8
4

1
2
6
8

8
8
8

×
2
0
1
4

2
0
8
2

1
8
9
7

1
4
6
5

1
7
4
7

1
1
6
5

1
5
9
4

1
4
8
5

1
7
0
7

1
1
9
3

9
3
1

1
4
9
1

1
2
7
5

1
1

2
2
0
5

2
5
6
3

2
7
2
4

2
5
9
6

2
3
1
2

2
1
8
4

2
0
1
0

×
9
4
6

1
0
5
9

2
5
5
9

3
1
3
8

2
2
4
2

1
2
7
3

1
1
9
6

1
0
8
2

1
4
2
9

1
7
4
9

1
3
7
1

1
5
4
9

1
2

2
2
8
3

2
8
1
2

3
0
2
0

2
9
8
5

2
4
3
1

2
1
9
3

2
0
0
1

9
2
7

×
1
1
4
8

2
5
1
9

3
1
4
2

2
2
1
7

1
6
8
8

1
5
4
2

1
2
7
6

1
6
5
2

1
9
3
2

1
6
1
4

1
7
8
4

1
3

2
1
5
2

2
7
7
9

2
8
6
9

2
6
8
1

2
4
3
5

1
9
8
2

1
8
3
0

1
0
3
6

1
1
1
8

×
2
4
2
0

3
0
8
4

2
2
2
7

1
1
2
9

1
0
4
3

9
7
6

1
2
3
3

1
6
5
8

1
1
7
9

1
3
9
5

1
5

1
7
3
6

1
9
2
7

1
6
6
8

1
1
9
3

1
1
5
2

1
9
6
7

1
5
0
4

2
5
2
4

2
5
4
4

2
4
6
8

×
1
1
4
5

1
6
4
5

1
9
2
6

2
1
4
0

2
0
0
1

1
9
1
1

1
6
4
9

1
6
9
4

1
8
0
3

1
6

1
0
2
8

6
2
2

6
5
4

4
9
7

7
3
6

1
4
8
1

1
7
7
2

2
9
9
4

3
1
2
7

3
0
9
8

1
2
2
5

×
8
4
7

2
2
1
8

2
5
2
2

2
4
9
3

2
3
3
0

1
7
5
9

1
9
8
2

1
6
9
3

1
7

5
9
0

5
2
8

8
1
5

7
7
3

9
1
8

8
4
3

1
1
9
9

2
2
5
4

2
2
8
8

2
2
9
6

1
6
7
3

8
4
0

×
1
9
7
5

1
7
6
3

2
0
5
1

1
5
9
4

1
1
8
4

1
6
3
3

1
1
8
8

1
0
0

1
8
2
6

2
0
5
8

2
3
2
9

2
0
1
2

1
7
6
2

1
7
1
0

1
6
6
8

1
2
2
8

1
6
5
9

1
1
2
4

1
8
9
2

2
2
5
6

1
9
1
5

×
8
6
1

1
1
0
8

1
0
6
6

1
3
0
8

9
5
5

1
0
2
8

1
1
0

1
7
9
7

2
1
3
3

2
5
6
7

2
2
9
2

1
9
3
8

1
6
7
6

1
5
1
8

1
1
9
3

1
5
6
5

1
0
8
1

2
0
7
7

2
5
9
4

1
7
3
4

8
7
6

×
9
3
1

7
2
2

1
1
3
8

9
9
0

9
2
7

1
1
1

2
0
4
6

2
2
1
0

2
3
6
1

2
3
8
9

2
0
3
8

1
9
9
8

1
7
3
8

1
0
6
9

1
2
8
8

9
9
7

1
9
6
2

2
6
3
8

2
0
1
2

1
1
2
1

9
3
2

×
1
0
3
4

1
4
7
5

9
3
9

1
1
2
1

1
1
2

1
5
2
5

1
8
7
5

2
1
8
3

1
9
8
8

1
6
5
5

1
4
1
3

1
1
8
0

1
3
9
5

1
6
6
4

1
2
6
0

1
8
7
2

2
5
3
3

1
5
5
9

1
0
6
6

7
2
2

1
0
3
8

×
8
4
5

1
0
0
2

7
9
7

1
9
1

1
2
4
3

1
2
8
0

1
5
9
1

1
5
6
9

1
2
4
0

1
1
5
0

9
3
8

1
7
3
6

1
9
6
6

1
7
0
3

1
6
7
8

1
6
6
0

1
1
5
4

1
3
2
0

1
1
4
8

1
4
9
1

8
4
8

×
1
1
2
6

7
3
3

2
0
2

1
6
4
5

1
6
1
2

1
9
0
2

1
8
7
1

1
6
2
8

1
7
8
8

1
4
9
3

1
3
7
5

1
6
2
6

1
1
9
2

1
6
7
9

1
9
3
4

1
5
5
9

9
7
5

9
9
3

9
4
7

1
0
0
0

1
1
2
3

×
7
3
4

2
0
5

1
3
4
1

1
3
3
1

1
5
8
9

1
5
2
3

1
3
1
6

1
2
8
1

1
3
1
3

1
5
7
9

1
8
2
1

1
4
4
4

1
7
9
4

1
7
1
5

1
1
8
8

1
0
6
4

9
4
1

1
1
5
4

8
1
0

7
5
9

7
5
7

×

Table 7: The distanse after registering the images with each other. Read as

the �nal distanse when registering 1 with 2 is 798. The three best for each

image are in bold.

66



1
2

4
5

6
7

8
1
1

1
2

1
3

1
5

1
6

1
7

1
0
0

1
1
0

1
1
1

1
1
2

1
9
1

2
0
2

2
0
5

1
×

3
4
.
6

3
9
.
5

3
7
.
9

3
3
.
5

3
0
.
7

2
9
.
1

6
1
.
5

5
6
.
1

5
2
.
5

4
8
.
1

3
8
.
8

2
7
.
8

4
3
.
4

5
1
.
2

5
4
.
0

4
3
.
1

2
9
.
2

4
2
.
0

4
5
.
2

2
3
2
.
1

×
1
5
.
0

2
2
.
3

3
1
.
2

3
6
.
2

4
2
.
3

5
9
.
4

6
5
.
8

6
0
.
8

4
5
.
7

2
4
.
3

2
1
.
2

4
9
.
6

5
1
.
8

5
6
.
7

5
3
.
1

3
4
.
0

3
8
.
4

4
3
.
2

4
3
2
.
8

1
2
.
7

×
2
8
.
1

3
8
.
5

4
1
.
0

4
9
.
5

6
9
.
3

7
3
.
4

7
0
.
2

5
1
.
6

3
0
.
7

2
5
.
9

5
9
.
1

6
1
.
4

6
6
.
2

6
2
.
2

3
4
.
9

4
4
.
3

4
7
.
2

5
3
0
.
3

2
4
.
6

3
2
.
0

×
1
9
.
7

2
9
.
4

2
8
.
0

5
4
.
1

4
9
.
9

5
3
.
5

2
4
.
5

1
4
.
7

2
3
.
7

5
0
.
7

4
9
.
3

4
5
.
5

4
6
.
2

4
0
.
1

4
3
.
4

5
1
.
0

6
3
0
.
7

3
3
.
0

4
1
.
5

2
2
.
5

×
3
3
.
0

3
0
.
1

4
7
.
9

4
4
.
7

4
6
.
0

2
3
.
9

2
1
.
3

2
4
.
7

3
9
.
8

4
1
.
2

4
3
.
1

4
5
.
0

4
0
.
2

4
3
.
5

5
1
.
2

7
2
7
.
6

3
5
.
5

4
3
.
1

3
3
.
0

3
1
.
2

×
1
3
.
4

3
7
.
7

3
2
.
9

3
1
.
8

3
9
.
3

2
9
.
9

1
8
.
9

3
0
.
8

2
8
.
3

2
8
.
7

2
4
.
1

1
3
.
8

1
7
.
2

2
5
.
8

8
2
4
.
1

4
3
.
0

5
3
.
4

3
4
.
7

2
9
.
4

1
4
.
7

×
3
9
.
0

3
2
.
0

2
8
.
9

3
8
.
5

3
4
.
0

2
8
.
8

2
8
.
1

2
8
.
6

3
0
.
6

2
2
.
4

2
3
.
1

2
7
.
1

3
6
.
6

1
1

5
5
.
8

6
2
.
2

7
3
.
5

6
0
.
0

5
0
.
4

4
2
.
8

4
0
.
1

×
1
5
.
9

2
2
.
7

5
6
.
5

6
0
.
6

4
9
.
6

2
7
.
7

1
9
.
4

2
2
.
3

3
4
.
0

4
2
.
7

3
5
.
3

4
6
.
4

1
2

5
1
.
8

6
6
.
0

7
5
.
9

5
5
.
2

4
4
.
9

3
6
.
8

3
2
.
9

1
4
.
8

×
1
8
.
9

4
6
.
4

5
2
.
6

5
0
.
8

3
4
.
5

2
1
.
9

1
9
.
5

3
0
.
7

4
3
.
1

4
2
.
6

5
4
.
5

1
3

4
2
.
8

5
6
.
3

6
5
.
3

5
5
.
1

4
3
.
5

3
2
.
0

2
7
.
1

2
1
.
8

1
9
.
9

×
5
6
.
4

5
1
.
1

4
4
.
1

2
1
.
0

1
0
.
8

1
5
.
4

1
7
.
4

3
4
.
8

3
1
.
0

4
1
.
1

1
5

4
1
.
6

4
3
.
4

4
7
.
9

2
3
.
8

2
1
.
3

3
7
.
8

3
9
.
0

5
7
.
5

5
0
.
0

5
9
.
9

×
3
2
.
2

3
4
.
8

5
7
.
7

5
6
.
1

4
9
.
5

5
7
.
9

5
0
.
6

5
1
.
9

5
7
.
9

1
6

3
4
.
8

2
3
.
6

3
0
.
1

1
6
.
5

1
9
.
5

3
0
.
0

3
2
.
1

5
7
.
0

5
2
.
7

5
1
.
6

3
1
.
4

×
2
4
.
7

4
8
.
6

4
7
.
4

4
7
.
9

4
8
.
2

3
9
.
4

4
2
.
3

5
0
.
0

1
7

2
3
.
3

2
2
.
5

3
1
.
2

2
6
.
2

2
3
.
6

2
0
.
1

2
5
.
0

4
4
.
2

4
7
.
7

4
6
.
5

3
7
.
1

2
4
.
3

×
3
6
.
7

3
8
.
1

4
2
.
9

3
8
.
8

2
2
.
0

2
2
.
4

2
8
.
1

1
0
0

3
6
.
8

5
1
.
5

6
2
.
9

5
5
.
2

4
3
.
4

3
3
.
9

2
9
.
3

2
5
.
7

3
2
.
5

2
4
.
2

5
6
.
7

5
2
.
4

4
0
.
6

×
1
8
.
2

2
3
.
0

2
4
.
7

3
3
.
5

2
3
.
8

3
4
.
3

1
1
0

4
3
.
2

4
9
.
5

5
8
.
9

5
0
.
6

4
0
.
8

2
9
.
9

2
6
.
0

1
6
.
8

2
0
.
2

1
3
.
2

5
1
.
5

4
8
.
1

3
6
.
9

1
5
.
4

×
1
4
.
5

1
8
.
8

2
9
.
1

2
4
.
2

3
5
.
5

1
1
1

4
5
.
4

5
4
.
3

6
2
.
8

4
7
.
0

4
0
.
7

2
8
.
9

2
8
.
2

1
9
.
4

1
7
.
1

1
3
.
8

4
5
.
0

4
6
.
4

4
1
.
3

2
0
.
7

1
0
.
1

×
1
9
.
4

3
2
.
7

2
8
.
5

3
7
.
3

1
1
2

3
3
.
3

4
8
.
3

5
6
.
9

4
7
.
5

4
1
.
9

2
3
.
0

2
0
.
2

3
1
.
3

3
0
.
7

1
4
.
8

5
4
.
1

4
6
.
7

3
6
.
1

1
9
.
9

1
6
.
1

1
7
.
5

×
2
7
.
3

2
2
.
8

2
9
.
4

1
9
1

2
4
.
2

3
1
.
1

3
6
.
4

3
9
.
9

3
7
.
9

1
7
.
5

2
0
.
2

3
9
.
5

4
1
.
8

4
0
.
5

4
9
.
5

3
8
.
6

2
0
.
7

3
2
.
0

3
2
.
2

3
7
.
2

3
2
.
7

×
2
1
.
1

2
2
.
0

2
0
2

3
5
.
0

3
7
.
1

4
5
.
1

4
1
.
8

4
1
.
6

1
8
.
4

2
3
.
2

3
2
.
1

3
9
.
0

3
4
.
0

5
0
.
7

4
1
.
4

2
1
.
9

2
3
.
8

2
5
.
1

2
9
.
8

2
5
.
8

1
7
.
6

×
1
8
.
1

2
0
5

3
5
.
7

3
9
.
8

4
2
.
1

4
7
.
7

4
8
.
6

2
4
.
9

3
2
.
0

4
2
.
9

5
1
.
1

3
9
.
3

5
4
.
9

4
8
.
2

2
6
.
7

3
0
.
4

3
2
.
4

3
4
.
2

2
6
.
7

1
8
.
3

1
1
.
2

×

Table 8: The distanse after matching the images with each other with the

statistical-based matching function. Read as the �nal distanse when mathcing

1 with 2 is 34.6. The three best for each image are in bold. Numbers shown

in percent.

67



D Top 3 Matching Results

To see if the matching functions rank the cases in a way that corresponds to
their score, the three best matches for each case where put through the system.
This was done for both the registration-based approach:

Registration-based matching
First Second Third

1 0.54 0.54 0 0.54 0 0.33
2 0.58 0.58 0 0.49 0 0
4 0 0.59 0 0.54 0.50 0.50
5 0.62 0.67 0.63 0.63 0 0.66
6 0.72 0.72 0.71 0.71 0.21 0.49
7 0.35 0.65 0 0.61 0.64 0.64
8 0 0.38 0 0.54 0.36 0.41
11 0.38 0.38 0.02 0.17 0 0.34
12 0.07 0.68 0 0.67 0 0.70
13 0.05 0.26 0 0.46 0.03 0.24
15 0.31 0 0.44 0.74 0.20 0
16 0.59 0.59 0 0.36 0 0.61
17 0.03 0.55 0 0 0 0.27
100 0.17 0.50 0.03 0.03 0.26 0.63
110 0.19 0.32 0.32 0.28 0 0
111 0.01 0.50 0.05 0 0.01 0.49
112 0.66 0.66 0.02 0.20 0.70 0.70
191 0.03 0.02 0.02 0.60 0.58 0.58
202 0.03 0.51 0.05 0.62 0 0.57
205 0.49 0.61 0 0.67 0 0.21
Average 0.29 0.49 0.11 0.44 0.17 0.42

and for the statistical-based:

68



Statistical-based matching
First Second Third

1 0.54 0.54 0.60 0.61 0 0.57
2 0 0.50 0.59 0.59 0 0
4 0 0.59 0.43 0.16 0.54 0.54
5 0.62 0.67 0.18 0 0.73 0.73
6 0.71 0.71 0.72 0.72 0.70 0.70
7 0.64 0.64 0.70 0.70 0 0
8 0 0.38 0.27 0.39 0 0.54
11 0.38 0.38 0.01 0.31 0.04 0.34
12 0.07 0.68 0 0.67 0 0.70
13 0.03 0.24 0.05 0.26 0.36 0
15 0.44 0.74 0.20 0 0.31 0
16 0.59 0.59 0.58 0.58 0.15 0.31
17 0.03 0.41 0 0.46 0 0
100 0.17 0.45 0.56 0.56 0.03 0.03
110 0.27 0 0.03 0.36 0.32 0.28
111 0.01 0.50 0.01 0.49 0 0.50
112 0.63 0.62 0.66 0.66 0 0.42
191 0.62 0.62 0.58 0.58 0 0.37
202 0 0.62 0 0.51 0 0.68
205 0.49 0.61 0 0.67 0 0.04
Average 0.31 0.52 0.31 0.46 0.16 0.34

69



E Average Intensity-based Adaption

The �rst attempt of adaption was to use the di�erence in average intensity
between the two images. This did not give satisfactory results.

Dataset Adjustment Post-Score
2 -2 0.39
4 -14 0
5 10 0.29
6 -1 0.62
7 3 0.43
8 0 0
11 3 0.37
12 5 0.03
13 8 0.04
15 -2 0.24
16 -9 0.52
17 2 0.02
100 -8 0.10
110 -9 0.02
111 -4 0
112 7 0.27
191 8 0.02
202 -4 0.02
205 2 0.39

70



F Di�erence in Size

When matching cases the size of the ventricles from the best case does not
always map very good with that of the new case. This means that the system
must allow two sizes to be somewhat di�erent, but not too di�erent. If this
happens the size metadata is useless as every attempt will be approved. Note
that in the table the size given for dataset 1 is the size prior to registering to
the other images. Some of the ventricles may be moved outside the subvolume
and the size given to Revise to reason with may be less than stated here.

Dataset Orig. Size Size from reg. Size from stat.
1 3567 2255 2255
2 2016 2255 5350
4 5350 2016 2016
5 4665 3169 3169
6 5518 4665 3169
7 3604 3567 2818
8 2818 3604 3604
11 8574 7787 7787
12 7787 8574 8574
13 3122 3518 5702
15 6858 3169 5518
16 3169 4665 4665
17 2255 2016 3604
100 3317 5702 5702
110 5702 3406 3122
111 3518 5702 5702
112 3406 5702 3122
191 2360 7070 3604
202 7284 7070 2360
205 7070 7284 7284

71



References

[1] The insight segmentation and registration toolkit. http://www.itk.org.

[2] Agnar Aamodt. Explanation-driven case-based reasoning. In EWCBR '93:

Selected papers from the First European Workshop on Topics in Case-Based

Reasoning, pages 274�288, London, UK, 1994. Springer-Verlag.

[3] Agnar Aamodt and Eric Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AICom - Arti�cial In-

telligence Communications, 7:39�59, 1994.

[4] D. Aha. The omnipresence of case-based reasoning in science and applica-
tion, 1998.

[5] J.L. Arcos, R. Lopes de Mantaras, and X. Sierra. Saxex: a case-based rea-
soning system for generating expressive musical performances. Proceedings
of the International Computer Music Conference, pages 329�336, 1997.

[6] C. N. de Graaf, A.S.E. Koster, K.L. Vincken, and M.A. Viergever. A
methodology for the validation of image segmentation methods. Fifth An-

nual IEEE Symposium on Computer-Based Medical Systems, pages 17�24,
June 1992.

[7] Ramon López de Mántaras, David McSherry, Derek Bridge, David Leake,
Barry Smyth, Susan Craw, Boi Faltings, Mary Lou Maher, Michael Cox,
Kenneth Forbus, Mark Keane, Agnar Aamodt, and Ian Watson. Retrieval,
reuse, revision, and retention in case-based reasoning. Knowledge Engi-

neering Review, 20:215�245, 2005.

[8] Lijun Ding, Thisath Kularatna, Ardeshir Goshtasby, and Martin Satter.
Volumetric image registration by template matching. In Proc. SPIE Vol.

3979, p. 1235-1246, Medical Imaging 2000: Image Processing, Kenneth M.

Hanson; Ed., pages 1235�1246, jun 2000.

[9] Valerie Ficet-Cauchard, Christine Porquet, and Marinette Revenu. Cbr
for the reuse of image processing knowledge: A recursive retrieval/ adap-
tation. In ICCBR '99: Proceedings of the Third International Conference

on Case-Based Reasoning and Development, pages 438�452, London, UK,
1999. Springer-Verlag.

[10] Bob Fisher. 3d moment invariants. http://homepages.inf.ed.ac.uk/

rbf/CVonline/LOCAL_COPIES/FISHER/MOMINV3D/inv3d.htm, 2001.

[11] M. J. F. Grimnes. ImageCreek: A Knowledge Level Approach to Case-Based

Image Interpretation. NTNU - PhD Thesis, 1998.

[12] M Haddad, D Moertl, and G Porenta. Scina: a case-based reasoning system
for the interpretation of myocardial perfusion scintigrams. Computers in

Cardiology 10-13 Sep 1995, pages 761�764, 1995.

[13] The Vancouver Hospital and Health Sciences Centre.
http://www.physics.ubc.ca/ mirg/home/tutorial/tutorial.html.

[14] Zhimin Huo and Maryellen L. Giger. Evaluation of an automated segmenta-
tion method based on performances of an automated classi�cation method.

72



Medical Imaging 2000: Image Perception and Performance, 3981(1):16�21,
2000.

[15] D.P. Huttenlocher, G.A. Klanderman, and W.A. Rucklidge. Comparing im-
ages using the hausdor� distance. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 15(9):850�863, 1993.

[16] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The

ITK Software Guide. Kitware, Inc. ISBN 1-930934-15-7,
http://www.itk.org/ItkSoftwareGuide.pdf, second edition, 2005.

[17] Tina Kapur. Segmentation of brain tissue from magnetic resonance images.
Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1995.

[18] Abdus Salam Khan and Achim G. Ho�mann. Acquiring adaptation knowl-
edge for cbr with mikas. In AI '01: Proceedings of the 14th Australian

Joint Conference on Arti�cial Intelligence, pages 201�212, London, UK,
2001. Springer-Verlag.

[19] S. Kirkpatrick, D. Gelatt Jr, C., and P. Vecchi, M. Optimization by simu-
lated annealing. Science, 220(4598):671�680, May 1983.

[20] David B. Leake. Combining rules and cases to learn case adaption. In
Proceedings of the Seventeenth Annual Conference of the Cognitive Science,
pages 84�89, 1995.

[21] David B. Leake and David C. Wilson. Remembering why to remember:
Performance-guided case-base maintenance. In EWCBR '00: Proceedings

of the 5th European Workshop on Advances in Case-Based Reasoning, pages
161�172, London, UK, 2000. Springer-Verlag.

[22] M. Lenz. Cabata - a hybrid cbr system, 1993.

[23] H. Li, R. Deklerck, B. De Cuyper, A. Hermanus, E. Nyssen, and Jan Cor-
nelis. Object recognition in brain ct-scans: Knowledge-based fusion of data
from multiple feature extractors. IEEE Transactions on Medical Imaging,
14(2):212 � 229, 1995.

[24] M. Lorenzo-Valdes, Gerardo I. Sanchez-Ortiz, R. Mohiaddin, and Daniel
Rueckert. Atlas-based segmentation and tracking of 3d cardiac mr images
using non-rigid registration. In MICCAI '02: Proceedings of the 5th Inter-

national Conference on Medical Image Computing and Computer-Assisted

Intervention-Part I, pages 642�650. Springer-Verlag, 2002.

[25] Cindy Marling, Edwina Rissland, and Agnar Aamodt. Integrations with
case-based reasoning. Knowledge Engineering Review, 20:241�245, 2005.

[26] Tim McInerney and Demetri Terzopoulos. Deformable models. pages 127�
145, 2000.

[27] Rajiv Mehrotra and James E. Gary. Feature-based retrieval of similar
shapes. In Proceedings of the Ninth International Conference on Data En-

gineering, pages 108�115, Washington, DC, USA, 1993. IEEE Computer
Society.

73



[28] Marcin Novotni and Reinhard Klein. A geometric approach to 3d object
comparison. smi, 00:0167, 2001.

[29] N. R. Pal and S. K. Pal. A review on image segmentation techniques.
Pattern Recognition, 26(9):1277�1294, 1993.

[30] Petra Perner. An architecture for a cbr image segmentation system. Journal
on Engineering Application in Arti�cial Intelligence, 12(6):749�759, 1999.

[31] Petra Perner. Why case-based reasoning is attractive for image interpre-
tation. In ICCBR '01: Proceedings of the 4th International Conference on

Case-Based Reasoning, pages 27�43, London, UK, 2001. Springer-Verlag.

[32] Petra Perner, Thomas Günther, and Horst Perner. Airborne fungi identi�-
cation by case-based reasoning. In Workshop om CBR in Health Sciences,

ICCBR03, pages 63�72, 2003.

[33] Dzung L. Pham and Jerry L. Prince Chenyang Xu. A survey of current
methods in medical image segmentation. Annual Review of Biomedical

Engineering, 1998.

[34] B. W. Porter, R. Bareiss, and R. C. Holte. Concept learning and heuristic
classi�cation in weak-theory domains. Artif. Intell., 45(1-2):229�263, 1990.

[35] Jan Puzicha, Joachim M. Buhmann, Yossi Rubner, and Carlo Tomasi. Em-
pirical evaluation of dissimilarity measures for color and texture. In ICCV

'99: Proceedings of the International Conference on Computer Vision-

Volume 2, page 1165, Washington, DC, USA, 1999. IEEE Computer Soci-
ety.

[36] Christopher K. Riesbeck and Roger C. Schank. Inside Case-Based Reason-

ing. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, 1989.

[37] Edwina L. Rissland and David B. Skalak. Cabaret: rule interpretation in
a hybrid architecture. Int. J. Man-Mach. Stud., 34(6):839�887, 1991.

[38] Simone Santini and Ramesh Jain. Similarity measures. IEEE Trans. Pat-

tern Anal. Mach. Intell., 21(9):871�883, 1999.

[39] Roger Schank. Dynamic Memory: A theory of Reminding and Learning in

Computers and People. Cambrigde University Press, 1983.

[40] Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath
Gupta, and Ramesh Jain. Content-based image retrieval at the end of the
early years. IEEE Trans. Pattern Anal. Mach. Intell., 22(12):1349�1380,
2000.

[41] John R. Smith and Shih-Fu Chang. Visualseek: a fully automated content-
based image query system. InMULTIMEDIA '96: Proceedings of the fourth

ACM international conference on Multimedia, pages 87�98, New York, NY,
USA, 1996. ACM Press.

[42] Barry Smyth and Mark T. Keane. Remembering to forget: A competence
preserving case deletion policy for cbr systems. In International Joint Con-

ference on Arti�cial Intelligence, pages 377�382, 1995.

74



[43] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing, Analysis,
and Machine Vision 2. Edition. Brooks/Cole Publishing Company, 1999.

[44] Amos Tversky. Features of similarity. Psychological Review, 84(4):327�352,
1977.

[45] J. S. M. Vergeest, S. Spanjaard, and Y. Song. Directed mean hausdor�
distance of parameterized freeform shapes in 3d: a case study. The Visual
Computer, 19:480�492, 2003.

[46] P. Zamperoni and V. Starovoitov. On measures of dissimiliarity between
arbitrary gray-scale images. International Journal of Shape Modeling,
2(2&6):189�213, 1996.

75


