
June 2007
Reidar Conradi, IDI
Jingyue Li, IDI
N N, -

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

An Evaluation of messages-based
Systems Integration with respect to
Performance
A case study

Trond Fallan Smaavik
Nils Torstein Øvstetun

Problem Description
The assignment contains a litterature study of systems integration strategies and technologies.
Two strategies/technologies will be used to implement test applications. The applications will be
used to evaluate the technologies with respect to a relevant quality attribute.

Assignment given: 22. January 2007
Supervisor: Reidar Conradi, IDI

Abstract

This report describes a case-study evaluation of two integration strategies with par-
ticular focus on performance. The study is motivated by integration challengers
within a company we have cooperated with, and our wish to gain insight into sys-
tems integration.

The goal of the study has been to evaluate the performance of two message-based
system integration strategies. We have evaluated this by implementing several ap-
plications which are integrated using either Web services technologies or an integra-
tion technology provided by our cooperator. Our research questions have been as
follows:
Q1: Which integration solution has best performance in a publish-subscribe sce-
nario?
Q2: Which integration solution has best performance in a request-response scenario?

The results show that the Web service applications has best performance when
sending small messages (up to 160kB). For large messages, the applications based
on the integration technology from the cooperating company perform better.

The contributions of the study may be split in two. The contribution to the com-
pany is the performance evaluation of their technology. Collected data for response
time and throughput, and performance models for our test applications are also con-
tributed. For a broader context, we contribute with performance evaluation of Web
services technologies. Data is collected for response time and throughput on test
applications, and performance models are made. The comparisons of integrations
based on Web services and MIP also serves as example of the performance of Web
services versus other middleware.

Keywords: Systems integration, Web services, performance evaluation

i

ii ABSTRACT

Preface

This report is written as part of the course TDT4900 Master Thesis at the Depart-
ment of Computer and Information Science (IDI) at the Norwegian University of
Science and Technology (NTNU). It documents the work done by Trond Smaavik
and Nils Torstein Øvstetun in the final semester of the study for the degree of Mas-
ter of Science in computer science. The work has been done in cooperation with a
Norwegian software house that do not wish to be mentioned by name.

We would like to thank our supervisor and mentor throughout the project, research
scientist Jingyue Li, for good feedback on our work in addition to good discussions.
Also a great thank to our software industry partner for letting us get access to their
source code and documentation of relevant software products. Discussions with and
insight provided by them have been very valuable for us during our work. Finally
we would like to thank our teacher of the course, Professor Reidar Conradi, for
guidance, feedback and other help.

Trondheim, June 2006.

Nils Torstein Øvstetun Trond Smaavik

iii

iv PREFACE

Contents

Abstract i

Preface iii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 1

1.3 Research questions . 2

1.4 Contributions . 2

1.5 Report outline . 3

2 Systems integration 5

2.1 Approaches to systems integration . 5

2.1.1 Data integration . 6

2.1.2 Application integration . 6

2.1.3 Business process integration 8

2.2 Service-oriented architecture . 8

2.3 Integration topologies . 9

2.3.1 Point-to-point . 9

2.3.2 Bus . 10

2.3.3 Hub . 11

2.4 Challenges of System Integration . 13

v

vi CONTENTS

3 Problem introduction 15

3.1 Integration challenges in the company 15

3.2 Integration scenarios . 16

3.2.1 Scenario 1: Server to server notification 16

3.2.2 Scenario 2: Client to server data request 17

3.3 Requirements for a common integration solution 17

3.4 Integration strategy alternatives for the company 18

3.4.1 Current integration strategy 18

3.4.2 Chosen strategy: Custom made integration infrastructure ap-
plication . 18

3.4.3 Not applicable strategy: Commercial middleware integration
product . 19

3.4.4 Competitive strategy: Web services 20

3.4.5 Summary of alternatives. 20

4 Message bus implementation 23

4.1 Backgound . 23

4.2 Technical details . 24

4.2.1 MIP overview . 24

4.2.2 MIP routers . 24

4.2.3 MIP Adapter . 25

4.2.4 Channels . 26

4.2.5 Messages . 26

4.3 MIP functionalities . 27

4.3.1 One-to-one communication . 27

4.3.2 Many-to-many communication 27

4.3.3 Reliable many-to-many communication 27

4.3.4 Automatic discovery . 28

4.3.5 Security . 28

4.3.6 Distributed configuration . 28

CONTENTS vii

4.4 Evaluation of MIP in SOA environments 29

4.4.1 Strong sides . 29

4.4.2 Weaker sides . 29

5 Research design 31

5.1 Research motivation . 31

5.2 Research framework . 32

5.3 Goal definition . 32

5.4 Research questions . 33

5.5 Data collection and measurement metrics 33

5.6 Research outcome . 34

5.7 Summary of the research design . 34

6 Web services 35

6.1 Background . 35

6.2 Web service technologies . 36

6.2.1 eXtensible Markup Language (XML) 36

6.2.2 Simple Object Access Protocol (SOAP) 38

6.2.3 Web Services Description Language (WSDL) 39

6.2.4 Universal Description, Discovery, and Integration (UDDI) . . . 41

6.3 Web services challenges . 42

6.3.1 Web service versioning . 42

7 Performance engineering 45

7.1 Quality of Service . 45

7.2 Method for analyzing performance of computer system 47

7.3 Workload Model . 49

7.4 Performance models . 50

7.5 Visual representation of models . 51

7.5.1 Conceptual Modeling . 51

7.5.2 Queuing Network models . 54

viii CONTENTS

7.6 Quantifying Performance Models . 55

7.6.1 Performance evaluation metrics 55

7.6.2 Operation laws . 55

7.6.3 Bounds on performance . 57

7.6.4 Mean Value Analysis . 57

7.7 Examples of performance studies of systems using Web services . . . 58

7.7.1 Measurement-based Performance Analysis 59

7.7.2 Evaluation and modeling of Web services performance 59

8 Implementation details 63

8.1 Application implementation for Q1 - Server to server publish-subscribe 64

8.1.1 MIP Q1App implementation 64

8.1.2 WS Q1App implementation 65

8.2 Application implementation for Q2 - data request 69

8.2.1 MIP Q2App implementation 69

8.2.2 WS Q2App . 70

9 Results for research question 1 73

9.1 Performance test for Q1 . 73

9.1.1 MIP Q1App performance test 75

9.1.2 WS Q1App performance test 76

9.2 Results performance test Q1 . 79

10 Results for research question 2 85

10.1 Performance test for Q2 . 85

10.1.1 MIP Q2App performance test 86

10.1.2 WS Q2App performance test 88

10.2 Result performance test Q2 . 89

11 Evaluation of the results 93

11.1 Discussion of the results . 93

CONTENTS ix

11.1.1 Discussion Q1 . 93

11.1.2 Discussion Q2 . 95

11.2 Integration strategy recommendation 95

11.3 Validity evaluation . 97

11.3.1 Validity evaluation Q1 and Q2 98

11.3.2 Validity evaluation Q1 . 100

11.3.3 Validity evaluation Q2 . 101

12 Conclusion and further work 103

12.1 Conclusion . 103

12.2 Further work . 104

A Glossary 105

B Test computer technical specification 107

C Test results data 109

D Web services reliable messaging 111

E Zip archive description 113

x CONTENTS

List of Figures

2.1 Point-to-point topology . 10

2.2 Bus topology . 11

2.3 Hub topology . 12

4.1 MIP routers overview . 24

6.1 The Web service protocols . 36

7.1 The quantitative analysis cycle . 48

7.2 Example of Process Flow Diagram 53

7.3 Example of Logic Flow Diagram . 53

7.4 Example of Activity Cycle Diagram 54

7.5 Mixed QN model. 55

8.1 Scenario 1 - MIP sequence diagram 65

8.2 Scenario 1 - Web services sequence diagram 68

8.3 Scenario 2 - MIP sequence diagram 70

8.4 Scenario 2 - Web service sequence diagram 71

9.1 Overview of the performance test for Q1 73

9.2 Test design: MIP Q1App . 75

9.3 Test design: WS Q1App . 76

9.4 Throughput performance test Q1 with small messages 80

9.5 Throughput performance test Q1 with medium messages 81

xi

xii LIST OF FIGURES

9.6 Throughput performance test Q1 with large messages 82

9.7 Memory and CPU usage for MIP Q1App 84

10.1 Overview of the performance test for Q2 85

10.2 Test design: MIP Q2App . 87

10.3 Test design: WS Q2App . 88

10.4 Average response time in the test with small messages 90

10.5 Average response time in the with medium messages 91

10.6 Average response time in the test with large messages 92

D.1 Reliable messaging for Web services 112

List of Tables

3.1 Integration scenarios . 16

3.2 Summary of strategy alternatives . 21

7.1 Example: Component list . 52

8.1 An overview of the implemented applications. 64

11.1 Summary of differences between Web services and MIP 97

11.2 Throughput modified and unmodified NotificationManager.cs 100

C.1 Test result data . 110

xiii

xiv LIST OF TABLES

Listings

6.1 XML example . 36

6.2 XML Schema example . 37

6.3 SOAP example . 39

6.4 WSDL example . 40

6.5 W3C XML namespace versioning . 44

8.1 WS-Eventing subscribtion example 66

9.1 Algorithm for sending event messages 74

9.2 Original code in NotificationManagerService.cs 77

9.3 Modified code in NotificationManagerService.cs 77

9.4 Code for WS Q1App with individual connections. 77

9.5 Code for WS Q1App with open connection. 78

9.6 WS eventing SOAP message . 78

xv

xvi LISTINGS

Chapter 1

Introduction

1.1 Background

Our software industry cooperator have created many different applications for busi-
ness administration 1. Today there exists no common way of integrating these
applications with each other. The company wishes to find a strategy and a software
solution to do this. They have looked at several possibilities, and decided to build
a new, proprietary infrastructure for message sending between their applications.
One of the reasons for this is that performance of integrations is important to the
company.

We challenge this solution by proposing that it is possible to achieve the same
or better performance by using Web services technologies. To evaluate this, we
implement several applications which are integrated either based on the company’s
technology or Web service technology.

1.2 Motivation

Our work within the field of message-based systems integration is motivated by
several factors. The main focus with all systems integration is to make software
applications that were not created to communicate with each other do that. This
is a challenging task as there exist systems with different structures on different
platforms created with different technologies that might need to be integrated. We

1The project has cooperated with a Norwegian software house that do not wish to be mentioned
by name. The company has provided software for some of the tests that have been performed.
Addition to this some employees have served as discussion partners.

1

2 CHAPTER 1. INTRODUCTION

wish to gain insight into this complex area to better understand the challenges of it.

Secondly, there is great focus on service-orientation in the software industry to-
day. Many believe that creating integration solutions that are based on services
and message passing is a viable way of solving many problems related to systems
integration. By looking at different ways to make messages-based integrations we
hope to be able to say something about the feasibility of them in different situations.

For our cooperating software industry partner, performance of integration solutions
is an important issue. When many applications are integrated, the ability to process
messages without causing significant delay is essential. This is a motivation for us to
evaluate the performance of different integration approaches to add to the feasibility
assessment mentioned.

1.3 Research questions

Our study is based on the GQM approach [31]. Here we briefly present our research
questions. The company has identified two typical integration scenarios; we have
assigned one research question for each.

Q1: Which integration solution has best performance in a publish-
subscribe scenario?
To answer this research question we implemented applications to fit into a publish-
subscribe scenario. Two solutions were created as identical as possible, but based
on the two different integration technologies. Then we performed performance tests
on the applications to be able to evaluate the performance. The important metric
for this question was throughput; how many messages the system can process per
second.

Q2: Which integration solution has best performance in a request-
response scenario?
To be able to evaluate this question, we implemented applications to mimic a request-
response scenario. Two solutions were created, as identical as possible, and based
on the two different integration technologies. Performance tests were performed to
measure the response time; the time that elapses from a message request is sent
until a response is received.

1.4 Contributions

The contributions in this study may be split in two.

1.5. REPORT OUTLINE 3

• First of all we have had a close cooperation with the company, and tried to
satisfy some of their concerns in the field. The main motivation to perform
performance evaluations is based on the company’s requirements for high per-
formance in their integration applications. A contribution to the company is
therefore the evaluation of the performance on their product compared with
Web services. Data for response time and throughput for applications using
their technology is collected. We also provide performance models for appli-
cation integrations based on MIP, which might serve as a tool for predicting
performance of integrations between similar applications.

• Secondly, contributions in a broader context are from the Web service part
of the study. We contribute with data collection for throughput and response
time for the applications and performance models for Web service based inte-
grations. The comparisons of integrations based on Web services and MIP also
serves as example of the performance of Web services versus other middleware.

1.5 Report outline

This report is organized as follows:

• Chapter 2 introduces systems integration and different approaches for this.

• Chapter 3 introduces the problem that this thesis is investigating.

• Chapter 4 describes the integration solution our software industry cooperator
has developed.

• Chapter 5 defines our research design using the GQM method.

• Chapter 6 introduces Web services technology that we will be using later.

• Chapter 7 introduces performance engineering methods that we will be using
when testing.

• Chapter 8 describes how we have implemented different integration scenarios.

• Chapter 9 gives answers to research question Q1.

• Chapter 10 gives answers to research question Q2.

• Chapter 11 presents our evaluation of the results, the problem and the validity
of our findings.

• Chapter 12 presents our conclusions and proposes further work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Systems integration

Typically large enterprises consist of hundreds of applications which were never
developed to communicate with each other. Applications developed for different
platforms with different technologies can be impossible to make work with each
other without large modifications. Many old legacy applications have critical roles
in enterprise solutions, making companies dependent on these for their day-to-day
business. Software integration is about how such application can work together
despite the obstacles. Over the last decade, a whole industry sector has emerged,
typically known as enterprise application integration (EAI) or systems integration
which is about solutions to integrations issues [14]. Today there exist many strategies
and tools which provide software infrastructures for software integration. We will in
this chapter provide an introduction to system integration, discuss challenges and
give an overview of current state-of-the art in integration solutions and technologies.

2.1 Approaches to systems integration

There are different approaches to integrating information systems [22]. Terms like
data integration, application integration and business process integration often oc-
cur. If we look generally at it, the difference between them lies in the abstraction
level. Choosing an integration approach is much about the constraints enforced by
the system that are to be integrated, but also about the inherent properties of the
different approaches.

5

6 CHAPTER 2. SYSTEMS INTEGRATION

2.1.1 Data integration

Data integration is at the lowest level of abstraction we will look at. In this kind
of integrations, systems are typically integrated by letting the involved applications
get access to each others data. Data integration has the advantage that it is possible
to go straight to the data sources (in most cases a database) and extract the needed
data. The applications do not need to deal with the application logic of the other
system and there is no need to create interfaces between them. This means that it is
very easy to establish such integration, and the initial performance is high because
no application logic is used. The biggest disadvantage is that if the data model for
one of the applications is changed, the other applications using this data model also
has to change equivalently. Data warehousing and virtual data warehousing [15] are
two examples of data integration methods.

Data warehousing approach integrates disparate data sources by developing a
global schema and providing a consistent and unified API to the global schema.
Issues with this approach is that data warehouses tends to be very big in size,
expensive to develop and currency of data is an issue since the warehouse
is refreshed once or a few times per day. Also warehouses typically do not
support transactions on the global schema, and for this reason data warehouses
is typically used in read-only mode.

Virtual data warehousing also uses a global schema, but it is not populated.
Applications specify data access requests as queries on the global schema.
This approach tries to alleviate some of the problems with data warehousing -
size and currency. This integration method is also limited in its capability to
make transactions on the global schema.

2.1.2 Application integration

With application integrations, logic and functionality of the applications is exposed
to each other. As long as the interfaces to the applications are unchanged, such
integrations allow the internal parts of the systems to be changed without affect-
ing the integration solution. There are many methods/technologies for application
integration. Common ways of doing this type of integrations are by using remote
procedure calls [15] or message-based integrations [15][16][14].

Remote Procedure Call (RPC) enables an application to invoke a function in
another application, which typically runs on different computers. The devel-
oper often needs to explicitly address issues related to the differences in the
representation of data and network communication protocols. In most cases

2.1. APPROACHES TO SYSTEMS INTEGRATION 7

the solution is limited to the programming language or platform. There ex-
ist several major technology standards for RPC. Object Management Group’s
standard for application interoperability and integration is Common Object
Request Broker Architecture (CORBA). CORBA has heavy foot-print, steep
learning curve and lack of a productive development environment, but a good
intention of been platform independent. Microsoft’s solution to RPC is Com-
ponent Object Model (COM)/Distributed Component Object Model (DCOM).
This technology is complex, and is limited to the Windows operation sys-
tem. Sun Microsystems introduced Java Remote Method Invocation (RMI)
for RPC-based interoperability between applications based on the Java pro-
gramming language, which is a technology dependent on the Java platform.

Message-based integration solutions have lately become widely used. XML
documents have become the preferred format for representation data as mes-
sages. The applications using and sending messages must follow pre-defined
message schema. The biggest advantages of this are that the involving appli-
cations are not dependent on the platform or programming languages it uses.
Web services are a commonly used approach to message-based integrations
which supports different platforms. Web services can promote the use of more
standardized protocol. Ro et al. [23] have identified a list of advantages Web
service-based methods have:

• Standard interface support

• Data exchange among heterogeneous systems

• High reliability, extensibility and security

• Easy management of asynchronous handling and transmission fail record

• Management of service categorization system, service register, and search

• Higher productivity and lower cost

Web services will make integration simpler through common transports, data
formats and associated services. Web services are transport-independent, pro-
vide both synchronous and asynchronous operations, and make it possible
through the use of XML documents to create extremely loosely coupled appli-
cations.

Software middleware integration solutions

For application integration there also exist several commercial integration middle-
ware applications and tools. There are many kinds of message-oriented middleware
(MOM) tools [15], for example extraction, transformation and loading (ETL) tools,

8 CHAPTER 2. SYSTEMS INTEGRATION

business process management (BPM) tools and integration broker suites (e.g. IBMs
WebSphere MQI and Microsoft BizTalk). Implementing message-oriented middle-
ware is often a complex task involving both technological and business challenges
which requires appropriate architecture [1]. The tools can be used for either integra-
tion of different applications within a single computer or within a locally network
or the Internet. The middleware solutions are often very expensive to buy, have
high prerequisites and all the applications using it must be modified to meet the
requirements of the middleware application.

2.1.3 Business process integration

Business process integration (BPI) is about identifying and orchestrating business
processes. Business processes can both be internal (processes within a single orga-
nization) or external (including other organizations). Since business processes can
be regarded as high-level in this context, they usually are composed of services.

Typically BPI is done by describing the process flow in an XML-language [2]. There
are several languages for this purpose, with BPEL (business process execution lan-
guage) and XLANG among them. Such languages define which services that should
be invoked, and whether it should be done in sequence or parallel. Common control
structures, such as conditions and loops, also exist. These process descriptions are
executed by applications that have support for such, for instance Microsoft BizTalk.

2.2 Service-oriented architecture

Using a service-oriented architecture may also be a way of doing integrations. There
is no clear definition of what a service-oriented architecture (SOA) is. Proposed
definitions differ in perspective, such as technical or business oriented, granularity
and scope. We feel that this statement about SOA describes the phenomenon quite
well.

In short, SOA is about loosely coupled systems, message based commu-
nication and business process orchestration. As an abstract architectural
model, it acts as an indirection between the business and the technology
model. Web Services are the preferred implementation technology for
loosely coupled and inter-operable systems. – Beat Schwegler, Microsoft
[28]

As we see from above SOA involves both application integration and business pro-
cess integration.

2.3. INTEGRATION TOPOLOGIES 9

One of the advantages with service-oriented architectures is that it makes it possible
to align business processes with IT systems better than before. Many of today’s
enterprise IT architectures are application-centric. Several application silos that
each are meant for one specific purpose, make up the process support tools for the
business processes. With this architecture you get more expensive and less flexible
IT systems, as there for instance will be separate data stores for each system, likely
with duplicated data. In order to complete business processes, functionality from
several applications may be needed. Since the functionality is spread on multiple
systems, systems integration is needed [19].

SOA tries to resolve the mentioned problems by adding new levels of abstraction
to the enterprise architecture, namely enterprise business services and business pro-
cesses. The enterprise business services provide high-level functionality needed in
the business. These services are put into context as they are composed to and
orchestrated by the business processes.

2.3 Integration topologies

There are several topologies used to integrate applications with each other [29].
Integration topologies are different ways of how applications are connected with
each other, making it possible to exchange messages/functionalities.

2.3.1 Point-to-point

Point-to-point topologies imply two communicating parties. The sending system
must know the location of the receiver to send a message. Often the message con-
tents must first be translated to a format understood by the receiver. When an
application needs to communicate with a new application, a new integration so-
lution must be created specifically between the two involving applications. This
means when n applications needs to communicate with each other, the number of
integrations is given by n∗(n−1)

2
. This is illustrated in figure 2.1 with four parties

yielding six integrations. Using this topology may require much programming work,
and possibly generate duplicated code in the different applications. In short, point-
to-point integrations are easy to implement between few applications, but hard to
maintain and scales very poorly.

10 CHAPTER 2. SYSTEMS INTEGRATION

Figure 2.1: Point-to-point topology

2.3.2 Bus

In a bus topology, the integrated applications are connected to a module known as a
bus. The applications communicates by sending messages to the bus, which in turn
distributes the message to the applications connected to it, as illustrated in figure
2.2. In the simplest type of bus using, a broadcast style communication is used,
sending the messages to all the applications connected. It is then up to the appli-
cations themselves to determine if the message was meant for them. Common to
all message buses is that the connected applications must know the message schema
and command messages of the bus in order to use it.

There are more advanced and more common ways of using a bus than the simple
broadcast style described over. By using a publish/subscribe pattern, there exist
control over which applications that shall receive specific messages. This reduces
the traffic on the bus. Two other configurations for the publish/subscribe pattern
are list-based and content-based.

List-based publish/subscribe

This pattern is also known as the observer pattern [13]. An identified subject keeps
track of subscribers in a list. When an event occurs, all subscribers on the list
are notified by calling the update-method on them. The subject has methods for
subscribers to attach and detach.

2.3. INTEGRATION TOPOLOGIES 11

Figure 2.2: Bus topology

Content-based publish/subscribe

Both broadcast and list-based publish/subscribe use communication paths based
on predefined categories. In the content-based pattern the messages are examined
to determine where to send them. For example, different combinations of informa-
tion from the message can be used in a decision tree to determine the receivers of
the message. This pattern opens for more complex and flexible rules for message
handling.

2.3.3 Hub

This topology is based on the broker pattern. The purpose of the broker pattern is
to decouple the source and destination systems by taking responsibility for admin-
istrating the communication between them. In this process there are three tasks.

Routing involves determining the location of the receiver.

Endpoint registration deals with letting the communicating parties register them-
selves with the broker so it can contact them.

Transformation is about converting data from one format to another.

There are two main types of brokers, direct and indirect. A direct broker only
provides the location of the receiver. The sender is then given this location and
does the rest of the communication on its own. An indirect broker is responsible of
forwarding all messages from the sender to the receiver. The direct broker typically
has better performance, while an indirect broker gives you better control over the
communication and the messages sent.

12 CHAPTER 2. SYSTEMS INTEGRATION

Figure 2.3: Hub topology

2.4. CHALLENGES OF SYSTEM INTEGRATION 13

2.4 Challenges of System Integration

There are a lot of challenges that remains to be solved within EAI technologies. The
challenges involves [14]

Scale. New applications require rapid access to multiple data sources, and the abil-
ity to rapidly fuse data from disparate formats. Integration technologies need
to have the ability to scale to handle large numbers of data sources with flex-
ible, fast and scalable format transformation engines.

Dynamic configuration. Typically EAI technologies must be statically config-
ured to interact with an existing data source, which requires an adapter com-
ponent to be acquired, configured to produce and consume messages and de-
ployed. Ideally it should be possible to locate a new data source, automatically
deploy or generate an adapter, and make the data immediately available.

Semantics. Some modern programming technologies support dynamic discovery
of the syntax of a service or object interface, making it possible for clients to
connect to a server, retrieve the operation and parameter names/types, and
dynamically construct calls. The problem with this is that do not convey the
meaning of the operation and parameter names, so the same name can be
used in different interfaces for completely different purposes. This leads to the
need for integration technologies to augment reflective interfaces with semantic
descriptions of how the interfaces should be used.

Finding relevant data. Most data sources are not accompanied by searchable cat-
alogs and meta-data that can be used to locate data items of interest.

14 CHAPTER 2. SYSTEMS INTEGRATION

Chapter 3

Problem introduction

In this chapter we will introduce concrete challenges a Norwegian company has
with application integration. The company is a leading software house in Norway,
with focus on administrative applications. This chapter is based on discussions
with developers and project management in the company and internal papers which
describe some of the concrete integration challenges the company has. First we
describe the challenges the company has with integration. Then we describe two
conceptual integration scenarios the company has and discuss the requirements the
company have to a integration strategy. Then we discuss integration strategies for
the company.

3.1 Integration challenges in the company

Due to a history of acquisition of smaller companies, the company has many applica-
tions with different architectures and features. Making these systems work together
is a big challenge. There are several ways of solving this challenge, each with its
cons and pros. Today the company has various point-to-point integrations between
the applications, which create very tight couplings between the applications. Espe-
cially when multiple applications needs to cooperate with each other, the need of
many point-to-point integrations is an expensive solution. Even between two ap-
plications these problems exist when there are multiple versions of each application
which needs to be able to talk with each version of the other application. Dealing
with different integration technologies further complicates this picture.

Today, the company uses different integration solutions for different applications.
Some applications works directly on the target systems database, some applications
is based on DCOM while other is based on Web services. Especially where applica-

15

16 CHAPTER 3. PROBLEM INTRODUCTION

tions work directly on a shared database, problems occur when the database model
needs to modified. This means that every integration made toward it also must be
altered according to the new data model. These different point-to-point solutions
are also based on different authentication procedures. For a programmer’s point
of view, knowledge of several integration technologies and several authentication
models is needed.

3.2 Integration scenarios

The company wants to adopt a common integration solution for all of their appli-
cations. There exist several applications, and the functionalities of them are very
different, so the solution needs fit all the applications. Some applications are real-
time applications, with an end user demanding fast responses (real-time). Other
applications may need an integration solution to synchronize a big database, work-
ing in the background. To elaborate the requirements of an integration solution
for the company, we will introduce two conceptual integration scenarios which are
typical in the eyes of the company.

Parties Communication pattern Topology
Scenario 1 Two or more servers Eventing One-to-one,

one-to-many,
many-to-many

Scenario 2 Client and server Request-response One-to-one

Table 3.1: Integration scenarios

3.2.1 Scenario 1: Server to server notification

This is normally not a real-time scenario. A change is being done in one server, and
is forwarded or propagated to one or more servers. An example is updating of cus-
tomer data. A client application updates customer data in server application “A”,
which simultaneously informs server application “B” about the updated customer
data.

The integration topology can be one-to-one, one-to-many or many-to-many. Publish-
subscribe are an integration pattern which is very useful in this scenario.

3.3. REQUIREMENTS FOR A COMMON INTEGRATION SOLUTION 17

3.2.2 Scenario 2: Client to server data request

This is often a real-time scenario, where a user waits for a response. In this scenario,
a client application typically requests a service from a server application and waits
for the response. An example is if a CRM system asks an ERP system for a data
set with customer information.

The integration topology is one-to-one, and request-response is the most useful com-
munication pattern for this scenario.

3.3 Requirements for a common integration solu-

tion

The overall goal for the company is to create a standardized software infrastructure
for application level integrations between the company’s applications. The possibil-
ity to create integrations with third party applications is an extra benefit, but the
primary target is the company’s own applications. The company has some important
requirements for the solution:

Loose coupling. This means in practice that one system, module or function can
be changed or reused without affecting other systems, modules or functions.

Strong coherence. The company wants each component to have a clear responsi-
bility without mixing different tasks.

Security. It must be possible to ensure data integrity, confidentiality protection
and access control in machine-to-machine scenarios.

Performance is very important for the company. Many of its application need to
have real-time integrations in client-server communications.

Easy installation and configuration. The solution must be easy to install and
use for the company’s customers. The aim is a solution that can be deployed
without consultant assistance for installing and/or configuration.

18 CHAPTER 3. PROBLEM INTRODUCTION

3.4 Integration strategy alternatives for the com-

pany

We will in this section present different integration strategies the company has eval-
uated.

3.4.1 Current integration strategy

Here we describe how the company’s integration strategy has been the last years.
The technology used has not been standardized, so the integration solutions are pure
one-to-one integrations based on different technologies. The company has some inte-
grations working directly on the systems database. This is particularly problematic
since the application developer must understand the data model of the target sys-
tem, the integrations are vulnerable to future modifications in the data model and
it is hard to achieve security without making the installation burdensome. Other
integrations are based on DCOM and other are based on Web services. The different
technologies require different forms of authentication, which implies that application
developers also must have knowledge of several integration technologies and several
authentication models.

The main advantage with this integration strategy is that it is easy to initial make
integration between two applications. It is also easy to create integrations with
very high performance, for example an application working directly on another ap-
plications database will have higher performance than integration based on shared
interfaces.

3.4.2 Chosen strategy: Custom made integration infrastruc-
ture application

This strategy involves developing a custom made software application/module to
serve as an integration infrastructure based on the company’s requirements. This
gives the company full control over the middleware which will be used, and all the
needed features can be implemented. The solution can be developed with partic-
ular focus on the most important non-functional requirements, like performance,
security, modifiability etc. Also, dependent on the solution developed, the software
can support all the required integration topologies like one-to-one, one-to-many and
many-to-many. The main disadvantage with this solution is the development cost
associated with it.

3.4. INTEGRATION STRATEGY ALTERNATIVES FOR THE COMPANY 19

The company has evaluated this strategy as the best solution to their needs. An
integration application based on message bus pattern is developed. Details about
this application are given in chapter 4.

3.4.3 Not applicable strategy: Commercial middleware in-
tegration product

This strategy is basically to buy a middleware integrations application or use an
open source middleware application to achieve the needed integration infrastruc-
ture. Products like Microsoft BizTalk, Microsoft Message Queue and ActiveMQ are
examples of such products. There exist many such products, so the biggest advan-
tage with this strategy is low or non development cost with the infrastructure. The
different products have different features. For example, some solutions provides in-
frastructure for both one-to-one, one-to-many and many-to-many integrations. Also
features like security, reliable communication, publish-subscribe solutions are avail-
able in many of the products. The products are in most cases widely used within
many enterprise solutions, which means they are widely tested and stable. Also a
big advantage with buying a product is if there exist support for the product, and
common user problems are often described in detail on the Internet.

The main problem with this alternative is to find a product which fulfills all the
requirements the company has. Other requirements like runtime cost, easy installa-
tion, small footprint and low deployment prerequisites is important for the company.
Another important issue is if the products are platform dependent and how much
the involving applications need to be modified to support the integrations middle-
ware product. Another factor is if the customers of the company also need to buy
and use the middleware product in addition to the company’s products.

The company has evaluated several products, including Microsoft Biztalk, Microsoft
Message Queue and ActiveMQ. None of the products fulfilled all the requirements
the company have to its integration infrastructure. Especially the requirements
regarding usability are an important factor why such products do not fulfill their
needs. The biggest disadvantages with the evaluated products was that the they
are dependent on particular versions of Windows, difficult to install, require much
hardware resources or require the company’s customers to buy the product.

20 CHAPTER 3. PROBLEM INTRODUCTION

3.4.4 Competitive strategy: Web services

This strategy is to use a standard commercial communication integration technol-
ogy for all applications within the company. It is important that the integrations
are loosely-coupled and that the services provided has strong coherence in such a
realization. The main advantage with this strategy is that it uses a standardized
technology between all applications, so the developers only have one technology they
need to learn. Web services is the technology which provides much of the needs the
company have. Web services are easy to implement, and since it are commonly used
on the Web today it will be easy to integrate external third party applications using
Web services with the company’s applications.

Web services are a pure point-to-point technology, but there exists more advanced
commercial solutions to create integration patterns such as publish-subscribe based
on Web services. This opens up the opportunities to create one-to-many topology
integrations in addition to one-to-one integrations.

The company has evaluated this strategy to be competitive with the strategy they
implemented. We use this strategy later in our study. Details about Web service is
given in chapter 6.

3.4.5 Summary of alternatives.

The table below summarizes the described strategy alternatives.

3.4. INTEGRATION STRATEGY ALTERNATIVES FOR THE COMPANY 21

Benifits Shortcommings Company’s
view

Current solu-
tion

Posible to make fast
integrations.

Hard to maintain.
Bad scalability. High
learning threshold.

Not desirable.

Custom made Can implement
needed functionality.
Ownership of code.

Development costs.
Proprietary.

Viable.

Commercial
products

Mature products.
Much functionality.
Support.

Expencive for cus-
tomers. Resource
demanding.

Not applica-
ble.

Web services One single technology.
Ease of third-party in-
tegration. Extensebil-
ity. Interopability.

Security dependent on
each implementation.

Posible, but
suboptimal.

Table 3.2: Summary of strategy alternatives

22 CHAPTER 3. PROBLEM INTRODUCTION

Chapter 4

Message bus implementation

In this chapter we will first give a technical introduction to the integration middle-
ware the company has developed. Then we will describe how this program fits into
a SoA context.

4.1 Backgound

As described in chapter 3, the company is developing a middleware solution to serve
as an infrastructure for their integration with their applications. The solution is
developed mainly with the aim of being used with administrative applications, and
to fit the requirement the company has with such product. One of the main prob-
lem with the previously integrations the company uses, is that it is based on pure
point-to-point between the applications. The new product is based on the message
bus pattern, and for further reference we call the product “Message bus based Inte-
gration Product”, MIP.

In the message bus pattern, the publish/subscribe-mechanism is inherent. With
this pattern, many applications can subscribe to a service. When an event is cre-
ated, the event source sends this event to all the subscribers to the service. This is
convenient in integration of administrative systems as many of the systems shares
entities, for example shared customer data. When one application updates informa-
tion about a customer, this change can easily be shared to the other applications
that use information about the same customer.

The program has a lot of functionalities. By including functionalities like reliable
messaging and security mechanisms on MIP, the application developers do not need
to focus on implement these kind of important functions to the applications.

23

24 CHAPTER 4. MESSAGE BUS IMPLEMENTATION

4.2 Technical details

4.2.1 MIP overview

4.2.2 MIP routers

Figure 4.1: MIP routers overview

The primary aim for MIP is: ”‘to create a standardized software infrastructure
for application level integration between the products in the company”’. Although
the company s own applications is the primary aim for the MIP, the solution is
designed so other external third parties application also can connect with the bus
in future version of the program.

Every application which uses the MIP needs to implement a MIP adapter. This
adapter connects to the MIP and handles all the communication between the appli-
cation and the bus, as illustrated in 4.1. A big advantage with this solution is that

4.2. TECHNICAL DETAILS 25

the application does not need to know anything about the internal implementation
of the service it uses. The only thing the application needs to know is which service
it shall use, which channel this service is provided and which schema this channel
uses. In this way the application does not even know what server the service is
provided from.

From a programmer’s point-of-view, a simple, powerful API is offered. Typically
functions offered by the API are a function to subscribe for messages and a func-
tion for sending a message on a channel. A big benefit with this is that complex
operations like reliable messaging and secure communications is hidden for the pro-
grammer.

Every computer using MIP needs to have a MIP router process running. The MIP
router is written in Microsoft .NET, so the only platform currently supported by
MIP is Windows. However, the messages are in general in platform-independent
XML formats, so it is possible to use the services provided if a ”‘platform-adopter”’
is created. Every computer running application that are using MIP must have a
MIP router installed, which communicates directly with every MIP-enabled appli-
cations on that machine. If two applications on a machine communicate with each
other, for example if App 1 needs to communicate with App 2 in figure 4.1, the
communication is App 1 -> Router -> App 2. If applications on different machines
communicate with each other, the communication would be for example App 1 ->
Router computer 1 -> Router computer 2 -> App 4.

Routers can run in either server or client mode. A server application can only
communicate with server mode routers, while a client application can communi-
cate with both kinds of routers. All MIP routers are connected with all other MIP
routers. This means that physical the MIP network is connected in a star topology.
This means that there is only one “hop” between the computers. Logically, from
applications point-of-view, the network is a bus topology.

4.2.3 MIP Adapter

Applications communicates with MIP via an ”‘MIP-adapter”’, so all applications
which communicates with the MIP network needs to implement such an adapter.
In this context, the term adapter is all the code developed to integrate the business
logic of the application and the MIP API. An adapter thus provides and consumes
services on the MIP network.

26 CHAPTER 4. MESSAGE BUS IMPLEMENTATION

4.2.4 Channels

MIP uses channels for communication between applications. There are three channel
types defined:

Command channels are used for request-response communication. A request is
sent to a specific receiver, which sends a response message back to the initial
sender.

Event channels are used to send messages to all subscribers of the channel. The
publisher of the message does not get any confirmation that the message has
been received, and it is not guaranteed that the message is delivered.

Reliable event channels act the same way as event channels, but guaranties that
the message reaches the subscribers within a configurable time span. As for
the event channels there is not given any response that the message is received.

Each channel has a channel definition which describes what kind of channel it is and
the message scheme the messages on the channels must follow. Channel definitions
also specify whether the messages on the channel should be encrypted, and if the
channel is open or restricted. Restricted channels can only be used by server mode
routers.

It is also possible to set channel properties. These are key/value pair that can
be used to distinguish channels with the same definition. Such properties can be
used for filtering, and could for instance be company. Two channels named Order
belonging to different companies could then be differentiated.

When an application subscribes to a service, it is in MIP a channel it subscribes
to. When a new message is sent on the channel, it gets broadcasted to all the MIP
adapters which subscribes to that particular channel.

4.2.5 Messages

There are four types of messages used on MIP:

Event messages are the type of messages used event channels for publish-subscribe
communications.

Command messages are the request message sent on a command channel from
sender to the receiver.

4.3. MIP FUNCTIONALITIES 27

Response messages are the response message returned to the sender on the com-
mand channel from a command message.

Fault messages are a response message sent by MIP when a normal response mes-
sage can not be obtained.

A message consists of two parts; a body and a header. The body must be set
according to the schema of the channel. The company recommends that the message
body follows a XML schema, but binary forms and objects can also be sent on MIP.
The message header contains information the MIP needs to be able to route the
message. Serializing and deserializing of the message header is done independent
of the message body. This is because the router needs to deserialize the header
before it is sent to the applications. The body is then deserialized at the consuming
application.

4.3 MIP functionalities

4.3.1 One-to-one communication

MIP has the functionalities to support traditional one-to-one request-response com-
munication. This is done by using the command channel and command/response
messages.

4.3.2 Many-to-many communication

One of the most usefully functionality with MIP is the many-to-many eventing
communication. This is handled with using the event channel and event messages.

4.3.3 Reliable many-to-many communication

As mentioned before, MIP has built-in functionalities for guarantee message delivery
through the reliable event channels. This means that a service can send events to
a subscriber without being up and running simultaneously. There are two scenarios
where this function is used.

• A messages is sent from a service, using reliable messaging. The subscribing
application is unavailable at the time the message is sent. The message is
first sent to the MIP router on the computer with the unavailable application.

28 CHAPTER 4. MESSAGE BUS IMPLEMENTATION

When the application is available again, the router sends the message to the
receiver.

• A message is sent from a service to a MIP router which is unavailable . The
message is stored on the MIP router with the service and sent to the next MIP
router when it gets available again.

This function is implemented by having a database implemented on each router. All
undelivered events is stored in this database till the messages can be delivered to
the next step. In worst case the receiving computer or application will never come
online again. In this case the event message is forwarded to a dead letter queue after
a configurable timeout period (may be days or weeks).

4.3.4 Automatic discovery

A standard MIP network consists of all MIP routers within a physically local area
network. Each MIP-router has build-in mechanism to automatic discover and con-
nect to the existing MIP network. It is also possible to host several physical MIP
network within one local area network or several logical MIP networks within a
physical local area network. However, to host a non-standard MIP network, manual
configurations of the routers are needed.

4.3.5 Security

There are several security functionalities within a MIP network, which by default
is activated. This functions guarantees that all communications on the MIP is
integrity protected. This means that all messages are authenticated to ensure that
the message is from a valid sender and has not been modified in transit. All messages
is also controlled to be in conformance with the dynamic configuration of the logical
MIP network. It is also possible to configure that all messages on a certain channel
are encrypted.

4.3.6 Distributed configuration

All MIP routers share the channel configurations among them. This means that
when a new application is connected to a router, this router spreads that applica-
tion’s configuration to the other router so that the new application can be reached.
The configuration of a MIP network consists of two types:

4.4. EVALUATION OF MIP IN SOA ENVIRONMENTS 29

Fixed configuration. This consists of the channel definitions that different appli-
cation types supports for publishing and subscribing. Each application using
MIP provides a fixed configuration to the MIP network when installed.

Dynamic configuration. This consists of the configuration of all channels on a
logical MIP network. It also defines which application instances that are al-
lowed to publish and subscribe to a channel. The dynamic configuration is
changed via a configuration API or a management console. This can only be
done from a machine with a MIP server mode router. When the dynamic
configuration files on one server mode router is changed, the updated configu-
rations is distributed to all MIP routers on the network.

4.4 Evaluation of MIP in SOA environments

In this section we will look at how well the MIP is suited in a SOA environment.
What properties that makes it desirable to use in different situations and what
weaknesses it has.

4.4.1 Strong sides

The MIP has several properties that makes is suitable for a service oriented envi-
ronment.

Messages based. Using XML messages, and not a proprietary format, makes it
possible to easily create new message schemes and extend existing ones.

Transport independent. The MIP uses Microsoft’s Windows Communication Foun-
dation (WCF) for communication. By doing this the transport mechanism can
be changes, and it will be possible to use HTTP transport that is the most
common for Web services in a service oriented architecture.

4.4.2 Weaker sides

Some of the properties of MIP is of a type that it does not directly plug into all
other service oriented architectures.

30 CHAPTER 4. MESSAGE BUS IMPLEMENTATION

Dependent on local adapter. In order to make use of MIP it is required to im-
plement an MIP-adapter in all the applications which uses MIP. This has to
be done to implement the publish/subscribe functionality in MIP.

Platform dependent. Since MIP uses both adapters and routers which is depen-
dent on the Microsoft .NET environment, the MIP is dependent of the Win-
dows platform.

Chapter 5

Research design

This chapter presents the research agenda and focus of this project. First we elab-
orates on the motivation for the research before the research method we are using
is explained. Then we present the Goal, Question and Metric part of the research
question. Then we describe what outcome we wish to get from the study.

5.1 Research motivation

As explained in chapter, 3 the company we cooperate with develops administrative
software applications, and has some challenges with integrating of their applications.
They have developed a middleware integration software application (MIP, see chap-
ter 4) which serves as an infrastructure solution to their integration needs. Before
the company decided to create MIP, they evaluated alternatives to fulfill their re-
quirements. The most promising alternative for the company was to create their
integrations based on Web services technologies. The literature also shows that
message-based integration solutions are a suitable strategy for the company’s needs,
and that Web services is a commonly used approach.

We will in the study compare the two technologies by developing prototype ap-
plications based on typical integration scenarios the company has, described in 3.2.
For each of the scenarios we will develop two solutions, one based on MIP and one
based on Web service technologies.

31

32 CHAPTER 5. RESEARCH DESIGN

5.2 Research framework

The research approach used in the study is based on the Goal-Question-Metric
(GQM) method. The GQM approach have three levels[31]:

• Conceptual level (Goal). The goal for the study is defined.

• Operational level (Question). Research questions which will help achieve the
goal are defined.

• Quantitative level (Metric). After the questions are defined, we associate the
questions with appropriate metrics.

5.3 Goal definition

The company considers the performance of the integrations as a very important
factor to determine which is best suited for their environment. We will therefore
use performance as the quality of focus in the comparison. Thus we will perform a
performance evaluation of the prototype applications we develop.

Following the GQM framework, we define the research goal as:

Evaluate two integration strategies with particular respect to
performance in a service-oriented context by implementing them
using an integration middleware product (MIP) and Web ser-
vices technologies.

We use the goal definition template [31] to elaborate on the goal:

Object of study. The study objects are two integration technologies.
1. The MIP middleware integration application created by the company.
2. Web service technologies.

Purpose. The purpose of the study is to be able to compare the two technologies.

Quality focus. The quality focus is the performance of the technologies.

Perspective. The results are interpreted from an architectural perspective.

Context. The context will be the prototype applications we create.

5.4. RESEARCH QUESTIONS 33

5.4 Research questions

In order to accomplish our goal we have defined research questions. Question 1 and
2 are based on the integration scenarios of the company, described in chapter 3.

Q1: Which integration solution has best performance in a publish-subscribe
scenario?
To answer this we need to develop applications suited for a publish-subscribe sce-
nario. We will develop as identical applications as possible, which are based on the
two different integration strategies. This will mean we need to create four applica-
tions; client and server using MIP and client and server using Web services. We will
call the MIP application developed to answer this question for MIP Q1App and the
Web service application for WS Q1App.

Q2: Which integration solution has best performance in a request-response
scenario? Just like with Q1, we will develop software applications fitted to use in a
request-response scenario based on the two different integration strategies. We need
to create four applications, client and server with MIP and client and server with
Web services. We will call the applications for MIP Q2App and WS Q2App.

5.5 Data collection and measurement metrics

For the performance evaluation in Q1 and Q2 we will measure the following metrics.

Response time. Response time is the time it takes for a system to react to a
specific action or request. The unit of response time is seconds. This metric
will be used for Q2.

Throughput. The number of operations completed per unit of time is called through-
put. We will for Q1 measure this to see how many operations the system can
handle per second.

Memory usage. By looking at memory usage we can see how well the systems
scale when the workload increases. We measure memory usage in megabytes
or percent of total memory available.

CPU utilization. How much processing power is needed to handle different amounts
of requests also tells us something about the scalability of the systems. We
measure the utilization as a percentage of available CPU power.

34 CHAPTER 5. RESEARCH DESIGN

5.6 Research outcome

Based on our results from research question Q1 and Q2, in addition to the literature
study, we will evaluate the two integration strategies and make a recommendation
for the company for which is better. The requirements the company has, presented
in section 3.3, will serve as a guideline for our evaluation.

5.7 Summary of the research design

To ease the reading of the thesis we present how the following chapters are related
to our research design.

• In chapter 6 we present Web services and related technologies as this will be
used for implementation.

• Chapter 7 introduces general performance engineering theory and a framework
we will base our testing on.

• We describe the implementations of the different prototype models in chapter
8.

• The performance evaluations of the prototype models and results are presented
in chapter 9 and 10 for Q1 and Q2 respectively.

Chapter 6

Web services

In the later years Web services has become a popular technology for software inte-
gration, mainly due to properties such as interoperability. We will in this chapter
describe the technical parts of Web services.

6.1 Background

In short, Web services are a technology which offers message-based machine-to-
machine services available over the Internet. Because of the ubiquity of the Internet
and the HTTP protocol it is possible to use the World Wide Web to offer business
services through Web services. Web services is a platform independent technology,
which makes it especially suitable for this.

Web services are often mentioned alongside service-oriented architectures (SOA).
Even though Web services can be used to implement service-oriented architectures,
it is not the only possible technology. Neither does use of Web services create a
service-oriented architecture. While SOA is a way of aligning business and technol-
ogy, Web services is only a technology.

The World Wide Web Consortium defines Web services like this [7]

A Web service is a software system designed to support inter opera-
ble machine-to-machine interaction over a network. It has an interface
described in a machine processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its de-
scription using SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other web-related standards.

35

36 CHAPTER 6. WEB SERVICES

Before we go into detail about the most common technologies that are used to create
Web services, we will explain how they relate to each other. The technology protocol
stack for Web services include extensible markup language (XML), simple object
access protocol (SOAP), Web services description language (WSDL) and universal
description, discovery, and integration (UDDI), as shown in figure 6.1. It is possible
to query a UDDI service to get a Web service description in the WSDL format. The
WSDL contains location and interface information. Because of this is it possible to
create a SOAP message that is sent to the Web service using some kind of transport
protocol [5]. The most common transport protocol is HTTP.

Figure 6.1: The Web service protocols

6.2 Web service technologies

The following section describes the currently most used technologies and standards
that are used in Web services [4].

6.2.1 eXtensible Markup Language (XML)

XML is a text based data description format [26]. The format has several uses
within Web services, from being the message format to description of available ser-
vices. One of the big advantages of XML is its flexibility. In to being machine
processable it is also easily human readable, even with no prior knowledge.

<?xml version="1.0">
<Transportation >

<Car>
<Brand make="Mondeo">Ford</Brand>

6.2. WEB SERVICE TECHNOLOGIES 37

<Color>Blue</Color>
</Car>
<Car>

<Brand>Audi</Brand>
<Color>Black </Color>

</Car>
<Airplane >

<Brand make="747">Boeing </Brand>
</Airplane >

</Transportation >

Listing 6.1: XML example

The XML language syntax is very similar to the html language. Tags are used to
describe an element, “<Element>Element data</Element>”. Example 6.1 has a
list of different types of transportation. With exception of the first line, which indi-
cates that the document is in XML format, all the tags are defined by the creator of
the document. As there are no keywords in the data description, XML documents
can not be verified of the correctness of the contents. Document Type Declarations
(DTD) and XML Schemas are standards of describing how a document should be
written within a context. For our previous example we could create the following
schema to describe the rules of how the document should be written.

<?xml version="1.0" encoding="utf -8"?>
<xs:schema

xmlns:xs="http://www.w3.org /2001/ XMLSchema"
xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance">
<xs:element name="Transport" type="TransportType" />
<xs:complexType name="TransportType">

<xs:sequence >
<xs:element name="Car" type="CarType">
</xs:element >
<xs:element name="Airplane" type="AirplaneType">
</xs:element >

</xs:sequence >
</xs:complexType >
<xs:complexType name="CarType">

<xs:sequence >
<xs:element name="Brand" type="BrandType">
</xs:element >
<xs:element name="Color" type="xs:string">
</xs:element >

</xs:sequence >
</xs:complexType >
<xs:complexType name="AirplaneType">

<xs:sequence >
<xs:element name="Brand" type="BrandType">

38 CHAPTER 6. WEB SERVICES

</xs:element >
</xs:sequence >

</xs:complexType >
<xs:complexType name="BrandType" mixed="true">

<xs:sequence >
<xs:element name="Brand" type="xs:string" />

</xs:sequence >
<xs:attribute name="make" type="xs:string" use="required" />

</xs:complexType >
</xs:schema >

Listing 6.2: XML Schema example

By validating XML documents against such schemas, it is possible to be sure that
a message contains only valid information. For Web services this means that the
messages that are exchanged can be interpreted correctly by consumers of the service.
At the top of the schema we find the statement
xmlns:xs=”http://www.w3.org/2001/XMLSchema”. This tells that the schema uses
the http://www.w3.org/2001/XMLSchema namespace. Locally this is referred to by
putting xs: in front of the tags of that namespace. Namespaces are used to keep
elements with the same name, but belonging to different context from each other.
For example, postOffice:Address and memory:Address.

6.2.2 Simple Object Access Protocol (SOAP)

SOAP is an XML based protocol used by Web services as an envelope for the XML
data being transferred [5]. The protocol is stateless and one-way. One-way means
that a client can make a request to a service(server), but the service can contact the
client. More complex interaction between client and server can be achieved by using
mechanisms in other protocols or program specific information.

Since the SOAP protocol is XML based it is independent of implementation lan-
guage and platform. This means that SOAP for example can transport messages
from a service implemented in Microsoft .Net to a system based on CORBA running
on UNIX. The most common transport protocol for SOAP is HTTP as most firewalls
allow HTTP traffic, but the protocol has support for other underlying protocols as
well. Examples of uncommon protocol used with SOAP is SMTP[24], SNMP[20]
and SIP[9].

In a SOAP document, there are three main elements [5]: envelope, header and
the body.

<Envelope> is the root element of the SOAP message, containing an optional

6.2. WEB SERVICE TECHNOLOGIES 39

<Header> element and a mandatory Body element. It may include a names-
pace declaration and an encoding style.

<Header> is optional and can be used to send information that is not considered
as application data. This could be information on control flow, how to process
the message body or authentication entries. The header information can also
target at intermediary nodes. Child elements of header is called header block,
and SOAP defines well-known attributes which indicates who should deal with
a header block, and whether processing it is optional or mandatory. The
details of the header element are open-ended, providing maximum flexibility
for application providers. There are two specified header attributes, ”‘actor”’
and ”‘mustunderstand”’. By specifying the ”‘actor”’ attribute, the client can
specify the recipient of the SOAP header. ”‘Mustunderstand”’ is an attribute
which indicates if a header element is mandatory or optional. If this is set to
true, the recipient must understand and process the attribute.

<Body> is the last and mandatory child element of Envelope, and is a block with
the payload to the ultimate receiver. Typical uses of body elements are RPC
request and responses.

SOAP is transmitted one-way from the sender to the receiver. Listing 6.3 shows an
example of a SOAP document.

<?xml version=’1.0’ encoding=’UTF -8’>
<SOAP -ENV:Envelope

xmlns:SOAP -ENV="http:// schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
xmlns:xsd="http://www.w3.org /2001/ XMLSchema">
<SOAP -ENV:Body >

<ns1:getTemp
xmlns:ns1="urn:xmethods -Temperature"
SOAP -ENV:encodingStyle="http:// schemas.xmlsoap.org/soap/encoding/">

<zipcode xsi:type="xsd:string">10016</zipcode >
</ns1:getTemp >

</SOAP -ENV:Body >
</SOAP -ENV:Envelope >

Listing 6.3: SOAP example

6.2.3 Web Services Description Language (WSDL)

WSDL is the first widely adopted mechanism for describing the basic characteris-
tics of a Web services in common XML grammar [5]. WSDL describes interface
information for all publicly available functions, data type information for message

40 CHAPTER 6. WEB SERVICES

request/responses, binding information about the protocol to be used and address
information for locating the specific service. The WSDL specification is divided in
six major elements:

<definitions> is the root element of all WSDL documents. This element defines
the name of the service, declares multiple namespaces used throughout the
remainder of the document, and contains the service elements.

<types> describes the data types used between server and client. By default,
WSDL uses the W3C XML Schema specification for typing system, which
includes types such as strings, integers, Boolean etc.

<messsage> This element describes a one-way message request or response. The
name of the message is defined, containing zero or more message part elements.
This message part element can be referred to message parameters or message
return values.

<portType> combines multiple message elements to form a complete one-way or
round-trip operation. A portType can define multiple operations.

<binding> describes specifics of how the service will be implemented on the wire.

<service> defines the address for invoking the specified service, typical a URL.

In addition, there is two utility elements. Documentation provides human-readable
documentation which can be included inside any other WSDL document. Import is
used to import other WSDL documents or XML schema, to enable more modular
WSDL documents. Listing 6.4 shows an example of a WSDL document.

<?xml version="1.0" encoding="UTF -8">
<definitions name="HelloService">

targetNamespace="http://www.ecerami.com/wsdl/HelloService.wsdl"
xmlns="http:// schemas.xmlsoap.org/wsdl/"
xmlns:soap="http:// schemas/xmlsoap.org/wsdl/soap"
xmlns:tns="http: //www.ecerami.com/wsdl/HelloService.wsdl"
xmlns:xsd="http: //www.w3.org /2001/ XMLSchma">

<message name="SayHelloRequest">
<part name="firstName" type="xsd:string"/>

</message >
<message name="SayHelloResponse">

<part name="greeting" type="xsd:string"/>
</message >

<portType name="Hello:PortType">
<operation name="SayHello">

6.2. WEB SERVICE TECHNOLOGIES 41

<input message="tns:SayHelloRequest"/>
<output messsage="tns:SayHelloResponse"/>

</operation >
</portType >

<binding name="Hello_Binding" type="tns:Hello_PortType">
<soap:binding style="rpc"

transport="http:// schemas.xmlsoap.org/soap/http"/>
<operation name="sayHello">

<soap:operation soapAction="sayHello"/>
<input>

<soap:body
encodingStyle="http:// schemas.xmlsoap.org/soap/encoding/"
namespace="urn:examlpes:helloservice"
use="encoded"/>

</input>
<output >

<soap:body
encodingStyle="http:// schemas.xmlsoap.org/soap/encoding/"
namespace="urn:examples:helloservice"
use="encoded"/>

</output >
</operation >

</binding >

<service name="Hello_Service">
<documentation >WSDL File for HelloService </documentation >
<port binding="tns:Hello_Binding" name="Hello_Port">

<soap:address
location="http:// localhost:8080/soap/servlet/rpcrouter"/>

</port>
</service >

</definitions >

Listing 6.4: WSDL example

6.2.4 Universal Description, Discovery, and Integration (UDDI)

UDDI is a technical specification for describing, discover and integrating Web ser-
vices [5]. UDDI can be described as the part of the web service protocol stack where
companies can publish and find web services. There are two main parts of UDDI.
The technical specification of UDDI is for building distributed directory of businesses
and web services. Specific XML formats are used for storing data, and the specifica-
tion includes API details for searching existing data and publishing new data. The
UDDI Business registry is a fully operational implementation of the UDDI specifica-
tion, launched by Microsoft and IBM in 2001. The UDDI registry makes it possible

42 CHAPTER 6. WEB SERVICES

for anyone to search existing UDDI data, and enables companies to register itself
and its services. The register is divided in three categories. The white pages describe
general information about a specific company, ie name, description, contact infor-
mation and business identifiers. The yellow pages consist of general classification
data for the company or the service, ie industry, product or geographic codes. The
green pages provide technical information about Web services, ie pointer to external
specification and an address for invoking the web service.

6.3 Web services challenges

Web services is a relatively new technology, thus there are still some issues to be
solved before it can be called a mature technology. New standards are being pro-
posed and developed all the time in order to do something about the weaknesses.
Especially issues related to quality of service have been worked on, and there are
now proposed solutions for reliability and many security related problems. Still Web
services have some challenges when it comes to performance compared to other dis-
tributed communication technologies [17].

One challenge in the vision about a fully automated Web service integration be-
tween applications, is that even though it is possible to query a UDDI service a
machine cannot assess the suitability of the service. There might be many Web
services that match given criteria, but there is no way to know anything about the
semantics of the services. This judgment requires human interaction [5].

6.3.1 Web service versioning

A problem that often occurs when using distributed applications is the API ver-
sioning issue [3]. Web services are no exception. In addition there is the issue of
changing message formats, in other words changing XML Schemas. Versioning has
not been included in the Web service architecture. How can Web services be created
in such a way that a change in it does not cause service consumers to be unable to
communicate with it?

When making or maintaining a Web service there are different types of changes
that should be accommodated. [12].

Forward compatibility means anticipating changes. A new service can be de-
ployed without breaking the existing consumers. A service must be able to
interact correctly with unknown features.

6.3. WEB SERVICES CHALLENGES 43

Backward compatibility is easier to accomplish than forward compatibility. It
means that consumers of old services still can function when interacting with
the new service. This is done by keeping existing functionality when expanding
the service.

Message versioning

Message versioning builds on techniques for XML extensibility and versioning. Possi-
ble solutions are use of namespaces, extension elements or custom version attributes.

Namespaces. When using namespaces, different namespace can be used for each
version. This should only be used after major changes, as it will mean a new
XML Schema. XML Schema does also offer an optional version attribute.
Setting this will leave the namespace untouched and it is easy to implement.
The problem with this approach is that parsers are not required to validate on
this attribute, with means you have to add custom validation code.

Extension elements. By adding a special element where extensions can be places
you can keep the same namespace as before. The problem with this way of
solving versioning is that it adds complexity to your schema and you can not
group new tags with related ones.

Custom version attributes can be added to you schema, as the standard one is
not validated. The problem can be solved by adding a required attribute with
a fixed value for the version number. When you force a version number like
this it will not be possible to operate with parallel versions of the message.

Interface versioning

When operations of a Web service are changed, it might be necessary to change the
WSDL which describes the service as well. As for messages, not all changes breaks
communication with consumers. Such as adding new operations or additional inter-
faces to existing operations work fine, as it supports backward compatibility. Also
new data structures and data types can be added as long as they are added at the
end of the request and made optional.

Changes the interface of a Web service may have impact on consumers in several
ways.

Keeping the old service running will allow users to not relate to the new one. This
means more maintenance work and requires more resources.

44 CHAPTER 6. WEB SERVICES

An exception could be sent back to the consumers to inform that the service is
updated and where a description of the new service could be found.

By using an intermediary such as a broker requests to discontinued services
could be routed to the new version.

The W3C recommends using namespaces with date stamps for versioning XML
documents, and thus also WSDL documents, an example of this is shown in 6.5

http://www.example.com /2007/02/ description.xsd

Listing 6.5: W3C XML namespace versioning

It is important to remember that even though the interface of the service does not
change, some changes need a new version. One example can be if you change the
semantics of a Web service, but there is no need to change the interface. Commu-
nication would still be running as before, but the data would be used in a different
way then intended by consumers.

Chapter 7

Performance engineering

The main issues of performance engineering are how to guarantee that a system
will meet its performance goals. The metrics the end-users of a system are mainly
interested in are related to the Quality of Service (QoS) of a system. Weyuker and
Vokolos claim [30] that usually, the primary problems that projects report after first
release are not system crashes or incorrect systems responses, but rather system
performance degradation or problems handling required system throughput. They
also say that if queried, the fact is often that although the software system has
gone through extensive functionality testing, it was never really tested to assess its
expected performance.

To understand and predict performance issues of a system, there are two central
models that can be used. Workload models are used to mimic real world workload
in study, or used as input data for an analytical model of a system. Performance
models are used to understand the problems in an IT system. These models are cen-
tral in the quantitative analysis cycle which serves as a guideline for how to evaluate
the performance of a system under different scenarios.

7.1 Quality of Service

Many computer systems have very high requirements for performance related at-
tributes. For example, some system have high demands for very short response
time, other business area may loose customers to other companies if their online
shop is not open 24h/day, while other system may have very high requirements for
safety. Menasce et al. [21] have discussed some important (QoS) attributes related
to performance of a system:

45

46 CHAPTER 7. PERFORMANCE ENGINEERING

Response time. The time it takes for a system to react to a human request, most
often measured in seconds. The response time can in most cases be broken
into several components. An example of response time is the time it takes for
a web browser to display the content of a page after the user has requested it.
In this case the response time can be divided in the time the browser use to
send the request, the time it takes for the messages to be sent over the network
and the time the web server uses to handle the request and send the response
message.

Throughput. The rate at which requests are completed from a computer system,
measured as operations per unit of time. Metrics for throughput vary for sys-
tem to system, for example transactions per second for OLTP systems, HTTP
request/second for web servers, packets per second for router and millions of
instructions per second for a CPU. The throughput is a function of the load
offered to a system and of the maximum capacity of a system to process the
work. For some systems, the throughput can decrease if the overall load is
higher than a certain level. This phenomenon is caused because the system
uses more resources than it can handle, and therefore must use resources to
handle faults instead of productive work. Typical this can happen if the system
uses more memory than it has physically installed, and have to use the disk
for virtual memory. Because the access time for a hard disk is much slower
than the memory the overall system performance will be much slower. This
phenomenon is called thrashing.

Availability. The fraction of time a system is up and available for its customers is
the definition of availability. This is measured in percentage. For example a
system which is available in 99,99% of a time period of thirty day is unavailable
4,32 minutes in that time period. If the given availability is good or bad
depends of the context the system is in, for example a internet shop which has
99,99% availability is very good, but can be fatal for an emergency or defense
system. The two main reasons why a system can become unavailable is failure
and overload.

Reliability. This attribute is defined as the probability the system functions prop-
erly and continuously over a fixed period of time. This attribute is closely
related to availability.

Security. This attribute can be split in three parts: Confidentiality is about that
only authenticated users get access to the information. Data integrity is about
data can not be modified by unauthorized users. Non-repudiation is about
senders of a message can not deny having it sent.

7.2. METHOD FOR ANALYZING PERFORMANCE OF COMPUTER SYSTEM47

Scalability. This attribute is about if the performance of the system is not affected
significantly as the load to the system is increased.

Extensibility. This is the property of the system to easily evolve to cope with new
functional and performance requirements.

Not all of these QoSs are directly performance measures, but they are affecting the
overall performance of the system. For example, if a system have high demands of
security, it is likely that this will affect the throughput and response time the system
negatively.

7.2 Method for analyzing performance of com-

puter system

Performance engineering is used to be able to evaluate and predict performance of
a system in a systematic way. Menasce et al. [21] present a method to analyze
the performance of a system, as shown in figure 7.1. There are some basic steps to
follow in the method. First, the system performance objectives should be specified
as a part of the systems requirements. After the system performance objectives
are defined, the quantitative analysis cycle can be followed. Steps 1-3 are used to
evaluate the performance of the system, while steps 4-8 are used to be able to predict
performance.

1. Understanding the system. This step involves getting an in-depth understand-
ing of the systems architecture with focus of performance issues. A systematic
description of the architecture, its components and goal are typically needed in
this step. This is a good opportunity to review the performance issues related
to the proposed architecture.

2. Characterize the workload. The goal of this step is to identify the basic com-
ponents which compose the workload of the system. The workload of a system
is the set of all inputs that the system receives from its environment during
any given period of time.

3. Measure the system and obtain workload parameters. This step involves mea-
suring the performance of the system and obtain values for the parameters of
the workload model.

4. Develop performance model. Quantitative techniques and analytical models
are used to develop performance models of the system. These models can be

48 CHAPTER 7. PERFORMANCE ENGINEERING

Figure 7.1: The quantitative analysis cycle

7.3. WORKLOAD MODEL 49

used to predict performance when any aspect of the workload or the system
architecture is changed.

5. Verify and validate model. In this step, the model specifications and the
model’s results are validated. A performance model is validated if the perfor-
mance metrics calculated by the model math the measurements of the actual
system within a certain acceptable margin of error. This step answers the
question: “Does the model capture the behavior of the critical components of
the system”.

6. Forecast workload evolution. This step forecasts the expected workload of the
system. Demands grow or shrink over time, dependent of factors such as the
functionalities offered to users, number of users, hardware upgrades etc.

7. Predict system performance. In this step, performance models are used to
predict the performance of a system under different scenarios.

8. Analyze performance scenarios. In the last step, the performance of the sys-
tem is predicted under different scenarios based on validated performance and
workload models.

7.3 Workload Model

Step 2 in the quantitative analysis cycle described in section 7.2 is to characterize
the workload. A workload model is a representation that mimics the real workload
under study. This can be a program(s) written with the goal to artificially test a
system in a controlled environment or to serve as input data for analytical models.
The models should be compact and representative for the actual workload of the
system. There are to categories of workload models.

Natural models are based on basic components of the real workload of the system
or execution traces of the real workload. Programs extracted from the real
workload of the system can be used as natural benchmark, representing the
overall system load in given periods of time. Workload trace consists of a
chronological sequence of data representing specific events that occurred in the
system during a measurement session. Traces often consist of huge amounts
of data, making it complex to use it in modeling.

Artificial models are based on special-purpose programs and descriptive parame-
ters. These models can be grouped into executable artificial models and non-
executable artificial models. Executable artificial models consist of a suite of

50 CHAPTER 7. PERFORMANCE ENGINEERING

programs written to experiment with particular aspects of a computer sys-
tem. This includes workloads such as instruction mixes, kernels, synthetic
programs, artificial benchmarks and drivers. Non-executable workload models
are described by a set of average parameter values that reproduce the same
resource usage as the real workload, where the parameters denotes an aspect of
the execution behavior of the basic component on the system under study. Ex-
amples of such parameters are component interarrival times, service demands,
component sizes and execution mixes.

7.4 Performance models

A central component in the quantitative analysis cycle presented in section 7.2 are
the performance models. Performance models include both visual and quantitative
representations of a system. A model is an abstraction or generalized overview of
a real system, and system models are central part in performance engineering [21].
There are many advantages of abstracting real system into a modeled representation:

• Several properties of a system can be elicited in the process of building a model.

• A model is a useful guide on what type of measurements to take and what
kind of data to collect.

• A number of interesting metrics can be readily computed from the input pa-
rameters even before model is solved.

• A model can be used to answer what-if questions about a real system, avoiding
costly and time-consuming experiments.

In [21] three different types of models are presented. Common for all three is that the
model first is constructed, and then it gets solved. How a model is solved depends
of the type of model.

Prototype model is a physical construction of a scaled version of the actual sys-
tem it represent, and executes a typical workload representative for the system.
The main advantage by this model is its accuracy, but it is expensive to de-
velop. It is solved by running an experiment or tests while monitoring its
performance.

Simulation model involves software programs which emulates the performance
of the system. For example, a script from a typical workload can mimic the
behavior of the actual system. Simulation models are less costly than prototype

7.5. VISUAL REPRESENTATION OF MODELS 51

model, but it tends to be less accurate. These models are solved by running a
software package (simulation) and record the emulated performance results.

Analytical model involves capturing the key relationships between the architec-
ture and the workload components in mathematical expressions. The advan-
tage is that it captures and provides insight into the interdependencies between
the various system components, is flexible, inexpensive and easily changed.
The disadvantage is lack of detail and they tend to be difficult to validate.
They are solved by solving a set of mathematical equations and interpreting
the performance expressions correctly.

7.5 Visual representation of models

7.5.1 Conceptual Modeling

Conceptual modeling gives a good visual representation of a computer system.
Robinson [25] uses the following definition of a conceptual model:

The conceptual model is a non-software specific description of the model
that is to be developed, describing the objectives, inputs, outputs, con-
tent, assumptions and simplification of the model.

A conceptual model is in effect a functional specification of the computer software.
The definition outlines the key elements of the model, which is:

Objectives. The purpose of the model and the modeling project.

Inputs. The elements of the model that can be altered to effect an improvement
in, or better understanding of, the real world (experimental factors).

Outputs. The results from the model.

Content. The component that are represented in the model and their interconnec-
tions.

Assumptions. Either when there are uncertainties or beliefs about the real world
being modeled.

Simplifications. By making the model simple, it is more rapid to develop and use.

52 CHAPTER 7. PERFORMANCE ENGINEERING

It is useful to have requirements in mind when designing the model. Typically
there are four important requirements to a conceptual model. Validity is, from the
modeler’s perspective, the question if the model is right, if the model represent the
actually real world thing it is supposed to do. Credibility is the same as validity
but in the perspective of the clients rather than the modeler. Utility is about the
usefulness of the model. The conceptual model shall lead to a computer model that
is useful as an aid to decision-making within the specified context. Feasibility is that
the model can be developed into a computer model.

To be able to meet all the above requirements, the model should be kept as simple
as possible to meet the objectives of the model. The advantages of simple models
is that they are fast to develop, flexible, require little data, run fast and is easy to
interpret the results since the structure of the model is easy to understand.

To represent the content of the conceptual models, there is four main methods
in common use. By using more than one of these methods, different views of the
same conceptual model is given.

Component list

This representing gives a list of the components of the system with a description of
the detail of each component. This is a simple approach, which does not give a good
visual representation and it is difficult to capture complex logic and the process flow
of the system based on this. Table 7.1 is an example of a component list.

Component Detail
Customers Time between arrivals (distribution)
Queue Capacity
Service desk Service time (distribution)

Table 7.1: Example: Component list

Process flow diagram

This is an approach where the visual representation is useful for showing the process
flow of the system. The model is represented as a process flow or process map which
shows each component of the system in a sequence, including description of the
model detail. Typically a process is shown as a box and a queue is shown as a circle.
An example of a process flow diagram is shown in figure 7.2

7.5. VISUAL REPRESENTATION OF MODELS 53

Figure 7.2: Example of Process Flow Diagram

Logic flow diagram

This model uses standard flow diagram symbols to represent the logic of the model.
The disadvantage of this diagram is that the process is not always obvious and
becomes quickly very large and complex. An example of a logic flow diagram is
shown in figure 7.3.

Figure 7.3: Example of Logic Flow Diagram

Activity cycle diagram

This diagram represents the logic of a model and gives a good visual representation.
It provides a convenient means for identifying the events of the system, so the main

54 CHAPTER 7. PERFORMANCE ENGINEERING

use is to act as a basis for programming models. This model quickly becomes very
complex for big systems. In figure 7.4, active states are represented as rectangles and
the circles represent dead states (the system is waiting for something to happen).

Figure 7.4: Example of Activity Cycle Diagram

7.5.2 Queuing Network models

Menasce et al. [21] use a framework called queuing models of computer systems for
describing performance issues in computer systems. This framework is based on the
observation that computer systems are composed of a collection of resources (pro-
cessors, disk, communication links, database locks etc) which are shared by various
requests (transactions, Web request, batch process etc). There are usually several
requests made concurrently, wanting to access the same resource at the same time.
Since the resources only can handle one request at a time, waiting lines can be build
up in front of these resources. Basic queuing network models (QN) have been es-
tablished as tools to evaluate and predict system performance. A formal definition
is given:

”‘A QN is a collection of K interconnected queues. A queue includes the wait-
ing line and the resource that provides service to customers. Customers move from
one queue to the other until they complete their execution and may be grouped into
one or more customer classes. In some cases, customers may be allowed to switch to
other classes when they move between queues. A QN can be open, closed, or mixed
depending on its customer classes: open if all classes are open, closed if all classes

7.6. QUANTIFYING PERFORMANCE MODELS 55

are closed, and mixed if some classes are open and some are closed.”’

An open model has an external input and external destination. In a closed model
the customers circulates without leaving the network. Figure 7.5 shows an example
of a mixed model for a database server.

Figure 7.5: Mixed QN model.

7.6 Quantifying Performance Models

7.6.1 Performance evaluation metrics

These metrics are used when measuring a system, and can later be used to evaluate
prototype and simulation models.

7.6.2 Operation laws

The following subsections discuss relationships (operational laws) between opera-
tional variables. This laws are useful because they are very simple, based on readily
available measurement data and can be used to obtain helpful performance metrics
[21].

Utilization Law

The utilization of a resource is defined as:

Ui = Bi

T
= Bi/Ci

T/Ci

56 CHAPTER 7. PERFORMANCE ENGINEERING

Bi/Ci is the average time the resource was busy for each completion for resource
i. T/Ci is the inverse of the resource throughput Xi. This relation can be written as:

Ui = Si ×Xi.

Service Demand Law

The service demand is the total average time spent by a typical request of a given
type obtaining service from resource i, and is associated both with a resource and a
set of requests using the resource. The relation is given by:

Di = Ui×T
C0

= Ui

C0/T
= Ui

X0

Where Ui is the utilization of the resource, T is the length of time in the observation
period, C0 is total number of requests completed by the system in the observation
period and X0 is the system throughput.

The Forced Flow Law

The forced flow law relates the throughput to a resource, Xi, to the throughput to
the system, X0. The throughput of a resource (Xi) is equal to the average number of
visits (Vi) made by a request to that resource multiplied by the system throughput
(X0):

Xi = Vi ×X0

Little’s Law

Little’s law is:

The average number of customers in a black box equals departure rate from the
box multiplied by the average time spent in the box. N = X ×R

The black box may contain a single resource like a CPU, or complex system like
the Internet. As long as the customers are not created or destroyed the law holds.

7.6. QUANTIFYING PERFORMANCE MODELS 57

Interactive response time law

Interactive response time law is a formula for the average response time in a sys-
tem with multiple customers. This is used in for example systems with multiple
clients accessing a shared server, where the clients is alternating between thinking
and waiting for server response. The formula is given by:
R = M

X0
− Z

Where R is average response time, M is number of clients, X0 is the system through-
put and Z is the average think time.

7.6.3 Bounds on performance

The performance of a system is bound by its bottleneck resource. This is the resource
in the system with highest utilization, or largest service demand. By considering
the service demands only, the upper bound on throughput and the lower bounds on
response time can be obtained without solving underlying models. Menasce et al.
[21] present two relationships to identify bottlenecks. The upper asymptotic bound
on throughput under heavy load conditions is given by:

X0 ≤ 1
max{Di}

The upper asymptotic bound on throughput under light load conditions is:

X0 =≤ N∑K

i=1
Di

By using these relationships, it is possible to predict how the new performance
of the system will be after the bottleneck is upgraded. Upgrading the old bottleneck
component will make another component of the system the new bottleneck, which
then the systems performance is dependent on.

7.6.4 Mean Value Analysis

Typically QN models are build upon state space diagrams, and the steps involved
in creating it are:

1. Construct the state diagram by identifying all possible states that the modeled
system may find itself.

2. Identify the state connections (transitions).

58 CHAPTER 7. PERFORMANCE ENGINEERING

3. Parameterize the model by specify the length of time spent in each state once
it is entered.

Solving this model involves abstracting a set of linear balance equations from the
state diagram and solving them for long term steady state probabilities of being in
each system state. However, this can lead to having to solve a large number of lin-
ear equations. A technique called Mean Value Analysis (MVA) can be used instead
of solving linear equations. MVA calculates the performance metrics directly for a
given number of customers, knowing only the performance metrics when the number
of customers is reduced by one. The algorithm for MVA is given by:

Initialize the average number of customers at each device i:
ni(0) = 0

For each customer population n = 1,2,...N,
calculate the average residence time for each device i:

R′
i(n) = ViSi[1 + ni(n + 1)] = Di[1 + ni(n− 1)]

calculate the average overall system response time:
R0(n) =

∑
[Vi ×Ri(n)] =

∑
R′

i(n)
calculate the overall system throughput:

X0(n) = n
R0(n)

calculate the throughput for each device i:
Xi(n) = Vi ×X0(n)

calculate the utilization for each device i:
Ui(n) = Si ×Xi(n)

calculate the average number of customers at each device i:

(n)i(n) = X0(n)×R′
i(n)

The main advantage of MVA is that it scales to a high number of devices and a
high number of customers, and the amount of computations required is negligible.
MVA’s impact on the field of analytical performance evaluation has been huge,
and the majority of commercially viable performance evaluation packages owe their
success to MVA [21].

7.7 Examples of performance studies of systems

using Web services

In this section we will present studies related to performance of Web services. These
papers show how case-studies of performance evaluations can be performed. We will
mainly focus on the methods used in these studies, and see how the performance
analysis cycle from section 7.2 has been used.

7.7. EXAMPLES OF PERFORMANCE STUDIES OF SYSTEMS USING WEB SERVICES59

7.7.1 Measurement-based Performance Analysis

Datla and oseva-Popstojanova [8] focuse on measurement-based performance anal-
ysis of an e-commerce application which uses Web services components to execute
business operations in the business logic layer. The study is focused on measuring
and analyzing the server-side performance at two different levels; the software ar-
chitectural level and the hardware resource level. The workload is generated with
a session based workload generation tool. We link the method used in the study to
the quantitative analysis (7.2) cycle, and divide the method as follow:

1. A description of the object is given. The architecture of the system and the
implementation and deployment details is described.
2. The workload is described. In the study this is generated by a tool, represent-
ing workload which is close to actually user workload in the system. Two different
workload profiles were made, ordering and browsing.
3. Two metrics was measured: The response time of software components and
hardware resource usage. To measure response times of the components, J2EE
application servers application log events was used. To get measures of hardware
resource usage, Windows 2000 performance monitoring tools was used.
4. The measures were used to make a performance model. This is used to find bottle-
necks in the system. Especially in heavy load conditions Web services components
tends to be the bottlenecks in the system due to the overhead by processing the
messages. The proposed solution to this is developing more effective XML parsers
and better mechanism for encoding and decoding SOAP messages.

In summary, analyzing the performance of e-commerce applications at different lev-
els provides insight about potential bottlenecks and enables system designers to
improve performance in a cost effective manner. The adoption of new technologies
will depend on the capability to assess and even more to provide guarantees for their
QoS.

7.7.2 Evaluation and modeling of Web services performance

Chen et al. [6] present a study of Web services performance by evaluating the current
implementations of Web services and comparing them with a number of alternative
technologies. The paper introduces three research problems: a) the range of perfor-
mance the current SOAP implementations can provide, b) the differences between
the implementations and c) the impact of SOAP document and encoding styles.

60 CHAPTER 7. PERFORMANCE ENGINEERING

A theory was made: “Alternative technologies to Web services may offer better
performance because of reduced interoperability overheads”. SOAP was therefore
compared with MS DCOM, MS .NET Remoting and MS Message Queue. We link
the method used to the quantitative analysis cycle in section 7.2.

Steps 1-3 - Understand the system and workload, and measure the sys-
tem.
A test benchmark, designed tominimize the business effect on server side, was made.
Latency was measured by calculating the average of latencies of running a RPC call
over 15 minutes. Three different test scenarios were performed:

1. Benchmarking SOAP
This test compared four different SOAP implementations. The test gave two results:
-Not all SOAP implementations have the same performance, and the performance
gaps between SOAP implementations tend to become larger as SOAP message sized
increase.
-SOAP document/encoding style has a significant impact on performance. Docu-
ment/Literal achieves the best performance for all SOAP.

2. SOAP Core Performance
This test compared SOAP code performance with non-SOAP technologies. The re-
sults:
-SOAP is a compelling protocol to its binary alternatives for small messages.
-HTTP 100 synchronization degrades SOAP performance for small messages signif-
icantly (nearly 100%), which can be improved by turning off HTTP wait or binding
SOAP to TCP/IP.

3. SOAP scalability over WAN
This test examined SOAP scalability along message sizes over WAN.
-SOAP does not scale as well as its binary alternatives for message sizes, due to
increased amounts of data transferred and synchronizations.
-SOAP document and encoding styles have an impact on SOAP scalability. Docu-
ment/Literal presents notable better scalability than RPC/Encoding.
-SOAP implementations also present different scalability for message sizes.

Step 4 - Develop performance model.
Step 5-8 - Verify, predict and analyze.
After this test was done, a model of SOAP performance was created. This was based
on the OSI reference model. The latency for request-response call over network is:

Latency = TmsgProc + TmsgTran + Tsync + Tapp

7.7. EXAMPLES OF PERFORMANCE STUDIES OF SYSTEMS USING WEB SERVICES61

Where:
TmsgProc is the cost of processing the messages
TmsgTran is the cost to transfer a specific amount of messages over network
Tsync represents the overhead of extra synchronization required by protocols
Tapp is the time spent in business logic at application level.

Based on this initial model, a more complex model was made which later was sim-
plified to:

Latency =
∑s

i=i[nτ + D
L
] +

∑w
i=1[nτ + nM0Wi

N
+ D

L
] +

∑w
i=1 2(α + βMi)

After this model was made, it was validated with a set of separate tests with differ-
ent technologies like socket ping and Utilization Law. The model was successfully
validated by predicting performance for different technologies and different environ-
ments.

62 CHAPTER 7. PERFORMANCE ENGINEERING

Chapter 8

Implementation details

To test the performance of Web services and the MIP as strategies for message based
systems integration, we implemented client and server applications which use these
different communication technologies. The applications were developed to be used
in a test to answer the research questions presented in chapter 5. We named the
applications to reflect which technology was used and which research question it
was created for. The names are therefore like: “WS Q1App”, which indicates the
applications using Web service technology, and is created for research question 1.

Simplicity and making the applications as equal as possible was an important design
criteria. This was important to be able to get test results based on the performance
of Web service and MIP rather than because of differences in the application imple-
mentations. The applications were also designed so it shold be easy to change the
workload which was sent between them.

All the test applications send messages based on the same message scheme. We
do this to contribute to the neutrality of our comparison. The messages are custom
made for the purpose of testing. This means that they contain fields for information
we might need, such as time stamps, in addition to a field for payload.

During implementation we have been in close dialog with the developers of MIP.
Our use of the integration product has revealed several errors in their source code,
and we have been supplied with new versions of MIP several times. The MIP ap-
plications is still in a beta-phase, but the interfaces for it are set. This means that
changes made in the MIP most likely will not influence on the way we have used it.

63

64 CHAPTER 8. IMPLEMENTATION DETAILS

MIP Q1App WS Q1App MIP Q2App WS Q2App
Research question Q1 Q1 Q2 Q2
Publish-subscribe X X
Request-response X X
One-to-one X X
One-to-many X X

Table 8.1: An overview of the implemented applications.

8.1 Application implementation for Q1 - Server

to server publish-subscribe

The scenario for these applications can be described as: “a change being done to
a server is forwarded and propagated to one or more servers”. In our implemen-
tation, we created two servers which use the publish-subscribe pattern to inte-
grate. MIP Q1App uses the event channels in MIP. WS Q1App is based on the
WS-Eventing protocol [10].

8.1.1 MIP Q1App implementation

In this implementation we used MIP as the integration technology. As described in
chapter 4, MIP has a mechanism for sending events through its event channels. For
this solution we created two server applications and one client application to invoke
one of the servers.

Our MIP integration uses one MIP router for each endpoint in the communica-
tion. This means that there are two routers in our setup, both configured as server
routers. Before a router is started the applications and channels that are directly
connected to a router must be set up. This involves specifying that a channel, for
instance, should be an event channel and whether it is a publish or subscribe chan-
nel. When the routers are started they find other routers and exchange channel
information with them on their own.

1: SendMessage(Message) In a client application a message is created and sent
to the local server.

2: Send(Message) The server recognizes that the message should be passed on
and sent on an event channel. In the MIP adapter the send method is called
and the messages are sent to the local router. After the local router has
distributed the message to the other routers that subscribe to that kind of

8.1. APPLICATION IMPLEMENTATION FOR Q1 - SERVER TO SERVER PUBLISH-SUBSCRIBE65

Figure 8.1: Scenario 1 - MIP sequence diagram

messages, in our case this is just one, the second router sends that message to
the subscribing applications that are connected.

3: UpdateServer(Message) In our test implementation there is only one applica-
tion listening for messages. The MIPEventAdapter is responsible for handling
the incoming messages. These are in turn sent to the receiving server for final
processing.

The routers and message sending are totally transparent for the classes that imple-
ment MIP adapters. All they interact with are send-methods on the channels and
ordinary event mechanisms to receive messages.

8.1.2 WS Q1App implementation

This implementation is based on the WS-Eventing for WCF project [18] by Roman
Kiss. Design, implementation and usage of the WS-Eventing for distributed applica-
tions driven by Microsoft’s Windows Communication Foundation is described in the
article. The main components of the WS-Eventing implementation are the subscrip-
tion manager and the notification manager. The first handles the operations defined
by the WS-Eventing specification for runtime administration of the subscriptions,
and keeps track of the active subscriptions. The latter is responsible for notifying
subscribers when a new event is produced.

WS-Eventing specification

WS-Eventing is a W3C member submission from a group of members in Microsoft,
IBM and TIBCO Software among others. A member submission is not a standard
nor something the W3C is working on, it only describes a proposed technology sub-
mitted by W3C members. The WS-Eventing specification describes a protocol that

66 CHAPTER 8. IMPLEMENTATION DETAILS

allows a Web service (subscriber) to register interest (subscription) with another
Web service (event source) in receiving notifications (event messages) about events.
The event source may also let another Web service handle subscriptions, a subscrip-
tion manager.

The specification defines five operations necessary to enable eventing for Web ser-
vices.

Subscribe sends a message containing information about how to reach the receiver
of event messages, what kind of messages it is interested in and the duration
of the subscription.

Renew sends a message requesting an extension of the duration of the subscription.

GetStatus gets the time of expiry for a subscription.

Unsubscribe sends a message from the subscriber that cancels the subscription.

Subscribtion end is sent from the event source to the subscription manager if the
source terminates.

For us the subscribe operation is the most important as it is the only one necessary
to be able to send a message. In listing 8.1 [10] a complete subscription message in
SOAP format is shown. What is specific to WS-Eventing is found in the body part
of the message, and prefixed wse:.

EndTo specifies that address of the Web service that handles messages that informs
that the subscription has been terminated by the event source.

Delivery holds information about how to contact the Web service that wants to
receive event messages.

Expires holds the time when the subscription should expire.

Filter lets you specify what topic the messages the subscriber is interested in should
have.

<s12:Envelope
xmlns:s12="http: //www.w3.org /2003/05/ soap -envelope"
xmlns:wsa="http: // schemas.xmlsoap.org/ws /2004/08/ addressing"
xmlns:wse="http: // schemas.xmlsoap.org/ws /2004/08/ eventing"
xmlns:ew="http://www.example.com/warnings" >

<s12:Header >
<wsa:Action >

8.1. APPLICATION IMPLEMENTATION FOR Q1 - SERVER TO SERVER PUBLISH-SUBSCRIBE67

http:// schemas.xmlsoap.org/ws /2004/08/ eventing/Subscribe
</wsa:Action >
<wsa:MessageID >

uuid:e1886c5c -5e86 -48d1 -8c77 -fc1c28d47180
</wsa:MessageID >
<wsa:ReplyTo >

<wsa:Address >http://www.example.com/MyEvEntsink </wsa:Address >
<wsa:ReferenceProperties >

<ew:MySubscription >2597</ew:MySubscription >
</wsa:ReferenceProperties >

</wsa:ReplyTo >
<wsa:To >http://www.example.org/oceanwatch/EventSource </wsa:To >

</s12:Header >

<s12:Body >
<wse:Subscribe >

<wse:EndTo >
<wsa:Address >

http://www.example.com/MyEventSink
</wsa:Address >
<wsa:ReferenceProperties >

<ew:MySubscription >2597</ew:MySubscription >
</wsa:ReferenceProperties >
</wse:EndTo >
<wse:Delivery >

<wse:NotifyTo >
<wsa:Address >

http://www.other.example.com/OnStormWarning
</wsa:Address >
<wsa:ReferenceProperties >

<ew:MySubscription >2597</ew:MySubscription >
</wsa:ReferenceProperties >

</wse:NotifyTo >
</wse:Delivery >
<wse:Expires >2004 -06 -26 T21:07:00 .000 -08 :00</wse:Expires >
<wse:Filter xmlns:ow="http://www.example.org/oceanwatch"
Dialect="http://www.example.org/topicFilter" >
weather.storms

</wse:Filter >
</wse:Subscribe >

</s12:Body >

</s12:Envelope >

Listing 8.1: WS-Eventing subscribtion example

68 CHAPTER 8. IMPLEMENTATION DETAILS

WS-Eventing implementation

We have used the WS-Eventing implementation by Roman Kiss with only minor
changes. The original implementation uses a TCP binding for communication. We
have changed this to a Web service HTTP binding to ensure interoperability. In
addition to modifying the WS-Eventing implementation we created an event source
application and a server application which can subscribe to and consumes events.

Figure 8.2: Scenario 1 - Web services sequence diagram

In figure 8.2 we see the flow of communication among the parties in our imple-
mentation.

1: Subscribe() The server contacts the subscription manager to subscribe to mes-
sages. The subscription is topic based and may also additional contain filters.
In our implementation we do not use any filters. The duration of the sub-
scription is also specified. A response message is returned confirming the
subscription.

2: SendMessage(Message) As described by the scenario there are two servers
that are the key communicating parties. To initiate the event source, the
sending server, we have a client that creates a message and passes it on to its
local server.

8.2. APPLICATION IMPLEMENTATION FOR Q2 - DATA REQUEST 69

3: PublishMessage(Message) As the message from the client reaches the server,
the server sees that this message contains information useful for other servers
as well and publishes the message by contacting the notification manager.

4: GetSubscriptions() When the notification service is invoked the notification
manager contacts the subscription manager to get the subscriptions for mes-
sage with the topic of the one that just came in. A collection of subscriptions
is returned.

5: Notify(Message) The notification manager then contacts all the subscribers of
the certain message type by using the information given in the subscriptions.

Compared to the MIP way of communicating this solution is more opaque since
you explicitly call the subscription manager to administer subscriptions and the
notification manager when a message should be sent to the subscribers.

8.2 Application implementation for Q2 - data re-

quest

Cases needing these kinds of integrations are typically programs which has a real-
time demands where a user waits for a response. Client applications typically request
a service from a server application and waits for the response.

As the sequence diagrams in figure 8.3 and 8.4 show the two systems look very
similar when it comes to message flow. This is because we in these diagrams treat
the communication, MIP and WCF respectively, as black boxes. That is, imple-
menters of these solutions do not know how the communication takes place.

8.2.1 MIP Q2App implementation

Due to the nature of the MIP the implementation of this MIP Q2App is quite similar
to MIP Q1. From an implementation perspective the main difference is the channels
it uses. We use the command channels in this implementation. Figure 8.3 show the
message flow in this implementation.

1: GetMessage(Request) The client creates a message request that contains in-
formation about what message it wants back. This request is sent to the MIP
messaging proxy that handles the MIP related issues.

70 CHAPTER 8. IMPLEMENTATION DETAILS

Figure 8.3: Scenario 2 - MIP sequence diagram

2: Send(Request) The messaging proxy sets up a connection on the right channel
and sends the message to its local router.

3: GetMessage(Request) At the server side the command channel event handler
in the MIP service adapter receives the request and passes it on to the server.

Response message The server finds the requested date and the service adapter
encapsulates it in a response message and returns it to the client side.

8.2.2 WS Q2App

The Web service implementation for Q2 uses Microsoft’s Windows Communication
Foundation (WCF), which makes it easy to develop Web service. WCF handles all
serialization and deserialization of messages in addition to encapsulate a lot of the
communication details. Figure 8.4 shows the message flow of this implementation.

1: GetMessage(Request) The client creates a request and passes it on to the
message service client.

2: GetMessage(Request) The message service client is a proxy class for the Web
service that handles the message requests, and thus the entry point into WCF.

3: GetMessage(Request) After the requests enters WCF it is routed to the cor-
rect service, in this case the messaging service. From here the server is con-
tacted to obtain the requested message.

Response message The server returns the message to the messaging service, which
returns it over WCF as from a normal method call back to the client.

8.2. APPLICATION IMPLEMENTATION FOR Q2 - DATA REQUEST 71

Figure 8.4: Scenario 2 - Web service sequence diagram

72 CHAPTER 8. IMPLEMENTATION DETAILS

Chapter 9

Results for research question 1

In this chapter we describe our effort to collect data to be able to answer research
question 1 (see section 5.4). First we design a general test to mimic the server to
server notification scenario, described in section 3.2. Then we implement and per-
form performance test based on our implemented integration applications, described
in section 8.1. When performing the test, we partly follow the quantitative analysis
cycle (section 7.2). Step 1 corresponds with “Test design”, step 2 is the “workload
model” section and step 3 is our “measurements”. The results from the test are
presented in section 9.2.

9.1 Performance test for Q1

Figure 9.1: Overview of the performance test for Q1

Figure 9.1 illustrates the test concept. The integration between the applications
is based on the publish-subscribe pattern. The server application 1 offers a service
which server application 2 subscribes to. When an event occurs in server application
1, an event message is sent to the subscribers of the service.

In the test, we have only one application subscribing to the service. We also run
both applications on one computer. This excludes the time it takes for a message
to travel over a network, but the time it takes to process each message is increased

73

74 CHAPTER 9. RESULTS FOR RESEARCH QUESTION 1

since we process both creating/sending and receiving/consuming messages on a sin-
gle computer. This means that we get measurements of the whole system rather on
the single components.

The following measurements are taken in the test:

Throughput. For this test we define throughput as how many messages that are
sent from server application 1 to server application 2 per second.

CPU usage. This is monitored manually by using the Windows Task Manager
performance tool. We wish this to be 100% all time when performing the
test. The reason for this is the way we designed the test, with excluding the
network transfer time and running both publisher and subscriber on the same
computer. This means that our measurements includes only the processing
time, so to get reliable measurements we need to make sure that the CPU is
the bottleneck factor in the test.

Memory usage. This is also monitored manually with the Windows Task Manager
performance tool. Since it is much faster to use the physical memory rather
than virtual memory (swapping to hard disk) it is important for the perfor-
mance that the total memory usage never is over the total physical memory
available.

We perform the test by sending 200 messages with different payload sizes. The
server application 1 creates and sends the event messages as fast as possible. We
therefore designed the sending server function with the algorithm shown in 9.1.

for(int i = 0; i < 200; i++)
{

SendMessage(CreateNewMessage ());
}

Listing 9.1: Algorithm for sending event messages

We designed the test to also include the time it takes to create the event message.
This is to include the time it takes to serialize the messages.

To see how the payload sizes influences the performance, we perform the test with
different payload. We split the payloads in three categories:

• Small messages. Payload size: 1B - 40kB

• Medium messages. Payload size: 40kB - 500kB

• Large messages. Payload size: 0,5MB - 3,5MB

9.1. PERFORMANCE TEST FOR Q1 75

9.1.1 MIP Q1App performance test

Test design

Figure 9.2: Test design: MIP Q1App

Figure 9.2 illustrates the setup of this test. We use the event channel in MIP to
realize the publish-subscribe pattern. When an event occurs in MIP Sending Server
it is sent to the MIP router on the event channel via the adapter. The MIP router
knows where to forward the message via the dynamic configurations, and sends the
message to the Subscriber server MIP router. That router forwards the message to
MIP Host which receives the messages via its adapter.

Since the test was performed on one computer, we had to manually configure two
MIP routers to form a MIP network on one computer. Both routers are configured
to run in server mode. We also configured the routers to turn off logging to screen
and hard disk, which increased the performance significantly.

We originally planned to send 1.000 event messages from the MIP Sending server
in the test. When we tried to send this many messages, the sending application
crashed independently of the payload sizes. We did some testing and found out that
the max number of messages we managed to send stable was around 200. We there-
fore did both this and the WS Q1App test with only 200 messages. We reported
this problem to the company, which created a new version of MIP which fixed this
problem. This version also fixed some other performance-relevant issues. When we
got the new version, we already had performed the test with the old version. We ran
the test again with the new MIP routers. We present the results from both “MIP
version 1” and “MIP version 2” in section 9.2.

Workload model

The workload model we used is constructed as a natural model to mimic a real
world workload. MIP uses WCF DataContract when serializing the objects to XML

76 CHAPTER 9. RESULTS FOR RESEARCH QUESTION 1

messages. The message that is send consist of one MessageContents object, which
has four entities: String namespace, DateTime time, int messageid and String[]
payload. The payload is split in 8kB strings so the number of strings in the array
depends on the payload size.

Measurements

To measure the throughput of the system, we used the System.DateTime.Now.Ticks
functionality in the .NET framework to get time stamps. First we made a time stamp
right before the MIP Sending server started to create the first message. The second
time stamp was made when the MIP host had received all the 200 messages. Then
we used an application using the System.TimeSpan class to calculate the time used
to send the messages based on the two timestamps.

When we ran the test, the Windows Performance monitor indicated that the memory
usage was high, and dependent on the payload size. When sending large messages
(we noticed this from 2MB payload) the memory usage was bigger than the physical
memory available on the computer. This lead to swapping to the hard disk, and
while this happened the CPU utilization went down. We present screen shots from
the Windows Performance monitor in figure 9.7 with 2MB payload messages.

9.1.2 WS Q1App performance test

Test design

¨

Figure 9.3: Test design: WS Q1App

Figure 9.3 shows the main components in this test. The end points are the
sending server and the receiving server. The Eventing host acts like a central dis-
tributer of messages. It consists of two main parts. Subscription manager handles
all subscriptions to the services it provides, including end point addresses, bindings,
subscription expire date etc. When an event is received, the eventing host uses this
component to get the end points which subscribes to the service the event is from.
The other part is the notification manager. This component has the responsibility
to distribute the message to all the active subscribers to the service.

9.1. PERFORMANCE TEST FOR Q1 77

When we tested the original application, we had a problem with the notification
manager class from the WS-Eventing project our application uses [18]. Our obser-
vation was that when the the eventing host received events, it often got an exception:

“Cannont access a disposed object.
Object name: ’System.Net.HttpListenerRequest’.”

When this occurred, the subscription was deleted from the subscription manager,
making our test corrupted.

We got problems with performing the test with this original version of the noti-
fication manager. First of all we often had to send the subscribe message to the
Eventing host multiple times before it even worked. Another problem was that we
never were able to successfully send 200 of the large messages, and big problem
getting measurements with small messages. We therefore think that this solution
was too unstable to use in our test. We solved the problem by modifying the orig-
inal code in the “NotificationManagerService.cs” file. The original code is shown in
listing 9.2.

ThreadPool.QueueUserWorkItem
(

new WaitCallback(FireSubscriptionWorker), state
);

Listing 9.2: Original code in NotificationManagerService.cs

We modified this line to the code in listing 9.3.

FireSubscriptionWorker(state);

Listing 9.3: Modified code in NotificationManagerService.cs

This change made the applications work much more stable. We did perform a few
tests with the original version to see if our modified version affected the performance
significantly. We evaluate the influence the modified version has in section 11.3.

We also used two approached for how the messages were sent. The first version
is based on opening and closing the connection between the Sending server and
Eventing host for every message sent. The code for this is shown in listing 9.4. We
call this version for ”‘WS Q1AppIndividual”’.

public void SendMessage(MessageTransferRequest message)
{

using (ChannelFactory <IMessageSending > channelNotification2 = new
ChannelFactory <IMessageSending >("Notify"))
{

78 CHAPTER 9. RESULTS FOR RESEARCH QUESTION 1

channelNotification2.Open ();
IMessageSending manager = channelNotification2.CreateChannel ();
manager.SendMessage(message);
channelNotification2.Close ();

}
}

Listing 9.4: SendingServer.cs. Code for WS Q1AppIndividual: a new connection
between Sending Server and Eventing Host is created for each message that is sent.

We observed that the performance of this version was very slow compared to the MIP
solution (as shown in section 9.2). We therefore made the alternative sending version
which opens the connection to the Eventing Host when the program is initialized
and closes it when all messages are sent. The code for this is shown in listing 9.5.
We call this version for “WS Q1AppOpen”.

public SendingServer ()
{

channelNotification = new ChannelFactory <IMessageSending >("Notify");
channelNotification.Open ();

}
public void SendMessageOpenConnection(MessageTransferRequest message)
{

IMessageSending manager = channelNotification.CreateChannel ();
manager.SendMessage(message);

}

Listing 9.5: SendingServer.cs. Code for WS Q1AppOpen: The connection between
Sending Server and Eventing host is created the initialization of Sending Server.

The differences in WS Q1AppIndividual and WS Q1AppOpen only affect the send-
ing mechanisms between the Sending server and Eventing Host.

Workload model

The workload model for this test is created as a natural model and is created in the
similar way as the MIP workload. It is based on the .NET MessageContract.

An example of the SOAP message that is sent from sending server is shown in
9.6. The payload is the elements in <mc:MessageContents>. The payload con-
sist of strings which together is on X bytes, split in 8kB long strings. In the ex-
ample, the payload is on 100.000 bytes, which thus is split in 13 strings named
<mc:Payload0..13>.

<s:Envelope xmlns:s="http://www.w3.org /2003/05/ soap -envelope"
xmlns:a="http://www.w3.org /2005/08/ addressing">

9.2. RESULTS PERFORMANCE TEST Q1 79

<s:Header >
<a:Action s:mustUnderstand="1">
http://www.example.org/test/MessageSending </a:Action >
<a:To s:mustUnderstand="1">
http:// localhost:33333/OnNewMessage </a:To>

</s:Header >
<s:Body xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
xmlns:xsd="http://www.w3.org /2001/ XMLSchema">

<mc:MessageContents xmlns:mc="http://www.example.org/test">
<mc:DateTime >2007 -06 -12 T14:27:58 .7232672Z</mc:DateTime >
<mc:MessageId >1</mc:MessageId >
<mc:ContentLength >13</mc:ContentLength >
<mc:Payload0 >aaaaa ... aaaaa</mc:Payload0 >
<mc:Payload1 >aaaaa ... aaaaa</mc:Payload1 >

..
<mc:Payload12 >aaaaa ... aaaaa</mc:Payload12 >
</mc:MessageContents >

</s:Body >
</s:Envelope >

Listing 9.6: WS eventing SOAP message

Measurements

We measured the throughput with the same method as with the MIP solution based
on the System.DateTime.Now.Ticks and System.TimeSpan functions.

While performing the test, we manually monitored the CPU usage and memory
usage. We observed that the CPU usage always was 100%, and the memory usage
never was close to 100% of the physical available memory.

9.2 Results performance test Q1

80 CHAPTER 9. RESULTS FOR RESEARCH QUESTION 1

0

50

100

150

200

250

300

350

1B 4kB 8kB 12kB 16kB 20kB 24kB 28kB 32kB 36kB 40kB

Payload

Th
ro
ug
hp
ut WS_Q1AppIndividual

WS_Q1AppOpen
MIP_Q1App MIP version 1
MIP_Q1App MIP version 2

Figure 9.4: Throughput performance test Q1 with small messages

Figure 9.4 show the throughput of small messages. We see that the WS Q1AppOpen
has highest throughput. The MIP Q1App version2 has second highest throughput,
and the differences gets smaller with larger payload. With 1B payload WS Q1App
has 92% larger throughput than MIP Q1AppOpen, and with 40kB messages the
differences is 40%. We also notice that MIP version 2 is faster than MIP ver-
sion 1 for all the measurements. The WS Q1AppIndividual has lowest throughput,
WS Q1AppOpen has up to 33,9 times higher throughput.

9.2. RESULTS PERFORMANCE TEST Q1 81

0

20

40

60

80

100

120

40kB 80kB 120kB 160kB 200kB 240kB 280kB 320kB 360kB 400kB 440kB 480kB

Payload

Th
ro
ug
hp
ut WS_Q1AppIndividual

WS_Q1AppOpen
MIP_Q1App MIP version 1
MIP_Q1App MIP version 2

Figure 9.5: Throughput performance test Q1 with medium messages

Figure 9.5 show the throughput of medium messages. The trend from figure
9.4 continues with the differences in throughput between MIP Q1App version 2 and
WS Q1AppOpen getting smaller with larger throughput. We see that the lines cross
with about 160kB payload, so the MIP Q1App version2 has highest throughput for
the measures with larger payload than 160kB. We also notice that the MIP Q1App
version 2 is faster than version 1 in all measures. Also, as with small messages, the
WS Q1AppIndividual has very low throughput.

82 CHAPTER 9. RESULTS FOR RESEARCH QUESTION 1

0

2

4

6

8

10

12

14

16

18

20

0,5MB 1MB 1,5MB 2MB 2,5MB 3MB 3,5MB

Payload

Th
ro
ug
hp
ut WS_Q1AppIndividual

WS_Q1AppOpen
MIP_Q1App MIP version 1
MIP_Q1App MIP version 2

Figure 9.6: Throughput performance test Q1 with large messages

Figure 9.6 show the throughput of large messages. The trend from the previ-
ous measures continues until about 1,5MB payload size. For the 2MB payload size,
we see that the MIP Q1App (both versions) suddenly decreases throughput much
compared with the WS Q1Apps. Even the WS Q1AppIndividual is faster than the
MIP Q1App version 2 with 2,5MB payload.

Figure 9.7 shows screenshot of the Windows Task Manager performance monitor
while performing test with 2MB payload for WS Q1AppOpen and MIP Q1App
version 2. The metrics of interest in this screenshot is the graphs which shows the
CPU usage history (graph on the top) and the memory usage (graph on the bottom).

We see that the CPU usage is 100% during the test, and the memory usage is
low in the WS applications. For the MIP applications, we see that the CPU usage
decreases a lot during the test. We also see that the memory usage is very high, and

9.2. RESULTS PERFORMANCE TEST Q1 83

above the available physical memory.

84 CHAPTER 9. RESULTS FOR RESEARCH QUESTION 1

Figure 9.7: Screenshot of CPU and memory usage while performing test with 2MB
payload. Left is the WS Q1AppOpen test and right is the MIP Q1App version 2
test.

Chapter 10

Results for research question 2

This chapter describes our effort to collect data for research question 2 (section 5.4),
and is organized the same way as chapter 9 with first giving a general description of
the performance test to be able to get measurements for the metrics to Q2. Then
we give detailed descriptions of the test we performed which follows the quantitative
analysis cycle from section 7.2 before we present the results from the test.

10.1 Performance test for Q2

Figure 10.1: Overview of the performance test for Q2

Figure 10.1 illustrates the concept of this test. A client application sends a
request message (requesting a service) to the server application, the server process
this message and sends a response message back to the client. In the test we measure
the following metrics:

Response time. This is how long it takes from the client starts to create the
request message until it receives the response message from the server.

CPU usage. This is monitored manually by using the Windows Task Manager
performance tool. Ideally this is 100% all time when performing the test. The
reason for this is the same as with the CPU usage in the Q1 test.

85

86 CHAPTER 10. RESULTS FOR RESEARCH QUESTION 2

Memory usage. This is also monitored manually with the Windows Task Manager
performance tool.

We use a high performance timer class to be able to get exact measurements for re-
sponse time in this test. This C# class is based on the project described in [27]. An
alternative we first tried to use the Windows API function GetTickCount(). This
function only gets resolutions on 1ms, which was too imprecise for our test.

To see how the sizes of the message response payload affect the response time,
we performs the test with different payload sizes. We classify the payload sizes in
three categories:

• Small messages. Payload size: 10B - 40kB

• Medium messages. Payload size: 40kB - 500kB

• Large messages. Payload size: 0,5MB - 3MB

In the test, the client and server applications run on the same computer to exclude
the time it would take to send the message between the machines on a local area
network or over the Internet. This excludes an uncertainly variable - the time it
takes to transfer the messages over the network. We also had a restriction with
only having one client sending requests to the service. This way we make sure
that there does not build up a queue in front of the service, which would increased
the response times. The results from this test are therefore the best-case scenario.
When executing the performance test, 10.000 messages was sent synchronously, and
we measured the response time for each request.

10.1.1 MIP Q2App performance test

Test design

Figure 10.2 shows the test setup. MIP Client creates and sends a request message
to the MIP Host via two MIP routers. The MIP Host processes the message and
sends back a response message via the routers.

To be able to run this test one a single computer, we had to manually configure
two MIP routers to form a MIP network on one computer. The router on the client
side is running in client mode, and the router on the server side is running in server
mode. We also turned off logging on the routers to improve the performance.

10.1. PERFORMANCE TEST FOR Q2 87

Figure 10.2: Test design: MIP Q2App

Workload model

The workload model is created as a natural model, basically the same way as with
scenario 1. There are two messages that are sent:

MIP Request message consist of one MessageContents with a int messageId. This int
tells the server which message it requests. The MessageContent also has an string[],
which is empty in the request message.

The MIP response message consist of a string status and a MessageContents. This
is the same as with the request, but with the payload filled. The payloads consist
of 8kB long strings, so the number of strings is dependent of the total size of the
payload.

Measurement

When measuring the response time, we started the counter right before the request
message was created in the client application. The response time thus includes the
time it takes to create the request message, the time it takes to send the message to
the MIP host via the two routers, the time the server uses to process the message
and send back the response message in the same way. The response messages are
initialized when the MIP Host starts.

During the test we monitored the CPU usage and memory usage. We observed
that the CPU usage always was at 100% during the test, and the memory usage was
never close to 100% of total physical memory.

88 CHAPTER 10. RESULTS FOR RESEARCH QUESTION 2

10.1.2 WS Q2App performance test

Test design

Figure 10.3: Test design: WS Q2App

Figure 10.3 illustrates the design of the test. Basically the WS Client creates and
sends a request message to the WS Host which sends back a pre created response
message.

Workload model

The messages are created with the .NET WCF DataContract as a Web service/-
SOAP message. In the same way as with the MIP request/response implementation,
there is two messages:

The request message consist of a MessageContent entity with three attributes: String
namespace, int messageid and a empty string[] payload.

The response message is similar as the request message but with the payload filled
with 8kB long strings.

Measurements

When measuring the response time, we started the counter before the request mes-
sage is created. The response time then includes the time it takes for the client to
create the request XML document, the time it takes to send the document to the
server, the time the server use to process the message and send back the response
message to the client. We measured the response time with different payload sizes
on the response message, and each test sent 10.000 requests to the service.

Also in this test we monitored the CPU usage and memory usage. The CPU usage
was always at 100% and the memory usage was never close to 100% of physical
available memory while performing the test.

10.2. RESULT PERFORMANCE TEST Q2 89

10.2 Result performance test Q2

90 CHAPTER 10. RESULTS FOR RESEARCH QUESTION 2

0

0,005

0,01

0,015

0,02

0,025

1B 4kB 8kB 12kB 16kB 20kB 24kB 28kB 32kB 36kB 40kB

Payload

Se
c WS_Q2App

MIP_Q2App

Figure 10.4: Average response time in the test with small messages

Figure 10.4 shows the average response time with small messages based on 10.000
measurements. We see that MIP Q2App has about two times higher response time
than WS Q2App in the measure for 1B payload. As we see in the graph, the lines
are very linear and the WS Q2App has higher gradient. For the largest payload
measure we see that the differences has decreased so the MIP Q2App have about
1,1 times higher response time.

10.2. RESULT PERFORMANCE TEST Q2 91

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

40kB 80kB 120kB 160kB 200kB 240kB 280kB 320kB 360kB 400kB 440kB 480kB

Payload

Se
c WS_Q2App

MIP_Q2App

Figure 10.5: Average response time in the with medium messages

Figure 10.5 shows the average response time with medium messages based on
10.000 measurements. We see that the differences in response time are small with
the smallest payload sizes, and that the lines crosses with about 45kB payload. The
graphs shows that the measurements are very linear, with the WS Q2App having
largest gradient. With the largest payload the response time for WS Q1App is 1,75
times the response time of MIP Q2App.

92 CHAPTER 10. RESULTS FOR RESEARCH QUESTION 2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,5MB 1MB 1,5MB 2MB 2,5MB 3MB

Payload

Se
c WS_Q2App

MIP_Q2App

Figure 10.6: Average response time in the test with large messages

Figure 10.6 shows the average response time with large messages based on 10.000
measurements. We see that the trends from figure 10.4 and 10.5 continue by the
increasing gap between WS Q2App and MIP Q2App. For the largest payload we
see that WS Q2App has 2,14 times as long response time as MIP Q2App.

Chapter 11

Evaluation of the results

In this chapter we will discuss the results obtained in chapter 9 and 10. In the GQM
framework, this is the same as answering the ”‘Q”’ part. Following the performance
analysis method from chapter 7.2, we will perform the forth step - create perfor-
mance models. We will also discuss the research outcome, giving a more general
recommendation of which of the two integration strategies we think is best for the
company. Last in the chapter we will evaluate the validity of our performance tests.

11.1 Discussion of the results

11.1.1 Discussion Q1

Our first research question (Q1) was formulated as: Which integration solution has
best performance in a publish-subscribe scenario? Our discussion is based on the
performance test we performed, described in chapter 9.

In the test for Q1, we used two different versions of both the Web service and the
MIP applications. For the Web service applications the difference was in the way
the messages was sent to the Notification Manager. We see that the throughput for
WS Q1AppIndividual is much lower than WS Q1AppOpen, and that the through-
put is almost constant for small and medium sized messages. Based on this we see
that our implementation of the sending mechanism is a main contribution to the
low throughput for WS Q1AppIndividual. The results show that WS Q1AppOpen
is competitive to the MIP applications, while WS Q1AppIndividual has by far lower
throughput. For the two MIP application test, the difference was use of two different
version of MIP routers. The results show that there are significant differences, and
version 2 gives best throughput. For further evaluation we will use WS Q1AppOpen

93

94 CHAPTER 11. EVALUATION OF THE RESULTS

(referred as WS Q1App from now on) and MIP Q1App with MIP version 2.

The results in section 9.2 showed that the WS Q1App had higher throughput than
MIP Q1App for messages with small payload sizes. With messages with 160kB and
higher payload, MIP Q1App had highest throughput.

The MIP Q1App has a high loss of throughput on the 2MB payload size. Our ob-
servations show that the CPU usage decreases while performing test with payloads
equal to and larger than 2MB, and the memory usage is very high. We therefore
believe the reason for the decrease in throughput is caused by depletion of available
physical memory on the test computer. As the computer needs to start using other
types of memory, this creates a bottleneck which affects the result.

To find out what caused the high memory usage in the MIP applications, we de-
bugged the programs by making them simultaneously print the number of message
sent and received. This showed that the MIP sending application sent all messages
before the first message was received at the other end. The Web service application
sent only a few messages before the first messages was received. This may explain the
high memory usage on the MIP, as queues of messages is created in the MIP routers.
Because of this, we do not think the throughput results for MIP with message size
equal to and larger than 2MB are representative. This may be an unfortunate result
caused by our test design with more than one router per computer and the resource
contention beween them.

In the quantitative analysis cycle (section 7.2), step 4 is to develop performance
models based on measurements. We found a formula for the throughput by using
the least squares fitting technique:

TPWS Q1App(P) = 1
1,0492×10−7P+0,0065

TPMIP Q1App(P) = 1
8,8426×10−8P+0,0081

, where P is bytes of payload in the message. The quality-to-fit parameter for
these functions was 0,9992 and 0,9971 respectively, on a scale from 0,0-1,0 where 1,0
is best.

To answer the research question Q1, we see that the performance is dependent
on the message size that is sent. The Web service applications has best throughput
with messages with payload up to 160kB, while the MIP applications has higher
throughput with larger messages with larger payload. The throughput can be given
by the performance models we created.

11.2. INTEGRATION STRATEGY RECOMMENDATION 95

11.1.2 Discussion Q2

Research question 2 (Q2) is defined as: Which integration solution has best perfor-
mance in a request-response scenario? Our discussion for this research question is
based on the performance test described in chapter 10.

The results from section 10.2 show that the MIP Q2App has lower response time
than WS Q2App for messages with payload size smaller than 45kB, and the oppo-
site for larger messages.

Looking at all three graphs of the measurements, we see that the measurements
plots are very linear. We use this to create a quantitative performance model for
these applications, serving as step 4 in the quantitative analysis cycle (section 7.2):

TWS Q2App(P) = 2, 72673× 10−7P + 0, 009447
TMIP Q2App(P) = 1, 13314× 10−7P + 0, 022010638

, where P is bytes in the message sent. The correlation coefficient was 0,999 for
the Web service formula and 0,980 for the MIP formula.

To sum up; we see that the Web service applications has lower response time than
the MIP application with messages less than about 45kB. The MIP application is
fastest with messages larger than 45kB.

11.2 Integration strategy recommendation

As stated in section 5.6, we will make a recommendation for which of the two strate-
gies we think is best suited. In this section we evaluate the solutions in a broader
perspective than for the two previous research questions. Even though performance
is an important attribute, it is not the only one to base a choice of integration solu-
tion on. As listed in section 3.3 coupling, security and configuration should also be
taken into account.

When we evaluate the performance of the two strategies we have used for our im-
plementations, we can generally say that Web services is better for smaller sized
messages. MIP and the Web services approach intersected at approximately 160 kB
and 45 kB for Q1 and Q2 respectively. On questions about anticipated message size
our industry partner has not been able to give us any good answers. We believe
that these two scenarios may be somewhat different when it comes to message size.
For Q1 we believe that message sizes typically will be in the small or medium seg-

96 CHAPTER 11. EVALUATION OF THE RESULTS

ment, while they for Q2 more often may be in the upper end of the scale. When
using the publish/subscribe communication pattern, messages will be sent when a
change to an entity is made. This may generate many messages, but each of them
will contain a limited amount of data. As a reference we may mention that a full
page of text in A4 format contains about 4500 characters, which translates to 4,5 kB.

In the case of Q2 the message size is harder to predict. A message may be large
or small depending of the request and the service processing it. However, in a
service-oriented environment services should be business services, and thus have
limited responsibilities. A service called GetEntireDatabase would typically not be
a business service. We therefore believe that the message size also for this research
question and scenario will be limited, but possibly larger than for Q1.

Since our main focus has been on performance we do not have any quantitative
data for other quality attributes or issues important to our industry partner. Nei-
ther have our implementations made use of all the functionality of MIP nor our Web
service solutions tried to replicate it. However, there are some factors that we are
able to say something about.

Loose coupling. Web services are inherently loosely coupled. Clients can inde-
pendently of operating system and programming environment in theory access
a Web service. For clients to use MIP they are dependent on having a MIP
router running locally and implementing a MIP adapter. If we look at MIP
as a system, clients are quite loosely coupled to the routers. Routers can for
example implement security without the clients knowing about it.

Security. For Web services using Windows communication foundation, security
attributes can be achieved by setting configuration options for each service.
For MIP security is administered by the routers, which is an advantage for the
implementers.

Configuration. Without any infrastructure, Web services require a deal config-
uration and administration of service addresses and such. In our case the
subscription manager does some of this job by being an intermediary between
the senders and receivers. A UDDI service could also be helpful. MIP has
solved the configuration issue by having routers share configuration among
them, and also acts as a catalog of available services for applications.

All this taken into consideration, in addition to what we know about our cooperating
software company, we claim that in their concrete situation the MIP is the better
choice. Factors like that they have control over the applications that are the main
targets for an integration solution, and these applications run on the same platform,

11.3. VALIDITY EVALUATION 97

contribute to this statement. For instance, if they where making an infrastructure
without knowing the applications that should be integrated, we think that choosing
the solution with adapters using class libraries would be a bad idea. In their situa-
tion this works well.

If we look away from the factors in the concrete situation of our cooperator, we
believe that a solution based on Web services is fully competitive for the scenarios
we have investigated. This is also supported by our performance tests. The infras-
tructure provided by MIP, may also be realized for Web services. In addition Web
services have the advantage of openness making integration with existing services an
easier task. If the integration need can be expected to grow, as solution with Web
services would put a lot less constraints on the new applications in the integration.

Even though the technology is in place, there is still a large piece of work to be
done when it comes to using it. Having a technology based on messages in XML
does not give you a service-oriented architecture. As explained in chapter 2, service-
orientation is about aligning business with technology. That business services are
created is important to take benefit of the available integration solutions. This will
be one of the challenges the software company we have cooperated with will be faced
with in future.

Web services MIP
Prerequisites Implementation dependent. Microsoft .NET run-time li-

braries
Coupling Platform indepentent. Services coupled with

routers. Dependent on
using the entire system.

Security Specified for each service. Handled by routers.
Performance Better for smaller messages. Better for larger messages.
Configuration Has to be handled by

clients or infrastructure, i.e.
UDDI.

Handled by routers.

Run-time costs Low. Low.

Table 11.1: Summary of differences between Web services and MIP

11.3 Validity evaluation

An important issue concerning results from performance tests is if the results are
valid. First of all the results should be valid within the context the tests are per-

98 CHAPTER 11. EVALUATION OF THE RESULTS

formed. It might also be interesting to be able to generalize the results to a broader
context. Wohlin et al. [31] classifies four types of validity schemes: conclusion, in-
ternal, construct and external validity. Below we discuss some threats within each
of these schemes, and point out how we have taken this into consideration while
performing the performance test or how they might present a possible threat to our
results for Q1 and Q2. We first evaluate the validity of our results which is the same
for both Q1 and Q1, and then we point out specific threats for each of the research
questions.

11.3.1 Validity evaluation Q1 and Q2

Conclusion validity

Conclusion validity is concerned with issues which might affect the conclusions from
the performance test and the performance test result. Threats to this might be
errors in the way we implemented our applications and designed the tests. This
kind of threats might influence the outcome (measurements).

• Reliability of the measurements. A threat may be if programs running in
the background on the test computer may have affected the performance test
results because they demands CPU time. We have tried to neutralize this
threat by rebooting the computer before we started testing, and had as few
processes as possible running in the background.

• The overhead of the messages that are sent is different because of the tech-
nologies used, and therefore the overall message sizes may be different. The
payload we sent has been the same indifferent of the technologies that the
messages have been created with.

Internal validity

Internal validity is concerned with that the relationship between the test and the
result is not caused by a factor we do not have control over or a factor we have not
measured.

• By running all tests on a single computer we have eliminated any uncertainty
that could be introduced by using several computers and communication over
a network.

11.3. VALIDITY EVALUATION 99

Construct validity

Construct validity is concerned about the relationship between the theory (how the
study is planned) and observation (how the research is executed). The study is based
on a top-down GQM approach, as described in chapter 5. By first defining the goal
with the study, and then defining research questions, the goal with the execution of
the study has been clear before we started designing the performance tests. Also
since we planned which metrics to measure before executing the tests, we are sure
that the execution of the study reflects the planned study.

• A threat to our result may be the way we performed the MIP tests on one
computer. The idea behind a MIP router is that it shall be one router per
computer. In our test design, we configured two routers to be able to run on
one computer.

External validity

External validity is concerned with generalization. Can the results be generalized to
a larger context outside the scope of the study?

It is hard to generalize some of our results because the MIP source code is not
publicly available. The Web service applications are implemented based on com-
monly used standards and technologies. We can therefore say that the Web service
applications can be generalized to represent Web service based applications in gen-
eral. The MIP can be seen as an example of a middleware integration application.
However, there are very big differences between these kind of applications, so we
can not say that this can be representative in general.

Even for our cooperator it may be hard to generalize the results from the MIP
evaluation. MIP has not yet been released and during our project, we have had
multiple versions of MIP. In our implementations and test, we have found several
errors which have been fixed. Because of this, there is reason to believe that there
might be done other changes to the software in the future. This might affect the per-
formance of future versions of MIP. For example, we noticed significant differences
in the throughput with two different versions in the test for Q1.

100 CHAPTER 11. EVALUATION OF THE RESULTS

11.3.2 Validity evaluation Q1

Conclusion validity Q1

• Because of instability issues in one of the test programs, we were only able to
send 200 messages in our test program. The number of messaged sent may be
a threat to the validity of our results from the tests for Q1.

Internal validity Q1

• Modified NotificationManager. Because of stability issues for the WS Q1App,
we had to modify the code in NotificationManager, as described in section
9.1.2. We did perform tests to see if there were significant differences in per-
formance with the original and modified code. To be sure that all the 200
messages were received in the unmodified version, we had to perform this test
in debug mode in Microsoft Visual Studio. We were not able to get any results
from messages with payload size above 64kb. Table 11.2 shows the result from
this test. We see that there are not big differences in throughput between the
two versions.

Payload Stable Unstable
4kB 172,2 167,8
8kB 153,6 158,5
16kB 137,7 141,6
62kB 108,0 114,8
64kB 74,0 78,6

Table 11.2: Throughput modified and unmodified NotificationManager.cs

• Memory usage. While performing the tests for Q1, we monitored the memory
usage to be sure that the performance was not affected by too little physical
memory available. While performing the MIP Q1App test, we observed that
the applications use very much memory. For message sized 2MB and higher
we observed that the memory usage was above 100% of the physical available
memory. This causes a threat to the results of large messages in this test since
the memory usage for WS Q1App never was close to 100%. This difference
most likely affected our results for message sizes over 2MB.

• The CPU usage was monitored during the test. The usage was always 100%
for WS Q1App for all message sizes. We observed that the CPU usage went
down for the test with message sized 2MB and larger in MIP Q1App. This
most likely affected our results for message sizes over 2MB.

11.3. VALIDITY EVALUATION 101

Construct validity Q1

• Our test design for Q1 may have favored WS Q1App when using large payload
sizes (over 2MB). This is because the MIP solution, as pointed out before, uses
a lot of memory. This may be because the MIP routers do not get enough CPU
time or priority to process all the messages they get before the next message
is delivered.

11.3.3 Validity evaluation Q2

Conclusion validity Q2

• Reliability of the measurements. For Q2, we used a freely available hi-performance
timer class. A threat to the validity may if this timer did not give the reliable
measurements we expected it did.

102 CHAPTER 11. EVALUATION OF THE RESULTS

Chapter 12

Conclusion and further work

In this chapter we will summarize and conclude the study. We will also discuss
possible ways to continue the work presented in this report.

12.1 Conclusion

Our goal with the study was to evaluate two integration strategies mainly with re-
spect to performance. Based on the company’s evaluations of strategies, we chose
two strategies to evaluate. The first is created by the company, which in the future
will serve as their integration infrastructure. The other strategy is based on Web
service technologies. To evaluate, we created test applications which simulates two
typical scenarios with integration of two applications each. We used this to perform
performance evaluations to answer two research questions. We followed four steps
in a method called quantitative analysis cycle in the performance evaluation.

Our performance evaluation results showed that the Web service test applications
we implemented are faster than the MIP applications while sending small messages.
With large messages the situation is the inverse. Based on the measurements, we
created quantitative performance models for the applications which describe the
throughput for the first applications, and the response time for the second.

Even though the MIP solution is more complex than the Web service approach we
chose, our evaluation comes to that a Web service-based integration infrastructure
will be competitive to this. However, for the homogenous integration environment
of our cooperator, we believe that their solution is the better choice. This evaluation
is based on the requirements from the company.

103

104 CHAPTER 12. CONCLUSION AND FURTHER WORK

Our contributions of the study are mainly the recommendation for the company
based on the performance evaluation and the general evaluation of the two strate-
gies. We have provided data for throughput and response time for applications using
MIP. We have also provided performance models of the MIP-based applications we
have implemented, which can serve as a tool to be able to predict throughput and
response time in similar integrations.

In a broader context, a contribution is the data collection for throughput and re-
sponse time for applications using Web services. The comparisons of integrations
based on Web services and MIP also serves as example of the performance of Web
services versus other middleware. The performance models we have created may be
useful to use to predict throughput and response time in similar integrations based
on Web services.

12.2 Further work

The MIB has one main functionality which we have not tested with respect to per-
formance. The reliable eventing functionality of MIP is a complex mechanism to
guarantee that a message which is sent on the publish-subscribe channel is deliv-
ered. This is guaranteed even if the two involving applications never is “online” at
similar times. A further work could be to implement similar functionality in a Web
service eventing solution. It could be possible to implement such functionality in
the eventing solution we used for our test application for Q1. We have provided an
example of how such a solution could be implemented in appendix D.

As described in chapter 7, there are three types of performance models. Making
analytical performance models of the performance of MIB and Web services could
be an alternative way of performing a comparison case study.

For the performance evaluations we have performed, there are several other test
which could be performed as supplement to our results. One way could be to try
to perform evaluation in a more realistic setting. By implementing multiple clients
(on multiple computers) with one publisher or one “response-server”, it could be
possible to get more reliable measurements for throughput. Also this would open
up possibilities to get response times which include the delay with transferring the
messages on a network.

Appendix A

Glossary

API Application programming interface
BPM Business process management
DCOM Distributed component object model
COM Component object model
CORBA Common object request broker architecture
CRM Customer relationship management
EAI Enterprise application integration
ERP Enterprise resource planning
ETL Extraction, transformation and loading
GQM Goal Question Metric
MIP Message Integration Product
MIP Q1App MIP application for Q1
MIP Q2App MIP application for Q2
MOM Message-oriented middleware
OLTP Online transaction processing

105

106 APPENDIX A. GLOSSARY

QOS Quality of service
RMI Remote method invocation
RPC Remote procedure call
SOA Service-oriented architecture
SOAP Simple Object Access Protocol
UDDI Universal Description, Discovery, and Integration
W3C World Wide Web consortium
WAN Wide area network
WCF Windows communication foundation
WS Web services
WS Q1App Web service application for Q1
WS Q2App Web service application for Q2
WSDL Web Services Description Language
XML eXtensible Markup Language

Appendix B

Test computer technical
specification

In all the performance test we used a computer with the following specifications:

Model AOpen 1557GLS
CPU Intel Pentium M 1,7GHz
Graphic Card ATI Radeon Mobility 9700
Memory 1024 MB RAM
OS Microsoft Windows XP SP2

107

108 APPENDIX B. TEST COMPUTER TECHNICAL SPECIFICATION

Appendix C

Test results data

109

110 APPENDIX C. TEST RESULTS DATA

Bytes RTWS
Q1App

RTMIP
Q2App

TPWS
Q1App
Indi-
vidual

TPWS
Q1App
Open

TPMIP
Q1App-
1

TPMIP
Q1App-
2

1 0.0076 0.0155 8.8095 298.0782 83.2135 154.8158
4 096 0.0088 0.0156 8.8290 219.4642 86.0829 137.7327
8 192 0.0099 0.0164 8.8682 186.6471 80.2058 139.6590
12 288 0.0110 0.0168 8.8801 190.2023 81.8494 130.5310
16 384 0.0121 0.0169 8.8095 162.3678 78.3186 120.3087
20 480 0.0131 0.0171 8.8173 144.7191 76.5182 118.1730
24 576 0.0143 0.0177 8.8525 139.6590 74.2425 115.4407
28 672 0.0152 0.0184 8.8329 135.8588 74.5196 107.9527
32 768 0.0163 0.0193 8.8134 118.1730 70.8200 104.0169
36 864 0.0176 0.0190 8.8447 113.4730 69.8295 103.4779
40 960 0.0184 0.0202 8.8329 105.6679 68.8663 75.3632
81 920 0.0299 0.0253 8.4624 72.0983 55.4757 64.4234
122 880 0.0442 0.0275 8.1416 51.6053 42.7650 46.6618
163 840 0.0565 0.0329 7.7050 40.7576 34.1389 41.9564
204 800 0.0675 0.0431 7.4077 35.0988 30.8675 37.2598
245 760 0.0792 0.0519 7.3155 29.7634 28.3280 31.4013
286 720 0.0912 0.0682 6.8185 26.4871 23.9751 28.8602
327 680 0.1019 0.0643 6.7516 23.1416 21.9948 25.9704
368 640 0.1119 0.0754 6.5609 20.7601 15.2104 23.9751
409 600 0.1246 0.0783 6.5265 19.2031 14.8045 21.7315
450 560 0.1355 0.0745 6.1243 17.7364 18.2053 20.6314
491 520 0.1475 0.0608 6.0391 16.6984 15.5539 18.3559
524 288 0.1562 0.1351 5.7142 15.1068 12.2976 17.7997
1 048 576 0.2948 0.1837 4.5092 8.1883 6.4051 9.8091
1 572 864 0.4344 0.1793 3.6732 5.7422 4.3653 6.9854
2 097 152 0.5740 0.3066 2.9117 4.4135 2.7194 3.1625
2 621 440 0.7219 0.2856 2.6243 3.5650 2.3679 2.5710
3 145 728 0.8727 0.3617 2.3317 3.0150 1.9183 2.7441

Table C.1: Test result data

Appendix D

Web services reliable messaging

For implementing reliable messaging in Web services there are serveral approaches.
Reliable messaging could be about ensuring that the messages reaches the desti-
nation in a given order, or having lost messages resent. This is explained in the
WS-ReliableMessaging [11] specifictaion. However, this specification does not take
larger problems into account, such as if a computer shuts down. In figure D.1 we
have created a sketch of how a system using Web services and a persitent message
store could work in a publish/subscribe scenario.

111

112 APPENDIX D. WEB SERVICES RELIABLE MESSAGING

F
ig

u
re

D
.1

:
R

el
ia

b
le

m
es

sa
gi

n
g

fo
r

W
eb

se
rv

ic
es

Appendix E

Zip archive description

With the thesis, we provide a Zip archive with the source code for the Web services
applications, and all the collected performance test data. The following is a copy of
the ReadMe.txt file provided:

********************ReadMe.txt*********************
This archive contains the source code for the Web service application described in
the Master Thesis for Nils Torstein Øvstetun and Trond Smaavik.

Alle data.xls contains all the relevant data in a single spreadsheet.
Repons tid scenario 2.xls contains all collected data for the Q2 applications.
Througput scenario1 2.xls contains all data for the Q1 Applications

The src-folder is organized in the following subfolders:

WS Q1App:
The source code for the eventing applications. To run the solution, first start the
EventingHost project. Then RemoteServer and SendingClient is started, where
number of messages and size can be set. For the sending application, output is
in a textfield. For the receiving application, output is written to d:output.txt file.

113

114 APPENDIX E. ZIP ARCHIVE DESCRIPTION

To calculate time used to send the messages, the TicksToTime program can be used.

WS Q2App:
This source code is for the applications used in the request-response applications.
The WSHost project contains the code to the server application. The WSClient
project contains the code to the client application. The message size, and number
is set in the code. The output is written to the console.

WSEventing:
This source code contains the code for the eventing part of WS Q1App. This is
originally from http://www.codeproject.com/soap/WSEventing.asp. In this code,
small modifications have been made.

TicksToTime: This is a small application used to measure the throughput for
WS Q1App.

Bibliography

[1] A model driven architecture for enterprise application integration. In HICSS
’06: Proceedings of the 39th Annual Hawaii International Conference on System
Sciences, page 181.3, Washington, DC, USA, 2006. IEEE Computer Society.

[2] Elisa Bertino, Jason Crampton, and Federica Paci. Access control and autho-
rization constraints for ws-bpel. In ICWS ’06: Proceedings of the IEEE Inter-
national Conference on Web Services (ICWS’06), pages 275–284, Washington,
DC, USA, 2006. IEEE Computer Society.

[3] Kyle Brown and Michael Ellis. Best practices for web services versioning, Jan-
uary 2004. http://www-128.ibm.com/developerworks/webservices/library/ws-
version/.

[4] Luis Felipe Cabrera, Christopher Kurt, and Don Box. An introduc-
tion to the web services architecture and its specifications, october 2004.
http://msdn2.microsoft.com/en-us/library/ms996441.aspx.

[5] Ethan Cerami. Web Services Essentials (O’Reilly XML). O’Reilly, February
2002.

[6] Shiping Chen, Bo Yan, John Zic, Ren Liu, and Alex Ng. Evaluation and model-
ing of web services performance. In ICWS ’06: Proceedings of the IEEE Inter-
national Conference on Web Services (ICWS’06), pages 437–444, Washington,
DC, USA, 2006. IEEE Computer Society.

[7] F. McCabe M. Champion et al. D. Booth, H. Haas. Web services architecture,
2004. http://www.w3.org/TR/wsarch/#whatis.

[8] Venu Datla and Katerina Goseva-Popstojanova. Measurement-based perfor-
mance analysis of e-commerce applications with web services components. In
ICEBE ’05: Proceedings of the IEEE International Conference on e-Business
Engineering, pages 305–314, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

115

116 BIBLIOGRAPHY

[9] N. Deason. Sip and soap. http://tools.ietf.org/id/draft-deason-sip-soap-00.txt.

[10] Craig Crithchley et al. Don Box, Luis Felipe Cabrera. Web services eventing
(ws-eventing), March 2006. http://www.w3.org/Submission/WS-Eventing.

[11] Ruslan Bilorusets et al. Web services reliable mes-
saging protocol (ws-reliablemessaging), February 2005.
http://www.ibm.com/developerworks/library/specification/ws-rm/.

[12] John Evdemon. Principles of service design: Service versioning, August 2005.
http://msdn2.microsoft.com/en-us/library/ms954726.aspx.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley Professional, January 1995.

[14] I. Gorton, D. Thurman, and J. Thomson. Next generation application integra-
tion challenges and new approaches, 2003.

[15] Venkat N. Gudivada and Jagadeesh Nandigam. Enterprise application inte-
gration using extensible web services. In ICWS ’05: Proceedings of the IEEE
International Conference on Web Services (ICWS’05), pages 41–48, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[16] Ashok K. Harikumar, Roger Lee, Hae Sool Yang, Haeng-Kon Kim, and
Byeongdo Kang. A model for application integration using web services. In
ICIS ’05: Proceedings of the Fourth Annual ACIS International Conference
on Computer and Information Science (ICIS’05), pages 468–475, Washington,
DC, USA, 2005. IEEE Computer Society.

[17] Matjaz B. Juric, Bostjan Kezmah, Marjan Hericko, Ivan Rozman, and Ivan Ve-
zocnik. Java rmi, rmi tunneling and web services comparison and performance
analysis. SIGPLAN Not., 39(5):58–65, 2004.

[18] Roman Kiss. Ws-eventing for wcf (indigo), June 2006.
http://www.codeproject.com/soap/WSEventing.asp.

[19] Boris Lublinsky. Defining soa as an architectual style, January 2007.
http://www-128.ibm.com/developerworks/webservices/library/ar-soastyle/.

[20] Kevin J. Ma and Radim Bartos. Performance impact of web service migration in
embedded environments. In ICWS ’05: Proceedings of the IEEE International
Conference on Web Services (ICWS’05), pages 409–416, Washington, DC, USA,
2005. IEEE Computer Society.

BIBLIOGRAPHY 117

[21] Daniel A. Menasce, Lawrence W. Dowdy, and Virgilio A. F. Almeida. Per-
formance by Design: Computer Capacity Planning By Example. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2004.

[22] A. Raut, A.; Basavaraja. Enterprise business process integration. In TEN-
CON 2003. Conference on Convergent Technologies for Asia-Pacific Region,
volume 4, pages 1549–1553, 2003.

[23] Jaeho Ro, Sunhee Park, and Shim Yoon. Proposing web service-based business
models by development phase. In NWESP ’05: Proceedings of the International
Conference on Next Generation Web Services Practices, page 431, Washington,
DC, USA, 2005. IEEE Computer Society.

[24] Paul Kulchenko Robert Cunnings, Simon Fell. Smtp transport binding for soap
1.1. http://www.pocketsoap.com/specs/smtpbinding/.

[25] Stewart Robinson. Simulation: The Practice of Model Development and Use.
John Wiley & Sons, 2004.

[26] Scott Seely. SOAP Cross plattform Web serice development using XML. Pren-
tice Hall PTR, 2002.

[27] Daniel Strigl. High-performance timer in c#, August 2002.
http://www.codeproject.com/csharp/highperformancetimercshar.asp.

[28] David Strommer. Best soa definition: Beat schwegler, June 2005.
http://cs.jaxdug.com/blogs/davidstrommer/archive/2005/06/13/706.aspx.

[29] David Trowbridge, Ulirch Roxburgh, Gregor Hohpe, Dragos Manolescu, and
E.G. Nadhan. Integration Patterns. Microsoft, 2004.

[30] F.I. Weyuker, E.J. Vokolos. Experience with performance testing of software
systems: issues, an approach, and case study. Software Engineering, IEEE
Transactions on, 26(12):1147–1156, 2000.

[31] Claes Wohlin, Per Runeson, Martin Höst, Maguns C. Ohlsson, Björn Regnell,
and Anders Wesslén. Experrimentation in software engineering, An Introduc-
tion. Kluwer Academic Publishers, 1 edition, 2000.

