
June 2007
Agnar Aamodt, IDI
Arild Faxvaag, St. Olavs Hospital

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Conversational CBR for Improved
Patient Information Acquisition

Tor Henrik Aasness Marthinsen

Problem Description
In this thesis project a CCBR system for gathering of patient information shall be designed, and
partly implemented. The focus will be on developing a method for generating questions targeted
to a particular patient’s reaction on medication, based on other patients similar experiences.

Essential parts of the architecture shall be exemplified in a demo. In a recent PhD research
project methods for CCBR were developed that should be reviewed and analysed, and used as
input to the methods developed in this thesis. The implemented system will be based on an
existing core CCBR system, implememted in C++. This thesis project is linked to an ongoing
cooperation between IDI’s KBS group and NSEP, with the goal of exploring the use of CBR for
electronic health records.

Assignment given: 18. January 2007
Supervisor: Agnar Aamodt, IDI

Abstract

In this thesis we describe our study of two knowledge intensive Conversa-
tional Case-Based Reasoning (CCBR) systems and their methods. We look
in particular at the way they have solved inferencing and question ranking.
Then we continue with a description of our own design for a CCBR system,
that will help patients share their experiences of side effects with drugs, with
other patients. We describe how we create cases, how our question selec-
tion methods work and present an example of how the domain model will
look. It is also included a simulation of how a dialogue would be for a patient.

The design we have created is a good basis for implementing a knowledge
intensive CCBR system. The system should work better than a normal
CCBR system, because of the inferencing and question ranking methods,
which should lessen the cognitive load on the user and require fewer ques-
tions answered, to reach a good solution.

I

II

Acknowledgements

I would like to thank my supervisor Agnar Aamodt for his advice, discussions
and help during the work with this thesis. Also I would like to thank Arild
Faxvaag for his advice and input on the medical parts of the system.

III

IV

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 2
1.3 Medical view . 3
1.4 Research method . 4
1.5 Overview . 5

2 Theory 7
2.1 CBR . 7
2.2 Conversational CBR . 8

2.2.1 Question selection in CCBR 9

3 System design 15
3.1 C++ core . 15
3.2 Case design . 17
3.3 Similarity assessment . 19
3.4 Domain model . 21
3.5 System process . 22

3.5.1 System initiation and inferencing 23
3.5.2 Question ranking and user selection 24

4 System simulation 25

5 conclusion 31
5.1 Discussion . 31
5.2 Related research . 32
5.3 Conclusion . 32

Bibliography 35

Appendices 38

V

A Test cases 39

B Included zip file 43

VI

List of Figures

1.1 Medical view . 4

2.1 The CBR cycle . 8
2.2 The semantic relation hierarchy 11
2.3 Explanation paths with their weights 12
2.4 Example of taxonomy with indexing from cases and scores,

from [14] . 14

3.1 The semantic network created for a case 16
3.2 Example screenshot of the information listed in Felleskatalogen 18
3.3 Showing the query statements and how the system is unable

to manage two of the same feature in one case 20
3.4 Example showing how part of the domain model should be . . 22

4.1 Cases added to the casebase and current features added to the
query, after drug selection by user 26

4.2 Similarity assessment after drug selection 27
4.3 Query status after first question answered 27
4.4 Similarity assessment after first question answered 28
4.5 Query status after second question answered 29
4.6 Similarity assessment after second question and solution to the

most similar case . 29

VII

VIII

List of Tables

3.1 Test case 1 . 17
3.2 Test case 2 . 19

4.1 List of drugs that the user can select from 25
4.2 List of questions that the user can select from 27
4.3 Updated question list . 28

A.1 Test case 3 . 39
A.2 Test case 4 . 40
A.3 Test case 5 . 40
A.4 Test case 6 . 40
A.5 Test case 7 . 40
A.6 Test case 8 . 41
A.7 Test case 9 . 41
A.8 Test case 10 . 41

IX

X

Chapter 1

Introduction

This thesis studies the possibility of using Conversational Case-Based Rea-
soning (CCBR) in a system to help share patient experiences about the side
effects of drugs. This will be done by looking at related research within
this area and studying CCBR methodology to find the best solutions for the
system.

1.1 Motivation

Patients often want to know how other patients have responded to the treat-
ment they are getting. We want to create a system where patients can share
their experience with a drug with other patients. With the use of the Internet
for gathering information, also about medical issues, rapidly growing among
the average population, this system can give the patients the possibility to
check if side effects of the drug they are taking can be responsible for a new
illness they are experiencing and possibly give a solution that has worked for
similar patients.

Case-Based Reasoning (CBR) is an excellent method to use for reasoning
on this kind of data. Each treatment of a patient would be a case and it
would have features such as what drug the patient is using, any additional
medicaments the patient is using, any side effects experienced and so on.
These features can then be weighted and you can then use these cases to
reason what a good solution could be to a new case.

One problem with using ordinary CBR is that the users, here the patients,

1

1.2. GOAL CHAPTER 1. INTRODUCTION

would have to know how to fill out a complete and correct case to get a good
solution. Since the patients are not experts at this system and should not
have to be, they need to get help with this. A solution to this problem is
using CCBR. Here you only start with a partial case and from this case the
system asks the user questions to help fill out a correct query. This means
that you will have an interactive process until the system provides a case
solution that is acceptable by the user, or the system has no more questions
to ask to make a better solution than the cases it is already presenting.

With Mingyang Gu finishing his PhD within the CCBR field there has been
an increasing interest for the subject in the group for intelligent systems here
at NTNU. There are 4 students working on master thesis within the field
this spring and in cooperation with Trollhetta AS it has been decided to
try to develop a new CCBR system from scratch. The other three master
students are working as part of a large European project for Improved treat-
ment of pain, depression and fatigue through translational research under
The European Palliative Care Research Collaborative.

1.2 Goal

The goal of this thesis is to look at the requirements and the possibility of
making a CCBR system which allows patients to share their experiences of
side effects with using pain-relievers. This includes:

• Designing case structures

• Construct example cases

• Designing methods for inferencing and question ranking

• Describe how the domain model should be

• Test cases in the new CCBR core from Trollhetta AS

There will be a need to study different articles about CCBR to determine
what kind of functionality is needed to create a good system and which
solutions are preferred. It will also be necessary to look at existing medical
CBR and CCBR systems.

2

CHAPTER 1. INTRODUCTION 1.3. MEDICAL VIEW

1.3 Medical view

It is essentially three questions we want the system to be able to give an
answer on, to a patient. The first is if the problem the patient is experiencing
could be caused by side effects of a drug the patient is already using. This
will have to be based on what is known side effects of the drug. The second
question is if the patient should cease the therapy with the current drug or
not. In some cases the best alternative is to continue with the drug even
though the patient experiences side effects. This will of course depend on
what the side effects are, what the treatment is for and if there are any
alternatives to the drug the patient is currently taking. The last question is
if the patient decides to cease the treatment with the current drug, should
he or she change to a different drug or end the medical treatment.

A lot of the solutions that will be presented to the patient, will require the
patient to consult with a doctor before making a drug related decision. For
all drugs that are subject to a prescription, any changes to the medical treat-
ment will have to go through their physician. The patient will however be
able to see what has worked for other patients with similar cases and be bet-
ter informed about his own illness when discussing with his physician, what
to do next. For non prescription drugs, the solution offered may be to switch
to an alternate drug.

3

1.4. RESEARCH METHOD CHAPTER 1. INTRODUCTION

Figure 1.1: Medical view

1.4 Research method

This thesis will be based on a study of CCBR systems, in particular the one
described by Gu and Aamodt in [13], and their methods. The focus will be
on creating and describing the design of a CCBR system for patients to share
their experience of side effects. This will be done with a basis in the drug
information found in Felleskatalogen [1]. We will present a simulation of how
an experience with the system would be. The cases will be implemented in
the C++ core, from Trollhetta AS, to test if they are compatible.

4

CHAPTER 1. INTRODUCTION 1.5. OVERVIEW

1.5 Overview

The rest of this thesis is organized as follows. In chapter 2 we present the
background CBR and CCBR theory, with emphasis on inferencing and ques-
tion ranking. Then in chapter 3 we describe the system design and in chapter
4 we show an example of a simulation of a dialogue with a user. In chapter
5 we have final discussions, related research and our conclusions.

5

1.5. OVERVIEW CHAPTER 1. INTRODUCTION

6

Chapter 2

Theory

2.1 CBR

Case-Based Reasoning (CBR) is a method for solving problems, were you use
similar experiences to derive a solution for a problem you are facing [3]. These
older experiences are stored in cases. The system then checks for similarities
between old cases in the casebase and the new problem case, and retrieves
the best matches. This case matching can be done by a simple comparison
of each feature in the query, with each feature in the different cases in the
casebase. A more advanced solution is using knowledge intensive reasoning
by adding a domain model with explicit general domain knowledge [2].Then
this best match case or cases are reused to form a solution to the problem at
hand. This solution is then revised to adjust it to the current problem. And
finally the system can retain the new solution case for later use, by storing
it in the case base. This forms the well known CBR cycle, seen in figure 2.1.

Each case is comprised of several features describing a problem and a solu-
tion, if it is a solved case. These features each have a value and together
they make a feature value pair. If all the values are either empty or have one
discrete value, this can be numeric or a string, the case is called a point case.
For several systems you may want to have intervals as a feature value. To be
able to handle this you need to use generalized cases, were each feature can
have multiple values [7].

The domain model is a way to enter known general knowledge from the
domain experts into the system, so that the system can use this knowledge

7

2.2. CONVERSATIONAL CBR CHAPTER 2. THEORY

Figure 2.1: The CBR cycle

to present a better solution to a proposed question. This can be done by
filling in this knowledge in a set of entities and relations, with the relations
binding the entities together. With the different relations you have different
qualities shared between the entities, such as inheritance or causality.

2.2 Conversational CBR

CCBR is a version of CBR in which the user participates in an interactive
dialog with the system to create the query used in case-matching. The user
therefore does not have to know which features are important for the system

8

CHAPTER 2. THEORY 2.2. CONVERSATIONAL CBR

or why they are important. The system will supply a list of questions, from
which the user will be able to select which ones to answer. This have made
CCBR systems work very well in real world implementations, where the users
are not necessarily domain experts and there are a lot of uncertainties that
are hard to predict while developing the system [4].

CCBR was first used by the Inference Corporation in their product line
for customer support tools [6]. There have since been several other systems
like the Casebank Technologies use of CCBR in diagnosis of jet engines. In
the recent years there has also been a large increase in research programs in
this field. Aha and Gupta looked at the possibility of using taxonomies to
help with different abstraction levels, and causal relations between the tax-
onomies to better performance even more [14] [5]. Gu and Aamodt looks at
more relations among concepts in [9] and the possibility of generalized cases
in CCBR in [11].

As with a normal CBR system, a CCBR system can learn from storing new
solved cases in the casebase, which will enable these solutions to be used
in finding a solution to any new problems entered. With CCBR there can
also be some value in storing the question/answer path that was selected.
This can then be used to rank questions chosen by previous user in the same
situation higher on the questions list presented to a user on a new problem
[12].

This advantage in user-friendliness also adds a few design problems. Like
how the system decides which questions to present to the user? The system
should ask the user as few questions as possible to arrive at the best solution
as fast as possible.

2.2.1 Question selection in CCBR

In CCBR an important part of the system is which questions to ask and in
what order to ask them. The user should experience that the questions are
coming in a natural order and should not be asked unnecessary questions. To
get the best possible case match, as quickly as possible, the CCBR system
should also select the most discriminative questions.

9

2.2. CONVERSATIONAL CBR CHAPTER 2. THEORY

Semantic relations

In [9] Gu and Aamodt look at how this problem can be solved in a knowl-
edge intensive system. They identify two ways to do this, where one is to
remove questions where the answer can be inferred from information already
provided by the user. The second way is to rank the remaining questions and
there are several criteria to use for this purpose. In the general domain model
they identify five semantic relations that are used to infer new information
from the information provided, help rank questions or both.

The first relation is concept abstraction which makes a hierarchy with sub-
classes, as in Volvo is a subclass of car. If we have A is a subclass of B,
concept abstraction can be used to infer B if we already have A which means
that we don’t have to ask about B. If we don’t have either A or B concept
abstraction can used in question ranking to decide that B should be asked
before A, because if we don’t have B we will not have A.

Dependency relations defines that one concept depends on the existence of
another concept. If we have A depends on B, this can be used in question
selection to infer B if we already have A, or decide that B should be asked
before A if we don’t have either A or B.

Causality relations defines that one concept causes the occurrence of an-
other concept. If we have A causes B, then this can be used in question
selection to infer B if we already have A, or that A should be asked before
B if we don’t have either A or B.

Correlation relations are used to define two concepts that always occur to-
gether. If you have A correlates with B, then you can infer A if you have B
or you can infer B if you have A. This can not be used in question ranking.

At last we have Practical costs which represents a way to say that one piece
of information is more costly to figure out than another. This can be used in
question ranking if we have A is more costly than B then B should be asked
before A.

These five semantic relations are placed as subclasses under infer and follows
in the semantic relation hierarchy, as seen in figure 2.2. The infer relation
is used for dialogue inferencing and the follows relation is used in question
ranking.

10

CHAPTER 2. THEORY 2.2. CONVERSATIONAL CBR

Figure 2.2: The semantic relation hierarchy

Knowledge intensive CCBR

By using dialog inferencing and question ranking it is possible to lessen the
cognitive load on the user, and to have the questions asked in a more natu-
ral way for the users you can implement consistent question clustering and
coherent question sequencing [10].

After the initial input or after a question has been answered by the user,
the system will match the updated query with the cases in the casebase and
retrieve a selection of the best matching cases. Then the feature instances
present in the retrieved cases, which are missing in the query, will be turned
into questions with answers. The system can then try to infer new informa-
tion by using the relations between nodes in the domain model. This is done
by activating the query features corresponding nodes in the domain model
and explore the relations from each of these nodes. If you have a relation
which can adhere to the infers relation, as seen in figure 2.2, the system will
be able to construct explanation paths through these relations to nodes, cor-
responding to the answers to the questions, with a weight. This weight is the
relation weight between the two nodes or the multiplication of the relations
weights if the system needs to traverse several nodes and relations, see figure
2.3. Finally in what is called the focus step, the system evaluates the weights
on the explanation paths against a threshold to decide if the information in

11

2.2. CONVERSATIONAL CBR CHAPTER 2. THEORY

the destination node should be added to the query as a new feature.

Figure 2.3: Explanation paths with their weights

The remaining questions will then be ranked. This is done by applying a
method similar to the one used for inferencing, but using relations that can
adhere to the follows relation instead. Among the remaining questions, the
system will activate their nodes in the domain model and try to build expla-
nation paths between them. Then these paths will be evaluated according
to their relation weight in comparison to a threshold. The questions with an
explanation path that justifies being asked before another question according
to the threshold is then placed in one list, the rest is placed in a second list.
The first list is then ranked by the weights on the explanation paths and
added to the top of the question list presented to the user. The second list of
questions can then be ranked by using statistical metrics such as information
gain or occurrence frequency and added to the bottom of the list presented
to the user.

Consistent question clustering is to group up questions within the question
ranking so that questions with a semantic relation between the features are
close together. This is to make it easier on the user and make it more natural,
because the user will be able to see groups of similar questions instead of sin-

12

CHAPTER 2. THEORY 2.2. CONVERSATIONAL CBR

gle ones spread out. As an example it would be preferable to have questions
about what illness the patient is experiencing grouped up, then questions
about what dosage the patient is taking and for how long it has taken the
drug and so on, instead of having the questions spread out as one question
about experienced illness, then dosage and then back to experienced illness
and so on.

Coherent Question selection is about making the question sequence more
natural. This is done by implementing that in the next question sequence,
after a questions has been answered by a user, the questions asked are ranked
so that follow up questions from the last answer comes high up on the ques-
tion ranking. If a question about a feature were answered by the user and
this feature has one or more subclasses it would be natural to ask about this
or these subclasses next, so these questions should be ranked high in the next
question sequence.

Taxonomic CCBR

Earlier Gupta made a solution to lessen the cognitive load on the user with
Taxonomic CCBR [14]. In Taxonomic CCBR the method is to create a
taxonomy of nodes placed in a hierarchy, with the nodes representing question
answer pairs. The relations between these nodes are ”is a” relations or in
other words abstraction, which means that an ancestor node will subsume
all its children nodes. Cases consist of a solution and a problem description
made up of features, which are question answer pairs. These features index
the cases to the taxonomy and no two features in a case refer to the same
question or are related by an abstraction relation. Each of these indexes
also have a similarity score associated with them. This score is calculated
by looking at where the answered feature in the query are, compared to the
feature indexed by a case in a taxonomy. If the indexed feature is an ancestor
of the query feature the score is 1. If it is a descendant it is lower than 1 and
will be lower the further down the hierarchy it is, although it also considers
the density of nodes. For a parent node this score will be accumulated from
all its children indexing scores and combined, shown in figure 2.4.

A set of cases is selected from the casebase and presented to the user between
each dialogue cycle. This is based on the similarity of the query from the user
compared to the cases in the casebase and only the cases whose similarity

13

2.2. CONVERSATIONAL CBR CHAPTER 2. THEORY

Figure 2.4: Example of taxonomy with indexing from cases and scores, from
[14]

exceeds a threshold are retrieved. With these taxonomies and indexed cases
we can select questions to ask and rank these. In the figure 2.4 it is assumed
that the user has answered the question t1 and the system would then se-
lect the descendants directly below this one to present to the user. If the
query did not have any answered questions from the taxonomy, the system
would choose the most specific node that subsumes the set of retrieved cases.
To rank the questions the system gives each question two scores, taxonomy
score which would be 2.0 in this example and equal for t2, t3 and t4, and a
score that is the sum of its corresponding question answer pair scores, in this
example 0.9 for t2, 0.5 for t3 and 0.6 for t4. The questions are then ranked
first by taxonomy score and then by the question answer pair score, which
gives the list t2, t4 and t3 in this example. They show that these relations
reduce the number of questions needed to ask and reduces the number of
features needed to index each case.

Aha and Gupta later released an enhanced version, called Causal CCBR
[5], where they allow for the use of causal relations between root nodes of
Taxonomies.

14

Chapter 3

System design

When designing a CCBR system there are several parts that needs to be
studied and solutions decided upon. In this chapter we describe the design
of our system, with case structure, similarity assessment, question creation
and ranking, inferencing and the important parts of the core from Trollhetta
AS.

3.1 C++ core

The intelligent systems group at NTNU, has used Creek [2] as its CBR im-
plementation system for quite a few years now and with this shift towards
CCBR they wish to develop a new system. This project has been started
in cooperation with Trollhetta AS and a system core has been implemented
during the spring of 2007. As opposed to Creek which was implemented in
Java, the new system will be implemented in C++.

There were some bugs with the version that was first made by Trollhetta AS.
Tor Gunnar Høst Houeland, one of the four students working on a project
this spring, made another version where a lot of these bugs were fixed. This
is the version I used in this project.

So far the implemented system is a very simple core without any user in-
terface. You have the possibility of making casebases, adding cases to a
casebase, add features to a case and a value to these features, there is also a
simple similarity measurement method. However, it has been made so that
it can be expanded to include a domain model, as this is something that will

15

3.1. C++ CORE CHAPTER 3. SYSTEM DESIGN

be implemented in the future. This means that every case, feature and value
has to be put into a network of entities and relations, which complicates
doing minor changes to the system. The semantic network constructed for a
case is shown in figure 3.1.

Figure 3.1: The semantic network created for a case

The top level node in this hierarchy is the Entity node. Both Case and Fea-
ture is connected to this node through an instance of relation. Each different
case and each different feature is then connected to Case and Feature respec-
tively also through an instance of relation. From the different cases you then
have a ”has finding” relation to each feature which is found in that case,
and from each of these features you have a ”has type” relation to the correct
type and a ”has value” relation to the correct value. All values are instances
of Value, which again is an instance of Entity and all types are instances if
Entity.

16

CHAPTER 3. SYSTEM DESIGN 3.2. CASE DESIGN

Drug Aspirin Bayer, tablets 500mg
Substance of effect Acetylsalicylic acid
Dosage 1 tablet, 3 times a day
Period of use 2 days
Experienced problem by patient Nausea
Experienced problem by patient Vomiting
Solution Stopped use of tablets, problems ceased

after a couple of hours. Tried other non
prescription pain-relieving drugs with
different substance of effect, Paracet,
Paracetamol.

Table 3.1: Test case 1

3.2 Case design

To make an example of how these cases can look we have made a few test
cases, with aid and advice from doctor Arild Faxvaag at St. Olavs Hospital,
to show what they will include. It was decided to select drugs from pain
relievers listed in Felleskatalogen [1]. We then used the information listed
in Felleskatalogen about known side effects, substance of effect and normal
dosage, see figure 3.2. We selected a drug and found its substance of effect,
then looked at the normal prescribed dosage and chose an appropriate solu-
tion within this frame, but making sure we got a few different choices between
the cases. Next we selected one or more side effects listed as known side ef-
fects of the drug, making sure we chose some similar, but not identical, and
some completely different. The solutions were then shortly discussed with
Arild Faxvaag to make sure they were reasonable. As there were no data sets
available, this was decided as an acceptable solution. Two examples can be
seen in table 3.1 and 3.2.

Drug - The commercial name of the drug and also what kind of form it is in
and strength if this is applicable. This would be the first thing the patients
would input when using the system. Which one to select, if there are sev-
eral with the same name, should be possible to determine by the patients by
looking at the prescription or drug package.

Substance of effect - This is as the name suggests the name of the sub-
stance of effect in the drug. The system should be able to infer this from the

17

3.2. CASE DESIGN CHAPTER 3. SYSTEM DESIGN

Figure 3.2: Example screenshot of the information listed in Felleskatalogen

drug entered by the patient, using the domain model with information from
Felleskatalogen.

Dosage - The amount the patient is taking of the drug per day. This can be
listed as tablets per day, millilitre per hour and how many times a day and
so on.

Period of use - This is to represent how long the patient had used the drug.
For shorter periods of use it would be normal to list this in the exact number
of days the patient has used the drug, but when the drug is used over longer
periods we think that it should be sufficient to round off to number of weeks
or months.

Experienced problem by patient - What problem is the patient experienc-
ing, which the patient believes can be related to the drugs the patient is
taking.

18

CHAPTER 3. SYSTEM DESIGN 3.3. SIMILARITY ASSESSMENT

Drug Panodil Zapp
Substance of effect Paracetamol
Dosage 1 tablet, 3 times a day
Period of use 1 days
Experienced problem by patient Allergic reaction
Experienced problem by patient Skin rash
Solution Stopped treatment

Table 3.2: Test case 2

Solution - This is what the patient of the case did to solve the problem,
and what effect this action had on the patient. There can also be an expla-
nation as to why this was the selected approach.

After a discussion with Arild Faxvaag about the features we decided to not
add the features of age, sex and weight of the patient. These features would
probably not be that important in the process of separating cases, except in
special circumstances. So for easier demonstration of the system they were
removed. However we did discuss how this information may also be imported
from other databases if the CCBR system would require the patient to log
in, as a lot of this information would already be collected from the patient.

3.3 Similarity assessment

To measure how similar cases are you need a similarity method and the one
implemented in todays system is pretty simple. It compares the number of
feature value pairs in the query that match the feature value pairs in each
of the cases in the casbase and gives a score between 0 and 1, depending on
the number of matches out of the total. Where 1 means that you have a
complete match and lower score means the case from the casebase does not
match all the feature value pairs in the query. The exact formula used to
calculate the similarity score is 1

distance−1
, where distance is the number of

feature value pairs the case is missing compared to the query. The method
is query-biased, which means that you use the features of the query as a
base for comparing. So if a query has 3 feature value pairs, any case in the
casebase which include those 3 feature value pairs will get a similarity score
of 1, any excess feature value pairs does not matter. The value each feature
adds to the distance is set to 1 in the system, but this can be set to any

19

3.3. SIMILARITY ASSESSMENT CHAPTER 3. SYSTEM DESIGN

number between 0 and 1 to give different weights to each feature.

One problem with the similarity method in todays system is that it cannot
handle several features of the same type in one case. It will only compare
the first feature value pair of that type of feature, both in the query and the
cases from the casebase. Because of this you can get some unexpected results
as seen in figure 3.3. Depending on the order in which the test features are
entered you will get different scores on the similarity of the cases. This could
cause the patient to be presented with different solutions. By alternating the
order in which the features were added to the cases and the query, and then
run the system one time for each feature, we were able to circumvent this
problem in our test of the cases with the C++ core.

Figure 3.3: Showing the query statements and how the system is unable to
manage two of the same feature in one case

Case 6 only have nausea as experienced problem by patient, while case 1
has vomiting as its first and nausea as its second experienced problem by
patient. In the first test nausea is the first experienced problem by patient
in the query and since the system only counts the first of a type of feature

20

CHAPTER 3. SYSTEM DESIGN 3.4. DOMAIN MODEL

it thinks the query has two instances of the value nausea, therefore case 6
match complete with the query. Case 1 on the other hand gets a distance of 2
because the system only sees that it has vomiting as experienced problem by
patient. The opposite is true in the second test, here case 1 gets a complete
match while case 6 gets a distance of 2.

3.4 Domain model

Building the domain model has not had primary focus yet, but it has been
considered necessary and very valuable to the system, as a domain model is
needed to use many of the methods for question selection in section 2.2.1.
When looking at the domain model I have focused on what will be required
to make the knowledge intensive methods work and what other possibilities
it offers. With the system today all cases, features and values are put into a
knowledge model and connected through a network, but without connecting
this network to a domain model it is of no use.

An example of how this domain model could be implemented is shown in
figure 3.4. Here we can see how the different drugs can be organized in sub-
classes by which substance of effect they have. With a ”depends on” relation
from these subclasses to the appropriate instance of substance of effect, it
will be possible to infer what substance of effect a patient is getting when
we know the drug. As seen in figure 3.4 if we know that a patient is taking
Aspirin the system will be able to infer that the substance of effect is acetyl-
salicylic acid, because aspirin is an instance of drugs with acetylsalicylic acid,
which has a depends on relation to acetylsalicylic acid, which again is an in-
stance of substance of effect.

It is also shown how side effects can be connected to the different instances
of drugs by the causes relation. In figur 3.4 we have that Aspirin can cause
skin rash, nausea and vomiting. These relations will have to be weighted
according to the probability of this effect happening to a patient, as the drug
will not always cause these side effects. We also see the possibility of placing
a depends on relation between side effects where this is appropriate, as in
vomiting depends on nausea.

It would be helpful to be able to import information from other databases,

21

3.5. SYSTEM PROCESS CHAPTER 3. SYSTEM DESIGN

Figure 3.4: Example showing how part of the domain model should be

preferable automatically, into the domain model. With these tools it should
be possible to design a general domain model where you have the drugs from
Felleskatalogen, with their substance of effects, their side effects and so on.
Also importing patient data, such as age, sex, weight, height and so on, from
patient records if needed.

3.5 System process

In a CCBR system, the system cycle that runs the process forward is the
interactive dialogue with the user. Questions are generated by turning feature
value pairs, from cases in the casebase that do not match the feature value
pairs in the query, into new questions. A typical example could be that
you have a case in the casebase with a feature ”Experienced problem by
patient” and value ”Nausea”. If the query do not have that feature value
pair, a question added to the question list could be ”What problems have you
experienced after using the drug?”, with ”Nausea” as one of its answers.This

22

CHAPTER 3. SYSTEM DESIGN 3.5. SYSTEM PROCESS

can of course become quite a large list with a large number of different cases
in the casebase, so we try to remove unnecessary questions and rank the
remaining to lessen the cognitive load on the users. From section 2.2.1 there
are several methods to improve this.

3.5.1 System initiation and inferencing

To start of the dialog the patient would input the drug he or she is using.
Preferable this would be done from a list so the patient do not have to type
out anything themselves, just select the correct options throughout the sys-
tem interaction. As it will be very important to know which drug the patient
is using to narrow the amount of cases that needs to be searched, this should
always be answered first. This is because if the goal is to include most of the
drugs in Fellekatalogen one day, there will be a very large amount of cases
with similar side effects, but for different drugs and there will of course be
different solutions of what the patient should do depending on what drug the
patient is using. Our suggestion is therefore to include this drug selection in
the startup of the system, so that this question always will be answered first.
This startup procedure could also include the patient logging in to allow for
the use of patient records to be imported if this is found useful in the future.

Now the system needs to compare all the cases in the casebase to the query
and rank them according to similarity and then select the best matches. This
is described in section 3.3. From these cases questions are made as explained
earlier in section 3.5. When the system now knows what questions to present
to the user it can try to determine the answer of some of them with the help
of the domain model. This is done by activating the nodes of the query fea-
tures in the domain model and follow the relations to explore if it can reach
an answer with sufficient weighting to satisfy the threshold. For example if
looking at 3.4, if the input drug is Aspirin, the system should be able to
infer that the substance of effect for this drug is acetylsalicylic acid and add
this to the query. This is because instance of relations normally have a high
weight, as does the depends on relation. In this specific case the weights
could actually be set to 1 as these relations are 100% sure for these nodes.
The causes relations however should not be weigthed high enough for the
system to add those nodes to the query, as these are only possibilitys that
the drug can cause.

23

3.5. SYSTEM PROCESS CHAPTER 3. SYSTEM DESIGN

3.5.2 Question ranking and user selection

After adding any features that can be inferred, the system will need to rank
the questions left. Finally the system will have to present the highest ranking
questions and cases to the patient. Then the patient has to decide if one of
the cases presented gives a good enough solution to the problem experienced
by the patient, or if not, select one of the questions presented and answer
it, starting another round in the cycle. It is of course unlikely that a good
enough solution will be presented after the first round, as the patient has not
even answered what problem he or she is experiencing.

Question ranking is done by exploring the nodes from the questions fea-
tures to see if one can create an explanation path, through follows relations,
with high enough weight to surpass the threshold. If you as an example have
a caused by relation between two question feature nodes, as in A is caused
by B, with a high enough weight to surpass the threshold, then question B
should be asked before A. Questions that because of this gains ranking over
other questions are placed in one list and ranked according to the weight on
the explanation path. The remaining questions will at this point be sorted by
a simple method that evaluates which question that separates the most cases.
This is done by calculating the number of different answers the questions has.
These questions are then placed below the ones first separated.

24

Chapter 4

System simulation

This is a presentation of how the system will be experienced by the user
once it is implemented. We have used the core with test cases to show the
similarity assessment between the cases for each iteration of the dialogue
with the user. To simulate the rest of the system that is not implemented we
enter in the features of the query manually for each iteration and show what
questions, answers and cases that would be presented to the user.

The user selects the appropriate drug from the list in table 4.1. In this
example the user selects ”Aspirin, tablets 500mg”. The system will find out
that the substance of effect for Aspirin is acetylsalicylic acid and add this
feature to the query. In figure 4.1 we can see what cases are added to the
casebase in this example and at the bottom the current query, with the two
features, drug and substance of effect.

Selectable drugs
Aspirin, tablets 500mg
Aporex, tablets
Paracetamol, tablets
Panodil Zapp
Morfin Nycomed Pharma, tablets 10mg

Table 4.1: List of drugs that the user can select from

25

CHAPTER 4. SYSTEM SIMULATION

Figure 4.1: Cases added to the casebase and current features added to the
query, after drug selection by user

26

CHAPTER 4. SYSTEM SIMULATION

Questions Answers

What problems have you
experienced since taking
the drug?

Nausea
Vomiting
Skin rash

What dosage are you taking
of the drug per day?

1 tablet, 2 times a day
1 tablet, 3 times a day

How long have you been
using the drug?

1 day
2 days

Table 4.2: List of questions that the user can select from

The run from the similarity assessment of the cases is shown in figure 4.2. The
user will then be able to view the best cases or choose among the following
questions, with their respective answers, listed in table 4.2. This time the
user selects question 2, what dosage are you taking of the drug per day, and
answers 1 tablet 3 times a day. This feature value pair are then added to the
query, as seen in figure 4.3.

Figure 4.2: Similarity assessment after drug selection

Figure 4.3: Query status after first question answered

27

CHAPTER 4. SYSTEM SIMULATION

Questions Answers

What problems have you
experienced since taking
the drug?

Nausea
Vomiting
Skin rash

How long have you been
using the drug?

1 day
2 days

Table 4.3: Updated question list

With this updated query a new similarity assessment will be run, with results
seen in figure 4.4. Now we see that only 2 cases remain equal to the query.
The user will be presented with these cases and the similarity result, together
with an updated set of questions. The questions presented are shown in table
4.3 and the user chooses to answer what problems have you experienced since
taking the drug with skin rash.

Figure 4.4: Similarity assessment after first question answered

28

CHAPTER 4. SYSTEM SIMULATION

Now the query will have added, as you can see in figure 4.5, the feature
”Experienced problem by patient” with value ”Skin rash”. Again the system
will run a similarity assessment and this time only one case matches the
query, shown in figure 4.6. This case will be presented to the user, with
its suggested solution. The user can of course go back and answer different
questions or select other answers, if he or she is not satisfied with the case
and solution offered.

Figure 4.5: Query status after second question answered

Figure 4.6: Similarity assessment after second question and solution to the
most similar case

29

CHAPTER 4. SYSTEM SIMULATION

30

Chapter 5

conclusion

5.1 Discussion

The selection of what kind of inferencing and question ranking methods to
choose for our CCBR system was relatively easy. It was wanted to use the
new CCBR system being developed at NTNU based on the C++ core from
Trollhetta AS. As this would be a general CCBR system and not specifically
made for this system, it would need to be implemented with a set of general
CCBR methods that would work for several systems. As the methods de-
scribed in [13] satisfies these needs and the needs of our CCBR system, it is
natural to continue the work that has been done here at NTNU. Of course
we had to check related research and it was very valuable to study Guptas
system [14], as it provided another angle on a lot of the same ideas.

On the subject of cases we would have preferred to use real data for the
case construction. As this was not available, the solution to create the cases
from the information in Felleskatalogen [1] and make up a sound solution,
was decided acceptable. As we only used information from Felleskatalogen
for the problem descriptions and what the solution presented at this point
is not crucial. For a future implementation and real testing of the system,
there should of course be collected real data for the cases.

The problem with the similarity method in the C++ core, which can not
handle more than one of each type of feature in a case or query, was un-
resolved and just circumvented in the testing of the cases. This was choice
made after examining the code and realizing that we would have to rewrite

31

5.2. RELATED RESEARCH CHAPTER 5. CONCLUSION

most of the similarity method to fix it. As this is a very simple similarity
method, that will be further developed and probably completely revised and
rewritten in the future, it was decided it was not worth the effort at this
time. This was both because of the time constraint, and because it did not
have a big impact on the testing of the cases or the simulation of the system.

5.2 Related research

Bichindaritz and Sullivan have developed a system called Care-Partner [8].
This system tutors medical students over the internet, providing them with
practice cases to help test their skills. Care-Partner also gives the student a
result of either fails to meet standards, adequate and meets all standards.

McSherry is arguing that interactive CBR is a good solution for a lot of
sequential diagnosis problems [15]. Also implementing an interface called
CBR strategist with demonstration of its use in the domain of computer
fault diagnosis.

In ”Advancements and trends in medical case-based reasoning: An overview
of systems and system development” [16], Nilson and Sollenborn gives a good
overview over the field of CBR within the medical domain. They divide sys-
tems into 4 groups by looking at their medical application, diagnostic sys-
tems, classification systems, tutoring systems and planning systems. They
also discuss the CBR specific construction trends for CBR systems within
the medical field.

5.3 Conclusion

The study of the CCBR systems in chapter 2 gave a very good insight in
knowledge intensive CCBR methods. This gave us a solid platform to build
from, when designing our own system. The designed system has cases built
from information from Felleskatalogen and we designed the example domain
model to meet the requirements of the knowledge intensive CCBR methods
used in our system. The designed methods for question selection in our sys-
tem is inferencing and question ranking. We also described the C++ core
from Trollhetta AS and the similarity method present in that code. Finally

32

CHAPTER 5. CONCLUSION 5.3. CONCLUSION

we presented how a patient would experience a dialogue with the system.

The design we have created is a good basis for implementing a knowledge
intensive CCBR system. The system should work better than a normal
CCBR system, because of the inferencing and question ranking methods,
which should lessen the cognitive load on the user and require fewer ques-
tions answered, to reach a good solution.

There is still quite a bit of work left before this system will be able to be put
into effective use, but we have shown some of the possibilities that this sys-
tem has. The design will need to be fully implemented and a better similarity
method for comparing cases should also be studied and implemented. For
the cases it will be needed to collect data about solutions used from patients.
A complete domain model will also have to be made.

33

5.3. CONCLUSION CHAPTER 5. CONCLUSION

34

Bibliography

[1] Felleskatalogen. http://felleskatalogen.no.

[2] Agnar Aamodt. Knowledge-intensive case-based reasoning in creek. Ad-
vances in Case-Based Reasoning, 7th European Conference, ECCBR
2004, pages 1–15, 2004.

[3] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational
issues. methodological variations and system approaches. AI Commu-
nications, Vol 7 Nr 1, pages 39–59, 1994.

[4] David W. Aha, Leonard A. Breslow, and Hector Munoz-Avila. Conver-
sational case-based reasoning. Applied intelligence, pages 1–25, 1999.

[5] David W. Aha, Kalyan Moy Gupta, and Nabil Sandhu. Exploiting taxo-
nomic and causal relations in conversational case retrieval. Advanced in
Case-Based Reasoning: 6th European Conference, ECCBR 2002, pages
175–182, 2002.

[6] David W. Aha, David Mcsherry, and Qiang Yang. Advances in con-
versational case-based reasoning. The knowledge engineering review, vol
20:3, pages 247–254, 2006.

[7] Ralph Bergmann and Ivo Vollrath. Generalized cases: Representation
and steps towards efficient similarity assessment. Advances in Artificial
Intelligence: 23rd Annual German Conference on Artificial Intelligence,
Proceedings, page 698, 1999.

[8] Isabelle Bichindaritz and Keith Sullivan. Generating practice cases
for medical training from a knowledge-based decision-support system.
Workshop Proceedings, ECCBR 02, pages 3–14, 2002.

[9] Mingyang Gu and Agnar Aamodt. Explanation-Boosted Question Se-
lection in Conversational CBR. PhD thesis, NTNU, 2005.

35

http://felleskatalogen.no

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Mingyang Gu and Agnar Aamodt. A Knowledge-Intensive Method for
CCBR. PhD thesis, NTNU, 2005.

[11] Mingyang Gu and Agnar Aamodt. Supporting Generalized Cases in
Conversational CBR. PhD thesis, NTNU, 2005.

[12] Mingyang Gu and Agnar Aamodt. Dialog Learning in Conversational
CBR. PhD thesis, NTNU, 2006.

[13] Mingyang Gu and Agnar Aamodt. Knowledge-Intensive Conversational
Case-Based Reasoning in Software Component Retrieval. PhD thesis,
NTNU, 2006.

[14] Kalyan Moy Gupta. Taxonomic conversational case-based reasoning.
Proceedings of the fourth ICCBR, pages 219–233, 2001.

[15] David McSherry. Interactive case-based reasoning in sequential diagno-
sis. Applied Intelligence 14, pages 65–76, 2001.

[16] Markus Nilsson and Mikael Sollenborn. Advancements and trends in
medical case-based reasoning: An overview of systems and system de-
velopment. Proceedings of the 17th International FLAIRS Conference,
Special Track on Case-Based Reasoning, pages 178–183, 2004.

36

Appendices

37

Appendix A

Test cases

Drug Aporex, tablets
Substance of effect Paracetamol
Substance of effect Dekstropropoksyfenhydrochlorin
Dosage 1 tablet, 2 times a day
Period of use 4 days
Experienced problem by patient Headache
Experienced problem by patient Dizziness
Solution Contacted doctor and got prescribed

another drug, Paralgin forte.

Table A.1: Test case 3

39

APPENDIX A. TEST CASES

Drug Paracetamol Alpharma, tablets
Substance of effect Paracetamol
Dosage 1 tablet, 3 times a day
Period of use 2 days
Experienced problem by patient Diarrhoea
Solution Not known sideeffect. Contacted doc-

tor.

Table A.2: Test case 4

Drug Morfin Nycomed Pharma, tablets 10mg
Substance of effect Morfinsulfat
Dosage 1 tablet, 4 times a day
Period of use 2 weeks
Experienced problem by patient Reduced urination
Experienced problem by patient Itching
Solution Contacted physician, decided to con-

tinue treatment.

Table A.3: Test case 5

Drug Aspirin Bayer, tablets 500mg
Substance of effect Acetylsalicylic acid
Dosage 1 tablet, 3 times a day
Period of use 2 days
Experienced problem by patient Nausea
Solution Stopped use of tablets, problems ceased

after a couple of hours. Tried
other non-prescription pain-relieving
drugs with different substance of effect.
Paracet, Paracetamol.

Table A.4: Test case 6

Drug Paracetamol Alpharma, tablets
Substance of effect Paracetamol
Dosage 1 tablet, 2 times a day
Period of use 2 days
Experienced problem by patient Skin rash
Solution Contacted physician, decided to stop

treatment. Skin rash disappeared after
a couple of days.

Table A.5: Test case 7

40

APPENDIX A. TEST CASES

Drug Aspirin Bayer, tablets 500mg
Substance of effect Acetylsalicylic acid
Dosage 1 tablet, 3 times a day
Period of use 2 days
Experienced problem by patient Skin rash
Solution Contacted doctor and stopped use of

tablets. Skin rash disappeared after
one day.

Table A.6: Test case 8

Drug Aporex, tablets
Substance of effect Paracetamol
Substance of effect Dekstropropoksyfenhydrochlorin
Dosage 1 tablet, 2 times a day
Period of use 2 days
Experienced problem by patient Nausea
Experienced problem by patient Stomachache
Solution Contacted doctor and stopped treat-

ment. Used lighter pain relievers, As-
pirin Bayer. Problems ceased in a few
hours.

Table A.7: Test case 9

Drug Aporex, tablets
Substance of effect Paracetamol
Substance of effect Dekstropropoksyfenhydrochlorin
Dosage 1 tablet, 2 times a day
Period of use 5 days
Experienced problem by patient Skin rash
Solution Contacted doctor and decided to con-

tinue treatment for another 2 days until
most of the pain had ceased. Skin rash
disappeared after a couple of days after
ended treatment.

Table A.8: Test case 10

41

APPENDIX A. TEST CASES

42

Appendix B

Included zip file

In the included zip file are the code files of the C++ core version made by
Tor Gunnar Høst Houeland, with my added cases and query. As there is no
GUI any testing has to be done by changing the query in the code. Changing
of the cases or the query is done in the file ”old-Main.cpp”. It is the possible
to run the program to do a similarity measurement. To run the program,
a C++ environment is required, EasyEclipse for C++ is recommended. It
is possible to get this at http://www.easyeclipse.org/site/home. Just
create a project and add the files in the zip file.

43

http://www.easyeclipse.org/site/home

