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Abstract

This is a Master’s thesis in how to make a tetrahedral mesh for use in a needle insertion simu-
lator. 1t also describes how it is possible to make the simulator, and how to improve it to make
it as realistic as possible. The medical simulator uses a haptic device, a haptic scene graph
and a FEM' for realistic soft tissue deformation and interaction. In this project a tetrahedral
mesh is created from a polygon model, and then the mesh has been loaded into the HaptX[1]
haptic scene graph. The objects in the mesh have been made as different haptic objects, and
then they have got a simple haptic surface to make it possible to touch them. There has not
been implemented any code for the Hybrid Condensed FEM that has been described.

'Finite Element Method
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Chapter 1

Introduction

This report describes how to make a medical simulator for needle insertion using a haptic
device and a FEM'. The FEM uses tetrahedrons to model the volume and the objects in the
model. The goal is to make a simulator that is capable of teaching medical students how to
insert a syringe into a human body. To do this the simulator needs to be as close to a real needle
insertion as possible. For optimal results the model of the body needs to deform and act as it
would in a real needle insertion.

The task of making a complete simulator is in it self to big too complete with this few resources.
So in this project the goal has been reduced to make a tetrahedral mesh that is suitable to use
with FEM in a medical simulator. When that mesh has been made, hopefully it is possible to
load it into a haptic scene graph. It is unrealistic to set any bigger goals for this project, since
there is just to much work that needs to be done to complete the simulator, and even more work
to make it good enough for teaching purposes.

As it is today the students learn to insert a syringe by using parts of a dead person connected
to a computer. This simulator has the drawback that the test specimen is stiff. And when the
students uses it they leave marks and holes in it. So that the other students can see the holes
and use them. This means that the model needs to be exchanged after a little while. To replace
the model a new specimen is required, which is not that easy to come by. Before the specimen
can be used in the simulator it needs to be prepared. This means that it needs to be scanned and
segmented before it is possible to use it in the simulator. This because every human is different,
there are not two persons that are alike, except for identical twins.

The other alternative for learning how to insert a needle is to use the other students as test sub-
jects. By making a simulator that is capable of teaching them needle insertion in an augmented
reality it could improve their skills. And they would be less likely to insert the syringe wrong
and harming their fellow students and patients.

The data model for the simulator should be made from data from real persons to make them as
realistic as possible. MRI[12]? or CT[13]? scanners can make data scans of persons that could

IFenite Element Method
ZMagnetic resonance imaging
3Computerised Tomography, also referred to as CAT (Computerised Axial Tomography)

7



Tetrahedral Mesh For Needle Insertion. CHAPTER 1. INTRODUCTION

be used as models in the simulator. This project is trying to make a simulator for insertion
into the shoulder region. The goal is to hit the membrane between the Humerus* and Scapula®
bones. It should be possible and easy to change the data model making it possible to simulate
on a different body part like the knee.

Figure 1.1 shows a MRI and a CT image from a data set of the shoulder. The MRI data set has
higher resolution and better contrasts then the CT scan, and is therefore the best option to use
when making a model for a simulator.

(a) MRI (b) CT

Figure 1.1: MRI and CT image from a shoulder volume.

There is also the possibility of making the data model from a polygon model. The polygon
model would then need to have all the parts that is wanted for that simulation. 3D models like
this is possible to buy over the internet.

To make the simulator realistic the soft tissue should be able to be deformed when it is touched,
and the forces from the tissue on the syringe should be as close to real as possible. To make
this happen there has to be implemented a way to deform the model. There are many ways to
do this. In this project the use of a FEM has been selected.

“Bone in the upper arm
The shoulder blade

8 Rolf Anders Syvertsen



Chapter 2

About this project

This work is based on my project “Needle Insertion Simulator Applying A Haptic Device” [14]
and the articles about “A Virtual Reality Training System for Knee Arthroscopic Surgery” [15]
and “An improved scheme of an interactive finite element model for 3D soft-tissue cutting and
deformation” [7].

In “Needle Insertion Simulator Applying A Haptic Device” [14] the different solutions of how
to make a simulator has been described. The most realistic aproch is to make use of a FEM,
the best one for this type of program seams to be the one described in [15] and improved in [7].
The Hybrid Condensed FEM described in Chapter 3.2.3.

Here is some information about things that is needed for this project. Both hardware, software
and practical information.

2.1 Haptic Devices

A haptic device is a tool to give feedback to the user on the forces that interacts with the aug-
mented reality on the computer. The device has multiple degrees of freedom that is controlled
by motors. The motors set powers on the stylus to simulate different environments, like hitting
a hard surface, spring forces, rough surfaces and more. It is possible to use two series of hap-
tic devices for this program, it is the SensAble Phantom[16] series and the Novint Falcon[2].
Figure 2.1 shows the SensAble Phantom Desktop and Omni, and Figure 2.2 shows the Novint
Falcon.
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(a) Phantom Desktop (b) Phantom Omni

Figure 2.1: SensAble Phantom Haptic Devices. From www.sensable.com

Figure 2.2: Novint Falcon Haptic Device. From [2]

The haptic devices that are best fitted for use in a needle insertion simulator is the SensAble
Phantom haptic devices. It is a SensAble Phantom that is going to be used in this project. But
they are not perfect, they do not have a motor on the last link before the stylus, which means
that there is nothing to stop the user from turning the stylus around in this link.

2.2 Haptic Scene Graphs

This project needs a haptic scene graph. There are a few haptic scene graphs to choose from,
like H3D[3], OSGHaptics[4], Reachin API[17], HaptX[1] and more. Here are some informa-
tion about some of the different haptic scene graphs.

10 Rolf Anders Syvertsen
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2.2.1 H3D

The H3DI[3] haptic scene graph is an open source scene graph. It is programed in C++, but it
uses X3D[18] and Python[19] scripts to program it. Since C++ is wanted as the programming
language for the scene graph H3D was not selected. Figure 2.3 show an image from H3D
deform rectangle demo.

Figure 2.3: H3D deform demo. From [3]

2.2.2 OSGHaptics

OSGHaptics[4] is a haptic add on to the Open Scene Graph (OSG)[20] scene graph. OSG is an
open source scene graph that is used in many different 3D applications. It is programed in C++,
and the scene is programed in C++. It has built in a lot of cool 3D effects, like fire, explosions,
shadows and more. The OSGHaptics addon adds the possibility to add a haptic scene to this
scene graph. The main drawback here is that it is not implemented into the scene graph, but
an add on. This means that not all the things in the scene graph works together with the haptic
scene graph. And some things are a little messy. OSG has the advantage that it is extensive
and well used as a scene graph. This means that it supports a lot of different 3D file formats,
it supports and has a lot of addon libraries and that new functionalities is added all the time.
Because OSGHaptics is not a part of the core library this powerful scene graph has not been
selected as the haptic scene graph for this project. Figure 2.4 shows an image from the material
demo.

11 Rolf Anders Syvertsen
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Figure 2.4: OSGHaptics material demo. From [4]

2.2.3 Reachin

At the beginning of this project the haptic scene graph that was intended to be used was the
Reachin API[17] version 4.1. This scene graph is made up around VRML![21]. It is possible
to define tetrahedral meshes in VRML, but then only as a series of faces and vertexes, not
as a series of tetrahedrons. Reachin API is written in C++ and can be programed in C++ or
with VRML and Python[19] scripts. The Reachin API has included functions to support the
Reachin Display and stereo goggles. Figure 2.6 shows the Reachin Display, stereo goggles and
spacemouse. Figure 2.5 shows two images from two of the Reachin demos.

Virtual Reality Modeling Language

12 Rolf Anders Syvertsen
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(a) Clay demo. (b) Volume demo.

Figure 2.5: Reachin API example programs. From [5]

Figure 2.6: Reachin Display. From [5]

13 Rolf Anders Syvertsen
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2.2.4 HaptX

HaptX[1] is a new haptic scene graph made by Reachin. It was released in April 2007 and is
written in C++. It does not have a graphical API included like the other scene graphs have.
It supports both OpenGL and DirectX for 3D rendering, and it supports physics engines like
ODE?[22]. To program the scene it uses C++. It works with both SensAble Phantoms[16] and
the Novint Falcon[2] haptic devices. Figure 2.7 shows two images from the HaptX example
programs.

(a) Surface demo. (b) Physics demo.

Figure 2.7: HaptX example programs. From [1]

HaptX does not support stereo vision goggles like the Reachin API does. This can be added
by using external APIs. How this can be added is described here Writing stereoscopic software
for OpenGL[23], and a small OpenGL example can be found here OGLPlane[24] together
with many more stereoscopic tools. There is also an alternative to use with DirectX, it is the
StereoApi[25] from Nvidia.

To make HaptX work with a Reachin Display we need to use DeviceSetCameraMatrix method
in the HaptX API to rotate the camera about 45 degrees. Making the scene visible in the
mirror the right way. Figure 2.6 shows the Reachin Display with a Sensable Phantom Desktop,
spacemouse and stereo goggles.

2.3 Anatomy

To make a medical simulator it is necessary to know a few things about the anatomy of the
region in question. This project is going to make a simulator for syringe insertion into the
shoulder of a human body. It is therefore good to know a little about what the shoulder looks
like and what the simulator is going to hit.

20Open Dynamics Engine

14 Rolf Anders Syvertsen
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In the shoulder region there are several bones that we need to know about. It is the Scapula the
shoulder blade, the Clavicle the collar bone, the Humerus the bone in the upper arm and the
ribbons. Figure 2.8 shows the bones in the shoulder region.

Acromio-Clavicular Joint

A Clavicle @@

;/,_.--- I - _‘:

- £

Scapula

b

Figure 2.8: Bones in the shoulder. From [6]

There are a lot of muscles, veins, arteries, nerves, lymph and circulatory systems in the shoulder
region. All these things should be defined in the model, but they are not that important. And
has been left out in the test model made in this project. The main goal is to hit the membrane
between the humerus and the scapula.

2.4 Properties of Soft Tissue

There is also a good idea to know a little about the properties of soft tissue. This section is based
on the “Mechanics of soft tissue” chapter in “Cutting in deformable objects, The Thesis”[26].

All living tissue can be modeled by compressible hyperelastic aelotropic material models. This
is a simplification for living tissue, it is not quite as simple as this. The mechanical character-
istics of soft tissue are determined by connective tissue. The materials that contribute to the
mechanics of the tissue includes the following:

e Elastine is a rubbery biological material. This material is almost perfectly elastic, and is
found in the skin, artery walls and lungs.

e Collagen is a biological construction material. It forms the load bearing material in soft
and hard tissue. It is a major component of tendons, bone, skin and blood vessels.
Elastine and Collagen put together can produce different fibers that is the building blocks of

most parts of living cells.
The relationship between load and deformation (stress and strain) in soft tissue is divided into

three trajectories:

15 Rolf Anders Syvertsen
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e small load: the stress is exponential in the strain. (physiologic)
e medium load: the stress is linear in the strain. (overuse injury)

e large load: the tissue is almost stressed to failure, and reacts nonlinearly. (ligament
rupture)

Figure 2.9 shows a graph for a ligaments stress and strain.

4

80 { overuse Injury ligament rupture
A - == >8%
s 60 ==58%
s
> 40 |Physiologic = 3.5%
g .
7]
20 — 3%
0,
0 1 1 (1/0 1 1 | [ | 1 | 1
1 2 3 4 5 6 7 8 9 10
Strain (%)

Figure 2.9: Tissue Stress and Strain relationship. From [7]

Normal tissue loads fall into the first category, small load. When you stretch soft tissue it offers
more resistance than during a following unload. This phenomenon is called hysteresis, and
it is an example of a viscoelastic effect: stresses in the material depend on the history of the
deformation. When tissue is stressed with a constant load, then after the initial elastic response,
the tissue will slowly distend further. This process is known as creep. A related phenomenon
is stress relaxation: when a tissue specimen is loaded and then held at a constant elongation,
stresses within the tissue decrease.

A description of 3D soft tissue elasticity is given by quasi-linear visco-elasticity. This model
accounts for visco-elastic effects by modeling tissue as a superposition of materials with differ-
ent relaxation times.

These properties need to be accounted for in the soft tissue in the simulator, to make it as
realistic as possible.

16 Rolf Anders Syvertsen



Chapter 3

Proposed Solution

This chapter describes how it might be possible to make a medical needle insertion simulator.

3.1 Needle Insertion Simulator

The needle insertion simulator needs a way to deform the soft tissue, and a data model that can
be deformed. This deformation needs to be realistic and fast.

The simulator is going to use a computer with Windows operating system, a haptic scene graph
and a SensAble Phantom[16] haptic device for user interaction.

To start with, the simulator is going to simulate an insertion of a syringe in the shoulder region
of the body. But it should be possible to load datasets from different parts of the body, and
simulate on that dataset.

3.1.1 Soft Tissue Deformation

There are more than one way to deform the soft tissue of the model. It can be done with the
use of a mass spring system, where every node in the model is connected with its neighbors
with springs. NURBS', here the surface is modeled as splines, and the splines are deformed by
changing the control points. Bezier patches, they are a lot like NURBS. Or by a FEM?. FEM
is the most realistic approach, and is what has been chosen for this project. The mathematics
of FEM is described in Chapter 3.2.

A FEM needs a data set with volume, and the best way to do this is by a tetrahedral mesh.
Therefore it is needed to make a tetrahedral mesh from a MRI, a CT or a polygon dataset. The
dataset needs to be segmented with the different tissue types defined.

Because of the size of the tetrahedral dataset and the complexity of the FEM calculations it

"Non-Uniform Rational B-Spline
*Finite Element Method
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is important to make sure that the mesh and the FEM method is optimized to be as fast and
robust as possible. The mesh needs to be easy to divide into smaller tetrahedral elements when
interacted with.

3.1.2 Tetrahedral mesh

The mesh in the FEM needs to be a mesh with volume, and the best solution for a mesh with
volume is a tetrahedral mesh. There are other data structures with volume that could be used,
like voxels. A tetrahedron is a data structure that consists of four vertex, four faces and six
edges. As shown in Figure 3.1. By butting many tetrahedrons together to a mesh we get a
model that has a volume and that it is easy to calculate forces on with a FEM.

Figure 3.1: Figure of a Tetrahedron. From [§]

The simulation needs to be able to add points to the tetrahedral mesh and divide the mesh when
the tip of the syringe hits the mesh. By doing so the start mesh does not need to be so fine, this
saves memory and rendering time which makes the program go faster. The refinement of the
mesh needs to be fast and effective so that it gets done in realtime.

3.1.3 Hybrid Tetrahedral Mesh

The mesh should be in a hybrid form. This means that the bones in the mesh does not need to
be in a tetrahedral format. They only need to be in a polygon structure with variables on the
nodes for the forces that effect the surrounding soft tissue. This can be done since there is no
need to calculate and deform the bones. It is important that the vertexes in the tetrahedral mesh
and the polygon model is the same. They can not be two separate models, since they need too
interact. Figure 3.2 illustrates the hybrid tetrahedral mesh.

18 Rolf Anders Syvertsen
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The Operational
Part

The Common
Node

]

Fics

|

1/
The Non- f
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Part .\I\\' . 7
Figure 3.2: Hybrid Tetrahedral Mesh. From [7]

3.1.4 Tetrahedral Mesh and Haptic Scene Graphs

To load the tetrahedral mesh in a haptic scene graph we need to write a loader and make a
data structure for the tetrahedral elements. This data structure might depend on the haptic
scene graph used, since they usually have data structures for vertexes that could be used. It
is possible to make a data structure from scratch that is independent of the haptic scene graph
used.

The tetrahedrons need to know the volume they have. The volume should either be calculated
fast in realtime or stored in the data structure. They also need to know their neighbors so that
deformations can be calculated and distributed correctly.

Reachin API

The Reachin API[17] needs a data structure that is a subclass of the “Geometry” class of the
Shape node and the tetrahedral elements need to be stored in a way that makes it easy to identify
each of them, and splitting them when it is needed. They also need to store what kind of tissue
the tetrahedron has.

HaptX

The newest scene graph from Reachin is the HaptX[1] scene graph. It is not made up around
VRML like the Reachin API is, and does not have a class like the “Geometry” class of Reachin.
The HaptX examples use win32 code and vertex arrays to display the scene. The examples that
follows with the API use ASE? file format to load models. It might be a good idea to make the
triangles that are going to be displayed be in a vertex array. By using vertex arrays more parts
of the example code can be used. There are also a good idea to use vertex arrays because they
are one of the fastest ways to render 3D graphics.

3 ASCII Scene Exporter

19 Rolf Anders Syvertsen
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3.1.5 Improvement

To improve the needle insertion, the program should be divided into two parts, one where the
user uses a model of a finger to feel the contours of the surface. The user can only feel the
surface without the possibility of penetrating it. This makes it possible to find the best point
for the needle insertion. When this point is found, the finger should be switched with a syringe
and the second part of the simulation can start. In the second part the needle insertion will be
done at the selected point.

3.2 Finite Element Method

Finite Element Method (FEM) is a method used for finding an approximate solution of partial
differential equations and of integral equations. For information about the different ways to im-
plement FEM in medical simulators and their mathematics see the “Needle Insertion Simulator
Applying A Haptic Device” [14] report. There a lot of different FEM versions are described
and evaluated for use in a medical simulator.

The selected FEM for this simulator is the “Hybrid Condensed FEM”[15] & [7]. It divides the
tetrahedral mesh into two parts, one that consists of the soft tissue and one that consists of the
bones. The bones can not be deformed, and therefore does not need to be in a tetrahedral mesh
format and the forces on the rest of the nodes in the mesh can be precomputed.

There are two ways to simulate the deformations in the soft tissue with FEM. By using Linear
or Non-Linear formulas. The tissue itself is non-linear, but it is harder and requires more
computations to emulate. The linear equations are less computational expensive and they still
work quite well.

3.2.1 Basic

The basic formulas of a finite element analysis is:
Md" +Dd' +Kd = f (3.1)

Where M is the mass matrix, D is the dampening matrix, K is the stiffness matrix, d is the nodal
displacement and f is the force applied. The matrices is of size n X n, where n is the number of
nodes in the model times the degrees of freedom. In a three dimensional space # is three.

LU Decomposition

A way to reduce the computations needed is to use LU Decomposition. Here the FE Equation
3.1 is reduced by ignoring dynamic effects. Giving us this formula:

Kd=f (3.2)
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K is the n x n stiffness matrix, d and f are the n x 1 vectors of nodal displacement and applied
force. To break down a 100% dense matrix* to L and U components 2/3n> calculations are
required for a n X n matrix.

Inverse of the Stiffness Matrix

Another way is to use the Inverse of the Stiffness matrix. The fact that only a small number of
points might need to handle contact and force feedback, is exploited in this method. By using
these fact the use of a precomputed inverse of the stiffness matrix at runtime is more effective
than LU decomposition. This is only the case where the number of points is small enough. The
inverse of the stiffness matrix can be computed in 2an® operations, where n is three times the
number of nodes and o refers to the efficiency gains from sparse LU decomposition techniques.
Under follows the equations for the Inverse of the Stiffness matrix.

(dnocontact) _ (I<iaa Kiab) (f nocontact) (3 3)
dcontact Klfb Kibb f contact .
In Equation 3.3 the known variables are dconsacts frnocontact and K; is the inverse of K. The size of

the submatrix in three dimensions b is three times the number of contact nodes and a = n — b.
To obtain the unknowns at runtime we get the following formulas:

f contact = (Ki;bl ) (dcontact - I(Z:b f noconmct) (3.4)
dnocontact = Kiaa (fnocontact + Kiabfcontact) (3 5)

In these equations a sparse f vector can significantly reduce computation.

It is possible to save a lot of matrix calculation by only calculating the none zero values in the
matrix. This will speed up a large matrix multiplication quite a lot.

3.2.2 Conjugate Gradient FEM

One of the FEM versions that has been tested for needle insertion is the Conjugate Gradi-
ent FEM described in “Supporting cuts and finite element deformation in interactive surgery
simulation”[27].

It uses tetrahedral elements and the linear elastic material method. It is based on the sparse
property of the stiffness matrix. The complexity of the elevation function is almost linear in
respect to the total number of nodes in the mesh. The performance of this method is subject
to the number of iterations required for convergence. This method together with the structure
of the tetrahedral mesh is made to make it easy to cut and make changes to the tetrahedral
mesh. This means that the mesh does not need to have as high resolution as it would if it was

4dense matrix is a matrix with no zero values
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impossible to divide the tetrahedrons into smaller tetrahedrons. For a needle insertion program
to work without the possibility to divide the tetrahedrons the size of the tetrahedrons would
have to be limited to the size of the needle. This means that the mesh would be to big, and it
would be impossible to simulate anything realtime on it.

The Conjugate Gradient FEM has been tested for use in needle insertion in “Interactive needle
insertions in 3D nonlinear material’[28]. The needle insertion program is made for Red Hat
Linux. The program, images and a movie can be found here http://www.cs.uu.nl/groups/
AA/virtual/surgery/needle3d/. Figure 3.3 shows two images from this test. A lot of
the things implemented in this project also need to be implemented into a needle insertion
simulator.

The mathematics for this method is described in [27], [28] and [14]. The basic idea is that
the total deformation is determined by balancing all external forces with all elastic forces, or
equivalently, when the energy of the system is minimal. This is described as in Equation 3.2:

fexternal =—-K-d 3.6)

Where f,\ernar 15 the total global external force on the tissue. Vector d is the displacement of
the tissue. Both of these are vectors of dimension 3n, where n is the number of nodes in the
mesh. K is the big global stiffness matrix of 3n x 3n. Every part of the vector K - d is an elastic
force that can be computed locally. Therefore we do not need the matrix K itself. This means
that the memory requirement is kept low thanks to the sparseness of K.

3.2.3 Hybrid Condensed FEM

The Hybrid Condensed FEM uses the Hybrid Tetrahedral mesh described in Chapter 3.1.3.
This method has good potential for use in a needle insertion simulator, and is based on the
Conjugate Gradient method.

Here are the main aspects of the mathematics in the Hybrid Condensed FEM. The formulas for
linear elasticity is as follows:

The second order tensor is:
1 1
E:E(FT.F—I)ZE(C—I) (3.7)

Here E is the Green-Lagrange strain tensor, F is the deformation gradient and C is the Cauchy-
Green deformation tensor. In the Cartesian coordinate system the Green-Lagrange strain ten-
sor components can be represented as:

£ _5u+1 ou 2_|_ ov 2+ Sw\ > (3.8)
Tsx 2|\ 6x Ox ox ’ '

1 /éu Ov 1 [6udu Ovov Owdw
== |+t et T |-
2\ dy Oy 2 [0xdy Oxd0y Ox Oy
The other four strain tensor components are represented similarly. When we are dealing with

small deformations and rotations the second order portion can be neglected. From this we get
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(a) linear material (refinement level 12)

(b) nonlinear material (neohookean material, refinement level 20)

Figure 3.3: Needle 3D Insertion, needle radius 1 mm. By Han-Wen Nienhuys.

23 Rolf Anders Syvertsen



Tetrahedral Mesh For Needle Insertion. CHAPTER 3. PROPOSED SOLUTION

the Green-Langrange strain tensor approximately equal to the strain &y, &y, &, €7, &, Exy in
a linear FE analysis.

. _ Ou . 1 5v+6w . O . 1 5w+5u . _ ow . 1 5u+5v
TS 2\ 8z 8y )7 sy 2\8x  8z) 0 8z 2\ 8y 6«

(3.10)
The strain vector € is represented as a 6-component vector:

el = [en &y & &7 € €4 (3.11)

In the fetrahedral element the displacement variation u = (u, v, w) can be given as follows:

u=N°-u = [[.N;I-N; I-N,, I-N, ] [uf u§ g, us)]” (3.12)

Where I is a 3 x 3 identity matrix and the shape function N is a linear shape function and
defined as:

N — ar+b,X+cy+dz

, v , r=1, j,m, p (3.13)
where

(v E N R/

ai=1 =a1 = (_l)l_ Xm Ym Zm |, biz1 =b1= (_1)1_ L ym zm |,
Ap Yp Zp L yp 2z
- Xj 1 Zj - Xj Yj 1

Ci—1 =cC] = (—1)1_ Xm 1 zm|,di=1=d = (—l)l_ Xm Ym 1],
xp 1 zp xp yp 1

V' is the volume of the tetrahedral element.
The strain € at an arbitrary point in the element can be expressed as:
e =BU (3.14)

Where B is the displacement differentiation matrix, 6 x 3,, matrix and U is a 3,,, X 1 vector of
nodal displacement. 7, is the number of nodes in an element.

With a linear elastic material the stress ¢ is linearly related to the strain € via Young’s Modulus,
and we can obtain the strain energy E with:

1
E= —/ oTedv (3.15)
2 )y
1
= / epsilon’ DedV (3.16)
2 J)v
1
=3 / (BU) (BU)aV, (3.17)
\%4

Where D is the symmetric elastic matrix that is related to the material physical properties. The
potential energy of a body is the sum of the total strain energy E. The work W performed on
the body by external forces can be written as:

W:/u-fde-l—/u-fst—i—Zui-pi (3.18)
v r p
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In this equation u is the displacement vector, f}, is the body forces applied to the volume dV,
f; is the surface forces applied to the surface, dS and p; is the concentrated load acting at point
(xi, vi, zi). From this a set of linear equations can be derived: Ku® = f°, where K¢ is the
stiffness matrix of a single element. These elements are put together into a global stiffness
matrix that determines the global elastic properties of the model.

Nonoperational Region

The processing of the nonoperational region can be done by using these formulas. The equa-
tions for the operational and nonoperational region:

Kii Kir) (A P,
= , 3.19
(Kn KII) (AI —P; (3.19)

K; Kp (A1 (P,

= ) 3.20
<K21 K ) \ A2 P (3:20)
Where superscript 1 represent the operational and 2 represent the nonoperational regions, sub-
script I represents the common nodes shared with these two regions. P; and —P; are the force

and counterforce applied to the common nodes when we analyze these two parts separately.
From this equation we can obtain a new matrix system:

K1 Ky Al _ (P
(Kn K}1+K') (Al) B <—P1’> 62D
where
K' =Kj;—Kp K5, Ky, (3.22)
P =Kp K5, P, (3.23)
Which we can rewrite into the condensed from:
K%I K;, Kj Ay P,
KSI Kss Ksi As — Ps (324)
Ki Ki K A; P;

Subscript i represents the interior nodes that can be condensed out and s represents the surface
nodes to be retained. From this we then get:

(Ko — Ky K1 Ki) Ay =Py — Ky K P+ (K- K- Ky — Kp)Ag (3.25)

Since the external forces do not apply to the interior nodes all terms related to P; can be ignored.
Equation 3.25 can be written as: K*- Ay = P+ P* — A where

K" =K — KiK' Ky, (3.26)

P* =K K;' Ky —Ky (3.27)

The following variable remains unchanged during the simulation: K’, P’,K* and P*, and are

therefore calculated in the preprocessing stage. To remove this restriction, a new procedure has
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to be made for the preprocessing data. Since P; in Equation 3.19 and Py in Equation 3.24 no
longer are zero when users interact with the tissue model, they need to be recalculated.

The interactive force vector P represent the nonoperational region produced by user interac-
tion, and is changed on the fly. We rewrite Equation 3.23 to P’ = K, 'Kz_zl - P, from Equations
3.25t0 3.27 we get:
A=K P KT PrA (3.28)

Since the interaction takes place only on the surface, the nodes on which interactive forces act
should be among the surface nodes of the nonoperational region Ps. The Equation 3.28 can be
rewritten to:

Ay = K*il Py +K*71 ‘P interact +K*71 -P* “Ag (3.29)
Where Py is the external force vector of the initial condition when the simulation starts and
P interact 18 the vector of applied force that is updated during the simulation.

Preprocessing

Here is a list of the things that needs to be precomputed for the Hybrid Condensed FEM.
Table 3.1: Hybrid Condensed FEM preprocessing variables

K/
Kp- Kz_zl
Preprocessing data K1
K L P s0
K*—l . p*

These variables can then be stored and does not need to be changed during the simulation.

Run Time Calculations

The Hybrid Condensed method has the following computational stages:

1. Calculate the corresponding preprocessing data listed in Table 3.1
2. Use Equation 3.21 to compute displacement of nodes A and A; in the operational region.

3. Determine the interactive nodes of the nonoperational region and update the applied force
vector Pg_ineract-

4. Compute the new values of K* =1 - Py inreracr

5. Use Equation 3.29 to compute the displacement of the surface nodes Ay in the nonoper-
ational region.

By using the fact that Py _jyerqcr 1S made up of a lot of zeros and only calculating the values of
the matrix multiplication, where there are nonzero entries, the update can be done easily and a
lot faster.
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Improvement

To improve the speed of the Hybrid Condensed method the GPU’s’ fragment shader has
been taken into use in the “An improved scheme of an interactive finite element model for 3D
soft-tissue cutting and deformation[7] article. When there are made changes to the tetrahedral
mesh, the mesh and the coefficient matrix is reconstructed. Therefore the new equations for the
mesh needs to be recomputed. For these elements the Conjugate Gradient method is used. The
matrix vector multiplication in the Conjugate Gradient algorithm requires O(m) operations,
where m is the number of nonzero entries in the matrix. Therefore a faster matrix vector
multiplication implies a faster computation of the mesh, and a faster simulation. By using
the fragment processor of the GPU, and its efficient manipulation of the local texture memory,
it is possible to speed up the calculations. To make use of the GPU the matrices and vectors are
loaded as textures into the GPU and then rasterized to a proper quad of pixels for invoking the
fragment program. The result from the GPU can be obtained as a color value and transferred
back to the CPU.

An alternative to use the GPU is to use a PPU®, like PhysX from Ageia [29]. PPU’s are
specially designed to calculate physics fast, like explosions, cloth behavior, water, smoke and
more. This might be a good way to speed up the matrix calculations.

There is also a third alternative and that is to take advantage of the multicore CPU that is coming
these days. The new CPU’s are equipped with four or more cores, making it possible to have
two or more cores working on the calculations of the matrix multiplications in parallel.

There might also be possible to use all tree of these at the same time. Parallelizing the different
cores of the CPU, the GPU and a PPU could speed up the program heavily. This would make
it easier to get a more realistic simulation.

3.2.4 Tetrahedral Volume

The volume of a tetrahedron needs to be calculated for the FEM. This can be done by using
cross and dot products. Given a tetrahedron like the one in Figure 3.4 with the vertexes a, b, c,
d the formula for the volume is:

3>Graphics Processing Unit
®Physics Processing Unit
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Figure 3.4: Tetrahedron with vertexes marked.

[(d—a)-((d—b)x(d—c))l

V=
6

(3.30)

The volume should be stored in the tetrahedron so that there is no need to recalculate this each
time the volume is needed. There is only one more value to be stored in the data structure, and
that should not be a problem.

3.3 Mesh generation

The mesh is going to be made from a polygon model. The polygon model may be made from
a CT or MRI scanned volume that has been segmented. The mesh need to be of a tetrahedral
structure and needs to be divided into a part that can be deformed with the use of a FEM (soft
tissue), and a part that can’t be deformed (bones).

3.3.1 TetGen

The mesh generation will use algorithms based on “Delaunay triangulation”[30]. TetGen [31]
is an open source program for Delaunay triangulation of a polygon mesh to a tetrahedral mesh.
TetGen is written in ANSI C++ and runs on Linux, Unix, Windows and Mac. It uses the
command line for file input and input switches. It can do a lot of the things that is needed in
the tetrahedral mesh for the simulator, but not all. It can not divide the input mesh into two
parts, an operational and a nonoperational as would be the best solution for the mesh. But it
can divide the mesh up into different regions. The tetrahedral meshes generated by TetGen can
be viewed using TetView. Figure 3.5 is an image of a tetrahedral mesh generated by TetGen,
viewed in TetView.
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Figure 3.5: TetView image of tetrahedral mesh from TetGen. From [9]

3.3.2 Tetrahedral Mesh Generation

The FEM of the proposed needle insertion simulation needs a tetrahedral mesh that has the
different tissue types defined. TetGen is an open source program that can make a tetrahedral
mesh with regions marked, but it can not make regions from other formates than .poly[32] and
.smesh, which both are piecewise linear complex formats.

TetGen can be edited to load other formates and to load regions from some of the other formates.
In the end tetrahedral mesh the bones does not need to be in tetrahedral format, they could be
represented as polygons. This would save a lot of memory and make the program faster. The
regions are only defined by an integer, so it is needed to specify numbers as different tissue

types.

Therefore the proposed solution is to edit TetGen’s code so that it makes a tetrahedral mesh
from for example “stI”[33] files with regions. The ideal solution would be to make a program
that made and segmented a MR Image’[12] directly into a Tetrahedral data structure.

3.3.3 Triangle Intersection

TetGen does not make a mesh from a model with triangle intersections. Therefore we need
to find a way to remove intersecting triangles from the model, since TetGen only finds the
intersections and then report them without making a tetrahedral mesh.

When TetGen runs with the “-d” switch it only outputs a “.node”, a *“. face” and a “.smesh” file
with the faces that are intersecting. It is necessary to find a way to fix the triangle intersection so
that the mesh is created like it should, because it only becomes a mess when triangles intersect.
Figure 3.6 shows the triangle intersections in the bones in the man polygon model.

The possibility to use 3D Studio Max[34] or Blender[35] to clean up the mesh before TetGen

"Magnetic Resonance Image
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(a) Intersections. (b) Shoulder area with vertexes.

Figure 3.6: Polygon Intersection in the bones in the man polygon model.

gets a hold of it has been considered, but it does not seem like any of these 3D editors have the
functions necessary to do this. They make polygon meshes that are full of errors. In most cases
where the models from these programs are used it does not mater as long as it looks right. It
might be possible to make a script to 3D Studio Max that can fix the triangle intersections, but
then it might just be an equally good idea to write the code anywhere else.

3.3.4 Open Faces

TetGen does not make a mesh from models which have open faces. An open face means that
there is a hole in the model. The volume is not closed, resulting in a leak when the volume is
trying to be created. When there is a hole in the model there is not a complete volume there, it
is like trying to fill a bucket with a hole in the bottom with water, it just flows out. That is what
happens when the algorithm comes across a model with one or more open faces in it. So there
are no volumes to be made and it only reports the coordinates of the first open face it finds in
that object and moves on without making a mesh of that object’s volume. If the object is inside
another object, that space will be filled with the other object’s mesh, because the other object
flows into that space.
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Figure 3.7: Open Face illustration.

The best solution to this problem is to make a program that finds the open faces, and then
reconnects the polygons surrounding the hole. Because in most, if not all, cases the hole is
there because the polygons are connected wrong. A polygon is connected to the wrong vertex
making a small hole in the mesh. Figure 3.7 shows an illustration that has been made to show
an open face error in a polygon mesh. The red triangle should have been divided into two but it
is not, making a small hole in the mesh. These holes is usually so small that they are very hard
to see with the naked eye.

3.3.5 Tissue Types

Since the tetrahedral mesh in the .ele file format only has an integer variable for material
type, it is needed to define values that says what kind of tissue it is. This can be done by
defining integer values for the different tissue types. This would make the simulator know that
a tetrahedron, which for instance has a material value of 100 is of the type skin. By doing this
the simulator automatically sets the right tissue type, colors, textures and forces to the model
when it is loaded. The different tissue types are defined in Table 3.2.

It might be a good idea to define all the bones and muscles that could be in the simulator
separately, making it possible to give the user output on what bone or muscle that has been hit.
This would improve the users experience when using the simulator, and might be very useful
for them.
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Value Tissue Type
0-99 Not Defined
100 Skin
101 Soft tissue
102 Blood veins
103 Blood arteries
104 Nerves
105 Lung
106 Hart
107 Membrane
200 - 299 Bones
300 - 399 Muscles

Table 3.2: Tissue Type Definement
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Chapter 4

Implementation

This chapter describes what has been done to create a tetrahedral mesh and a needle insertion
simulator.

4.1 TetGen

In this section a description of what has been attempted to accomplished with TetGen’s[31]
code to create a tetrahedral mesh for a needle insertion simulator is described. It is TetGen
version 1.4.1 that has been edited here. TetGen has been released in version 1.4.2 after it was
edited for use in this project. It should be no problem to implement these changes into the new
version of the program.

4.1.1 STL With Regions

The load_stl method in the fetgenio class has been edited to load region information from a text
file. The added code to the load_stl method can be found in Chapter 9.1. The text file is named
.regions and holds information about regions in the s#/ file in the same format as they are defined
in the ““ piecewise linear complex”(.poly)[32] files. The program finds the file automatically if
it is named correctly, if it is not it will assume that there is no regions file and create a mesh
without region information. In the file the first number is the number of regions, the next lines
consist of the index of the region, the x, y and z coordinates which is a point inside the region,
a region identifier and a region attribute.

This solution has been chosen because it is a lot simpler to implement than to write an algorithm
to find a point automatically inside all the solid blocks of the st/ file. This also makes it possible
to have the whole model as just one solid in the stl file. The drawback is that a coordinate
from the different regions need to be found manually in a 3d editor like 3D studio Max[34]
or Blender[35]. The code for adding the regions is almost identical to the region code in the
load_poly method.
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Figure 4.1 shows the tetrahedral mesh result from a stl test file with three regions defined. The
model consists of a cube with a cylinder and a sphere inside it. The cube is in red with the
region identifier 100, a cylinder is in green with the identifier 200 and a sphere is in blue with
the identifier 201. A very simple model made only to test the improvements done to TetGen.
The model is made this simple to make sure that it does not have any intersecting triangles.

3 materials

100

N
8
s

201

Figure 4.1: Tetrahedral mesh form a stl test file.

4.1.2 Triangle Intersection & Open Faces

Files with triangle intersections and open faces need to be fixed before a tetrahedral mesh can
be made. A couple of hacks in 7etGen’s code has been attempted to come around the problem
of triangle intersection. It has been attempted to let TetGen ignore the fault in the mesh, this
only results in a forever loop somewhere in the tetrahedralize method. Deleting the triangles
that intersects has also been tested, but this only produces open faces, which does not help since
it can not create a mesh from a model that has open faces. These errors makes TetGen exits
without creating a mesh from that region.

Have not tried to make 7etGen insert faces where it detects an open face. It could be done, but
it is not as easy as just adding a face to the mesh, because in most cases the reason that it is an
open face is that the mesh is not connected correctly. The hole is very small and most of the
time almost invisible to the eye, and the problem is there because a vertex has been skipped
when the polygons has been made. To fix this at least one polygon needs to be deleted. It is
hard and time consuming to write an algorithm to do this correctly. This has therefore not been
done.

What have been done is to edit the triangles of the files manually in 3D Studio Max. This
way manually finding and removing the errors. This is a very hard and time consuming task
since the errors are small and very hard to see. In Figure 4.2 there are two images of the
most common errors in the polygon model that results in triangle intersections and open faces.
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(a) Open Face. Two wrong polygons (b) Triangle Intersection. Wrong polygons that
make an intersection, that is hard to find.

Figure 4.2: Triangle errors in the Scapula polygon model.

The figure is from the left scapula of the shoulder model that is described in Chapter 4.2.2. It
shows an image of a part with two wrongly connected triangles making two open faces. The
wrong triangles are marked in red, and an image of a triangle intersection where the intersecting
triangle is marked in red. The intersecting triangle is very small and hard to see. To find it the
surrounding triangles had to be deleted.

4.2 Tetrahedral Mesh

There has been acquired a MRI and a CT data set of the shoulder. From the MRI data set
the skin and the bones has been segmented out and stored in the .sz/ file format. This has
been done because the scan is from one of the specimens that has been used in the existing
simulator. These files are quite large and they are not completely free of errors, there are
triangle intersections in the files. Because of the size of these files and the format they are
stored in 3D studio Max and Blender can not effectively open these files. It is too hard and time
consuming to connect all the different vertexes and faces. Since it is so hard to open the files, it
is almost impossible to edit the files and remove the triangle intersections. And besides, there
is only the skin and the bones that has been segmented out. Because of this the files can not be
used in this project. Figure 4.3 shows the MRI volume and Figure 4.4 shows the .s#/ segmented
bones and skin.
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Figure 4.3: MRI Shoulder volume

(a) Skin. (b) Bones.

Figure 4.4: Stl Shoulder skin and bones.

There has been bought a polygon model[10] of a human body with skin both for a man and a
woman. The model consists of bones, muscles, nerves, lymph and circulatory system. There
are 219 parts in the muscle system, brain and eyes has 56 parts, the skeleton has 114 parts. The
nerve, lymph and cardiovascular system consists of 1 to 3 parts each. The model has textures
for all the parts making it look quite good. Figure 4.5 shows the model and its parts.

The polygon model has been edited in 3D Studio Max[34] to include only the part of the body
that is needed for this simulation. The objects in the model has been exported to the .s#/ file
format so that it can be loaded into 7etGen and made a tetrahedral mesh from it. The objects
have then been put together in a .s#/ file to make a complete model of the region. 3D Studio Max
has then been used to get out a set of coordinates from the different regions. These coordinates
have been stored in a .regions file. The .stl and the .regions file have been loaded into the edited
version of TetGen, described in Chapter 4.1. TetGen has then been used to make a tetrahedral
mesh with regions from the model. The program has been run with the -d switch to make sure
that the model is without errors. When all the errors in the model have been fixed the program
has been run with the -gA switch to make a tetrahedral mesh with regions.
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-or any three
of these objects
at § 79 (mail us)

(b) Muscles and bones.

Figure 4.5: Polygon model of human man and woman. From [10]
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4.2.1 Tetrahedral Arm

The first model that was created is a model of the arm, with only skin and the humerus bone
from the upper arm. This was made to see how easy it is to create a tetrahedral mesh from
the polygon model. The model does not have any nerves, muscles or veins in it, only the
skin and the humerus bone. The skin of the arm and the humerus did not have many triangle
intersections or open faces, making them easy to fix. The model has 8733 points, 108430 faces
and 53563 tetrahedrons. Figure 4.6 shows two images from the tetrahedral mesh of the upper
arm.

.........

(a) The surface.

(b) With cut plane to see the bone.

Figure 4.6: Tetrahedral mesh of the upper arm with skin and bone.

4.2.2 Tetrahedral Shoulder

The next model that was created was the shoulder model, with the skin of the left upper arm
and the left chest, the humerus !, the clavicle 2, some of the ribs and the scapu1a3. The skin
of the chest, the clavicle and the humerus did not have a lot of errors, and was not that hard to

'Bone in the upper arm
2Collarbone
3Shoulder blade
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create a tetrahedral mesh from. The scapula had a lot of errors and the ribs had some. The left
scapula in the model was all wrong, it was tuned inside out, making all the faces point into the
model instead of out. The model has therefore been deleted and replaced with a mirror of the
right scapula. The mirrored scapula was reported to have 279 intersections when TetGen was
run with the “-d” switch. While repairing these a lot of other errors where found and fixed. But
still after all the triangle intersections where repaired there where reports of open faces, how
many open faces the model had and that have been fixed is not known, since a lot where fixed
under the triangle intersection repair, and since TetGen only report the first one it finds. A good
guess is that the number was over a 1000 in this model. Which is a lot, and that is way it took
a very long time to find and fix all of them manually. The soft tissue is only defined as skin in
this model. The model has 65632 points, 823696 faces # and 404957 tetrahedrons. Figure 4.7
shows the polygon model that the tetrahedral mesh is made from. The model is of the bones
and the skin in the .3DS file format. Figure 4.8 shows two images from the tetrahedral mesh of
the shoulder model.

Figure 4.7: Shoulder polygon model (.3DS)

The model does not have the membrane between the humerus, clavicle and the scapula that is
the goal of the simulation. This is a object that is required in the simulator, but it needs to be
connected to the humerus without any open faces or triangle intersections, so it requires a lot
of work to create this object. The spine was so full of errors and on the other side of the goal
so it has been left out.

4.3 Needle Insertion

At the beginning of the project the plan was to let the simulator use the Reachin API[17]
haptic scene graph to interact with a Sensable Phantom Desktop haptic device[16]. In April

“Does not know why TetGen reports only 823696 faces, 4 x 404957 = 1619828 faces, and that is what is drawn
in the scene graph.
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Figure 4.8: Tetrahedral mesh of the shoulder.
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2007 Reachin released a new API called HaptX[1]. This project has been switched over to use
HaptX since it is newer and not integrated with VRML. The HaptX haptic scene graph handles
the haptic scene graph, but it does not have a 3D display API included. Code to display the
scene needs to be written for either OpenGL[36] or DirectX[37]. There are example code for
this in the HaptX examples.

The data model for the simulator is the shoulder tetrahedral mesh described in Chapter 4.2.2.
The model is too detailed to work in a haptic scene graph on a normal computer. It needs some
sort of level of detail (LOD) reduction for it to work in the haptic scene graph in realtime. There
are too many faces in the model to be rendered 25 + times a second. This can be fixed since we
do not need to see all the faces that is inside the volume of the model, we only need to see the
edges of the different tissue types.

4.3.1 Syringe Model

A polygon model of a syringe has been found and downloaded from www.the3dstudio.
com[11], it is a free model made in the .max and .3ds file format. Figure 4.9 shows an im-
age of the syringe model. This is not a model of a syringe that could be used in the finished
version of the simulator, it is not the right type of syringe. But it could be a start to test the idea
of a needle insertion.

The3dStudio.com

Figure 4.9: Syringe 3d model. From [11]

The HaptX example code has an “ASE” file loader. Therefore the model has been converted to
the “ASE” file format, so that it can be loaded as the model for the needle in the simulator, but
there is an error in the file and it will not be displayed. Whether it is the model or the converter
in 3D Studio Max that has an error is unknown. Converting any other files to the “ASE” file
format has not been tested.

4.3.2 Haptic Scene Graph

The haptic scene graph needs to have the tetrahedral mesh of the model to calculate the forces
and the deformations. When interaction with the tetrahedral mesh occurs, the visual model
needs to be updated according to the forces that is applied to it. These calculations needs to be
made in realtime. To do this some smart tricks are required.
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4.3.3 Reachin API

In the start of the project the haptic scene graph used was the Reachin API[17]. It is not the
perfect choice so when Reachin released the new haptic scene graph HaptX, it was decided that
the project should switch over to this scene graph instead. It was possible to do this since the
program was not that closely linked to the Reachin API. One of the main reasons for the switch
is because Reachin API is so closely linked to the VRML[21] 3D language, which has not been
used in this project.

4.3.4 HaptXTest

HaptX[1] is built up in a different way than the Reachin API. It is not linked to any 3D scene
language like VRML, it does not have 3D rendering built into it and it is built so that it is easy to
implement a physics engine like ODE[22]. The examples that follows with the API uses win32
code to load the program and a 3D rendering environment. It uses vertex arrays to draw the
3D objects. Because it uses vertex arrays it was a lot of work to rewrite the code that had been
written to work with HaptX instead of Reachin API. Some of the source code for the HaptXTest
program is listed in Chapter 9.2, but not all.

Tetrahedral Mesh

The tetrahedral mesh is loaded into the program in the 7TetMesh class. It holds a list of all the
tetrahedrons and a list of all the vertexes, a list of the connections between the vertexes and the
tetrahedrons, the number of tetrahedrons and the number of vertexes. It is this class that loads
the tetrahedral mesh from the .ele and .node files. It has functions to connect the tetrahedrons to
reduce the number of faces that needs to be rendered. It has a function to count the number of
faces and vertexes in the different tissue types and then store these for later use, and a function
to calculate the face normals of the tetrahedrons and a function to calculate the vertex normals
from the sides that is going to be rendered. The TISSUETYPE enumerator is defined here, so
that we do not need to remember what integer that represents the different tissue types.

In the Vertex class there are three floats that holds the x, y, z coordinates of the vertex and
three floats that holds the vertex normal. It has methods to calculate the cross product and the
length of a 3D vector. This is used to calculate the normals. These methods could have been
somewhere else, and we could use the vertex struct in the HaptX example programs.

The Tetrahedron class holds a list with the indexes of the four vertexes in the vertex list, four
face normals, four tetrahedron pointers to the neighboring tetrahedrons, four boolean values
that keeps track of the sides that is going to be rendered and a tissue type variable.

There are two more data structures in the tetrahedal mesh part of the program, it is the Tissue-
Type which holds the number of vertexes and faces in the different tissue types, and the Vertet
that stores a vector of the tetrahedral indexes for each vertex. The Vertet is used when connect-
ing the tetrahedrons and when calculating the vertex normals. This is what makes it possible to
calculate all the normals in seconds in stead of hours.
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All these classes need some more error handling. There are very few methods that has anything
to handle calls outside the legal range of the variables. A call like this will make the program
crash, without any good error message output.

Scene Graph

To make the scene graph the Navigation example from the HaptXCore was used as a starting
point. This was chosen to make it load a tetrahedral mesh and display it. The reason to start
with this demo was that it was necessary to turn the camera around to find the tetrahedral mesh
and then transform it in front of the starting point of the camera. The demo uses vertex arrays
to display the model, so the polygons needed to be in a vertex array, with the different tissue
types defined as different models.

The program gets loaded using win32 code in the main.cpp file. This file is made by Reachin
for the example code to the HaptX scene graph. It loads a scene from the Needlelnsertion class,
and uses the IGraphicsFramework, the IDemoFramework and the GraphicsOpenGL classes to
set up the HaptX scene graph and the OpenGL render.

The InitDemo method in the Needlelnsertion class is the one that loads the tetrahedral mesh and
makes sure that the vertex array and the haptic scene is set up. In the makeDispObjects method
in the TetMesh class the tissue types and the number of vertexes and faces in the different types
are counted and stored in the TissueType data structure. This data structure is then used in the
LoadRenderModel(TetMesh *tetmesh) method in the IGraphicsFramework class to make the
renderer objects and the vertex arrays from the tetrahedral mesh for the rendering. This method
should be changed, as it is now it loads all the vertexes as many times as they are used, this
should be fixed so that it only has copies of the vertexes when the vertex normals is pointing
in completely different directions. It is necessary to get the right normals for the front and
back sides where two different tissue types meets. This also means that the makeDispObjects
method in the 7etMesh class needs to be changed, to count the right number of vertexes. The
model is setup with textures, the texture coordinates are only sat to 0.0f, this is not right and
should be fixed. The best result would be to make the texture wrap around the whole object.
This means that the texture coordinates needs to be calculated as to where the vertex is in the
object. This is a hard task and would require a lot of work.

The vertex array is also used to make the haptic surfaces in the CreateHapticsShape method in
the Needlelnsertion class. This method sets up a haptic surface for each of the objects. None
of the surfaces has anything other than a simple surface with the default values. This makes the
surfaces hard and impossible to penetrate with the haptic device. It is therefore not possible to
touch the bones of the model.

There have been created a method called LoadingFrame(std::string message) in the Needleln-
sertion class to load the screen with a text message on how far the loading of the tetrahedral
mesh, the setup of the haptic scene and the visual scene has gotten. The view will only be
updated when the InitDemo method sends a new message. This should be changed so that the
frame is updated with more information on how far it has gotten. Not only with information
from the initDemo method but also with information from the TetMesh class. This method
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should be made so that it gets drawn more than once a second.

In the UpdateDemo method in the Needlelnsertion class the scene gets updated, the camera
moved and the polygons that is hit with the haptic device gets found and marked with green
lines. There needs to be a connection between the vertex arrays and the tetrahedral mesh,
making it easy to find and edit the tetrahedral mesh and the polygons in the vertex arrays.

Figure 4.10 shows the outside of the shoulder in the HaptX scene graph, Figure 4.11 and Figure
4.12 shows the bones inside the shoulder tetrahedral mesh. The model has been textured, and
you can see the polygons which is hit with the haptics device, as they are marked in green. All
the different tissue types have been divided up into different objects and there have been added
different surface materials to them. All the haptic materials are only defined as standard simple
surfaces, making the surfaces hard, so the haptics device can not penetrate it. The model is
rendered with more than 30 FPS>, witch is enough to make a simulator work.

etrahedral Mesh by Rolf Anders (AP = OpenGL, FPS = 20) ee n Tetrahedral Mesh by Rolf Anders (AP = OpenGL, FPS = 30)

(a) Shoulder outside front. (b) Shoulder outside top.

Figure 4.10: HaptXTest program and the outside of the shoulder tetrahedral mesh.

In the HaptX example class GraphicsRenderObject the method ComputeNormals uses a nested
for loop to calculate the vertex normals. It uses too much time to be used on the tetrahedral
mesh and has been exchanged with the calculateVertexNorm method in the TetMesh class. It
has been improved and now only uses a few seconds to calculate the vertex normals to the
vertexes that is going to be rendered. It skips every vertex and face that is not going to be
rendered. This method has an error, it calculates the vertex normal by adding the face normal
to all the sides that is going to be rendered, and therefore the normals will be wrong inside the
volume. This will happen where the vertexes has faces facing each other. This problem needs
to be fixed by making it possible to add more normals to a vertex. The easy way to fix this
is to duplicate the vertexes, but this might not be a good idea. The problem is not visible in
the shoulder tetrahedral mesh, since there are no other parts in the model than the skin and the
bones.

The code has been cleaned up so that it no longer uses more than 650 MB of RAM as it did, it
now only uses 170 MB of RAM at the most when running the shoulder tetrahedral mesh.

SFrames Per Second
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Tetrahedral Mesh by Rolf Anders (API = OpenGL, FPS = 35) (5 Il 2 HapiX Needle Insertion on Tetrahedral Mesh by Rolf Anders (APl = OpenGL, FPS = 37)

(a) Shoulder inside. (b) Shoulder inside.

Figure 4.11: HaptXTest program and the inside of the shoulder tetrahedral mesh.

(a) Shoulder inside. (b) Shoulder inside.

Figure 4.12: HaptXTest program more shoulder tetrahedral mesh pictures.
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Running the Program

HaptXTest starts to set up the graphical scene graph and it tries to load the shoulder.1.ele
and shoulder.1.node tetrahedral mesh files. While the files are loading the tetrahedrons are
connected, the normals are calculated, the display lists and the haptic surfaces are created, the
screen displays a message about how far it has gotten. When everything is loaded the tetrahedral
model is displayed and it is possible to interact with it with the haptics device. By using the
W, S, A, D and space keys it is possible to move around in the scene and change the camera
navigation model, by using the button on the haptics device is it possible to rotate the camera
around.

It is possible to feel the surface of the skin, but it only has a hard surface, that it is impossible to
penetrate. Therefore it is not possible to feel the surface of the bones, but they are there and can
be touched if you could come into them. The triangles that is touched with the haptic device
gets marked with green.

4.3.5 Triangle Reduction

To reduce the number of triangles that needs to be rendered a preprocessing stage to connect
the tetrahedron has been implemented. This algorithm marks the end faces of the tissue type,
so that only it gets rendered. This reduces the number of triangles that needs to be rendered in
the shoulder model from 1.6million triangles to 234836. This is done in the connectTet method
in the TetMesh class. The first implementation of this was a n? algorithm, on the shoulder
model this took hours to complete. It has now been fixed so that it only takes a little more than
a minute. This is done by the vertTet data structure that holds a list over which tetrahedrons
the vertexes are in, and then it only checks the tetrahedrons that has this vertex, not all the
tetrahedrons.

The code has been improved even more and removes even more faces, so now it renders only
131200 faces. This is done by making the faces that is facing the bones disappear. These sides
will never be visible and there are therefore no reason to render them. This also makes the error
of the wrong vertex normals disappear in the shoulder model.
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Chapter 5

Results

This chapter describes the results that have been obtained from the different parts of this project.
It also contains a few thoughts about the different problems that has been encountered.

5.1 TetGen

TetGen has been edited to make a tetrahedral mesh from a .st/ file with a .regions file defined.
This makes it possible to create a mesh with different tissue types defined from a polygon
model. The tetrahedral mesh that is created can be used in a medical simulator. 7etGen does
not make a Hybrid Tetrahedral Mesh as desired. This is not necessarily a big problem since
the simulator has implemented a triangle reduction algorithm that removes all the inside of the
volume. Therefore it might not be that important to get the mesh in a hybrid form.

5.2 Tetrahedral Mesh

There has been made a tetrahedral mesh of the shoulder region. The mesh does not have all the
parts that it should have for a simulation in the shoulder. It does not have any more parts than the
bones and the skin. The model has enough parts to make it possible to use as a demonstration
model. It is possible to test and see if the other elements of the simulator could work with this
mesh. It will work fine as a starting point for a FEM implementation.

5.3 FEM

As far as the FEM goes there have not been any implementation of it. Therefore there are no
test or results on how well it would work. The only thing that has been done in this report is to
describe the mathematics behind it, which is in Chapter 3.2.3.
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5.4 Haptic Scene Graph

The HaptX scene graph is a brand new scene graph, and therefore there is not that much in-
formation about it available. It has no problems rendering the shoulder model haptically and
graphically fast enough to work as the scene graph in the simulator, at least not when it uses
vertex arrays. It renders the 131200 triangles in the shoulder model with more than 30 FPS,
with all the objects in the mesh defined as haptical surfaces. This scene graph should work as
the scene graph for the simulator.

5.5 Thoughts about problems

This section lists some thoughts about the problems that have been encountered while trying to
make the simulator.

5.5.1 TetGen

The fact that TetGen is unable to create a mesh from a model that is not completely free of
errors is a big problem. This problem needs to be solved with a program that has an automatic
procedure to correct the triangle intersections and the open faces in the data model. To manually
remove all these errors takes way to much time.

5.5.2 Data Model

The model used in this project only has bones and skin defined. For a optimal solution it needs
to have more parts defined. It needs to have more than just skin and bones, at least it should
have soft tissue under the skin and a membrane between the humerus and the scapula, which is
the goal of the needle insertion.

The bones does not need a tetrahedral data structure, since they are not going to be deformed.
Therefore the bones should only be defined by the surface of the objects as polygons. This
would save a lot of data and could make everything go faster. As it is now the bones and all
the internal faces of the model have been removed. Therefore there might not be any reason to
make the bones as only a surface mesh, as it might work fine as it is now.

There needs to be a connection between the polygons in the vertex array of the haptic scene
graph and the tetrahedrons, and back from the tetrahedrons to the polygons. This would make
it possible to find the tetrahedrons that are touched with the haptic device and then deform
the polygons that are affected. It is necessary to be able to only update the affected polygons.
It would require too much work to update the whole model each time something is changed.
These connections also need to be updated to the haptics vertex array, not only the visual vertex
array.
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5.5.3 Mesh Generation

The tetrahedral mesh should be generated from a MRI[12] volume. For an optimal solution the
mesh should have bones, muscles, veins, arteries, nerves and skin, and not only skin and bones
as the test shoulder model has. The mesh should be divided up into an operable and a non
operable region. It might not be necessary to make a Hybrid Tetrahedral Mesh out of it, since
there has been implemented ways to reduce the number of polygons and the tissue types are
defined, making it easy to find the non operable parts. The FEM properties to the non operable
parts can be identified and stored as they should in a preprocessing stage of the FEM.

5.54 FEM

There is still a big problem that needs to be solved and that is how to implement the FEM. The
first problem is to find out how to get a FEM to work. Then there is the problem of making it
work fast enough to work in realtime. There are so many variables and formulas that needs to
be calculated and stored as they should for the FEM to work.

There is also the material properties of the tissue. They need to have properties close to that
of the tissue in question. To make the FEM work fast enough it is necessary to make it run on
multiple threads on multiple calculation devices, like multicore CPU’s, GPU’s or PPU'’s.

5.5.5 Simulation Files

It might be a good idea to make a file format for the simulator where all the precomputed
data is stored. This would make it possible to load the simulator much faster than if it has to
precompute all the normals, connection between the tetrahedrons, the FEM precomputations
and the simulation specific data like transform and scale of the objects in the scene.

If all this and more had been stored in a file, the simulator would start a lot faster and it would
be a lot easier to make different models and areas to simulate on. Then all the user would have
to do to change where and what he wants to simulate on is to load a new simulator file. The
file should then have a list of all the files that is needed for that simulation and load all of them
automatically. When the file is selected the user could just sit back and wait for it to load. The
set up of the scene and all the required elements should then be loaded automatically.

5.5.6 Needle Insertion

The SensAble Phantoms have a weakness for use in a needle insertion simulator: The last joint
before the stylus is without a motor to stop or set forces on that joint. This means that the angle
of the syringe can be changed without any feedback. This problem can be temporary fixed by
the forces in the model, meaning that the model does not change even though the stylus does. It
is also possible to implement a force on the other motors to make the entire haptic device shake
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and then give a warning that you can not do this. The best solution is to get a haptic device that
has motors in all the joints.

5.5.7 Haptic Device

For the optimal simulator there should be made a new haptics device with motors to put forces
on the last link before the stylus. This link does not have any motors on any of the SensAble
Phantoms. If it had a motor there it would improve the user’s experience and make it work a
lot better. There are no haptic devices like this out on the marked, which means that someone
needs to design and produce it. This is not a requirement for the simulator to work, it would
just make the simulator a lot better.

50 Rolf Anders Syvertsen



Chapter 6

Further Work

This chapter describes the tings that needs to be done to make this a complete simulator. It also
describes the things that should be done to make the simulator as good as possible.

6.1 Mesh Generation

The tetrahedral mesh that has been used in this project has been made from a polygon model
by using a edited version of TetGen. The mesh goes not have anything more than skin and
bones.

The mesh should be made form a MRI data set to get an optimal model. A program that
automatically segments and creates a tetrahedral mesh from the segmented MRI data set should
be written. The mesh does not need to be as fine as possible, but we need to be able to divide the
tetrahedrons up into smaller ones as they get punctured by the syringe, inserting new vertexes
and using them to create new tetrahedrons.

The segmentation should be able to segment out more parts of the tissue than only skin and
bone. This is a big challenge. The model should have veins, nerves, muscles and bone defined.
This is a extremely hard task that would require a lot of work. The program would need some
variables to control how the loaded volume should be segmented. What sort of file format the
segmented files should have is open, since the only purpose of it is to load it into a tetrahedral-
ization algorithm. The only requirement for the file format is that it needs to be in a format that
can easily be loaded into the next step, to create a tetrahedral mesh. The model needs to be free
of errors, there can not be any triangle intersections or open faces in the model.

When the volume has been segmented it should be tetrahedralized using Delaunay tetrahedral-
ization. This is also a task that requires a lot of work, but it is possible to use existing programs
like TetGen. The best solution though would be to write or edit a program that makes a mesh
that is perfect for the use in a medical simulator.
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6.2 FEM

There have been made no attempts at implementing a FEM'. The mathematics for the selected
FEM are described in Chapter 3.2.3. The different tissue types need to have material properties
that are close to what the properties of that tissue type is. The tetrahedrons need to have the
volume in them calculated and stored.

There is a lot of work that needs to be done before a FEM is up and running. This is a real
challenge but it is vital to make a simulator that is as good as possible.

The FEM needs to be as optimized as possible. This can be done with the use of threads and
the new multi core CPU’s, or by GPU’s? or PPU’s?. What the best solution would be is hard to
guess, that needs to be tested.

6.3 Simulator

As it is now the simulator is only a haptic scene which displays a tetrahedral mesh, making it
possible to touch the objects in the mesh with the haptics device. There is still a lot of work
that needs to be done before it is a simulator. When the data model is as it should be and the
FEM is implemented, there are still a lot of tings that needs to be fixed so that the simulator
gets as close to a real needle insertion as possible.

The vertexes in the vertex array has at this point a vertex for each point in every face. This
should be fixed so that every vertex is in the vertex array only once. It is necessary to check
if the vertex is in the vertex array already. If it is we only need to add the index of it to the
face list. It might be an idea to store in the vertex class the index of the vertex in the vertex
array. Then we would have a connection between the tetrahedrons and the vertex array. This
connection would not be a two way connection as we should have, but we have a connection at
least.

It is necessary to fix the calculation of the vertex normals. As it is now it makes a normal from
all the faces that is going to be rendered. This is correct as long as all the faces points one
way, but when the faces are face to face this is not correct. This happens when the faces from
two different tissue types are facing each other. Therefore it might be necessary to double the
vertexes in the vertex arrays where this is an issue, making the normals point the right way.

It is also necessary to be able to change the soft tissue’s alpha value, making it transparent. This
would make it possible to see through the soft tissue and down to the bone and the goal of the
simulation. To accomplish this, blending has to be turned on and the objects need to be drawn
in the correct order, starting with the bone and working our way out to the skin. This means
that the objects need to be sorted out from their position in the model. This should not be too
hard to implement. It should not be too hard to implement something to change the alpha value

IFinite Element Method
2Graphics Processing Unite
3Physics Processing Unite
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of the soft tissue objects either. The best solution would be to make it possible to change the
different objects alpha values independently. This is possible, but to do this a GUI* window
with a list of the objects and a slide bar or some other form to change the value is required.

The simulator needs a model of a syringe. A free syringe model has been found and downloaded
from the internet, but it is not of the right type, and when converted to the .ASE file format it
would not be loaded into the program. The model needs to be of the correct type of syringe,
and it needs to be scaled to fit the model. The syringe model might need to be in a tetrahedral
mesh to interact with the simulation model as it should.

6.3.1 Reachin Display

The simulator should also implement the possibility of using a Reachin Display and stereo
goggles. This would improve the user’s experience from the simulator since the user would get
a better feeling for the depth of the objects in the scene.

HaptX does not support Reachin Display or stereo goggles. Stereo goggles need to be imple-
mented by using an external API in HaptX. How it is possible to get the stereo goggles to work
in HaptX is described in Chapter 2.2.4. To make the Reachin Display work the scene needs
only to be rotated, so there is no need for an external API for this.

6.3.2 Dividing The Simulator In Two

A good idea is to divide the simulation up into two parts. One where the syringe is exchanged
with a hand with a finger or just a finger. The finger should be used in the first part of the
simulation to only feel the surface of the skin and the bones beneath it. When pushing down,
the skin should deform making you feel the contours of the bones and the muscles like when
you push a finger on the surface of a real person’s skin. This should make it possible to find
the perfect spot to do the syringe insertion. When the right spot is found, the hand should be
exchanged with the syringe and the second part of the simulation should start with the needle
insertion.

To make this work a model of a hand or a finger is also needed and the program needs to make
it impossible for the finger to go through the skin, it should only be able to deform the skin
as long as forces are put on it. This means that the simulator needs to operate with different
physics for the finger and the syringe model.

6.3.3 Demonstration

The simulator should have a way to demonstrate how the simulator works and what the goal of
the simulation should be. One way to do this is by running a prerecorded video sequence of the
simulation where a person explains the user what is done and how to do it. It is also possible

*Graphics User Interface
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to do this by giving hints to the user during the simulation by drawing on the model, or a voice
that tells the user what to do. This would make it feel like there is a mentor standing there to
assist the user.

The files for the demonstration needs to be stored and loaded automatically when the simulation
file is loaded. It is necessary to be able to turn the demonstration function on or off if it is done
interactively.

6.3.4 Addons

To improve the simulation even further it is possible to add animations that animate the injec-
tion when the user thinks the right spot has been found. This means that the syringe is filled
with liquid, and then when the user pushes a button the liquid flows out of the syringe.

There is also the possibility of adding animations, forces and other effects when the user for
example hits an artery or a vein. The needle hole could be made to bleed when this happens,
making blood flow out from the puncture wound. This would be a really cool feature, but then
the model needs to have the arteries and veins defined, which adds to the complexity of the
model and the simulation.

It would also be cool if the program had implemented sound, that could make the program
scream if the user did something that would hurt in a real needle insertion, like hitting a nerve
or by using too much force and hitting the bone too hard.
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Conclusion

The task of creating a medical simulator that can be used to train medical personnel is a big
task. It requires a lot of resources to make it good enough for this purpose. Which means that
the simulator has to mimic the real situation and do this as close to the real needle insertion
as possible. This is why the FEM solution with the use of tetrahedrons has been chosen. It
is possible to emulate a FEM much closer to reality, than with any of the other deformation
possibilities.

The haptic scene graph has been selected out from the criteria that it has to be made as a
haptic scene graph, and it has to be programmable with C++. This means that scene graphs
like H3D[3] and Open Scene Graph with OSGHaptics[4] was not chosen. The choice fell on
Reachin API, even though it was not a perfect choice, since it is too closely connected with
VRML. When Reachin released its new scene graph, the HaptX in April, it seemed to be a good
idea to switch over to this instead. The final version of the program uses this scene graph. The
HaptX scene graph seems to have all the desired functions, and it works as it should for the
things that have been tested.

The data model that has been created, has been created from a polygon model. The polygon
model is full of errors and therefore the shoulder model does not have all the parts that is
desired, it only has the skin and the bones. The skin and the bones is all that is required to
implement and test a FEM on. When the FEM is up and running the model can be exchanged
with one that has more parts, like muscles, veins and so on.

It has been a real challenge to find information about how to use a FEM in a simulator and how
to create a tetrahedral mesh for this purpose. This task would have been a lot easier if there
was anybody with knowledge of this to talk to.

The main task of this project was to make a tetrahedral mesh that can be used in a FEM in a
needle insertion simulator. This task has been solved with the shoulder tetrahedral mesh, even
though the mesh does not have all the wanted parts. Though it has the parts that is important
for further development of the simulator. The mesh generation procedure should be improved,
in order to correct the errors in the polygon mesh automatically. The best solution would be to
create a mesh directly from a MRI volume, by first automatically segmenting the volume and
then creating a tetrahedral mesh from the segmented volume.
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So far there has only been created a tetrahedral mesh of the shoulder which only has the bones
and the skin, and a program to load this model into a haptic scene graph. In the scene graph
program, the mesh has been divided into different objects. The objects have been made haptical
by adding simple haptical surfaces to them, making it possible to feel the surface of the objects.
The goal of this project was to create a tetrahedral mesh that it is possible to test a FEM on. In
that respect the goal of the project has been met.

The task of making a complete simulator is too big to complete within such a short time span,
and with so few resources. Therefore not even all the parts of the simulator has been started
on, and no parts are complete. There is still a lot of work that needs to be done on the medical
simulator before it is close to something that can be called a simulator. The tetrahedral mesh
should be improved by adding more tissue types to it. The FEM needs to be implemented, and
there are a lot of small things that need to be fixed or changed to make everything work as it
should.

In this report the fetrahedral mesh creation and the setup of the haptic scene graph has been
described. There has also been discussed a lot of possible solutions, problems, ideas and several
other things that would have been nice to have in the simulator. All this to create a simulator
that is as realistic as possible and educational and interesting to use.
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Chapter 9

Appendix

9.1 TetGen

Here is the part of TetGen that as been the most edited. The file loading of the st/ files.

Listing 9.1: TetGen - tetgen.cxx

bool tetgenio::load_stl(charx filename)

{
// from line 1815 this has been added
//

// Adding regions from regions file.
// Added by Rolf Anders Syvertsen 01.03.2007

// rolfans@stud .ntnu.no

FILE xregionFile;
char inregionsfilename [ FILENAMESIZE];

strcpy (inregionsfilename , filename);
strcat (inregionsfilename , ”.regions”);

char xstringptr;
int index;

char inputline [INPUTLINESIZE];

99 .9

regionFile = fopen(inregionsfilename , ”r”);

if (regionFile != (FILE %) NULL) {
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printf (’Found regions

}

else {

numberofregions = 0;

}

printf (”Error:
firstnumber +

if (xstringptr ==
printf ("Error:
firstnumber +
break;
}
else {
regionlist[index
)3
}

if (xstringptr ==
printf ("Error:

break ;

stringptr = readnumberline (inputline ,regionFile , NULL) ;
if (stringptr != (char %) NULL && *stringptr != "\0’) {
numberofregions = (int) strtol (stringptr , &stringptr, 0);

if (numberofregions > 0)

{
// Initialize ’regionlist’
regionlist = new REAL[numberofregions * 5];
index = 0;
for (i = 0; i < numberofregions; i++) {
stringptr = readnumberline (inputline , regionFile ,
inregionsfilename ) ;
stringptr = findnextnumber(stringptr);
if («stringptr == "\0") {

break ;
}
else {
regionlist[index++] = (REAL) strtod (stringptr , &stringptr
)3
}
stringptr = findnextnumber(stringptr);

stringptr = findnextnumber(stringptr);

firstnumber + 1);

file. Loading regions.\n”);

Region %d has no x coordinate.\n”,

i);

3\0’) {
Region %d has no y coordinate.\n”,

i);

++] = (REAL) strtod (stringptr , &stringptr

N0 |

Region %d has no z coordinate.\n”,
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} else {

regionlist[index++] = (REAL) strtod (stringptr , &stringptr

)
}
stringptr = findnextnumber(stringptr);
if (xstringptr == *\0") {
printf (”Error: Region %d has no region attrib.\n”,
firstnumber + i);

break;
} else {
regionlist[index++] = (REAL) strtod (stringptr , &stringptr
)3
}
stringptr = findnextnumber(stringptr);
if (xstringptr == *\0") {
regionlist[index] = regionlist[index — 1];
} else {
regionlist[index] = (REAL) strtod (stringptr , &stringptr);
}
index ++;

}

if (i < numberofregions) {
// This must be caused by an error.
fclose (regionFile);
return false;
}
}
}

else {

}

numberofregions =0;

9.2 HaptXTest

Here is some of the code from the HaptX test program.

9.2.1 H Files

Listing 9.2: HaptXTest - needleinsertion.h

/*+ This file 1is based on the HaptX example kode
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Tetrahedral mesh viewer for HaptX
using the HaptX demo framework
Edited by Rolf Anders Syvertsen
04.05.2007
rolfans@stud . ntnu . no
rolfans @ gmail .com

x/

#ifndef NEEDLEINSERTION_H
#define NEEDLEINSERTION_H

#include “HaptX/graphics_framework.h”
#include ”“HaptX/demo_framework.h”

#include “tetmesh.h”

class Needlelnsertion : public IDemoFramework

{ .

private:
IGraphicsFramework m_graphics;
inputState_tx m_input;

IGraphicsRenderModel m_model ;
IGraphicsRenderModel m_proxyModel;
IGraphicsRenderModel m_floor;
IGraphicsRenderModel m_syringe;

float CcX;

float cy;

float m_camSensitivity ;
bool m_prevButtonl ;
bool m_prevButton2;
int

m_activeNavigationModel ;

// the tetrahedral mesh
TetMesh *m_ptetmesh ;

private:
void HandleMoveCamera( float deltaTime);
void HandleCameraRotation(float x, float y);

public:
Needlelnsertion () ;
virtual " Needlelnsertion () ;
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const charx GetDemoName () ;
// load the model
bool InitDemo (IGraphicsFrameworkx* gfx,

inputState_tx inputState);
/1! displaying the scene and a message

void LoadingFrame (std :: string message) ;
/1! create the haptics shapes
void CreateHapticsShape () ;
void ShutDownDemo () ;
void UpdateDemo ( float deltaTime , int
width, int height);
}s
#endif
Listing 9.3: HaptXTest - tetmesh.h
/% % tetrahedral mesh for the HaptX scene graph
made by Rolf Anders Syvertsen
2007—-04—-13
rolfans@stud . ntnu . no
rolfans @ gmail .com
x/

#ifndef TETMESH_H
#define TETMESH_H

#include <stdio .h>
#include <iostream >
#include <windows.h>
#include <gl/gl.h>
#include<gl/glu.h>

#include <math.h>
#include <vector>

#include “tetrahedron.h”
#include “vertex.h”
#include “vertet.h”
#include “tissuetype.h”

using namespace std;

/«* The loading of the tetrahedral mesh is based on the loader in
* TetGen.

* Loads meshes from .ele and .node files
*/

class TetMesh

{

public:
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//'! Constructor
TetMesh () ;
//'! Destructor
“TetMesh () ;

//'! load tetrahedral mesh from a .ele and a .node file

bool loadTetMesh (char xfilename);

//'! load the nodes from the .node file

bool loadNodes (FILEx infile , int markers, charx infilename);

//! calculate face normals for tetrahedron at
void calcFaceNorm(int tetind);

//'! the number of tissue types

int numTissueTypes () ;

/1! the tissueTypes

TissueType =xgetTissueData(){return m_ptissue;};

/1! the number of tets

int numTets () {return m_numTet;}

/1! the tet at

Tetrahedron xgetTetAt(int index){return &m_ptetList[index];}
/1! the vertex at

Vertex getVertexAt(int index);

/'l types of tissue

enum TISSUETYPE{SKIN=100, SOFTTISSUE=101, BLOODVEINS=102,
BLOODARTERIES=103, NERVES=104, LUNG=105, HART=106,
MEMBRANE=107,
BONE=200, // should be from 200 —> 299
MUSCLES=300 // should be from 300 —> 399

}s

protected:

private:

//! connect the tetrahedrons
void connectTet () ;

//! calculate the vertex normals of the
//! vertexes that will be rendered
void calculateVertexNorm () ;

//! makes lists with the vertexes and faces in the

/1 polygon model for displaying
void makeDispObjects () ;
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}s

//'! the number of tissue types
int m_numTissueTypes;

/1! the number of faces in the differen tissue types
TissueType *xm_ptissue;

/17! Maximum number of characters in a file name (including
the null).
enum {FILENAMESIZE = 1024};

// Maxi. numbers of chars in a line read from a file (incl. the
null).
enum {INPUTLINESIZE = 1024};

//'! read a number line from a infile
char *readnumberline (char*x string , FILEx infile , charx
infilename) ;
/1! find the next number, skipping spaces and comments
char xfindnextnumber (char* string);

//'! tetrahedron list

Tetrahedron s«m_ptetList;

//! number of tetrahedrons

int m_numTet;

//! number of tetrahedron attributes
int m_numTetAttrib ;

/1! vertex list

Vertex sm_pvertexList;
//'! number of vertexes
int m_numVertexes;

//! The connection between the Vertexes and
//! the tetrahedrons
Vertet sm_pvertexTet;

//! the dimention of the mesh

int m_meshdim;

//'! the first vertex index in the file
int m_firstnum;

#endif

Listing 9.4: HaptXTest - tetrahedron.h

/% *

tetrahedron data structure
made by Rolf Anders Syvertsen
2007—-04—13
rolfans@stud . ntnu . no

67 Rolf Anders Syvertsen




Tetrahedral Mesh For Needle Insertion. CHAPTER 9. APPENDIX

*/

#ifndef TETRATEDRON_H
#define TETRAHEDRON_H

#include “vertex.h”
/«* The neighboring tetrahedrons:

m_pfaceNeighbl= vertex0 + vertexl + vertex2
m_pfaceNeighb2= vertex0 + vertex2 + vertex3
m_pfaceNeighb3= vertex0 + vertex3 + vertexl
m_pfaceNeighb4= vertexl + vertex3 + vertex2

*/
class Tetrahedron

{

public:
//'! constructor
Tetrahedron () ;
/1l destructor
“Tetrahedron () ;
//! add the corners
void addCorners(int vertil ,int verti2 , int verti3 , int
verti4);
/'l set the tissue type
void setType(int type);
/'l get the tissue type
int getType():
/'l get the vertex indexes
int xgetVertex () ;
/1! set face normals
void setFaceNorm(int ind, Vertex norm) ;
/1! get Face Normals at
Vertex getFaceNormAt(int index);
//'! set neighbor tet at ind 0-3
/1! sets the faces that should be rendered
void setNeighbor(int ind, Tetrahedron xtet);
//'! how many neighbors are sett
int numNeighbors () ;
/1! is the face at ind going to be rendered
bool renderFaceAt(int ind);
private:

/1! Vertex indexes for the four vertexes
int m_vertex [4];

//'! Face normals

Vertex m_faceNormal [4];

//'! tetrahedron type
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int m_type;

//'! neighbor tetrahedrons

Tetrahedron sm_pfaceNeighbl ,xm_pfaceNeighb2 ,xm_pfaceNeighb3
,*m_pfaceNeighb4;

/1! is the faces going to be rendered

bool m_renderface[4];

//'! number of tet neighbors

int m_neighbors;

}s
#endif
Listing 9.5: HaptXTest - tissuetype.h
/% % number of faces and vertexes in this tissue type
made by Rolf Anders Syvertsen
2007—-05-08
rolfans@stud . ntnu . no
x/
#ifndef TISSUETYPE_H
#define TISSUETYPE_H

class TissueType

{
public:
//'! constructor
TissueType () {m_type=—9999;m_numVertexes=0; m_numFaces=0;}
/'l the type
int m_type;
//'! number of vertexes
int m_numVertexes;
//'! number of faces
int m_numFaces;
s
#endif
Listing 9.6: HaptXTest - vertet.h
IEE Vertex tetrahedron vector
used to connect the vertexes and tetrahedrons
made by Rolf Anders Syvertsen
2007—-04—13
rolfans@stud . ntnu . no
x/

#ifndef VERTET_H
#define VERTET_H
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#include <vector>

using namespace std;
class Vertet
{
public:
Vertet () {m_tetid.clear ();}
vector<int> m_tetid ;
}s
#endif
Listing 9.7: HaptXTest - vertex.h
IEX Vertex data structure
made by Rolf Anders Syvertsen
2007—-04—-13
rolfans@stud . ntnu . no
*/

#ifndef VERTEX_H
#define VERTEX_H

#include <math .h>
/+% Also defines
x/

class

{

public:

a 3d vector

Vertex

/'l constructor with
Vertex () ;

/1! set the point
void
/1! get the x coord
float getX ()

/'l get the y coord
float getY ()

/'l get the z coord

float getZ ()

//'! set the normal

void setNormal(float
/1! get the x Normal
float getNormalX () ;
/1! get the y Normal
float getNormalY () ;
/1! get the z Normal
float getNormalZ () ;

setPoint(float x,float y,

the dim.

float z);

x, float y, float z);

coord
coord

coord
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private:

}s
#endif

/! cross product

Vertex cross(Vertex v2);
/1! the lengt of the vector
float length();

/1! % operator overloader
Vertex operator x(float scalar);

/1! The vertex

float m_vertex [3];
//'! The vertex normal
float m_normal [3];

9.2.2 Cpp Files

Listing 9.8: HaptXTest - graphicsframework.cpp

// from

line 303

IGraphicsRenderModel* IGraphicsFramework :: LoadRenderModel (TetMesh =
tetmesh)

{

IGraphicsRenderModel* m = CreateRenderModel () ;

if (m)

{
TissueType *tissue=tetmesh—>getTissueData () ;
for (int i = 0; i < tetmesh—>numTissueTypes(); i++)
{

GraphicsRenderObject obj;
m—>m_objectArray . push_back (obj);

size_t id = m—>m_objectArray.size () — 1;
int vertid=0; int faceid=0;

/l texture
m—>m_objectArray[id ]. m_tissueType=tissue[i].

m_type;
if (tissue[i].m_type==TetMesh ::SKIN)
{
m—>me_objectArray[id ]. m_colormap =
LoadTexture(”tissuext.bmp”);
}
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else if (tissue[i].m_type>=TetMesh :: BONE&&
tissue [1].m_type<TetMesh :: MUSCLES)

m—>m_objectArray[id ]. m_colormap =
LoadTexture(”bonetile .bmp”);
}
else if (tissue[i].m_type>=TetMesh :: MUSCLES
&&tissue [i].m_type <400)

m—>m_objectArray[id ]. m_colormap =
LoadTexture ("musclet.bmp”) ;

}

int vertex_count = tissue[i].m_numVertexes;
m—>m_objectArray[id ]. m_numVertices =
vertex_count;
m—>m_objectArray[id ]. m_vertices = new
vertex_t[vertex_count ];
memset (m—>m _objectArray[id ]. m_vertices ,0,
sizeof (vertex_t) *x vertex_count);

int face_count = tissue[i].m_numFaces;

m—>m_objectArray[id ]. m_numFaces = face_count

m—>m_objectArray[id ]. m_faces = new unsigned
int[ face_count x 3];

// set the faces and vertexes
for(int j=0;j<tetmesh-—>numTets () ;j++)
{
Tetrahedron xtetrahe=tetmesh—>
getTetAt(j);
if (tetrahe —>getType ()==tissue[i].
m_type )
{

if (tetrahe —renderFaceAt(0))
{
int xvertindex=
tetrahe —
getVertex () ;
/[l vertex 0
m—>m_objectArray [id
]. m_vertices |
vertid ]. vertex
[O]=tetmesh—>
getVertex At (
vertindex [0]) .
getX ()
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m—>m_objectArray|[id
].m_vertices |
vertid ]J. vertex
[1]=tetmesh—>
getVertexAt(
vertindex [0]) .
getY () ;

m—>m _objectArray[id
]. m_vertices |
vertid ]. vertex
[2]=tetmesh—>
getVertexAt(
vertindex [0]) .
getZ () ;

m—>m_objectArray [ id
]. m_vertices |
vertid ]. normal
[O]=tetmesh—>
getVertexAt(
vertindex [0]) .
getNormalX () ;

m—>m_objectArray[id
]. m_vertices |
vertid ]. normal
[1]=tetmesh—>
getVertex At (
vertindex [0]) .
getNormalY () ;

m—>m-_objectArray[id
].m_vertices |
vertid |]. normal
[2]=tetmesh—>
getVertex At (
vertindex [0]) .
getNormalZ () ;

m—>m-_objectArray|[id
]. m_faces[faceid
]=vertid ;

m—>m-_objectArray[id

].m_vertices |

vertid ]. texture

[0] =

m—>

m_objectAr
[id ].
m_vertices
[vertid ].

ray
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texture
[1] = 0.0
f;

vertid++; faceid++;
!/l vertex 2
m—>m _objectArray [id
]. m_vertices |
vertid ]. vertex
[O]=tetmesh—>
getVertexAt(
vertindex [2]) .
getX () ;
m—>m_objectArray[id
]. m_vertices |
vertid ]. vertex
[I]=tetmesh—>
getVertex At (
vertindex [2]) .
getY () ;
m—>m_objectArray [id
]. m_vertices |
vertid ]. vertex
[2]=tetmesh—>
getVertex At (
vertindex [2]) .
getZ () ;
m—>m-_objectArray[id
].m_vertices [
vertid ]. normal
[0O]=tetmesh —>
getVertex At (
vertindex [2]) .
getNormalX () ;
m—>m_objectArray[id
].m_vertices |
vertid ]. normal
[1]=tetmesh—>
getVertexAt(
vertindex [2]) .
getNormalY () ;
m—>m _objectArray[id
]. m_vertices |
vertid ]. normal
[2]=tetmesh—>
getVertexAt(
vertindex [2]) .
getNormalZ () ;

Rolf Anders Syvertsen




Tetrahedral Mesh For Needle Insertion.

CHAPTER 9. APPENDIX

75

m—>m_objectArray|[id
]. m_faces[faceid
]=vertid ;

m—>m-_objectArray[id
]. m_vertices [
vertid ]. texture
[0] =

m—>
m_objectArray
[id ].
m_vertices
[vertid ].
texture
[1] = 0.0
f

vertid++; faceid ++;
!/l vertex 1
m—>m _objectArray[id
]. m_vertices |
vertid ]. vertex
[O]=tetmesh—>
getVertexAt(
vertindex [1]) .
getX () ;
m—>m_objectArray|[id
]. m_vertices |
vertid ]. vertex
[I]=tetmesh—>
getVertexAt(
vertindex [1]) .
getY () ;
m—>m_objectArray [id
]. m_vertices |
vertid ]. vertex
[2]=tetmesh—>
getVertex At (
vertindex [1]) .
getZ () ;
m—>m-_objectArray[id
].m_vertices |
vertid |]. normal
[O]=tetmesh—>
getVertex At (
vertindex [1]) .
getNormalX () ;
m—>m-_objectArray[id
].m_vertices |
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vertid |]. normal
[1]=tetmesh —>
getVertexAt(
vertindex [1]) .
getNormalY () ;
m—>m _objectArray [id
]. m_vertices |
vertid ]. normal
[2]=tetmesh—>
getVertexAt(
vertindex [1]) .
getNormalZ () ;
m—>m_objectArray[id
]. m_faces[faceid
]=vertid ;

m—>m _objectArray [id
]. m_vertices |
vertid ]. texture
(0] =

m—>

m_objectArray

[id ].

m_vertices

[vertid ].

texture

[1] = 0.0

f
vertid++; faceid++;

}

if (tetrahe —>renderFaceAt (1))
{
int xvertindex=
tetrahe —>
getVertex () ;
!/l vertex 0
m—>m_objectArray [ id
]. m_vertices |
vertid ]. vertex
[O]=tetmesh—>
getVertexAt(
vertindex [0]) .
getX () ;
m—>m_objectArray[id
]. m_vertices |
vertid ]. vertex
[1]=tetmesh—>
getVertex At (
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vertindex [0]) .
getY () ;
m—>m_objectArray [id
]. m_vertices [
vertid |. vertex
[2]=tetmesh—>
getVertexAt(
vertindex [0]) .
getZ () ;
m—>m_objectArray|[id
].m_vertices |
vertid ]. normal
[O]=tetmesh—>
getVertexAt(
vertindex [0]) .
getNormalX () ;
m—>m_objectArray[id
]. m_vertices |
vertid ]. normal
[I]=tetmesh—>
getVertexAt(
vertindex [0]) .
getNormalY () ;
m—>m_objectArray|[id
]. m_vertices |
vertid ]. normal
[2]=tetmesh—>
getVertexAt(
vertindex [0]) .
getNormalZ () ;
m—>m_objectArray[id
]. m_faces[faceid
]=vertid;

m—>m_objectArray[id
]. m_vertices [
vertid |. texture
[0] =
m—>
m_objectArray
[id ].
m_vertices
[vertid ].
texture
[1] = 0.0
f
vertid++; faceid++;
/] vertex 3
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m—>m_objectArray|[id
].m_vertices |
vertid ]J. vertex
[0O]=tetmesh—>
getVertexAt(
vertindex [3]) .
getX ()
m—>m _objectArray[id
]. m_vertices |
vertid ]. vertex
[1]=tetmesh—>
getVertexAt(
vertindex [3]) .
getY () ;
m—>m_objectArray|[id
]. m_vertices |
vertid ]. vertex
[2]=tetmesh—>
getVertexAt(
vertindex [3]) .
getZ () ;
m—>m_objectArray [ id
]. m_vertices |
vertid ]. normal
[O]=tetmesh—>
getVertex At (
vertindex [3]) .
getNormalX () ;
m—>m-_objectArray[id
].m_vertices |
vertid |]. normal
[1]=tetmesh—>
getVertex At (
vertindex [3]) .
getNormalY () ;
m—>m-_objectArray|[id
].m_vertices [
vertid ]. normal
[2]=tetmesh —>
getVertexAt(
vertindex [3]) .
getNormalZ () ;
m—>m_objectArray[id
]. m_faces[faceid
]=vertid ;

m—>m-_objectArray[id
].m_vertices |
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vertid ]. texture
[0] =

m—>
m_objectAr
[id ].
m_vertices
[vertid ].
texture
[1] = 0.0
f

vertid++; faceid++;

vertex 2

m—>m_objectArray[id

]. m_vertices |
vertid ]. vertex
[O]=tetmesh—>
getVertex At (
vertindex [2]) .
getX ()

m—>m_objectArray [id

]. m_vertices |
vertid ]. vertex
[1]=tetmesh—>
getVertex At (
vertindex [2]) .
getY ()

m—>m-_objectArray[id

].m_vertices [
vertid ]. vertex
[2]=tetmesh —>
getVertex At (
vertindex [2]) .
getZ () ;

m—>m_objectArray[id

].m_vertices |
vertid ]. normal
[0O]=tetmesh—>
getVertexAt(
vertindex [2]) .
getNormalX () ;

m—>m _objectArray[id

]. m_vertices |
vertid ]. normal
[1]=tetmesh—>
getVertexAt(
vertindex [2]) .
getNormalY () ;

ray
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m—>m_objectArray|[id
].m_vertices |
vertid ]. normal
[2]=tetmesh —>
getVertexAt(
vertindex [2]) .
getNormalZ () ;

m—>m _objectArray[id
]. m_faces|[ faceid
]=vertid ;

m—>m_objectArray|[id
].m_vertices |
vertid ]. texture
[0] =
m—>
m_objectArray
[id ].
m_vertices
[vertid].
texture
[1] = 0.0
f
vertid++; faceid++;

}

if (tetrahe —>renderFaceAt(2))
{
int xvertindex=
tetrahe —
getVertex () ;

/1 vertex 0
m—>m_objectArray|[id
].m_vertices [
vertid ]. vertex
[O]=tetmesh —>
getVertexAt(
vertindex [0]) .

getX ()3
m—>m_objectArray [ id
]. m_vertices [
vertid ]. vertex
[I]=tetmesh—>
getVertexAt(
vertindex [0]) .
getY () ;
m—>m_objectArray[id
]. m_vertices |
vertid ]. vertex
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[2]=tetmesh —>
getVertex At (
vertindex [0]) .
getZ () ;
m—>m-_objectArray[id
]. m_vertices [
vertid ]. normal
[0O]=tetmesh —>
getVertex At (
vertindex [0]) .
getNormalX () ;
m—>m_objectArray|[id
].m_vertices |
vertid ]. normal
[1]=tetmesh—>
getVertexAt(
vertindex [0]) .
getNormalY () ;
m—>m _objectArray[id
]. m_vertices |
vertid ]. normal
[2]=tetmesh—>
getVertexAt(
vertindex [0]) .
getNormalZ () ;
m—>m_objectArray [ id
]. m_faces[faceid
]=vertid ;

m—>m _objectArray[id
]. m_vertices |
vertid ]. texture

[0] =

m—>
m_objectAr
[id ].
m_vertices
[vertid ].
texture
[1] = 0.0
f

vertid++; faceid++;

// vertex 1

m—>m_objectArray[id
]. m_vertices |
vertid ]. vertex
[O]=tetmesh—>
getVertex At (

ray
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m—>m-_objectArray[id

m—>m_objectArray|[id

m—>m_objectArray[id

m—>m_objectArray|[id

m—>m_objectArray[id

m—>m-_objectArray[id

m—>m_objectArray[id

vertindex [1]) .
getX () ;

].m_vertices |
vertid ]J. vertex
[1]=tetmesh—>
getVertexAt(
vertindex [1]) .
getY () ;

].m_vertices |
vertid ]. vertex
[2]=tetmesh —>
getVertexAt(

vertindex [1]) .

getZ () ;

]. m_vertices |
vertid ]. normal
[O]=tetmesh—>
getVertexAt(
vertindex [1]) .
getNormalX () ;

]. m_vertices |
vertid ]. normal
[I]=tetmesh—>
getVertexAt(
vertindex [1]) .
getNormalY () ;

]. m_vertices |
vertid |. normal
[2]=tetmesh—>
getVertex At (

vertindex [1]) .
getNormalZ () ;

]. m_faces[faceid
]=vertid ;

]. m_vertices |
vertid ]. texture
[0] =
m—>
m_objectAr
[id ].

ray

Rolf Anders Syvertsen



Tetrahedral Mesh For Needle Insertion.

CHAPTER 9. APPENDIX

83

m_vertices
[vertid ].
texture
[1] = 0.0
f
vertid++; faceid++;
!/l vertex 2
m—>m _objectArray[id
]. m_vertices |
vertid ]. vertex
[O]=tetmesh—>
getVertexAt(
vertindex [3]) .
getX () ;
m—>m_objectArray [ id
]. m_vertices |
vertid ]. vertex
[I]=tetmesh—>
getVertexAt(
vertindex [3]) .
getY () ;
m—>m_objectArray[id
]. m_vertices |
vertid ]. vertex
[2]=tetmesh—>
getVertex At (
vertindex [3]) .
getZ () ;
m—>m-_objectArray[id
].m_vertices |
vertid |]. normal
[O]=tetmesh—>
getVertex At (
vertindex [3]) .
getNormalX () ;
m—>m-_objectArray|[id
].m_vertices [
vertid ]. normal
[1]=tetmesh—>
getVertexAt(
vertindex [3]) .
getNormalY () ;
m—>m_objectArray[id
].m_vertices [
vertid ]. normal
[2]=tetmesh —>
getVertexAt(
vertindex [3]) .
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getNormalZ () ;
m—>m_objectArray[id

]. m_faces[faceid

]=vertid ;

m—>m _objectArray [id
]. m_vertices |
vertid ]. texture
[0] =

m—>
m_objectArray
[id ].
m_vertices
[vertid ].
texture
[1] = 0.0
f;
vertid++; faceid++;

}

if (tetrahe —>renderFaceAt(3))
{
int xvertindex=
tetrahe —
getVertex () ;

!/l vertex 1
m—>m_objectArray [ id
]. m_vertices |
vertid ]. vertex
[O]=tetmesh—>
getVertexAt(
vertindex [1]) .

getX () ;
m—>m_objectArray[id
]. m_vertices |
vertid ]. vertex
[1]=tetmesh—>
getVertex At (
vertindex [1]) .
getY () ;
m—>m-_objectArray[id
].m_vertices |
vertid ]. vertex
[2]=tetmesh—>
getVertex At (
vertindex [1]) .
getZ () ;
m—>m-_objectArray[id
].m_vertices |
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vertid |]. normal
[O]=tetmesh —>
getVertexAt(
vertindex [1]) .
getNormalX () ;
m—>m _objectArray [id
]. m_vertices |
vertid ]. normal
[I]=tetmesh—>
getVertexAt(
vertindex [1]) .
getNormalY () ;
m—>m_objectArray[id
]. m_vertices |
vertid ]. normal
[2]=tetmesh—>
getVertex At (
vertindex [1]) .
getNormalZ () ;
m—>m_objectArray [id
]. m_faces[faceid
]=vertid;

m—>m_objectArray[id
]. m_vertices |
vertid ]. texture
[0] =
m—>
m_objectAr
[id ].
m_vertices
[vertid ].
texture
[1] = 0.0
f
vertid++; faceid++;
/] vertex 2
m—>m-_objectArray[id
].m_vertices [
vertid ]J. vertex
[0O]=tetmesh —>
getVertex At (
vertindex [2]) .
getX ()
m—>m_objectArray|[id
].m_vertices |
vertid ]. vertex
[1]=tetmesh—>

ray
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getVertexAt(
vertindex [2]) .
getY () ;
m—>m_objectArray [ id
]. m_vertices |
vertid ]. vertex
[2]=tetmesh—>
getVertexAt(
vertindex [2]) .
getZ () ;
m—>m _objectArray[id
]. m_vertices |
vertid ]. normal
[O]=tetmesh—>
getVertex At (
vertindex [2]) .
getNormalX () ;
m—>m-_objectArray[id
].m_vertices [
vertid |]. normal
[1]=tetmesh—>
getVertex At (
vertindex [2]) .
getNormalY () ;
m—>m-_objectArray|[id
]. m_vertices [
vertid ]. normal
[2]=tetmesh —>
getVertexAt(
vertindex [2]) .
getNormalZ () ;
m—>m_objectArray|[id
]. m_faces[faceid
]=vertid ;

m—>m-_objectArray|[id
].m_vertices [
vertid ]. texture
[0] =
m—>

m_objectAr

[id ].

m_vertices
[vertid].

texture

[1] = 0.0

f;

vertid++; faceid++;
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// vertex 3
m—>m_objectArray[id
]. m_vertices [
vertid ]. vertex
[O]=tetmesh—>
getVertexAt(
vertindex [3]) .

getX () ;
m—>m_objectArray [id
]. m_vertices |
vertid ]. vertex
[1]=tetmesh—>
getVertex At (
vertindex [3]) .
getY () ;
m—>m-_objectArray[id
]. m_vertices [
vertid ]J. vertex
[2]=tetmesh —>
getVertex At (
vertindex [3]) .
getZ ()
m—>m_objectArray|[id
].m_vertices |
vertid ]. normal
[0O]=tetmesh—>
getVertexAt(
vertindex [3]) .
getNormalX () ;
m—>m _objectArray[id
]. m_vertices |
vertid ]. normal
[1]=tetmesh—>
getVertexAt(
vertindex [3]) .
getNormalY () ;
m—>m_objectArray [ id
]. m_vertices |
vertid ]. normal
[2]=tetmesh—>
getVertexAt(
vertindex [3]) .
getNormalZ () ;
m—>m_objectArray[id
]. m_faces[faceid
]=vertid ;
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m—>m_objectArray|[id
].m_vertices |
vertid ]. texture
[0] =
m—>
m_objectArray
[id ].
m_vertices
[vertid].
texture
[1] = 0.0
f
vertid++; faceid++;

}
}
m—>Reload () ;

}

return m;
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