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We study three different time integration methods for a dymaic pore network model for
immiscible two-phase ow in porous media. Considered are tvo explicit methods, the
forward Euler and midpoint methods, and a new semi-implicitnethod developed herein.
The explicit methods are known to suffer from numerical inabilities at low capillary
numbers. A new time-step criterion is suggested in order to &bilize them. Numerical
experiments, including a Haines jump case, are performed ahthese demonstrate that
stabilization is achieved. Further, the results from the Hi@es jump case are consistent
with experimental observations. A performance analysis veals that the semi-implicit
method is able to perform stable simulations with much less @mputational effort
than the explicit methods at low capillary numbers. The retave benet of using the

semi-implicit method increases with decreasing capillarpumber Ca, and atCa 10 8

the computational time needed is reduced by three orders of ragnitude. This increased
ef ciency enables simulations in the low-capillary numberegime that are unfeasible with
explicit methods and the range of capillary numbers for whit the pore network model
is a tractable modeling alternative is thus greatly extendeby the semi-implicit method.

Keywords: porous media, two-phase ow, pore network model, nu merical methods, time integration, stability,
low capillary number

1. INTRODUCTION

Di erent modeling approaches have been applied in order to inceeaslerstanding of immiscible
two-phase ow in porous media. On the pore scale, direct nunarsimulation approaches using
e.g., the volume of uid method1] or the level-set methodZ, 3] to keep track of the uid
interface locations, have been used. The lattice-Boltzrmaethod is another popular choice, see
e.g., Ramstad et all][ These methods can provide detailed information on the oweiach pore.
They are, however, computationally intensive and this retstitheir use to relatively small systems.

Pore network models have proven to be useful in order to redheebmputational cost]], or
enable the study of larger systems, while still retainingespore-level detail. In these models, the
pore space is partitioned into volume elements that are typith#é size of a single pore or throat.
The average ow properties in these elements are then coreilderithout taking into account the
variation in ow properties within each element.

Pore network models are typically classi ed as either quidiesor dynamic. The quasi-static
models are intended for situations where ow rates are lowd aiscous pressure drops are
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neglected on the grounds that capillary forces are assumed jomp. Second, the method can only be used in cases with
dominate at all times. In the quasi-static models by Lenorthan transient invasion. Studies of steady-state ow, such aseho
et al. ], Willemsen [7], and Blunt [8], the displacement of one performed by Knudsen et al2[] and Savani et al.1[], are not
uid by the other proceeds by the lling of one pore at the time, possible.
and the sequence of pore lling is determined by the capillary Because the oscillations originate in the numerical methods
entry pressure alone. rigorous attempts to remove them should focus on these
The dynamic models, on the other hand, account formethods rather than the models themselves. Joekar-Niasar
the viscous pressure drops and thus capture the interactioet al. P] followed this avenue and achieved stabilization
between viscous and capillary forces. As three examplesing a linearized semi-implicit method. Their work, howgve
of such models, we mention those by Hammond andconcerned a dierent type of pore network model than that
Unsal [], Joekar-Niasar et al.9], and Aker et al. I(J. considered here.
A thorough review of dynamic pore network models In this work, we present three numerical methods that
was performed by Joekar-Niasar and Hassanizadeten be utilized to perform stable simulations of two-phase
[11. ow in porous media with pore network models of the Aker
The pore network model we consider here is of the dynamid¢ype. The stability problems previously observed are thus
type that was rst presented by Aker et all(]. Since the solved without the need to resort to model modications
rst model was introduced, it has been improved upon severathat restrict interface movement or preclude steady-state ow
times. Notably, it was extended to include Im and cornersimulations. Two explicit methods are discussed, the fodwar
ow by Terd et al. [LlZ. The model considered here doesEuler method and the midpoint method. These are stabilized
not contain this extension. This class of models, which wédy a new time step criterion derived herein. The third method
call the Aker-type models, is di erent from the majority of is a new semi-implicit method. Thorough verications of
other pore network models5] 9] in that both the pore body all methods are performed, conrming correct convergence
and pore throat volumes are assigned to the links, and nproperties and stability. Finally, we compare the methods in
volume is assigned to the nodes. Fluid interface locatioles aterms of performance.
tracked explicitly as they move continuously through the pore The rest of this paper is structured as follows. Section 2
space. This is in contrast to the model by Hammond andcontains background information on the pore network model.
Unsal ], where interfaces are moved through whole volumeSection 3 presents brie y the nomenclature, used in subsequent
elements at each time step, and to the model of Joekasections to describe the time integration methods. In s&ct,
Niasar et al. §], where interface locations are only implicitly we recapitulate how the forward Euler method is used to
available through the volume element saturation. One of théntegrate the model and we present a new time step criterion
advantages of the Aker-type model is that a detailed picturéhat stabilizes both forward Euler and the midpoint method at
of the uid con guration is provided at any time during a low capillary numbers. We brie y review the midpoint method
simulation. Dynamic phenomena, such as the retraction of thén section 5. The new semi-implicit method is described inadet
invasion front after a Haines jumpl[3-16], are thus easily in section 6. Some remarks about the numerical implementatio
resolved. are made in section 7. Section 8 contains a description of the
Since 1985, numerical instabilities at low capillary nunsbercases simulated. Numerical experiments, including a Haines
have been known to occur for various types of dynamic porgump case, that show convergence and stability are given in
network models [7]. A whole section is devoted to the topic section 9 and a comparison of the method performances are
in the review by Joekar-Niasar and Hassanizadélj.[It is made in section 10. Section 11 summarizes and concludes the
important to address such stability problems rigorously, apaper.
many of the practical applications of two-phase porous media
ow are in the low capillary number regime. Examples include
most parts of the reservoir rock during GOsequestration, 2, PORE NETWORK MODEL
ow of liquid water in fuel cell gas diusion layers and
studies of Haines jump dynamics, see e.g., Armstrong and BeWe consider incompressible ow of two immiscible uids in a
[15]. porous medium, where one uid is more wetting toward the pore
When Aker-type pore network models are used, thewalls than the other. We call the less wetting uid non-wegin
numerical instabilities are observed as oscillations in thé¢n) and the more wetting uid we call wetting (w). The porous
positions of the uid interfaces. Some e orts to avoid thesemedium is represented in the model by a networkMfnodes
oscillations have been made by introduction of modi cat®on connected by links. Each node is given anindef [O,N 1],
to the model. Medici and Allen 1§ used a scheme where and each link is identi ed by the indices of the two nodes it
water was allowed to ow in the forward direction only connects. An example pore network is shownHigure 1L The
in order to study water invasion in fuel cell gas diusion nodes are points that have no volume and, consequently, al ui
layers. While this approach led to interesting results, it hass contained in the links. The links therefore represent btita
some downsides. First, the interface movement is arti giall pore and the throat volumes of the physical porous medium. In
restricted, and certain dynamic e ects can not be resolvedhis respect, the pore network model studied here di er from
This includes e.g., invasion front retraction after a Hane most other pore network model& []. Each uidis assumedto |l
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FIGURE 1 | lllustration of(A) a physical pore network with wetting (white) and non-wettig uid (blue) and (B) its representation in the pore network model. The void
space volumes separated by dashed lines ifA) are each represented as one link ir{B). The node points in the model representatior(B) is assumed to be located at
the intersection points of the dashed lines irffA). Each uid is assumed to Il the entire link cross section. Theriterface positions are therefore each represented in the
model by a single number, giving its location along the linkehgth.

the entire link cross section. The interface positions aséfore  The cross-sectional area of lifikis denoteda;; (m?). Interface
each represented in the model by a single number, giving itgositions are advected with the ow according to
location along the link length.
The ow in each link is treated in a one-dimensional manner, d G
where the ow is averaged over the link cross section. As we azij D aT, (6)
consider ow in relatively small cross sections only, welaegy
any inertial e ects and the volume ow rate (fs® ) from nodej
to nodei through the link connecting then is given by Washburn

(20

when they are su ciently far away from the nodes. Near the
nodes, however, the interfaces are subject to additionaleting

to account for interface interactions in the pores. This sadissed
further in section 2.3.

The form of the expressions for the mobilities and capillary
pressures depends on the shape of the links, and many di erent
choices and modeling approaches are possible. Here, we will use
models similar to those previously presented and used by e.g.,
Knudsen et al.71] and Aker et al. L(). However, the treated time
integration methods are more general and can be applied to other
models as well.

gD gz BB G Zi - (1)

Herein, pi (Pa) is the pressure in nodeg; (m3s?! Pal) is the
link mobility, ¢j (Pa) is the link capillary pressure amgl (m) is a
vector containing the positions of any uid interfaces presian
the link. Both the link mobility and the capillary pressure dede
on the uid interface positions in the link. If two nodeésandj are
not connected by a link, theg; D 0. Due to mass conservation,

the net ow rate into every nodeis zero 2.1. Link Mobility Model
X We apply a cylindrical link model when computing the
G DO () mobilities, so that
i
r4
While the mobilities are symmetric with respect to permutatio gj(zj) D i @)
of the indices, the capillary pressures are anti-symmetric, 8Lij ij zj
gj D gi, (3)  Here,rj (m) is the link radius andLjj (m) is the link length.
G D g (4) The viscosity jj (Pas) is the volume-weighted average of the

uid viscosities and can be computed from the wetting and

Introducing this into Equation (1), we obtain the immedigte Non-wetting uid viscosities w and n and the wetting uid
intuitive result saturations;,

gj D gj. (5) i zig D wsjzp C nl s 2z . (8)
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2.2. Capillary Pressure Model

In each linkij, there may be zero, one or more interfaces
present. These are located at the positions speci ed;jinAs
the interfaces may be curved, there may be a discontinuity in
pressure at these interface locations. The capillary presglise
the sum of interfacial pressure discontinuities in the linkRWhen
computing the capillary pressures, we assume that the links are
wide near each end, and therefore that interfaces located ae
link end have negligible curvature and no pressure discavityn
while the links have narrow throats in the middle. The link
capillary pressures are thus modeled as

A B

FIGURE 2 | Network node connected to three links. The node point, locatd
2 wn X near the middle of the pore space, is occupied by non-wettinguid (blue). (A)

- U1 cos2 ij z . (9) The non-wetting uid extends only a short distance into the fiks containing
wetting uid (white). The wetting uid therefore remains conected and may
ow freely through the pore space. (B) Non-wetting uid protrudes far enough
into all links to block the pore space for wetting uid. The weting uid must
now displace the non-wetting uid in order to ow through.

G zj D

i 2 Zjj

The interfacial tension between the uids is denotegh (Nm 1)
and

8

20, Ny Z: <ri’< L (10) 2.4. Boundary Conditions

>Li 27 I I U We consider only networks where the nodes and links can be
1 z> L Tij. laid out in the two-dimensionak-y plane. These networks will
be periodic in both thex- andy-direction. However, the model is
also applicable to networks that extend in three dimensi@ [

ij.2/ D

The jj-function ensures zones of lengthrjj at both ends of ) :
each link with zero capillary pressure across any interfazaténl ~ 2nd the presented numerical methods are also compatible both
there. Choosing D 0 is equivalent to replacing; with z=L; in with networks in three dimensions and with other, non-peried

9). boundary conditions 23].
We will here apply two types of boundary conditions to the
ow. With the rst type, a specied pressure dierencd P

) ) o . . (Pa) will be applied across the network in tigalirection. This
The equations discussed so far in this section describe hew tpressure di erence will be equal to the sum of all link pressure

uids and the uid interfaces move through the links. In addin, di erences in any path spanning the network once in tie

we rely on models for how they behave close to the nodes. Thge tion, ending up in the same node as it started. With tteeo
purpose of these are to emulate interface interactions in the po type of boundary condition, we specify a total ow ra@gm3s?)

spaces. across the network. This ow rate will be equal to the sum oKli

The following is assumed about the. Ui_d behaviqr near .the ow rates owing through any plane drawn through the network
nodes and is accounted for by the uid interface interaction,, . maito they-axis.

models.

The mass of each uid is conserved at every node. This mear TEMPORAL DISCRETIZATION

that at all times, all wetting and non-wetting uid owing ito

a node from one subset of its neighboring links must ow outn the following three sections, we describe the di erent time
into another disjoint subset of its neighboring links. integration methods considered. These methods are applied to
The network nodes in the model have no volume. HoweverEquation (6), where evaluation of the right hand side ineslv
due to the nite size of the physical pore void spaces, wettingimultaneously solving the mass conservation Equation 1)) a
uid owing into a pore space must be able to ow freely past the constitutive Equation (1) to obtain all unknown link ow
any non-wetting uid occupying the node point if the non- rates and node pressures.

wetting uid does not extend far enough into the pore void  The discretized times (s) are denoted with a superscript where
space cut the wetting uid o. An example is illustrated in nis the time step number,

Figure 2 We consider a linkj to be cut o from free out ow

2.3. Fluid Interface Interaction Models

of wetting uid if the non-wetting uid continuously extend X1
alength at leastr;jj into the link. Non-wetting uid may freely tWptOc 1t (11)
ow past wetting uid, or not, the same manner. iDO

In each linkij, interfacial tension will prevent droplets with
length smaller than r; from forming by separation from The time steplt() is the dierence between(©d and t®
larger droplets. An example is illustratedfigure 3 and the timet© is the initial time in a simulation. Similarly,
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FIGURE 3 | (A) Small non-wetting bubble (blue) whose volume is small comped to the link volumes and is prevented from splitting by ietrfacial tension. This limits
the minimum size of non-wetting bubbles, which will eithe(B) be stuck or (C) move through one of the links without splitting.

quantities evaluated at the discrete times are denoted tvite ~ where the vectox contains the unknown node pressures, e.g.,

step superscripts, e.g., 2 3
(n)
Py
o’ Dgj t™ . (12) o
xD8 4. (19)
Mobilities and capillary pressures with superscripts are evatla :
using the interface positions at the indicated time step, pﬂ‘) 1
¢"Dg 7" (13)  The matrix elements are
X
q(jn) D g Zi(jn) . (14) AjD 1 i ggn) i q(I?)’ (20)
k
4. FORWARD EULER METHOD
and the elements of the constant vector are
The forward Euler method is the simplest of the time integati (n) ()
methods considered here and is the one used most frequently bi D Gk Gk - (21)

in previous works, see e.g., Knudsen et ai] pnd Sinha and k

Hansen p4. We include its description here for completeness_l_he node pressures are obtained by solving this linear eguati

and to provide context for the proposed new capillary time .
- . - system. The ow rates are subsequently evaluated using Bguat
step criterion that is introduced to stabilize the methodlatv . o - .
(16) and the interface positions are then updated using Eqoatio

capillary numbers. . ! .
The ordinary di erential equation (ODE) Equation (6) is (15) and the interface interaction models.

discretized in a straightforward manner for each ligkusing 4 1. Time Step Restrictions

forward Euler, In previous works [0, 21], the time step length was chosen from

q_(.n) a purely advective criterion,
= (15) 0o 1
K ") @il p
n H )0
The ow rates are calculated by inserting Equation (1), eatdd 157D C‘"rr}j'n q,(.n) '
with the current known interface positions, !

Zi(anl) D Zi(jn) C1 t(n)

(22)

The paramete€, corresponds to the maximum fraction of a link
length any uid interface is allowed to move in a single fordia
Euler time step. The value 6 must be chosen based on the level
of accuracy desired from the simulation.
X X _Ho_wever, selecting the time step _basgd on _the advective
g(,n)p_(n) pl(n) 9@ D g(n)qgn), (17) crltgrlon only, often result_s in numerical instabilities @w
J. 1M J. I J. 1 capillary numbers, where viscous forces are small relativhe
capillary forces. This is demonstrated in section 9.2. Thgiosi
for each nodé with unknown pressure. This linear system can beof the numerical instabilities can be identi ed by perforngin
cast into matrix form, analysis on a linearized version of the governing equatiohs T
is done in Appendix A. This analysis also leads to a new time
step criterion, whereby the time step length is restrictgdtie

n 0]
a’D o " g o, (16)

into the mass conservation Equation (2). This results in the
system of linear equations consisting of one equation,

A xDb, (18)
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sensitivity of the capillary forces to perturbations in theremt  The pressure dierencel P required to obtain the specied

interface positions, ow rate Q is determined by solving Equation (26) fdrP.
0 1 Subsequently, the network model is solved a third time with
pressure drof P to obtain the desired node pressures and link
1t™ D Cemin %Pz#g _ (23) owrates.
ij g(_n) o @
! 2y @ 5. MIDPOINT METHOD
For the particular choice of capillary pressure model giverf)y ( The forward Euler method is rst-order accurate in time. To
we obtain obtain smaller numerical errors, methods of higher ordee ar
0 1 desirable. We therefore include in our discussion the sdeon
) . a i Lij order midpoint method. This method is identical to that used by
17D G min % = S K Akeretal. [L0], except with respect to choice of time step length.
2 gﬁn) w0 Usin2 .2 -5 The ODE Equation (6) is discretized as
(24) o"C2)
_ _ _ R AVpVcrimt (29)
According to the linear analysis, numerical instabilitiase gjj
avoided if the parameteC. is chosen such that &< C; < 1. (nC1=2) - S
However, we must regard (23) as an approximation whenvhereg is the ow rate at the midpoint in time between

we apply it to the full non-linear model in simulations and, pointnandnC 1. This ow rate is calculated in the same manner
consequently, we may have to ch@econservatively to ensure as described in section 4. The interface positions Gt 1=2 are

stability for all cases. obtained by taking a forward Euler step with half the lengtthe
At each step in the simulation, the time step used is thenriakewhole time step,
as (n)
(nC1=2) ~ ) ~ L, .Y
1t D min 1t 1¢0 (25) S I S (30)

to comply with both the advective and the capillary time stepd.1. Time Step Restrictions

criteria. The capillary time step restriction Equation (28) Since the forward Euler stability region is contained wittie
independent of ow rate. It therefore becomes quite severestability region for the midpoint method, we use the same time
demanding relatively ne time steps, when ow rates are low. ~ Step restrictions for the midpoint method as for forward Eule

. see section 4.1.
4.2. Boundary Conditions

The periodic boundary conditions, specifying a total pressur®.2. Boundary Conditions
di erence 1 P across the network, can be incorporated directlyBoth the speci edl P and the speci edQ boundary conditions
into the linear equation system Equation (18). For each ripde are incorporated into the midpoint method by applying the
term gﬁ")l Pis added to or subtracted from for any linkij that ~ Procedures described in section 4.2 for each evaluation @f th
crosses the periodic boundary. right hand side of Equation (6).

With the speci ed1 P condition implemented, we can use it
to obtain the node pressures and link ow rates correspondimg t 6. SEMI-IMPLICIT METHOD
aspeci ed total ow rateQ. Due to the linear nature of the model,

the total ow rate is linear inl P[10], so that To avoid both the numerical instabilities and the time step
restriction Equation (23), which becomes quite severewt tav
QD Ci1PC Gy, (26) rates, we here develop a new semi-implicit time stepping method

Simulation results indicate that this method is stable withe
for some unknown coe cientsC; and Cy, that are particular to  steps determined by the advective criterion Equation (22y,0n
the current uid con guration. and much longer time steps are therefore possible than with the
We choose two di erent, but otherwise arbitrary, pressureforward Euler and midpoint methods at low capillary numbers.
drop valuesl P, and 1 P, and, using the above procedure, we The ODE Equation (6) is now discretized according to
solve the network model once for each pressure di erence and

calcu!ate the corresponding total ow rated; and Q. The AT LM & 1 () qi(an1) (31)
coe cients C; andC; are then determined by, ij ij aj :
C D QR Q 27) The semi-implicit nature of this discretization comes fromet
127 P, 1P’ ow rate used,
Q1P Q1P n 0
C2 D 1P 1P ) (28) qi(an1) D ggn) pi(nCl) p](nCl) q‘(anI) . (32)
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Herein, the link mobility is evaluated at time step while the  The procedure for updating the interface positions with the semi

node pressures and the capillary pressure are evaluated &me simplicit method may be summarized as follows. The non-linear

nC 1. equation system Equation (35) is solved to obtain the unkmow
The link mobilities could of course also have been evaluatedode pressures. In every iteration of the solution procedure,

at time stepn C 1, thus creating a fully implicit backward Euler the ow rates are evaluated by solving Equation (37) for each

scheme. As is shown in Appendix A, we may expect backwaiihk. When a solution to Equation (35) is obtained, the irfesze

Euler to be stable with any positiviet(™. The backward Euler positions are updated using Equation (31) and the interface

scheme may therefore seem like a natural choice for perfagmininteraction models.

stable simulations with long time steps. However, to evaluat . Lo

the mobilities at time stem C 1 complicates the integration 0-1. Time Step Restrictions

procedure and was found to be unnecessary in practice. A sen¥Ve aim to select the time steps such that

implicit alternative is therefore preferred.

(n (nC1)
To obtain the node pressures, we solve the mass conservation 1D 1™ (39)
equations, However, to solve the non-linear system Equation (35) is
(nc1) challenging in practice and requires initial guess valuegffe
ED g, DO. (33) link ow rates and node pressures that lie su ciently close twet
k solution. For this purpose, we here use values from the previous

) ) o time step. This turns out to be a su ciently good choice for
Again, we have one equation for each nadeith unknown 4 time steps, but our numerical solution procedure does not
pressure. However, because the capillary pressures now depefiflays succeed. As the link ow rates and node pressures at two
onthe ow rates, consecutive points in time become increasingly similar as th

0 (nc1) 1 time interval between them is reduced, we may expect the guess
(C1) [y o @M ¢ 1 ¢ G A (34) yalues tollg closertothe sqlutlon if we reduce the time stépis, .
Gj G =7 aj ’ if our solution procedure is unable to succeed, our remedy is
to shorten1 t(". This will sometimes lead to time steps shorter
than 1 t{"®D_If, for a given time step] t™ must be reduced
to less than twice the time step length allowed by the explicit
methods, we revert to forward Euler for that particular steg. A
we demonstrate in section 10, however, this does not prevent t
F.X/ DO, (35) semi-implicit method from being much more e cient than the
explicit methods at low capillary numbers.

the mass conservation equations are now a system of nonkline
equations, rather than a system of linear equations. Ttetesy
can be cast in the form

wherex contains the unknown pressures, e.g., 6.2. Boundary Conditions
2 (nC1)3 As with the explicit methods, the specied P boundary
0 condition can be incorporated directly into the mass balance
p(lnC1) equation system, in this case Equation (35). This is done by
xD : ) (36) adding to or subtracting from the right hand sides of Equatio
p(n'cl) (32) and Equation (37) aterrgﬁn)l P for each linkij crossing the
N 1

periodic boundary.
d The speci ed ow rate boundary condition is incorporated by

In order to solve Equation (35) using the numerical metho
q (35) d including1 Pas an additional unknown and adding an additional

described in section 7, it is necessary to have the Jacolasixm

of F. Details on how the Jacobian matrix is calculated are ginen iequation
Appendix B. g X 2
The calculation of link ow rates from node pressures, and FmD qi(anl). QDO, (40)

thus every evaluation df and its Jacobian, involves solving one e
non-linear equation for each link ow rate,
n o to the non-linear equation system Equation (35). Hereiris the
G qi(an1) D qi(an1) C an) pI("C1) pl(nCl) q(an1) DO. set of links crossing the periodic boundary, witheing the node
37) on the downstream side anjdbeing the node on the upstream
side. Thus, Equation (40) is satis ed when the total ow rate
The derivative ol with respect thi(jncl) is through the network is equal tQ.

7. IMPLEMENTATION

(nC1)
dG m 95 . . . . :
aq™D D1 g FRCa) (38)  The non-linear equation system Equation (35) is solved using a
j

i Newton-type solution method that guarantees convergenae to
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local minimum ofF F, see Press et al2ff], p. 477] . However, a TABLE 1 | Fluid properties corresponding to water (w) and decane (n)ta
local minimum of F Fis not necessarily a solution to Equation atmospheric pressure and298 K.
(35), and good initial guess values for the node pressuresirgnd

Parameter Value Unit References
ow rates are therefore crucial. For this purpose, we use theeg
from the previous time step and reduce the length of the curren , 89 10 4 Pas [29]
time step if the solution method fails, as discussed in ea@il. n 85 10 4 Pas [29]
Solving Equation (37) is done using a standard Newton solver,,, 52 10 2 Nm 1 [30]
[26]. For robustness, a bisection solvéf]is used if the Newton
solver fails.

The Newton-type solver for non-linear systems and the
explicit time integration methods require methods forthrough a throat and invades new pores. This process
solving linear systems of equations. We use the conjugateas studied experimentally and numerically by Malgy
gradient method in combination with the LU preconditioner et al. [l and, more recently, it was imaged directly and
implemented in the PETSc library, see Balay et 21].[An  analyzed in detail by Armstrong and Berdq for ow in
introduction to solving systems of Kirchho -type equations a micromodel and by Berg et al14] for ow in a sample

numerically can be found in Batrouni and Hanseit]. of Berea sandstone. The Haines jump case simulated here
captures one such break-through and subsequent pressure
8. CASE DESCRIPTIONS drop.

Among the ndings in the study by Malgy et all{] was that
In this section, we describe the two simulated cases. Onteita pore drainage is a non-local event, meaning that as one pore
case where a single bubble is contained in a network congisfi  is drained, imbibition occurs in nearby neck regions. Thiasw
links connected in series, while the other is designed towrapt also observed by Armstrong and Befd], and was explained as
a single Haines jump in a small network where uids ow at a follows. When the imposed ow rates are low, the non-wetting

speci ed rate. uid that lls the newly invaded pores needs to be supplied from
. . . nearby locations rather than the external feed. Armstrond an
8.1. Links-in-Series Test Case Berg [L5 also found, for their range of investigated parameters,

The veri cation will include comparison of results from the that pore drainage occurred on the same time-scale, regardle
various numerical methods applied to a test case. The test cagg externally imposed ow rate.

is chosen such that it can be set up as a single ODE with a closedye consider a hexagonal network consistigD 24 nodes
expression for the right-hand side. An accurate referentgisn. gnd M D 36 links. All links have length 1.0L0 3m, while
can thus be easily obtained using a high-order Runge—Kutthe |ink radii are drawn randomly from a uniform distribution
method. As our test case, we consider a network consisting @etween 0.1 and 0.4 link lengths. In the capillary pressure inode
M D 3identical links connected in series. The network containgye choose D 1. The uid parameters v, nand wnare the

a single bubble of length(m) with center positiorz (m). Inthe  same as in the links-in-series test case, Kedse 1 With these
capillary pressure model, we choosé 0. The ODE Equation g parameters and network length scales, the case mimies th
(6) can then be restated as an equivalent equation for th@leub o of water (w) and decane (n) in a Hele-Shaw cell lled with

position, glass beads similar to those used in e.g., Malgy et@I3[] and
Tallakstad et al.g2). The linear dimensions are 10 times bigger
% D 9 (41) in this network compared to the micromodel of Armstrong and
dt  a Berg [L5. Initially, the uids are distributed in the network

as shown inFigure 4, with the non-wetting uid in a single
connected ganglion.
Simulations are run at di erent speci ed ow rate® until a
net uid volume equivalent to 5% of the total pore volume has
g 4 wn . > 2z owed through the network. The ow dynamics will, of course,
QD & 1PC—sin — sin =— (42)  depend upon the speci ed ow rate. At low ow rates, however,
the ow will exhibit some relatively fast uid redistribution
Here, g is the mobility of a single link. D 1.0 10 3mis the €events and one relatively slow pressure build-up and sutesequ
length of a single link and D 1.0 10 “m is the link radius. Haines jump event. The Haines jump will occur as the non-
The bubble has length D 4.8 10 “m and is initially located Wetting uid breaks through the link connecting nodes 9 anl 1
atzD 2.4 10 “m. The uid parameters used in all simulations and invades node 16, segure 4

where Q is the ow through the network anda is the link
cross-sectional area. The model equations can be redudbeé to
following expression for ow rate.

are given iriTable 1 The pressure di erencé P will be stated for It was mentioned by Armstrong and Bergl that the

each simulation. large local ow velocities that they observed as a pore
_ was lled with non-wetting uid during a Haines jump has

8.2. Haines Jump Case implications for how such processes must be numerically

The Haines jump was rst reported almost 90 years a@d.[ simulated. Speci cally, the time resolution of the simubeti
It refers to the sudden drops in driving pressure observedheeds to be ne enough during these events to capture them.
in drainage experiments when non-wetting uid breaks This poses a challenge when externally applied ow rates are
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low and there is thus a large dierence in the large timeperformed fromt D Ostot D 0.00144s. To have control over
scale that governs the overall ow of the system and thehe time step lengths, we ignore all time step criteria fowrand
small time scale than governs the local ow during Hainesinstead set a constaftt for each simulation.

jumps. In Figure5 ow rates are plotted for each of the time
integration methods. Results using a coarse time sidp,D
9. VERIFICATION 4 10 5s,anda netimestepl t D 1 10 °s, are shown along

with the reference solution.

In this section, we verify that the time integration methods For the forward Euler and the semi-implicit method, there
presented correctly solve the pore network model equationss ariS considerable discrepancy between the numerical and the

that the time step criteria presented give stable solutions. reference solution with the coarse time step. The ow rate
obtained from forward Euler lags behind the reference soiyt
9.1. Convergence Tests while that from the semi-implicit method lies ahead of it. hi

All time integration methods presented should, of coursegegi may be expected, however, since forward Euler at each time
the same solution for vanishingly small time steps. Furthemen  step uses current information in the right hand side evailoat

the di erence between the solution obtained with a given ait whereas the semi-implicit method uses a combination of curren
time step and the fully converged solution should decreagh@ and future information. With the ne time step, there is less
time steps are re ned, and should do so at a rate that is coisist di erence between the reference and the numerical solutions
with the order of the method. In this section, we verify thdlt a
three time integration methods give solutions that coneetg
the reference solution for the links-in-series test case s
that the methods correctly solve the model equations fos thi
case.

We choose the pressure di erence tob® D 3200 Pa. This
value is large enough to overcome the capillary forces and push
the non-wetting bubble through the links. We therefore expec
ow rate Q that varies in time, but is always positive.

As measures of the numerical error, we consider both th
relative error in the ow rateQ and the relative error in
bubble positiore between the numerical solutions and reference
solutions at the end of the simulation. Time integration is

1%}

FIGURE 5 | Flow ratesQ plotted against time for two different time stepsl t
for the links-in-series test case withL P = 3200Pa. Results from the forward

FIGURE 4 | Initial uid con guration in the Haines jump case. The non-wetng Euler method are given in(A), results from the midpoint method in(B) and
uid is blue while the wetting uid is gray. The link radii are nbdrawn to scale results from the semi-implicit method in(C). The solid line represents the
with the link lengths. Node indices are indicated in black. reference solution.
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With the more accurate midpoint method, the coarse-steppe®.2. Stability Tests

numerical solution lies only marginally ahead of the refere

In this section, we demonstrate that the proposed capillary time

solution while there is no di erence between the ne-steppedstep criterion Equation (23) stabilizes the forward Eulezthod
numerical solution and the reference solution at the scdle cand the midpoint method at low ow rates. We simulated two

representation.

di erent cases and varied.. Simulations run with lowC;

The convergence of the numerical solutions to the referenceirned out to be free of spurious oscillations, indicatingath

solution upon time step re nement is quanti ed iTables 24.

the proposed criterion stabilizes the methods, while simatai

Herein, the numerical errors and estimated convergencersrd run with C; signi cantly larger than unity produced oscillations,
are given for the forward Euler, midpoint and semi-implicit indicating that the proposed criterion is not unnecessarily
method, respectively. For all methods considered, the nigakr strict.

errors decrease when the time step is re ned and do so at tfee ra  First, consider the links-in-series test case witR D 0Pa.
that is expected. The forward Euler and the semi-implicit noeth With no applied pressure di erence, the ow is driven purely
exhibit rst-order convergence, while the midpoint method by the imbalance of capillary forces on the non-wetting bebbl
shows second-order convergence. We note that the errorstim b Therefore, there should only be ow initially and the bubble
z and Q are similar in magnitude for the forward Euler and the should eventually reach an equilibrium position where both
semi-implicit method. The errors obtained with the midpoint interfaces experience the same capillary force and the ow rate
method are smaller. The di erence is one order of magnitude fois zero. Simulations were run witB; D 0.1 andC; equal to 2.0,

1tD1 10 °s.

1.0, and 0.5. Results from forward Euler are showRigure 6A

In summary, we have veried that the presented timeand results from the midpoint method are shown kigure 6B
integration methods correctly solve the pore network modeln both gures, the reference solution is also shown.

equations for the links-in-series test case and that the etical

The forward Euler results are stable and qualitatively simi

errors decrease upon time step re nement at the rate that iso the reference solution witle; D 0.5. WithC. D 1.0, there

consistent with the expected order of the methods.

TABLE 2 | Relative errors in bubble positiorz and ow rate Q att D 0.00144s
and estimated convergence orders for the links-in-seriesest case computed with
the forward Euler method.

1t(s) z-error z-order Q-error Q-order
410 5 155 10 2 133 10 1

2 10 ° 7.44 10 3 1.06 6.41 10 2 1.06
110 ° 3.66 10 3 1.02 3.15 10 2 1.02
510 6 1.82 10 3 1.01 157 10 2 1.01

TABLE 3 | Relative errors in bubble positiorz and ow rate Q att D 0.00144s
and estimated convergence orders for the links-in-serieseist case computed with
the midpoint method.

1t(s) z-error z-order Q-error Q-order
8 10 ° 1.67 10 2 1.44 10 1

4105 4.24 10 3 1.98 3.65 10 3 1.98
2 10 ° 1.08 10 3 1.97 9.33 10 3 1.97
110 ° 2.86 10 4 1.92 2.46 10 3 1.92

TABLE 4 | Relative errors in bubble positiorz and ow rate Q att D 0.00144s
and estimated convergence orders for the links-in-serieseist case computed with
the semi-implicit method.

1t(s) z-error z-order Q-error Q-order
410 5 1.39 10 2 118 10 1

210 ° 6.98 10 3 0.99 5.97 10 2 0.98
110 ° 351 10 3 0.99 3.01 10 2 0.99
510 6 1.76 10 3 1.00 15 10 2 1.00

are some oscillations initially that are dampened and evelytual
vanish. From comparison with the reference solution, it isacle
that such oscillations have no origin in the model equations
and are artifacts of the numerical method. Wi@ D 2.0, the
oscillations are severe and do not appear to be dampened by the
method. Instead the non-wetting bubble keeps oscillatirgiad

its equilibrium position in a manner that is clearly unphysical.

The results from the midpoint method ifrigure 6B follow
a qualitatively similar trend as those from forward Euler with
regard to stability. Results computed wi@ D 0.5 are stable
and results withC; D 2.0 exhibit severe oscillations. Still, the
results from the midpoint method lie much closer to the refezen
solution than the results from the forward Euler method, as
we would expect since the midpoint method is second-order.
Both methods are, however, unstable wth D 2.0, indicating
that the while the midpoint method has improved accuracy
over forward Euler, it is unable to take signi cantly longéme
steps without introducing oscillations. This is consisterthihe
analysis in Appendix A, since the two methods have identical
stability regions in real space.

Next, consider the Haines jump case withD 10 °m3s?,
corresponding to CeD 1.2 10 °. This case was run using the
forward Euler methodC,; D 0.1 and three di erent values of
C., equal to 4.0, 2.0, and 1.0. The required pressure di erence
to drive the ow at the speci ed rate is shown iRigure 7A.
Figure 7B shows the pressure fronfFigure 7A in greater
detail.

For all three values df;, the main qualitative features of the
ow are captured. We observe short transient pressure drops at
t 0.08sand 0.20s.These correspond to uid redistribution
events on the upstream side of the non-wetting ganglion, wher
the uid rearranges itself to a more stable con guration twit
little change to the interface positions on the downstream .side
The event att 0.20s is illustrated irFigure 8 The uid
redistribution is driven by capillary forces and less extérna

Frontiers in Physics | www.frontiersin.org

June 2018 | Volume 6 | Article 56



Gjennestad et al. Pore Network Model Time Integration

FIGURE 6 | Flow rate plotted against time in the link-in-series test cge with 1 P D 0 Pa. Results from the forward Euler methodA) and the midpoint method (B) are
shown for different values ofC¢. Severe numerical instabilities arise whe@¢ D 2.0. Results from the semi-implicit method are shown are shan in (C). These are
stable, even if the capillary time step criterion is not usedrhe solid black line represents a reference solution.

FIGURE 7 | Pressure difference required to drive the ow in the Haines jup case at a rate ofQ D 10 9m3s 1, corresponding to CaD 1.2 10 °. In(B), the results
from (A) are shown in greater detail. Results are computed with the fovard Euler method for different values of the capillary tienstep restriction parameterCe.
Numerical instabilities are seen to occur fo€¢ > 1.

pressure is therefore required to drive the ow during theseThe uid con gurations before and after the Haines jump

events. are shown inFigure 9. Notice also that non-wetting uid at
We also observe the slow pressure build-up fram the downstream end of the moving ganglion retracts during
0.10s tot 0.23s, when the driving pressure becomeshe Haines jump in links near to where the break-through

large enough to overcome the capillary forces and causmcurs. This is seen e.g., in the links downstream of nodes
break-through of non-wetting uid in the link connecting 10 and 14. That such local imbibition occurs near the
nodes 9 and 16, and we observe the subsequent Haines juntpained pore is in agreement with the observations of

Frontiers in Physics | www.frontiersin.org 11 June 2018 | Volume 6 | Article 56



Gjennestad et al. Pore Network Model Time Integration

FIGURE 8 | Fluid distribution in the Haines jump case(A) att D 0.19s and (B) att D 0.21 s, before and after the uid redistribution eventat  0.20s. The link radii
are not drawn to scale with the link lengths. Node indices arendicated in black.

FIGURE 9 | Fluid distribution in the Haines jump cas€A) att D 0.23s and (B) att D 0.27 s, before and after the Haines jump. During the jump, non-weittg uid
breaks-through the link connecting nodes 9 and 16 and invads node 16. Also, non-wetting uid in other links at the downsteam end of the moving ganglion retracts.
This is seen e.g., in the links downstream of nodes 10 and 14. e link radii are not drawn to scale with the link lengths. Ncelindices are indicated in black.

Armstrong and Berg 15, and shows that the model is able in Figure 6C For brevity, the results from the Haines jump
to capture the non-local nature of pore drainage events in @ase are omitted here. The reader is referredrigure 10A
numerically stable manner when the new numerical methoés arin section 10, where stable results are shown for a lower ow
used. rate.

As in the links-in-series case, the solution exhibits ostdhs To summarize, both the forward Euler and midpoint methods
for the values ofC; that are larger than unity. WittC. D 1.0, produce stable results for the cases considered when the
the results are free from oscillations and appear stable. Thispillary time step criterion Equation (23) is used in additio
indicates that the stability criterion Equation (23) isideind not  to Equation (22) to select the time step lengths. By running
unnecessarily strict also for a network con guration thamuch  simulations with di erent C;, we have observed a transition
more complex than links in series. from stable to unstable results for values ©f near 1, in

Both the links-in-series case and the Haines jump case weoeder of magnitude. In the Haines jump case, all methods
simulated with the semi-implicit method and produced stablepresented are able to capture both the fast capillary-drived ui
results with the advective time step criterion Equation )(22 redistribution events, and the slow pressure build-up befar
only. The results from the links-in-series test case aremsho Haines jump.
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time steps than forward Euler for most of the simulation. Digin
the pressure build-up phase, the dierence is four orders of
magnitude. During the fast capillary-driven uid redistribion
events, however, the length of the semi-implicit time stepgpdo

the level of those used by forward Euler. This is because vee he
have relatively large ow rates in some links, even thogfs
low, and the advective time step criterion Equation (22)drees
limiting for both the semi-implicit method and forward Euler

It was mentioned by Armstrong and Berdlj that any
accurate numerical simulation on the pore scale must have a
time resolution ne enough to capture the fast events. The semi
implicit method accomplishes this by providing a highly dynamic
time resolution, which is re ned during the fast events. The
method is therefore able to resolve these events, while time
resolution can be coarsened when ow is governed by the slow
externally applied ow rate, saving computational e ort.

The time duration of the Haines jump pressure drops for
all except the two largest externally applied ow rates were
around 10ms. This is in qualitative agreement with the rissul
presented by Armstrong and Berd4. They found that, for
their investigated range of parameters, pores were draingden
millisecond time scale regardless of externally applied ote.ra
However, we stress that although we consider the same uids,
the pore network used here was approximately one order of
magnitude larger in the linear dimensions than that of Arnastg
and Berg 5.

The number of time steps and wall clock time required to
simulate the Haines jump case at di erent specied ow raf@s
are shown irFigures 11A,B respectively.

For the explicit methods, both the number of time steps and
the wall time are proportional to Ca at low capillary numbers.
This is because the capillary time step criterion Equatiod) (2
dictates the time step at low capillary numbers (except during

FIGURE 10 | (A) Pressure difference required to drive the ow at fast uid redistribution events). The criterion depends oneth
QD 10 m3s 1, corresponding to CaD 1.2 10 7, in the Haines jump uid con guration, while it is independent of the ow rate. At
case. Results are plotted for the forward Euler method (salidark blue) and the low enough ow rates, the system will pass through roughly the

semi-implicit method (dashed light blue). These lines cotide at the scale of

representation. The time steps lengths used by each methodra plotted in (B). same uid con gurations dunng the SImU|atlon' regardl he

appliedQ. The speed at which the system passes through these
con gurations, however, will be inversely proportional @and
therefore, so will the required wall time and number of timeyss.
10. PERFORMANCE ANALYSIS As the forward Euler and the midpoint method are subject to the
same time step criteria, these require roughly the same rmarmb
In this section, we analyze and compare the performancef time steps at all considered ow rates. However, since the
of the time integration methods. In doing so, we considermidpoint method is a two-step method, the wall time it require
the number of time steps and the wall clock time requiredis longer and approaches twice that required by the forwareéEul
to perform stable simulations of the Haines jump case withfor long wall times.
each of the methods at dierent specied ow rate®. The For the semi-implicit method, on the other hand, the number
ow rates simulated were 10 m3s?, 10 8m3s?,10 °m3sl, of time steps required to do the simulation becomes e ectively
10 9m3st, 10 ¥ m8s!, and 1012m3s!. The accuracy of independent of the specied ow rate at capillary numbers
the methods was studied Section 9.1, and will not be part of themaller than approximately 16. The result is that low-capillary
performance analysis. Instead, stable simulations arédemresl number simulations can be done much more e ciently than with
su ciently accurate. the explicit methods, in terms of wall time required to perform
First, we look more closely atthe results @D 10 *m3s!, stable simulations. This is seen figure 11B At Ca 10 5,
corresponding to CaD 1.2 10 7. The pressure dierence the computational time needed by all three methods are simila
required to drive the ow is shown inFigure 10A and the in magnitude. The relative benet of using the semi-implicit
time step lengths used are shownHRigure 10B From the latter method increases at lower capillary numbers. For the lowest
Figure, we see that the semi-implicit method is able to takgés  capillary number considered, the di erence in wall time beéne
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FIGURE 11 | (A) Number of time steps and(B) wall clock time required to simulate the Haines jump case attalifferent speci ed ow rates. In each simulation, the
same volume of uid (5% of the pore volume) ows through a netwok. Results from the forward Euler method (squares), the midpnt method (diamonds) and the
semi-implicit method (circles) are shown. IifA,B), the black lines are inversely proportional to Ca.

All simulations were run at Ca 10 7. In Figure 12the wall
clock time time required is plotted against the number of nede
N for the di erent networks. The wall time is seen to increase
proportionally toN2.

11. CONCLUSION

We have studied three di erent time integration methods for a
pore network model for immiscible two-phase ow in porous
media. Two explicit methods, the forward Euler and midpoint
methods, and a new semi-implicit method were considered. The
explicit methods have been presented and used in other works
[10, 21, 24}, and were reviewed here for completeness. The
semi-implicit method was presented here for the rst time, and
therefore in detail.

The explicit methods have previously su ered from numerical

FIGURE 12 | Wall clock time time required to simulate the Haines jump cas instabilities at low Capi”ary numbers. Here, a new tim333te
with the semi-implicit method for different network sizesAll simulations were criterion was suggested in order to stabilize them and nuoaér
runatCa D 10 7 and N denotes the number of nodes in the network. The experiments were performed demonstrating that stabilization
wall time is seen to increase proportionally toV2 for the three largest networks. was achieved

It was veri ed that all three methods converged to a refeeenc
solution to a selected test case upon time step re nement. The
forward Euler and semi-implicit methods exhibited rst-oed

the explicit methods and the semi-implicit is three orders ofconvergence and the midpoint method showed second-order
magnitude. convergence.

The increased e ciency of the semi-implicit method over  Simulations of a single Haines jump were performed. These
explicit methods at low capillary numbers means that one cashowed that the all three methods were able to resolve
use the semi-implicit method to perform simulations in the both pressure build-up events and uid redistribution events,
low capillary number regime that are unfeasible with explicitincluding interfacial retraction after a Haines jump, whioay
methods. Thus, the range of capillary numbers for which theeporoccur at vastly di erent time scales when capillary numbers are
network model is a tractable modeling alternative is exeshtb  low. The results from the Haines jump case were consistent
much lower capillary numbers. This includes e.g., simutaio with experimental observations made by Armstrong and Berg
of water ow in fuel cell gas diusion layers, where capillary [15. Fluid redistribution events cannot be properly captured
numbers are can be 18 [33. when using solution methods that have previously been used

Finally, to study the e ect of an increase in network size onat low capillary numbers that e.g., do not allow back ow
the wall time required by the semi-implicit method, the Hane [18].
jump case was run on three scaled-up versions of the network A performance analysis revealed that the semi-implicit
with N D 24 nodes considered so far, illustratediigure 4  method was able to perform stable simulations with much less

Frontiers in Physics | www.frontiersin.org 14 June 2018 | Volume 6 | Article 56



Gjennestad et al. Pore Network Model Time Integration

computational e ort than the explicit methods at low capillary independent of the capillary number, when capillary numbers are
numbers. For the case considered, the computational timew.

needed was approximately the same for all three methods at

Ca 10 °. Atlower capillary numbers, the computational time AUTHOR CONTRIBUTIONS

needed by the explicit methods increased inversely propaation
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