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We study three different time integration methods for a dynamic pore network model for
immiscible two-phase �ow in porous media. Considered are two explicit methods, the
forward Euler and midpoint methods, and a new semi-implicitmethod developed herein.
The explicit methods are known to suffer from numerical instabilities at low capillary
numbers. A new time-step criterion is suggested in order to stabilize them. Numerical
experiments, including a Haines jump case, are performed and these demonstrate that
stabilization is achieved. Further, the results from the Haines jump case are consistent
with experimental observations. A performance analysis reveals that the semi-implicit
method is able to perform stable simulations with much less computational effort
than the explicit methods at low capillary numbers. The relative bene�t of using the
semi-implicit method increases with decreasing capillarynumber Ca, and at Ca� 10� 8

the computational time needed is reduced by three orders of magnitude. This increased
ef�ciency enables simulations in the low-capillary numberregime that are unfeasible with
explicit methods and the range of capillary numbers for which the pore network model
is a tractable modeling alternative is thus greatly extended by the semi-implicit method.

Keywords: porous media, two-phase �ow, pore network model, nu merical methods, time integration, stability,
low capillary number

1. INTRODUCTION

Di�erent modeling approaches have been applied in order to increase understanding of immiscible
two-phase �ow in porous media. On the pore scale, direct numerical simulation approaches using
e.g., the volume of �uid method [1] or the level-set method [2, 3] to keep track of the �uid
interface locations, have been used. The lattice-Boltzmann method is another popular choice, see
e.g., Ramstad et al. [4]. These methods can provide detailed information on the �ow in each pore.
They are, however, computationally intensive and this restricts their use to relatively small systems.

Pore network models have proven to be useful in order to reduce the computational cost [5], or
enable the study of larger systems, while still retaining some pore-level detail. In these models, the
pore space is partitioned into volume elements that are typically the size of a single pore or throat.
The average �ow properties in these elements are then considered, without taking into account the
variation in �ow properties within each element.

Pore network models are typically classi�ed as either quasi-static or dynamic. The quasi-static
models are intended for situations where �ow rates are low, and viscous pressure drops are
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neglected on the grounds that capillary forces are assumed to
dominate at all times. In the quasi-static models by Lenormand
et al. [6], Willemsen [7], and Blunt [8], the displacement of one
�uid by the other proceeds by the �lling of one pore at the time,
and the sequence of pore �lling is determined by the capillary
entry pressure alone.

The dynamic models, on the other hand, account for
the viscous pressure drops and thus capture the interaction
between viscous and capillary forces. As three examples
of such models, we mention those by Hammond and
Unsal [5], Joekar-Niasar et al. [9], and Aker et al. [10].
A thorough review of dynamic pore network models
was performed by Joekar-Niasar and Hassanizadeh
[11].

The pore network model we consider here is of the dynamic
type that was �rst presented by Aker et al. [10]. Since the
�rst model was introduced, it has been improved upon several
times. Notably, it was extended to include �lm and corner
�ow by Tørå et al. [12]. The model considered here does
not contain this extension. This class of models, which we
call the Aker-type models, is di�erent from the majority of
other pore network models [5, 9] in that both the pore body
and pore throat volumes are assigned to the links, and no
volume is assigned to the nodes. Fluid interface locations are
tracked explicitly as they move continuously through the pore
space. This is in contrast to the model by Hammond and
Unsal [5], where interfaces are moved through whole volume
elements at each time step, and to the model of Joekar-
Niasar et al. [9], where interface locations are only implicitly
available through the volume element saturation. One of the
advantages of the Aker-type model is that a detailed picture
of the �uid con�guration is provided at any time during a
simulation. Dynamic phenomena, such as the retraction of the
invasion front after a Haines jump [13–16], are thus easily
resolved.

Since 1985, numerical instabilities at low capillary numbers
have been known to occur for various types of dynamic pore
network models [17]. A whole section is devoted to the topic
in the review by Joekar-Niasar and Hassanizadeh [11]. It is
important to address such stability problems rigorously, as
many of the practical applications of two-phase porous media
�ow are in the low capillary number regime. Examples include
most parts of the reservoir rock during CO2 sequestration,
�ow of liquid water in fuel cell gas di�usion layers and
studies of Haines jump dynamics, see e.g., Armstrong and Berg
[15].

When Aker-type pore network models are used, the
numerical instabilities are observed as oscillations in the
positions of the �uid interfaces. Some e�orts to avoid these
oscillations have been made by introduction of modi�cations
to the model. Medici and Allen [18] used a scheme where
water was allowed to �ow in the forward direction only
in order to study water invasion in fuel cell gas di�usion
layers. While this approach led to interesting results, it has
some downsides. First, the interface movement is arti�cially
restricted, and certain dynamic e�ects can not be resolved.
This includes e.g., invasion front retraction after a Haines

jump. Second, the method can only be used in cases with
transient invasion. Studies of steady-state �ow, such as those
performed by Knudsen et al. [21] and Savani et al. [19], are not
possible.

Because the oscillations originate in the numerical methods,
rigorous attempts to remove them should focus on these
methods rather than the models themselves. Joekar-Niasar
et al. [9] followed this avenue and achieved stabilization
using a linearized semi-implicit method. Their work, however,
concerned a di�erent type of pore network model than that
considered here.

In this work, we present three numerical methods that
can be utilized to perform stable simulations of two-phase
�ow in porous media with pore network models of the Aker
type. The stability problems previously observed are thus
solved without the need to resort to model modi�cations
that restrict interface movement or preclude steady-state �ow
simulations. Two explicit methods are discussed, the forward
Euler method and the midpoint method. These are stabilized
by a new time step criterion derived herein. The third method
is a new semi-implicit method. Thorough veri�cations of
all methods are performed, con�rming correct convergence
properties and stability. Finally, we compare the methods in
terms of performance.

The rest of this paper is structured as follows. Section 2
contains background information on the pore network model.
Section 3 presents brie�y the nomenclature, used in subsequent
sections to describe the time integration methods. In section 4,
we recapitulate how the forward Euler method is used to
integrate the model and we present a new time step criterion
that stabilizes both forward Euler and the midpoint method at
low capillary numbers. We brie�y review the midpoint method
in section 5. The new semi-implicit method is described in detail
in section 6. Some remarks about the numerical implementation
are made in section 7. Section 8 contains a description of the
cases simulated. Numerical experiments, including a Haines
jump case, that show convergence and stability are given in
section 9 and a comparison of the method performances are
made in section 10. Section 11 summarizes and concludes the
paper.

2. PORE NETWORK MODEL

We consider incompressible �ow of two immiscible �uids in a
porous medium, where one �uid is more wetting toward the pore
walls than the other. We call the less wetting �uid non-wetting
(n) and the more wetting �uid we call wetting (w). The porous
medium is represented in the model by a network ofN nodes
connected byM links. Each node is given an indexi 2 [0,N � 1],
and each link is identi�ed by the indices of the two nodes it
connects. An example pore network is shown inFigure 1. The
nodes are points that have no volume and, consequently, all �uid
is contained in the links. The links therefore represent boththe
pore and the throat volumes of the physical porous medium. In
this respect, the pore network model studied here di�er from
most other pore network models [11]. Each �uid is assumed to �ll
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FIGURE 1 | Illustration of(A) a physical pore network with wetting (white) and non-wetting �uid (blue) and (B) its representation in the pore network model. The void
space volumes separated by dashed lines in(A) are each represented as one link in(B). The node points in the model representation(B) is assumed to be located at
the intersection points of the dashed lines in(A). Each �uid is assumed to �ll the entire link cross section. The interface positions are therefore each represented in the
model by a single number, giving its location along the link length.

the entire link cross section. The interface positions are therefore
each represented in the model by a single number, giving its
location along the link length.

The �ow in each link is treated in a one-dimensional manner,
where the �ow is averaged over the link cross section. As we
consider �ow in relatively small cross sections only, we neglect
any inertial e�ects and the volume �ow rate (m3 s�1 ) from nodej
to nodei through the link connecting then is given by Washburn
[20]

qij D � gij
�
zij

� �
pi � pj � cij

�
zij

�	
. (1)

Herein,pi (Pa) is the pressure in nodei, gij (m3 s�1 Pa�1 ) is the
link mobility, cij (Pa) is the link capillary pressure andzij (m) is a
vector containing the positions of any �uid interfaces present in
the link. Both the link mobility and the capillary pressure depend
on the �uid interface positions in the link. If two nodesi andj are
not connected by a link, thengij D 0. Due to mass conservation,
the net �ow rate into every nodei is zero

X

j

qij D 0. (2)

While the mobilities are symmetric with respect to permutation
of the indices, the capillary pressures are anti-symmetric,

gij D gji , (3)

cij D � cji . (4)

Introducing this into Equation (1), we obtain the immediately
intuitive result

qij D � qji . (5)

The cross-sectional area of linkij is denotedaij (m2). Interface
positions are advected with the �ow according to

d
dt

zij D
qij

aij
, (6)

when they are su�ciently far away from the nodes. Near the
nodes, however, the interfaces are subject to additional modeling
to account for interface interactions in the pores. This is discussed
further in section 2.3.

The form of the expressions for the mobilities and capillary
pressures depends on the shape of the links, and many di�erent
choices and modeling approaches are possible. Here, we will use
models similar to those previously presented and used by e.g.,
Knudsen et al. [21] and Aker et al. [10]. However, the treated time
integration methods are more general and can be applied to other
models as well.

2.1. Link Mobility Model
We apply a cylindrical link model when computing the
mobilities, so that

gij (zij ) D
� r4

ij

8Lij � ij
�
zij

� . (7)

Here, rij (m) is the link radius andLij (m) is the link length.
The viscosity� ij (Pa s) is the volume-weighted average of the
�uid viscosities and can be computed from the wetting and
non-wetting �uid viscosities� w and � n and the wetting �uid
saturationsij ,

� ij
�
zij

�
D � wsij

�
zij

�
C � n

�
1 � sij

�
zij

�	
. (8)
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2.2. Capillary Pressure Model
In each link ij , there may be zero, one or more interfaces
present. These are located at the positions speci�ed inzij . As
the interfaces may be curved, there may be a discontinuity in
pressure at these interface locations. The capillary pressurecij is
the sum of interfacial pressure discontinuities in the linkij . When
computing the capillary pressures, we assume that the links are
wide near each end, and therefore that interfaces located near a
link end have negligible curvature and no pressure discontinuity,
while the links have narrow throats in the middle. The link
capillary pressures are thus modeled as

cij
�
zij

�
D

2� wn

rij

X

z2zij

. � 1/
�
1 � cos

�
2� � ij .z/

�	
. (9)

The interfacial tension between the �uids is denoted� wn (N m�1 )
and

� ij .z/ D

8
><

>:

0 z < � rij ,
z� � rij

Lij � 2� rij
� rij < z < Lij � � rij ,

1 z > Lij � � rij .

(10)

The � ij -function ensures zones of length� rij at both ends of
each link with zero capillary pressure across any interface located
there. Choosing� D 0 is equivalent to replacing� ij with z=Lij in
(9).

2.3. Fluid Interface Interaction Models
The equations discussed so far in this section describe how the
�uids and the �uid interfaces move through the links. In addition,
we rely on models for how they behave close to the nodes. The
purpose of these are to emulate interface interactions in the pore
spaces.

The following is assumed about the �uid behavior near the
nodes and is accounted for by the �uid interface interaction
models.

� The mass of each �uid is conserved at every node. This means
that at all times, all wetting and non-wetting �uid �owing into
a node from one subset of its neighboring links must �ow out
into another disjoint subset of its neighboring links.

� The network nodes in the model have no volume. However,
due to the �nite size of the physical pore void spaces, wetting
�uid �owing into a pore space must be able to �ow freely past
any non-wetting �uid occupying the node point if the non-
wetting �uid does not extend far enough into the pore void
space cut the wetting �uid o�. An example is illustrated in
Figure 2. We consider a linkij to be cut o� from free out�ow
of wetting �uid if the non-wetting �uid continuously extends
a length at least� rij into the link. Non-wetting �uid may freely
�ow past wetting �uid, or not, the same manner.

� In each link ij , interfacial tension will prevent droplets with
length smaller than� rij from forming by separation from
larger droplets. An example is illustrated inFigure 3.

FIGURE 2 | Network node connected to three links. The node point, located
near the middle of the pore space, is occupied by non-wetting�uid (blue). (A)
The non-wetting �uid extends only a short distance into the links containing
wetting �uid (white). The wetting �uid therefore remains connected and may
�ow freely through the pore space. (B) Non-wetting �uid protrudes far enough
into all links to block the pore space for wetting �uid. The wetting �uid must
now displace the non-wetting �uid in order to �ow through.

2.4. Boundary Conditions
We consider only networks where the nodes and links can be
laid out in the two-dimensionalx-y plane. These networks will
be periodic in both thex- andy-direction. However, the model is
also applicable to networks that extend in three dimensions [22],
and the presented numerical methods are also compatible both
with networks in three dimensions and with other, non-periodic
boundary conditions [23].

We will here apply two types of boundary conditions to the
�ow. With the �rst type, a speci�ed pressure di�erence1 P
(Pa) will be applied across the network in they-direction. This
pressure di�erence will be equal to the sum of all link pressure
di�erences in any path spanning the network once in they-
direction, ending up in the same node as it started. With the other
type of boundary condition, we specify a total �ow rateQ(m3 s�1 )
across the network. This �ow rate will be equal to the sum of link
�ow rates �owing through any plane drawn through the network
normal to they-axis.

3. TEMPORAL DISCRETIZATION

In the following three sections, we describe the di�erent time
integration methods considered. These methods are applied to
Equation (6), where evaluation of the right hand side involves
simultaneously solving the mass conservation Equation (2) and
the constitutive Equation (1) to obtain all unknown link �ow
rates and node pressures.

The discretized times (s) are denoted with a superscript where
n is the time step number,

t(n) D t(0) C
n� 1X

iD0

1 t(i). (11)

The time step1 t(i) is the di�erence betweent(iC1) and t(i)

and the timet(0) is the initial time in a simulation. Similarly,
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FIGURE 3 | (A) Small non-wetting bubble (blue) whose volume is small compared to the link volumes and is prevented from splitting by interfacial tension. This limits
the minimum size of non-wetting bubbles, which will either(B) be stuck or (C) move through one of the links without splitting.

quantities evaluated at the discrete times are denoted withtime
step superscripts, e.g.,

q(n)
ij D qij

�
t(n)

�
. (12)

Mobilities and capillary pressures with superscripts are evaluated
using the interface positions at the indicated time step,

g(n)
ij D gij

�
z(n)

ij

�
, (13)

c(n)
ij D cij

�
z(n)

ij

�
. (14)

4. FORWARD EULER METHOD

The forward Euler method is the simplest of the time integration
methods considered here and is the one used most frequently
in previous works, see e.g., Knudsen et al. [21] and Sinha and
Hansen [24]. We include its description here for completeness
and to provide context for the proposed new capillary time
step criterion that is introduced to stabilize the method atlow
capillary numbers.

The ordinary di�erential equation (ODE) Equation (6) is
discretized in a straightforward manner for each linkij using
forward Euler,

z(nC1)
ij D z(n)

ij C 1 t(n)
q(n)

ij

aij
. (15)

The �ow rates are calculated by inserting Equation (1), evaluated
with the current known interface positions,

q(n)
ij D � g(n)

ij

n
p(n)

i � p(n)
j � c(n)

ij

o
, (16)

into the mass conservation Equation (2). This results in thea
system of linear equations consisting of one equation,

X

j

g(n)
ij p(n)

j � p(n)
i

X

j

g(n)
ij D �

X

j

g(n)
ij c(n)

ij , (17)

for each nodei with unknown pressure. This linear system can be
cast into matrix form,

A � x D b, (18)

where the vectorx contains the unknown node pressures, e.g.,

x D

2

6
6
6
6
4

p(n)
0

p(n)
1
...

p(n)
N� 1

3

7
7
7
7
5

. (19)

The matrix elements are

Aij D
�
1 � � ij

	
g(n)
ij � � ij

X

k

g(n)
ik , (20)

and the elements of the constant vector are

bi D �
X

k

g(n)
ik c(n)

ik . (21)

The node pressures are obtained by solving this linear equation
system. The �ow rates are subsequently evaluated using Equation
(16) and the interface positions are then updated using Equation
(15) and the interface interaction models.

4.1. Time Step Restrictions
In previous works [10, 21], the time step length was chosen from
a purely advective criterion,

1 t(n)
a D Ca min

ij

0

@aij Lij

q(n)
ij

1

A . (22)

The parameterCa corresponds to the maximum fraction of a link
length any �uid interface is allowed to move in a single forward
Euler time step. The value ofCa must be chosen based on the level
of accuracy desired from the simulation.

However, selecting the time step based on the advective
criterion only, often results in numerical instabilities at low
capillary numbers, where viscous forces are small relative to the
capillary forces. This is demonstrated in section 9.2. The origins
of the numerical instabilities can be identi�ed by performing
analysis on a linearized version of the governing equations. This
is done in Appendix A. This analysis also leads to a new time
step criterion, whereby the time step length is restricted by the
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sensitivity of the capillary forces to perturbations in the current
interface positions,

1 t(n)
c D Cc min

ij

0

B
B
@

2aij

g(n)
ij

�
�
�
�
P

z2z(n)
ij

@cij
@z

�
�
�
�

1

C
C
A . (23)

For the particular choice of capillary pressure model given by (9),
we obtain

1 t(n)
c D Cc min

ij

0

B
B
@

aij rij Lij

2� g(n)
ij � wn

�
�
�
�
P

z2z(n)
ij

. � 1/ sin
�
2� � ij .z/

� d� ij
dz

�
�
�
�

1

C
C
A .

(24)

According to the linear analysis, numerical instabilitiesare
avoided if the parameterCc is chosen such that 0< Cc < 1.
However, we must regard (23) as an approximation when
we apply it to the full non-linear model in simulations and,
consequently, we may have to choseCc conservatively to ensure
stability for all cases.

At each step in the simulation, the time step used is then taken
as

1 t(n) D min
�
1 t(n)

c ,1 t(n)
a

�
, (25)

to comply with both the advective and the capillary time step
criteria. The capillary time step restriction Equation (23)is
independent of �ow rate. It therefore becomes quite severe,
demanding relatively �ne time steps, when �ow rates are low.

4.2. Boundary Conditions
The periodic boundary conditions, specifying a total pressure
di�erence 1 P across the network, can be incorporated directly
into the linear equation system Equation (18). For each nodei, a
term g(n)

ij 1 P is added to or subtracted frombi for any link ij that
crosses the periodic boundary.

With the speci�ed1 P condition implemented, we can use it
to obtain the node pressures and link �ow rates corresponding to
a speci�ed total �ow rateQ. Due to the linear nature of the model,
the total �ow rate is linear in1 P [10], so that

Q D C11 PC C2, (26)

for some unknown coe�cientsC1 andC2, that are particular to
the current �uid con�guration.

We choose two di�erent, but otherwise arbitrary, pressure
drop values1 P1 and 1 P2 and, using the above procedure, we
solve the network model once for each pressure di�erence and
calculate the corresponding total �ow ratesQ1 and Q2. The
coe�cients C1 andC2 are then determined by,

C1 D
Q2 � Q1

1 P2 � 1 P1
, (27)

C2 D
Q21 P1 � Q11 P2

1 P1 � 1 P2
. (28)

The pressure di�erence1 P required to obtain the speci�ed
�ow rate Q is determined by solving Equation (26) for1 P.
Subsequently, the network model is solved a third time with
pressure drop1 P to obtain the desired node pressures and link
�ow rates.

5. MIDPOINT METHOD

The forward Euler method is �rst-order accurate in time. To
obtain smaller numerical errors, methods of higher order are
desirable. We therefore include in our discussion the second-
order midpoint method. This method is identical to that used by
Aker et al. [10], except with respect to choice of time step length.

The ODE Equation (6) is discretized as

z(nC1)
ij D z(n)

ij C 1 t(n)
q(nC1=2)

ij

aij
, (29)

whereq(nC1=2)
ij is the �ow rate at the midpoint in time between

point n andnC 1. This �ow rate is calculated in the same manner
as described in section 4. The interface positions atn C 1=2 are
obtained by taking a forward Euler step with half the length of the
whole time step,

z(nC1=2)
ij D z(n)

ij C
1
2

1 t(n)
q(n)

ij

aij
. (30)

5.1. Time Step Restrictions
Since the forward Euler stability region is contained within the
stability region for the midpoint method, we use the same time
step restrictions for the midpoint method as for forward Euler,
see section 4.1.

5.2. Boundary Conditions
Both the speci�ed1 P and the speci�edQ boundary conditions
are incorporated into the midpoint method by applying the
procedures described in section 4.2 for each evaluation of the
right hand side of Equation (6).

6. SEMI-IMPLICIT METHOD

To avoid both the numerical instabilities and the time step
restriction Equation (23), which becomes quite severe at low �ow
rates, we here develop a new semi-implicit time stepping method.
Simulation results indicate that this method is stable with time
steps determined by the advective criterion Equation (22) only,
and much longer time steps are therefore possible than with the
forward Euler and midpoint methods at low capillary numbers.

The ODE Equation (6) is now discretized according to

z(nC1)
ij D z(n)

ij C 1 t(n)
q(nC1)

ij

aij
. (31)

The semi-implicit nature of this discretization comes from the
�ow rate used,

q(nC1)
ij D � g(n)

ij

n
p(nC1)

i � p(nC1)
j � c(nC1)

ij

o
. (32)
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Herein, the link mobility is evaluated at time stepn, while the
node pressures and the capillary pressure are evaluated time step
n C 1.

The link mobilities could of course also have been evaluated
at time stepn C 1, thus creating a fully implicit backward Euler
scheme. As is shown in Appendix A, we may expect backward
Euler to be stable with any positive1 t(n). The backward Euler
scheme may therefore seem like a natural choice for performing
stable simulations with long time steps. However, to evaluate
the mobilities at time stepn C 1 complicates the integration
procedure and was found to be unnecessary in practice. A semi-
implicit alternative is therefore preferred.

To obtain the node pressures, we solve the mass conservation
equations,

Fi D
X

k

q(nC1)
ik D 0. (33)

Again, we have one equation for each nodei with unknown
pressure. However, because the capillary pressures now depend
on the �ow rates,

c(nC1)
ij D cij

0

@z(n)
ij C 1 t(n)

q(nC1)
ij

aij

1

A , (34)

the mass conservation equations are now a system of non-linear
equations, rather than a system of linear equations. This system
can be cast in the form

F.x/ D 0, (35)

wherex contains the unknown pressures, e.g.,

x D

2

6
6
6
6
4

p(nC1)
0

p(nC1)
1

...
p(nC1)

N� 1

3

7
7
7
7
5

. (36)

In order to solve Equation (35) using the numerical method
described in section 7, it is necessary to have the Jacobian matrix
of F. Details on how the Jacobian matrix is calculated are given in
Appendix B.

The calculation of link �ow rates from node pressures, and
thus every evaluation ofF and its Jacobian, involves solving one
non-linear equation for each link �ow rate,

Gij

�
q(nC1)

ij

�
D q(nC1)

ij C g(n)
ij

n
p(nC1)

i � p(nC1)
j � c(nC1)

ij

o
D 0.

(37)

The derivative ofGij with respect toq(nC1)
ij is

dGij

dq(nC1)
ij

D 1 � g(n)
ij

dc(nC1)
ij

dq(nC1)
ij

. (38)

The procedure for updating the interface positions with the semi-
implicit method may be summarized as follows. The non-linear
equation system Equation (35) is solved to obtain the unknown
node pressures. In every iteration of the solution procedure,
the �ow rates are evaluated by solving Equation (37) for each
link. When a solution to Equation (35) is obtained, the interface
positions are updated using Equation (31) and the interface
interaction models.

6.1. Time Step Restrictions
We aim to select the time steps such that

1 t(n) D 1 t(nC1)
a . (39)

However, to solve the non-linear system Equation (35) is
challenging in practice and requires initial guess values for the
link �ow rates and node pressures that lie su�ciently close to the
solution. For this purpose, we here use values from the previous
time step. This turns out to be a su�ciently good choice for
most time steps, but our numerical solution procedure does not
always succeed. As the link �ow rates and node pressures at two
consecutive points in time become increasingly similar as the
time interval between them is reduced, we may expect the guess
values to lie closer to the solution if we reduce the time step.Thus,
if our solution procedure is unable to succeed, our remedy is
to shorten1 t(n). This will sometimes lead to time steps shorter
than 1 t(nC1)

a . If, for a given time step,1 t(n) must be reduced
to less than twice the time step length allowed by the explicit
methods, we revert to forward Euler for that particular step. As
we demonstrate in section 10, however, this does not prevent the
semi-implicit method from being much more e�cient than the
explicit methods at low capillary numbers.

6.2. Boundary Conditions
As with the explicit methods, the speci�ed1 P boundary
condition can be incorporated directly into the mass balance
equation system, in this case Equation (35). This is done by
adding to or subtracting from the right hand sides of Equation
(32) and Equation (37) a termg(n)

ij 1 Pfor each linkij crossing the
periodic boundary.

The speci�ed �ow rate boundary condition is incorporated by
including1 Pas an additional unknown and adding an additional
equation

Fm D

8
<

:

X

ij2•

q(nC1)
ij

9
=

;
� Q D 0, (40)

to the non-linear equation system Equation (35). Herein,• is the
set of links crossing the periodic boundary, withi being the node
on the downstream side andj being the node on the upstream
side. Thus, Equation (40) is satis�ed when the total �ow rate
through the network is equal toQ.

7. IMPLEMENTATION

The non-linear equation system Equation (35) is solved using a
Newton-type solution method that guarantees convergence toa
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local minimum ofF � F, see Press et al. [[25], p. 477] . However, a
local minimum ofF � F is not necessarily a solution to Equation
(35), and good initial guess values for the node pressures andlink
�ow rates are therefore crucial. For this purpose, we use the values
from the previous time step and reduce the length of the current
time step if the solution method fails, as discussed in section 6.1.

Solving Equation (37) is done using a standard Newton solver
[26]. For robustness, a bisection solver [26] is used if the Newton
solver fails.

The Newton-type solver for non-linear systems and the
explicit time integration methods require methods for
solving linear systems of equations. We use the conjugate
gradient method in combination with the LU preconditioner
implemented in the PETSc library, see Balay et al. [27]. An
introduction to solving systems of Kirchho�-type equations
numerically can be found in Batrouni and Hansen [28].

8. CASE DESCRIPTIONS

In this section, we describe the two simulated cases. One is atest
case where a single bubble is contained in a network consisting of
links connected in series, while the other is designed to capture
a single Haines jump in a small network where �uids �ow at a
speci�ed rate.

8.1. Links-in-Series Test Case
The veri�cation will include comparison of results from the
various numerical methods applied to a test case. The test case
is chosen such that it can be set up as a single ODE with a closed
expression for the right-hand side. An accurate reference solution
can thus be easily obtained using a high-order Runge–Kutta
method. As our test case, we consider a network consisting of
M D 3 identical links connected in series. The network contains
a single bubble of length̀(m) with center positionz (m). In the
capillary pressure model, we choose� D 0. The ODE Equation
(6) can then be restated as an equivalent equation for the bubble
position,

dz
dt

D
Q
a

, (41)

where Q is the �ow through the network anda is the link
cross-sectional area. The model equations can be reduced tothe
following expression for �ow rate.

Q D �
g
M

�
1 PC

4� wn

r
sin

�
� `
L

�
sin

�
2� z
L

��
(42)

Here,g is the mobility of a single link,L D 1.0� 10� 3 m is the
length of a single link andr D 1.0� 10� 4 m is the link radius.
The bubble has length̀ D 4.8� 10� 4 m and is initially located
at z D 2.4� 10� 4 m. The �uid parameters used in all simulations
are given inTable 1. The pressure di�erence1 Pwill be stated for
each simulation.

8.2. Haines Jump Case
The Haines jump was �rst reported almost 90 years ago [13].
It refers to the sudden drops in driving pressure observed
in drainage experiments when non-wetting �uid breaks

TABLE 1 | Fluid properties corresponding to water (w) and decane (n) at
atmospheric pressure and298 K.

Parameter Value Unit References

� w 8.9 � 10� 4 Pa s [29]

� n 8.5 � 10� 4 Pa s [29]

� wn 5.2 � 10� 2 N m� 1 [30]

through a throat and invades new pores. This process
was studied experimentally and numerically by Måløy
et al. [16] and, more recently, it was imaged directly and
analyzed in detail by Armstrong and Berg [15] for �ow in
a micromodel and by Berg et al. [14] for �ow in a sample
of Berea sandstone. The Haines jump case simulated here
captures one such break-through and subsequent pressure
drop.

Among the �ndings in the study by Måløy et al. [16] was that
pore drainage is a non-local event, meaning that as one pore
is drained, imbibition occurs in nearby neck regions. This was
also observed by Armstrong and Berg [15], and was explained as
follows. When the imposed �ow rates are low, the non-wetting
�uid that �lls the newly invaded pores needs to be supplied from
nearby locations rather than the external feed. Armstrong and
Berg [15] also found, for their range of investigated parameters,
that pore drainage occurred on the same time-scale, regardless of
the externally imposed �ow rate.

We consider a hexagonal network consistingN D 24 nodes
and M D 36 links. All links have length 1.0� 10� 3 m, while
the link radii are drawn randomly from a uniform distribution
between 0.1 and 0.4 link lengths. In the capillary pressure model,
we choose� D 1. The �uid parameters� w, � n and � wn are the
same as in the links-in-series test case, seeTable 1. With these
�uid parameters and network length scales, the case mimics the
�ow of water (w) and decane (n) in a Hele-Shaw cell �lled with
glass beads similar to those used in e.g., Måløy et al. [16, 31] and
Tallakstad et al. [32]. The linear dimensions are� 10 times bigger
in this network compared to the micromodel of Armstrong and
Berg [15]. Initially, the �uids are distributed in the network
as shown inFigure 4, with the non-wetting �uid in a single
connected ganglion.

Simulations are run at di�erent speci�ed �ow ratesQ until a
net �uid volume equivalent to 5% of the total pore volume has
�owed through the network. The �ow dynamics will, of course,
depend upon the speci�ed �ow rate. At low �ow rates, however,
the �ow will exhibit some relatively fast �uid redistribution
events and one relatively slow pressure build-up and subsequent
Haines jump event. The Haines jump will occur as the non-
wetting �uid breaks through the link connecting nodes 9 and 16
and invades node 16, seeFigure 4.

It was mentioned by Armstrong and Berg [15] that the
large local �ow velocities that they observed as a pore
was �lled with non-wetting �uid during a Haines jump has
implications for how such processes must be numerically
simulated. Speci�cally, the time resolution of the simulation
needs to be �ne enough during these events to capture them.
This poses a challenge when externally applied �ow rates are
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low and there is thus a large di�erence in the large time
scale that governs the overall �ow of the system and the
small time scale than governs the local �ow during Haines
jumps.

9. VERIFICATION

In this section, we verify that the time integration methods
presented correctly solve the pore network model equations and
that the time step criteria presented give stable solutions.

9.1. Convergence Tests
All time integration methods presented should, of course, give
the same solution for vanishingly small time steps. Furthermore,
the di�erence between the solution obtained with a given �nite
time step and the fully converged solution should decrease as the
time steps are re�ned, and should do so at a rate that is consistent
with the order of the method. In this section, we verify that all
three time integration methods give solutions that converge to
the reference solution for the links-in-series test case and thus
that the methods correctly solve the model equations for this
case.

We choose the pressure di�erence to be1 P D � 3200 Pa. This
value is large enough to overcome the capillary forces and push
the non-wetting bubble through the links. We therefore expect a
�ow rate Q that varies in time, but is always positive.

As measures of the numerical error, we consider both the
relative error in the �ow rate Q and the relative error in
bubble positionz between the numerical solutions and reference
solutions at the end of the simulation. Time integration is

FIGURE 4 | Initial �uid con�guration in the Haines jump case. The non-wetting
�uid is blue while the wetting �uid is gray. The link radii are not drawn to scale
with the link lengths. Node indices are indicated in black.

performed fromt D 0 s tot D 0.001 44 s. To have control over
the time step lengths, we ignore all time step criteria for now and
instead set a constant1 t for each simulation.

In Figure 5, �ow rates are plotted for each of the time
integration methods. Results using a coarse time step,1 t D
4 � 10� 5 s, and a �ne time step,1 t D 1 � 10� 5 s, are shown along
with the reference solution.

For the forward Euler and the semi-implicit method, there
is considerable discrepancy between the numerical and the
reference solution with the coarse time step. The �ow rate
obtained from forward Euler lags behind the reference solution,
while that from the semi-implicit method lies ahead of it. This
may be expected, however, since forward Euler at each time
step uses current information in the right hand side evaluation,
whereas the semi-implicit method uses a combination of current
and future information. With the �ne time step, there is less
di�erence between the reference and the numerical solutions.

FIGURE 5 | Flow ratesQ plotted against time for two different time steps1 t
for the links-in-series test case with1 P = � 3200Pa. Results from the forward
Euler method are given in(A), results from the midpoint method in(B) and
results from the semi-implicit method in(C). The solid line represents the
reference solution.
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With the more accurate midpoint method, the coarse-stepped
numerical solution lies only marginally ahead of the reference
solution while there is no di�erence between the �ne-stepped
numerical solution and the reference solution at the scale of
representation.

The convergence of the numerical solutions to the reference
solution upon time step re�nement is quanti�ed inTables 2–4.
Herein, the numerical errors and estimated convergence orders
are given for the forward Euler, midpoint and semi-implicit
method, respectively. For all methods considered, the numerical
errors decrease when the time step is re�ned and do so at the rate
that is expected. The forward Euler and the semi-implicit method
exhibit �rst-order convergence, while the midpoint method
shows second-order convergence. We note that the errors in both
z and Q are similar in magnitude for the forward Euler and the
semi-implicit method. The errors obtained with the midpoint
method are smaller. The di�erence is one order of magnitude for
1 t D 1 � 10� 5 s.

In summary, we have veri�ed that the presented time
integration methods correctly solve the pore network model
equations for the links-in-series test case and that the numerical
errors decrease upon time step re�nement at the rate that is
consistent with the expected order of the methods.

TABLE 2 | Relative errors in bubble positionz and �ow rate Q at t D 0.001 44 s
and estimated convergence orders for the links-in-series test case computed with
the forward Euler method.

1 t (s) z-error z-order Q-error Q-order

4 � 10� 5 1.55 � 10� 2 1.33 � 10� 1

2 � 10� 5 7.44 � 10� 3 1.06 6.41 � 10� 2 1.06

1 � 10� 5 3.66 � 10� 3 1.02 3.15 � 10� 2 1.02

5 � 10� 6 1.82 � 10� 3 1.01 1.57 � 10� 2 1.01

TABLE 3 | Relative errors in bubble positionz and �ow rate Q at t D 0.001 44 s
and estimated convergence orders for the links-in-series test case computed with
the midpoint method.

1 t (s) z-error z-order Q-error Q-order

8 � 10� 5 1.67 � 10� 2 1.44 � 10� 1

4 � 10� 5 4.24 � 10� 3 1.98 3.65 � 10� 3 1.98

2 � 10� 5 1.08 � 10� 3 1.97 9.33 � 10� 3 1.97

1 � 10� 5 2.86 � 10� 4 1.92 2.46 � 10� 3 1.92

TABLE 4 | Relative errors in bubble positionz and �ow rate Q at t D 0.001 44 s
and estimated convergence orders for the links-in-series test case computed with
the semi-implicit method.

1 t (s) z-error z-order Q-error Q-order

4 � 10� 5 1.39 � 10� 2 1.18 � 10� 1

2 � 10� 5 6.98 � 10� 3 0.99 5.97 � 10� 2 0.98

1 � 10� 5 3.51 � 10� 3 0.99 3.01 � 10� 2 0.99

5 � 10� 6 1.76 � 10� 3 1.00 1.5 � 10� 2 1.00

9.2. Stability Tests
In this section, we demonstrate that the proposed capillary time
step criterion Equation (23) stabilizes the forward Euler method
and the midpoint method at low �ow rates. We simulated two
di�erent cases and variedCc. Simulations run with lowCc
turned out to be free of spurious oscillations, indicating that
the proposed criterion stabilizes the methods, while simulations
run with Cc signi�cantly larger than unity produced oscillations,
indicating that the proposed criterion is not unnecessarily
strict.

First, consider the links-in-series test case with1 P D 0 Pa.
With no applied pressure di�erence, the �ow is driven purely
by the imbalance of capillary forces on the non-wetting bubble.
Therefore, there should only be �ow initially and the bubble
should eventually reach an equilibrium position where both
interfaces experience the same capillary force and the �ow rate
is zero. Simulations were run withCa D 0.1 andCc equal to 2.0,
1.0, and 0.5. Results from forward Euler are shown inFigure 6A
and results from the midpoint method are shown inFigure 6B.
In both �gures, the reference solution is also shown.

The forward Euler results are stable and qualitatively similar
to the reference solution withCc D 0.5. With Cc D 1.0, there
are some oscillations initially that are dampened and eventually
vanish. From comparison with the reference solution, it is clear
that such oscillations have no origin in the model equations
and are artifacts of the numerical method. WithCc D 2.0, the
oscillations are severe and do not appear to be dampened by the
method. Instead the non-wetting bubble keeps oscillating around
its equilibrium position in a manner that is clearly unphysical.

The results from the midpoint method inFigure 6B follow
a qualitatively similar trend as those from forward Euler with
regard to stability. Results computed withCc D 0.5 are stable
and results withCc D 2.0 exhibit severe oscillations. Still, the
results from the midpoint method lie much closer to the reference
solution than the results from the forward Euler method, as
we would expect since the midpoint method is second-order.
Both methods are, however, unstable withCc D 2.0, indicating
that the while the midpoint method has improved accuracy
over forward Euler, it is unable to take signi�cantly longertime
steps without introducing oscillations. This is consistent with the
analysis in Appendix A, since the two methods have identical
stability regions in real space.

Next, consider the Haines jump case withQ D 10� 9 m3 s�1 ,
corresponding to CaD 1.2� 10� 5. This case was run using the
forward Euler method,Ca D 0.1 and three di�erent values of
Cc, equal to 4.0, 2.0, and 1.0. The required pressure di�erence
to drive the �ow at the speci�ed rate is shown inFigure 7A.
Figure 7B shows the pressure fromFigure 7A in greater
detail.

For all three values ofCc, the main qualitative features of the
�ow are captured. We observe short transient pressure drops at
t � 0.08 s andt � 0.20 s. These correspond to �uid redistribution
events on the upstream side of the non-wetting ganglion, where
the �uid rearranges itself to a more stable con�guration with
little change to the interface positions on the downstream side.
The event att � 0.20 s is illustrated inFigure 8. The �uid
redistribution is driven by capillary forces and less external
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FIGURE 6 | Flow rate plotted against time in the link-in-series test case with 1 P D 0 Pa. Results from the forward Euler method(A) and the midpoint method (B) are
shown for different values ofCc . Severe numerical instabilities arise whenCc D 2.0. Results from the semi-implicit method are shown are shown in (C). These are
stable, even if the capillary time step criterion is not used. The solid black line represents a reference solution.

FIGURE 7 | Pressure difference required to drive the �ow in the Haines jump case at a rate ofQ D 10� 9 m3 s� 1, corresponding to CaD 1.2 � 10� 5. In (B), the results
from (A) are shown in greater detail. Results are computed with the forward Euler method for different values of the capillary time step restriction parameterCc .
Numerical instabilities are seen to occur forCc > 1.

pressure is therefore required to drive the �ow during these
events.

We also observe the slow pressure build-up fromt �
0.10 s to t � 0.23 s, when the driving pressure becomes
large enough to overcome the capillary forces and cause
break-through of non-wetting �uid in the link connecting
nodes 9 and 16, and we observe the subsequent Haines jump.

The �uid con�gurations before and after the Haines jump
are shown inFigure 9. Notice also that non-wetting �uid at
the downstream end of the moving ganglion retracts during
the Haines jump in links near to where the break-through
occurs. This is seen e.g., in the links downstream of nodes
10 and 14. That such local imbibition occurs near the
drained pore is in agreement with the observations of
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FIGURE 8 | Fluid distribution in the Haines jump case,(A) at t D 0.19 s and (B) at t D 0.21 s, before and after the �uid redistribution event att � 0.20 s. The link radii
are not drawn to scale with the link lengths. Node indices areindicated in black.

FIGURE 9 | Fluid distribution in the Haines jump case(A) at t D 0.23 s and (B) at t D 0.27 s, before and after the Haines jump. During the jump, non-wetting �uid
breaks-through the link connecting nodes 9 and 16 and invades node 16. Also, non-wetting �uid in other links at the downstream end of the moving ganglion retracts.
This is seen e.g., in the links downstream of nodes 10 and 14. The link radii are not drawn to scale with the link lengths. Node indices are indicated in black.

Armstrong and Berg [15], and shows that the model is able
to capture the non-local nature of pore drainage events in a
numerically stable manner when the new numerical methods are
used.

As in the links-in-series case, the solution exhibits oscillations
for the values ofCc that are larger than unity. WithCc D 1.0,
the results are free from oscillations and appear stable. This
indicates that the stability criterion Equation (23) is valid and not
unnecessarily strict also for a network con�guration that is much
more complex than links in series.

Both the links-in-series case and the Haines jump case were
simulated with the semi-implicit method and produced stable
results with the advective time step criterion Equation (22)
only. The results from the links-in-series test case are shown

in Figure 6C. For brevity, the results from the Haines jump
case are omitted here. The reader is referred toFigure 10A
in section 10, where stable results are shown for a lower �ow
rate.

To summarize, both the forward Euler and midpoint methods
produce stable results for the cases considered when the
capillary time step criterion Equation (23) is used in addition
to Equation (22) to select the time step lengths. By running
simulations with di�erent Cc, we have observed a transition
from stable to unstable results for values ofCc near 1, in
order of magnitude. In the Haines jump case, all methods
presented are able to capture both the fast capillary-driven �uid
redistribution events, and the slow pressure build-up before a
Haines jump.
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FIGURE 10 | (A) Pressure difference required to drive the �ow at
Q D 10� 11m3 s� 1, corresponding to CaD 1.2 � 10� 7, in the Haines jump
case. Results are plotted for the forward Euler method (solid dark blue) and the
semi-implicit method (dashed light blue). These lines coincide at the scale of
representation. The time steps lengths used by each method are plotted in (B).

10. PERFORMANCE ANALYSIS

In this section, we analyze and compare the performance
of the time integration methods. In doing so, we consider
the number of time steps and the wall clock time required
to perform stable simulations of the Haines jump case with
each of the methods at di�erent speci�ed �ow ratesQ. The
�ow rates simulated were 10� 7 m3 s�1 , 10� 8 m3 s�1 , 10� 9 m3 s�1 ,
10� 10m3 s�1 , 10� 11m3 s�1 , and 10� 12m3 s�1 . The accuracy of
the methods was studied Section 9.1, and will not be part of the
performance analysis. Instead, stable simulations are considered
su�ciently accurate.

First, we look more closely at the results forQ D 10� 11m3 s�1 ,
corresponding to Ca D 1.2� 10� 7. The pressure di�erence
required to drive the �ow is shown inFigure 10A, and the
time step lengths used are shown inFigure 10B. From the latter
Figure, we see that the semi-implicit method is able to take longer

time steps than forward Euler for most of the simulation. During
the pressure build-up phase, the di�erence is four orders of
magnitude. During the fast capillary-driven �uid redistribution
events, however, the length of the semi-implicit time steps drop to
the level of those used by forward Euler. This is because we here
have relatively large �ow rates in some links, even thoughQ is
low, and the advective time step criterion Equation (22) becomes
limiting for both the semi-implicit method and forward Euler.

It was mentioned by Armstrong and Berg [15] that any
accurate numerical simulation on the pore scale must have a
time resolution �ne enough to capture the fast events. The semi-
implicit method accomplishes this by providing a highly dynamic
time resolution, which is re�ned during the fast events. The
method is therefore able to resolve these events, while time
resolution can be coarsened when �ow is governed by the slow
externally applied �ow rate, saving computational e�ort.

The time duration of the Haines jump pressure drops for
all except the two largest externally applied �ow rates were
around 10 ms. This is in qualitative agreement with the results
presented by Armstrong and Berg [15]. They found that, for
their investigated range of parameters, pores were drained onthe
millisecond time scale regardless of externally applied �ow rate.
However, we stress that although we consider the same �uids,
the pore network used here was approximately one order of
magnitude larger in the linear dimensions than that of Armstrong
and Berg [15].

The number of time steps and wall clock time required to
simulate the Haines jump case at di�erent speci�ed �ow ratesQ
are shown inFigures 11A,B, respectively.

For the explicit methods, both the number of time steps and
the wall time are proportional to Ca� 1 at low capillary numbers.
This is because the capillary time step criterion Equation (23)
dictates the time step at low capillary numbers (except during
fast �uid redistribution events). The criterion depends on the
�uid con�guration, while it is independent of the �ow rate. At
low enough �ow rates, the system will pass through roughly the
same �uid con�gurations during the simulation, regardlessof the
appliedQ. The speed at which the system passes through these
con�gurations, however, will be inversely proportional toQ and
therefore, so will the required wall time and number of time steps.
As the forward Euler and the midpoint method are subject to the
same time step criteria, these require roughly the same number
of time steps at all considered �ow rates. However, since the
midpoint method is a two-step method, the wall time it requires
is longer and approaches twice that required by the forward Euler
for long wall times.

For the semi-implicit method, on the other hand, the number
of time steps required to do the simulation becomes e�ectively
independent of the speci�ed �ow rate at capillary numbers
smaller than approximately 10� 4. The result is that low-capillary
number simulations can be done much more e�ciently than with
the explicit methods, in terms of wall time required to perform
stable simulations. This is seen inFigure 11B. At Ca � 10� 5,
the computational time needed by all three methods are similar
in magnitude. The relative bene�t of using the semi-implicit
method increases at lower capillary numbers. For the lowest
capillary number considered, the di�erence in wall time between
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FIGURE 11 | (A) Number of time steps and(B) wall clock time required to simulate the Haines jump case at at different speci�ed �ow rates. In each simulation, the
same volume of �uid (5% of the pore volume) �ows through a network. Results from the forward Euler method (squares), the midpoint method (diamonds) and the
semi-implicit method (circles) are shown. In(A,B), the black lines are inversely proportional to Ca.

FIGURE 12 | Wall clock time time required to simulate the Haines jump case
with the semi-implicit method for different network sizes.All simulations were
run at Ca � D 10� 7 and N denotes the number of nodes in the network. The
wall time is seen to increase proportionally toN2 for the three largest networks.

the explicit methods and the semi-implicit is three orders of
magnitude.

The increased e�ciency of the semi-implicit method over
explicit methods at low capillary numbers means that one can
use the semi-implicit method to perform simulations in the
low capillary number regime that are unfeasible with explicit
methods. Thus, the range of capillary numbers for which the pore
network model is a tractable modeling alternative is extended to
much lower capillary numbers. This includes e.g., simulations
of water �ow in fuel cell gas di�usion layers, where capillary
numbers are can be 10� 8 [33].

Finally, to study the e�ect of an increase in network size on
the wall time required by the semi-implicit method, the Haines
jump case was run on three scaled-up versions of the network
with N D 24 nodes considered so far, illustrated inFigure 4.

All simulations were run at Ca� 10� 7. In Figure 12the wall
clock time time required is plotted against the number of nodes
N for the di�erent networks. The wall time is seen to increase
proportionally toN2.

11. CONCLUSION

We have studied three di�erent time integration methods for a
pore network model for immiscible two-phase �ow in porous
media. Two explicit methods, the forward Euler and midpoint
methods, and a new semi-implicit method were considered. The
explicit methods have been presented and used in other works
[10, 21, 24], and were reviewed here for completeness. The
semi-implicit method was presented here for the �rst time, and
therefore in detail.

The explicit methods have previously su�ered from numerical
instabilities at low capillary numbers. Here, a new time-step
criterion was suggested in order to stabilize them and numerical
experiments were performed demonstrating that stabilization
was achieved.

It was veri�ed that all three methods converged to a reference
solution to a selected test case upon time step re�nement. The
forward Euler and semi-implicit methods exhibited �rst-order
convergence and the midpoint method showed second-order
convergence.

Simulations of a single Haines jump were performed. These
showed that the all three methods were able to resolve
both pressure build-up events and �uid redistribution events,
including interfacial retraction after a Haines jump, whichmay
occur at vastly di�erent time scales when capillary numbers are
low. The results from the Haines jump case were consistent
with experimental observations made by Armstrong and Berg
[15]. Fluid redistribution events cannot be properly captured
when using solution methods that have previously been used
at low capillary numbers that e.g., do not allow back�ow
[18].

A performance analysis revealed that the semi-implicit
method was able to perform stable simulations with much less
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computational e�ort than the explicit methods at low capillary
numbers. For the case considered, the computational time
needed was approximately the same for all three methods at
Ca � 10� 5. At lower capillary numbers, the computational time
needed by the explicit methods increased inversely proportional
to the capillary number, while the time needed by the semi-
implicit method was e�ectively constant. At Ca� 10� 8, the
computational time needed by the semi-implicit methods was
therefore three orders of magnitude smaller than those needed
by the explicit methods.

The superior e�ciency of the new semi-implicit method over
the explicit methods at low capillary numbers enables simulations
in this regime that are unfeasible with explicit methods. Thus, the
range of capillary numbers for which the pore network model
is a tractable modeling alternative is extended to much lower
capillary numbers. This includes e.g., simulations of water�ow
in fuel cell gas di�usion layers, where capillary numbers are can
be 10� 8 [33].

In summary, use of Aker-type pore network models were
previously restricted to relatively high capillary numbers due to
numerical instabilities in the explicit methods used to solve them.
With the new time step criterion presented here, these stability
problems are removed. However, simulations at low capillary
numbers still take a long time and the computational time
needed increases inversely proportional to the capillary number.
This problem is solved by the new semi-implicit method. With
this method, the computational time needed becomes e�ectively

independent of the capillary number, when capillary numbers are
low.
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