
June 2007
Morten Hartmann, IDI
Marius Grannæs, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

FPGA Framework for CMP

Kenneth Østby

Problem Description

The project's main goal is to develop a platform supporting experiments of Chip Multiprocessors
on a Field Programmable Gate Array. The NCAR Group performs research on the simulation of
architectural variations in Chip Multiprocessors. It's desirable to extend the experiments to run on
parametrizable architectures designed for Field Programmable Gate Arrays. The solution must
account for several processors and their interconnection, cache structures, and if time permits
operating systems and the ability to communicate with existing simulators. Knowledge about
FPGA, VHDL and the C programming language is required.

The subtasks are (to the extent time allows them to be addressed):

Background research on related projects
- Multicore solutions in FPGAs, with emphasis on cache solutions
- potential operating systems

Research on cache solutions on an FPGA
- assess the option of customizable solutions and automated synthesis
 of cache systems

Make several cores work on existing lab equipment in a simple testing
environment

Research and identify suitable cores for the system and possibly an
operating system

Cache design with emphasis on customizability and suitable cache
hierarchy (L1/L2) on available FPGA cards (Nalle)

Investigate possibilities towards integration with
simulation environments (M5 and/or SimpleScalar) and experiments at
NCAR

Run suitable experiments and analyse results

Assignment given: 20. January 2007
Supervisor: Morten Hartmann, IDI

Abstract

The single core processor stagnated due to four major factors. (1) The lack of instruction
level parallelism to exploit, (2) increased power consumption, (3) complexity involved in
designing a modern processor, and (4) the performance gap between memory and the
processor. As the gate size has decreased, a natural solution has been to introduce several
cores on the same die, creating a chip multicore processor.

However, the introduction of chip multicore processors has brought a new set of new chal-
lenges such as power consumptions and cache strategies. Although throughly researched
in context of super computers, the chip multiprocessor has decreased in physical size, and
thus some of the old paradigms should be reevaluated, and new paradigms found.

To be able to research, simulate and experiment on new multicore architectures, simulators
and methods of prototyping are needed by the community, and has traditionally been
done by software simulators. To help decrease the time between results, and increase the
productivity a hardware based method of prototyping is needed.

This thesis contributes by presenting a novel multicore architecture with interchangeable
and easily customizable units allowing the developers to extend the architecture, rewriting
only the subsystem in question. The architecture is implemented in VHDL and has been
tested on a Virtex FPGA, utilizing the MicroBlaze microcontroller. Based upon FPGA
technologies, the platform is close in nature to that of a chip multiprocessor. The thesis also
shows that a hardware based environment will significantly decrease the time to results.

ii

Preface

This Master’s Thesis was written as a part of the degree as ”Sivilingeniør” in Computer
Engineering. The Master’s Thesis is founded in an earlier project in the subject TDT4720
– Computer Design and Architecture. The goal of TDT4720 was to give the student an
introduction to the current state of Computer Architecture, while introducing him to the
tools used in hardware construction.

The work is done for the Norwegian University of Science and Technology (NTNU) at the
Faculty of Information Technology, Mathematics and Electrical Engineering, and the De-
partment of Computer and Information Science. The group which hosted the project was
the NTNU Computer Architecture and Design Group under the supervision of Associate
Professor Morten Hartmann.

The advisor for this thesis was Associate Professor Morten Hartmann. Co-advisor was
Research Fellow Marius Grannæs.

Kenneth Østby
June 17, 2007

iii

iv

Acknowledgments

I would like to thank the following persons for their support and input throughout this
project. Associate Professor Morten Hartmann for being my advisor, and thus allowing
me to partake in this journey through Chip Multiprocessors. Marius Grannæs for being
my co-advisor, reading through my thesis several times and always available for technical
discussions.

I would also like to thank the people at NTNU Computer Architecture Research Group
for including me in their much interesting meetings. Also important are the people at my
study room, ITV-458, May Linda Martinsen, Knut Imar Hagen, Christian Larsen, Idar
Borlaug, Rolf Anders Syvertsen and Jan Peder David-Andersen.

Finally I would like to send my thanks and thoughts to all of my friends and loved ones
not mentioned by name.

v

vi

Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Introduction . 1

1.2 Problem Description . 4

1.3 Project Motivation . 5

1.4 Contribution . 5

1.5 Scope . 6

1.6 Outline . 6

1.6.1 Appendices . 6

2 Background 7

2.1 Related Work . 7

2.2 CMP Architecture . 8

2.2.1 Cores . 9

2.2.2 Cache . 12

2.2.3 Interconnect . 14

vii

CONTENTS CONTENTS

2.3 Introduction to FPGAs . 16

2.4 Cores . 17

2.4.1 MicroBlaze . 19

2.4.2 PowerPC . 20

2.5 Environment . 21

2.5.1 Hardware . 21

2.5.2 Field Upgradable Systems Environment - FUSE 22

2.5.3 Virtex-E . 22

2.6 Tools . 23

2.6.1 GCC . 23

2.6.2 ISE . 23

2.6.3 XPS . 23

3 Methodology 25

3.1 Introduction . 25

3.2 OMA . 26

3.3 Core . 27

3.3.1 Wrapping . 28

3.3.2 CPU Identification Component . 29

3.3.3 Implementation Challenges . 30

3.4 Cache . 31

3.4.1 Storage Unit . 32

3.5 PCI Communication . 33

3.6 Software . 36

viii

CONTENTS CONTENTS

3.7 Benchmark . 37

3.7.1 BogoMIPS kernel . 37

3.7.2 Load-Store kernel . 38

4 Results 39

4.1 Introduction . 39

4.2 Benchmark results . 40

4.2.1 BogoMIPS Kernel . 40

4.2.2 Load/Store kernel . 42

5 Discussion 45

5.1 Cores . 45

5.2 Cache . 46

5.3 Time . 47

5.4 3rd Party Challenges . 48

5.4.1 GNU Compiler Collection for MicroBlaze 48

5.4.2 Xilinx IP Glue for OPB . 49

5.5 Benchmarks . 50

6 Conclusion 53

6.1 Conclusion . 53

6.2 Future Work . 54

Bibliography 57

Appendices 61

ix

CONTENTS CONTENTS

A Benchmarks 61

A.1 BogoMIPS kernel . 61

A.2 Sample Linker script . 62

A.3 Sample Makefile . 63

A.4 LoadStore kernel . 64

B Hardware 65

B.1 Core OMA Interface . 65

B.2 CPU Identifier . 71

B.3 RAM Block . 75

B.4 Cache Block . 79

B.5 Arbiter . 87

B.6 PCI COM . 89

B.7 Toplevel - mCache . 94

B.8 Toplevel - mCore . 99

B.9 Toplevel - sCore . 103

C Software 107

C.1 Controller.c . 107

C.2 Controller.h . 112

C.3 memory.h . 113

C.4 memory.c . 114

C.5 cpu.c . 118

C.6 cpu.h . 122

x

CONTENTS CONTENTS

C.7 util.h . 123

C.8 util.c . 124

xi

CONTENTS CONTENTS

xii

List of Tables

3.1 Signal interface . 27

4.1 Processor Configurations . 40

xiii

LIST OF TABLES LIST OF TABLES

xiv

List of Figures

1.1 CPU Memory Gap . 2

1.2 Project Overview . 5

2.1 Memory Hierarchy . 9

2.2 Core number 3 is disabled . 10

2.3 Fully Associative Cache . 13

2.4 Set Associative Cache . 13

2.5 Direct Associative Cache . 13

2.6 Shared Bus . 15

2.7 Crossbar interconnect . 15

2.8 FPGA routing . 17

2.9 Sample CLB . 18

2.10 LUTs per Core . 19

2.11 Cores per FPGA . 20

2.12 BenERA diagram . 21

3.1 Overall Architecture . 26

3.2 Core . 29

xv

LIST OF FIGURES LIST OF FIGURES

3.3 Single Memory block . 33

3.4 2-way set associative block . 34

3.5 PCI Unit . 34

3.6 Com States . 35

3.7 Control Word . 35

4.1 BogoMIPS Performance . 41

4.2 BogoMIPS memory Access . 41

4.3 BogoMIPS Speedup . 42

4.4 MemTest Performance . 43

4.5 MemTest memory Access . 43

5.1 BRAM Location on the FPGA. 47

5.2 Correct assembly code . 49

5.3 Output from GCC . 49

xvi

Chapter 1

Introduction

1.1 Introduction

During the last couple of years, the traditional single core monolithic CPU has failed to
further increase its performance proportionally to the decrease in transistor size, as the
popular although not correct interpretation of Moore’s Law[34] implies. This is, according
to Dr. Patterson in his President’s Letter[30], due to 3 main factors. (1) Power dissipa-
tion, (2) lack of Instruction Level Parallelism to exploit and (3) the long known memory
gap which has steadily grown since the beginning of computer science. A fourth factor
mentioned by Spracklen et al.[38] is the inherent complexity of designing a processor. A
high performance single core CPU requires vast amounts of chip resources to implement
the control logic, ensuring that operations don’t interferes with each others. This leaves
less room for implementing the computational logic, which in turn influences the overall
performance of the processor. The Chip multiprocessor (CMP) tries to solve these prob-
lems by utilizing several cores inside a single processor. Having several cores on a single
chip introduces several new problems, some which have been encountered before in the
world of super computing and others new. This includes handling cache in an attempt
to reduce the off-chip access, different topologies to allow inter-communication between
on-chip processing elements and finally the power dissipation.

The memory gap, as shown in figure 1.1, has long troubled the computer engineers and
has been the subject of several research projects. This is also one of the major focal points
when researching CMP architectures. The reasons why the memory gap has appeared
is a product of several factors. First there is the sheer distance the data signals must
travel between the processor and the memory. Data on-chip have a shorter path to travel,
and thus have a noticeable decrease in latency compared to off-chip access. Second, the
technology and the larger size of memory that exists outside the processor adds to the
latency by requiring more time to deliver the requested data onto the bus itself. All of these
factors makes it important to limit redundant memory accesses, storing the frequently used

1

1.1. INTRODUCTION CHAPTER 1. INTRODUCTION

1

10

100

1000

10000

100000

1980 1985 1990 1995 2000 2005 2010
Year

CPU performance
Memory latency

33333333333333333333333333333

3

Figure 1.1: CPU/Memory performance[30].
Logarithmic plot for readability.

data in cache banks on the processor, keeping recently used data close in locality. This
is done by employing different strategies which forces the processor and the cache banks
to cooperate, trying not to evict the frequently used lines of data off the chip. This in an
effort to reduce memory access outside the processor itself. Besides reducing the off-chip
access much of the cache research studies ways of keeping data requested by the different
cores near in locality close to the core which is most likely to request it. This might involve
duplication and spreading cache lines around internally on the chip.

Another reason which forced the change of paradigm from single core processors to multi-
core processors is the increased difficulty of exploiting Instruction Level Parallelism(ILP).
Exploiting ILP is to exploit the fact that certain combinations of instructions can be re-
arranged without changing the outcome. This is done to avoid stalls in the processor’s
pipeline, and hence reduce the time spent by the CPU idling. The main challenge ex-
ploiting ILP is that it gets exponentially harder per fraction of parallelism level, and thus
stagnating at a certain level[15]. To achieve a perfect level of instruction parallelism, un-
realisable hardware much be constructed. This to account for perfect branch prediction,
unlimited access of registers and all the memory locations must be known beforehand in
order to rearrange load and store operations[15]. All needed to achieve perfect ILP. Seeing
how the work load on most of the commercial servers are not focused on computation-
ally intensive tasks, but supporting several concurrent requests have forced forth a change
where Thread Level Parallelism(TLP) has gained focus. By adding several cores true TLP
can be achieved by running the different threads on different cores.

The power consumption of the computer processor has always been the subject of in-
quiries, although it has not been the major point of focus in desktop computers. Here

2

CHAPTER 1. INTRODUCTION 1.1. INTRODUCTION

performance has been the main focal point. However, as the frequency using traditional
CMOS technology reaches its practical limit, ways of reducing the power dissipation have
gained popularity. The CMP contributes mainly in two ways to help solve this problem.
The first is due to the nature of cubic dependency between the operating frequency of
the processor and its power dissipation as presented by Jerraya et al.[18] and Gochman
et al.[13]. The practical implication of this means that by halving the frequency of a
single core, the power consumption of a single core will be reduced to a mere quarter of
its original use. Then by doubling the existing cores on a chip with half the frequency it
is possible to retain the same performance with less dissipation of power. This is though
a simplified version of the power usage. When calculating the overall consumption on a
chip, the mechanisms for communication between different processing elements, cache and
etcetera, must be taken into consideration. As shown by Kumar et al.[21] , pending on the
surrounding infrastructure, it is not only the cores themselves that dissipates power on a
modern processor. Another interesting capability that comes with the inherit modularity
of a CMP is the ease of resource management. If the load on a CMP is low, cores that
are idling can be disabled to reduce the total power consumption. The ability to scale
down the number of operational cores, and halving the total power dissipation are both
important steps in battling the consumption of power in modern processors.

The final point which is mentioned by Spracklen et al.[38] and Olukotun and Hammond[27]
is the inherit complexity of designing a modern processor and its cores. A high performance
single core processor requires serious amount of effort into ensuring safe computations and
a coherent environment. Since the cores employed by CMP’s can afford a reduction in
performance per each individual core and still have the same overall throughput, a single
CMP core can be simplified compared to a core in a traditional single core processor. Also
by allowing a scaled down version of the cores simplifies the development process, and thus
reducing the time to marked and hence decreasing the production cost. Beside the purely
economic reason, a simplified model decreases the chance of bugs in the core itself. Hence
when gate size decreases, its performance can be improved by increasing the number of
cores on-chip.

To help developers address new architectural challenges, software based simulator such
as SimpleScalar[4] and M5[3] have been used. Here the developer specifies the different
components on the processor and their behaviour. The problems with software based
simulators are that they are not completely accurate in the sense that it has to sacrifice
accuracy in some field to gain in another[16]. E.g., a simulator which perspires to be in-
struction set accurate will will not attempt to claim timing accuracy[16]. Another problem
is that simulating an entire processor is a slow process, taking quite some time to produce
results. The time it takes to produce results could be reduced by decreasing the level of
details as proposed by Hines et al.[16], but this would lead to less accurate simulations.
Also, by having to manually specify the different levels of detail in the model leaves room
for inconsistencies between the different run levels. This might produce different results
depending on the detail level when simulating.

The Field Programmable Gate Array(FPGA) is a natural evolution of the Programmable
Logic Arrays which allows the developer to program the behavior of the logic hardware.

3

1.2. PROBLEM DESCRIPTION CHAPTER 1. INTRODUCTION

The extension which made the FPGA popular to prototyping hardware is its Field-
Programmable attribute. Unlike many implementations of the Programmable Logic Array,
the behaviour of the FPGA is fully reprogrammable. In modern FPGA’s this is solved by
connecting each programmable unit, i.e., its logic elements and routing resources, to the
corresponding bit in memory. Then by changing the bit-stream the behaviour of the FPGA
changes. An example would be a mathematical unit, the Arithmetic Logic Unit(ALU).
Pending on its corresponding bit, the ALU might work as either an multiplier, divisor or
a different mathematical operation. Then by connecting several logic elements it’s pos-
sible to get the desired behaviour. The major drawback of FPGA’s is that due to their
flexible nature, they cannot be have the same high clock frequency as a dedicated chip,
Application Specific Integrated Circuit. The advantage is that the calculations which the
software based simulator must calculate serially per simulated cycle, will happen in true
parallel on a FPGA. This means that the reprogrammable hardware will have an increase
in performance compared to an software based simulator.

To be able to prototype new multicore architectures and architectural parameters trying
to improve CMP performance, a platform which allows for rapid changes is needed. It is
also important that the time to produce results is reduced to increase productivity. To
help decrease the period between a new architecture or parameter is decided upon, and
until the result is known, a flexible FPGA platform is used. To achieve the flexibility in
hardware, an architecture must be modular to allow for interchangeable elements. This
to prevent time demanding and challenging rewrites of the entire system.

1.2 Problem Description

One of the new trends in computer architecture to battle the performance wall by intro-
ducing several cores on the same chip. By doing so, the computer engineers were put in
front of old challenges in a new setting. Techniques which were meant for large cluster
suddenly had to be scaled into a single die and novel ideas was needed. Seeing how the
cost in terms of money and time imprinting the first chip is to high to allow prototyping,
simulators and logic analyzers have been the mainstream technology of prototyping pro-
cessors. However software based simulators such as SimpleScalar[4] are notoriously slow,
and in nature not able to fully accurate simulate the inner workings of a CPU[16].

The goal of the Master’s Thesis is to investigate and develop a hardware based platform
for testing Chip Multiprocessors using Field Programmable Gate Arrays, figure 1.2, as
a alternative to the software based simulator. The platform should allow for change of
architectural parameters and components.

4

CHAPTER 1. INTRODUCTION 1.3. PROJECT MOTIVATION

Figure 1.2: Project Overview

1.3 Project Motivation

The NTNU Computer Architecture Research Group has focused their research on Chip
Multiprocessor Challenges[25]. More specific, the research group have focused their atten-
tion on intercommunication, caches, pre-fetching and scheduling. At the time this thesis
was written, their main method of prototyping multicore architectures was based upon
software simulators such as SimpleScalar and M5.

Since the software based simulations used to much time in producing results, the NCAR
group wanted an supplementary method of prototyping their proposed multicore archi-
tectures. They also wanted a platform through which they could rapidly change the
architectural parameters in order to test several configurations. This without changing
the underlying behavioural code.

1.4 Contribution

Through his work with the Master’s Thesis the author has contributed with the following
set of items. A throughly background search has been done in the field of Chip Mul-
tiprocessors. The author has contributed by presenting a hardware based platform for
prototyping novel computer architectures. Through the hardware platform the author has

5

1.5. SCOPE CHAPTER 1. INTRODUCTION

contributed by allowing fellow researchers to produce results more accurate, and decreased
the time waiting for results.

1.5 Scope

This thesis will describe a multicore architecture and the methodology used. The thesis
will present relevant research and background information needed to understand chip
multicore architecture. It will not describe in detail the inner workings of processor core
technology beyond what’s needed to implement it in a multicore environment.

1.6 Outline

In chapter 2, the thesis will present the relevant background information for reading this
paper. It will start by an displaying the relevant work, before it will continue by introducing
the central concepts in computer architecture relevant to chip multiprocessors. Chapter 2
will end with a presentation of the tools used.

Chapter 3 presents the methodology, where the hardware architecture is described. Chap-
ter 3 will end by a presentation of the controlling software and the application used for
testing the hardware design.

In chapter 4 the thesis will show the result from the benchmark suite introduced in chapter
3, before the results will be further discussed in chapter 5.

Finally the thesis will conclude with chapter 6 with the conclusion and further work.

1.6.1 Appendices

Appendix A contains the benchmarks created for the processor. Appendix A also contains
the makefile and linker script required in order of building the binary application.

Appendix B contains the hardware developed for this project, with the toplevel config-
urations in B.9, B.8 and B.7. Besides the code found outside the architecture section
in appendix B.1 and B.2, which is glue code code generated by the Xilinx tools, every-
thing has been written by the author. Some bugs has also been fixed in the glue code, as
discussed in section 5.4.2.

Appendix C contains the software developed by the author to control the FPGA and act
as main memory as described in section 3.6.

6

Chapter 2

Background

This chapter will discuss different architectural challenges designing a CMP, and present
some of the proposed solutions. It will introduce the reader to the field of processor
architecture and FPGA’s by first presenting the already existing work before introducing
central concepts, and finally the tools used to develop the FPGA framework.

2.1 Related Work

One of the central problems designing new hardware architectures is to be able to test the
architecture before sending it to production. Being able to both test the hardware and
software before production, is of grave importance to create a stable and optimal platform.
Traditionally the software developers have lagged behind the hardware manufacturers due
to traditional simulators producing results to slow. This is one of the challenges that
the Research Accelerator for Multiple Processors(RAMP) project is addressing[41]. The
RAMP project is a collaboration between different universities and cooperations such
as Berkly, Xilinx, IBM and others[2]. Having a FPGA framework allows the software
developers to test different implementations in operating systems and compilers before the
architecture reaches production. To serve as the developing platform, the RAMPants1 have
opted for the Virtex5 FPGAs to provide the hardware platform. The processor cores used
are a mixture of MicroBlaze soft cores, and PowerPCs hard cores. The reference designs
available from the RAMP project focuses on either transactional memory, distributed
systems or distributed shared memory[41].

While the RAMP project is the first one where which a well defined interface for commu-
nication between different parts, allowing for exchangeable parts, there has been differ-
ent implementations of CMP in FPGAs. Amongst these, Socrates is worth mentioning.
Socrates, being one of the early adapter, has focus upon proving that a CMP can be de-

1Member of the RAMP group

7

2.2. CMP ARCHITECTURE CHAPTER 2. BACKGROUND

signed on a FPGA, and that it can be done rapidly[7]. The cores in Socrates are based
upon an own implementation of ARM cores which in turn are connected to an crossbar
mechanism to provide communication between the different elements. This allows the de-
sign to increase in size, leaving room for growth in FPGA transistor counts. The downside
to the Socrates implementation is that the crossbar interconnect, as shown by Kumar et
al.[21], wont scale as gracefully with the number of cores connected to it. This severely
limits the amount of cores available to the Socrates platform, both in terms of FPGA
resources, and in a real life situation where also factors like power consumption plays a
major part.

Although the FPGA gains approval for prototyping hardware, there are still project pro-
totyping using commodity hardware. The Stanford Hydra project is a research project
testing out novel architectures for Chip Multiprocessors, basing their processor cores on
four MIPS based processors[14]. To be able to simulate the processor design they have
built a circuit board using four MIPS R3000 processors cores[28]. Each of the cores are
connected to a floating point unit and a Virtex FPGA in order to form a single processor
tile. By configuring the FPGAs, the Hydra project can simulate an array of different
configurations.

2.2 CMP Architecture

Having several processor cores on a single chip brings forth new and challenging problems
related to power consumption, cache strategies with multiple cores, communication be-
tween cores to ensure cache coherence and off-chip access. Although the physical scale has
reached a new level, currently at a gate level of 45nm[10]2, these problems have been ad-
dressed before by the world of supercomputers. Seeing how supercomputers traditionally
have several processors, distributed/shared memory, and a network between the processing
nodes, many of the concepts can be transposed down to fit the scale of a single chip. Fur-
thermore, some of the rejected ideas have resurrected seeing how the scale have changed
from several processing nodes, to a single chip, moving the limits on latency and band-
width. This have led to interesting CMP strategies, where tried and tested supercomputer
paradigms have been reused.

More specific, as shown in figure 1.1, during the last years, the core frequency have stag-
nated, which has left the developers looking for other ways to improve the overall perfor-
mance, while improving the power consumption. Since the gate size has had a drastic drop,
it has been possible to put several cores on a single processor. Then by decreasing the
frequency per core, the power consumption have drastically decreased. Other interesting
features of the CMP, being modular, is that it allows for easier resource management. This
in turn makes it possible to turn of inactive parts, in an attempt to reduce consumption of
power. Another important point of focus is that of off-chip access to remote peripherals,
e.g. memory. The gap between the CPU and memory has steadily increased, and has

2In 2007

8

CHAPTER 2. BACKGROUND 2.2. CMP ARCHITECTURE

evolved into a complex hierarchy, known as the Memory Hierarchy, figure 2.1. This states
that the further memory are from the CPU registers, the higher access cost in terms of
latency, but more memory it has allocated. This challenge has introduced the notion of
having banks of cache distributed around the system, allowing for temporary storage closer
to the processing unit. Since the storage capabilities, in effect, dictates the latency several
levels of cache can be found on the CMP. In a multicore environment the challenge lies
upon having the cores cooperating on retrieving lines of external data, avoiding retrieving
the same data twice. This in attempt to try reduce the amount of unnecessary duplicate
off-chip communication.

Storage

Space

CPU

Level 1 Cache

Level 2 Cache

Random Access Memory

Harddrive

Performance

Figure 2.1: Example memory hierarchy

Although if the cores weren’t to cooperate on the data retrieval, they would still need a
way of invalidating cache lines. Each core might have their own copy of data in cache, and
if one of the cores writes to the memory, the system need some way of notifying the other
cores holding a copy of the data. If not the task would lie upon the software developer to
lock memory accesses, which would be a tedious and error prone job.

2.2.1 Cores

The core is the main processing element on a traditional processor, performing instructions
which it loads from memory. Traditionally the performance of a single core CPU has been
given by the frequency of the internal clock, and the internal architecture of the core. The
frequency has been dependant of the underlying feature size and has been steadily rising
until year 2002, see figure 1.1. Combined with the fact that extracting performance per
clock cycle gets exponentially harder3, has led for a new way of extracting performance.

3e.g., achieving a perfect level of ILP is impossible due to the demands of perfect hardware[15]

9

2.2. CMP ARCHITECTURE CHAPTER 2. BACKGROUND

P3P2P1P0

Mem Mem Mem Mem

Figure 2.2: Core number 3 is disabled

Besides the raw performance challenges in designing a modern CPU, lowering the power
consumption has increasingly gained popularity. The power consumed by a CPU is directly
influenced by the frequency on which its internal core is set as shown in formula 2.4. As the
generated heat is a function of the power consumed, the manufacturers have had problems
cooling the CPU with apparatuses acceptable to the general public. This, and seeing how
there is a lower bound to the latency of a signal traveling across the chip has led IBM to
predict that their Power6 cores will extract the last amount of clock cycles available at
circa 5Ghz[9] using the current available technology.

This has led to a search of other methods for increasing performance, acknowledging that
the single core technology will stagnate at a given point using current technologies. Al-
though at the time where this report was written a company named D-Wave in cooperation
with NASA presented a co-processor using quantum technologies[1], this technology is still
long from perfected, and has a long way before it is common household equipment. This
has led to the manufacturers decreasing the complexity of a single core and increasing
the total number of cores on each chip. This allows each core to decrease it’s individual
throughput, but the system as a whole will retain its performance[38].

Scaling down the complexity of a single core while decreasing the core frequency influences
the power dissipation of the processor as a whole. This have led to a decrease in both
the Dynamical and Static power dissipation. Static power dissipation is power dissipating
due to transistor leakage[5], while Dynamical power dissipation refers to the rise and fall
in current when the transistors changes state. A simplified equation for the total power
dissipation is shown below in equation 2.1.

Ptotal = Pstatic + Pdynamic (2.1)

Dynamic Power Dissipation

The dynamical power dissipation is attributed the change of state in the transistor. When
a transistor is set low, it has to discharge to ground, which is the main source of dissipation.
The following formula (2.2) as described by Jeraya et al.[18] and Gochman et al.[13] shows

10

CHAPTER 2. BACKGROUND 2.2. CMP ARCHITECTURE

the dynamical power dissipation. Here F0 is the clock frequency. The C0 is the effective
capacitance of the circuit, while V0 is the voltage and α is the activity factor.

Pdynamic = α ∗ C0 ∗ V 2
0 ∗ F0 (2.2)

In the same article by Gochman et al.[13], they show that the frequency can be approx-
imated to be proportional of the core voltage V0, which leads forth to formulas 2.3 and
2.4

F0 ≈ Kf ∗ V0 (2.3)

Pdynamic = α ∗ C0 ∗ V 3
0 ∗ Kf (2.4)

As shown in equation 2.4, Pdynamic is cubic dependant of the frequency. Thus by halving
the frequency per core, the core will dissipate of one quarter of its original power. Then
by doubling the number of cores on the chip, the chip will retain its performance while
halving its dynamical power dissipation.

Static Power Dissipation

The static power dissipation, “leakage”, is an effect of the current gate technology[12],
mainly due to subthreshold and oxide leakage[12]. In their article, Ghiasti and Grunwald[12]
presents equation 2.5. This models the static power loss as a product of the Voltage cur-
rent, leakage current, the number of gates N and a scaling factor k. The scaling factor is
dependant of the inherit complexity of the design itself.

Pstatic = Vcc · Ileak · N · kdesign (2.5)

A overall measure of the effectively per power dissipated is shown in equation 2.6. This
shows the static power leakage over the million instructions per second, giving a rough
estimate of how resourceful the processor is.

Eff =
Pstatic

MIPS
(2.6)

To reduce the static power dissipation, Muthana et al.[22] suggests that by reducing the
Ileak factor, would have a great impact. One of the methods would find an architecture
which allowed for disabling caches and cores, as shown in figure 2.2.1.

11

2.2. CMP ARCHITECTURE CHAPTER 2. BACKGROUND

Spracklen et at.[38] also mentions that in a single core processor, much complexity and
logic is used in a controlling context, not in performance issues. This leads to a high N in
formula 2.5, and thus the effectively according to formula 2.6 decreases. Spracklen et al.
also mentions that a high performance core is a complex design, which leads to a higher
kdesign and futher decreases the efficiency.

2.2.2 Cache

As the gap between the CPU performance and the memory latency have grown as shown
in figure 1.1 has grown, the need for temporary storage of data has increased. This has
led forth to a hierarchy of memory structures where frequently used data is located near
the CPU in terms of access time, allowing faster access to more popular data. A sample
structure is shown in figure 2.1, where the data with the lowest access time could be stored
inside the CPU itself and its registers. Duplicates of data that is frequently used would be
placed in the level 1 cache, less frequently used in the level 2 cache and so forth, whereas
the data stored on the disk or other external devices would take the longest to access.
This is due to external memory have a higher latency before the requested data reaches
the bus, the distance the signals have to travel, and the obstacles getting there. E.g., a
DDR2 has the memory clock set at 400Mhz, whilst a traditional hard drive has a seek
time given in milliseconds. Both considerably higher than the internal registers to the core
which operates on clock frequencies measured in gigahertz and where the registers can be
accessed in a few clock cycles.

To solve this challenge, cache banks have been introduced into the computer architecture
storing a subset of available memory close to the processor, and thus reducing the access
time for a set of frequently used data. Which lines of data and the amount of data that the
cache can store internally is given by an amount of different parameters. When the cache
gets full and a new item is to be stored, the cache bank must choose which one to evict,
and different strategies exists to choose the right one, such as Least-Recently-Used[35]
and Random-evict[40] depending on how the cache stores its data in memory. Each cache
unit can store a certain amount of datum, cache lines, in memory. What differentiate one
cache organisation from another is how its chooses store its cache lines, and the different
parameters controlling the behavior.

One of the easiest conceptual ways of storing cache lines would be to store the cache line
at any given spot in the array of available cache lines. This strategy is known as fully
associative, figure 2.3. To be able to keep track of which cache lines that is stored where
in the cache, each cache lines’ tag, i.e. the part of its associated meta data that describes
which data that is stored in a given location, would have to be its full address. This would
lead to an massive amount of overhead per cache line stored, seeing how for each line the
cache must keep track of its corresponding address. Also during a lookup the cache must
traverse through each line, matching its address to the requested address. This leads to a
increase in latency when performing cache lookup. Another, faster way of organizing cache
is directly associative cache, figure 2.5. Here a given number of the least significant bits of

12

CHAPTER 2. BACKGROUND 2.2. CMP ARCHITECTURE

0 1 2 3 4 5 6 7Block

Figure 2.3: Fully Associa-
tive Cache

0 1 2 3 4 5 6 7Block

Figure 2.4: Set Associative
Cache

0 1 2 3 4 5 6 7Block

Figure 2.5: Direct Associa-
tive Cache

the address can determinate which index that the cache line will be stored in. This would
be conceptually equivalent of the mathematical modulo operation. By varying the amount
of bits used to determine the index, i.e. varying the number in the modulo operation, the
cache can keep a different amount of cache lines. The two obvious benefits by this method
contra the fully associative is, one, the cache can reduce the number of bits in its tag. If
X number of bits is used to determine the index where the data is stored, address - X
bits would be needed to provide the cache line’s tag. The second advantage to directly
associative cache is that a lookup requires significant less logic when determining a cache
hit. A mixture between fully and directly associative cache is set associative, figure 2.4.
The basic notion is that a set associative cache can keep several cache lines per index,
i.e. the degrees of set associativity. A 1-set associative cache is the same as a directly
associated cache, whereas a 2-set associative cache can store 2 cache lines per index.

Multicore Cache Architecture

Having several cores on a single chip introduces a new challenge, namely resource sharing.
The basic challenge with the multicore cache architectures is the same as with a single core
CPU, efficient use of off chip communication. Although the same problem, the environment
has changed. Duplicate the number of cores on the chip, and the memory access will be
duplicated using a naive single core cache strategy. Although the CMP is a relative new
product in computer science, having several processing units in a computer isn’t a new
paradigm[32]. Challenges seen in CMP, e.g., communication, cache strategies, etcetera,
have been addressed by earlier work. One of the more interesting effects in the CMP
world is to see implementations which have been discarded in traditional supercomputing
being reused in multicore CPUs. This might be strategies which have been discarded due
to problems with latency, low bandwidth and so forth. Since all of the components on a
CMP are placed on a single chip, old or discarded research can be re-evaluated seeing how
the physical scale has changed.

13

2.2. CMP ARCHITECTURE CHAPTER 2. BACKGROUND

To hide the gap between primary memory and the CPU, efficient off-chip communication
is required. In a single core environment this can be solved using advanced prefetching,
cache eviction schemes and etcetera. However, introducing multiple core on the chip
have further brought new challenges. Seeing how another on-chip cache bank might hold
the data requested from different core, some sort of cache cooperation is needed. Second,
having several cache banks brings forth another phenomenon from the supercomputers, the
Non-Uniform Memory Access(NUMA) effect, named Non-Uniform Cache Access(NUCA)
[20] in CMP terminology. Although, to the core, each line of cache appears to be located
in one uniform area of cache each cache bank stores a certain part of the whole. Due to
the wire latency, pending on the physical location of the cache bank, accessing different
parts of the memory will have different access times.

To help battling the problem several schemes have been proposed. Even though the
implementations differs, they all have the same goal. Increase the off-chip communication
efficiency, by making the cache banks cooperate. Chang et al. introduces an elaborate
scheme based upon ideas from software[6]. Here all the cache banks are aggregated.
When a cache bank evicts its data it will first try to “spill” the data over into another
bank. However, if the cache is full with own data the bank will reject the “spilled” data.
Another strategy is proposed by Dybdahl et al. where the instead of the LRU-scheme[35]
a frequency counter is used[11]. Each cache is then allowed to grow shrink cache sets. In
doing so, they allow cores with more frequently accessed data to dominate the cache.

2.2.3 Interconnect

As soon a processor has several cores on the same chip, it starts to require an interconnect
network between the cores, and other resources on the chip itself such as cache banks.
Depending on a various amount of underlying architectural features, such as the number
of cores available, the wanted performance in terms of latency, bandwidth and finally the
power consumption, the topology of the underlying interconnect varies[21]. Thus depend-
ing on the requirements of the chip in production, different topologies will suit different
needs. However, there are two main groups of interconnects which will be discussed, the
crossbar interconnect and a shared bus as seen in figure 2.7 and 2.6. These two represents
two completely different strategies, and thus they have two different sets of characteristics.

The shared bus, figure 2.6 is a network where all of the resources, i.e. the ones on the same
network, are connected to the same set of buses. Having several resources connected to the
same bus presents the problem with arbitration. If several resources tries to communicates
on the same time, the signal would be ruined and the transfer would have to restart. Hence
the need for a mechanism which arbitrates either the signal from the resource itself onto
the bus, or a device which tells which resource that are allowed to send signals onto the bus
at a given time. Kumar et al.[21] discusses a mechanism in which the cores requests access
to the address and data bus by communicating with a arbitration device. However, since
the medium through which the devices communicates is a shared one, only one signal can
be active on the bus at one time. Even so, Kumar et al. presents methods of pipelining

14

CHAPTER 2. BACKGROUND 2.2. CMP ARCHITECTURE

Level 2

Core

D−Arbiter A−Arbiter

RB

SB

AB

Core N

DB

Level 2

Figure 2.6: Shared Bus

As described in Kumar et al.[21]

(one per core)

(one per core)

(one per core)

ABus

DoutBus

DinBus

Core

Cache

Figure 2.7: Crossbar

As described in Kumar et al.[21]

the process. One method is to include one bus for the control signals, address and data
signal. Adding several buses, opens for the possibility to have one resource driving the
address bus, while another one drives the data bus, fulfilling the previous request sent out
on the address bus.

Unlike the shared bus, the crossbar topology, figure 2.7, relies on a direct connection be-
tween the resources on the chip. This helps reduce the time waiting for the data requested
to arrive, but has a much higher cost in areal and energy consumption. An example shown
in Kumar et al. shows that a crossbar mechanism introduces an area overhead of 11.4%,
22.8% and 46.8% with respectively 2-, 4-, or full sharing on a 8 core processor using a
400mm2 die[21]. However, cores will have have to stall less waiting for the data to arrived
using the crossbar. The same paper shows that with a 8 core, fully connected crossbar and
shared cache, the power consumption will match that of 3 cores in just the interconnect

15

2.3. INTRODUCTION TO FPGAS CHAPTER 2. BACKGROUND

alone.

2.3 Introduction to FPGAs

Due to their flexibility in nature,the FPGA have gained status as “reconfigurable” hard-
ware. Having flexible hardware is a great advantage in situations where the developer
don’t want to be locked down by the restrictions put forth by the ASIC. Examples would
be in computer architecture research and embedded devices, where reconfigurability is the
key. Having a configurable hardware unit is preferred compared to performance when
developing hardware.

Although traditionally, the FPGA has been viewed upon as a device for prototyping new
hardware, it has recently gained approval for usage in computationally heavy areas such
as DNA string matching and several cryptology algorithms[8]. The FPGA being a re-
configurable device has always lagged behind the CPU in terms of clock frequency, and
thus it has been ignored when raw clock frequency is preferred. However, the ability to
act as a true parallel device outperforms the serial processor in areas where parallelism is
the key feature. The reconfigurability comes on cost of frequency, and when this thesis
was written, Xilinx produced FPGA’s which operated at about 500 megahertz[46]. This
in contrast to the modern processors provided by Intel and AMD which operated in the
range of 3000 megahertz.

The way that FPGA’s achieve such flexibility are based upon, two attributes. First the
ability to configure each individual Configurable Logic Block(CLB), and second a config-
urable network connecting CLB’s to each other. To program the FPGA, the developer
loads a bitfile into the memory of the FPGA. Portions of the memory is connected to
each resource in the FPGA, being either the routing switch, or the CLB. This leaves the
developer able to create virtually any circuit by loading the right bitfile into memory, given
that the FPGA have enough resources available.

Each CLB, figure 2.9, consist of several logic elements[8]. This might range from D-Flip
Flops and lookup tables to coarser units as Arithmetic Logic units. Having several logic
blocks in the same block gives the developer the ability to create more advanced units
without having to use an excessive amount of the available resources. However, it is
important to retain the possibility to have a fine grained output. An arithmetic logic
unit will outperform the lookup table at arithmetic operations, but it will not give the
developer enough flexibility to design more specialized units.

The routing on a FPGA is controlled by utilizing pass-through structures[8], controlling
their behaviour through the bitfile. On modern FPGA’s, the CLB is connected to a
nearby connect box as shown in figure 2.8, forming a Island Style network[8]. At each
intersection, the control bit decides if the signal should continue in the same vertical or
horizontal direction, switch direction or be routed to a neighbouring CLB. That way it is

16

CHAPTER 2. BACKGROUND 2.4. CORES

CLB

Box

Connect

Box

Connect

Switch

Box

CLB

Box

Connect

Box

Connect

Switch

Box

CLB

Box

Connect

Box

Connect

Switch

Box

CLB

Box

Connect

Box

Connect

Switch

Box

Figure 2.8: FPGA routing

possible to route the signal between different parts of the FPGA, forming complex designs
utilizing more than one CLB.

When deciding upon which FPGA to use for this project, several factors are important.
A modern CMP is a complex design, and complex designs utilizes a lot of logic cells.
Of the FPGA’s available to the author, the VirtexE 2000 has 43,200 of logic cells, while
the Virtex 1000 has a number of 27,648. Greater amount of logic cells available allows
for more complex implementations, using more complex structures or having more soft
cores. Figure 2.10 shows a sample of soft cores and their resource in terms of slices on the
VirtexE FPGA, each slice being an aggregate of two logic blocks. Other structures that
are important are the interconnect, on-chip block RAM and off-chip communication. A
integral part of a multicore processor is its cache banks. Thus if the FPGA has on-chip
block RAM, additional slices can be saved not having to implement storage blocks using
logic units.

2.4 Cores

When designing a multiprocessor on a FPGA, one of its most fundamental features is its
cores. Of the cores available to a designer there are two different sub-types, depending

17

2.4. CORES CHAPTER 2. BACKGROUND

Figure 2.9: Sample CLB[42]

on (1) the wanted qualities and (2) what the hardware supports. What differentiates the
hard core from a soft core is if it is a physical implementation, e.g., core molded onto the
FPGA, or if it has to be implemented together with the rest of the code.

The soft core, is a separate project delivered in a form that allows the developer to syn-
thesize it together with the rest of the code. The core might be delivered in form of
VHDL, or an already implemented netlist mapped to the underlying hardware. Having
an independent core gives the developer more freedom to experiment, and decouples the
core from the underlying hardware. The hard core is a new phenomenon seen where the
FPGA manufactures integrates existing processor cores on the FPGA itself. The hard
core allows for greater performance compared to an implementation in VHDL, being a
specialized circuit. However by utilizing a hard core the design gets more bound to the
underlying hardware and thus scarifies flexibility for performance.

Of the soft cores available there are mainly two groups, commercial available such as the
MicroBlaze[45] and freely available microcontrollers as the NanoBlaze and other exper-
imental cores developed by hobbyists found at sites as OpenCores. The PicoBlaze[43]
core is a product of the Xilinx Cooperation, and is a small 8-bit controller. For the Pi-
coBlaze controller, Xilinx have opted for a unit which leaves a small footprint in the design,
and thus have optimized away several complex instructions which would have made the
controller increase in areal. Instructions such as multiply, divide and floating point cal-
culations are non-existing. There exists schematics which shows how to connect several
PicoBlaze controllers together to gain support for such instructions. However, in doing so
would render the main feature of the PicoBlaze void. Being a small microcontroller, one
of stressed points about PicoBlaze is that it provide an alternative to hardware circuits
without the areal overhead normally associated with introducing a microcontroller.

18

CHAPTER 2. BACKGROUND 2.4. CORES

Figure 2.10: Number of Slices per Core.

2.4.1 MicroBlaze

The MicroBlaze microcontroller is the grown up version of the PicoBlaze. Being a 32-bit
processor, it matches the modern day processor both in data and address width, and thus
it is more suited for modern applications than its proceeder, the PicoBlaze. MicroBlaze
implements a wide array of instructions, adding support for floating point, multiplication
and several others on the expense of areal and resources used. However, one of the major
selling points is that the MicroBlaze controller can be customized to provided the needed
functionality. Support for such instructions as floating point might be omitted if the design
doesn’t require it, freeing space for other components. The controller also, in attempt to
match the PPC-core found on some Xilinx FPGAs, confirms to IBM’s CoreConnect[17]
architecture[45]. This allows the hardware developer to extend the controller with extra
peripheral units. Some of the most important buses includes the Local memory bus (LMB)
and On-chip peripheral bus (OPB). With these two buses the controller can attach units
through which it can communicate using a memory mapped scheme. The major difference
between the two buses is that the LMB is a much simpler interface, connecting units
which are to guarantee a one cycle response. This bus is where the designer normally
would connect on-chip memory such as Block RAM controllers. OPB is a more complex
bus, allowing slower peripheral units. Typical examples would be peripherals which are
not memory, including units such as media access controllers and off-chip units. The final
way of attaching units to the controller is through a link called Fast Simplex Link(FSL).
The MicroBlaze can have 8 FSL interfaces which provides a low latency interface through
which hardware accelerators can be attached.

19

2.4. CORES CHAPTER 2. BACKGROUND

2.4.2 PowerPC

Of the hard cores available, Xilinx have embedded IBM’s PowerPC 405 on their Virtex-
II Pro line of FPGAs. The 405 is an embedded core developed by IBM to suit the
embedded marked. This includes a more specialized system for memory management and
specialized registers for debugging etcetera. The external interface matches that of the
MicroBlaze controller, so hardware developed for one would suit the other without, in
theory, code rewrite. What differs the PPC405 from the MicroBlaze is that, in being
a PowerPC, it must confirm to the PowerPC standard. Each PowerPC must correctly
implement the User Instruction-Set Architecture(UISA). The USIA guaranties that the
controller will behave exactly the same as all other PowerPC cores when in userspace.
This leads forth to the PowerPC having a better support for compilers, and operating
systems than the MicroBlaze core. Although a version of microcontroller-Linux has been
ported to MicroBlaze, several others including NetBSD have been ported to the PowerPC
platform[31, 29, 26].

Figure 2.11: Number of Cores on a FPGA

One major implication the type of core imposes, is the number of cores available on a
single FPGA. Figure 2.11 shows the amount of cores available on various types of FPGAs.
However, its worth mentioning that it is an approximation. The number of cores are a
function of the number of slices available on the FPGA over the number of slices occupied
by a single core. In real life other resources should be taken into consideration. Even so,
figure 2.11 gives an rough estimate over the number of cores available.

20

CHAPTER 2. BACKGROUND 2.5. ENVIRONMENT

2.5 Environment

2.5.1 Hardware

The server which hosted the project was a CompactPCI IBM Compatible server running
the Debian Gnu/Linux operating system. On board the host computer were two BenERA
CompactPCI DIME-II motherboards[24]. Each of the two BenERA motherboards had
two Virtex-E FPGAs as shown in figure 2.12, respectively marked red and green.

Figure 2.12: BenERA functional diagram [24]

Having two FPGAs on the same motherboard, Nallatech could occupy one to perform
solely administrative functions. That FPGA is marked in the functional diagram(2.12)
with green and is the PCI FPGA. The PCI FPGA acts as the bridge between the User
FPGA and the host computer, simplifying the communication between the software and
hardware. To achieve this, Nallatech loads the PCI FPGA with firmware that commu-
nicates through the PCI bus on the host computer. To provide communication between
the host computer and the User FPGA, the PCI FPGA has a FIFO buffer which can be
read and written to from both User FPGA and the software through the FUSE library
described in section 2.5.2.

The user programmable FPGA was a single Virtex controlled through the PCI FPGA[24]
and JTAG[33]. Further, the same motherboard could be extended with four new modules
confirming to the DIME-II industrial standard. Modules that fit the DIME-II standard
includes memory modules such as SDRAM and DRAM or FPGAs, including the new
Virtex II-Pro.

21

2.5. ENVIRONMENT CHAPTER 2. BACKGROUND

2.5.2 Field Upgradable Systems Environment - FUSE

To provide communication between the User FPGA and the controlling software, Nallatech
ships a FUSE library with their motherboards. This creates an abstraction layer between
the software developer and the design running on the User FPGA[23]. The library gives
the software developer the opportunity to control the clock frequency, loading bitfiles
containing the FPGA design and configuring the DMA communication channel.

2.5.3 Virtex-E

The programmable FPGA hosted on the BenERA motherboard is a Virtex-E. The Virtex-
E is a SRAM based FPGA[42], which means that the behaviour is defined by loading the
generated bit stream into SRAM memory. The bitfile loaded into memory will control
the different logic elements and routing resources, behaving close to the generic FPGA
described in section 2.3.

The configurable logic block is implemented as shown in figure 2.9, with four logic cells
pared into two slices. Each logic cell has in turn one four bit input lookup table, which
acts as the function generator. Each CLB can aggregate their Lookup Table(LUT) s, and
that way it is possible to get function generators with a greater width, totalling at 5-6.
However, in the modern lines of Virtex FPGAs, the native width of the LUT is 6, such
as in the Virtex 5[46]. Besides the role as a function generator, and thus as a pure logical
unit, it is possible to configure the logic blocks such that it will act as memory. Done
correctly, the developer can use the CLB s to create memory banks. Each CLB having a
four bit input is able to store either 1x16 bit RAM or connect two CLB to generate either
a 2x16 or 1x32 bit RAM block. A more resourceful way of storing RAM on the Virtex-E
FPGA is to use the already existing Block RAM structures. Placed evenly spread between
each row of logic elements, Xilinx has placed 96 BlockRAM on the xcv1000E model. Each
BlockRAM being a 4096 bit dual port RAM gives the FPGA a total amount of 393,216
bits dedicated memory. Another feature of the BlockRAM is that it might be used as a
large LUT taking the memory address as input, giving the data stored as the output.

The routing network on the Virtex FPGA is close to the one described in section 2.3.
However what differs is that each connect box is connected to several other lines running
a various amount of distances. Each CLB is connected to, what Xilinx calls, a General
Routing Matrix(GRM) which acts as both the connect and switch box. Each GRM is is
connected to their direct neighbours, the neighbours with a Manhattan distance of one.
To help decrease the latency, each GRM is also connected to a longer wire, which stretches
over 6 GRMs. However this wire is driven from the end GRMs, but is accessible from the
boxes in between. The last set of wires is those who runs from one side of the chip to
the other, allowing for rapid global communication. Finally all GRMs can access global
signals such as clock signals and reset.

22

CHAPTER 2. BACKGROUND 2.6. TOOLS

2.6 Tools

The tools used can be divided into two main groups, the ones used for hardware develop-
ment, and the ones used to develop software. The hardware tools for this project is mainly
those delivered with the Virtex-brand of FPGA s. This includes Integrated Studio Envi-
ronment(ISE) which works as a IDE providing everything from syntactical analysis of the
VHDL code, down to the creation of the FPGA specific bitfile. The tool to configure the
MicroBlaze core is XPS, which easily allows for configuration. The software development
tools used is mainly various ports of GCC to create both the running environment on the
host machine, and compiling applications to run on the FPGA implemented processor.

2.6.1 GCC

GCC is the Gnu Compiler Collection, and has been ported to several platforms. One
of the major advantages to the compiler, which makes it cross compatible is that they
have separated the different functional layers[39]. The first layer is the language layer,
converting from a programming language to an internal tree structure. Afterwards the
compiler will optimize the tree, before it passes it to an machine dependant layer. By
having done so, all which is needed to support a new platform is to extend the back end
to support a new architecture. This has made the GCC-compiler the preferred choice
for many embedded producers. Both the embedded PowerPC core and the MicroBlaze
controller have a version of GCC ported by Xilinx.

2.6.2 ISE

Integrated Software Environment is the development environment created by Xilinx[37].
The application is a front end to the entire chain of tools needed from synthesising the
written VHDL files, to the generation of the chip specific bitfile to be loaded onto the
FPGA. The general flow in creating a bitfile starts with the developer writing VHDL
code which specifies the behavior of the hardware. Then XST, will generate a Xilinx
spesific netlist. Afterwards the applications will perform map, translate and placement
and routing(par). This will map the resources needed by the netlist to the resources found
on the actual FPGA. Afterwards the bitfile used to configure the chip is generated by the
bitgen command. All this is taken hand of by the ISE, and thus decreases the development
cycle.

2.6.3 XPS

To allow the user to make customizations to the MicroBlaze microcontroller, Xilinx packs
XPS with their Embedded Development Kit[44]. Through the XPS application, the de-

23

2.6. TOOLS CHAPTER 2. BACKGROUND

veloper can extend the MicroBlaze or PowerPC core by attaching different modules to one
of the many buses. Through the application the developer can tune the core to include
certain features such as floating point unit, hardware support for multiply and division.

24

Chapter 3

Methodology

This chapter will describe the design of the multicore processor. It will start with a
short description of the overall design notion, before it will present the most important
components. After having presented the multicore processor design it will present some of
the software developed to control the CPU. Finally it will present some of the developed
benchmarks and test applications used to test the working CPU.

3.1 Introduction

The architecture is designed for extendibility, allowing the developer to test new and novel
architectural changes, only rewriting or changing the parameter in question. The parti-
tioning of the system is shown in figure 3.11. The processor’s main memory is implemented
in software, while the rest of the design is implemented in hardware using VHDL. Having
the memory in software allows the designer to easily calculate the number of cache misses,
each software memory access not being in the on-chip cache banks. Software based mem-
ory also has the advantage that it is much cheaper in terms of areal, thus freeing resources
from the FPGA which can be used for cache or other logic.

The software communicates to the hardware through the PCI FPGA, using a memory
mapped scheme. On the hardware side the software communicates to the PCI FPGA, a
specialized FPGA mounted to provide an interface between the programmable FPGA and
the software running on the host computer. On the PCI FPGA the software accesses a
FIFO buffer which is connected to the User FPGA, containing the data to be communi-
cated to or from the processor. Being a 32 bit wide FIFO, the software will fetch 2 words,
before deciding if the last transfer should be a write or read to the buffer pending on the
nature of the memory access. Once transfered to the buffer, it is communicated through
a bus dubiously called the Peripheral Component Interconnect which is connected to the

1Red marking the systems developed, blue the 3rd party cores, and gray FPGA specific modules

25

3.2. OMA CHAPTER 3. METHODOLOGY

User FPGAPCI FPGA

DMA

FUSE

Controlling Application

PCI Com

Core

Core

Software

FIFO

Buffer

OMA

Interface

OMA

Interface

Cache

Figure 3.1: Overall Architecture

User FPGA and the PCI Communication module as shown in figure 3.1. This is where the
data gets handled by the implemented design, and translated into a format which suits
the internal components. Limited by the width of the buffer, the communication module
has to multiplex 96 bits of data2 into 3 words which can be transfered between the FIFO
buffer and the User FPGA.

Once the data reaches FPGA, the data is communicated between the different modules,
e.g. arbiter, cores and cache through the unified signal interface described in section 3.2.
Having a unified interface allows all the modules to be replaced as long as they confirm to
the same interface. Having this allows for the replacements of the cores themselves, freeing
the design from the restrictions put forth by the MicroBlaze core and the Xilinx team,
which in turn relinquishes the complexity associated to developing with the Xilinx tool
chain. This leaves an overhead in the communication latency between the cores themselves
and the rest of the system, having to translate from the CoreConnect architecture to an
customised interface.

3.2 OMA

To uphold the demand for extendability, allowing for easily exchangeable units, a interface
which all components must adhere was created. The interface itself was loosely based
upon the CoreConnect architecture, although some of the fancier mechanisms removed

2Address, Data and Control Word

26

CHAPTER 3. METHODOLOGY 3.3. CORE

Name Description
Valid If the data presented by the data lines are either valid, in

the case of a read or have been written to memory.
Data I The data to be read when the RW flag is set to high.
Data O The data to be written when the RW flag is set high.
Address The address to which the data either should be read or write
RW The direction of the transfer, will read on asserted.
Active When this signal is high a transaction is ongoing.

Table 3.1: Signal interface

to achieve a simpler model for communication. The signal interface was based on a pure
memory mapped processor architecture where all communication between the processor
and the off-chip peripheral units were done through an elaborate memory scheme. The
downside was the inability to communicate meta data in a separate channel, such as in-
ternal statistics, cache hit ratios and etcetera. However this could be solved using other
mechanisms as JTAG interfaces and ChipScope, providing a much cleaner and more cus-
tomisable mechanism to probe the hardware.

The signal interface that each component needs to confirm to is shown in table 3.1 and
contains the bare minimum to provide communication. However, it is meant as interface
between the different layers in the architecture, and not between specialized components,
leaving room for advanced features where it is needed.

The interface defines 4 signals which are driven by the source, namely the Data Out bus,
Address bus, Active flag and finally the Read not Write flag. The two foremost signals
are the Data to be transfered out from the component and the address of the data that
are either to be written or read. When a transaction is wanted the source will assert the
active flag until the transaction is done. The direction of the transfer is signaled through
the RW-flag. If the RW flag is asserted the following action is a read transfer, and the
client side should drive the signal on the Data In bus, ignoring the Data Out. On the
other hand, if the RW-flag is set low, the operation in question is a write transfer, and
thus the source should drive the signal on the data out bus. Independent of the direction
of the transfer, when the destination side is finished handling the transfer, it should assert
the valid flag for one cycle and thus signal that the transfer is completed.

3.3 Core

The core, being the processing element of the CPU, is the main component of the processor.
However to this project the core alone is just another component needed to be able to
perform benchmarks on different architectures. Important criteria is the number of cores
that can be made available in the design, its documentation and to some degree its feature

27

3.3. CORE CHAPTER 3. METHODOLOGY

set, i.e. a core can’t have a too scarce instruction set or else it wont be able to run the
most basic benchmarks and tests.

Of the different cores investigated, MicroBlaze was the one that satisfied the all the 3
different criteria. By opting for a soft core such as MicroBlaze the design has the ability
to scale beyond the hard cores available on the FPGA, which in the case of a Virtex-II Pro
is limited to two PowerPCs. Also by utilizing a soft core the implemented multiprocessor
is not bound to the specific implementation of the FPGA itself and thus if the resources
available on the FPGA can’t support the design, the VHDL code can be synthesized to fit
on a new type of FPGA. As to the feature set, the core has an RISC based ISA which is
most able to fulfill the demands imposed by the benchmarking and test suite. One of the
key features is the MicroBlaze’s ability to cut down on the features, such as the floating
point operation. This in turn cuts down on the resources utilized by a single core and
allows for a greater amount of total cores on the chip, or more advanced features requiring
more logic.

3.3.1 Wrapping

To be able to easily add new cores to the design, a thin proxy layer has been wrapped
around the MicroBlaze core. The wrapper layer translates the signal from the CoreConnect
and the OPB to a scaled down version following the specifications described in section 3.2
and table 3.1. By designing a proxy between the MicroBlaze core and the rest of the
system it is possible to exchange the core themselves without having to affect the rest of
the system. I.e. by abstracting the memory interface, if the system were to exchange its
cores with a NanoBlaze core the only part having to be rewritten is the Off-chip Memory
Access (OMA) interface to the core.

Internally the MicroBlaze has two main busses through which it can communicate with
different peripheral devices such as external memory, SDRAM, different media access
controllers and more traditional units found on a processor such as on chip ram blocks.
The MicroBlaze core divides its internal buses between those peripherals that are able to
deliver data with one cycle latency, the LMB, and multiple cycles, the OPB [45]. One
cycle latency is possible if the data is stored on chip, and hence it is meant to be the
bus that supports on-chip memory access. However, since the memory subsystem cannot
guarantee a one cycle access to memory it has to be connected to the OPB bus.

Although the MicroBlaze core itself is a Harvard Architecture[15] core, differentiating the
data space from the instruction space, these two spaces are both joined in the OPB and
thus minimizing the logic needed to implement different address spaces. Although by
doing this the complexity of implementing a instruction cache is greatly reduced. This
opposed to exposing both a data and instruction bus outside the core itself.

A single core is conceptually made up of mainly 4 components as shown in figure 3.3.1,
communicating to the rest of the system through the OMA interface. As its kernel the

28

CHAPTER 3. METHODOLOGY 3.3. CORE

Off

Chip

Memory

Access

MicroBlaze Core

OPB Bus

OMA

OPB Master

Figure 3.2: Core

core is build up around one MicroBlaze soft core. The soft core is connected to a OPB bus
which confirms to the CoreConnect standard as provided by IBM[17], and on the other
side a OPB Master which connects to the Off-Chip Memory Access component.

3.3.2 CPU Identification Component

To be of use in a multicore environment, a method of separating one core from another
is required. This could be solved by using a special CPU version register containing the
ID of the core itself, or split the address space of each core, each prepending the first bits
of the address to identify the core’s ID. In this architecture, that would have a serious
impact on the available memory space as soon as the number of cores reaches more than
4 cores. Splitting the address space would also involve a lot of complexity in any shared
level cache. However, the MicroBlaze core version 4 does not provide any user defined
registers, which is a function in the newer versions of the microcontroller.

This led to the development of a mechanism using MicroBlaze’s Fast Simplex Link bus. As
described in section 2.4, each MicroBlaze core can be connected to up to 8 FSL-interfaces.
One of those is a unit hardwired to deliver the core identification upon a request from the
core itself. This gives the software developer the possibility to differentiate the different
cores. This is done by issuing a GET instruction on port 0, storing the result in a register.
Afterwards it is possible to check the given register and act accordingly as seen in example
code 1.

29

3.3. CORE CHAPTER 3. METHODOLOGY

// Get the CPUID from port 0 and store it in register A.
GET REG A, PORT0;
switch REG A do

case 0
// Code for core 0

end
case 1

// Code for core 1
end

end
Algorithm 1: CPU Identification

3.3.3 Implementation Challenges

One of the major challenges by utilizing the MicroBlaze microcontroller is the proprietary
solution which is bundled with the core itself. The MicroBlaze code is distributed to
the end user using a encrypted VHDL format to protect the IP. Hence to be able to
instantiate the core in a design, the encrypted VHDL must first be configured through
3rd party applications which outputs a netlist. The major problem with the netlist is that
spesific parts of the components are bound to specific components on the FPGA, relying
on knowledge of the supporting FPGA. This is done by using the LOC-constraint, and
the purpose is to deliver optimized hardware which fully utilizes the FPGA.

The problem arises when, through the VHDL code, several cores are being duplicated.
The best way to do this would be to use the generator statement which is a key function
in VHDL, and which is heavy used generating structures which are repeating in nature.
Algorithm 3 shows an easy and clean way to do this. Here the numCores variable could
be a globally set variable.

Data: numCores
cores : for for I in 0 to numCores -1 generate do

instance : microBlaze PORT (
signals => signals core(I)
)

end
Algorithm 2: Generating several cores

However, due to the nature of the MicroBlaze core, this method led to several compli-
cations. First, the Xilinx tools generates files which depends on the correct name of the
MicroBlaze instance. E.g. if the core is configured with the name “System”, the above
mentioned example would fail. The generate statement prepends the name of the entity
with a composite of the generate label and the counter. In this example a specific core
would be named“cores(I).instance” in the netlist. The core being configured with the name
“instance” would fail, having resources depending on the “instance” resource. Second is

30

CHAPTER 3. METHODOLOGY 3.4. CACHE

the LOC-constraints, each instance of the core will try to occupy the same resources on
the FPGA, and thus will fail.

instance : microBlaze PORT (
signals core0 => signals core(0)
signals core1 => signals core(1)
);

Algorithm 3: Generating several cores without generate

To solve this, another strategy was adopted. Instead of having XPS generate a single core
per design, the design had to have several cores. The downside to this method is that
there is no easy way of configuring the number of cores in the form of VHDL, and it is
dependant of configuring XPS and MicroBlaze files instead of having a variable in the
VHDL code. This means that for each core in the system, a whole new set of MicroBlaze
core with its assorted accessory such as the OPB-bus and OMA interface manually has to
be configured.

3.4 Cache

The cache block implementation is a fully parametrisable component which can be ex-
tended with different evict strategies. One of the key points is to be able to simulate
different cache organisations, different line sizes, and different cache line sizes3. One of
the key points when cache structures are concerned is to identify fully and directly as-
sociative caches as sub-set of set-associative caches. I.e. directly associative caches can
be described as 1-set associative cache, and that fully associative caches in fact are 1-set
associative caches where the tag length is the full size of the address width, leaving no bits
left for the index. When that is identified, two key parameters that decides the structure
of a cache block is clear, namely (1) set-associativity and (2) tag-size. The bits of the
address used for indexing is given by the tag-size since the index concatenated with the
tag must form the full address of the cache line. I.e. if the tag size is 25, and address
width is 32, width of the index must be 32-25, which is 7.

One important parameter which is not included in this design is the cache line size. The
cache line size describes the amount of bytes stored per cache lines. This is omitted in
the design due to several reasons. Having a cache line size greater than the data width is
favorable in an environment such as the Intel Pentium 4 where the main memory is a dual
port RAM which delivers 64 bytes, and the data width of the CPU is 32 bit. If the cache
would have been 32 bit, the cache block would discard 60 bytes per memory access. In this
case a cache line size which is greater than the data width would make sense. However,
the BenERA motherboard provides a 32 bit channel off the FPGA through which the chip
communicates. This means that FPGA can request 32 bits of data per off-chip memory
access, and for each time it requests data it needs to multiplex the address, direction and

3The amount of data stored per cache line

31

3.4. CACHE CHAPTER 3. METHODOLOGY

data transfered over the bus, which is overly expensive in terms of latency. If the cache
line size is to be varied from a minimum of 32 bits to a multiple of 32, it would have cost
that multiple of 32 times one memory transfer to data from to and fro the main memory.
Another important factor that speaks for the omit of cache line size is the heavy limitation
of the SelectBlock Ram available on the VirtexE FPGA. The cache line size would mean
that the number of BlockRAM used per line would increase with the with cachelinesize

32 per
127 possible index times the degree of set-associative. Seeing how the number of available
blocks on the FPGA is 94 this would lead to a reduction of the address space and sets
available.

3.4.1 Storage Unit

To be able efficiently store data on the FPGA itself the on-board SelectRAM blocks have
been utilized. This in comparison to an implementation written in VHDL which, if written
incorrectly, would failed to recognised as RAM structure and instead use CLB. The first
attempt to write a cache block without SelectRAM used 103% of the total FPGA resources
which obviously was unrealisable, however it was less restricted by the limitations of the
SelectRAM. A single memory block, which is the component wrapping the on-board block
ram is shown in figur 3.4.1 and can hold up to 127 lines of cache, one set per line. Each
SelectRam block can be configured as a dual port ram with an address width of 8 bits,
and a data width of 16. Seeing how the data width of the CPU is 32 bit, an encoding
scheme is needed. This is solved connecting the most significant bit to either 1 or 0, as
shown in figure 3.4.1, leaving 7 bits to represent the address. This decoding scheme is
also used at the SelectRAM block containing the meta data such as tag, LRU count and
various amounts of flags such as valid bit and dirty bit used in the evict strategy. This
makes the design use 2 SelectRAM blocks per 127 lines of data stored, which is a large
part of the 94 available on the VirtexE FPGA, but it frees up CLB’s that can be used to
implement several cores and logic.

Seeing how an address width of 7 bits, i.e. 127 different indexes, can be a little restrictive,
the design can expand the address space. This is done by stacking several memory blocks,
into an array. When a given address is requested, the right memory block is addressed by
using the most significant bits of the address4 to identify the right memory block. E.g., if
the address 100000002 is requested, it will address the memory block with address 1, and
in turn its memory cell 0. An expansion of the address space means that additional 2 to
the power of extra bits of Single Memory blocks would be used per set, rapidly exhuming
the available SelectRam blocks available. The indexes available is a direct result of the
tag length parameter.

Besides the number of lines available, one of the parameters available is the number of
sets per line, or the set associativity. The naive implementation of set associativity in
the given FPGA environment would have been to store any number of sets in the same
memory block. Although possible, that would have led to an increase in clock cycles

4address(7 to length)

32

CHAPTER 3. METHODOLOGY 3.5. PCI COMMUNICATION

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

��������

����
����
����
����

��������

����
����
����
����

��������

����
����
����
����

��������

����
����
����
����

0=>0, other =>Addr

Data
Data(0:15)

Data(16:31)

0=>0, other =>Addr

0=>1, other =>Addr

MetaData

MetaData

Addr

Data

MetaData(0:15)

MetaData(0:15)

MetaData(16:31)

Data(16:31)

Data(0:15)

0=>1, other =>Addr

MetaData(16:31)

Figure 3.3: Single Memory block

wasted searching for the cache with the right tag. Done wrong the benefits of having
a set associative cache would have diminished, and one would in terms of latency and
logic overhead reach the scale of fully associative cache. Another more efficient way to
store sets in the same SelectRAM would be to say that address 0 and 1 keeps the first
set and so on. This would have required 2 extra clock cycles, or one extra clock cycle
per set associativity, seeing how the chip must wait one clock cycle per memory access to
the embedded SelectRAM block. Besides the waste of clock cycles, it would reduce the
available indexes by the factor set associativity. Although a mutt point, since it is a direct
result of all available strategies. Figure 3.4.1 shows how this implementation have done
it, using a constant amount of clock cycles independent of the set associativity. For each
new set added to the design, a new duplicate of the memory block gets added. Seeing how
the address in the SelectRAM block is depending on only the most significant bits, the
same index will be hit in all of the sets, and all sets will send both their meta data and
data to a multiplexer as shown in the figure. The multiplexer will match each tag with
the requested address, and output the data from the right memory set.

3.5 PCI Communication

The PCI Communication device, as seen in figure 3.5, acts as a gateway between the
User FPGA and the PCI FPGA. Its main task is to provide to the system a way of
communicating out of the User FPGA confirming to the OMA interface. Its role is to
translate the internal signals into a format that suits the PCI FPGA. When the data are
sent to the PCI FPGA, it alone will pass the data along to the host computer through
DMA, and finally it will reach the controlling software. The communication between the

33

3.5. PCI COMMUNICATION CHAPTER 3. METHODOLOGY

Figure 3.4: 2-way set associative block

CLOCK

sys_rst_pin

PCI_ADDS

PCI_BUSY

OMA_DATA_O

OMA_ADDRESS

OMA_RW

OMA_ACTIVE

OMA_VALID

OMA_DATA_I

PCI_RW

PCI_RENWEN

LEDS_DEBUG

PCI_ADIO

PCI

Figure 3.5: PCI Unit

34

CHAPTER 3. METHODOLOGY 3.5. PCI COMMUNICATION

Idle

Message

Data

Get

Data

Send
Address

Send

Address

Send

Send

Write

Read

Send

Message

Completed

Figure 3.6: Com States

D Byte Enabled

0 3116 19

Figure 3.7: Control Word

User FPGA and the PCI FPGA happens through a dedicated 32 bit wide FIFO buffer on
the PCI FPGA to which the User FPGA both reads and writes. However, seeing how the
aggregated width of the data to be transfered to and fro the PCI Communication module
exceeds 32 bit, a multiplexing scheme has been implemented.

To be able to access the memory banks implemented on the host computer in software, 3
important bits of informations is needed. First the direction of the transfer needs to be
relayed, next the address to be operated on and finally the transaction of data which are to
be stored or read from memory. With a 32-bit address and data bus, this would exceed the
32 bits available for communication through the PCI FPGA. Hence the communication
will happen in the stages shown in figure 3.5. First the communication module will signal
the direction of the transfer, either a write or read message. Then it will transfer the
address of the cell in question. Pending on the direction of transfer, it will either get data
from the PCI FPGA, or it will drive signals onto the bus itself.

A transfer gets initiated when the Active flag is asserted. When the active flag is asserted,
the communication module stores the address, and in the case of a write transfer in an
internal register to be able to meet the timing constraints put forth by the PCI FPGA.
To initiate the communication with the controlling software on the host computer, the
communication module puts a control word on the bus. The control word, shown in figure
3.5 contains information about the direction(D) of memory transfer and byte enabled
bits(BE). The direction, if asserted indicates that the data should be transfered from the
host computer to the User FPGA. Otherwise the transfer is a write action, and the data
will flow from the User FPGA to the PCI FPGA. The Byte Enabled masks the bytes, and
is ignored in the case of a read statement. When a read transaction happens, the software

35

3.6. SOFTWARE CHAPTER 3. METHODOLOGY

based RAM will fill up the entire word from memory. However, if the transaction is a
write action, the software based memory will only write to the part of memory signaled
by the BE-flag.

3.6 Software

To be able to communicate with the processor, and to provide a opportunity for the
processor to store its memory, dedicated software has been written. The controlling appli-
cation loads the bitfile containing the processor onto the FPGA, then loads the requested
application into memory before it resets the design and starts its role as memory.

When the application starts, it will initialize the memory. By hosting the main memory
on the host computer, the design can allocate the amount of memory available on the host
computer instead of storing data in the BlockRam on the FPGA. This effectively increases
the amount of storage from 96 BlockRams à 4096 bits5 to the amount of memory available
on the host computer to the maximum of 4 Gigabyte6. Depending on the user-input,
the application will either load a given program or all zeroes into the memory. The latter
intended for debugging purposes only. When the memory is loaded, the FPGA is initialized
and the communication channels are set up. When the bitfile is loaded onto the FPGA,
all buffers and reset signals are cleared. When everything is configured, the control is
transfered to the FPGA.

Input: data
if state == control then

state = getReadOrWrite (data)
else

if state == read then
state = handleRead (data)

else
state = handleWrite (data)

end
end

Function handle(data)

When the software has transfered the control to the hardware, it goes into the main loop
shown in algorithm 5. The goal of the loop is to retrieve a word from the PCI Commu-

5376 Kb
6The address space of the processor being 32 bits

36

CHAPTER 3. METHODOLOGY 3.7. BENCHMARK

while 1 do
data = getWord32(from FPGA);
handle(data);

end
Algorithm 5: Main loop

nication module7 and pass it on to the correct function. This is done by implementing a
basic decode-and-dispatch loop[36]. For each turn the main loop fetches a word from the
FIFO buffer on the PCI FPGA, and dispatches this to the handler function, as seen in
algorithm 4. Depending on the internal state of the software itself, the handler function
will further dispatch the data to the correct method. Due to the thigh coupling between
the internal states of the hardware and software, it is important that the software adheres
to the states defined in section 3.5. If the software fails to send a message when the hard-
ware is locked in the “Get Data” state, both the hardware and the software will go into
a deadlock. Although a bad idea in real-world application, it was an acceptable trade-off
due to the decreased complexity compared to a fault tolerant communication model.

3.7 Benchmark

To help benchmark the platform, several benchmarks has been developed. Several com-
mercial benchmarking applications, such as Spec 2006[19] are available to hardware de-
velopers. However in the case of the Spec benchmark suit, it would require an underlying
operating system and a ported version of the standard C library. Although a version of
Linux exists for the MicroBlaze core8, it has not been ported to support a multicore ar-
chitecture. This combined with fact that such benchmarks are not only testing the raw
processor performance, but also the 3rd party libraries deemed the traditional benchmark
suites unnecessary.

The suite developed presents two different kernels, each trying to benchmark different
properties in the design. The first presented is testing the raw performance available to
the processor by iterating through a sequence of number, accessing the memory as little
as possible. The second benchmark does the opposite, loading and storing as much to the
memory as possible.

3.7.1 BogoMIPS kernel

The BogoMIPS kernel, appendix A.1, is implemented as simple for-loop, iterating a various
amount of times as seen in algorithm 6. What the BogoMIPS kernel tries to to benchmark
is the raw performance of the overall system just doing enough calculations to increment

7See section 3.5
8
µc Linux

37

3.7. BENCHMARK CHAPTER 3. METHODOLOGY

i = 0
for i<MAX ITERATIONS do

i += 1
end

Algorithm 6: bogoMIPS

the loop counter. By benchmarking this, it forms the basis for comparison for the rest of
benchmark kernels.

3.7.2 Load-Store kernel

The load-store kernel, found in appendix A.4, is a kernel designed to stress test the band-
width between the processors and the memory. It does so by first storing a certain value
to the Nth memory addresses after the text segment, as seen in the code below.

storeLoop:
sw R11, R2, R0 ;store R11 to address R2+R0
addi R1, R1, 0x4 ;add 0x4 to R1
add R2, R1, R2 ;add R1 to R2
cmp R4, R3, R1 ;R4 = R1 - R3
blei R4, storeLoop ;if R4 <= 0

When the store loop is done, the kernel starts over loading the data back in to the processor.
By doing so the kernel is a memory bound kernel. Besides the benchmarking function, the
load-store kernel also works as a memory boundary checker.

38

Chapter 4

Results

This chapter will present the findings of the benchmarks presented in section 3.7. This
will provide foundation for the discussion in chapter 5 where a more final analysis will be
presented.

4.1 Introduction

In a modern processor design, several factors decides if the processor is regarded as an
high performance CPU. Even though the goal of the thesis was not to deliver a high
performance multicore architecture, it presents several results varying the architectural
parameters to show a proof of concept, and that the architecture described in chapter 3
allowed for rapid prototyping.

Being a prototype processor, the performance cannot match the one of a Intel or IBM. The
clock frequency of the core operated at 42MHz, and thus it had been relentless to match
it to an ASIC processor running at 4GHz. The timing comparisons done in this thesis was
matched to a single core processor involving no cache on the same FPGA. That allowed
the benchmarks to show if a configuration was better, but can in no way be compared to
another configuration running on another system solely based on the timing information.

The timing model used is based on the Pentium instruction rdtsc which loads the number
of cycles into a register specified by the developer. This was done in order to get a more
accurate view than the coarse system clock could deliver. However, the draw-back to using
the host computer as a timing device was that other processes acquiring resources affected
the end results. To help diminish the effect of resource sharing, an average of several runs
is presented as the results.

The final set of data extracted from the results was operations done at the main memory

39

4.2. BENCHMARK RESULTS CHAPTER 4. RESULTS

Name Number of Cores Cache Size Set Associativity Index size
sCore 1 0 0 0

mCore 2 0 0 0
mCache 2 2Kb 2 7

Table 4.1: Processor Configurations

on the host computer. For each memory read or memory write to the host computer, an
internal counter was increased which kept track of the total number of memory accesses.

The tested configurations are shown in table 4.1. The first configuration, sCore, is a single
core without no cache, which will form the basis for comparison. The second configuration,
mCore is a dual core CMP without cache. The final configuration, the mCache, is a dual
core with a two-set associative cache, using 7 bits as the index, giving it 2Kb of available
storage.

4.2 Benchmark results

4.2.1 BogoMIPS Kernel

The BogoMIPS kernel was designed to investigate how long the overall system used to
perform a single performance bound problem. It did this by returning the amount of time
spent performing a single loop.

Figure 4.1 shows the amount of time each configuration used for a given problem set. Both
the single core and the multicore configurations uses between 59301819.8 and 11619442516
cycles on the host computer to finish. Without any cache the configurations are forced
to request the same instructions and data on the host computer, and thus a lot of cycles
will be wasted due to the processor design that has to wait for the memory transfer to
complete. The mCache configuration managed to load the data requested into cache, and
always had a cache hit when the data was re-requested. This lead the mCache to finish
faster than the other cores, and had a approximately time of 150’0000 cycles independent
of the problem size. This showed that the at problems of this size, the results are memory
bound.

As presented by figure 4.2, both of the configurations without cache, the sCore and mCore
designs has between 1223 and 240046 reads from the memory itself. This shows that for
each instruction, the processor has gone outside the chip and requested data from the host
computer. The mCache configuration, with a cache size of 2Kb, read a constant number
of memory locations independent of the problem size. It also shows that the amount of
writes varies with the mCache configuration.

40

CHAPTER 4. RESULTS 4.2. BENCHMARK RESULTS

Figure 4.1: Different Configuration performance using the BogoMIPS kernel.
Logarithmic Plot

Figure 4.2: Different Memory Access patterns used by different configurations with the
BogoMIPS kernel.

Logarithmic Plot

41

4.2. BENCHMARK RESULTS CHAPTER 4. RESULTS

Figure 4.3: BogoMIPS Speedup
Logarithmic Plot

Figure 4.3 shows the amount of speedup gained by enabling cache on the multicore proces-
sor, which is in the magnitude of 3000. The speedup graph supports the finding presented
in the above graphs, that the problem without cache is memory bound. The speedup
graph also shows that with arbiter, in the case of the multi core design, that the round
robin algorithm works as described in appendix B.5. By alternating between the cores on
the chip, it should take approximately twice the time loading the same amount of instruc-
tions into each of the cores as the time used by a single core design. This is confirmed by
graph 4.3 as it shows speedup of 0.5, compared to the single core processor.

4.2.2 Load/Store kernel

The load store kernel was designed to stress test the memory system of the processor
design. The kernel tests is memory bound by first storing to the Nth first addresses,
before it tries to re-read the same locations into memory.

Figure 4.4 shows the amount of cycles from used by the host computer waiting for the test
to finish. The mCache configuration failed the verification phase of the test, and thus it
has been omitted from the results. When the mCache kernel ran it would go in to a stall
loop without sending the termination signal to the host computer to let it know that the
application kernel was done. This might be due to a flaw in the internal memory structure
of the cache itself, or somewhere else.

42

CHAPTER 4. RESULTS 4.2. BENCHMARK RESULTS

Figure 4.4: Different Configuration performance using the MemTest kernel.
Logarithmic Plot.

Figure 4.5: Different Memory Access patterns used by different configurations using the
MemTest kernel.

Logarithmic Plot.

43

4.2. BENCHMARK RESULTS CHAPTER 4. RESULTS

Figure 4.5 shows the number of memory accesses that the different configurations that
cleared the validation phase had. Shown in the same figure is that the multicore ar-
chitecture approximately has the double amount of memory requests as the single core
configuration. This validated against the source code found in appendix A.4, where the
kernel is ignorant of the number of cores available, leaving each core to request the same
amount of memory as a single core found on the sCore configuration.

44

Chapter 5

Discussion

This chapter will present the analysis of the various topics touched in the thesis. It will
start with a discussion of the core used, before it analyses the cache solution. It will then
discuss the timing motivations before it continues with a presentation of the challenges
involving 3rd party products. It will finish with a discussion of the results found in chapter
4.

5.1 Cores

The cores available at the beginning of the project were the MicroBlaze microcontroller and
the PicoBlaze statemachine. Later in the project the Virtex-II Pro and its two PowerPC
cores were made available. Of the cores available at the start of the project, Micro- and
PicoBlaze, only the MicroBlaze was the one closest to a modern processor in design. The
PicoBlaze controller, at 8 bit, didn’t implement the most fundamental instructions found
in a modern processor, hence rendered it useless in a Chip Multiprocessor design. The
PowerPC hard cores on the Virtex-II Pro would have brought better compiler support to
the project, and the bug presented in section 5.4.1 would most likely have been avoided.
The PowerPC cores would also have done the porting of several operating systems easier,
being a full processor supporting advanced features such as memory management by having
a Memory Management Unit. The PPC would also have freed up a lot of resources such
as LUT s, already embedded on the FPGA. However, the hard cores would break with one
of the fundamental ideas in this project. By opting for a hard core, the system would have
been locked down to the two cores delivered with the FPGA itself. One of the ideas with
this project is that is should be possible to extend and test new architectures. Although
two cores could be enough in testing cache and pre-fetching strategies, it would fall short
when testing new interconnects where the amount of cores are vital to the outcome. Also,
IBM predicting that they will see processors with 60 cores in the soon future, a locked
down design depending solely on the two cores provided by the Virtex-II Pro would be

45

5.2. CACHE CHAPTER 5. DISCUSSION

futile. Thus the argument that embedded PPC would have freed up resources falls on the
ground that with two embedded cores, there is nothing left than cache and interconnect
to use resources for. This, unless an array of extra components, not including cores, are
to be tested.

By utilizing the MicroBlaze core, the design gained the ability to grow in both the number
of cores, and still remained flexible enough to test several solutions. One of the key features
of the MicroBlaze core was its ability to turn of unneeded features. This included the
division unit and the floating point unit of the processor. However, should a benchmark
or an application require those two features it is possible to enable them. This would lead to
the cores requiring more areal on the FPGA, but the option has been retained. By having
this option the developer can decide upon which feature set being the more important
one. A researcher developing an intrinsic interconnect would most likely increase the
overall feature size of the core itself in order to be able to have more cores on the FPGA.
A person testing new multicore algorithms on the FPGA, might be more interested in
having floating point operations instead of having a large amount of cores available.

5.2 Cache

One of the features in this project is the extendible cache solution. In a modern day
processor, several levels of cache exists to ensure a reduced latency between the processor
core and the memory. Another possibility to separate the different cache banks, allowing
each core to have a private cache. This is done both to ensure a faster access time, and
to “protect” important data from being evicted by another processor core.

Since each of the components implemented in the design enforces the OMA signal interface
as described in section 3.2, it is possible to connect one cache solution to another one,
without having to rewrite the system. Since all the sinks1 have the same interface, the
cache component can easily be connected to the arbiter, PCI Communication module or
another cache module. By connecting the cache to another cache, one will in effect get
a hierarchical memory. By connecting two caches with their correspondent cores to an
arbiter, which in turn connects to an new cache bank, one will have created an two level
cache with level 1 private and level 2 shared.

On the Virtex FPGA, having a hierarchical memory structure will solve the evict problem,
since one core would not have the possibility to request memory from another core’s cache
bank, and hence force forth an evict. However, to decrease the latency from having the
signal traveling great distances demands great planning. On board the Virtex-E FPGA,
each block RAM is evenly placed in columns as shown in figure 5.2, with the configurable
logic blocks in between, all blocks guaranteeing a one cycle lookup time[42]. Hence to
reduce the latency, either the logic of the cache unit must be reduced, or the distance the
signal has to travel must be decreased.

1Components handling the incoming request

46

CHAPTER 5. DISCUSSION 5.3. TIME

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

B
R
A
M

Figure 5.1: BRAM Location on the FPGA.

One of the motivations of the thesis’ is to create an extendible architecture, thus the
overhead in logic by making the cache solution extendible is required by the project’s
nature. This leaves the option of a better placement for level one cache compared to the
placement of level 2 cache.

5.3 Time

One of the motivations behind the thesis was to reduce the amount of time spent waiting
for the results, and thus be able to produce results in a shorter amount of time. The normal
work flow for using the simulator at the NCAR group is do compile the new design, and
let the simulators run over the weekend. When implementing the design in a FPGA, there
are a significantly reduce in the time spent stalling waiting for the results to arrive.

Of the time spent in development, most of the time went into designing and verifying the
hardware developed. A lot of time went into debugging errors that came during run-time
at the FPGA itself, but which failed to appear during the simulations. This was due to the
hardware giving“random” feedback, such as the FIFO buffer being full, the software might

47

5.4. 3RD PARTY CHALLENGES CHAPTER 5. DISCUSSION

be stalling waiting for execution time hence not requesting the available data. Situations
which was impossible to emulate in the simulator, and hence hard to detect even with
the proper use of LEDs. Although the cost of debugging the hardware could have been
significantly reduced by access to the right equipment. Xilinx delivers a product named
ChipScope, which through JTAG allows the developer to embed probes in their hardware
design, extracting information at run-time. At the time this thesis was written the sole
way of communicating to the JTAG interface on the FPGA was through a specialized
cable not available to the writer.

However, with the behavioral code working, it took at a maximum of 5 minutes integrating
it to the existing code base. A lot of time were saved defining a strict signal interface
through which the different subsystems could communicate. From the code were done
until the bitfile came out it took at a maximum 20 minutes. This is attributed the different
processes required for creating a bitfile. I.e. Translation, Placement and Routing and the
Mapping phase. From the bitfile was done to all of the benchmarks and validation kernels
were done an additional of 10 minutes were spent waiting.

This leaves an overall time spent waiting for results at a maximum of 30 minutes depending
on the problem size of the benchmark suite. This time would differ if the complexity of
the design itself changes, i.e. designing hardware which would force the placement and
routing tool to spend more time.

5.4 3rd Party Challenges

This section will discuss some of the challenges introduced by the various 3rd party software
and hardware solutions. It will start off with introducing a bug found in the MicroBlaze
branch of the GNU Compiler Collection, before describing some of the challenges with the
glue code provided by Xilinx to connect to the OPB.

5.4.1 GNU Compiler Collection for MicroBlaze

GCC as described in section 2.6.1 has been ported to suit the MicroBlaze processor core.
This allows the software developer to write code in a high level language such as C or
C++ to help speed up development. However in the branch of GCC developed by Xilinx,
a particularly bug was found. This had to with the way that the compiler handled 32 bits
immediate values in the case of a branch and loading memory addresses. The payload of
an instruction can at max be 16 bits, seeing how some bits are reserved the Op-code and
registers. To solve this Xilinx have introduced a special atomic Immediate instruction.
The payload of a Immediate instruction will be placed in a special register on the CPU.
The following instruction, which must be a compatible Immediate instruction or else the
register will be flushed, will send an additional 16 bits. The 16 bits from the immediate

48

CHAPTER 5. DISCUSSION 5.4. 3RD PARTY CHALLENGES

12: 30600024 brlid r3, r0, 0x24

Figure 5.2: Correct assembly code

12: b0000024 imm 0x24
16: 30600000 brlid r3, r0, 0

Figure 5.3: Output from GCC

instruction will form the most significant bits, leaving the 16 bits from the following
instruction to fill the least significant bits.

32 bit values are especially important when handling addresses. This might be the case
when the developer either wants to load a word from main memory, or when the developer
wants to do a jump. Figure 5.4.1 shows the correct code in case of a jump to current
position + 0x24. However the output from the MicroBlaze port of GCC gave the output
shown in figure 5.4.1. The code shown in figure 5.4.1 loads 0x24 into the immediate reg-
ister, before it performs a brlid instruction, brlid being the branch immediate instruction.
Internally the MicroBlaze core will concatenate the value of the immediate register to the
payload of the brlid, the immediate register forming the high part of the word. This will
have the effect of jumping to the address IP + 0x24000000, instead of the wanted IP +
0x24. The bug is due to having the software developers not being aware of the importance
of order in which the immediate value has to be sent.

5.4.2 Xilinx IP Glue for OPB

To allow for rapid development of external peripheral devices, Xilinx have bundled in their
Embedded Development Kit a customizable IP which glues the user developed hardware
unit to the more advanced OPB. The main goal of the IP is to hide the complexity of
the CoreConnect architecture. It does so by handling address decoding, making the user
developed Property(IP) respond only to the given address, i.e. make certain that the
component only respond to the configured address range. It also have a lot of other
functionality to used by the developer, as hiding unused signals.

To help implement the wrapper layer between each MicroBlaze core and the rest of the
design, the design utilized the IP glue code. This was utilized in the core wrappers
described in section 3.3.1. Doing so led forth a new set of challenges. Each IP attached to
the OPB or LMB has a set of parameters automatically configured by the tools provided by
Xilinx. Amongst others this included the addresses space that the implemented IP should
respond to. I.e. a IP can be configured to only respond to memory request between address
X and Y. However, in the Xilinx IP there were two places where this address range is set,
and the tools provided by Xilinx only updated one of the spots. This left implemented IPs
to respond to address at baseAddress + 0xFF , which in effect gave the processor a 255

49

5.5. BENCHMARKS CHAPTER 5. DISCUSSION

byte address space. The fix to this problem was to hard code in a address range which
suited the project.

The second bug found in the IP glue code was regarding the address buses from the
MicroBlaze core itself. From the master that the proxy connected to, two sets of address
buses were provided. In the IP glue code it was asserted that the implemented IP only
needed the signal of one the buses. The MicroBlaze core on the other hand alternated
between the two buses when it requested addresses. This left the processor design only
responding to the requested addresses which were 8-byte aligned, e.g. 0x0, 0x8, 0x16,
instead of wanted 4-byte aligned addresses. This left the wrapper layer only responding
to half of the addresses requested by the processor core. The fix to this problem was to
multiplex the signals from each bus into a single bus in the wrapper layer, by checking
which of the buses currently active.

5.5 Benchmarks

The benchmarks done in chapter 4, were designed to validate the different configurations,
and to give a rough estimate of the performance of the design itself. The first benchmark
was a simple for loop which tested the performance of the design itself. As presented
by the graphs 4.1 and 4.2 most of the time spent by the different designs went into
stalling for the memory transactions to complete. This was also the dominating part in
the application designed to be memory bound. Seen in the first benchmark, the execution
time of the multicore was roughly twice the time of a single core processor. This coincide
with the hardware designed. As seen in appendix B.8 the multicore architecture has a
arbiter between the PCI communication and the cores themselves. This means that for
each request, the multicore architecture must wait for the core utilizing the memory bus to
finish before it can request memory from the subsystem. This arbitration is not featured on
the single core processor as shown in appendix B.9. Seeing how the first kernel is negligent
of the number of cores available it forces both cores on the multicore architecture to fetch
all the memory location. Since the arbitration mechanism is based upon a round robin
algorithm the multicore design will have to wait twice the amount of time as a single core
processor for the memory transfer to complete.

The multicore design with the cache ran much faster than both the single- and multicore
architectures without cache available. This was due to most of the time was spent waiting
for the memory transfers. The cache managed to store all of the requested data lines, and
thus it only had to request the each data once. As shown in figure 4.2, the multicore cache
design only requested 25 memory reads independent of the kernel problem size, which
coincide with the size of the application itself.

In the load store benchmark, see section 4.2.2, the multicore with cache designed failed
to verify during runtime. During the benchmark the core with the cache managed to go
into a infinite loop without sending the termination signal. This probably means that

50

CHAPTER 5. DISCUSSION 5.5. BENCHMARKS

there is a bug in the write branch of the cache solution. Throughly tests were done in
the simulation bench on the cache sub-system forcing the microblaze core to do a number
of writes without managing to produce the same results, the cache subsystem managed
to pass all of the test vectors. The test vectors in the simulation bench also tried to
investigate if the possibility that bug had to do with the amount of memory read into the
cache. One possibility could have been that the tag system was flawed, an address with
the same index had the possibility to falsely trigger a cache hit. However, this did not
turn out to be the case in the simulator. That test vector also passed.

Besides that the mCache design did not pass its verification, the same tendency found
in the for-kernel appeared in the load/store kernel. With all cache disabled, the designs
were more bound by the time it takes to access memory, than the actual computations.
Each memory request has to travel out on the host computer’s PCI bus, through the PCI
FPGA. Then the data would have to be copied from kernel to userspace before it reaches
the controlling software before a acknowledging signal is sent back the same route.

This also behavior concurs with the tendencies in computer architecture, and is why a
software based memory was opted for. Having the memory on the FPGA itself would
have significantly decreased the run time of a single kernel. By putting the memory on
the host computer, it put forth a artificial memory access delay found in most modern
computers. It also presented that including cache in the design, the for loop kernel was
virtually depending on the time it used waiting for the compulsive memory transactions.
This was seen on the constant number of cycles spent, independent of the iterations spent.

51

Chapter 6

Conclusion

This chapter presents some final remarks about the project, before it presents some ideas
for further works.

6.1 Conclusion

To be able to do research on the field of Computer Architecture in a period where there
are a lot of parallel research projects, a platform which brings results within the hour is
to a great advantage. There are a lot of methodologies for speeding up the traditional
simulators, such as using clusters and a various amount of techniques to decrease the
time spent in simulation[16]. However in terms of both accuracy and time, hardware
outperforms software in simulation of hardware architectures.

During the period of the thesis the author has implemented a framework for simulating
and experimenting with chip multiprocessors in hardware. A core has been decided upon
and integrated into the chip. A parametrizable cache solution has been designed and
implemented. Benchmarks which tested and probed the implemented design has been
written. The benchmarks showed that both the multicore and single core architecture
worked. However, the benchmarks produced found a bug in the design of the cache when
accessing memory above a given size. Of software, an application which hosts the main
memory, and controls the application has been written. Also, by testing the different
configurations the thesis has shown that it has made it possible to test different processor
configurations in a rapid manor.

This thesis has shown that it has significantly reduced the time waiting for results. The
thesis has also laid the groundwork for further development of a hardware platform which
can be used to prototype novel computer architectures. It has implemented the most
common structures found on a chip multicore, and abstracted most of the hardware specific

53

6.2. FUTURE WORK CHAPTER 6. CONCLUSION

challenges put forth by the 3rd part vendors. Due to the strict interfaces between the
different modules of the design, future developers can easily configure the platform in
virtual any desired configuration. By enforcing a strict, but simplified interface to the
different hardware modules the next research project would have to focus on the inherit
challenges of his own design. This frees the next researcher from the implementation
challenges put forth by the 3rd party vendors, leaving him to concentrate on his project
alone.

Although none of the techniques involved are technologically groundbreaking by them-
selves, this thesis has put them together allowing the next project to test new configu-
rations and parameters in a rapid and more accurate fashion. This will help the future
researchers to increase their productivity, producing more results, one of which might be
the next breakthrough in Chip Multiprocessors.

6.2 Future Work

To be able to better benchmark the design, a benchmark suite should be investigated.
However, most benchmark suites requires a underlying port of the standard C library. To
be able to get the standard C library working in the design a suitable operating system
should be ported, this in order to provide the library with the required system calls.
Some operating systems already has been ported to the MicroBlaze platform, but none of
them have support for MicroBlaze in a symmetric multiprocessing environment. One idea
could have been to port the embedded version of Linux to support a multicore MicroBlaze
solution. Having a operating system would give the project access to a wider array of
benchmarks and applications.

One of the more challenging aspects of designing the hardware was that situations im-
possible to predict in the simulator arose runtime on the FPGA. Without any possibility
to analyze the internal state of FPGA itself, some bugs took a lot of resources locating.
Xilinx has an logic analyzer, ChipScope, which can be integrated into a design, probing
and returning the information found. However, it was not possible to connect to the JTAG
interface at BenERA motherboard using only software, a specialized cable was needed. To
help ease the development of future hardware, an solution where one connects to the JTAG
interface using ChipScope would lead to an decrease in time spent in verifying stage.

One of the major changes would be to upgrade the system to use a more modern version of
the Virtex FPGA used in this thesis. A newer FPGA will give the system more available
BlockRAM, which is strongly advisable if the design is to incorporate more than two
cores and a small shared level two cache. An modern FPGA such as the Virtex-II Pro
would open for the possibility of using a newer version of the MicroBlaze core than the
MicroBlaze version 4. The newer versions includes user defined registers which would have
allowed the design to skip the CPU ID coprocessor designed, its sole task responding on
requests for each core’s id.

54

CHAPTER 6. CONCLUSION 6.2. FUTURE WORK

An future expansion would be to integrate the design into an already existing software
based simulator such as the SimpleScalar or M5 simulator. To be able to do so, the design
would have to be automatically generated from the configuration files. The current design
allows for easy customization, configuring only needed at the top level. Thus it would be
possible to automate the creation of the hardware itself. However, the challenge would lie
in gathering statistics from the system. There exists no method of extracting statistics
in the current design. It is, however, two approaches for information gathering from the
hardware. The first would be to use the earlier mentioned ChipScope to probe the wanted
signals, using an external application to interpret the data gathered. This would lead to a
fully customizable method, letting the designer worry about only designing the hardware
and afterwards attaching the test probes. The latter option of gathering statistics would
be to design a subsystem connected to either the peripheral bus or the fast simplex link.
This module could have had an shared bus which through the different components on
the chip could send statistics. This is a model loosely based on the workings of the JTAG
interface.

55

Bibliography

[1] Ben Ames. NASA backs quantum computing claim, September 2007. http://www.
itworld.com/Tech/3494/070309nasaquantum/index.html.

[2] Arvind, Krste Asanovic, Derek Chiou, James C. Hoe, Christoforos Kozyrakis, Shih-
Lien Lu, Mark Oskin, David Patterson, Jan Rabaey, and John Wawrzynek. Project
summary for nsf solicitation 04-588 cri: Ramp: Research accelerator for multiple
processors - a community vision for a shared experimental parallel hw/sw platform.
Technical report, 2005.

[3] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi,
and Steven K. Reinhardt. The m5 simulator: Modeling networked systems. IEEE
Micro, 26(4):52–60, 2006.

[4] Doug Burger and Todd M. Austin. The simplescalar tool set, version 2.0. SIGARCH
Comput. Archit. News, 25(3):13–25, 1997.

[5] J. Adam Butts and Gurindar S. Sohi. A static power model for architects. In Inter-
national Symposium on Microarchitecture, pages 191–201, 2000.

[6] Jichuan Chang and Gurindar S. Sohi. Cooperative Caching for Chip Multiprocessors.
SIGARCH Comput. Archit. News, 34(2):264–276, 2006.

[7] Mikael Collin, Raimo Haukilahti, Mladen Nikitovic, and Joakim Adomat. SoCrates -
A Multiprocessor SoC in 40 days. In Conference on Design, Automation and Test in
Europe 2001, Designer, Munich, Germany, March 2001.

[8] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of systems
and software. ACM Comput. Surv., 34(2):171–210, 2002.

[9] International Business Machines Corp. IBM Unleashes World’s Fastest Chip in Power-
ful New Computer. http://www-03.ibm.com/press/us/en/pressrelease/21580.
wss, May 2007.

[10] Intel Corporation. Intel First to Demonstrate Working 45nm Chips. http://www.
intel.com/pressroom/archive/releases/20060125comp.htm, January 2006.

[11] Haakon Dybdahl, Per Stenström, and Lasse Natvig. A cache-partitioning aware re-
placement policy for chip multiprocessors. In HiPC, pages 22–34, 2006.

57

http://www.itworld.com/Tech/3494/070309nasaquantum/index.html
http://www.itworld.com/Tech/3494/070309nasaquantum/index.html
http://www-03.ibm.com/press/us/en/pressrelease/21580.wss
http://www-03.ibm.com/press/us/en/pressrelease/21580.wss
http://www.intel.com/pressroom/archive/releases/20060125comp.htm
http://www.intel.com/pressroom/archive/releases/20060125comp.htm

BIBLIOGRAPHY BIBLIOGRAPHY

[12] S. Ghiasi and D. Grunwald. Aide de camp: Asymmetric dual core design for power
and energy reduction. Technical Report CU-CS-964-03, May 2003. Department of
Computer Science, University of Colorado, Boulder.

[13] Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel Berkovits, Tsvika Kurts, Alon
Naveh, Ali Saeed, Zeev Sperber, and Robert C. Valentine. The Intel® Pentium®
M Processor: Microarchitecture and Perfomance . IntelT̊echnology Journal, 02, 2003.

[14] Lance Hammond, Benedict A. Hubbert, Michael Siu, Manohar K. Prabhu, Michael
Chen, and Kunle Olukotun. The Stanford Hydra CMP. IEEE Micro, 20(2):71–84,
March 2000.

[15] John L. Hennessy and David A. Patterson. ”Computer Architecture A Quantative
Approach, 3rd Edition”. Morgan Kaufman, San Mateo, California, 2003.

[16] Ken Hines and Gaetano Borriello. Dynamic communication models in embedded
system co-simulation. In DAC ’97: Proceedings of the 34th annual conference on
Design automation, pages 395–400, New York, NY, USA, 1997. ACM Press.

[17] IBM. The CoreConnect Bus Architecture White Paper. "http://www-306.ibm.com/
chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569910050C0FB,
January 1999.

[18] Ahmed Jeraya and Wayne Wolf. Multiprocessor Systems-on-Chips. Morgan Kauf-
mann, 2004.

[19] John L. Henning and SPEC CPU Subcommittee. SPEC CPU2006 Benchmark De-
scriptions . ACM SIGARCH newsletter, Computer Architecture News, 34, 2006.

[20] Changkyu Kim, Doug Burger, and Stephen W. Keckler. Nonuniform cache architec-
tures for wire-delay dominated on-chip caches. IEEE Micro, 23(6):99–107, 2003.

[21] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnections in multi-
core architectures: Understanding mechanisms, overheads and scaling. In ISCA ’05:
Proceedings of the 32nd Annual International Symposium on Computer Architecture,
pages 408–419, Washington, DC, USA, 2005. IEEE Computer Society.

[22] Prathap Muthana, Madhavan Swaminathan, Rao Tummala, Venkatesh Sundaram,
Lixi Wan, S.K Bhattacharya, and P.M. Raj. Packaging of multi-core microproces-
sors: Tradeoffs and potential solutions. In Electronic Components and Technology
Conference, 2005. Proceedings. 55th, volume 2, pages 1895 – 1903. IEEE, 2005.

[23] Nallatech. FUSE C/C++ API Developers Guide. www.es.ele.tue.nl/mininoc/
doc/fuse_api.pdf, July 2002. Document Number: NT107-0068.

[24] Nallatech. Compact PCI DIME-II Motherboard. http://www.nallatech.com/
mediaLibrary/images/english/1865.pdf, April 2007.

[25] Lasse Nattvig. NCAR NTNU Computer Architecture Research Group. . . improving
multicore memory systems. http://ncar.idi.ntnu.no.

58

"http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569910050C0FB
"http://www-306.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF77852569910050C0FB
www.es.ele.tue.nl/mininoc/doc/fuse_api.pdf
www.es.ele.tue.nl/mininoc/doc/fuse_api.pdf
http://www.nallatech.com/mediaLibrary/images/english/1865.pdf
http://www.nallatech.com/mediaLibrary/images/english/1865.pdf
http://ncar.idi.ntnu.no

BIBLIOGRAPHY BIBLIOGRAPHY

[26] NetBSD. NetBSD/macppc. http://www.netbsd.org/Ports/macppc/. Last visited:
Mars, 2007.

[27] Kunle Olukotun and Lance Hammond. The future of microprocessors. Queue,
3(7):26–29, 2005.

[28] Kunle Oluktun, Mark Horowitz, and Monica Lam. Flexible architecture for simulation
and testing (fast), 2003. Last Visited: 5. June 2007.

[29] OpenBSD. OpenBSD/macppc. http://www.openbsd.org/macppc/. Last visited:
Mars, 2007.

[30] David A. Patterson. Computer Science Education in the 21st Century. Commun.
ACM, 49(3):27–30, 2006.

[31] penguinppc.org. Introduction to PowerPC Linux. http://penguinppc.org/about/
intro.php#hardware. Last visited: Mars, 2007.

[32] Jr. Philip Enslow. Multiprocessor Organization - a Survey. ACM Comput. Surv.,
9(1):103–129, 1977.

[33] Gordon D. Robinson. Why 1149.1 (jtag) really works. Electro/94 International.
Conference Proceedings. Combined Volumes, pages 749–754, 1994.

[34] Robert R. Schaller. Moore’s law: past, present, and future. IEEE Spectr., 34(6):52–59,
1997.

[35] Alan Jay Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, 1982.

[36] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and
Processes. Morgan Kaufmann, June 2005.

[37] S. W. Song, J. D. Zheng, and W. B. Gardner. Prototyping a Residential Gateway
Using Xilinx ISE. In IEEE International Workshop on Rapid System Prototyping,
pages 267–269. IEEE Computer Society, 2005.

[38] Lawrence Spracklen and Santosh G. Abraham. Chip multithreading: Opportunities
and challenges. In HPCA ’05: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, pages 248–252, Washington, DC, USA,
2005. IEEE Computer Society.

[39] Richard M. Stallman. Using and Porting the GNU Compiler Collection, For GCC
Version 2.95. Free Software Foundation, 1999.

[40] Zhenlin Wang, Kathryn S. McKinley, Arnold L. Rosenberg, and Charles C. Weems.
Using the compiler to improve cache replacement decisions. In PACT ’02: Proceed-
ings of the 2002 International Conference on Parallel Architectures and Compilation
Techniques, page 199, Washington, DC, USA, 2002. IEEE Computer Society.

59

http://www.netbsd.org/Ports/macppc/
http://www.openbsd.org/macppc/
http://penguinppc.org/about/intro.php#hardware
http://penguinppc.org/about/intro.php#hardware

BIBLIOGRAPHY BIBLIOGRAPHY

[41] John Wawrzynek, Mark Oskin, Christoforos Kozyrakis, Derek Chiou, David A. Pat-
terson, Shih-Lien Lu, James C. Hoe, and Krste Asanovic. Ramp: A research acceler-
ator for multiple processors. Technical Report UCB/EECS-2006-158, EECS Depart-
ment, University of California, Berkeley, November 24 2006.

[42] Xilinx. Xilinx Virtex-E 1.8V Field Programmable Gate Arrays Data Sheet.
http://inst.eecs.berkeley.edu/~cs150/Documents/virtexE-datasheet.pdf#
search=%22VirtexE%22, July 2002. Revision: 2.4.

[43] Xilinx. PicoBlaze 8-bit Embedded Microcontroller User Guide . http://www.xilinx.
com/bvdocs/userguides/ug129.pdf, November 2005. Revision: 1.1.1.

[44] Xilinx. Embedded System Tools Reference Manual, Embedded Development Kit,
EDK 8.2i. http://www.xilinx.com/ise/embedded/est_rm.pdf, June 2006. Revi-
sion: v6.0.

[45] Xilinx. MicroBlaze Processor Reference Guide. http://www.xilinx.com/ise/
embedded/mb_ref_guide.pdf, September 2006. Revision: 7.0.

[46] Xilinx. Virtex-5 Family Overview - LX and LXT Platforms. http://direct.xilinx.
com/bvdocs/publications/ds100.pdf, May 2007. Revision: 3.1.

60

http://inst.eecs.berkeley.edu/~cs150/Documents/virtexE-datasheet.pdf#search=%22VirtexE%22
http://inst.eecs.berkeley.edu/~cs150/Documents/virtexE-datasheet.pdf#search=%22VirtexE%22
 http://www.xilinx.com/bvdocs/userguides/ug129.pdf
 http://www.xilinx.com/bvdocs/userguides/ug129.pdf
http://www.xilinx.com/ise/embedded/est_rm.pdf
 http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf
 http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf
 http://direct.xilinx.com/bvdocs/publications/ds100.pdf
 http://direct.xilinx.com/bvdocs/publications/ds100.pdf

Appendix A

Benchmarks

A.1 BogoMIPS kernel

1 #include ” u t i l s . h”
2
3 int main () {
4 int i = 0 ;
5 int x ;
6
7 for (i = 0 ; i < 2 ; i++) {
8 x++ ;
9 }

10 ha l t () ;
11 return 0 ;
12 }
13
14 void ha l t () {
15 asm(”addi R1 , R0 , 0x70000000\n\ t \
16 addi R11 , R0 , 0x7FFFFFFF\n\ t \
17 sw R1 , R0 , R11\n\ t ”) ;
18 }

61

A.2. SAMPLE LINKER SCRIPT APPENDIX A. BENCHMARKS

A.2 Sample Linker script

1 ENTRY(main)
2
3 MEMORY
4 {
5 mm : ORIGIN = 0x00000000 , LENGTH = 0x00001000
6 }
7
8 SECTIONS {
9 . = 0x0 ;

10 . t ex t : { * (. t ex t) } > mm
11 . rodata : { * (. t ex t) } > mm
12 . bss : { * (. bss) } > mm
13 . data : { * (. data) } > mm
14 }

62

APPENDIX A. BENCHMARKS A.3. SAMPLE MAKEFILE

A.3 Sample Makefile

1 APPNAME = for
2 GCC = mb−gcc
3 LD = mb−ld
4 LSCRIPT = l i n k e r . ld
5
6 a l l : ${APPNAME}
7
8 ${APPNAME} : ${APPNAME} . o
9 ${LD} −p −−oformat=binary −o $@ ${LSCRIPT} $ˆ /opt/EDK/gnu/ microb laze / l i n

/ l i b / gcc / microb laze /3 . 4 . 1 / l i b g c c . a
10
11 %.o : %. s
12 ${GCC} −c $ˆ
13
14 %. s : %.c
15 ${GCC} −S $ˆ
16
17
18 c l ean :
19 rm * . o * . s ${APPNAME}

63

A.4. LOADSTORE KERNEL APPENDIX A. BENCHMARKS

A.4 LoadStore kernel

1 . t ex t
2
3 s t a r t : . g l oba l s t a r t
4 . g l oba l main
5
6 addi R11 , R11 , 0xFFFFFFFF
7
8 addi R2 , R0 , fnord // Address lookup .
9 addi R1 , R0 , 0 // Counter v a r i a b l e .

10
11 // Change here to s e t the i t e r a t i o n s .
12 addi R7 , R0 , 0x1 // Check the 255 * 4 by t e s a f t e r fnord .
13
14 add R3 , R0 , R7 // Saves one imm in s t r u c t i o n during the r e s e t op .
15
16 storeLoop :
17 sw R11 , R2 , R0
18 addi R1 , R1 , 0x4
19 add R2 , R1 , R2
20 cmp R4 , R3 , R1
21 b l e i R4 , storeLoop
22
23
24 // Reset . . .
25 addi R2 , R0 , fnord // Address lookup .
26 addi R1 , R0 , 0 // Counter v a r i a b l e .
27 add R3 , R0 , R7 // ˆ−− See exp l ana t i on above .
28
29 loadLoop :
30 lw R11 , R2 , R0
31 addi R1 , R1 , 0x4
32 add R2 , R1 , R2
33 cmp R4 , R3 , R1
34 b l e i R4 , loadLoop
35
36 terminate :
37 addi R11 , R0 , 0x7FFFFFFF
38 sw R11 , R0 , R11
39
40 fnord :

64

Appendix B

Hardware

B.1 Core OMA Interface

1 −−
−−

2 −− u s e r l o g i c . vhd − e n t i t y / a r c h i t e c t u r e pa i r
3 −−

−−

4 −−
5 −−

6 −− ** Copyright (c) 1995−2006 Xi l inx , Inc . A l l r i g h t s r e s e rved .
**

7 −− **

**

8 −− ** Xi l inx , Inc .
**

9 −− ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION ”AS IS ”
**

10 −− ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
**

11 −− ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
**

12 −− ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
**

13 −− ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
**

14 −− ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
**

15 −− ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
**

16 −− ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
**

17 −− ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE

65

B.1. CORE OMA INTERFACE APPENDIX B. HARDWARE

**

18 −− ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
**

19 −− ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
**

20 −− ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
**

21 −− ** FOR A PARTICULAR PURPOSE.
**

22 −− **

**

23 −−

24 −−
25 −−

−−

26 −− Filename : u s e r l o g i c . vhd
27 −− Version : 1 . 00 . a
28 −− Descr ip t i on : User l o g i c .
29 −− Date : Thu Feb 8 12 :34 :55 2007 (by Create and Import

Per iphera l Wizard)
30 −− VHDL Standard : VHDL’93
31 −−

−−

32 −− Naming Conventions :
33 −− a c t i v e low s i g n a l s : ”* n ”
34 −− c l o c k s i g n a l s : ” c l k ” , ” c l k d i v #”, ” c l k #x ”
35 −− r e s e t s i g n a l s : ” r s t ” , ”r s t n ”
36 −− g ene r i c s : ”C *”
37 −− user de f ined t ype s : ”* TYPE”
38 −− s t a t e machine next s t a t e : ”* ns ”
39 −− s t a t e machine current s t a t e : ”* c s ”
40 −− comb ina tor ia l s i g n a l s : ”* com”
41 −− p i p e l i n e d or r e g i s t e r de lay s i g n a l s : ”* d#”
42 −− counter s i g n a l s : ”* cnt *”
43 −− c l o c k enab l e s i g n a l s : ”* ce ”
44 −− i n t e r n a l v e r s i on o f output por t : ”* i ”
45 −− dev i c e p ins : ”* p in ”
46 −− por t s : ”− Names beg in wi th Uppercase ”
47 −− proce s s e s : ”* PROCESS”
48 −− component i n s t a n t i a t i o n s : ”<ENTITY >I <#|FUNC>”
49 −−

−−

50
51 −− DO NOT EDIT BELOW THIS LINE −−−−−−−−−−−−−−−−−−−−
52 l ibrary i e e e ;
53 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
54 use i e e e . s t d l o g i c a r i t h . a l l ;
55 use i e e e . s t d l o g i c un s i g n ed . a l l ;
56
57 l ibrary proc common v2 00 a ;
58 use proc common v2 00 a . proc common pkg . a l l ;

66

APPENDIX B. HARDWARE B.1. CORE OMA INTERFACE

59 −− DO NOT EDIT ABOVE THIS LINE −−−−−−−−−−−−−−−−−−−−
60
61 −−USER l i b r a r i e s added here
62
63 −−

−−

64 −− Ent i t y s e c t i on
65 −−

−−

66 −− De f i n i t i on o f Generics :
67 −− C AWIDTH −− User l o g i c address bus width
68 −− C DWIDTH −− User l o g i c data bus width
69 −− C NUM CE −− User l o g i c ch ip enab l e bus width
70 −−
71 −− De f i n i t i on o f Ports :
72 −− Bus2IP Clk −− Bus to IP c l o c k
73 −− Bus2IP Reset −− Bus to IP r e s e t
74 −− Bus2IP Addr −− Bus to IP address bus
75 −− Bus2IP Data −− Bus to IP data bus f o r user l o g i c
76 −− Bus2IP BE −− Bus to IP by t e enab l e s f o r user l o g i c
77 −− Bus2IP RNW −− Bus to IP read/not wr i t e
78 −− Bus2IP RdCE −− Bus to IP read ch ip enab l e f o r user

l o g i c
79 −− Bus2IP WrCE −− Bus to IP wr i t e ch ip enab l e f o r user

l o g i c
80 −− IP2Bus Data −− IP to Bus data bus f o r user l o g i c
81 −− IP2Bus Ack −− IP to Bus acknowledgement
82 −− IP2Bus Retry −− IP to Bus r e t r y response
83 −− IP2Bus Error −− IP to Bus error response
84 −− IP2Bus ToutSup −− IP to Bus t imeout suppress
85 −−

−−

86
87 entity u s e r l o g i c i s
88 generic
89 (
90 −− ADD USER GENERICS BELOW THIS LINE −−−−−−−−−−−−−−−
91 −−USER gene r i c s added here
92 −− ADD USER GENERICS ABOVE THIS LINE −−−−−−−−−−−−−−−
93
94 −− DO NOT EDIT BELOW THIS LINE −−−−−−−−−−−−−−−−−−−−−
95 −− Bus p ro t o co l parameters , do not add to or d e l e t e
96 C AWIDTH : i n t e g e r := 32 ;
97 C DWIDTH : i n t e g e r := 32 ;
98 C NUM CE : i n t e g e r := 2
99 −− DO NOT EDIT ABOVE THIS LINE −−−−−−−−−−−−−−−−−−−−−

100) ;
101 port
102 (
103 −− ADD USER PORTS BELOW THIS LINE −−−−−−−−−−−−−−−−−−
104 −−USER por t s added here
105 −− The data I send out o f f the ch ip
106 OMA DATA O : out s t d l o g i c v e c t o r (0 to C DWIDTH−1) ;

67

B.1. CORE OMA INTERFACE APPENDIX B. HARDWARE

107 −− The data I g e t in from ou t s i d e the ch ip .
108 OMA DATA I : in s t d l o g i c v e c t o r (0 to C DWIDTH−1) := (others =>

’ 0 ’) ;
109 −− I f the data on OMA DATA * i s the data you reque s t ed .
110 OMA VALID : in s t d l o g i c := ’ 0 ’ ;
111 −− Which addr to opera te on .
112 OMA ADDRESS : out s t d l o g i c v e c t o r (0 to C AWIDTH−1) ;
113 −− Read or wr i t e . On a s s e r t e d we read .
114 OMARW : out s t d l o g i c ;
115 −− I f t h e r e i s a r e que s t pending .
116 OMA ACTIVE : out s t d l o g i c ;
117 −− Leds debug
118 LEDS DEBUG : out s t d l o g i c v e c t o r (0 to 15) ;
119 OMA BE : out s t d l o g i c v e c t o r (0 to C DWIDTH/8−1) ;
120
121 −− ADD USER PORTS ABOVE THIS LINE −−−−−−−−−−−−−−−−−−
122
123 −− DO NOT EDIT BELOW THIS LINE −−−−−−−−−−−−−−−−−−−−−
124 −− Bus p ro t o co l ports , do not add to or d e l e t e
125 Bus2IP Clk : in s t d l o g i c ;
126 Bus2IP Reset : in s t d l o g i c ;
127 Bus2IP Addr : in s t d l o g i c v e c t o r (0 to C AWIDTH−1) ;
128 Bus2IP Data : in s t d l o g i c v e c t o r (0 to C DWIDTH−1) ;
129 Bus2IP BE : in s t d l o g i c v e c t o r (0 to C DWIDTH/8−1)

;
130 Bus2IP RNW : in s t d l o g i c ;
131 Bus2IP RdCE : in s t d l o g i c v e c t o r (0 to C NUM CE−1) ;
132 Bus2IP WrCE : in s t d l o g i c v e c t o r (0 to C NUM CE−1) ;
133 IP2Bus Data : out s t d l o g i c v e c t o r (0 to C DWIDTH−1) ;
134 IP2Bus Ack : out s t d l o g i c ;
135 IP2Bus Retry : out s t d l o g i c ;
136 IP2Bus Error : out s t d l o g i c ;
137 IP2Bus ToutSup : out s t d l o g i c
138 −− DO NOT EDIT ABOVE THIS LINE −−−−−−−−−−−−−−−−−−−−−
139) ;
140 end entity u s e r l o g i c ;
141
142 −−

−−

143 −− Arch i t e c tu re s e c t i on
144 −−

−−

145
146 architecture IMP of u s e r l o g i c i s
147 constant z e ro s : s t d l o g i c v e c t o r (0 to C NUM CE−1) := (others => ’ 0 ’) ;
148 type STATE i s (IDLE , READING, WRITING, RCOMP, WCOMP) ;
149
150 signal writeEnabled : s t d l o g i c := ’ 0 ’ ;
151 signal readEnabled : s t d l o g i c := ’ 0 ’ ;
152 signal c l o ck : s t d l o g i c ;
153 signal i S t a t e : STATE := IDLE ;
154 signal l e d s : s t d l o g i c v e c t o r (0 to 15) := (others => ’ 1 ’) ;
155
156 begin

68

APPENDIX B. HARDWARE B.1. CORE OMA INTERFACE

157 −− My own s i g n a l s .
158 writeEnabled <= (Bus2IP WrCE(0) or Bus2IP WrCE(1)) and not Bus2IP RNW ;
159 readEnabled <= (Bus2IP RdCE(0) or Bus2IP RdCE(1)) and Bus2IP RNW ;
160
161 c l o ck <= Bus2IP Clk ;
162
163 −− Let some s i g n a l s out independen t l y o f anyth ing e l s e .
164 OMA ADDRESS <= Bus2IP Addr ;
165 OMA DATA O <= Bus2IP Data ;
166 OMA BE <= Bus2IP BE ;
167
168 LEDS DEBUG <= l ed s ;
169
170 −− Everyth ing on time .
171 INN : process (c l o ck)
172 begin
173 i f r i s i n g e d g e (c l o ck) then
174 −− Defau l t sending out 0x00 on the databus
175 −− to the core .
176 IP2Bus Data <= (others => ’ 0 ’) ;
177 IP2Bus Ack <= ’0 ’ ;
178
179 case i S t a t e i s
180 when IDLE =>
181 i f readEnabled = ’1 ’ then
182 OMA ACTIVE <= ’1 ’ ;
183 OMARW <= ’1 ’ ;
184 IP2Bus Data <= OMA DATA I;
185 i S t a t e <= READING;
186 e l s i f writeEnabled = ’1 ’ then
187 OMA ACTIVE <= ’1 ’ ;
188 OMARW <= ’0 ’ ;
189 i S t a t e <= WRITING;
190 end i f ;
191
192 when READING =>
193 −− We w i l l use more than 16 c y c l e s .
194 IP2Bus ToutSup <= ’1 ’ ;
195 IP2Bus Data <= OMA DATA I;
196
197 −− Check f o r doneness .
198 i f OMA VALID = ’1 ’ then
199 i S t a t e <= RCOMP;
200 OMA ACTIVE <= ’0 ’ ;
201 IP2Bus ToutSup <= ’0 ’ ;
202 IP2Bus Ack <= ’1 ’ ;
203 l ed s <= OMA DATA I(0 to 15) ;
204 end i f ;
205
206 when WRITING =>
207 −− We w i l l use more than 16 c y c l e s .
208 IP2Bus ToutSup <= ’1 ’ ;
209 −− Check f o r doneness .
210 i f OMA VALID = ’1 ’ then
211 i S t a t e <= WCOMP;
212 OMA ACTIVE <= ’0 ’ ;

69

B.1. CORE OMA INTERFACE APPENDIX B. HARDWARE

213 IP2Bus ToutSup <= ’0 ’ ;
214 IP2Bus Ack <= ’1 ’ ;
215 end i f ;
216
217 −− when RCOMP =>
218 −− when WCOMP =>
219 when others =>
220 OMA ACTIVE <= ’0 ’ ;
221 IP2Bus Ack <= ’0 ’ ;
222 i S t a t e <= IDLE ;
223 end case ;
224
225 end i f ;
226 end process ;
227
228 IP2Bus Error <= ’0 ’ ;
229 IP2Bus Retry <= ’0 ’ ;
230
231 end IMP;

70

APPENDIX B. HARDWARE B.2. CPU IDENTIFIER

B.2 CPU Identifier

1 −−
−−

2 −− c p u i d e n t i f i e r − e n t i t y / a r c h i t e c t u r e pa i r
3 −−

−−

4 −−
5 −−

6 −− ** Copyright (c) 1995−2006 Xi l inx , Inc . A l l r i g h t s r e s e rved .
**

7 −− **

**

8 −− ** Xi l inx , Inc .
**

9 −− ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION ”AS IS ”
**

10 −− ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
**

11 −− ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
**

12 −− ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
**

13 −− ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
**

14 −− ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
**

15 −− ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
**

16 −− ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
**

17 −− ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
**

18 −− ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
**

19 −− ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
**

20 −− ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
**

21 −− ** FOR A PARTICULAR PURPOSE.
**

22 −− **

**

23 −−

24 −−
25 −−

−−

26 −− Filename : c p u i d e n t i f i e r
27 −− Version : 1 . 00 . a

71

B.2. CPU IDENTIFIER APPENDIX B. HARDWARE

28 −− Descr ip t i on : Example FSL core (VHDL) .
29 −− Date : Wed May 2 13 :52 :15 2007 (by Create and Import

Per iphera l Wizard)
30 −− VHDL Standard : VHDL’93
31 −−

−−

32 −− Naming Conventions :
33 −− a c t i v e low s i g n a l s : ”* n ”
34 −− c l o c k s i g n a l s : ” c l k ” , ” c l k d i v #”, ” c l k #x ”
35 −− r e s e t s i g n a l s : ” r s t ” , ”r s t n ”
36 −− g ene r i c s : ”C *”
37 −− user de f ined t ype s : ”* TYPE”
38 −− s t a t e machine next s t a t e : ”* ns ”
39 −− s t a t e machine current s t a t e : ”* c s ”
40 −− comb ina tor ia l s i g n a l s : ”* com”
41 −− p i p e l i n e d or r e g i s t e r de lay s i g n a l s : ”* d#”
42 −− counter s i g n a l s : ”* cnt *”
43 −− c l o c k enab l e s i g n a l s : ”* ce ”
44 −− i n t e r n a l v e r s i on o f output por t : ”* i ”
45 −− dev i c e p ins : ”* p in ”
46 −− por t s : ”− Names beg in wi th Uppercase ”
47 −− proce s s e s : ”* PROCESS”
48 −− component i n s t a n t i a t i o n s : ”<ENTITY >I <#|FUNC>”
49 −−

−−

50
51 l ibrary i e e e ;
52 use IEEE . STD LOGIC 1164 .ALL;
53 use IEEE .STD LOGIC ARITH.ALL;
54 use IEEE .STD LOGIC UNSIGNED.ALL;
55 −−

−−−

56 −−
57 −−
58 −− De f i n i t i on o f Ports
59 −− FSL Clk : Synchronous c l o c k
60 −− FSL Rst : System rese t , shou ld always come from FSL bus
61 −− FSL S Clk : S lave asynchronous c l o c k
62 −− FSL S Read : Read s i gna l , r e q u i r i n g next a v a i l a b l e input to be read
63 −− FSL S Data : Input data
64 −− FSL S CONTROL : Contro l Bit , i n d i c a t i n g the input data are con t r o l word
65 −− FSL S Exists : Data Ex i s t Bit , i n d i c a t i n g data e x i s t in the input FSL

bus
66 −− FSL M Clk : Master asynchronous c l o c k
67 −− FSL M Write : Write s i gna l , enab l i ng wr i t i n g to output FSL bus
68 −− FSL M Data : Output data
69 −− FSL M Control : Contro l Bit , i n d i c a t i n g the output data are con to l word
70 −− FSL M Full : Fu l l Bit , i n d i c a t i n g output FSL bus i s f u l l
71 −−
72 −−

−−−

73

72

APPENDIX B. HARDWARE B.2. CPU IDENTIFIER

74 −−
−−

75 −− Ent i t y Sec t ion
76 −−

−−

77
78 entity c p u i d e n t i f i e r i s
79 generic (
80 CPU ID : i n t e g e r := 32
81) ;
82 port
83 (
84 −− DO NOT EDIT BELOW THIS LINE −−−−−−−−−−−−−−−−−−−−−
85 −− Bus p ro t o co l ports , do not add or d e l e t e .
86 FSL Clk : in s t d l o g i c ;
87 FSL Rst : in s t d l o g i c ;
88 FSL S Clk : out s t d l o g i c ;
89 FSL S Read : out s t d l o g i c ;
90 FSL S Data : in s t d l o g i c v e c t o r (0 to 31) ;
91 FSL S Control : in s t d l o g i c ;
92 FSL S Exists : in s t d l o g i c ;
93 FSL M Clk : out s t d l o g i c ;
94 FSL M Write : out s t d l o g i c ;
95 FSL M Data : out s t d l o g i c v e c t o r (0 to 31) ;
96 FSL M Control : out s t d l o g i c ;
97 FSL M Full : in s t d l o g i c
98 −− DO NOT EDIT ABOVE THIS LINE −−−−−−−−−−−−−−−−−−−−−
99) ;

100
101 attribute SIGIS : s t r i n g ;
102 attribute SIGIS of FSL Clk : signal i s ”Clk ” ;
103 attribute SIGIS of FSL S Clk : signal i s ”Clk ” ;
104 attribute SIGIS of FSL M Clk : signal i s ”Clk ” ;
105
106 end c p u i d e n t i f i e r ;
107
108 −−

−−

109 −− Arch i t e c tu re Sec t ion
110 −−

−−

111
112 architecture EXAMPLE of c p u i d e n t i f i e r i s
113
114 −− Total number o f input data .
115 constant NUMBER OF INPUT WORDS : natura l := 1 ;
116
117 −− Total number o f output data
118 constant NUMBER OF OUTPUT WORDS : natura l := 1 ;
119
120 begin
121 FSL M Write <= not FSL M Full ;

73

B.2. CPU IDENTIFIER APPENDIX B. HARDWARE

122
123 FSL M Data <= CONV STD LOGIC VECTOR(CPU ID , FSL M Data ’ l ength) ;
124
125 end architecture EXAMPLE;

74

APPENDIX B. HARDWARE B.3. RAM BLOCK

B.3 RAM Block

1 −−
−−

2 −− Company :
3 −− Engineer :
4 −−
5 −− Create Date : 10 :39 :13 03/22/2007
6 −− Design Name:
7 −− Module Name: myRam − Behav iora l
8 −− Pro jec t Name:
9 −− Target Devices :

10 −− Tool v e r s i on s :
11 −− Descr ip t i on :
12 −−
13 −− Dependencies :
14 −−
15 −− Revis ion :
16 −− Revis ion 0.01 − F i l e Created
17 −− Add i t i ona l Comments :
18 −−
19 −−

−−

20 l ibrary IEEE ;
21 use IEEE . STD LOGIC 1164 .ALL;
22 use IEEE .STD LOGIC ARITH.ALL;
23 use IEEE .STD LOGIC UNSIGNED.ALL;
24
25 −−−− Uncomment the f o l l ow i n g l i b r a r y d e c l a r a t i on i f i n s t a n t i a t i n g
26 −−−− any Xi l i n x p r im i t i v e s in t h i s code .
27 l ibrary UNISIM ;
28 use UNISIM . VComponents . a l l ;
29
30 entity myRam i s
31 GENERIC(
32 DATA WIDTH : natura l := 32 ;
33 ADDR LENGTH : natura l := 8
34) ;
35 PORT(
36 c l o ck : IN s t d l o g i c := ’ 0 ’ ;
37 r e s e t : IN s t d l o g i c := ’ 0 ’ ;
38 enable : IN s t d l o g i c := ’ 0 ’ ;
39 writeEnabled : IN s t d l o g i c := ’ 0 ’ ;
40 address : IN s t d l o g i c v e c t o r (0 to ADDR LENGTH−1) := (others =>

’ 0 ’) ;
41 dataIn : IN s t d l o g i c v e c t o r (0 to DATA WIDTH−1) := (others =>

’ 0 ’) ;
42 metaIn : IN s t d l o g i c v e c t o r (0 to DATA WIDTH−1) := (others =>

’ 0 ’) ;
43 dataOut : OUT s t d l o g i c v e c t o r (0 to DATA WIDTH−1) ;
44 metaOut : OUT s t d l o g i c v e c t o r (0 to DATA WIDTH−1)
45) ;
46 end myRam;
47

75

B.3. RAM BLOCK APPENDIX B. HARDWARE

48 architecture Behaviora l of myRam i s
49 constant numBlocks : i n t e g e r := 2 ** (ADDR LENGTH − 7) ;
50
51 subtype Data i s s t d l o g i c v e c t o r (0 to DATA WIDTH−1) ;
52
53 type DOut i s array (0 to numBlocks−1) of s t d l o g i c v e c t o r (0 to 15) ;
54
55 signal enabled : s t d l o g i c v e c t o r (0 to numBlocks−1) ;
56 signal WEnabled : s t d l o g i c v e c t o r (0 to numBlocks−1) ;
57
58 signal DoutA : DOut ;
59 signal DoutB : DOut ;
60 signal MoutA : DOut ;
61 signal MoutB : DOut ;
62 signal addrA : s t d l o g i c v e c t o r (0 to 7) ;
63 signal addrB : s t d l o g i c v e c t o r (0 to 7) ;
64 begin
65
66 mem: for I in 0 to numBlocks − 1 generate
67 begin
68 MetaData : RAMB4 S16 S16
69 generic map (
70 INIT 00 => X”

00 ” ,
71 INIT 01 => X”

00 ” ,
72 INIT 02 => X”

00 ” ,
73 INIT 03 => X”

00 ” ,
74 INIT 04 => X”

00 ” ,
75 INIT 05 => X”

00 ” ,
76 INIT 06 => X”

00 ” ,
77 INIT 07 => X”

00 ” ,
78 INIT 08 => X”

00 ” ,
79 INIT 09 => X”

00 ” ,
80 INIT 0A => X”

00 ” ,
81 INIT 0B => X”

00 ” ,
82 INIT 0C => X”

00 ” ,
83 INIT 0D => X”

00 ” ,
84 INIT 0E => X”

00 ” ,
85 INIT 0F => X”

00 ”)
86 port map (
87 DOA => MoutA(I) , −− Port A 16− b i t data output

76

APPENDIX B. HARDWARE B.3. RAM BLOCK

88 DOB => MoutB(I) , −− Port B 16− b i t data output
89 ADDRA => addrA , −− Port A 8− b i t address input
90 ADDRB => addrB , −− Port B 8− b i t address input
91 CLKA => c lock , −− Port A c l o c k input
92 CLKB => c lock , −− Port B c l o c k input
93 DIA => metaIn (0 to 15) , −− Port A 16− b i t data input
94 DIB => metaIn (16 to 31) , −− Port B 16− b i t data input
95 ENA => enabled (I) , −− Port A RAM enab l e input
96 ENB => enabled (I) , −− Port B RAM enab l e input
97 RSTA => r e s e t , −− Port A Synchronous r e s e t input
98 RSTB => r e s e t , −− Port B Synchronous r e s e t input
99 WEA => WEnabled(I) , −− Port A RAM wr i t e enab l e input

100 WEB => WEnabled(I) −− Port B RAM wr i t e enab l e input
101) ;
102 DataMem: RAMB4 S16 S16
103 generic map (
104 INIT 00 => X”

00 ” ,
105 INIT 01 => X”

00 ” ,
106 INIT 02 => X”

00 ” ,
107 INIT 03 => X”

00 ” ,
108 INIT 04 => X”

00 ” ,
109 INIT 05 => X”

00 ” ,
110 INIT 06 => X”

00 ” ,
111 INIT 07 => X”

00 ” ,
112 INIT 08 => X”

00 ” ,
113 INIT 09 => X”

00 ” ,
114 INIT 0A => X”

00 ” ,
115 INIT 0B => X”

00 ” ,
116 INIT 0C => X”

00 ” ,
117 INIT 0D => X”

00 ” ,
118 INIT 0E => X”

00 ” ,
119 INIT 0F => X”

00 ”)
120 port map (
121 DOA => DoutA(I) , −− Port A 16− b i t data output
122 DOB => DoutB(I) , −− Port B 16− b i t data output
123 ADDRA => addrA , −− Port A 8− b i t address input
124 ADDRB => addrB , −− Port B 8− b i t address input
125 CLKA => c lock , −− Port A c l o c k input
126 CLKB => c lock , −− Port B c l o c k input
127 DIA => dataIn (0 to 15) , −− Port A 16− b i t data input

77

B.3. RAM BLOCK APPENDIX B. HARDWARE

128 DIB => dataIn (16 to 31) , −− Port B 16− b i t data input
129 ENA => enabled (I) , −− Port A RAM enab l e input
130 ENB => enabled (I) , −− Port B RAM enab l e input
131 RSTA => r e s e t , −− Port A Synchronous r e s e t input
132 RSTB => r e s e t , −− Port B Synchronous r e s e t input
133 WEA => WEnabled(I) , −− Port A RAM wr i t e enab l e input
134 WEB => WEnabled(I) −− Port B RAM wr i t e enab l e input
135) ;
136 end generate ;
137
138 l i n e s : for I in 0 to numBlocks −1 generate
139 WEnabled(I) <= writeEnabled and enabled (I) ;
140 end generate ;
141
142 c locked : process (c lock , enabled , writeEnabled , address , dataIn) i s
143 begin
144 addrA (0) <= ’0 ’ ;
145 addrB (0) <= ’1 ’ ;
146 addrA(1 to 7) <= address (0 to 6) ;
147 addrB (1 to 7) <= address (0 to 6) ;
148 −− decodedAddr
149 i f r i s i n g e d g e (c l o ck) then
150 enabled <= (others => ’ 0 ’) ;
151
152 i f enable = ’1 ’ then
153 i f numBlocks > 1 then
154 enabled (conv in t ege r (address (7 to 7+(ADDR LENGTH−8)))) <= ’1 ’ ;
155 else
156 enabled (0) <= ’1 ’ ;
157 end i f ;
158
159 end i f ;
160
161 −− Mul t i p l e x the data out .
162 i f numBlocks > 1 then
163 metaOut (0 to 15) <= MoutA(conv in t ege r (address (7 to 7+(ADDR LENGTH

−8)))) ;
164 metaOut (16 to 31) <= MoutB(conv in t ege r (address (7 to 7+(

ADDR LENGTH−8)))) ;
165 dataOut (0 to 15) <= DoutA(conv in t ege r (address (7 to 7+(ADDR LENGTH

−8)))) ;
166 dataOut (16 to 31) <= DoutB(conv in t ege r (address (7 to 7+(

ADDR LENGTH−8)))) ;
167 else
168 metaOut (0 to 15) <= MoutA(0) ;
169 metaOut (16 to 31) <= MoutB(0) ;
170 dataOut (0 to 15) <= DoutA(0) ;
171 dataOut (16 to 31) <= DoutB(0) ;
172 end i f ;
173
174 end i f ;
175 end process ;
176
177 end Behaviora l ;

78

APPENDIX B. HARDWARE B.4. CACHE BLOCK

B.4 Cache Block

1 −−
−−

2 −−
3 −− Create Date : 12 :02 :44 03/29/2007
4 −− Design Name:
5 −− Module Name: cacheBlock − Behav iora l
6 −− Pro jec t Name:
7 −− Target Devices :
8 −− Tool v e r s i on s :
9 −− Descr ip t i on :

10 −−
11 −− Dependencies :
12 −−
13 −− Revis ion :
14 −− Revis ion 0.01 − F i l e Created
15 −− Add i t i ona l Comments :
16 −− Important to no t i c e t ha t a l l data coming out o f the microBlaze core
17 −− i s b i t r e ve r s ed . Hence the index and tag o f the address i s sw i t ched
18 −− compared to the normal way o f doing i t .
19 −−
20 −−

−−

21 l ibrary IEEE ;
22 use IEEE . STD LOGIC 1164 .ALL;
23 use IEEE .STD LOGIC ARITH.ALL;
24 use IEEE .STD LOGIC UNSIGNED.ALL;
25
26 l ibrary UNISIM ;
27 use UNISIM . VComponents . a l l ;
28
29 entity cacheBlock i s
30 generic (
31 DATA WIDTH : i n t e g e r := 32 ;
32 ADDRESS WIDTH : i n t e g e r := 32 ; −−Tag l en g t h i s independent o f the

SET A
33 SET ASSOCIATIVITY : i n t e g e r := 2 ; −− be a b l e to c r ea t e d i f f e r e n t caches ,

not
34 TAG LENGTH : i n t e g e r := 25 ; −− j u s t s e t a s s o c i a t i v e ones .
35 ADDR LENGTH : i n t e g e r := 7+1;
36
37 LRU SIZE : i n t e g e r := 2
38) ;
39
40 port (
41 CLOCK : IN s t d l o g i c ;
42 RESET : IN s t d l o g i c ;
43 IN OMA VALID : OUT s t d l o g i c ;
44 IN OMA DATA I : OUT s t d l o g i c v e c t o r (0 to 31) ;
45 IN OMA DATA O : IN s t d l o g i c v e c t o r (0 to 31) ;
46 IN OMA ADDRESS : IN s t d l o g i c v e c t o r (0 to 31) ;
47 IN OMA BE : IN s t d l o g i c v e c t o r (0 to 3) ;
48 IN OMA RW : IN s t d l o g i c ;

79

B.4. CACHE BLOCK APPENDIX B. HARDWARE

49 IN OMA ACTIVE : IN s t d l o g i c ;
50
51 OUT OMA VALID : IN s t d l o g i c ;
52 OUT OMA DATA I : IN s t d l o g i c v e c t o r (0 to 31) ;
53 OUT OMA DATA O : OUT s t d l o g i c v e c t o r (0 to 31) ;
54 OUT OMA ADDRESS : OUT s t d l o g i c v e c t o r (0 to 31) ;
55 OUT OMA BE : OUT s t d l o g i c v e c t o r (0 to 3) ;
56 OUTOMARW : OUT s t d l o g i c ;
57 OUT OMA ACTIVE : OUT s t d l o g i c
58) ;
59 end cacheBlock ;
60
61 architecture Behaviora l of cacheBlock i s
62 type d l i n e s i s array (0 to SET ASSOCIATIVITY −1) of
63 s t d l o g i c v e c t o r (0 to DATA WIDTH−1) ;
64
65 type STATE i s (IDLE , FIND VICTIM, EVICT, GET DATA, OVERRIDE, DONE) ;
66
67 constant tagNotFound : s t d l o g i c v e c t o r (0 to SET ASSOCIATIVITY −1) := (

others => ’ 0 ’) ;
68
69 −− Which par t s s h a l l we address , and which are l e f t f o r t a g s .
70 constant setAddrBase : i n t e g e r := ADDRESS WIDTH − ADDR LENGTH;
71 constant l ruBase : i n t e g e r := 0 ; −− Base addr o f LRU;
72 constant l r u S i z e : i n t e g e r := 1 ; −− Log2 (SET ASSOCIATIVITY) ;
73 constant dir tyBase : i n t e g e r := lruBase + l r uS i z e ;
74 constant va l idBase : i n t e g e r := di r tyBase + 1 ;
75 constant tagBase : i n t e g e r := va l idBase + 1 ;
76 constant t agS i z e : i n t e g e r := setAddrBase ;
77
78 −− Contro l s i g n a l s .
79 signal enabled : s t d l o g i c v e c t o r (0 to SET ASSOCIATIVITY − 1) ;
80 signal writeEnabled : s t d l o g i c v e c t o r (0 to SET ASSOCIATIVITY − 1) ;
81 signal tagFound : s t d l o g i c v e c t o r (0 to SET ASSOCIATIVITY − 1) ;
82
83 −− Cache s t a t e
84 signal readState : STATE := IDLE ;
85 signal wr i t eS ta t e : STATE := IDLE ;
86
87 −− Set up the s i g n a l s to be mu l t i p l e x ed .
88 signal dout : d l i n e s := (others => (others => ’ 0 ’)) ;
89 signal mout : d l i n e s := (others => (others => ’ 0 ’)) ;
90 signal din : d l i n e s := (others => (others => ’ 0 ’)) ;
91 signal min : d l i n e s := (others => (others => ’ 0 ’)) ;
92
93 −− r e g i s t e r the s i g n a l to meet t iming c on s t r a i n t s .
94 signal dataIn : s t d l o g i c v e c t o r (0 to IN OMA DATA O’ length −1) ;
95
96 −− BlockRAM needs de lay .
97 signal delay : s t d l o g i c v e c t o r (0 to 1) := ”00 ” ;
98 signal i nVa l id : s t d l o g i c := ’ 0 ’ ;
99

100 impure function f indVict im return i n t e g e r i s
101 variable minValue : i n t e g e r := 90 ; −−Change t h i s i f you have s e t

a s s o c i a t i v e > 90
102 variable minPos : i n t e g e r := 0 ;

80

APPENDIX B. HARDWARE B.4. CACHE BLOCK

103 variable cur rent : i n t e g e r := 0 ;
104 begin
105 for I in 0 to SET ASSOCIATIVITY −1 loop
106 i f mout(I) (va l idBase) = ’0 ’ then
107 return I ;
108 else
109 cur rent := conv in t ege r (mout (I) (l ruBase to l ruBase + l r uS i z e − 1)) ;
110 i f cur rent < minValue then
111 minValue := cur rent ;
112 minPos := I ;
113 end i f ;
114 end i f ;
115 end loop ;
116
117 return minPos ;
118 end function ;
119
120 function l ruReduct ion (A: s t d l o g i c v e c t o r) return i n t e g e r i s
121 variable x : i n t e g e r ;
122 begin
123 x := conv in t ege r (A) ;
124 i f x >= 0 then
125 return x ;
126 else return 0 ;
127 end i f ;
128 end function ;
129 begin
130 −− Generate the s t o rage b l o c k s .
131 setBlock : for I in 0 to SET ASSOCIATIVITY − 1 generate
132 begin
133 cacheBlock : entity work .myRam
134 generic map(
135 DATA WIDTH => DATA WIDTH,
136 ADDR LENGTH => ADDR LENGTH
137)
138 port map(
139 c l o ck => CLOCK,
140 r e s e t => RESET,
141 enable => enabled (I) ,
142 writeEnabled => writeEnabled (I) ,
143 address => IN OMA ADDRESS(IN OMA ADDRESS’ l ength − ADDR LENGTH to

IN OMA ADDRESS’ l ength −1) ,
144 dataIn => din (I) ,
145 metaIn => min(I) ,
146 dataOut => dout (I) ,
147 metaOut => mout(I)
148) ;
149 end generate ;
150
151 −− Check i f we ’ ve found something .
152 −− update the tagFound s i g n a l .
153 fnd : process (CLOCK,IN OMA ADDRESS, mout) i s
154 begin
155 for I in 0 to SET ASSOCIATIVITY −1 loop
156 i f (mout (I) (tagBase to tagBase + tagS i z e −1) = IN OMA ADDRESS(0 to

IN OMA ADDRESS’ l ength − ADDR LENGTH− 1))

81

B.4. CACHE BLOCK APPENDIX B. HARDWARE

157 and mout(I) (va l idBase) = ’1 ’
158 then
159 tagFound (I) <= ’1 ’ ;
160 else
161 tagFound (I) <= ’0 ’ ;
162 end i f ;
163 end loop ;
164 end process ;
165
166 −− The main func t i on .
167 main : process (CLOCK, IN OMA ACTIVE) i s
168 variable v ict im : natura l := 0 ;
169
170 −− Function de c l .
171 procedure updateLRU i s
172 begin
173 for I in 0 to SET ASSOCIATIVITY − 1 loop
174 −− Copy back , rude and e lementary . From the output to the input . . .
175 min (I) <= mout(I) ;
176
177 −− Update on ly the LRU.
178 min (I) (l ruBase to l ruBase + l r uS i z e −1) <= CONV STD LOGIC VECTOR(
179 lruReduct ion (mout(I) (l ruBase to l ruBase + l r uS i z e −1)) ,
180 l r u S i z e) ;
181 end loop ;
182 end updateLRU ;
183
184 procedure ev i c tL in e i s
185 begin
186 −− I f v i c t im d i r t y
187 −− dump i t to memory .
188 OUT OMA BE <= (others => ’ 1 ’) ;
189 OUTOMARW <= ’0 ’ ;
190 OUT OMA ACTIVE <= ’1 ’ ;
191 OUT OMA DATA O <= dout (v ic t im) ;
192 −− The address . .
193
194 OUT OMA ADDRESS(IN OMA ADDRESS’ l ength − ADDR LENGTH to IN OMA ADDRESS’

l ength −1) <=
195 IN OMA ADDRESS(IN OMA ADDRESS’ l ength − ADDR LENGTH to

IN OMA ADDRESS’ l ength −1) ;
196 −− Get the tag from the metadata .
197 OUT OMA ADDRESS(0 to OUT OMA ADDRESS’ l ength − ADDR LENGTH− 1) <= mout

(v ic t im) (tagBase to tagBase + tagS i z e − 1) ;
198 end ev i c tL in e ;
199
200 procedure doWriteHit i s
201 begin
202 updateLRU ;
203 min (v ic t im) (va l idBase) <= ’1 ’ ;
204 min (v ic t im) (d i r tyBase) <= ’1 ’ ;
205 min (v ic t im) (l ruBase to l r u S i z e −1) <= (others => ’ 1 ’) ;
206 min (v ic t im) (tagBase to tagBase + tagS i z e −1) <= mout(v ic t im) (tagBase

to tagBase+tagSize −1) ;
207 din (v ic t im) <= dataIn ;
208 writeEnabled (v ic t im) <= ’1 ’ ;

82

APPENDIX B. HARDWARE B.4. CACHE BLOCK

209
210 inVal id <= ’1 ’ ;
211 end doWriteHit ;
212
213 procedure doReadHit i s
214 begin
215 updateLRU ;
216 for I in 0 to SET ASSOCIATIVITY −1 loop
217 i f (tagFound (I) = ’1 ’) then
218 IN OMA DATA I <= dout (I) ;
219 exit ;
220 end i f ;
221 end loop ;
222
223 inVal id <= ’1 ’ ;
224 end doReadHit ;
225
226 procedure doReadMiss i s
227 begin
228 −− 1) Find v i c t im
229 −− 2) Ev ic t
230 −− 3) Get data from memory
231 −− 4) Override
232 case readState i s
233 when IDLE =>
234 readState <= FIND VICTIM;
235 when FIND VICTIM =>
236 v ict im := f indVict im ;
237 readState <= EVICT;
238 when EVICT =>
239 i f OUT OMA VALID = ’1 ’ then
240 OUT OMA ADDRESS <= IN OMA ADDRESS;
241 OUTOMARW <= ’1 ’ ;
242 OUT OMA ACTIVE <= ’1 ’ ;
243 −− Send out a new reque s t .
244 readState <= GET DATA;
245 else
246 i f mout(v ic t im) (d i r tyBase) = ’1 ’ and
247 mout(v ict im) (va l idBase) = ’1 ’ then
248
249 −− I f i t ’ s d i r t y e v i c t i t .
250 ev i c tL in e ;
251 else
252 OUT OMA ADDRESS <= IN OMA ADDRESS;
253 OUTOMARW <= ’1 ’ ;
254 OUT OMA ACTIVE <= ’1 ’ ;
255 readState <= GET DATA;
256 end i f ;
257 end i f ;
258
259 when GET DATA =>
260 OUT OMA ACTIVE <= ’1 ’ ;
261 i f (OUT OMA VALID = ’1 ’) then
262
263 −− Update metadata .
264 min (v ic t im) (va l idBase) <= ’1 ’ ;

83

B.4. CACHE BLOCK APPENDIX B. HARDWARE

265 min (v ic t im) (d i r tyBase) <= ’0 ’ ;
266 min (v ic t im) (l ruBase to l r u S i z e −1) <= (others => ’ 1 ’) ;
267
268 min (v ic t im) (tagBase to tagBase + tagS i z e −1) <= IN OMA ADDRESS

(0 to IN OMA ADDRESS’ l ength − ADDR LENGTH −1) ;
269 din (v ic t im) <= OUT OMA DATA I;
270
271 −− Send s t u f f out .
272 IN OMA DATA I <= OUT OMA DATA I;
273
274 −− wri teEnab led a s s e r t e d f o r two c y c l e s .
275 readState <= DONE;
276 writeEnabled (v ic t im) <= ’1 ’ ;
277 end i f ;
278 when DONE =>
279 inVal id <= ’1 ’ ;
280 writeEnabled (v ic t im) <= ’1 ’ ;
281 readState <= IDLE ;
282
283 when others =>
284 readState <= IDLE ;
285 end case ;
286 end doReadMiss ;
287
288
289 procedure doWriteMiss i s
290 begin
291 −−− 1) Find v i c t im .
292 −−− 2) Ev ic t . E. g . , d i e bas tard cache l i n e
293 −−− 3) Override .
294
295 case wr i t eS ta t e i s
296 when IDLE =>
297 wr i t eS ta t e <= FIND VICTIM;
298 when FIND VICTIM =>
299 v ict im := f indVict im ;
300 wr i t eS ta t e <= EVICT;
301 when EVICT =>
302 i f OUT OMA VALID = ’1 ’ then
303 wr i t eS ta t e <= OVERRIDE;
304 else
305 i f mout(v ic t im) (d i r tyBase) = ’1 ’ and
306 mout(v ic t im) (va l idBase) = ’1 ’ then
307 −− I f i t ’ s d i r t y and v a l i d e v i c t i t .
308 ev i c tL in e ;
309 else
310 wr i t eS ta t e <= OVERRIDE;
311 end i f ;
312 end i f ;
313 when OVERRIDE =>
314 min (v ict im) (va l idBase) <= ’1 ’ ;
315 min (v ict im) (d i r tyBase) <= ’1 ’ ;
316 min (v ict im) (l ruBase to l r u S i z e −1) <= (others => ’ 1 ’) ;
317 min (v ict im) (tagBase to tagBase + tagS i z e −1) <= IN OMA ADDRESS(0

to IN OMA ADDRESS’ l ength − ADDR LENGTH −1) ;
318 din (v ict im) <= dataIn ;

84

APPENDIX B. HARDWARE B.4. CACHE BLOCK

319 wr i t eS ta t e <= DONE;
320
321 −− wri teEnab led a s s e r t e d f o r two c l o c k c y c l e s .
322 writeEnabled (v ic t im) <= ’1 ’ ;
323 inVal id <= ’1 ’ ;
324 when DONE =>
325 writeEnabled (v ic t im) <= ’1 ’ ;
326 wr i t eS ta t e <= IDLE ;
327
328 when others =>
329 wr i t eS ta t e <= IDLE ;
330 end case ;
331
332 end doWriteMiss ;
333 −− de c l . ends .
334
335 begin
336 dataIn <= IN OMA DATA O;
337 IN OMA VALID <= inVal id ;
338
339 i f r i s i n g e d g e (CLOCK) then
340 inVal id <= ’0 ’ ;
341 OUT OMA ACTIVE <= ’0 ’ ;
342
343 writeEnabled <= (others => ’ 0 ’) ;
344 enabled <= (others => ’ 0 ’) ;
345
346 i f (inVa l id = ’0 ’) then
347 enabled <= (others => ’ 1 ’) ;
348 else
349 enabled <= (others => ’ 0 ’) ;
350 end i f ;
351
352 i f IN OMA ACTIVE = ’1 ’ and i nVa l id = ’0 ’ then
353
354 i f IN OMA ADDRESS = x”7FFFFFFF” and IN OMA RW = ’0 ’ then
355 −− DO NOT cache the terminat ion s i g n a l .
356 −− We’ re done anyways , so l e t s do t h i s the
357 −− d i r t y way .
358 OUT OMA ADDRESS <= IN OMA ADDRESS;
359 OUTOMARW <= ’0 ’ ;
360 OUT OMA ACTIVE <= ’1 ’ ;
361 else
362 −− We need to l e t the s i g n a l s propagate from the b l o c k RAM to us .
363 i f delay = ”11 ” or (wr i t eS ta t e /= IDLE or readState /= IDLE)

then
364 i f IN OMA RW = ’1 ’ then
365 i f tagFound /= tagNotFound then
366 −− Ladies and Gentlemen , we have h i t .
367 doReadHit ;
368 else
369 doReadMiss ;
370 end i f ;
371 e l s i f IN OMA RW = ’0 ’ then
372 i f tagFound /= tagNotFound then
373 doWriteHit ;

85

B.4. CACHE BLOCK APPENDIX B. HARDWARE

374 else
375 doWriteMiss ;
376 end i f ;
377 end i f ;
378
379 de lay <= ”00 ” ;
380 e l s i f delay = ”00 ” then
381 −− Block RAM need time to propagate through . . .
382 de lay <= ”01 ” ;
383 else
384 de lay <= ”11 ” ;
385 end i f ;
386
387 end i f ;
388 end i f ;
389 end i f ;
390 end process ;
391
392 end Behaviora l ;

86

APPENDIX B. HARDWARE B.5. ARBITER

B.5 Arbiter

1 −−
−−

2 −− Company :
3 −− Engineer :
4 −−
5 −− Create Date : 10 :28 :34 04/13/2007
6 −− Design Name:
7 −− Module Name: a r b i t e r − Behav iora l
8 −− Pro jec t Name:
9 −− Target Devices :

10 −− Tool v e r s i on s :
11 −− Descr ip t i on :
12 −−
13 −− Dependencies :
14 −−
15 −− Revis ion :
16 −− Revis ion 0.01 − F i l e Created
17 −− Add i t i ona l Comments :
18 −−
19 −−

−−

20 l ibrary IEEE ;
21 use IEEE . STD LOGIC 1164 .ALL;
22 use IEEE .STD LOGIC ARITH.ALL;
23 use IEEE .STD LOGIC UNSIGNED.ALL;
24
25 −−−− Uncomment the f o l l ow i n g l i b r a r y d e c l a r a t i on i f i n s t a n t i a t i n g
26 −−−− any Xi l i n x p r im i t i v e s in t h i s code .
27 −− l i b r a r y UNISIM;
28 −−use UNISIM. VComponents . a l l ;
29
30 l ibrary WORK;
31 use WORK. c o r e S t u f f .ALL;
32
33 entity a r b i t e r i s
34 port (
35 CLOCK : IN s t d l o g i c ;
36 RESET : IN s t d l o g i c ;
37
38 IN OMA VALID : OUT co reB i t ;
39 IN OMA DATA I : OUT coreVector ;
40 IN OMA DATA O : IN coreVector ;
41 IN OMA ADDRESS : IN coreVector ;
42 IN OMA BE : IN coreBe ;
43 IN OMA RW : IN co reB i t ;
44 IN OMA ACTIVE : IN co reB i t ;
45
46 OUT OMA VALID : IN s t d l o g i c ;
47 OUT OMA DATA I : IN s t d l o g i c v e c t o r (0 to 31) ;
48 OUT OMA DATA O : OUT s t d l o g i c v e c t o r (0 to 31) ;
49 OUT OMA ADDRESS : OUT s t d l o g i c v e c t o r (0 to 31) ;
50 OUT OMA BE : OUT s t d l o g i c v e c t o r (0 to 3) ;

87

B.5. ARBITER APPENDIX B. HARDWARE

51 OUTOMARW : OUT s t d l o g i c ;
52 OUT OMA ACTIVE : OUT s t d l o g i c
53) ;
54 end a r b i t e r ;
55
56 architecture Behaviora l of a r b i t e r i s
57 signal a c t i v e : s t d l o g i c := ’ 0 ’ ;
58 shared variable cur rentAct ive : natura l := 0 ;
59 begin
60
61 f : process i s
62 begin
63 IN OMA VALID <= (others => ’ 0 ’) ;
64 IN OMA VALID(cur rentAct ive) <= OUT OMA VALID;
65 IN OMA DATA I(cur rentAct ive) <= OUT OMA DATA I;
66 OUT OMA DATA O <= IN OMA DATA O(cur rentAct ive) ;
67 OUT OMA ADDRESS <= IN OMA ADDRESS(cur rentAct ive) ;
68 OUT OMA BE <= IN OMA BE(currentAct ive) ;
69 OUTOMARW <= IN OMA RW(currentAct ive) ;
70 OUT OMA ACTIVE <= IN OMA ACTIVE(cur rentAct ive) ;
71 end process ;
72
73 sw i t che r : process (CLOCK, IN OMA ACTIVE, OUT OMA VALID) i s
74 begin
75 i f r i s i n g e d g e (CLOCK) then
76 −− I f someone a l r eady are sending and r e c e i v i n g
77 −− data , we ’ l l wai t f o r the ack to ge t back . .
78 i f a c t i v e = ’1 ’ then
79 −− Set no a c t i v e on VALID data .
80 i f OUT OMA VALID = ’1 ’ then
81 a c t i v e <= ’0 ’ ;
82 end i f ;
83
84
85 else
86 for I in 0 to numCores − 1 loop
87 i f IN OMA ACTIVE((cur rentAct ive + I) mod numCores) = ’1 ’ then
88 −− Find the a c t i v e one .
89 cur rentAct ive := (cur rentAct ive + I) mod numCores ;
90 a c t i v e <= ’1 ’ ;
91 exit ;
92 end i f ;
93 end loop ;
94 end i f ;
95 end i f ;
96 end process ;
97
98 end Behaviora l ;

88

APPENDIX B. HARDWARE B.6. PCI COM

B.6 PCI COM

1 −−
−−

2 −− Company :
3 −− Engineer :
4 −−
5 −− Create Date : 17 :14 :16 11/10/2006
6 −− Design Name:
7 −− Module Name: com − Behav iora l
8 −− Pro jec t Name:
9 −− Target Devices :

10 −− Tool v e r s i on s :
11 −− Descr ip t i on :
12 −−
13 −− Dependencies :
14 −−
15 −− Revis ion :
16 −− Revis ion 0.01 − F i l e Created
17 −− Add i t i ona l Comments :
18 −−
19 −−

−−

20 l ibrary IEEE ;
21 use IEEE . STD LOGIC 1164 .ALL;
22 use IEEE .STD LOGIC ARITH.ALL;
23 use IEEE .STD LOGIC UNSIGNED.ALL;
24
25 −−−− Uncomment the f o l l ow i n g l i b r a r y d e c l a r a t i on i f i n s t a n t i a t i n g
26 −−−− any Xi l i n x p r im i t i v e s in t h i s code .
27 −− l i b r a r y UNISIM;
28 −−use UNISIM. VComponents . a l l ;
29
30 entity pciCom i s
31 Port (
32 −−− PCI FPGA Sp e s i f i c .
33 CLOCK : in s t d l o g i c ;
34 RESET : in s t d l o g i c ;
35
36 PCI ADDS : in STD LOGIC; −− ADIO i s DATA when high , e l s e Address .
37 PCI EMPTY : in STD LOGIC; −− I s empty
38 PCI BUSY : in STD LOGIC; −− Can ’ t wr i t e q u i t e ye t .
39 PCI RW : out STD LOGIC; −− Wil l wr i t e to the PCI FPGA on high .
40 PCI RENWEN : out STD LOGIC; −− High d i s a b l e s communication .
41 PCI ADIO : inout STD LOGIC VECTOR (0 to 31) ;
42
43 −− LED DEBUG. .
44 LED DEBUG : OUT s t d l o g i c v e c t o r (0 to 15) ;
45
46 −−− I n t e rna l chat wi th the memory bus
47 OMA VALID : OUT s t d l o g i c ;
48 OMA DATA I : OUT s t d l o g i c v e c t o r (0 to 31) ;
49 OMA DATA O : IN s t d l o g i c v e c t o r (0 to 31) ;
50 OMA ADDRESS : IN s t d l o g i c v e c t o r (0 to 31) ;

89

B.6. PCI COM APPENDIX B. HARDWARE

51 OMA BE : IN s t d l o g i c v e c t o r (0 to 3) ;
52 OMARW : IN s t d l o g i c ;
53 OMA ACTIVE : IN s t d l o g i c
54) ;
55 end pciCom ;
56
57 architecture Behaviora l of pciCom i s
58 −− S ta t e machine v a r i a b l e s .
59 type Sta te s i s (IDLE ,
60 READ START, READ ADDR, READ DATA, READ IDLE,
61 WRITE START, WRITE ADDR, WRITE DATA,
62 COMPLETE
63) ;
64
65 −− cons tant s i g n a l s to wr i t e out to the databus .
66 constant wr i t eS i gna l : s t d l o g i c v e c t o r (31 downto 0) :=(1 => ’ 1 ’ , others

=> ’ 0 ’) ;
67 constant r eadS igna l : s t d l o g i c v e c t o r (31 downto 0) := (0 => ’ 1 ’ , others

=> ’ 0 ’) ;
68
69 −− s t a t e s i g n a l s
70 constant sIDLE : s t d l o g i c v e c t o r (0 to 15) := (0 => ’ 0 ’ , others => ’ 1 ’)

;
71 constant sREAD START : s t d l o g i c v e c t o r (0 to 15) := (1 => ’ 0 ’ , others =>

’ 1 ’) ;
72 constant sREAD ADDR : s t d l o g i c v e c t o r (0 to 15) := (2 => ’ 0 ’ , others =>

’ 1 ’) ;
73 constant sREAD DATA : s t d l o g i c v e c t o r (0 to 15) := (3 => ’ 0 ’ , others =>

’ 1 ’) ;
74 constant sREAD IDLE : s t d l o g i c v e c t o r (0 to 15) := (4 => ’ 0 ’ , others =>

’ 1 ’) ;
75 constant sWRITE START : s t d l o g i c v e c t o r (0 to 15) := (5 => ’ 0 ’ , others =>

’ 1 ’) ;
76 constant sWRITE ADDR : s t d l o g i c v e c t o r (0 to 15) := (6 => ’ 0 ’ , others =>

’ 1 ’) ;
77 constant sWRITE DATA : s t d l o g i c v e c t o r (0 to 15) := (7 => ’ 0 ’ , others =>

’ 1 ’) ;
78 constant sCOMPLETE : s t d l o g i c v e c t o r (0 to 15) := (8 => ’ 0 ’ , others =>

’ 1 ’) ;
79
80 signal s t a t e : S ta t e s ;
81 signal data o : s t d l o g i c v e c t o r (0 to 31) := (others => ’ 1 ’) ;
82 signal da ta i : s t d l o g i c v e c t o r (0 to 31) := (others => ’ 1 ’) ;
83 signal address : s t d l o g i c v e c t o r (0 to 31) := (others => ’ 1 ’) ;
84
85 signal clockCount : s t d l o g i c v e c t o r (0 to 31) := (others => ’ 0 ’) ;
86
87 begin
88
89 countClock : process (CLOCK,RESET, s t a t e) i s
90 begin
91 i f r i s i n g e d g e (CLOCK) then
92 i f RESET = ’1 ’ or s t a t e = WRITE START or s t a t e = READ START then
93 clockCount <= (others => ’ 0 ’) ;
94 else
95 clockCount <= clockCount + 1 ;

90

APPENDIX B. HARDWARE B.6. PCI COM

96 end i f ;
97 end i f ;
98 end process ;
99

100 fnord : process (CLOCK, RESET) i s
101 begin
102 i f RESET = ’1 ’ then
103 PCI RENWEN <= ’1 ’ ;
104 s t a t e <= IDLE ;
105
106 e l s i f r i s i n g e d g e (CLOCK) then
107 −− PCI RENWEN <= ’0 ’ ; −− Defau l t to enab l e com .
108 −− OMA VALID <= ’0 ’ ; −− NOT va l i d data per d e f a u l t .
109
110 i f PCI EMPTY = ’0 ’ and s t a t e = READ DATA then
111 −− Gather data from input .
112 da ta i <= PCI ADIO ;
113 −− Debug fnord .
114 LED DEBUG <= PCI ADIO(0 to 15) ;
115 OMA VALID <= ’1 ’ ;
116 s t a t e <= COMPLETE;
117
118 e l s i f PCI BUSY = ’0 ’ then
119 −− e l s e
120 OMA VALID <= ’0 ’ ; −− NOT va l i d data per d e f a u l t .
121 case s t a t e i s
122 when IDLE =>
123 PCI RENWEN <= ’1 ’ ; −− We’ re not enab l i ng com when i d l e .
124 PCI ADIO <= (others => ’Z ’) ;
125
126 −− Write on low !
127 i f OMARW = ’0 ’ and OMA ACTIVE= ’1 ’ then
128 s t a t e <= WRITE START;
129 PCI RENWEN <= ’0 ’ ;
130 e l s i f OMARW = ’1 ’ and OMA ACTIVE = ’1 ’ then
131 s t a t e <= READ START;
132 PCI RENWEN <= ’0 ’ ;
133 else
134 s t a t e <= IDLE ;
135 end i f ;
136
137 −− Writing to the bus .
138 when WRITE START =>
139 PCI ADIO <= wr i t eS i gna l ;
140 PCI ADIO(16 to 19) <= OMA BE;
141 s t a t e <= WRITE ADDR;
142 when WRITE ADDR =>
143 PCI ADIO <= address ;
144 s t a t e <= WRITE DATA;
145 when WRITE DATA =>
146 PCI ADIO <= data o ;
147 −− Debug fnord
148 OMA VALID <= ’1 ’ ;
149 s t a t e <= COMPLETE;
150
151 −− Reading from the bus .

91

B.6. PCI COM APPENDIX B. HARDWARE

152 when READ START =>
153 PCI ADIO <= readS igna l ;
154 s t a t e <= READ ADDR;
155 when READ ADDR =>
156 PCI ADIO <= address ;
157 s t a t e <= READ IDLE;
158 when READ IDLE =>
159 PCI ADIO <= (others => ’Z ’) ;
160 s t a t e <= READ DATA;
161
162
163 −− The reque s t ed t r an sac t i on i s done !
164 when COMPLETE =>
165 PCI ADIO <= data i ;
166 s t a t e <= IDLE ;
167 when others =>
168 null ;
169 end case ;
170 end i f ;
171 end i f ;
172
173 end process ;
174
175 −− −− show s t a t e on l e d
176 −− l S a t e : proces s (s t a t e) i s
177 −− beg in
178 −− case s t a t e i s
179 −− when IDLE =>
180 −− LED DEBUG <= sIDLE ;
181 −− when READ START =>
182 −− LED DEBUG <= sREAD START;
183 −− when READ ADDR =>
184 −− LED DEBUG <= sREAD ADDR ;
185 −− when READ DATA =>
186 −− LED DEBUG <= sREAD DATA;
187 −− when READ IDLE =>
188 −− LED DEBUG <= sREAD IDLE ;
189 −− when WRITE START =>
190 −− LED DEBUG <= sWRITE START;
191 −− when WRITE ADDR=>
192 −− LED DEBUG <= sWRITE ADDR;
193 −− when WRITE DATA=>
194 −− LED DEBUG <= sWRITE DATA;
195 −− when COMPLETE=>
196 −− LED DEBUG <= sCOMPLETE;
197 −− end case ;
198 −− end proces s ;
199
200 comb : process (s tate , OMA DATA O, OMA ADDRESS, RESET, da ta i) i s
201 begin
202
203
204 i f RESET = ’1 ’ then
205 data o <= (others => ’Z ’) ;
206 address <= (others => ’Z ’) ;
207 else

92

APPENDIX B. HARDWARE B.6. PCI COM

208 PCI RW <= ’1 ’ ; −− We’ re wr i t i n g as d e f a u l t
209 −−OMA VALID <= ’0 ’ ;
210
211 OMA DATA I <= data i ;
212 address <= OMA ADDRESS;
213 data o <= OMA DATA O;
214
215 case s t a t e i s
216 when READ DATA =>
217 PCI RW <= ’0 ’ ; −− READ ! !
218 when COMPLETE =>
219 −− OMA VALID <= ’1 ’ ;
220 null ;
221 when others =>
222 null ;
223 end case ;
224 end i f ;
225 end process ;
226
227 end Behaviora l ;

93

B.7. TOPLEVEL - MCACHE APPENDIX B. HARDWARE

B.7 Toplevel - mCache

1 −−
−−

2 −− Create Date : 13 :58 :29 11/20/2006
3 −− Design Name:
4 −− Module Name: t o p l e v e l − Behav iora l
5 −− Pro jec t Name:
6 −− Target Devices :
7 −− Tool v e r s i on s :
8 −− Descr ip t i on :
9 −−

10 −− Dependencies :
11 −−
12 −− Revis ion :
13 −− Revis ion 0.01 − F i l e Created
14 −− Add i t i ona l Comments :
15 −−
16 −−

−−

17 l ibrary IEEE ;
18 use IEEE . STD LOGIC 1164 .ALL;
19 use IEEE .STD LOGIC ARITH.ALL;
20 use IEEE .STD LOGIC UNSIGNED.ALL;
21
22 −−−− Uncomment the f o l l ow i n g l i b r a r y d e c l a r a t i on i f i n s t a n t i a t i n g
23 −−−− any Xi l i n x p r im i t i v e s in t h i s code .
24 l ibrary UNISIM ;
25 use UNISIM . VComponents . a l l ;
26
27 use work . c o r e S t u f f . a l l ;
28
29 entity t o p l e v e l i s
30 PORT(
31 s y s c l k p i n : IN s t d l o g i c ;
32 r e s e t : IN s t d l o g i c ;
33 fpga 0 LEDS GPIO d out pin : OUT s t d l o g i c v e c t o r (0 to 15) ;
34 PCI ADDS : in STD LOGIC;
35 PCI EMPTY : in STD LOGIC;
36 PCI BUSY : in STD LOGIC;
37 PCI RW : out STD LOGIC;
38 PCI RENWEN : out STD LOGIC;
39 PCI ADIO : inout STD LOGIC VECTOR (0 to 31)) ;
40 end t o p l e v e l ;
41
42 architecture Behaviora l of t o p l e v e l i s
43 signal OMA VALID : s t d l o g i c ;
44 signal OMA DATA I : s t d l o g i c v e c t o r (0 to 31) := (others => ’0 ’) ;
45 signal OMA DATA O : s t d l o g i c v e c t o r (0 to 31) := (others => ’0 ’) ;
46 signal OMA ADDRESS : s t d l o g i c v e c t o r (0 to 31) := x”DEADBEEF” ;
47 signal OMARW : s t d l o g i c ;
48 signal OMA ACTIVE : s t d l o g i c ;
49 signal OMA BE : s t d l o g i c v e c t o r (0 to 3) := (others => ’ 0 ’) ;
50

94

APPENDIX B. HARDWARE B.7. TOPLEVEL - MCACHE

51 signal CACHE VALID : s t d l o g i c ;
52 signal CACHE DATA I : s t d l o g i c v e c t o r (0 to 31) := (others => ’0 ’) ;
53 signal CACHE DATA O : s t d l o g i c v e c t o r (0 to 31) := (others => ’0 ’) ;
54 signal CACHE ADDRESS : s t d l o g i c v e c t o r (0 to 31) := (others => ’ 0 ’) ;
55 signal CACHE RW : s t d l o g i c ;
56 signal CACHE ACTIVE : s t d l o g i c ;
57 signal CACHE BE : s t d l o g i c v e c t o r (0 to 3) := (others => ’ 0 ’) ;
58
59 signal CORE VALID : c o r e b i t ;
60 signal CORE DATA I : co r ev e c to r := (others => (others => ’0 ’)) ;
61 signal CORE DATA O : co r eve c to r := (others => (others => ’0 ’)) ;
62 signal CORE ADDRESS : co r eve c to r := (others => (others => ’0 ’)) ;
63 signal CORE RW : co r eb i t ;
64 signal CORE ACTIVE : c o r e b i t ;
65 signal CORE BE : corebe ;
66
67
68 signal sPCI ADDS : s t d l o g i c := ’ 0 ’ ;
69 signal sPCI EMPTY : s t d l o g i c := ’ 0 ’ ;
70 signal sPCI BUSY : s t d l o g i c := ’ 0 ’ ;
71 signal sPCI RW : s t d l o g i c := ’ 0 ’ ;
72 signal sPCI RENWEN : s t d l o g i c := ’ 1 ’ ;
73
74 signal r s t i n v : s t d l o g i c ;
75 signal r s t i n t e r n a l : s t d l o g i c ;
76
77
78 COMPONENT core
79 PORT(
80 s y s c l k p i n : IN s t d l o g i c ;
81 s y s r s t p i n : IN s t d l o g i c ;
82 opb external memory 0 OMA DATA I pin : IN s t d l o g i c v e c t o r (0 to 31) ;
83 opb external memory 0 OMA VALID pin : IN s t d l o g i c ;
84 opb external memory 1 OMA DATA I pin : IN s t d l o g i c v e c t o r (0 to 31) ;
85 opb external memory 1 OMA VALID pin : IN s t d l o g i c ;
86 opb external memory 0 OMA DATA O pin : OUT s t d l o g i c v e c t o r (0 to 31) ;
87 opb external memory 0 OMA ADDRESS pin : OUT s t d l o g i c v e c t o r (0 to 31) ;
88 opb external memory 0 OMA RW pin : OUT s t d l o g i c ;
89 opb external memory 0 OMA ACTIVE pin : OUT s t d l o g i c ;
90 opb external memory 0 LEDS DEBUG pin : OUT s t d l o g i c v e c t o r (0 to 15) ;
91 opb external memory 0 OMA BE pin : OUT s t d l o g i c v e c t o r (0 to 3) ;
92 opb external memory 1 OMA DATA O pin : OUT s t d l o g i c v e c t o r (0 to 31) ;
93 opb external memory 1 OMA ADDRESS pin : OUT s t d l o g i c v e c t o r (0 to 31) ;
94 opb external memory 1 OMA RW pin : OUT s t d l o g i c ;
95 opb external memory 1 OMA ACTIVE pin : OUT s t d l o g i c ;
96 opb external memory 1 LEDS DEBUG pin : OUT s t d l o g i c v e c t o r (0 to 15) ;
97 opb external memory 1 OMA BE pin : OUT s t d l o g i c v e c t o r (0 to 3)
98) ;
99 ENDCOMPONENT;

100
101
102
103 COMPONENT pciCom
104 Port (
105 CLOCK : IN STD LOGIC;
106 RESET : IN STD LOGIC;

95

B.7. TOPLEVEL - MCACHE APPENDIX B. HARDWARE

107 PCI ADDS : IN STD LOGIC;
108 PCI EMPTY : IN STD LOGIC;
109 PCI BUSY : IN STD LOGIC;
110 PCI RW : OUT STD LOGIC;
111 PCI RENWEN : OUT STD LOGIC;
112 PCI ADIO : INOUT STD LOGIC VECTOR (0 to 31) ;
113 −− LED DEBUG : OUT s t d l o g i c v e c t o r (0 to 15) ;
114 OMA VALID : OUT STD LOGIC;
115 OMA DATA I : OUT STD LOGIC VECTOR(0 to 31) ;
116 OMA BE : IN STD LOGIC VECTOR(0 to 3) ;
117 OMA DATA O : IN STD LOGIC VECTOR(0 to 31) ;
118 OMA ADDRESS : IN STD LOGIC VECTOR(0 to 31) ;
119 OMARW : IN STD LOGIC;
120 OMA ACTIVE : IN STD LOGIC
121) ;
122 ENDCOMPONENT;
123
124 begin
125
126 Ins t sys tem : core PORTMAP(
127 opb external memory 0 LEDS DEBUG pin => fpga 0 LEDS GPIO d out pin ,
128 s y s c l k p i n => s y s c l k p i n ,
129 s y s r s t p i n => r s t i nv ,
130 opb external memory 0 OMA DATA O pin => CORE DATA O (0) ,
131 opb external memory 0 OMA DATA I pin => CORE DATA I (0) ,
132 opb external memory 0 OMA VALID pin => CORE VALID(0) ,
133 opb external memory 0 OMA ADDRESS pin => CORE ADDRESS(0) ,
134 opb external memory 0 OMA RW pin => CORE RW (0) ,
135 opb external memory 0 OMA ACTIVE pin => CORE ACTIVE(0) ,
136 opb external memory 0 OMA BE pin => CORE BE(0) ,
137 opb external memory 1 OMA DATA O pin => CORE DATA O (1) ,
138 opb external memory 1 OMA DATA I pin => CORE DATA I (1) ,
139 opb external memory 1 OMA VALID pin => CORE VALID(1) ,
140 opb external memory 1 OMA ADDRESS pin => CORE ADDRESS(1) ,
141 opb external memory 1 OMA RW pin => CORE RW (1) ,
142 opb external memory 1 OMA ACTIVE pin => CORE ACTIVE(1) ,
143 opb external memory 1 OMA BE pin => CORE BE(1)
144) ;
145
146 a r b i t e r : entity work . a r b i t e r PORTMAP(
147 CLOCK => s y s c l k p i n ,
148 RESET => r s t i nv ,
149
150 IN OMA DATA O => CORE DATA O,
151 IN OMA DATA I => CORE DATA I,
152 IN OMA VALID => CORE VALID,
153 IN OMA ADDRESS => CORE ADDRESS,
154 IN OMA RW => CORE RW,
155 IN OMA ACTIVE => CORE ACTIVE,
156 IN OMA BE => CORE BE,
157
158 OUT OMA VALID => CACHE VALID,
159 OUT OMA DATA I => CACHE DATA I,
160 OUT OMA DATA O => CACHE DATA O,
161 OUT OMA ADDRESS => CACHE ADDRESS,
162 OUT OMA BE => CACHE BE ,

96

APPENDIX B. HARDWARE B.7. TOPLEVEL - MCACHE

163 OUTOMARW => CACHE RW,
164 OUT OMA ACTIVE => CACHE ACTIVE
165
166) ;
167
168 cache : entity work . cacheBlock PORTMAP (
169 CLOCK => s y s c l k p i n ,
170 RESET => r s t i nv ,
171 −− From the a r b i t e r to Cache
172 IN OMA VALID => CACHE VALID,
173 IN OMA DATA I => CACHE DATA I,
174 IN OMA BE => CACHE BE,
175 IN OMA DATA O => CACHE DATA O,
176 IN OMA ADDRESS => CACHE ADDRESS,
177 IN OMA RW => CACHE RW,
178 IN OMA ACTIVE => CACHE ACTIVE,
179
180 −− From the cache to comm.
181 OUT OMA VALID => OMA VALID,
182 OUT OMA DATA I => OMA DATA I,
183 OUT OMA BE => OMA BE,
184 OUT OMA DATA O => OMA DATA O,
185 OUT OMA ADDRESS => OMA ADDRESS,
186 OUTOMARW => OMARW,
187 OUT OMA ACTIVE => OMA ACTIVE
188) ;
189
190 communication : pciCom PORTMAP(
191 CLOCK => s y s c l k p i n ,
192 RESET => r s t i nv ,
193 PCI ADDS => sPCI ADDS ,
194 PCI EMPTY => sPCI EMPTY,
195 PCI BUSY => sPCI BUSY ,
196 PCI RW => sPCI RW,
197 PCI RENWEN => sPCI RENWEN,
198 PCI ADIO => PCI ADIO ,
199
200 OMA BE => OMA BE,
201 OMA VALID => OMA VALID,
202 OMA DATA I => OMA DATA I,
203 OMA DATA O => OMA DATA O,
204 OMA ADDRESS => OMA ADDRESS,
205 OMARW => OMARW,
206 OMA ACTIVE => OMA ACTIVE
207) ;
208
209 IBUF inst : IBUF
210 generic map (
211 IBUF DELAY VALUE => ”0 ” ,
212 IFD DELAY VALUE => ”AUTO” ,
213 IOSTANDARD => ”DEFAULT”)
214 port map (
215 O => r s t i n t e r n a l ,
216 I => r e s e t
217) ;
218

97

B.7. TOPLEVEL - MCACHE APPENDIX B. HARDWARE

219 f : process (PCI ADDS, PCI EMPTY, PCI BUSY, sPCI RW, sPCI RENWEN,
r s t i n t e r n a l) i s

220 begin
221 sPCI ADDS <= PCI ADDS ;
222 sPCI EMPTY <= PCI EMPTY;
223 sPCI BUSY <= PCI BUSY ;
224 PCI RW <= sPCI RW;
225 PCI RENWEN <= sPCI RENWEN ;
226 r s t i n v <= not r s t i n t e r n a l ;
227 end process ;
228
229 end Behaviora l ;

98

APPENDIX B. HARDWARE B.8. TOPLEVEL - MCORE

B.8 Toplevel - mCore

1 −−
−−

2 −− Create Date : 13 :58 :29 11/20/2006
3 −− Design Name:
4 −− Module Name: t o p l e v e l − Behav iora l
5 −− Pro jec t Name:
6 −− Target Devices :
7 −− Tool v e r s i on s :
8 −− Descr ip t i on :
9 −−

10 −− Dependencies :
11 −−
12 −− Revis ion :
13 −− Revis ion 0.01 − F i l e Created
14 −− Add i t i ona l Comments :
15 −−
16 −−

−−

17 l ibrary IEEE ;
18 use IEEE . STD LOGIC 1164 .ALL;
19 use IEEE .STD LOGIC ARITH.ALL;
20 use IEEE .STD LOGIC UNSIGNED.ALL;
21
22 −−−− Uncomment the f o l l ow i n g l i b r a r y d e c l a r a t i on i f i n s t a n t i a t i n g
23 −−−− any Xi l i n x p r im i t i v e s in t h i s code .
24 l ibrary UNISIM ;
25 use UNISIM . VComponents . a l l ;
26
27 use work . c o r e S t u f f . a l l ;
28
29 entity t o p l e v e l i s
30 PORT(
31 s y s c l k p i n : IN s t d l o g i c ;
32 r e s e t : IN s t d l o g i c ;
33 fpga 0 LEDS GPIO d out pin : OUT s t d l o g i c v e c t o r (0 to 15) ;
34 PCI ADDS : in STD LOGIC;
35 PCI EMPTY : in STD LOGIC;
36 PCI BUSY : in STD LOGIC;
37 PCI RW : out STD LOGIC;
38 PCI RENWEN : out STD LOGIC;
39 PCI ADIO : inout STD LOGIC VECTOR (0 to 31)) ;
40 end t o p l e v e l ;
41
42 architecture Behaviora l of t o p l e v e l i s
43 signal OMA VALID : s t d l o g i c ;
44 signal OMA DATA I : s t d l o g i c v e c t o r (0 to 31) := (others => ’0 ’) ;
45 signal OMA DATA O : s t d l o g i c v e c t o r (0 to 31) := (others => ’0 ’) ;
46 signal OMA ADDRESS : s t d l o g i c v e c t o r (0 to 31) := x”DEADBEEF” ;
47 signal OMARW : s t d l o g i c ;
48 signal OMA ACTIVE : s t d l o g i c ;
49 signal OMA BE : s t d l o g i c v e c t o r (0 to 3) := (others => ’ 0 ’) ;
50

99

B.8. TOPLEVEL - MCORE APPENDIX B. HARDWARE

51 signal CORE VALID : c o r e b i t ;
52 signal CORE DATA I : co r ev e c to r := (others => (others => ’0 ’)) ;
53 signal CORE DATA O : co r eve c to r := (others => (others => ’0 ’)) ;
54 signal CORE ADDRESS : co r eve c to r := (others => (others => ’0 ’)) ;
55 signal CORE RW : co r eb i t ;
56 signal CORE ACTIVE : c o r e b i t ;
57 signal CORE BE : corebe ;
58
59
60 signal sPCI ADDS : s t d l o g i c := ’ 0 ’ ;
61 signal sPCI EMPTY : s t d l o g i c := ’ 0 ’ ;
62 signal sPCI BUSY : s t d l o g i c := ’ 0 ’ ;
63 signal sPCI RW : s t d l o g i c := ’ 0 ’ ;
64 signal sPCI RENWEN : s t d l o g i c := ’ 1 ’ ;
65
66 signal r s t i n v : s t d l o g i c ;
67 signal r s t i n t e r n a l : s t d l o g i c ;
68
69
70 COMPONENT core
71 PORT(
72 s y s c l k p i n : IN s t d l o g i c ;
73 s y s r s t p i n : IN s t d l o g i c ;
74 opb external memory 0 OMA DATA I pin : IN s t d l o g i c v e c t o r (0 to 31) ;
75 opb external memory 0 OMA VALID pin : IN s t d l o g i c ;
76 opb external memory 1 OMA DATA I pin : IN s t d l o g i c v e c t o r (0 to 31) ;
77 opb external memory 1 OMA VALID pin : IN s t d l o g i c ;
78 opb external memory 0 OMA DATA O pin : OUT s t d l o g i c v e c t o r (0 to 31) ;
79 opb external memory 0 OMA ADDRESS pin : OUT s t d l o g i c v e c t o r (0 to 31) ;
80 opb external memory 0 OMA RW pin : OUT s t d l o g i c ;
81 opb external memory 0 OMA ACTIVE pin : OUT s t d l o g i c ;
82 opb external memory 0 LEDS DEBUG pin : OUT s t d l o g i c v e c t o r (0 to 15) ;
83 opb external memory 0 OMA BE pin : OUT s t d l o g i c v e c t o r (0 to 3) ;
84 opb external memory 1 OMA DATA O pin : OUT s t d l o g i c v e c t o r (0 to 31) ;
85 opb external memory 1 OMA ADDRESS pin : OUT s t d l o g i c v e c t o r (0 to 31) ;
86 opb external memory 1 OMA RW pin : OUT s t d l o g i c ;
87 opb external memory 1 OMA ACTIVE pin : OUT s t d l o g i c ;
88 opb external memory 1 LEDS DEBUG pin : OUT s t d l o g i c v e c t o r (0 to 15) ;
89 opb external memory 1 OMA BE pin : OUT s t d l o g i c v e c t o r (0 to 3)
90) ;
91 ENDCOMPONENT;
92
93
94
95 COMPONENT pciCom
96 Port (
97 CLOCK : IN STD LOGIC;
98 RESET : IN STD LOGIC;
99 PCI ADDS : IN STD LOGIC;

100 PCI EMPTY : IN STD LOGIC;
101 PCI BUSY : IN STD LOGIC;
102 PCI RW : OUT STD LOGIC;
103 PCI RENWEN : OUT STD LOGIC;
104 PCI ADIO : INOUT STD LOGIC VECTOR (0 to 31) ;
105 −− LED DEBUG : OUT s t d l o g i c v e c t o r (0 to 15) ;
106 OMA VALID : OUT STD LOGIC;

100

APPENDIX B. HARDWARE B.8. TOPLEVEL - MCORE

107 OMA DATA I : OUT STD LOGIC VECTOR(0 to 31) ;
108 OMA BE : IN STD LOGIC VECTOR(0 to 3) ;
109 OMA DATA O : IN STD LOGIC VECTOR(0 to 31) ;
110 OMA ADDRESS : IN STD LOGIC VECTOR(0 to 31) ;
111 OMARW : IN STD LOGIC;
112 OMA ACTIVE : IN STD LOGIC
113) ;
114 ENDCOMPONENT;
115
116 begin
117
118 Ins t sys tem : core PORTMAP(
119 opb external memory 0 LEDS DEBUG pin => fpga 0 LEDS GPIO d out pin ,
120 s y s c l k p i n => s y s c l k p i n ,
121 s y s r s t p i n => r s t i nv ,
122 opb external memory 0 OMA DATA O pin => CORE DATA O (0) ,
123 opb external memory 0 OMA DATA I pin => CORE DATA I (0) ,
124 opb external memory 0 OMA VALID pin => CORE VALID(0) ,
125 opb external memory 0 OMA ADDRESS pin => CORE ADDRESS(0) ,
126 opb external memory 0 OMA RW pin => CORE RW (0) ,
127 opb external memory 0 OMA ACTIVE pin => CORE ACTIVE(0) ,
128 opb external memory 0 OMA BE pin => CORE BE(0) ,
129 opb external memory 1 OMA DATA O pin => CORE DATA O (1) ,
130 opb external memory 1 OMA DATA I pin => CORE DATA I (1) ,
131 opb external memory 1 OMA VALID pin => CORE VALID(1) ,
132 opb external memory 1 OMA ADDRESS pin => CORE ADDRESS(1) ,
133 opb external memory 1 OMA RW pin => CORE RW (1) ,
134 opb external memory 1 OMA ACTIVE pin => CORE ACTIVE(1) ,
135 opb external memory 1 OMA BE pin => CORE BE(1)
136) ;
137
138 a r b i t e r : entity work . a r b i t e r PORTMAP(
139 CLOCK => s y s c l k p i n ,
140 RESET => r s t i nv ,
141
142 IN OMA DATA O => CORE DATA O,
143 IN OMA DATA I => CORE DATA I,
144 IN OMA VALID => CORE VALID,
145 IN OMA ADDRESS => CORE ADDRESS,
146 IN OMA RW => CORE RW,
147 IN OMA ACTIVE => CORE ACTIVE,
148 IN OMA BE => CORE BE,
149
150 OUT OMA VALID => OMA VALID,
151 OUT OMA DATA I => OMA DATA I,
152 OUT OMA DATA O => OMA DATA O,
153 OUT OMA ADDRESS => OMA ADDRESS,
154 OUT OMA BE => OMA BE ,
155 OUTOMARW => OMARW,
156 OUT OMA ACTIVE => OMA ACTIVE
157
158) ;
159
160
161 communication : pciCom PORTMAP(
162 CLOCK => s y s c l k p i n ,

101

B.8. TOPLEVEL - MCORE APPENDIX B. HARDWARE

163 RESET => r s t i nv ,
164 PCI ADDS => sPCI ADDS ,
165 PCI EMPTY => sPCI EMPTY,
166 PCI BUSY => sPCI BUSY ,
167 PCI RW => sPCI RW,
168 PCI RENWEN => sPCI RENWEN,
169 PCI ADIO => PCI ADIO ,
170
171 OMA BE => OMA BE,
172 OMA VALID => OMA VALID,
173 OMA DATA I => OMA DATA I,
174 OMA DATA O => OMA DATA O,
175 OMA ADDRESS => OMA ADDRESS,
176 OMARW => OMARW,
177 OMA ACTIVE => OMA ACTIVE
178) ;
179
180 IBUF inst : IBUF
181 generic map (
182 IBUF DELAY VALUE => ”0 ” ,
183 IFD DELAY VALUE => ”AUTO” ,
184 IOSTANDARD => ”DEFAULT”)
185 port map (
186 O => r s t i n t e r n a l ,
187 I => r e s e t
188) ;
189
190 f : process (PCI ADDS, PCI EMPTY, PCI BUSY, sPCI RW, sPCI RENWEN,

r s t i n t e r n a l) i s
191 begin
192 sPCI ADDS <= PCI ADDS ;
193 sPCI EMPTY <= PCI EMPTY;
194 sPCI BUSY <= PCI BUSY ;
195 PCI RW <= sPCI RW;
196 PCI RENWEN <= sPCI RENWEN ;
197 r s t i n v <= not r s t i n t e r n a l ;
198 end process ;
199
200 end Behaviora l ;

102

APPENDIX B. HARDWARE B.9. TOPLEVEL - SCORE

B.9 Toplevel - sCore

1 −−
−−

2 −− Create Date : 13 :58 :29 11/20/2006
3 −− Design Name:
4 −− Module Name: t o p l e v e l − Behav iora l
5 −− Pro jec t Name:
6 −− Target Devices :
7 −− Tool v e r s i on s :
8 −− Descr ip t i on :
9 −−

10 −− Dependencies :
11 −−
12 −− Revis ion :
13 −− Revis ion 0.01 − F i l e Created
14 −− Add i t i ona l Comments :
15 −−
16 −−

−−

17 l ibrary IEEE ;
18 use IEEE . STD LOGIC 1164 .ALL;
19 use IEEE .STD LOGIC ARITH.ALL;
20 use IEEE .STD LOGIC UNSIGNED.ALL;
21
22 −−−− Uncomment the f o l l ow i n g l i b r a r y d e c l a r a t i on i f i n s t a n t i a t i n g
23 −−−− any Xi l i n x p r im i t i v e s in t h i s code .
24 l ibrary UNISIM ;
25 use UNISIM . VComponents . a l l ;
26
27 entity t o p l e v e l i s
28 PORT(
29 s y s c l k p i n : IN s t d l o g i c ;
30 r e s e t : IN s t d l o g i c ;
31 fpga 0 LEDS GPIO d out pin : OUT s t d l o g i c v e c t o r (0 to 15) ;
32 PCI ADDS : in STD LOGIC;
33 PCI EMPTY : in STD LOGIC;
34 PCI BUSY : in STD LOGIC;
35 PCI RW : out STD LOGIC;
36 PCI RENWEN : out STD LOGIC;
37 PCI ADIO : inout STD LOGIC VECTOR (0 to 31)) ;
38 end t o p l e v e l ;
39
40 architecture Behaviora l of t o p l e v e l i s
41 signal OMA VALID : s t d l o g i c ;
42 signal OMA DATA I : s t d l o g i c v e c t o r (0 to 31) := (others => ’0 ’) ;
43 signal OMA DATA O : s t d l o g i c v e c t o r (0 to 31) := (others => ’0 ’) ;
44 signal OMA ADDRESS : s t d l o g i c v e c t o r (0 to 31) := x”DEADBEEF” ;
45 signal OMARW : s t d l o g i c ;
46 signal OMA ACTIVE : s t d l o g i c ;
47 signal OMA BE : s t d l o g i c v e c t o r (0 to 3) := (others => ’ 0 ’) ;
48
49
50 signal sPCI ADDS : s t d l o g i c := ’ 0 ’ ;

103

B.9. TOPLEVEL - SCORE APPENDIX B. HARDWARE

51 signal sPCI EMPTY : s t d l o g i c := ’ 0 ’ ;
52 signal sPCI BUSY : s t d l o g i c := ’ 0 ’ ;
53 signal sPCI RW : s t d l o g i c := ’ 0 ’ ;
54 signal sPCI RENWEN : s t d l o g i c := ’ 1 ’ ;
55
56 signal r s t i n v : s t d l o g i c ;
57 signal r s t i n t e r n a l : s t d l o g i c ;
58
59
60 COMPONENT system
61 PORT(
62 opb external memory 0 LEDS DEBUG pin : OUT s t d l o g i c v e c t o r (0 to 15) ;
63 s y s c l k p i n : IN s t d l o g i c ;
64 s y s r s t p i n : IN s t d l o g i c ;
65 opb external memory 0 OMA DATA I pin : IN s t d l o g i c v e c t o r (0 to 31) ;
66 opb external memory 0 OMA VALID pin : IN s t d l o g i c ;
67 opb external memory 0 OMA DATA O pin : OUT s t d l o g i c v e c t o r (0 to 31) ;
68 opb external memory 0 OMA ADDRESS pin : OUT s t d l o g i c v e c t o r (0 to 31) ;
69 opb external memory 0 OMA RW pin : OUT s t d l o g i c ;
70 opb external memory 0 OMA BE pin : OUT s t d l o g i c v e c t o r (0 to 3) ;
71 opb external memory 0 OMA ACTIVE pin : OUT s t d l o g i c
72) ;
73 ENDCOMPONENT;
74
75 COMPONENT pciCom
76 Port (
77 CLOCK : in s t d l o g i c ;
78 RESET : in s t d l o g i c ;
79 PCI ADDS : in STD LOGIC;
80 PCI EMPTY : in STD LOGIC;
81 PCI BUSY : in STD LOGIC;
82 PCI RW : out STD LOGIC;
83 PCI RENWEN : out STD LOGIC;
84 PCI ADIO : inout STD LOGIC VECTOR (0 to 31) ;
85 −− LED DEBUG : OUT s t d l o g i c v e c t o r (0 to 15) ;
86 OMA VALID : OUT s t d l o g i c ;
87 OMA DATA I : OUT s t d l o g i c v e c t o r (0 to 31) ;
88 OMA BE : IN s t d l o g i c v e c t o r (0 to 3) ;
89 OMA DATA O : IN s t d l o g i c v e c t o r (0 to 31) ;
90 OMA ADDRESS : IN s t d l o g i c v e c t o r (0 to 31) ;
91 OMARW : IN s t d l o g i c ;
92 OMA ACTIVE : IN s t d l o g i c
93) ;
94 ENDCOMPONENT;
95
96 begin
97
98 Ins t sys tem : system PORTMAP(
99 opb external memory 0 LEDS DEBUG pin => fpga 0 LEDS GPIO d out pin ,

100 s y s c l k p i n => s y s c l k p i n ,
101 s y s r s t p i n => r s t i nv ,
102 opb external memory 0 OMA DATA O pin => OMA DATA O ,
103 opb external memory 0 OMA DATA I pin => OMA DATA I ,
104 opb external memory 0 OMA VALID pin => OMA VALID,
105 opb external memory 0 OMA ADDRESS pin => OMA ADDRESS,
106 opb external memory 0 OMA RW pin => OMARW ,

104

APPENDIX B. HARDWARE B.9. TOPLEVEL - SCORE

107 opb external memory 0 OMA ACTIVE pin => OMA ACTIVE,
108 opb external memory 0 OMA BE pin => OMA BE
109) ;
110
111 communication : pciCom PORTMAP(
112 CLOCK => s y s c l k p i n ,
113 RESET => r s t i nv ,
114 PCI ADDS => sPCI ADDS ,
115 PCI EMPTY => sPCI EMPTY,
116 PCI BUSY => sPCI BUSY ,
117 PCI RW => sPCI RW,
118 PCI RENWEN => sPCI RENWEN,
119 PCI ADIO => PCI ADIO ,
120 OMA BE => OMA BE,
121 OMA VALID => OMA VALID,
122 OMA DATA I => OMA DATA I,
123 OMA DATA O => OMA DATA O,
124 OMA ADDRESS => OMA ADDRESS,
125 OMARW => OMARW,
126 OMA ACTIVE => OMA ACTIVE
127) ;
128
129 IBUF inst : IBUF
130 generic map (
131 IBUF DELAY VALUE => ”0 ” ,
132 IFD DELAY VALUE => ”AUTO” ,
133 IOSTANDARD => ”DEFAULT”)
134 port map (
135 O => r s t i n t e r n a l ,
136 I => r e s e t
137) ;
138
139 f : process (PCI ADDS, PCI EMPTY, PCI BUSY, sPCI RW, sPCI RENWEN,

r s t i n t e r n a l) i s
140 begin
141 sPCI ADDS <= PCI ADDS ;
142 sPCI EMPTY <= PCI EMPTY;
143 sPCI BUSY <= PCI BUSY ;
144 PCI RW <= sPCI RW;
145 PCI RENWEN <= sPCI RENWEN ;
146 r s t i n v <= not r s t i n t e r n a l ;
147 end process ;
148
149 end Behaviora l ;

105

B.9. TOPLEVEL - SCORE APPENDIX B. HARDWARE

106

Appendix C

Software

C.1 Controller.c

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <s i g n a l . h>
4
5 #include ” c o n t r o l l e r . h”
6 #include ”cpu . h”
7 #include ”memory . h”
8 #include ” u t i l . h”
9

10
11 // #de f i n e DEBUG
12
13 stat ic Memory *m;
14 stat ic STATE s t a t e ;
15
16 int run = 1 ;
17
18 unsigned long long int memRead = 0 , memWrite = 0 ;
19
20 unsigned char byteEnabled = 0 ;
21
22 i n l i n e unsigned long long int rd t s c () {
23 unsigned long long int x ;
24 asm volat i le (” . byte 0x0f , 0x31 ” : ”=A” (x)) ;
25 return x ;
26 }
27
28
29 void termi (int code) {
30 p r i n t f (”\nNow ex i t i n g with code : %d\n” , code) ;
31
32 #ifdef DEBUG
33 p r i n t f (”Want to d i sp l ay a memory map?\n”) ;
34 i f (getchar () == ’y ’) {

107

C.1. CONTROLLER.C APPENDIX C. SOFTWARE

35 p r i n t f (”Memory Map\n”) ;
36 mem print (m) ;
37 }
38 #endif
39
40 p r i n t f (”\n”) ;
41 e x i t (code) ;
42 }
43
44 void t r ap s eg (int s i g n a l) {
45 p r i n t f (”Seg . f a u l t \n”) ;
46 termi (5) ;
47 }
48
49 int handle (unsigned int command) {
50 unsigned int r eve r s ed = r ev e r s e I n t (command) ;
51
52 #ifdef DEBUG
53 p r i n t f (”Doing s t a t e : 0x%08x , r : 0x%08x\n” ,command , r eve r s ed) ;
54 #endif
55
56 i f (s t a t e == IDLE) {
57 #ifdef DEBUG
58 p r i n t f (”Reverse : 0x%08X\n” , r eve r s ed) ;
59 #endif
60 i f (r eve r s ed == READ SIGNAL) {
61 s t a t e = R ADDR;
62 } else i f ((r eve r s ed & 0xFF) == 0x02) {
63 s t a t e = WADDR;
64 // Byte Enabled Hack .
65 byteEnabled = (reve r s ed >> 4*3) & 0xF ;
66 #ifdef DEBUG
67 p r i n t f (”Byte Lines : 0x%08X\n” , byteEnabled) ;
68 #endif
69 }
70 } else i f (WRITING <= s ta t e && s t a t e <= WDATA) {
71 s t a t e = handleWrite (command , s t a t e) ;
72 } else i f (READING <= s ta t e && s t a t e <= R DATA) {
73 s t a t e = handleRead (command , s t a t e) ;
74 } else i f (s t a t e == COMPLETE) {
75 #ifdef DEBUG
76 p r i n t f (”Operation took 0x%08X ope ra t i on s \n” , r eve r s ed) ;
77 #endif
78 s t a t e = IDLE ;
79 }
80
81 }
82
83 int handleRead (unsigned int command , const STATE s t a t e) {
84 /* The FPGA t r i e s to acces s a memory l o c a t i o n */
85 unsigned int r eve r s ed = r ev e r s e I n t (command) ;
86 unsigned int r ;
87
88 #ifdef DEBUG
89 p r i n t f (”Now handl ing read to memory : 0x%X\n” , r eve r s ed) ;
90 #endif

108

APPENDIX C. SOFTWARE C.1. CONTROLLER.C

91 int i = mem read (reversed ,NULL,m) ;
92 r = r e v e r s e I n t (i) ;
93
94 #ifdef DEBUG
95 p r i n t f (”Sending value : 0x%08x , r=0x%08x\n” , i , r) ;
96 #endif
97 writeWord32 (i) ;
98 memRead++;
99

100 // IDLE STAGE HACK!
101 getWord32 () ;
102
103 return COMPLETE;
104 }
105
106 int handleWrite (unsigned int command , const STATE s t a t e) {
107 unsigned int r eve r s ed = r ev e r s e I n t (command) ;
108 /* The FPGA t r i e s to wr i t e to a memory l o c a t i on */
109
110 unsigned int i = 0 ;
111
112 switch (s t a t e) {
113 case WADDR:
114 i = getWord32 () ;
115 #ifdef DEBUG
116 p r i n t f (”Stor ing to mem: 0x%08x , data : 0x%08x\n” , reversed , i) ;
117 #endif
118 i f (r eve r s ed == 0x7FFFFFFF) {
119 p r i n t f (”\nTerminate s i g n a l from CPU\n”) ;
120 run = 0 ;
121 // termi (2) ;
122 }
123 memWrite++;
124
125 i f (run) mem write (reversed , i , byteEnabled , m) ;
126 default : return COMPLETE;
127 }
128
129 }
130
131 p r i n t s t a t e () {
132 switch (s t a t e) {
133 case IDLE :
134 p r i n t f (”State : IDLE\n”) ;
135 break ;
136 case WRITING:
137 p r i n t f (”State : WRITING\n”) ;
138 break ;
139 case WADDR:
140 p r i n t f (”State : WADDR\n”) ;
141 break ;
142 case WDATA:
143 p r i n t f (”State : WDATA\n”) ;
144 break ;
145 case READING:
146 p r i n t f (”State : READING\n”) ;

109

C.1. CONTROLLER.C APPENDIX C. SOFTWARE

147 break ;
148 case R ADDR:
149 p r i n t f (”State : R ADDR\n”) ;
150 break ;
151 case R DATA:
152 p r i n t f (”State : R DATA\n”) ;
153 break ;
154 case COMPLETE:
155 p r i n t f (”State : COMPLETE\n”) ;
156 break ;
157 default : p r i n t f (”State : UNKNOWN\n”) ;
158 }
159 }
160
161 int main (int argc , char ** argv) {
162 MemBlock b ;
163 int f = 0 ;
164
165 i f (argc < 2) {
166 p r i n t f (”Usage : %s <b i t f i l e > [a pp l i c a t i on]\n” , argv [0]) ;
167 e x i t (1) ;
168 }
169
170 // s i g n a l (SIGSEGV, t r ap s e g) ;
171
172 // I n i t the memory
173 m = mem init () ;
174 int mm;
175 i f (argc > 2) {
176 i f ((mm = mem load (m, argv [2]) < 0)) {
177 p r i n t f (”Error opening f i l e : %s , e r r o r : %d\n” , argv [2] , mm) ;
178 e x i t (1) ;
179 }
180 }
181
182 s t a t e = IDLE ;
183
184 #ifdef DEBUG
185 p r i n t f (”Now opening the card \n”) ;
186 #endif
187 f = openCard (1 , argv [1]) ;
188 #ifdef DEBUG
189 p r i n t f (”OpenCard returned : %d\n\n” , f) ;
190 #endif
191
192 //================== Conf igura t ion done .
193 unsigned long long int s ta r t , end , runtime ;
194 s t a r t = end = 0 ;
195
196 f = ’ \0 ’ ;
197
198 s t a r t = rd t s c () ;
199 do {
200 #ifdef DEBUG
201 p r i n t s t a t e () ;
202 #endif

110

APPENDIX C. SOFTWARE C.1. CONTROLLER.C

203
204 switch (f) {
205 case ’ s ’ :
206 #ifdef DEBUG
207 p r i n t f (”Now wr i t i ng \n”) ;
208 #endif
209 writeWord32 (0xFF) ;
210 break ;
211 case ’ r ’ :
212 #ifdef DEBUG
213 p r i n t f (”Reset\n”) ;
214 #endif
215 break ;
216 default :
217 break ;
218 }
219
220 handle (getWord32 ()) ;
221 #ifdef DEBUG
222 p r i n t f (”Press q to quit , eve ryth ing e l s e to cont inue \n”) ;
223 getchar () ;
224 #endif
225 }while (run) ;
226 end = rdt s c () ;
227
228 p r i n t f (”Stat s :\n”) ;
229 p r i n t f (”\ tRunning time : %l l u \n” , end − s t a r t) ;
230 p r i n t f (”\ tTota l mem acc e s s : %l l u \n” , memRead + memWrite) ;
231 p r i n t f (”\ tTota l mem reads : %l l u \n” , memRead) ;
232 p r i n t f (”\ tTota l mem wr i t e s : %l l u \n” , memWrite) ;
233
234 p r i n t f (”Did you f i nd anything ?\nNow ex i t i n g \n”) ;
235 f = closeCard () ;
236 p r i n t f (”Close card returned : %d\n” , f) ;
237 p r i n t f (”Now pr i n t i n g memory\n”) ;
238
239 for (f =0; f<m−>mem used ; f++){
240 b = m−>data [f] ;
241 p r i n t f (”Ce l l %d conta in s %02x\n” ,b . addr , b . data) ;
242 }
243
244 termi (3) ;
245
246 return 1 ;
247 }

111

C.2. CONTROLLER.H APPENDIX C. SOFTWARE

C.2 Controller.h

1 #ifndef CONTROLLER H
2 #define CONTROLLER H
3
4 #define READ SIGNAL 0x0000001
5 #define WRITE SIGNAL 0x0000002
6
7
8 typedef enum {
9 IDLE = 0 ,

10 WRITING,
11 W ADDR,
12 W DATA,
13 READING,
14 R ADDR,
15 R DATA,
16 COMPLETE
17 }STATE;
18
19 #endif

112

APPENDIX C. SOFTWARE C.3. MEMORY.H

C.3 memory.h

1
2 #ifndef MEMORY H
3 #define MEMORY H
4
5 #define START MEM 20
6 #define GROWRATE 20
7
8 // #de f i n e MEM SIZE 0x4FC000C
9 #define MEM SIZE 0x5000000

10
11 #include ”rb . h”
12
13 struct MemBlock {
14 unsigned int addr ;
15 unsigned char data ;
16 struct MemBlock *prev , *next ;
17 } ;
18
19 typedef struct MemBlock MemBlock ;
20
21 typedef struct {
22 unsigned int max addr ;
23 unsigned int mem used ;
24 unsigned int mem size ;
25 MemBlock *data ;
26 struct r b t ab l e * t ab l e ;
27 unsigned char *bytes ;
28 }Memory ;
29
30
31 Memory *mem init () ;
32 int mem load (Memory *m, char * f i l ename) ;
33 unsigned int mem read (unsigned int addr , int * e r ror , Memory *m) ;
34 unsigned int mem write (unsigned int addr , unsigned int data , unsigned char

byteEnabled , Memory *m) ;
35 unsigned int mem writeByte (unsigned int addr , unsigned char data , Memory *m)

;
36 int mem clean (Memory *m) ;
37 int mem print (Memory *m) ;
38 int mem zero (Memory *m, unsigned int o f f s e t) ;
39
40 #endif

113

C.4. MEMORY.C APPENDIX C. SOFTWARE

C.4 memory.c

1 /**
2 * Simple memory ho lde r . .
3 * Implementing a array ,
4 * A hash i sn ’ t worth the implementat ion
5 * time , and I don ’ t want to a l l o c a t e 4Gb
6 * o f data f o r a t r a d i t i o n a l array .
7 *

8 * Kenneth Oestby <kenneo@idi . ntnu . no>
9 */

10
11 #include <s t d i o . h>
12 #include <s t d l i b . h>
13 #include <s t r i n g . h>
14 #include <uni s td . h>
15
16 #include ”memory . h”
17 #include ” u t i l . h”
18 #include ”rb . h”
19
20 int mem load (Memory *m, char * f i l ename) {
21 FILE * f = NULL;
22 int memLoc = 0 ;
23 unsigned int *data = 0 ;
24 data =(unsigned int *) mal loc (s izeof (unsigned int)) ;
25 *data = 0 ;
26
27 i f (!m | | ! f i l ename) return −1;
28
29 i f (! (f= fopen (f i l ename , ”r ”))) {
30 return −2;
31 }
32
33 while (f r ead ((void *) data , s izeof (unsigned char) ,
34 1 , f)) {
35 mem writeByte (memLoc++, r e v e r s e I n t 8 (* data) ,m) ;
36 }
37
38 f r e e (data) ;
39
40 return memLoc ;
41 }
42
43 int mem print (Memory *m) {
44 i f (! m | | !m−>data) return −1;
45
46 int i = 0 ;
47 int x ;
48 for (i = 0 ; i < MEM SIZE; i++) {
49 i f (! (i % 32))
50 p r i n t f (”\n %03X ” , i) ;
51
52 p r i n t f (”%02hhX ” , mem read (i , &x , m)) ;
53 }
54 }

114

APPENDIX C. SOFTWARE C.4. MEMORY.C

55
56 int mem clean (Memory *m) {
57 return 1 ;
58 }
59
60 /*
61 * Zero out the memory from the g iven o f f s e t .
62 */
63 int mem zero (Memory *m, unsigned int o f f s e t) {
64 i f (!m) return −1;
65
66 bzero (m−>data + o f f s e t , (m−>mem size − o f f s e t) * s izeof (MemBlock)) ;
67 return 1 ;
68 }
69
70 Memory *mem init () {
71 Memory *m = NULL;
72 m = (Memory*) mal loc (s izeof (Memory)) ;
73 m−>data = NULL;
74 m−>mem size = 0 ;
75 m−>mem used = 0 ;
76 m−>max addr = 0 ;
77
78 /*
79 * Bite o f some b i t s o f memory . .
80 *

81 * I f you ’ re going use the CPU,
82 * you ’ re probab l y going to want
83 * some memory to go a long in the
84 * f i r s t p l ace . Mal loc i s s l ow !
85 * Defau l t i s 2 0 . . 20 * 32 shou ld be enough
86 * f o r everybody .
87 */
88
89 i f (! (m−>data = (MemBlock*) mal loc (s izeof (MemBlock) * START MEM))) {
90 mem clean (m) ;
91 return NULL;
92 }
93
94 // m−>t a b l e = r b c r e a t e (compare ints ,NULL,NULL) ;
95
96 m−>bytes = (unsigned char*) mal loc (MEM SIZE * s izeof (char)) ;
97
98 m−>mem size = START MEM;
99 mem zero (m, 0) ;

100 return m;
101 }
102
103 unsigned int mem read (unsigned int addr , int * e r ror ,Memory *m) {
104 i f (!m) {
105 i f (e r r o r) * e r r o r = −1;
106 }/* e l s e i f (!m−>mem used){
107 i f (e r ror) * error = −2;
108 } e l s e i f (addr > m−>max addr) {
109 i f (e r ror) * error = −3;
110 }*/

115

C.4. MEMORY.C APPENDIX C. SOFTWARE

111
112 i f (e r r o r && * e r r o r < 0) return 0 ;
113
114 /*
115 i n t i = 0 , j = 0 ;
116 MemBlock *tmp = NULL;
117 unsigned i n t returnMe = 0;
118
119 f o r (i = 0 ; i < m−>mem used ; i++) {
120 i f (m−>data [i] . addr == addr){
121 tmp = m−>data + i ;
122 do {
123 p r i n t f (”Fnord:%p\n” , tmp) ;
124 p r i n t f (”Next:%p\n” , tmp−>next) ;
125 returnMe |= tmp−>data << j * 8 ;
126 }whi l e ((tmp = tmp−>next) && ++j < 4) ;
127 }
128 }
129
130 re turn returnMe ;
131 */
132
133 return m−>bytes [addr+3] << 24 | m−>bytes [addr+2] << 16 | m−>bytes [addr+1]

<< 8 | m−>bytes [addr] ;
134 // re turn m−>b y t e s [addr] ;
135 }
136
137 int updatePointers (Memory *m, unsigned int addr) {
138 i f (!m) return −1;
139
140 // Slow implementat ion on wr i t e to he l p speed up read .
141 // Update the next and prev−po in t e r .
142 int i = 0 ;
143 for (i = 0 ; i<m−>mem used ; i++){
144 i f (m−>data [i] . addr == addr −1)
145 m−>data [i] . next = m−>data + m−>mem used −1;
146 else i f (m−>data [i] . addr == addr +1)
147 m−>data [i] . prev = m−>data + m−>mem used −1;
148 }
149
150 return 1 ;
151 }
152
153 unsigned int mem writeByte (unsigned int addr , unsigned char data , Memory *m)

{
154 i f (!m) return 0 ;
155 stat ic int i = 0 ;
156
157 /*
158 // Go through the array o f memory to f i nd the memory b l o c k .
159 // Future implementat ion would need a hash or something
160 // f a s t e r . .
161 f o r (i = 0 ; i < m−>mem used ; i++) {
162 i f (m−>data [i] . addr == addr){
163 m−>data [i] . data = data ;
164 re turn 1 ;

116

APPENDIX C. SOFTWARE C.4. MEMORY.C

165 }
166 }
167
168 i f (m−>max addr < addr)
169 m−>max addr = addr ;
170
171 // I f not found in the array . . Expand i t . .
172 i f (m−>mem used < m−>mem size) {
173 m−>data [m−>mem used] . addr = addr ;
174 m−>data [m−>mem used++]. data = data ;
175 } e l s e {
176 // We need to grow the ac t ua l data array .
177 m−>mem size += GROWRATE;
178 p r i n t f (”Now growing to %d\n” ,m−>mem size) ;
179 m−>data = (MemBlock*) r e a l l o c ((vo id *)m−>data ,m−>mem size* s i z e o f (MemBlock)

) ;
180
181 m−>data [m−>mem used] . addr = addr ;
182 m−>data [m−>mem used++]. data = data ;
183 }
184
185 updatePoin ters (m, addr) ;
186 */
187
188 m−>bytes [addr] = data ;
189
190 return 1 ;
191 }
192
193 unsigned int mem write (unsigned int addr , unsigned int data , unsigned char

byteEnabled , Memory *m) {
194 int i = 0 ;
195 char d ;
196
197 // S p l i t up the data in based upon byteEnab led f i e l d !
198 for (i = 0 ; i <3; i++){
199 i f (byteEnabled & (1 << i)) {
200 d = (data >> s izeof (char) * 4) & 0xFF ;
201 mem writeByte (addr+i , d , m) ;
202 } else break ;
203 }
204
205 return 1 ;
206 }

117

C.5. CPU.C APPENDIX C. SOFTWARE

C.5 cpu.c

1 #include ”cpu . h”
2 #include ” u t i l . h”
3
4 #include <s t d i o . h>
5
6 int openCard (int cardNum , char * b i t f i l e) {
7 char e r r o r [1 0 2 4] ;
8 DWORD errorNum ;
9

10 cpu . l o c a t e = NULL;
11 cpu . card = NULL;
12 cpu .dma = NULL;
13 cpu . send = NULL;
14 cpu . recv = NULL;
15
16 cpu . l o c a t e = DIME LocateCard (dlPCI ,
17 mbtALL,
18 NULL,
19 dldrDEFAULT,
20 dlDEFAULT) ;
21
22 i f (! cpu . l o c a t e) {
23 DIME GetError (NULL,&errorNum , e r r o r) ;
24 p r i n t f (”\nLocate Error #%d\n%s \n” , errorNum , e r r o r) ;
25 c loseCard () ;
26 return −1;
27 }
28
29 i f (! (cpu . card = DIME OpenCard(cpu . l oca te ,
30 cardNum ,dccOPEN DEFAULT)))
31 {
32 DIME GetError (NULL,&errorNum , e r r o r) ;
33 p r i n t f (”\nCard Error #%d\n%s \n” , errorNum , e r r o r) ;
34 c loseCard () ;
35 return −2;
36 }
37
38 // Setup chat .
39 i f (setupDMA() < 1) {
40 p r i n t f (”DMA f a i l e d \n”) ;
41 c loseCard () ;
42 return −3;
43 }
44
45 i f (DIME JTAGControl (cpu . card , djtagCONFIGSPEED , djtagMAXSPEED100)) {
46 p r i n t f (”JTAG died \n”) ;
47 DIME GetError (NULL,&errorNum , e r r o r) ;
48 p r i n t f (”\nError #%d\n%s \n” , errorNum , e r r o r) ;
49 c loseCard () ;
50 return −4;
51 }
52
53 // F ina l l y s e t the c l o c k b e f o r e con f i g u r i n g the card :
54 DIME SetOsci l latorFrequency (cpu . card , CLOCK NUM, CLOCK FREQ, NULL) ;

118

APPENDIX C. SOFTWARE C.5. CPU.C

55
56 i f (conf igureCard (b i t f i l e) < 1) {
57
58 p r i n t f (”Could not con f i gu r e FPGA\n”) ;
59 c loseCard () ;
60 return −5;
61 }
62
63 i f (resetCard () < 1) {
64 p r i n t f (”Error r e s e t t i n g card .\n”) ;
65 c loseCard () ;
66 return −6;
67 } ;
68
69 return 1 ;
70 }
71
72 int setupDMA() {
73 char e r r o r [1 0 2 4] ;
74 DWORD errorNum ;
75
76 bzero (cpu . recvBuf f e r , s izeof (int) *BUFFER SIZE) ;
77 bzero (cpu . sendBuffer , s izeof (int) *BUFFER SIZE) ;
78
79 i f (! cpu . l o c a t e | | ! cpu . card)
80 return −1;
81
82 i f (! (cpu . send = DIME LockMemory(cpu . card ,
83 (DWORD*) cpu . sendBuffer ,
84 s izeof (cpu . sendBuf fe r))))
85 {
86 p r i n t f (”Could not setup send bu f f e r \n”) ;
87 return −2;
88 }
89
90 i f (! (cpu . recv = DIME LockMemory(cpu . card ,
91 (DWORD*) cpu . recvBuf f e r ,
92 s izeof (cpu . r e cvBu f f e r))))
93 {
94 i f (cpu . send) DIME UnLockMemory(cpu . card , cpu . send) ;
95 p r i n t f (”Could not setup send bu f f e r \n”) ;
96 return −3;
97 }
98
99 i f (! (cpu .dma = DIME DMAOpen(cpu . card , 1 ,0))) {

100 i f (cpu . send) DIME UnLockMemory(cpu . card , cpu . send) ;
101 i f (cpu . recv) DIME UnLockMemory(cpu . card , cpu . recv) ;
102
103 p r i n t f (”Error opening DMA Channel numero uno\n”) ;
104
105 return −4;
106 }
107
108 // DO NOT INCREASE THE LOCAL MEMORY ADDR AFTER USE ! !
109 DIME DMAControl(cpu . card , cpu . dma,ddmaLOCALNOINC, 0) ;
110

119

C.5. CPU.C APPENDIX C. SOFTWARE

111 return 1 ;
112 }
113
114 int conf igureCard (char * b i t f i l e) {
115 char e r r o r [1 0 2 4] ;
116 DWORD errorNum ;
117
118 i f (! b i t f i l e | | ! cpu . card)
119 return −1;
120
121 i f (! DIME BootVirtexSingle (cpu . card , b i t f i l e)) {
122 DIME GetError (NULL,&errorNum , e r r o r) ;
123 p r i n t f (”Conf igure Error #%d\n%s \n” , errorNum , e r r o r) ;
124 }
125
126 return 1 ;
127 }
128
129 int resetCard () {
130 // ENABLE = 0 , DISABLE = 1
131 DIME CardResetControl (cpu . card , drONBOARDFPGA, drENABLE, 0) ;
132 DIME CardResetControl (cpu . card , drINTERFACE, drTOGGLE, 0) ;
133 DIME CardResetControl (cpu . card , drONBOARDFPGA, drDISABLE , 0) ;
134
135 return 1 ;
136 }
137
138 int c loseCard () {
139 i f (cpu . card) {
140 i f (cpu . send) DIME UnLockMemory(cpu . card , cpu . send) ;
141 i f (cpu . recv) DIME UnLockMemory(cpu . card , cpu . recv) ;
142 i f (cpu .dma) DIME DMAClose(cpu . card , cpu . dma,ddmaCLOSETERMINATE) ;
143
144 DIME CloseCard (cpu . card) ; }
145
146 // Close down the card
147 i f (cpu . l o c a t e) DIME CloseLocate (cpu . l o c a t e) ;
148
149 cpu . card = (cpu . l o c a t e = NULL) ;
150
151 return 1 ;
152 }
153
154 int writeCard (int s i z e) {
155 i f (! cpu . card) return −1;
156 i f (! cpu .dma) return −2;
157 i f (! cpu . send) return −3;
158
159
160 i f (ddmaOK !=
161 DIME DMAWriteFromLockedMem(cpu . card , cpu . dma,
162 cpu . send , 0 , 1 , ddmaBLOCKING))
163 {
164 p r i n t f (”Error wr i t i ng s t u f f . . ! ”) ;
165 }
166

120

APPENDIX C. SOFTWARE C.5. CPU.C

167 return 1 ;
168 }
169
170 int readCard (int s i z e) {
171 i f (! cpu . card) return −1;
172 i f (! cpu .dma) return −2;
173 i f (! cpu . recv) return −3;
174
175 bzero (cpu . recvBuf f e r ,BUFFER SIZE) ;
176
177 i f (ddmaOK != DIME DMAReadToLockedMem(cpu . card ,
178 cpu .dma, cpu . recv ,
179 0 , s i z e , ddmaBLOCKING)) {
180 p r i n t f (”Error read ing s t u f f \n”) ;
181 }
182
183 return s i z e ;
184 }
185
186 // User f unc t i on s .
187 unsigned int getWord32 () {
188 readCard (1) ;
189 return cpu . r e cvBu f f e r [0] ;
190 }
191
192 unsigned int writeWord32 (unsigned int word) {
193 cpu . sendBuf fe r [0] = HostToCoreI (word) ;
194 writeCard (1) ;
195 return 1 ;
196 }

121

C.6. CPU.H APPENDIX C. SOFTWARE

C.6 cpu.h

1 /*
2 * CPU Con t ro l l e r f o r Master Thesis Pro jec t
3 * 2006 − Kenneth Oestby <kenneo@idi . ntnu . no>
4 *

5 *

6 */
7
8 #include <dimesdl . h>
9

10 #ifndef CPU H
11
12 #define BUFFER SIZE 2048
13 #define CLOCK NUM 2
14 #define CLOCK FREQ 40
15
16 typedef struct {
17 DIME HANDLE card ;
18 LOCATE HANDLE l o c a t e ;
19 DWORD l ed s ;
20 unsigned int sendBuf fe r [BUFFER SIZE] ;
21 unsigned int r e cvBu f f e r [BUFFER SIZE] ;
22 DIME MEMHANDLE send ;
23 DIME MEMHANDLE recv ;
24 DIME DMAHANDLE dma ;
25 }CPU;
26
27 stat ic CPU cpu ;
28
29 int openCard (int cardNum , char * b i t f i l e) ;
30 int setupDMA() ;
31 int c loseCard () ;
32 int conf igureCard (char * f i l ename) ;
33 int writeCard (int s i z e) ;
34 int readCard (int s i z e) ;
35 int resetCard () ;
36
37
38 unsigned int getWord32 () ;
39 unsigned int writeWord32 (unsigned int word) ;
40
41
42 #endif

122

APPENDIX C. SOFTWARE C.7. UTIL.H

C.7 util.h

1 /**
2 * Seve ra l u t i l i t y f unc t i on s
3 * to make the l i f e e a s i e r
4 *

5 * 2007 − Kenneth Oestby <kenneo@idi . ntnu . no>
6 *

7 */
8
9 unsigned int CoreToHostI (unsigned int i) ;

10 unsigned int HostToCoreI (unsigned int i) ;
11 unsigned long ByteSwap2 (unsigned long nLongNumber) ;
12 unsigned int r e v e r s e I n t (unsigned int i) ;
13 unsigned char r e v e r s e I n t 8 (unsigned char i) ;

123

C.8. UTIL.C APPENDIX C. SOFTWARE

C.8 util.c

1 /**
2 * Seve ra l u t i l i t y f unc t i on s
3 * to make the l i f e e a s i e r
4 *

5 * 2007 − Kenneth Oestby <kenneo@idi . ntnu . no>
6 *

7 */
8
9 stat ic char i sBigEndian = 1 ;

10
11 unsigned long ByteSwap2 (unsigned long nLongNumber)
12 {
13 return (((nLongNumber&0x000000FF)<<24)+((nLongNumber&0x0000FF00)<<8)+
14 ((nLongNumber&0x00FF0000)>>8)+((nLongNumber&0xFF000000)>>24)) ;
15 }
16
17 unsigned int CoreToHostI (unsigned int i) {
18 i f (i sBigEndian)
19 return i ;
20
21 return ByteSwap2 (i) ;
22 }
23 unsigned int HostToCoreI (unsigned int i) {
24 i f (i sBigEndian)
25 return i ;
26
27 return ByteSwap2 (i) ;
28 }
29
30 /*
31 * Reverses the i n t e g e r . .
32 */
33 unsigned int r e v e r s e I n t (unsigned int number) {
34 int i = 0 , j = 0 ;
35 unsigned int tmp = 0 ;
36
37 for (i=s izeof (int) *8−1, j =0; i >=0; i−−, j++)
38 tmp |= ((number >> i) & 1) << j ;
39
40 return tmp ;
41 }
42
43 unsigned char r e v e r s e I n t 8 (unsigned char number) {
44 int i = 0 , j = 0 ;
45 unsigned char tmp = 0 ;
46
47 for (i=s izeof (unsigned char) *8−1, j =0; i >=0; i−−, j++)
48 tmp |= ((number >> i) & 1) << j ;
49
50 return tmp ;
51 }

124

