
June 2007
Tor Stålhane, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Domain Specific Languages for
Executable Specifications

Kristian Alvestad





Problem Description

Acceptance testing is a key practice in agile development. The ultimate goal is Executable
Specifications:

Acceptance tests are written prior to development
The tests are functional specifications for the application feature (as opposed to the traditional
verification)
The tests functions as documentation; preferably the only necessary documentation
The feature is complete when the test runs successfully
There are already tools and frameworks available:

FIT and FitNesse uses tables to declare requirements
BDD tools like RSpec and JBehave
The assignment, Domain Specific Languages (DLSs) for Executable Specifications should focus on:

Assessing FIT and FitNesse using tables to declare tests
Assessing BDD and BDD tools to declare tests
Research and propose more natural DSLs for declaring executable specifications
Look at dynamic languages like Ruby, which are flexible and suitable for creating DSLs
Look at declarative formats like YAML as an alternative to tables
Possibly create a tool or (extensions to existing tools) to support DSLs for Executable
Specifications
Clarification on empirical work:

Build a testable case with various functional requirements and select two DSL frameworks for
acceptance testing
Run an experiment on Executable Specifications against the test case
Compare the results of the experiment with the findings of literature studies to define areas of
strength and weaknesses in existing solutions
Identify unsatisfied needs and points of concern to existing DSLs and address these through the
main objective of this thesis

Assignment given: 19. January 2007
Supervisor: Tor Stålhane, IDI





ABSTRACT 

 
In agile software development, acceptance test-driven development is sometimes mentioned, 
and some have explored the possibilities. This study investigates if a non-technical individual 
can write executable specifications based on domain specific languages from three different 
frameworks. Fit, which is an acceptance testing framework based on HTML forms, CubicTest 
which is an acceptance testing framework that uses modeling through Eclipse, and RSpec, a 
BDD framework for specifying system behavior through examples. 
 
This study involves an experiment where the perceived effectiveness and understandability of 
the three frameworks are evaluated. 10 students participated in a one and a half hour 
experiment for which they had prepared themselves for, by having one week to acquire 
overview of their assigned framework. The experiment was held in a computer laboratory at 
the Norwegian University of Science and Technology. 
 
After results were gathered and analyzed, statistical hypothesis testing was unfortunately not 
able to reject the null-hypothesis of the study. No conclusions could therefore be drawn. The 
results of the study are discussed and possible improvements and further work is mentioned. 



 2 

PREFACE 

 
This study was performed by Kristian Alvestad as the final thesis for the M.Sc. Computer 
Science degree at the Norwegian University of Science and Technology (NTNU) in 
Trondheim, for the Department of Computer and Information Science (IDI). The study was 
conducted over 20 weeks, from January to June 2007. 
 
I would like to thank my supervisor Tor Stålhane, Professor at the NTNU Department of 
Computer and Information Science (IDI) and my co-supervisors Janniche Haugen, Consultant 
at BEKK Consulting AS and Uwe Kubosch, Senior Software Developer at Datek Wireless 
AS, for their help in getting me started on the experiment. 
 
Also, my thanks go to ConfirmIT for giving me access to an online service for surveys and 
data collection, and Projectplace.com for hosting my project on their systems. 
 
Last, but not least, I would like to thank the 10 anonymous subjects who volunteered to 
perform in the experiment. 
 
 
 
Kristian Alvestad  Trondheim, June 15th, 2007



 3 

TABLE OF CONTENTS 
 
Introduction ................................................................................................................................ 5 

Motivation .............................................................................................................................. 6 
Outline.................................................................................................................................... 6 

Prestudy...................................................................................................................................... 7 
What is Agile Software Development? .................................................................................. 7 
Test-Driven Development ...................................................................................................... 7 

Effectiveness of Test-First Approach................................................................................. 8 
The effect of TDD on students ........................................................................................... 9 

Behavior-Driven Development .............................................................................................. 9 
TDD Evolved ..................................................................................................................... 9 
Language and Neuro-Linguistic Programming................................................................ 10 
Domain-Driven Design .................................................................................................... 10 
RSpec ............................................................................................................................... 11 

CubicTest ............................................................................................................................. 11 
Fit - Framework for Integrated Tests ................................................................................... 13 

Creating fixtures first ....................................................................................................... 14 
Creating Fit tables first ..................................................................................................... 14 

Research Agenda...................................................................................................................... 15 
Experiment Definition.......................................................................................................... 15 

Definition Framework ...................................................................................................... 15 
Summary of definition ................................................................................................. 15 

Planning................................................................................................................................ 16 
Context selection .............................................................................................................. 16 
Hypothesis formulation .................................................................................................... 16 
Variables selection ........................................................................................................... 17 
Selection of subjects......................................................................................................... 17 
Experiment design............................................................................................................ 17 

General design principles ............................................................................................. 17 
Specific design type ..................................................................................................... 18 

Instrumentation................................................................................................................. 18 
Validity evaluation ........................................................................................................... 19 

Conclusion validity ...................................................................................................... 19 
Internal validity ............................................................................................................ 19 
Construct validity ......................................................................................................... 20 
External validity ........................................................................................................... 20 

Experiment operation ........................................................................................................... 21 
Preparation ....................................................................................................................... 21 
Execution.......................................................................................................................... 21 
Data validation ................................................................................................................. 22 

Results ...................................................................................................................................... 23 
Descriptive statistics............................................................................................................. 23 

Pre-experiment survey...................................................................................................... 23 
Post-experiment survey .................................................................................................... 26 

Hypothesis testing ................................................................................................................ 34 
Interpretation of results ............................................................................................................ 35 

Validity of results ................................................................................................................. 35 
Interpretation of the hypothesis testing ................................................................................ 38 

Discussion ................................................................................................................................ 39 



 4 

Conclusions and possible improvements ................................................................................. 41 
References ................................................................................................................................ 42 
Appendix A – Pre-experiment survey...................................................................................... 44 
Appendix B – Post-experiment survey..................................................................................... 45 
Appendix C – Problem Case .................................................................................................... 49 
Appendix D – Problem Case solutions .................................................................................... 50 
 
LIST OF FIGURES 

 
Figure 1: RSpec example of BDD behavior............................................................................. 11 
Figure 2: CubicTest in Eclipse ................................................................................................. 12 
Figure 3: Fit test case made with Microsoft Office ................................................................. 13 
Figure 4: Fit fixture example.................................................................................................... 14 
Figure 5: Pearson correlation coefficient ................................................................................. 23 
Figure 6: Class distribution of subjects .................................................................................... 24 
Figure 7: Relative frequency of subjects programming experience level ................................ 24 
Figure 8: Subjects previous framework experiences................................................................ 25 
Figure 9: Distribution of expertise between frameworks......................................................... 26 
Figure 10: Experiment Distribution ......................................................................................... 26 
Figure 11: Subjects Preparation Time...................................................................................... 27 
Figure 12: Ease of framework overview .................................................................................. 27 
Figure 13: Ease of syntactical use ............................................................................................ 28 
Figure 14: Origin of Difficulties - The Case ............................................................................ 29 
Figure 15: Origin of Difficulties - The Frameworks................................................................ 29 
Figure 16: Desired help from observer..................................................................................... 30 
Figure 17: Desired topic of help - The problem case ............................................................... 31 
Figure 18: Desired topic of help - The framework................................................................... 31 
Figure 19: A comparison with Use Case.................................................................................. 32 
Figure 20: Perception of intended usage .................................................................................. 32 
Figure 21: Level of case completeness .................................................................................... 33 
 
LIST OF TABLES 

 
Table 1: Frequency table of experience level........................................................................... 25 
Table 2: Frequency table for Ease of Overview....................................................................... 28 
Table 3: Frequency table for Ease of syntactical use ............................................................... 28 
Table 4: Frequency table for level of case completeness......................................................... 33 



 5 

 
Individuals and interactions over processes and tools 

Working software over comprehensive documentation 
Customer collaboration over contract negotiation 

Responding to change over following a plan 
 

Manifesto for Agile Software Development 

Introduction 
Agile software development is still a young term, but has gotten a lot of attention in recent 
years. While buzzwords like eXtreme Programming (XP) (Beck 2000) and Scrum (Schwaber 
1995) gets praises from many, still many remain unconvinced. Often agile software 
development processes are viewed negatively due to the (or the perceived lack of) planning 
and documentation in processes like these. Some also question the quality in software that is 
developed in this manner.  
 
When XP is mentioned, most people will instantly associate it with the practice of pair 
programming. XP is rather a collection of software development practices where pair 
programming is only one of 12 concrete techniques of software development. Pair 
programming is often ridiculed and viewed as waste of resources. Others think of it as a way 
to achieve better productivity and higher quality software. 
 
While agile software development is often associated with XP, Scrum has not received the 
same hype. This methodology is focused away from how one should produce code, e.g. 
techniques like Test-Driven Development (TDD) and pair-programming. Instead its focus is 
on how to structure an agile software development project. Scrum and XP are only two of the 
many known and less known agile software development methodologies. These two however, 
are often used in combination, complimenting each other so that the shortcomings of one are 
covered by the other. Scrum can successfully function as a management wrapper for XP 
practices. 
 
One of these XP practices, testing, involves two types of testing techniques. TDD, which is 
already mentioned, and Acceptance Testing, which will be the focus of this study. Unit testing 
like the TDD technique is for the developers to ensure functioning production code, while 
Acceptance Testing is for the customer, to test that the developed system meets their criteria 
of acceptance.  
 
Unlike TDD, which point is to make unit tests before production code, Acceptance Testing 
has no such criteria. The term Acceptance Testing is a widely used term in software 
development and is a customer’s tool to accept or not accept a product at the end of a project. 
XP adds two criteria to this:  
 

• Acceptance Testing should be linked to the story cards in the project 

• The tests should be produced in and finished in the same iteration as the functionality 
they are written for. 

 
This, by nature of the time that tests are written and also the nature of the word “test”, implies 
verification of functionalities. Thus we look upon the motivation of this thesis; not acceptance 
testing for verification, but for specification. 



 6 

 

Motivation 

In an ideal world, a person with limited technical but high domain knowledge shall be able to 
write functional specification documentation which is executable. In the real world, this is not 
yet possible without the assistance of expertise such as a developer team. We aim to research 
this area and determine how near this ideal world scenario we are with a selection of existing 
frameworks. We will then try to suggest improvements to the real world, to bring us closer to 
the ideal world. 

Outline 

In the Prestudy chapter, we will describe the current state of the art. The research agenda 
chapter will describe the details of the goals and contexts of this study, while the experiment 
chapter describes the experiment plan and operation. The following results chapter describes 
the outcome with descriptive statistics and hypothesis tests while the analysis chapter discuss 
the statistics performed on the results. The discussion chapter follows with the chapter 
conclusion and possible improvements. 
 



 7 

 

Prestudy 

What is Agile Software Development? 

Agile expresses the responsiveness and willingness to change: “the continual readiness of an 
entity to rapidly or inherently, proactively or reactively, embrace change, through high 
quality, simplistic, economical components and relationships with its environment” (Conboy 
and Fitzgerald 2004). Developers working by agile processes do not fear new and changing 
requirements. They rather see it as perfectly normal behavior of a project and embrace it  
(Fowler et al. 2001). Change is good, because it indicates that communications with the 
customer is good, and this should be harnessed to enhance the customers’ competitive 
advantage. 
 
Agile Software Development is iterative by nature and favors iterations from a couple of 
months in length to as short as a week. Also, the developers working in an agile environment 
encourages very high customer participation in projects. Agile Software Development takes 
inspiration from Nonaka and Takeuchi (1995) and their theory of knowledge creation. An 
important principle from the Agile Manifesto is that the best communication happens face to 
face. Through this process of socialization, tacit knowledge can be transferred between 
individuals (Nonaka and Takeuchi 1995). The highest priority, however, is to satisfy the 
customer through early and continuous delivery of valuable software (Fowler et al. 2001; 
Conboy and Fitzgerald 2004) 
 
Customer collaboration in agile Software Development is essential, and the principles of 
Agile Software Development states that business people and developers must work together 
daily. This is however easier said than done. A software developer may face difficulty in 
persuading a customer to sacrifice that much time for a project. Motivating a customer to 
participate actively is also a challenge. Customer collaboration may determine if a project will 
succeed or if it is doomed to fail, and the best measure of progress and success is the amount 
of working software that is produced (Fowler et al. 2001). 

Test-Driven Development 

Test-Driven Development (TDD) is an approach to code development popularized by XP. 
The key is that the programmers write low-level functionality tests before production code. 
This testing approach is usually supported by a unit testing tool, such as JUnit for java and 
NUnit for .NET. Not only is TDD intended for unit testing, but also for specification. The 
tests are written before the developed software and becomes an important part of the 
specifications and design documentation (Canfora et al. 2006). Writing tests is a design 
activity, it specifies each requirement in the form of an executable example that can be shown 
to work (Freeman et al. 2004). 
 
Tests can be higher level and cross-cutting, but do not in general address testing at integration 
and system levels. TDD relies on no specific or formal criterion to select the test cases. Tests 
are written gradually during implementation, one at the time and by the same person 
developing the module (Erdogmus et al. 2005). 
 
TDD is not intended to be a quality assurance technique or a testing technique, but rather a 
code development practice and unit testing has an important role in establishing what 
algorithms to adopt and other design decisions (Canfora et al. 2006).  



 8 

Effectiveness of Test-First Approach 

Proponents of Test-Driven Development (TDD) assert that commercial software defect rates 
can be reduced from 18% to 50 % when tests are written at the beginning rather than the end 
of the development cycle (Maximilien and Williams 2003; Jones 2004). 
 
TDD can be considered from several points of view: Feedback, Task-orientation, Quality 
assurance and Low-level design. Many consider tests as overhead, so what if the benefits 
outweigh the costs? Erdogmus et al. (2005) investigates the strengths and weaknesses of the 
Test-First approach to programming in the context incremental development. 
 
The authors (Erdogmus et al. 2005) designed an experiment in the winter of 2002-2003 and 
conducted it in an academic setting in the spring of 2003. Their experiment focuses on 
product quality and programmer productivity. In addition to this, the authors summarize 
previous empirical studies about TDD. They comment previous studies and compare with 
their own to highlight potential mistakes and how they avoided them. For the experiment, 
they supplied only high-level requirements in terms of user stories. For quality assessment, 
they used a robust black-box acceptance testing approach. The objective of their design was 
not to test the effect of the presence of testing, but compare alternative techniques involving 
opposite testing dynamics. 
 
Test-First works as follows: 
 

1. Pick a story. 
2. Write a test that expresses a small task within the story and have the test fail. 
3. Write production code that implements the task to pass the test. 
4. Run all tests. 
5. Rework production code and test ode until all tests pass 
6. Repeat 2 to 5 until the story is fully implemented. 

 
Test-Last works as follows: 
 

1. Pick a story. 
2. Write production code that implements the story. 
3. Write tests to validate the whole story. 
4. Run all tests. 
5. Rework production code and test code until all tests pass. 

 
The goal of the experiment was to compare Test-First programming with Test-Last 
programming for the purpose of evaluating external quality and programmer productivity in 
the context of incremental development and undergraduate object-oriented programming 
course. 
 
Their experiment revealed that Test-First programmers write more tests per unit of 
programming effort. In turn, a higher number of programmer tests lead to proportionally 
higher levels of productivity. Therefore, Test-First appears to lead to higher productivity. 
Test-First programmers did not achieve better quality on average, although they achieved 
more consistent quality results. 



 9 

The effect of TDD on students 

TDD can have many benefits when used in conjunction with learning object-oriented 
programming. In a paper by Jones (2004), several experiments run on students are 
summarized (Jones 2004), including a study by Kaufmann and Janzen (2003) where a Test-
First and Test-Last group are compared (Kaufmann and Janzen 2003; Jones 2004). It can be 
argued that the test and control group would not provide reliable results for several reasons; 
the groups were self-selected, the test-first group had more programming experience and the 
projects were not identical (Jones 2004). There are still interesting and statistically significant 
results. The Test-First group produced 50% more code while keeping complexity on the same 
level as the Test-Last group, indicating increased productivity. The Test-Last group also had a 
tendency to create overburdened classes. The Test-First group also reported higher confidence 
in the functionality of their project (Kaufmann and Janzen 2003; Jones 2004). 
 
Some interesting learning benefits occur in the Steinberg study, where by using TDD and 
JUnit, the main() method was hidden inside the testing framework and allowed students to 
focus on writing tests, creating and accessing objects, creating and calling methods, and using 
variables. Students came to view an application as a "collection of services" (Steinberg 2001; 
Jones 2004). By writing tests first, students learned to write "code based on the specifications 
of the unit tests”. Steinberg concluded that TDD was the most important of the 12 disciplines 
of XP. 

Behavior-Driven Development 

Behavior-Driven Development or BDD is not a revolutionary new way of development, but 
rather refinement and evolvement of development based on sound practices like Test-Driven 
Development and Domain-Driven Design (DDD).  

TDD Evolved 

BDD is an evolution of TDD and is prompted onwards by the problematic perceptions of tests 
and the mental rewiring needed to apply TDD. BDD has a clear focus on “getting the words 
right”, and the use of the word “test” in TDD is misleading. Also unlike TDD, the purpose of 
BDD is to define behavior of an application rather than design and test the implementation. 
 
When asked to write tests, common statements from developers include: 
 

• “It’s really simple code, it doesn't need to be tested” 

• “Testing is a waste of time” 

• “I’ve done this (loop/data retrieval/functionality, etc) millions of times” 

• “That’s what we have testers for” 
 
The word “test” in it self implies verification of code or functionality. A common 
misconception is that TDD is a test activity, and it is not difficult to see why. The real benefit 
of TDD is design. BDD aims to remove many of these confusing concepts of TDD by 
influence and appliance of popular psychology, Domain-Driven Design and Neuro-Linguistic 
Programming. 
 



 10 

Language and Neuro-Linguistic Programming 

With his 1976 English language translation of Dionysus (Kerenyi 1976), Carl Kerenyi wrote: 
 

“The interdependence of thought and speech makes it clear that languages are 
not so much a means of expressing truth that has already been established, 
but are a means of discovering truth that was previously unknown. Their 
diversity is a diversity not of sounds and signs but of ways of looking at the 
world.” 

 
Neuro-Linguistic Programming (NLP) is a school of psychology in which language and the 
way we use language to express ourselves is key to understanding the behavioral patterns of 
humans. The Sapir-Whorf hypothesis (Whorf 1956) also sheds some light on the link between 
language, mentality and behavior:  
 

“There is a systematic relationship between the grammatical categories of the 
language a person speaks and how that person both understands the world 
and behaves in it.” 

 
NLP practitioners can identify human behavior and mental patterns by recognizing how a 
person uses language. But this is not a one-way street. What is truly remarkable about NLP is 
the ways practitioners can influence human behavioral patterns by varying their use of 
language. By consciously using language, words, rhythms and gestures, the practitioner can 
influence thought patterns in a way that makes the practitioners suggestions and view on a 
subject dominate. NLP is in fact closely related to hypnosis. 
 
From the important role of language, some TDD practitioners have recognized problematic 
behavioral patterns associated with such words as “test”. BDD is influenced by NLP and tries 
to induce desired behavioral patterns that better suit BDD activities. By changing the use of 
language and syntax from TDD to BDD, proponents hope to shift focus from writing tests to 
specifying behavior. 

Domain-Driven Design 

Another source of inspiration to BDD is Domain-Driven Design (Evans 2004), or DDD, a 
method for tackling complex domains through modeling. The model developed with the 
customer isn’t just a reflection of the domain and the domain experts knowledge, but also “it 
is a rigorously organized and selective abstraction of that knowledge” (Evans 2004). Through 
the modeling process, a common language is cultivated based on the model. DDD places 
heavy emphasis on establishing a common vocabulary between the developers and the 
customer and is described as “Ubiquitous language”, establishing a common consistent 
language structured around the problem domain that can be shared by the business users of 
the system and the developers. 
 
Preservation of knowledge and knowledge transfer is a very important aspect of DDD. The 
domain model also functions as a tool for domain knowledge transfer. As more and more 
knowledge is discovered, the model evolves. In the old waterfall method, the business experts 
talked to analysts who digested and abstracted the knowledge and then passed it on to 
programmers. With such typical design approaches, the code and documents don’t express the 
knowledge that was so hard to earn. So when oral transition is interrupted for any reason, the 
knowledge is lost. 



 11 

 
The domain model can be the core of a common language for a software project. Models, text 
documents and UML diagrams can all be valuable in different situations. But for any of this 
documentation to work, knowledge has to be transferred with it. We have to have a common 
and shared language to express this. The use of language is therefore considered al-important 
in DDD (Evans 2004). To achieve this, DDD describes “Ubiquitous Language” as previously 
mentioned. 

RSpec 

RSpec is a Ruby library that provides a domain specific language intended for BDD. It 
provides a way of describing the behavior of a system by using examples of how it should 
work. In RSpec, the dynamic programming language Ruby is used to describe the behavioral 
examples.  

 
Figure 1: RSpec example of BDD behavior 

 
Note in this example of creating a bank account, how syntax like “@account.balance.should 
eql” is used to emphasize that this is an example of a desired behavior, rather than a test. 
 
Even though Ruby is the RSpec language of choice, RSpec can be used to specify and test 
Java code when used in conjunction with JRuby. RSpec is most commonly available in 
Rubygems and the Ruby on Rails project. 
 
Another BDD framework is JBehave, where you create behavior classes in Java that contain 
methods that specify the expected behavior. Like RSpec, JBehave also features syntax like 
“Ensure.that(actualValue, eq(expectedValue))”, to emphasize behavior examples. 
 

CubicTest 

CubicTest, formerly known as AutAT, is a framework for automatic acceptance testing of 
web applications which was first introduced as a M.Sc. thesis in 2005 (Skytteren and 
Øvstetun 2005) at the Norwegian University of Science and Technology (NTNU), in 
collaboration with BEKK Consulting AS.  
 

describe Account, " when first created" do 

 

  before do 

    @account = Account.new 

  end 

 

  it "should have a balance of $0" do 

    @account.balance.should eql(Money.new(0, :dollars)) 

  end 

 

  after do 

    @account = nil 

  end 

 

end 

 



 12 

It was distributed freely as open source software as part of the BEKK Open Source Software 
(BOSS) site1. It has been developed as an Eclipse plug-in and evolved further in 2006, to 
CubicTest, after a new M.Sc thesis on NTNU  (Loe and Olsen 2006). The intention of 
developers involved in CubicTest is to make it easier for non technical users as well as 
technical users to make tests for web applications. Also, the goal is “to make it possible to 
replace a detailed requirements specification and manual test scripts with tests designed in 
CubicTest”. 
 

 
Figure 2: CubicTest in Eclipse 

 
CubicTest uses a state approach, which means that a CubicTest page will be seen as a state or 
snapshot of the current content of a web page (Kalitina and Myhre 2006). There are modeling 
advantage to the state-concept, which the user doesn’t need to be aware of state changes in a 
web application. The state-concept can be difficult to grasp for a non-technical user, however. 

                                                 
 
1 http://boss.bekk.no 



 13 

  

Fit - Framework for Integrated Tests 

Introduced by Ward Cunningham in 2002, Fit is a way of writing automated acceptance tests. 
Fit uses JUnit and the test cases are written and displayed in HTML tables. These tables can 
be made in dedicated Fit environments, like FitNesse that uses a Wiki as front end, or in a 
familiar work environment like Microsoft Office. This is meant to help customers write their 
own test cases. The test cases are processed by java classes that programmers would write, 
called fixtures. The fixtures take input from the HTML tables and run it on the project being 
tested. 
 

 
Figure 3: Fit test case made with Microsoft Office 

2
 

 
The fixtures define the structure of the tables, or test cases. Some columns are input for the 
system being tested, while other columns are the expected result. In Figure 3, the two green 
fields are where returned data from fixtures match the expected value in that field. The red 
field is an error, where actual fixture value differs from the expected value and is displayed in 
the same field. 

                                                 
 
2 http://fit.c2.com/wiki.cgi?IntroductionToFit 



 14 

 

 
Figure 4: Fit fixture example  

 
Fixtures are what runs the data input of the Fit tables on the developed classes, and return and 
compare the output to the expected output in the same Fit tables. Since the fixtures are what 
define the Domain-Specific Language, Fit tables cannot be created unless the table structures 
are clearly defined. Two possible approaches can for instance be: 

Creating fixtures first 

Developers need to create these fixtures, since they are in essence programmed classes. They 
are the link between classes under development and tables that holds input for testing. When 
fixtures are made first, they define the structures of the Fit tables and enforce them 
automatically. Non-technical users can then make Fit tables for the DSL. This is the usual 
way for acceptance testing using Fit. 

Creating Fit tables first 

Fit tables do not need to be created by developers, since there is no programming involved. A 
non-technical person with high domain knowledge may do this, but a big problem remains: no 
DSL is established yet. The creators of Fit tables will need to be aware of this and in essence 
define the DSL through creation of tables. Any deviation from that definition will make the 
developers unable to create functional fixtures.



 15 

 

Research Agenda 

Experiment Definition 

This chapter defines the experiment and lays down a proper foundation to minimize risks and 
failures during planning and operation (Wohlin et al. 2000). The following framework is used 
to help the definition of the project to be clear and sound. 

Definition Framework 

Object of study 

The object of study is the process of using Domain-Specific Languages, or DSLs, as 
specification tools. In the study, the DSLs are two frameworks for acceptance testing: 
CubicTest and Fit. RSpec, which will be the third DSL, is not an acceptance testing 
framework, but a BDD framework. 
 
Purpose 

The three frameworks work in very different ways. Fit uses input-data and compares with 
expected output data via HTML forms, RSpec is used by programming an example of a 
desired behavior and CubicTest is used by modeling a system at different states. The purpose 
of the study is to evaluate the object based on the subjects’ ability to perform a set of tasks 
with the framework they are given to work with. 
 
Quality focus 

The study will evaluate the understandability and perceived effectiveness of using the 
frameworks as specification tools rather than testing or verification.  
 
Perspective 

The point of view will be from students with limited experience in software engineering, but 
have knowledge of specification methods such as Use Case. 
 
Context 

The experiment was run using M.Sc. students in a university computer laboratory on NTNU 
campus, where the students have access to one computer each. The students participated in 
the experiment between 16:00 and 18:00. A textual case with a set of goals was handed out, 
where the goals were to be made into formal specifications for the case context. 

Summary of definition 

Analyze the use of DSLs for specification, 
for the purpose of evaluation based on subjects limited experience, 
with respect to their perceived effectiveness and understandability, 
from the point of view of the students playing the role of non-technical users, 
in the context of a university computer laboratory.



 16 

 

Planning 

Context selection 

The experiment was set to run as an off-line exercise, performed by students. The location 
was a computer lab accessible by students on NTNUs university campus. The problem case 
used in the experiment was a fictional case scenario describing a company that needed a web 
portal system for selling their products. This scenario was chosen based on the domain-
knowledge the subjects were perceived to have about web shops. 
 
The subjects were asked to make functional requirements based on a selection of goals that 
the problem case described. This toy problem was closely related to the general functionalities 
that should be available in any web shop portals. 
 
The experiment context characterization is “Multi-test within object study”, since we have 
one object of study, using DSLs for the purpose of specification, and 10 subjects participating. 
The subjects applied their assigned treatment to the factor of study individually. 

Hypothesis formulation 

01H :There is no significant difference in perceived effectiveness: 

32101 µµµ ===H  

Alternate jiH µµ ≠=11  for at least one pair (i, j) 

 
Metric: Level of case completion, Level of programming expertise 
Scale: Ordinal 
 

02H : There is no significant difference in understandability 

32102 µµµ ===H  

Alternate jiH µµ ≠=12  for at least one pair (i, j) 

 
Metric: Ease of framework overview, Ease of syntactical use, Desired level of help 
Scale: Ordinal 
 

03H : DSLs cannot be used by non-technical users for specifications, without assistance from 

technical expertise. To reject this hypothesis, 01H  and 02H  must be rejected. 

 

Alternate 13H : Non-technical users can use DSLs for specifications, without the help of 

technical expertise. 



 17 

 

Variables selection 

The factor: The process of using a DSL for functional requirements specifications.  
Treatments: CubicTest, RSpec and Fit 
 
Independent variable: 
Subject programming expertise 
 
Dependant variables: 
Perceived effectiveness 
Understandability 

Selection of subjects 

The subjects were recruited from classes on NTNUs Computer Science and Communication 
Technology studies by Tor Stålhane, the head supervisor of this study. Volunteers were asked 
to submit their e-mail addresses. The volunteers were then divided randomly between 
different experiments, based on simple lottery principle. The subjects of this study were then 
contacted by their e-mail address and asked to confirm their interest in participation in the 
experiment. A total of 10 subjects confirmed their interest and was selected as subjects.  
 

Experiment design 

General design principles 

 
Randomization 

As mentioned previously, selection of subjects was not completely random. The selection of 
object of the study was not random, but discussed and reasoned until admitted or dropped. 
Since the subjects volunteered through courses in computer science and the non-random way 
of selecting objects for the study, the experiment should therefore be classified as a quasi-
experiment. 
 
Blocking 

Two treatments had 3 subjects assigned to them and the third had 4 subjects assigned, but no 
systematic blocking was performed. Instead, randomly assigning treatments to subjects was 
thought to be best. See Figure 9 on page 26 in the results section. 
 
Balancing 

The 10 subjects were divided among the 3 treatments applied to the factor in the study, 
making CubicTest the treatment with 4 subjects and the other two treatments with 3 subjects 
each. The study is therefore not balanced, but as close to balanced as possible. 



 18 

 

Specific design type 

The design type of this study is based on one factor with more than two treatments. Among 
many design types, Wohlin (Wohlin et al. 2000) describes the two most common design types 
in this category as: 
 
Completely randomized design 

This requires that the experiment is performed in a random order to ensure that treatments are 
used in an environment as uniform as possible. The design uses one object to all treatments 
and the subjects are assigned randomly to the treatments. 
 
Randomized complete block design 

If the variability between the subjects is large, we can minimize this effect on the results by 
using a randomized complete block design. With this design, each subject uses all treatments 
and the subjects form a more homogeneous experiment unit, i.e. we block the experiment on 
the subjects. The blocks represent a restriction on randomization. The experiment design uses 
one object to all treatments and the order in which the subjects use the treatments are assigned 
randomly. 
 
This study conforms to the completely randomized design because, as previously mentioned, 
no systematic approach to blocking was performed. All subjects were assigned randomly to 
one treatment each and only performed this treatment. See Figure 10 on page 26. 

Instrumentation 

The instrumentation used in the experiment was regular desktop PCs with Microsoft 
Windows XP Professional, Service Pack 2, Microsoft Office XP and Eclipse 3.2 with relevant 
plug-ins. Eclipse was used for CubicTest, while Microsoft Excel was used for Fit and 
Notepad for RSpec. 
 
Excel and Notepad was selected as editors because they are familiar working environments 
for most non-technical people. Notepad may not be familiar, but its simplistic user interface 
should not be confusing to anyone. Eclipse had to be used in the CubicTest part of the 
experiment since there were no other options available. Eclipse is not a familiar working 
environment for non-technical users, but the experience level of the subjects was thought to 
negate this. 
 
Data collection was done through an online survey system provided by ConfirmIT, “the 
world's leading survey, community panel & reporting software”3. Through ConfirmIT 
software, two online questionnaires were made, on pre-experiment survey and one post-
experiment survey. 

                                                 
 
3 http://www.confirmit.com/ 



 19 

 

Validity evaluation 

There are several things that threat the validity of a study. This chapter will summarize the 
treats thought to be relevant for this study (Wohlin et al. 2000). 

Conclusion validity 

 
Low statistical power: For statistical testing of data, suitable statistical tests must be used. 
The power of these tests is their ability to reveal a pattern in the data. If the power is low, 
there is a higher risk of drawing erroneous conclusions. 
 

Violated assumptions of statistical tests: Statistical tests, such as the Chi-2 test used in this 
study, are based on assumptions about the data set they are performed on. If these 
assumptions are violated, the wrong conclusion may be drawn. 
 

Fishing and the error rate: By looking for a specific outcome, researchers may influence the 
results and risk a wrong conclusion based on analysis that is no longer independent. Also, the 
significance level of multiple analysis increase to the power of the number of investigations. 
 

Reliability of measures: Problems such as poor questionnaire wording and unclear questions 
that leads the subject to misunderstand a question may threaten conclusion validity. Measures 
that are subjective in nature is less reliable than objective measures. 
 

Random irrelevances in experimental setting: The experiment took place in a computer 
laboratory that other students had access to. Room noise and other students may have 
disturbed the results. Also, since the subjects were seated in relatively close proximity, they 
may have disturbed each other when implementing their treatment or when seeking help from 
the observer. 
 

Random heterogeneity of subjects: Having a very heterogeneous group means that the 
difference between subjects can be so large that it affects the results along with the treatments, 
or even more than the treatments. 

Internal validity 

 
Single group threats 

 
Instrumentation: If any artifacts used in the study, such as survey forms, problem cases etc. 
fail or is designed poorly, the experiment results may be affected. 
 

Selection: The performance of subjects may vary based on how they are selected from a 
population. The risk is selecting subjects that are not representative of the whole population. 
 
Multiple group threats 

 
Interaction with selection: The different groups behave differently and may mature at 
different speeds due to for example learning abilities. 



 20 

 
Social threats 

 
Diffusion or imitation of treatments: A control group may learn of another treatment in the 
experiment or even imitate the behavior of the other groups. 

Construct validity 

 
Design threats 

 
Inadequate preoperational explication of constructs: This threat is based on the constructs 
of the experiment not being designed god enough before they are translated into measures and 
treatments. If the theory isn’t clear, the results of the experiment may also become unclear. 
 
Mono-operation bias: This threatens construct validity if there is only a single independent 
variable, case, subject or treatment in the experiment. There was only one problem case used 
in the experiment, and may therefore under-represent the cause construct.  
 

Mono-method bias: Using only one type of measure and observation method may result in a 
data set biased by measurement, since there is no way to cross-check results with data sets 
made by other measurements or observations. 
 
Restricted generalizability across constructs: If a treatment affects a studied construct 
positively, but also affect another construct negatively. If the negatively affected construct is 
not also studied, there is a risk of drawing a conclusion that the treatment only has a positive 
effect. 
 
Social threats 

 
Hypothesis guessing: Subjects that participate in a survey might try to figure out what the 
hypothesis of the study is. Depending on their attitude towards their perceived hypothesis, 
they may even act positively or negatively towards it. 
 
Evaluation apprehension: There are several reasons why the subjects would report 
inaccurate results. Fear of being evaluated and not wanting to seem less able than the other 
subjects of the study are two very human reasons, and may provide inaccurate results. 
 

Experimenter expectancies: By expecting a result from the experiment, the researchers may 
consciously or unconsciously affect the results based on what they expect 

External validity 

 
Interaction of selection and treatments: Having the wrong subject population and not the 
population we want to generalize. 
 
Interaction of setting and treatments: Not having the experiment setting or material 
representative of the environment we wish to generalize. 
 
Interaction of history and treatments: Conducting the experiment on a day or time that may 
affect the results. 



 21 

 

Experiment operation 

Preparation 

One week before participation, the subjects were sent e-mails with a link to the pre-
experiment survey, to get an idea of their background; what type of study they were in, what 
year of study and their perceived level of programming skill. A computer laboratory was 
reserved, so that Eclipse and relevant CubicTest plug-ins could be installed.  
 
The Subjects were randomly assigned to their treatments and received an e-mail, asking them 
to read up on and gain an overview of the treatment they were assigned to. They then had a 
week to gain this overview by reading the official web sites of the treatments. They were also 
told that they were allowed to bring material to use during the experiment. The subjects were 
only notified of their own treatment, not of anyone else’s. The reason introduction to the 
treatments wasn’t done by introduction lessons, was because the lack of manpower to hold 3 
introduction courses. Also, this way meant it could be possible to measure how well the 
documentation worked. 
 
The experiment day had to be postponed over a weekend because the lab engineers failed to 
remember scheduled power grid maintenance on the exact time of the experiment. Luckily, all 
but 1 subject was able to attend on the new date, and a replacement subject was found for the 
drop off. 
 
The experiment started with meeting up and handing out the problem case. The researcher 
then explained the case by clarifying that this was an exercise in specification, where they 
were asked to use a specific framework to do the job. They were also reminded that they were 
not being evaluated, only the frameworks. They were also reminded that all results would be 
published anonymously. 

Execution 

The experiment was performed without co-operation between individual subjects. They were 
allowed to ask questions, but reminded that the researcher could not answer questions about 
the use of the frameworks, only with problems understanding the case. Some questions were 
raised, but about the usage of the treatments, which the researcher were unable to respond to.  
 
The experiment lasted for one and a half hour, and then asked to e-mail their solutions to the 
researcher before they left. They were told to expect a new e-mail with a link to another 
questionnaire, the next day. 



 22 

 

Data validation 

Thee data collected from the surveys was all received within the week, except from two 
subjects who experienced errors while submitting their answers to the post-experiment 
survey. These answers were submitted again, but over a week later and may have been 
unreliable due to the subjects’ memories of the experiment. They were nevertheless included 
in the datasets, since the number of samples in this study was already low. 
 
The submission of the case solutions was supposed to yield data like number of syntactical 
errors and wrong use of the framework. This was unfortunately meaningless, since the case 
solutions differed significantly and contained so many errors as to render any comparison 
between the treatments meaningless. The only results that were thought to be meaningful, was 
the degree of completeness, how complete the domain is reflected in the specifications. 
 



 23 

 

Results 
The 10 subjects participating in the experiment each filled out questionnaires before and after 
the experiment. The questionnaires were made in an online survey system provided by 
ConfirmIT. An e-mail with the URL to the survey was sent to each of the participants. The 
pre-experiment survey aimed to determine some relevant information about previous 
knowledge in computer science, programming and specification practices. The post-
experiment survey was designed to uncover difficulties in usage, based on the limited 
experience levels of the subjects. Also included in the results are the submitted answers for 
their application of the treatments. 

Descriptive statistics 

Due to the ordinal scales of the results, median value will be used for measures of central 
tendency, frequency tables, histograms and pie-charts to show measures of dispersion and the 
Spearman rank-order correlation coefficient for measures of dependency. The Spearman rank-
order correlation coefficient can be calculated as follows: 
 






















−⋅⋅






















−⋅

















−







⋅

=

∑∑∑∑

∑∑∑

====

===

2

11

2

2

11

2

111

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

ii

s

yynxxn

yxyxn

r

 

Figure 5: Pearson correlation coefficient 

 
This is called the Pearson correlation coefficient, but the Spearman rank-order correlation 
coefficient can be calculated in the same manner by using order numbers when samples are 
sorted, instead of the actual values (Wohlin et al. 2000). 
 

Pre-experiment survey 

The subjects were asked what year of study they attended, if they studied Computer Science, 
Information Technology or other, their experience level in programming and which of the 
selected terms they were familiar with. Along with the results shown below, it is worth 
mentioning that all of the subjects were in their 2nd year of study. 
 



 24 

Subjects Distribution

80 %

20 %

Computer Science

Communication Technology

 
Figure 6: Class distribution of subjects 

 
 

Subjects Programming Experience Level

40 %

40 %

20 %
0 %

Beginner

Intermediate

Advanced

Expert

 
Figure 7: Relative frequency of subjects programming experience level 



 25 

 
The alternatives to determine the subjects experience level was as follows: 
 

• Beginner – Completed introduction/basic programming courses 

• Intermediate – Completed one or more advanced programming courses 

• Advanced – Completed several advanced programming courses and do programming 
on spare time  

• Expert – Completed several advanced programming courses, have at least one 
programming related certificate and do programming on spare time or at work.  

 

Beginner Intermediate Advanced Expert 

4 4 2 0 

Table 1: Frequency table of experience level 

 
The alternatives of the results can be seen as an ordinal scale, since there is a notion of “better 
than” between for example intermediate and advanced levels. These are subjective measures, 
since every subject rated their own expertise levels. The median value of this measure is 
“Intermediate”. The measures of dispersion are shown in Figure 7 by relative frequency and 
in Table 1 as actual frequency. 
 

Framework Experience

0

2

4

6

8

10

12

UML Use Case RSpec Fit / FitNesse CubicTest /

AutAT

Test-Driven

Development

S
u

b
je

c
ts

 
Figure 8: Subjects previous framework experiences 

 
This graph shows the results based on the subjects’ knowledge of a small selection of 
frameworks. Only one of the subjects rating themselves as advanced programmers reported 
hearing about TDD. 
 



 26 

Balance of Expertise

0

0,5

1

1,5

2

2,5

Beginner Intermediate Advannced

S
u

b
je

c
ts CubicTest

RSpec

Fit

 
Figure 9: Distribution of expertise between frameworks 

 
These results do not show what level of expertise the subjects perceive they have in the 
various frameworks, but rather what level of programming expertise was assigned to the three 
treatments. This balance of expertise graph was made by combining the data from Figure 7 
and Figure 10. 
 

Post-experiment survey 

This survey was performed by the students after completing the experiment. An e-mail with 
the URL to the survey was sent to the participants in the same way as the pre experiment 
survey. The results were as followed: 
 

Experiment Distribution 

4

3

3

CubicTest

RSpec

Fit

 
Figure 10: Experiment Distribution 

¨ 
This distribution of subjects assigned to treatments was made at random, but as balanced as 
possible. 



 27 

 

Preparation Time

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

CubicTest RSpec Fit

S
u

b
je

c
ts

Less than an hour

An hour

 
Figure 11: Subjects Preparation Time 

 
This is the result of asking the subjects to prepare themselves for the experiment by reading 
about the framework they were asked to test. It was done in this manner due to the lack of 
introduction holders, since expertise in the area was unavailable and manpower limited. It is 
also noteworthy to mention that 90% of the subjects did not feel adequately prepared for the 
experiment. 
 

Ease of Overview

0

0,5

1

1,5

2

2,5

CubicTest RSpec Fit

S
u

b
je

c
ts

Very Easy

Easy

Average

Hard

Very Hard

 
Figure 12: Ease of framework overview 

 



 28 

 

 CubicTest RSpec Fit 

Value Frequency 
Relative 
frequency Frequency 

Relative 
frequency Frequency 

Relative 
frequency 

Very Easy 0 0,0 % 0 0,0 % 0 0,0 % 

Easy 0 0,0 % 0 0,0 % 0 0,0 % 

Average 2 50,0 % 2 66,7 % 2 66,7 % 

Hard 2 50,0 % 1 33,3 % 0 0,0 % 

Very Hard 0 0,0 % 0 0,0 % 1 33,3 % 
Table 2: Frequency table for Ease of Overview 

 
These results are the basis of questions to try to determine the perceived ease of framework 
overview. The aim is to uncover weaknesses in documentation. When asked to comment, all 
of the subjects found it hard to do the problem case based on the limited and simplistic 
examples provided on the official websites of their assigned framework. An RSpec tester also 
mentioned that the documentation assumed knowledge of Ruby programming language. 
 
The measures of central tendency for CubicTest is tricky, since both median values 
“Average” and “Hard” are equally valid. The mean values of both RSpec and Fit are 
“Average”. 
 

Ease of Syntactical Use

0

0,5

1

1,5

2

2,5

CubicTest RSpec Fit

S
u

b
je

c
ts

Very Easy

Easy

Average

Hard

Very Hard

 
Figure 13: Ease of syntactical use 

 

 CubicTest RSpec Fit 

Value Frequency 
Relative 
frequency Frequency 

Relative 
frequency Frequency 

Relative 
frequency 

Very Easy 1 25,0 % 0 0,0 % 0 0,0 % 

Easy 2 50,0 % 0 0,0 % 0 0,0 % 

Average 0 0,0 % 1 33,3 % 2 66,7 % 

Hard 1 25,0 % 2 66,7 % 0 0,0 % 

Very Hard 0 0,0 % 0 0,0 % 1 33,3 % 
Table 3: Frequency table for Ease of syntactical use 



 29 

 
By assigning the values 1 through 5 to the difficulty levels, 1 being Very Easy and 5 being 
Very Hard, we can calculate the measures of dependency by comparing the ease of syntactical 
use data set with ease of overview. 
 
The Spearman rank-order correlation coefficient between the two previous data sets: 

For Fit the coefficient sr = 1, for RSpec sr = 0,5 and for CubicTest sr = 0,688. For all the 

samples, disregarding the division into treatments, we find a coefficient sr = 0,59 between the 

ease of overview and the ease of syntactical use. 
 

Origin of Difficulties - The Case

30 %

30 %

30 %

10 %

None

Some

Moderate

A lot

 
Figure 14: Origin of Difficulties - The Case 

 
 

Origin of Difficulties - The Frameworks

0

0,5

1

1,5

2

2,5

CubicTest RSpec Fit

S
u

b
je

c
ts

None

Some

Moderate

A lot

 
Figure 15: Origin of Difficulties - The Frameworks 

 
The two previous results are from questions that try to uncover where the main difficulties 
were found, a problematic case or problems when using the frameworks. If an experiment 
case is formed in an undesirable way, the results of the experiment will be influenced by this. 



 30 

 
The measures of central tendency with respect to problems associated with the case have a 
median value of “Some”. The median value of the problems associated with the framework is 
“Moderate”. 
 
Measures of dependency between subject programming expertise and framework difficulties, 
where ranking of the data sets was done, resulted in the following dependencies: 
 
Expertise rank: Beginner equals 5, expert equals 4 
Problems with framework rank: None equals 1, a lot equals 4 
 

The resulting sr = -0,028. 

 

Desired Topic of Help - The Frameworks

0

0,5

1

1,5

2

2,5

CubicTest RSpec Fit

S
u

b
je

c
ts

None

Some

Moderate

A lot

 
Figure 16: Desired help from observer 

 
By using the same measures on dependency between expertise data set and desired help from 

observer resulted in sr = -0,038. 

 



 31 

Desired Topic of Help - The Case

70 %

20 %

0 %
10 %

None

Some

Moderate

A lot

 
Figure 17: Desired topic of help - The problem case 

 
 

Desired Topic of Help - The Frameworks

0

0,5

1

1,5

2

2,5

3

3,5

CubicTest RSpec Fit

S
u
b
je

c
ts

None

Some

Moderate

A lot

 
Figure 18: Desired topic of help - The framework 



 32 

 

Comparison with Use Case

0

0,5

1

1,5

2

2,5

CubicTest RSpec Fit

S
u

b
je

c
ts Easier

About the same

Harder

 
Figure 19: A comparison with Use Case 

 
Since 100% of the subjects had previously had experience with Use Cases, the subjects were 
asked about the perceived ease of use of Use Cases, compared to the framework they tested. 
 

Percieved Intended Usage

0

0,5

1

1,5

2

2,5

CubicTest RSpec Fit

S
u

b
je

c
ts Testing

Specifying

Don't know

 
Figure 20: Perception of intended usage 

 
Among the questions asked, some tried to capture the subjects opinions on what they thought 
the intended usage of the frameworks were. This was done in an effort to find out what effects 
the language usage in the frameworks had. It is interesting to note the similar results between 
RSpec and the other frameworks, since RSpec is meant to be a specification framework rather 
than acceptance testing, like the other two. 
 



 33 

Level of Case Completenes

0

0,5

1

1,5

2

2,5

3

3,5

Most requirements, but

significant  shortcomings

All requirements, but

some shortcomings

All requirements and few

shortcomings

Not complete - Complete

S
u

b
je

c
ts CubicTest

Rspec

Fit

 
Figure 21: Level of case completeness 

 
 

 CubicTest RSpec Fit 

Value Frequency 
Relative 
frequency Frequency 

Relative 
frequency Frequency 

Relative 
frequency 

1 0 0,0 % 0 0,0 % 0 0,0 % 

2 1 25,0 % 0 0,0 % 0 0,0 % 

3 2 50,0 % 3 100,0 % 2 66,7 % 

4 1 25,0 % 0 0,0 % 1 33,3 % 
Table 4: Frequency table for level of case completeness 

 
Concerning the problem case solutions that the subjects submitted after the experiment, only 
level of completeness measure is done. The frequency table adds a value that isn’t visible in 
the histogram, but was included in the judgment of completeness, which is perfect. These 
values have been given ranks from Perfect, being 4 to lowest being 1. 
 
This measure is made based on the researcher’s judgment, and is therefore highly subjective. 
They are judged based on how many of the requirements were described in their solution. The 
shortcomings are based on how correctly the requirements reflect the problem domain.  
 

The correlation coefficient sr  = 0,447 between the data sets expertise and level of 

completeness. 
 



 34 

 

Hypothesis testing 

Due to the data collected being on ordinal scale and the frequency-based descriptive statistics, 
Chi-2 tests is suitable for hypothesis testing. The Chi-2 test can be calculated from the 
following equation:  
 

( )
where

E

En
X

r

i

k

j ij

ijij
,

1 1

2

2 ∑∑
= =

−
=

N

CR
E

ji

ij =
 

 

ijE is the expected frequency if 0H is true, r is the number of variables and k is the number of 

groups. Where hypothesis 0H is “Measurements from the k groups are from the same 

distribution”, 0H may be rejected if: 

2

,

2

fX αχ>  

 
Where f is the degrees of freedom and α  is the significance level. The confidence level used 
is 5%, which enables the use of the Chi-2 test critical values table in (Wohlin et al. 2000). 
 

Chi-2 test of 01H : 
2X =1.818  

Degrees of freedom: 2 
P-value: 0.4029. 
 

Chi-2 test of 02H : 
2X =6.967  

Degrees of freedom: 6 
P-value: 0.3239. 
 



 35 

 

Interpretation of results 
There are a great many things to be said about the results of the experiment. First we discuss 
the validity threats in this experiment. 

Validity of results 

The statistical tests used in this study were selected based on the design and scale of the data 
collected. Since these data has an ordinal scale, non-parametric tests was used. These tests 
generally have a lower statistical power than parametric tests. The low statistical power 
threatens conclusion validity and also increases the risk of getting type-I- and type-II-errors 
during hypothesis testing. Type-I-error has occurred when a pattern is found, when none exist, 

i.e. we reject 0H when we shouldn’t reject it. A type-II-error is when a pattern is not found, 

when there is an actual pattern, i.e. we don’t reject 0H when we should. Type-II-errors are the 

errors we are most likely to have committed in this study. 
 
Some of the descriptive statistics have involved the spearman rank-order correlation 
coefficient when determining if there are any correlations between data sets. These measures 
of dependencies are very much affected by the low statistical power when a non-parametric 
test is used on data sets that are this small. The measures of dependency that we performed in 
the results chapter are therefore very unreliable. 
 

Using the Chi-2 test to reject or accept the 0H hypothesis may be reasonable for the type of 

data collected in the experiment, but the sample size is very small. The Chi-2 test which is 
used for hypothesis testing on the data of this study is based on a few assumptions. One of 
these assumptions is if the degrees of freedom f is equal to 0, the test should not be used if any 
of the expected frequencies are equal to or less than 5. When f > 1, the test should not be used 
if more than 20% of the expected frequencies are less than or equal to 5. Use of the Chi-2 
tests is also inappropriate if any expected frequency is 1 or less. 
 
All of the Chi-2 tests done in this study have had more than 20% of the expected frequencies 
below 5 and some of the frequencies are 1, which means that this test is unsuitable on the data 
sets. This is a risk which simply has to be accepted, since there are only a very limited amount 
of samples available. This affects the conclusion validity, since we violate assumptions of 
statistical tests.  
 
By looking for a specific outcome, the researcher may have chosen a specific set of data and 
tests that will increase the chance of the desired results to occur. This may have threatened 
conclusion by the fishing and the error rate threat, but more likely is the error rate part of this 
threat. Multiple statistical tests at a significance level of 5% may have made the actual 
significance level increase by power of number of tests. 
 
Data collection was done by having subjects answer questionnaires and researcher studying 
the subjects case solutions. The nature of these measures is highly subjective and is therefore 
subject to several validity threats. Also, poor questionnaire wording and unclear questions 
may cause the reliability of measures to threaten conclusion validity Also, all measurements 
was subjective in nature, and less reliable than objective measurements. 
 



 36 

Since the experiment took place in a computer laboratory that other students had access to, 
room noise and other students may have disturbed the subjects and affected the results. Also, 
since the subjects were seated in relatively close proximity, they may have disturbed each 
other when implementing their treatment or when seeking help from the observer. This may 
threaten conclusion validity by random irrelevancies in experimental settings. 
 
The pre-experiment survey uncovered a random heterogeneity of subjects. By randomly 
dividing the subjects between the three objects of study, the resulting distribution of expertise 
appeared in Figure 9 on page 26. In hindsight, systematic blocking should have been 
performed, but the researcher believed at the time that randomization was all-important and 
strived to maximize randomness. 
 
On the other hand, the subjects participating in this study are all 2nd year university students. 
Their lack of software development in professional context is therefore limited and they may 
have judged their experience levels too high or too low. It is therefore not unreasonable to 
assume the level of expertise among the subjects is not as diverse as Figure 7 on page 24 may 
convey. Figure 8 on page 25 confirms this since only one of the subjects has heard of or had 
experience with TDD. 
 
Internal validity could have been affected negatively when the online data collection system 
failed on two occasions, leaving the results of two of the subjects out. These subjects then had 
to re-submit the questionnaire several days later, and may have forgotten some of the 
experiences of the experiment. Another instrumentation that may have affected the internal 
validity, is the problem case used in the experiment. The case may have been unclear and 
difficult to understand. The questionnaires revealed that most of the problems did however 
originate from usage of the frameworks, and not the case itself. 
 
The subjects were selected based on volunteers from a course in computer engineering. These 
volunteers may have been more motivated than subjects selected by other means, and would 
therefore be less representative of the intended population. The internal validity is therefore 
threatened by selection. 
 
The selection-maturation interaction may have affected group maturation speeds. One group 
may have better learning abilities or more expertise than the other groups, and may therefore 
have matured faster. This is a threat to internal validity by interaction with selection. 
 
Three groups were at close proximity and subjects could have overheard other subjects asking 
the observer for guidance. Subjects may then have overheard questions that other subject 
groups have asked the observer. Some of the subjects may also have been friends and told 
each other about the treatments they were assigned to before the experiment was performed. 
These things may have influenced the way a subject views the treatments of the study and 
therefore change their treatment implementation. This diffusion or imitation of treatments 
may also threaten internal validity. 
 
The post-experiment survey was not designed as well as it could be, since there was a failure 
to adequately consider the importance of scales and the design types of the experiment. 
Answers seen in the survey are on an ordinal scale and statistics are therefore limited and the 
results we can derive from them suffers. This inadequate preoperational explication of 
constructs is a threat to construct validity and is perhaps the biggest threat to the validity of 
this study.. 



 37 

 
The mono-method bias which threatens construct validity may have occurred due to the 
subjective type of observation. Other threats to construct validity include mono-operation 
bias, since there is only one problem case used in the experiment. The case described a 
company needing a web shop portal and then described a set of goals that should be used to 
make formal functional requirements. This may be insufficient to represent the types of 
relevant functional requirements. 
 
Using only one problem case for the study may also have affected the construct validity 
through mono-operation bias, but the small-scale nature of the experiment gives reason to 
believe that this is not a big threat 
 
The constructs studied are few. Perceived effectiveness and understandability are the studied 
constructs, while all other constructs are ignored. This may provide an incomplete picture of 
the object of study, since we won’t know what effect the treatments have on other constructs. 
As a result, the construct validity is threatened by restricted generalizability across constructs. 
 
There are several ways the subjects of this experiment may have guessed the hypothesis of the 
study. Both pre- and post-experiment surveys may have given hints to what was hypothesized. 
The experiment design may have given enough information to the subjects so that they have 
been able to guess the hypothesis and act either positively or negatively according to their 
guesses. The experiment operation is also a place where the observer unwillingly may have 
given clues to sufficiently enable hypothesis guessing, which would threaten construct 
validity. One example of this threat could be shown in Figure 20 on page 32, about what the 
subjects thought their treatments was really for. They may have guessed that the hypothesis 
was about frameworks for testing, which prompted them to answer testing. They may have 
guessed the hypothesis to be about specification, since that’s the activity they were told to 
perform, and answer accordingly. RSpec, which is in fact meant for specification, have a very 
similar result as the other two. 
 

The subjects of this study were informed about the anonymity of their answers, and the fact 
that it was not the subjects who were under evaluation, but the frameworks. Still, they may 
have dressed up their answers to look better. It’s a very human reaction, and is hard to 
explain. One effect of this may be shown in Figure 7 on page 24, where subjects may have 
overrated their expertise. This evaluation apprehension could threaten the construct validity. 
 
Last of the relevant threats to construct validity in this study is the effect of experimenter 
expectancies. The researcher may have influenced the results unconsciously by making the 
questionnaires ask questions in a specific way to make subjects give the expected answers. 
This threat is high, since there is only one researcher in this study. 
 
The subject population may not be representative of the non-technical population that this 
study aims to generalize. The subject population is semi-proficient in programming, while the 
population of interest is “business people” with low to no technical and programming 
knowledge, but high domain knowledge. The subject population was asked to play the 
unfamiliar role of customer, rather than developer. 
 



 38 

The population chosen for this experiment was the only population available that would not 
qualify as professional developers. The intention was to test DSL usage for specification by 
non-technical individuals. Still, part of the population was proficient in computer engineering, 
and the whole selection had some experience in programming, which puts the external 
validity of this study in jeopardy through interaction of selection and treatment. 
 
The environment in one of the treatments is not an environment familiar to the non-technical 
population, namely Eclipse. Also, the context of this experiment was a university computer 
laboratory, which is not similar to a standard office environment. Also, CubicTest official 
websites seemed to be offline from the day of the experiment for the duration of a few weeks. 
Since the subjects were permitted to use all the sources of information they wanted during the 
experiment, the CubicTest treatment group had a big disadvantage. At the time, CubicTest 
had a very limited reputation and was not widely known. This lack of information may have 
influenced the results for the group using CubicTest, since the other two groups still had 
access to available information. This constitutes a threat to external validity through 
interaction of setting and treatment. 
 
The experiment was conducted in the late afternoon on a Monday, between 16:00 and 18:00. 
This may result in a lover motivation for the students to complete the experiment, since it is 
outside of normal working hours. This interaction of history and treatment may have affected 
external validity. 
 
To summarize, there are too many threats to validity in effect, and therefore the collected 
results are questionable. Most of these threats should have been addressed at the experiment 
design stage, but due to the inexperience of the researcher, the design, operation and data 
collection suffered serious threats to validity. A single researcher performed this study, which 
involved a factor with three treatments. A work of this magnitude would benefit by having 
two or more researchers involved. The results of a larger scale experiment would then be 
possible, and the results more reliable. Also, a different selection should have been considered 
that didn’t study computer science and information technology. There are many such study 
programs on NTNU, but convenience and limited time prompted a selection from the students 
closely available. 

Interpretation of the hypothesis testing 

None of the Chi-2 tests achieved the criteria 2

,

2

fX αχ> , which allows us to reject a null-

hypothesis. In addition, the p-values were in the area of 0.4, which means statistically un-
significant results. To achieve statistical significance, the p-value would have to be less than 
the significance level 0,05, which was chosen for this study. 



 39 

 

Discussion 
Acceptance testing, like performed in all too many development projects to day, is something 
a customer performs at the end of a project to check if the system developed passes their 
acceptance criteria. This places high risk on a project, since the customer may find out that the 
system is not up to their standards. By making acceptance tests play the role of specifications 
through domain specific languages, developers can gradually fulfill the customer acceptance 
criteria through the implementation phase. 
 
Specification documents are in most cases still written by customers and handed over to 
developers. These documentations are often saturated with design choices that should be 
made by developers. Some development teams have already started changing this by having 
customers write specifications on story cards. Story cards are also a good format for making 
the specifications into acceptance test. This is an important point in BDD practice, but 
customers can’t always make such acceptance tests without the help of developers.  
 
The vision is to have the customer deliver not a specification document, but a fully functional 
acceptance test suite based on a domain specific language. For this vision to become real, the 
domain specific languages must become easier to understand, more publicized, better 
documented with user guides and examples and also better researched. 
 
Fit is currently a de-facto standard in acceptance testing, and is most commonly recognized 
through the wiki-system FitNesse. Fit can be used in an environment like Microsoft Excel, an 
environment which everyone should have some familiarity with. A familiar environment in 
combination to the readily available documentation for Fit and FitNesse should make any 
non-technical individual able to learn how to write acceptance tests. 
 
But by using Fit for specification, a domain specific language needs to be established. 
Fixtures are the elements of Fit which enforces this DSL. Most commonly, developers and 
“business people” collaborate to make acceptance tests. The “business people” structure their 
acceptance criteria through tables and developers help formalize the table structures and 
naming into the DSL that fixtures can work with. 
 
For “business people” to be able to create specifications from Fit as readily as Use Cases on 
paper, they need to be able to recognize the importance of the DSL. The results of this 
experiment did not show any evidence of a structured DSL in the Fit tests. It may be that this 
is very difficult without understanding how fixtures work, or the subjects may just have 
missed this point completely. 
 
RSpec is the only framework in the study that is meant to be used in specification and not 
testing. Much of the philosophy and language use of BDD, which RSpec is based on, is meant 
to draw thought patterns away from testing activities of TDD and similar methods and into 
specification activities. By using a syntax that resembles the natural way the English language 
would be used to describe a desired behavior. 
 



 40 

There are however still issues to deal with if “business people” are to create functional 
requirements on their own with RSpec. One of the RSpec subjects in the experiment pointed 
out how currently available information and examples in RSpec assumed a certain familiarity 
with the Ruby programming language. This would be a major obstacle for non-technical 
“business people”. Users like that have most likely never produced a line of code in their 
entire life. If “business people” are ever to be expected to use this framework, steps must be 
taken to further transform programming-like syntax into natural language. 
 
BDD places some emphasis on user stories written on story cards, and aims to use these story 
cards as a stepping stone to formalize functional requirements in RSpec. This experiment 
didn’t use such stepping stones, but rather asked the subjects to go directly from fairly vague 
goals, to formal functional specifications. Using story cards may reduce the need for 
understandability in RSpec, by having the structure of the user story formally transfer to a 
structured example in RSpec. 
 
CubicTest is a framework that is based on modeling different states of a web based system. 
This approach to acceptance testing seems promising, since it uses models to convey 
functional requirements. Models can be easier to understand than tables in Fit and lines of 
code in RSpec, but the state concept can be difficult to grasp for non-technical “business 
people”. This was also mentioned by a subject assigned to CubicTest. 
 
Also mentioned by the subjects of the experiment, was the inability to find useful information 
of usage for CubicTest. As luck would have it, all sites containing information about 
CubicTest and its previous version, AutAt, seemed to be offline on the day of the experiment. 
Since all helping material was allowed, this caused some difficulties for the CubicTest group, 
which didn’t have access to any. 
 
Another source of questions was whether all the functional requirements should be expressed 
in the same model like an UML domain model or class diagram, or made into separate models 
for the separate requirements. The observer was unable to answer these questions, mainly not 
to influence the result of the experiment, but also because the observer didn’t know the 
answer. 2 out of 3 subjects chose to express all requirements in a single model. 
  
The state of maturation may explain the lack of information and examples for CubicTest. This 
is still quite new, and in time, developers and “business people” alike may learn of CubicTest 
and decide to give it a try.



 41 

 

Conclusions and possible improvements 
This study has taken a few twists and turns along the way, and ended up unable to reject any 

of its null-hypothesis. 01H , 02H and 03H are therefore not rejected, but that doesn’t mean they 

are true. This simply means that we cannot conclude anything based on the results of the 
experiment. 
 
This doesn’t mean that the study is a failure, but more a learning experience and perhaps 
reading material for someone who would like to perform a lager scale experiment on the same 
topic. The problems encountered in this study may help others steer clear of the many pitfalls 
and uncertainties that this study experienced.  
 
Probably the only serious concern uncovered in this study, is the lack of documentation for 
RSpec and CubicTest. Fit is the only framework in this study that has books written about it, 
and the only one of these three frameworks that is readily known among non-technical users 
as an acceptance testing framework. RSpec and BDD are starting to get some attention, but it 
is at this time still only in internet articles and blogs. CubicTest has no other channel of 
documentation distribution other than its official home site www.CubicTest.org and 
boss.bekk.no. It is still early in development and CubicTest hasn’t had time to receive much 
publicity yet, but there is great potential in this method, since it relies on modeling, and not 
anything resembling programming. 
 
We recognize that development methodologies like these will start out and develop on blogs 
and in informal developer communities, but if non-technical users are to learn how to use 
RSpec and CubicTest for specifications, the work on documentations and user guides must 
start. This is due to the fact that non-technical people generally don’t frequent technical blogs 
and forums, or other haunts of developers and gurus. 
 
One of the experiments flaws was to only have a set of goals that was to be formalized into 
functional requirements. In hindsight, these goals should have been supplied as user stories on 
story cards. The subjects could alternatively be asked to first write story cards of their own 
based on these goals, before attempting to produce functional requirements in any framework. 
In agile software development, story cards play a big role in specifications, and should not 
have been neglected in this experiment. Further work could possibly involve a framework or 
interface for formal transformation of story card structure into RSpec examples, Fit/Fixtures 
or CubicTest models.



 42 

 

References 
 
Beck, K. (2000). Extreme Programming Explained: Embrace Change, Addison-Wesley. 

Canfora, G., A. Cimitile, F. Garcia, M. Piattini and C. A. Visaggio (2006). Evaluating 
advantages of test driven development: a controlled experiment with professionals. 
Proceedings of the 2006 ACM/IEEE international symposium on empirical software 
engineering. Rio de Janeiro, Brazil, ACM Press: 364-371. 

Conboy, K. and B. Fitzgerald (2004). "Toward a conceptual framework of agile methods: a 
study of agility in different disciplines." Proceedings of the 2004 ACM workshop on 
Interdisciplinary software engineering research: 37-44. 

Erdogmus, H., M. Morisio and M. Torchiano (2005). "On the Effectiveness of the Test-First 
Approach to Programming." IEEE Transactions on Software Engineering 31(3): 226-
237. 

Evans, E. (2004). Domain-Driven Design: Tackling Complexity in the Heart of Software. 
Boston, Addison-Wesley. 

Fowler, M., J. Highsmith, K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. 
Cunningham, J. Grenning, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. 
Mellor, K. Schwaber, J. Sutherland and D. Thomas. (2001). "Manifesto for Agile 
Software Development." from http://agilemanifesto.org/. 

Freeman, S., T. Mackinnon, N. Pryce and J. Walnes (2004). Mock Roles, Not Objects. 
Companion to the 19th annual ACM SIGPLAN conference on Object-oriented 
programming systems, languages, and applications (OOPSLA '04). Vancouver, BC, 
CANADA, ACM Press: 236-246. 

Jones, C. G. (2004). "Test-driven development goes to school." Journal of Computing 
Sciences in Colleges 20(1): 220-231. 

Kalitina, E. and J. R. Myhre (2006). CubicTest Usability. Trondheim, Norway, Norwegian 
University of Science and Technology (NTNU). 

Kaufmann, R. and D. Janzen (2003). Implications of test-driven development: a pilot study. 
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented 
programming, systems, languages, and applications (OOPSLA '03). Anaheim, CA, 
USA, ACM Press: 298-299. 

Kerenyi, C. (1976). Dionysos: Archetypal Image of Indestructible Life, Princeton University 
Press. 

Loe, K. and S. L. N. Olsen (2006). Automatisert testing av dynamisk HTML. Trondheim, 
Norway, Norwegian University of Science and Technology (NTNU). 



 43 

Maximilien, E. M. and L. Williams (2003). Assessing test-driven development at IBM. 
Proceedings of the 25th International Conference on Software Engineering. Portland, 
Oregon, IEEE Computer Society: 564-569. 

Nonaka, I. and H. Takeuchi (1995). The Knowledge-Creating Company: How Japanese 
Companies Create the Dynamics of Innovation, Oxford University Press. 

Schwaber, K. (1995). "SCRUM Development Process." OOPLSA’95 Workshop on Business 
Object Design and Implementation. 

Skytteren, K. and T. M. Øvstetun (2005). AutAT - Automatoc Acceptance Testing of Web 
Applications. Trondheim, Norway, Norwegian University of Science and Technology 
(NTNU). 

Steinberg, D. H. (2001). The effect of unit tests on entry points, coupling and cohesion in an 
introductory Java programming course. Proceedings of 2001 XP Universe. Raleigh, 
NC, USA. 

Whorf, B. L. (1956). Language, thought, and reality, MIT Press Ltd. 

Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A. Wesslén, Eds. (2000). 
Experimentation in Software Engineering - An Introduction. The Kluwer International 
Series in Software Engineering. Boston, Kluwer Academic Publishers. 

 
 



 44 

Appendix A – Pre-experiment survey 
 

INNLEDENDE SPØRRESKJEMA 
 
 
 
 

Page1 

i1i1i1i1 

Disse spørsmålene er for å få en oversikt over kunnskapsnivået innen programmering, spesifisering og testing. 
Husk at svarene vil holdes konfidensielt og det er ikke du som deltaker som blir evaluert, men metoder og 
rammeverk. 

q8q8q8q8 

Velg hvilket studie du tar 

� Data (1) 
� Komtek (2) 
� Informatikk (3) 
� Indøk (4) 
� Annet (5) 

q9q9q9q9 

Velg hvilken klasse du går i 

� 1 (1) 
� 2 (2) 
� 3 (3) 
� 4 (4) 
� 5 (5) 
� Stipendiat (6) 

q2q2q2q2 

Hvor høy er din ekspertise innen programmering? 

� Nybegynner (Hatt innledende fag / introduksjonskurs / grunnleggende programmeringsfag) (1) 
� Viderekommende (Hatt ett eller flere avanserte programmeringsfag) (2) 
� Avansert (Hatt flere avanserte programmeringsfag og programmerer på fritid) (3) 
� Ekspert (Hatt flere avanserte programmeringsfag, ett eller flere sertifikater og programmerer på fritid/jobb) 
(4) 

q3q3q3q3 

Merk av følgende aternativ som du har kjennskap til og erfaring med 

� UML (1) 
� Use Case (2) 
� RSpec (3) 
� Fit / FitNesse (4) 
� AutAT / CubicTest (5) 
� Test-Driven Development (TDD) (6) 
 



 45 

Appendix B – Post-experiment survey 
 

FULLFØRT EKSPERIMET 
 
 
 
 

Page1 

i1i1i1i1 

Rammeverkets oversiktelighet 

q2q2q2q2 

Velg hvilketrammeverk du ble bedt om å bruke 

� RSpec (1) 
� Fit / FitNesse (2) 
� CubicTest (3) 

q13q13q13q13 

Hvor mye tid brukte du på lesing og forberedelser til eksperimentet? 

� Under en time (1) 
� 1 time (2) 
� 2 timer (3) 
� 3 timer (4) 
� 4 timer (5) 
� 5 timer eller mer (6) 

q35q35q35q35 

Følte du at du var godt nok forberedt ved oppmøte til eksperimentet? 

� Ja (1) 
� Nei (2) 

q4q4q4q4 

Hvor vanskelig var det å få oversikt over rammeverket? 

� Svært lett (1) 
� Lett (2) 
� Middels (3) 
� Vanskelig (4) 
� Svært vanskelig (5) 

q5q5q5q5 

Gi en kort begrunnelse av forige spørsmål.Hva var lett å forstå?Hva var vanskelig?Var dokumentasjonen god 
nok? 

 



 46 

q34q34q34q34 

Fantes det elementer i dokumentasjonen som virket motstridende, forvirrende eller missledende? 

 

q29q29q29q29 

Var det forskjeller mellom dokumentasjonen og bruken av rammeverket? 

 

End of Page1 

Page2 

i6i6i6i6 

Rammeverk i bruk 

q7q7q7q7 

Hvor vanskelig var det å bruke syntaksen i rammeverket? 

� Svært lett (1) 
� Lett (2) 
� Middels (3) 
� Vanskelig (4) 
� Svært vanskelig (5) 

q9q9q9q9 

Hva var de eventuelle vanskelighetene med syntaksen? 

 

q10q10q10q10 

Hvilke funksjonelle krav hadde du problemer å uttrykke, blandt de du forsøkte på? 

 

q11q11q11q11 

Hvilke problemer opplevde du med å uttrykke kravene? 



 47 

 

q27q27q27q27 

Hvor kom vanskelighetene fra? 

 Ingen Litt Moderat Mye 

Caset / kravenes utforming (1) � � � � 
Rammeverket (2) � � � � 

q33q33q33q33 

Fantes det elementer i rammeverket som virket motstridende, forvirrende eller missledende? 

 

q30q30q30q30 

Hvordan tror du det ville vært å utrykke kravene med Use Case i motsetning til rammeverket? 

� Lettere (1) 
� Ca. samme (2) 
� Vanskeligere (3) 

End of Page2 

Page6 

i36i36i36i36 

Test mot spesifisering 

q38q38q38q38 

Hvilke av disse utsagnene ligger nærmest til det du prøvde å oppnå? 

� Jeg prøvde å teste en internettside som ikke var lagd ennå (1) 
� Jeg prøvde å spesifisere tester til et system som ikke var lagd ennå (2) 
� Jeg prøvde å spesifisere en internettside (3) 
� Jeg prøvde å skrive tester til et system som ikke var lagd ennå (4) 
� Jeg prøvde å spesifisere oppførselen til et system som skulle lages (5) 
� Jeg vet ikke helt hva jeg prøvde (6) 

q39q39q39q39 

Hva var rammeverket du brukte mest tilrettelagt for? 

� Testing (1) 
� Spesifisering (2) 
� Vet ikke (3) 

q40q40q40q40 

Hvilke vanskeligheter hadde du med å skrive tester for noe som ikke eksisterer? 



 48 

 

End of Page6 

Page3 

i12i12i12i12 

Observatørens rolle 

q21q21q21q21 

Hvor mye hjelp ønsket du fra observatøren? 

� Ingen (1) 
� Litt (2) 
� Moderat (3) 
� Mye (4) 

q24q24q24q24 

Hva ønsket du hjelp om? 

 Ingen Litt Moderat Mye 

Om Caset / kravene (1) � � � � 
Om rammeverket (2) � � � � 

q25q25q25q25 

I hvilken grad mottok du hjelp? 

 Ingen Litt Moderat Mye 

Om Caset / kravene (1) � � � � 
Om rammeverket (2) � � � � 

q31q31q31q31 

Hvilke typer hjelp ga obsevatøren deg? 

� Ingen (1) 
� Om syntaks (2) 
� Om Caset (3) 
� Om riktig bruk av rammeverket (4) 
� Spesifik info om hvordan løse kravene i caset (5) 

q42q42q42q42 

Hvordan og i hvilken grad påvirket observatøren deg til å løse caset på den måten du prøvde? 

 

 



 49 

Appendix C – Problem Case 
 
En ny nettbutikk skal utvikles for din bedrift, som selger gadgets og duppeditter. Før du gir 
oppdraget til systemutviklere og konsulenter, ønsker du å spesifisere funksjonelle krav som 
utviklere skal implementere. Utviklerne har bedt deg om å spesifisere på en spesifikk måte, 
slik at de kan kjøre spesifikasjonene som om det var tester. Etter å ha blitt referert til diverse 
internettsider om rammeverket som skal brukes, vil du nå bruke litt tid på følgende utvalgte 
forslag til funksjonelle krav: 
 

• Uregistrert kunde skal kunne opprette brukerkonto og registrere betalingsinfo 

• Både registrert og uregistrert kunde skal kunne velge blant produkter 

• Valgte produkter skal til enhver tid vises med antall og sum i en ”handlekurv” 

• Kunde skal kunne fjerne varer fra handlekurven 

• Registrert kunde skal kunne betale for valgte varer med betalingsinfo på 
brukerkonto  



 50 

Appendix D – Problem Case solutions 
CubicTest solutions: The last four CubicTest models are representing the different functional 
requirements of the same case, submitted by the same subject. The Fit answers have to be 
submitted as a packaged file, since the tables won’t fit in this document. 
 
CubicTest Subject 1: 
 

 



 51 

CubicTest Subject 2: 

 
 



 52 

CubicTest Subject 3: 

 



 53 

The next four models are by the same subject and represent different aspects of the problem 
domain: 
 
CubicTest Subject 4: 
 

 



 54 

 



 55 

 



 56 

 



 57 

The next 3 solutions are in RSpec: 
 
RSpec Subject 1: 
 
## KILDER 
# 
http://66.102.9.104/search?q=cache:h1YAqRpmBsoJ:blog.daveastels.com/files/QuickRef.pdf
+rspec+examples&hl=no&ct=clnk&cd=15&gl=no&client=firefox-a 
# http://rspec.rubyforge.org 
# http://eigenclass.org/hiki/xmpfilter 
## 
class GeneralCustomer 
 def SelectedItem; 
 def productCount; 
 
 def allow_to_change 
  @generalCustomer.insert "lastProductCount" 
  @generalCustomer.insert "ProductCount" 
  assertNotEqual(lastProductcount, ProductCount) 
 end 
end 
 
context "general customer" do 
 setup do 
  @generalCustomer = GeneralCustomer.new 
  def lastProductCount; 
 end 
 specify "should be able to choose among products" do 
  @generalCustomer.selectedItem.should_not_be null 
 end 
 specify "should be able to remove products from basket" do 
  @generalCustomer.productCount.should allow_to_change 
 end 
end 
 
class UnregisteredCustomer 
end 
context "unregistered customer" do 
 setup do 
  @unregisteredCustomer = UnregisteredCustomer.new 
 end 
 specify "should be treated as a general customer" do 
  @unregisteredCustomer.shoule_be_an_instance_of 
@generalCustomer 
 end 
 specify "should be able to create account" 
  @registeredCustomer.should_not_be null 
 end 
 specify "should be able to register payment info" do 
  @registeredCustomer.paymentInfo.should_not_be null 



 58 

 end 
end 
 
class RegisteredCustomer 
 def paymentInfo; 
 def sumPaid; 
end 
context "registeredCustomer" do 
 setup do 
  @registeredCustomer = RegisteredCustomer.new 
 end 
 specify "should be treated as a general customer" do 
   @registeredCustomer.should_be_an_instance_of 
@generalCustomer 
 end 
 specify "shoudl be able to pay for products using registered info" do 
  @registeredCustomer.paymentInfo.should_not_be null 
  @registeredCustomer.sumPaid.should_not <= -1 
 end 
end 
 
class Basket 
 def SelectedProducts; 
 def totalSum; 
end 
context "basket" do 
 setup do 
  @basket = Basket.new 
 end 
 specify "should show info about chosen products" 
   @basket.selectedProducts.should_not_equal 0 
   @basket.selectedProducts.should_not_be null 
   @basket.totalSum.should >= 0 
 end 
end 



 59 

RSpec Subject 2: 
 
require 'user' 
require 'account' 
require 'basket' 
require 'item' 
require 'order' 
 
context "A user" do 
  setup do 
    @user = User.new 
    @item1 = Item.new 
    @item1.prize = Money.new(10, :dollars) 
    @item2 = Item.new 
    @item2.prize = Money.new(20, :dollars) 
  end 
  specify "can add items to a basket" do 
    @basket = Basket.new 
    @basket.owner = @user 
    @basket.add @item1 
    @basket.should_have(1).things 
    @basket.should_include @item1 
    @basket.add @item2 
    @basket.should_have(2).things 
    @basket.should_include @item2 
  end 
  specify "can get size and cost of the basket" do 
    @basket.size.should_equal 2 
    @basket.cost.should_equal Money.new(30, :dollars) 
  end 
  specify "can remove items from the basket" do   
    @basket.remove @item1 
    @basket.should_have(1).things 
    @basket.should_not_include @item1 
    @basket.should_include @item2 
  end 
end 
 
context "An unregistered user" do 
  setup do 
    @user = User.new 
    @user.set_registered false 
  end 
  specify "can register a new account" do 
    @account = Account.new 
    @account.register @user 
    @account.registered_user.should_equal @user 
  end 
end 
 



 60 

context "A registered user" do 
  setup do 
    @user = User.new 
    @user.set_registered true 
  end 
  specify "can enter payment info" do 
    @user.payment_info "123" 
    @user.payment_info.should_equal "123" 
  end 
  specify "can pay for a basket with entered payment info" do 
    @basket = Basket.new 
    @basket.owner @user 
    @basket.add @item1 
    @basket.add @item2 
    @order = Order.new 
    @order.set_owner @user 
    @order.set_basket @basket 
    @order.check_out 
    @order.payment_info.should_equal "123" 
  end 
end 



 61 

RSpec Subject 3: 
 
require 'customer' 
require 'cart' 
require 'product' 
 
context "en ny handlevogn" do 
 setup do 
  @cart = cart.new 
  @product = product.new 
 end 
 specify "skal være tom når den blir opprettet" 
  @card.should be_empty 
 end 
 specify "skal kunne registrere produkter" 
  @cart.registerProduct(@product).should_not raise_error() 
 end 
  
 specify "skal ikke være tom når et produkt er registrert" 
  @cart.registerProduct(@product) 
  @cart.should_not be_empty 
 end 
end 
 
context "en handlevogn med produkter" do 
 setup do 
  @cart = cart.new 
  @product = product.new 
  @cart.registerProduct(@product) 
 end 
 specify "skal kunne registrere produkter" 
  @cart.registerProduct(@product).should_not raise_error() 
 end 
  
 specify "skal kunne fjernes produkter fra" 
  @cart.unregisterProduct(@product).should_not raise_eror() 
 end 
  
 specify "skal ikke kunne fjerne et produkt den ikke har i seg" 
  @product2 = Product.new; 
  @cart.unregisterProduct(@product2).should raise_error() 
 end 
  
 specify "skal ha et produkt på første plassering" 
  @cart.productAt(0).should_not be_nil 
  @cart.productAt(0).should_eql @product 
 end 
  
 specify "skal vise antall varer" 
  @cart.numberOfProducts().should_eql 1 



 62 

  @cart.unregisterProduct(@product) 
  @cart.numberOfProducts().should_eql 0 
 end 
  
 specify "skal vise pris på varer" 
  @cart.priceOfProducts().should_not_eql @product.price 
  @cart.unregisterProduct() 
  @cart.priceOfProducts().should_eql 0 
 end 
end 
 
context "en  kunde" do 
 setup do 
  @customer = customer.new 
  @product = product.new 
 end 
 specify "skal kunne velge blandt produkter" 
  @customer.chooseProduct(product).should_not raise_error() 
 end 
  
 specify "skal ha en handlevogn" 
  @customer.cart.should_not be_nil  
 end 
end 
 
context "En uregistrert kunde" do 
  
 setup do  
  @customer = customer.new 
 end 
 specify "en ny kunde skal ikke være registeret" 
  @customer.should_not be_registered 
 end 
  
 specify "en ny kunde skal kunne registreres og etter dette bli registrert" 
  @customer.register() // skal sikkert registreres med noe input, 
dette er utelatt 
  @customer.should be_registered 
 end 
  
 specify "skal kunne registrere betalingsinfo" 
  @customer.register() 
  @customer.registerPayment() 
  @customer.should be_registered 
  @customer.should be_registeredPayable 
 end 
  
 specify "skal ikke kunne betale for valgte varer" 
  @customer.payForSelected().should raise_error() 
 end 



 63 

end 
 
context "en registrert kunde" do 
 setup do 
  @customer = customer.new 
  @customer.register() // skal ha indata, men disse er utelatt 
  @customer.registerPayment() 
 end 
  
 specify "skal være registrert" 
  @customer.should be_registered 
  @customer.should be_registeredPayable 
 end 
  
 specify "skal kunne betale for valgte varer" 
  // skal ha inndata, men disse er utelatt 
  @customer.payForSelected().should_not raise_error() 
 end 
end 
 


