
June 2007
Alf Inge Wang, IDI
Carl-Fredrik Sørensen, IDI

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Arbitration and Planning of Workflow
Processes in a Context-Rich
Cooperative Environment

Christian Indahl
Kjell Martin Rud

Problem Description

We will look at mechanisms that are needed to automatically construct workflows, with only a
desired goal as a starting point, and which technologies that can support automatic workflow
construction. In addition, we would like to take a closer look at how workflows can be made
adaptive based on context and how to ensure minimal replanning in schedules.

We also want to investigate how to represent a conflict between two clients in a dynamic and
generic way in a cased-based reasoning repository. The conflicts must be recognisable in a
different context and the CBR framework must be able to reason around the nature of the conflict
so it can detect unknown conflicts that are similar.

Assignment given: 20. January 2007
Supervisor: Alf Inge Wang, IDI

Abstract

Hardware has come a long way to support pervasive computing and workflow management,
whilst software has fallen behind. Existing systems lack the ability to make decisions that
corresponds with user intents and are unable to handle complex context-rich workflow
conflicts.

Since workflow systems are meant to facilitate normal workers, we have looked at how
workflows can be generated and adapted without prior knowledge of programming. The
approach is based on the elaboration of so called calm technologies, bringing user inter-
ference to a minimum. We propose ways of automating the process of obtaining context,
generating workflows, making plans, and schedule resources before execution.

Obtaining context is proposed done by a Context service which delivers tailored context
information through abstraction. To create workflows, the only thing a user needs to know
is what he wants to achieve. The rest is generated. The planning mechanism used is the
Scheduling service first proposed in our depth study [75]. As a part of this, we describe
a method for how to simulate future context for better planning purposes, decreasing the
need for adaption and replanning caused by context changes.

When several actors execute workflows in an environment, conflicts will occur. We have
made a proof-of-concept implementation of the Arbitration architecture from our depth
study. This approach used case-based reasoning to recognise conflicts between workflows
and select a solution. We set out to find a way to store a conflict representation as a
CBR-case so it can be recognised in a different context and enable the service to recognise
conflicts that are similar in nature.

We found that a case could be stored using ontologies to describe the nature of the
workflow constituents that make up the conflict. In addition, context and state triggers
are proposed. These filter the cases that can not be conflicts, due to current contextual
information or other states, before the CBR framework computes similarity of the cases
against the current workflows. Using an expert system supporting fuzzy logic, it could
speed up the similarity computations required to recognise conflicts. After running some
scenarios, we found that the system was able to detect known conflicts in a different
context and discover prior unknown. This was achieved because of the similarity in nature
to a known conflict.

i

ii

Preface

This report is written as a master thesis on context-aware workflow enactment systems
at the Institute for Computer and Information Science (IDI) at the Norwegian University
of Science and Technology in Trondheim.

The authors of the report are Christian Indahl and Kjell Martin Rud, with the project
running from mid January to mid June 2007.

We would like to thank our supervisors, PhD Carl-Fredrik Sørensen and PhD Anders
Kofod-Petersen, for excellent support, guidance and comments.

Trondheim, 14. June 2007

Christian Indahl Kjell Martin Rud

iii

iv

Contents

I Context 1

1 Introduction 3

1.1 Background . 3

1.2 Motivation . 3

1.2.1 Automate activities regardless of time and location 4

1.2.2 Support a dynamic work environment 4

1.2.3 Prove concepts from our depth study 4

1.3 Problem definition . 4

1.4 Limitation of scope . 4

1.5 Assumptions . 5

1.6 Outline of the report . 6

2 Research 9

2.1 Questions and motivation . 9

2.2 Methods . 10

2.3 Propositions to the research questions . 12

2.4 Methods evaluation . 16

II Prestudy 19

3 Evolution of computer science 21

3.1 Distributed systems . 21

3.2 Mobile computing . 22

3.3 Ubiquitous and pervasive computing . 22

4 Issues in the ubiquitous domain 25

4.1 World perception . 25

4.1.1 Human memory . 26

v

4.1.2 Obtaining knowledge - sensing and abstracting context 27

4.1.3 Using perceived information . 28

4.2 Resource management . 29

4.2.1 Remote execution . 29

4.2.2 Balanced storing of information . 30

4.2.3 Personalising information . 30

4.3 Cooperation . 31

4.3.1 Sharing resources . 31

4.3.2 Solving conflicts . 32

4.3.3 Cooperative planning . 32

5 Supporting technologies and terms 33

5.1 Context and context-awareness . 33

5.2 Cooperation in ubiquitous computing . 35

5.2.1 Peer-to-peer communication and collaboration 36

5.2.2 CSCW . 37

5.2.3 Agents . 38

5.3 Semantics . 41

5.3.1 The Semantic web . 41

5.3.2 Ontologies . 43

5.4 Learning and reasoning . 44

5.4.1 Case-based reasoning . 45

5.4.2 Rule-based expert systems . 52

5.4.3 Bayesian networks . 54

5.4.4 Fuzzy logic . 55

5.4.5 Reinforcement learning . 59

5.4.6 Artificial neural networks . 60

5.5 Process modelling . 62

5.5.1 Activity theory . 62

5.5.2 Situated planning and actions . 64

5.5.3 Planning and scheduling . 65

5.5.4 Workflow . 67

6 Frameworks and middleware 71

6.1 Smart work processes architecture . 71

6.2 Context Toolkit . 73

6.3 JCAF . 74

vi

6.4 JXTA . 75

6.5 jCOLIBRI . 77

6.6 Creek . 78

6.7 SOCAM . 78

6.8 CoBrA (Context Broker Architecture) . 78

6.9 Ambiesense . 79

III Arbitration 81

7 Arbitration introduction 83

8 Arbitration service 85

8.1 Possible conflicts . 85

8.2 Architectural overview . 86

8.3 Discovering conflicts . 87

8.4 Arbitration . 87

9 Scenarios 91

9.1 Temperature adjustment . 91

9.2 Humidity adjustment . 92

9.3 Warehouse conflict . 93

10 System requirements 95

10.1 Communication requirements . 95

10.2 Context requirements . 96

10.3 Resources requirements . 96

10.4 Workflow enactment requirements . 96

10.5 Arbitration requirements . 96

10.6 Functional requirements summary . 97

10.7 Non-functional requirements . 98

11 Architectural description 99

11.1 Architectural drivers . 99

11.2 Stakeholders and concerns . 100

11.3 Architectural patterns . 100

11.4 Views . 102

12 Implementation 105

12.1 Choice of technology . 105

vii

12.2 CIKMR package . 106

12.2.1 Framework . 106

12.2.2 XMLRepresentation . 106

12.3 Network package . 109

12.3.1 Network . 109

12.3.2 PeerGroupConnection . 109

12.3.3 ConnectionStatus . 109

12.4 Services package . 112

12.4.1 ServiceManager . 112

12.4.2 Service . 112

12.4.3 Peer Discovery Service . 113

12.5 Resources package . 113

12.5.1 Basic manner of operations . 115

12.5.2 ResourceDescription . 115

12.5.3 AbstractResourceService . 116

12.5.4 Resource . 116

12.5.5 ResourceManagerService . 117

12.6 Workflow, Workflow Enactment and Scheduling packages 117

12.6.1 Workflow package . 117

12.6.2 Workflow enactment package . 121

12.6.3 Scheduling package . 124

12.7 Arbitration package . 124

12.7.1 Arbitration . 124

12.7.2 ArbitrationCBR . 126

IV Planning 133

13 Scenario - Dice factory 135

14 Workflow generation 137

14.1 Gathering context - the context service . 137

14.2 Obtaining activities from goals - generating workflows 139

14.3 Adaptive workflow . 140

14.4 Obtaining, storing, and improving activities’ context influence 142

15 Scheduling service 143

15.1 Context extensions . 143

viii

15.2 Architectural overview . 144

15.3 The scheduling process . 146

15.4 Markov decision processes . 148

15.5 Problems and challenges . 148

V Discussion and conclusion 151

16 Discussion 153

16.1 Context . 153

16.2 Planning . 155

16.3 Arbitration . 157

16.4 Research questions . 166

16.5 Research methods . 169

17 Conclusion 171

18 Further work 175

VI Appendix 179

A Resource DTD 181

B Java resource description example 183

C Invoke methods DTD 185

D Invoked methods result DTD 187

E Workflow DTD 189

F Workflow XML example 193

G Workflow server and connector DTD 197

H Arbitration DTD 199

I Workflow description DTD 201

ix

x

List of Tables

5.1 Traditional methods and SCBR methods 51

12.1 Return value matrix for FindResource. 119

xi

xii

List of Figures

2.1 Research methods . 13

3.1 Ubiquitous Computing dimensions . 23

3.2 Ambient intelligence paradigms . 23

4.1 Declarative memory . 26

5.1 Context in the AmbieSense project . 35

5.2 CSCW time and space matrix . 38

5.3 RPC-based communication . 38

5.4 Mobile agent-based communication . 39

5.5 CBR system - blackbox . 46

5.6 CBR system - two major components . 46

5.7 Process oriented view of the CBR life cycle 47

5.8 Task-method decomposition of CBR . 48

5.9 Expert system . 53

5.10 Bayesian network example . 55

5.11 Fuzzy sets: Temperature . 57

5.12 Fuzzy sets: Water flow . 57

5.13 Defuzzify: Rule 2 match . 58

5.14 Defuzzify: Rule 3 match . 59

5.15 Defuzzify: Combination of rule 2 and 3 . 59

5.16 Artificial neural network . 61

5.17 Activity theory: Human activity . 63

5.18 Activity theory: an expanded model . 64

5.19 Workflow: definitions . 68

6.1 Smart Work Architecture . 73

8.1 Arbitration: Architecture . 86

xiii

8.2 Arbitration: Conflict discovery . 88

8.3 Arbitration: Conflict discovery decomposed 89

8.4 Arbitration: Activity diagram . 89

9.1 Scenario: Forklifts in warehouse . 94

11.1 Architecture: Uses view . 102

11.2 Architecture: Process view . 103

12.1 CIKMR package overview . 107

12.2 Framework activity diagram . 108

12.3 Network activity diagram . 110

12.4 Screenshot: Connecting to network . 111

12.5 Peer discovery activity diagram . 114

12.6 Resource overview . 115

12.7 Workflow class diagram . 117

12.8 Screenshot: Defining workflows . 118

12.9 Screenshot: Workflow enactment . 122

12.10Arbitration activity diagram . 125

12.11Arbitration sequence diagram . 125

12.12Screenshot: Adapted workflow . 127

12.13CBR activity diagram . 129

12.14Case similarity . 130

12.15Composition of queries . 132

14.1 Context service . 138

14.2 Adaptive workflow: case-based workflow 141

15.1 Context resolution . 144

15.2 Scheduling: Architecture within SWP. 145

15.3 Scheduling: Architecture . 145

15.4 Context evolution in the first scheduling approach 146

15.5 Context evolution in the second scheduling approach 146

15.6 The steps of the second scheduling approach 147

xiv

PART I

Context

1

CHAPTER 1

Introduction

1.1 Background

The work presented in this master thesis is a continuation of our depth study [75], which
was based on work within the research project Mobile work across heterogeneous systems
(MOWAHS). This was a basic research project supported by the Norwegian Research
Council in its IKT-2010 program, and was carried out jointly by the Software Engineering
and Database Technology groups at NTNU. The project had two main parts: process
support for mobile users using mobile devices, and support for transactions/workspaces
incorporating work documents [98], where our contribution relates to the first part.

The MOWAHS project has led to several papers, reports, software, Web material, and
PhD theses. The contributions with most relevance to our work are those related to Smart
work processes (Section 6.1), a concept developed by Sørensen et al. [88, 89]. This is a
combination of ubiquitous computing and workflow that defines a new research direction
to be investigated.

In our depth study [75], we addressed some of the challenges indicated in [89]. In this mas-
ter thesis we will explore these solutions further, and develop a proof-of-concept prototype
to gain better insight and find out if our findings are feasible.

1.2 Motivation

The overall motivation for our work is to make a contribution to the ubiquitous computing
domain by addressing some of its problem areas. The research focus of this master thesis
is indicated by the following motivations.

3

Introduction

1.2.1 Automate activities regardless of time and location

Humans travel more and more, both privately and work related. The spread of mobile
phones have made people accessible regardless of where they are. As mobile phones evolve
into more powerful handheld devices, new and more resource-demanding services can be
made available. This, in combination with the development of better sensor and actuator
technology, could be a step towards Weiser’s vision [99]. New mobile and wireless tech-
nology offers the opportunity to automate and support real-time, in situ work processes,
hence supporting automation of both everyday trivial tasks as well as more complicated
work related tasks.

1.2.2 Support a dynamic work environment

The real world is a dynamic construct. People constantly act in accordance with actions
invoked by other people and the environment itself. As a result, work is often performed
ad-hoc, requiring adaptation to the situation at hand. This dynamic process requires
communication, cooperation, and conflict resolution amongst several persons. This is a
fairly new and complex research field where good computer solution are sought after.

1.2.3 Prove concepts from our depth study

The architectures provided in our depth study, arbitration and scheduling [75], constitute
important ideas and foundational services in an ubiquitous environment. These archi-
tectures need to be developed and tested. In this process, new problems will arise and
generate new questions which will help us gain better insight and propose better solutions.

1.3 Problem definition

An increasing number of sensors and actuators resides in our daily environment. In the
future we envision that these are readily available for use by portable devices. These
devices can then control or help out with tasks by enacting workflows (Section 5.5.4).

Conflicts between devices running workflows are inevitable. Conflicts must be detected,
preferably in advance, and solved. We will create a proof-of-concept implementation of
the arbitration architecture from our prestudy [75], and draw experiences from this. Our
main focus will be on how to discover conflicts rather than how to solve them.

Workflows are written in languages closer to programming than natural language. This
renders most people unable to create new workflows from scratch. They need to be put
together in a user friendly fashion, preferably by only knowing what the user want to
achieve, or by providing ready-to-use building blocks.

Section 2.1, Research questions, describes in more detail the problems we set out to solve.

1.4 Limitation of scope

There are many important challenges in the research field of ubiquitous computing. This
makes it necessary for us to abstract our work away from the areas which do not concern

4

1.5 Assumptions

our research. In addition, assumptions have to be made, making it possible to generate
solutions for the future, without going into great detail on present problems.

The following states what research areas we will not look into, in order to focus only on
our restricted subjects.

Communication systems The field of communication topology will be briefly covered,
but we will not touch terms like roaming profiles of mobile systems, connection
coverage, or bandwidth limitations.

Security Some people would most likely try to take advantage of a smart workflow
system by feeding it with incorrect data, stealing identities, or just trying to prevent
communication to take place.

We will not address any security matters related to the authenticity of sensors,
actuators, mobile workers, or clients. Neither will we handle the correctness or
integrity of data.

Pervasive environment The Smart work processes architecture (Figure 6.1), has its
own handler for communicating with sensors and actuators. We handle an actuator
as a single actuator even though it may be a compound of actuators with a set
of internal reliance’s. E.g., a compound actuator may be several heaters working
together to raise the temperature of the room. Each can be controlled individually
since they might need different appliance of power to increase or hold the tempera-
ture stable across the room. A compound actuator may be a set of heaters where
you only set the temperature for the room all together and this results in an diverse
request to the different heaters.

System implementation and deployment Development and testing will happen only
in a simulated environment on the computer. A real world application will not be
prioritised.

User intent Inference of user intent will not be explored. We will rather provide this
explicitly through goal description of each activity and possibly through dynamic
interactions with the user.

1.5 Assumptions

Some parts of the environment are to dynamic to take into consideration in this master
project. We therefore make several assumptions to ease the work on our main objective.

Computational power As handhelds grow ever stronger there is a possibility for to-
morrow’s handhelds to compute large amount of data. In our study we assume that
handhelds have this computational power or forward computations to other more
powerful computers.

Memory and storage constraints Although mobile devices today are constrained by
memory and storage capacity, we assume that tomorrow’s devices have enough of
these resources to accommodate the scheduler and arbitrator.

Energy consumption Mobile devices are gradually required to execute more advanced
applications and interact with others using wireless communication technology. This

5

Introduction

requires that energy sources must become more powerful, and that the energy con-
sumption, in general, must be reduced. We assume that future devices have enough
energy for mobile collaboration.

Screens Screens grow ever better with respect to the visible size and resolution ratio.
It is therefore assumed that tomorrows screens will manage to accommodate large
amounts of data, possibly structured in a more elegant way.

1.6 Outline of the report

Part I - Context

This part gives an introduction to the report by touching subjects that will be described
more in detail in the following parts. Our research area is presented through the motiva-
tion, problem definition, and research questions. Then, our approach is described by a set
of research methods. The proposed answers to our research questions and an evaluation
of the research methods are included here, as well as in the discussion (Chapter 16).

Part II - Prestudy

Part II, consists mainly of our literature survey, and provides a top-down approach to the
theoretical background and state-of-the-art for our research area.

We begin with the evolution of computer science within our context, before we move on
to issues in ubiquitous computing. We then explore a set of theoretical methodologies,
supporting technologies and terms we find interesting and relevant for promoting our
research questions. Finally, we present some frameworks and middleware that relates to
theory and were considered for our proof-of-concept implementation.

Part III - Arbitration

This part handles our contribution related to arbitration in the ubiquitous domain. RQ1,
with sub-questions, is elaborated in this part.

We start of by presenting the contribution from our depth study [75]. Then we present
some scenarios that will help us understand the domain and extract requirements. We then
give an architectural description of the Arbitration service based on our dept study [75]
and the elaborated requirements. The implementation of our proof-of-concept application
is then described.

Part IV - Planning

The second research question, RQ2 with sub-questions, is elaborated in this part. Here,
we present a scenario that is intended to help people understand the problem domain.
Then we present our work on workflow generation. This is then put into context with a
Scheduling service, which was first presented in our depth study [75].

6

1.6 Outline of the report

Part V - Discussion and conclusion

In Part V, we summarise the report by discussing our proposed solutions, how they cover
our research questions, and what parts of our literature survey we have chosen to use,
how.

We then present our concluding remarks. After this, we provide a chapter containing what
we believe needs to be done in the future regarding our findings, to sustain a progress.

Part VI - Appendix

The appendix, Part VI, contains a more detailed description of some of the document type
definitions and XML examples from our proof-of-concept implementation and a small code
example.

Last, a glossary and the bibliography is presented.

7

Introduction

8

CHAPTER 2

Research

2.1 Questions and motivation

According to the analytical research method (RM3 in Section 2.2), research should start off
with the establishment of research questions. In the process of answering these questions,
we end up adding own thoughts and conclusions to the academic discussion.

However, we have started off by using the literature survey method (RM1 in Section 2.2),
to gain an understanding of the problem domain and the difficulties faced by previous
research projects (Part II). This method has helped us perform an improved analytical
study.

Based on the analytical study and experience from our depth study, we have established
the following research questions relating to our problem definition:

RQ1 How can we represent a conflict between two clients in a dynamic and generic way
in a Case-based Reasoning case repository, so it can:

RQ1.1 Recognise the same conflict in a different context?
Conflicts will arise when two or more actors want to use the same resources to
perform work, or if they have contradictory goals. We want to learn from con-
flicts that arise in order to reuse the knowledge (about how they were solved)
in later conflicts. For this to be useful, we must find a way to recognise prior
encountered conflicts which arise in a different situation (different context).

RQ1.2 Predict a possible conflict that is similar in nature to ones that are known?
The best way to solve conflicts, is to avoid them. Before we can avoid conflicts,
we must be capable of recognising them based on obtained knowledge. It is
essential to find as many potential conflicts as possible in order to provide an
efficient system, therefore we want to recognise conflicts that are not necessary
equal, but similar to already discovered conflicts. Supporting this, the system
is given the means to learn from prior cases.

9

Research

RQ2 How can we support in situ planning of work processes with minimal user interfer-
ence?

RQ2.1 What mechanisms are needed to automatically construct workflows with only
the desired goal as a starting point?
An average user will not know how to programmatically create workflows from
scratch. The system must be user friendly, which means that the user should
do as little as possible. When wanting to initiate work, we want the user to
be able to only describe what he want to achieve. The actual construction of
work processes and execution of work must then be automated.

RQ2.2 How can existing technologies be combined to support automatic workflow
construction?
If we are going to be able to provide a solution for RQ2.1, we must figure out
which existing technologies to use, and how to use them in combination for this
purpose.

RQ2.3 How can workflows be made adaptive based on context?
A user might be in a situation which requires that work is done in a special way,
taking considerations to the environment. This situation might be temporal,
and as it changes, the ongoing work must perhaps be conducted in a different
way. We want to find a way where the work description is altered and adapted
to the new situation without the user needing to interfere.

RQ2.4 How to ensure minimal replanning?
If the user has several things he want to achieve, a plan for how to proceed are
needed. After planning has taken place, the situation might change so that the
plan is no longer feasible. We want a way to predict what is going to happen
with the user’s situation in the future, so that this can be accounted for when
making the plan, hence reducing the need to make new plans.

2.2 Methods

The research and implementation work is performed in a top-down1/ bottom-up2 fashion,
with the purpose of finding a suitable convergence point balancing theory and implemen-
tation.

Development of the prototype follows an incremental, service-oriented approach. First we
implement basic functionality, and subsequently add more advanced features.

We reflect the prototype development by describing methodologies, technologies, frame-
works, and middleware used, including evaluations of these, comments on the choices,
difficulties, trade-offs, and results discovered during implementation. The implemented
services are also described, with details on how they work and how they relate to the
problem definition and given scenarios.

1A top-down approach emphasise planning and a complete understanding of the system.
2A bottom-up approach emphasises coding and early testing.

10

2.2 Methods

In the following, a more detailed description of the research methods is given:

RM1 Literature survey
A literature survey is a detailed study of literature, describing already relevant
information on the subject. The literature survey gives us an understanding of the
problem domain and the difficulties of earlier projects, and helps us perform a more
directed, descriptive, and analytical study. It also provides more sensible scenarios
and better requirements.

RM2 Descriptive study
This method tries to answer questions concerning the current state-of-the-art of the
study’s subject. It does so without manipulation of variables and does not try to
establish causal relationship between events, but simply describes them [59].

Adopted basic steps of descriptive research based on [74]:

recognizing and identifying a topic to be studied

selecting appropriate scenarios to describe the area

collecting reliable and valid data

reporting conclusions

A descriptive method may be used to gain more information about a subject and
use this to generate theories [37].

RM3 Analytical study
Analyse means to break a topic or concept down into its parts in order to inspect
and understand it, and to restructure those parts in a way that makes sense to the
researcher. In analytical research, research is done to become an expert on a topic
so that the parts of the topic can be restructured and presented from the researches
own perspective [70].

With this type of research, we start off with research questions. We then try to
answer these questions by studying information and views with critical thinking
and reading, plus evaluation of the resources. In this way, we end up by adding our
own thoughts and conclusions to the academic discussion.

If the study aims to actually test preplanned theories based on existing knowledge
or findings, an analytical research method will be needed [37].

RM4 Scenario building
Scenarios are characterisations of users and their tasks in a specified context. They
offer concrete representations of a user working with a computer system to achieve
a particular or several goals. These scenarios can be created by the development
team, stakeholders, or the target users, and are intended to provide the developer
with usability requirements [24].

[24] also states certain benefits with scenario building:

Scenario building encourages designers to consider the characteristics of the
intended users, their tasks, and their environment.

Usability issues can be explored at a very early stage in the design process
(before a commitment to code has been made).

Scenarios can help identify usability targets and likely task completion times.

11

Research

The method promotes developer involvement and encourages a user-centred
design approach.

Scenarios can also be used to generate contexts for evaluation studies.

Only minimal resources are required to generate scenarios.

Adopted principle steps for this method are as follows:

Gather together the research team and other relevant stakeholders under the
direction of an experienced facilitator.

Identify intended users, their tasks, and the general context. This information
will provide the basis for the scenarios to be created by the research team.

Functionally decompose user goals into the operations needed to achieve them.

Assign task time estimates and completion criteria as usability targets

We provide scenarios that describe how a system should or could work with humans.

RM5 Requirements elicitation - Greenfield Engineering
With visionary scenarios, Greenfield engineering is often used [4]. This is because
Greenfield engineering is a method of requirement elicitation that takes into account
that development starts from scratch, no prior system exists and the requirements
are extracted from the end user, scenarios, and prior projects [69, 15, 4].

In Figure 2.1, we describe how the research methods assist us in different aspects of the
project and how they relate.

2.3 Propositions to the research questions

RQ1

How can we represent a conflict between two clients in a dynamic and generic way in a
Case-based Reasoning case repository, so it can:

RQ1.1

Recognize the same conflict in a different context?

Storing a representation of a situation is not too difficult. The problem lies within filtering
out the important information and storing it. This should not only be done to save storage
space, but mostly because some contextual information is not important and therefore
can hinder the situation from being recognized. E.g., you want to recognise a control
temperature conflict regardless of a chair’s position in the room.

The selection of these properties, or contextual elements is subject to constant research
and is not a part of our study. We only see how this information can be stored in a case
repository when it has been identified.

Our solution is to represent the nature of the conflicting workflows or activities as on-
tologies in the case-base. By doing this we are able to predict conflicts in workflows or
activities of similar nature.

12

2.3 Propositions to the research questions

RM1.
Litterature

survey

RM2.
Descriptive

study

Problem
definition

Domain info

Research
questions

RM3.
Analytical

study

Own
contribution

Conclusions

Scenarios

Proof-of-
concept

RM4.
Scenario
building

RM5.
Requirements

elicitation

Requirements

Figure 2.1: How the described research methods are used to support different aspects of
the project.

13

Research

In the case-base, the contextual states that identify a conflict are stored as a tree. These
are called contextual or state triggers, as they may check for more than just context.
Triggers must contain the general domain knowledge of the context entity so they can
reason for interchangeable context entities and the state that must be satisfied.

An expert system should sit between the case repository and the main CBR cycle. It should
check contextual and state triggers and filter the list of cases to achieve efficiency. The
computer-intensive process of CBR similarity-computation could be limited to a minimum
by being used in combination with the very cost effective expert system.

RQ1.2

Predict a possible conflict that is similar in nature to ones that are known?

The proposed answer to this question also include the use of ontologies. The workflows’ or
activities’ classifications that make up the conflict description depict their nature. Classi-
fications in proximity should encounter the same difficulties in concurrent and cooperative
situations.

As a result of the classifications, it is possible to derive and possible foresee problems
that are not composed of the same workflows or activities as the ones known. Using this
technique, the system is able to learn a new unknown conflict by itself, adapt, and invoke
a solution.

There is a great challenge to this approach. That is to keep the general domain knowledge
consistent, correct and maintain the semantic quality in a network where changes can be
made by anyone.

RQ2

How can we support in situ planning of work processes with minimal user interference?

In the quest of a system which requires a minimum of interference from the user when
planning and executing work, a technique must be elaborated that can automate this
based on available knowledge and information.

Our prerequisites in the elaboration of this question are that workflows are made up by a
chain of activities, the motivation for a workflow is to achieve a goal, and that workflows
are the constituent parts of a plan. We derive the following subquestions:

RQ2.1

What mechanisms are needed to automatically construct workflows with only the desired
goal as a starting point?

Basic criteria for being able to address this question is the presence of contextual informa-
tion to base decisions upon, and a method to obtain such information. The requirement
of minimal user interference indicates that activities must be obtained from some sort of
knowledge or experience base. An activity must then have certain attributes that makes
it possible to filter relevant activities from those not suited for achieving the goal.

14

2.3 Propositions to the research questions

We believe that one attribute should contain information of contextual requirements that
must be satisfied before the activity can be executed. Another attribute should be success
criteria, which give us an understanding of what the activity aims to achieve. Provided
fidelity is also be relevant where quality is important for fulfilling the goal. As activities
are reusable assets, it is also of interest to know about how well an activity accomplish
its function.

With access to this information, and available activities, we have the basics for finding and
adapting the activities that best suits the contextual situation and results in achievement
of the workflow’s goal.

RQ2.2

How can existing technologies be combined to support automatic workflow construction?

Gathering contextual information is proposed done by a Context service (Section 14.1),
which is based on already existing research.

To be able to provide the mentioned attributes in an activity description, we have ended
up with a structure based on the Resource description framework (Section 5.3.1 and 5.3.2).
This language supports ontologies (Section 5.3.2), which allows measuring of hierarchical
relationships with other activities.

How an activity has actually performed and what results it has delivered, can be measured
by using Reinforcement learning (Section 5.4.5). This information should probably be
included into the activity description along with the other attributes. Such information
could then be used in finding the best suitable activity amongst similar activities.

The actual proposition for finding suitable activities when assembling a workflow is based
on Case-based reasoning. By saving experience about which activities best satisfies what
goal, makes us capable of reusing whole workflows. If no complete workflows exists that
satisfy the goal, it is possible to construct a workflow, based on activitie’s attribute values,
by choosing activities that constitutes the difference in current situation and the goal’s
desired situation.

RQ2.3

How can workflows be made adaptive based on context?

Situated planning as described by Bardram [12], is a consequence of actions performed in
situ which changes the contextual conditions.

To keep a workflow situated (executable in the current situation) while context changes,
it needs to be adaptive. An adaptive workflow must be able to exchange one or more of
the activities that represents its constituent parts, so that constraints are satisfied.

By using the mechanisms and technology refered to in RQ2.1 and RQ2.2, it should be
possible to obtain better suited activities and insert these to the relevant workflow. How-
ever, it is not desirable with workflow adaption whenever a contextual parameter changes.
To make workflows more robust, we suggest the use of Expert systems (Section 5.4.2) with
Fuzzy logic (Section 5.4.4) when interpreting an activity’s constraints and success criteria.

However, exceptions in the process will occur from time to time because of contextual

15

Research

change. For obtaining substitute activities we suggest case-based reasoning or soft case-
based reasoning which have better capabilities and include fuzzy logic amongst other tech-
niques.

RQ2.4

How to ensure minimal replanning?

Replanning takes place when the current plan cannot execute due to context conditions.
Reordering and finding combinations of workflows that works, or re-constructing the rel-
evant workflows are then alternatives for getting a functional plan.

However, such replanning is resource demanding, and should therefore be kept at a mini-
mum. We suggest an alternative approach, the Scheduling service, where contextual state
are simulated based on activities’ assumed influence on context (Chapter 15). Information
of an activity’s context influence should also be in its description, as stipulated in RQ2.1.
The creation and improvement of such information could be taken care of by Artificial
neural nets (Section 5.4.6) and Reinforcement learning (Section 5.4.5).

Another means to achieve less replanning is to avoid conflicts. If a conflict occur amongst
actors, replanning is most likely an outcome for one or more parties. One way of preventing
conflicts, is to share schedules with other entities within the perimeter of the relevant
environment.. By doing this, other planning services can take these schedules into account
when planning. With many actors within an area, this could however lead to massive
distribution of schedules, and diminish the value of the approach. Letting resources keep
an up to date schedule for when they are available and when they are booked by some
entity, seems like a more reasonable approach.

When conflicts arise, they need to be solved. The negotiation process is conducted by the
proposed and implemented Arbitration service (Part III). How this solves conflicts will
also affect the need of replanning.

2.4 Methods evaluation

Here we will evaluate our research methods. Figure 2.1 shows how the different methods
have been used during our project.

RM1 Literature survey

We have used RM1 to read up on theories and technologies that will help us understand
the problem domain. Doing this, we have gained valuable knowledge that has helped us
construct our research questions and thereby also helped us form our scenarios. During our
project, this method has been used several times to gain knowledge on newly discovered
topics.

RM2 Descriptive study

This method has been used to go deeper into the problem domain and develop it further.
When selecting our scenarios, we used RM2 togheter with the results of RM1 to identify

16

2.4 Methods evaluation

what key points the scenario had to contain.

Using a descriptive study, we grew more familiar with the state-of-the-art from our re-
searchfield. This helped us form our problem definiton, which again was a guidance for
our research questions.

This method also directly contributed to the making of our own contribution and conclu-
sion.

RM3 Analytical study

Having obtained a deeper knowledge of the domain in question and formed research ques-
tions, RM3 was used to break our findings into more understandable pieces. We then
restructured these and added our own thoughts to the work.

During the implementation phase, analytical study contributed to the decisions that were
taken.

RM4 Scenario building

We have created scenarios to help the readers, and our selves, understand how the system
would ideally work and the problems that have to be overcome.

The scenarios were the foundation for the planning, architecural design, requirements and
development of our proof-of-concept implementation.

RM5 Requirements elicitation – Greenfield engineering

RM5 was used to extract requirements from the constructed scenarios and the prior work
from our prestudy [75].

17

Research

18

PART II

Prestudy

19

CHAPTER 3

Evolution of computer science

Ubiquitous computing, first visioned by Weiser [99], is a complex research area with many
hurdles to overcome. In [77], Satyanarayanan describes a categorisation of computer
system issues existing before and after the introduction of ubiquitous computing. In the
following, we use this to gain a better overview and understanding of the ubiquitous
computing domain.

3.1 Distributed systems

The field of distributed systems has created a conceptual framework and algorithmic base
that has proven to be of enduring value in all work involving two or more computers
connected by any kind of network. This body of knowledge spans many areas that are
foundational to pervasive computing:

Remote communication (protocol layering, RPC, timeouts, and end-to-end argu-
ments)

Fault tolerance (atomic transactions, distributed and nested transactions, and two-
phase commit)

High availability (optimistic and pessimistic replica control, mirrored execution, and
optimistic recovery)

Remote information access (caching, function shipping, distributed file systems, and
distributed databases)

Security (encryption-based mutual authentication and privacy)

21

Evolution of computer science

3.2 Mobile computing

A distributed system with mobile clients constitutes mobile computing, which is the next
step in evolution. Many of the basic principles of distributed system design apply, but
four key constraints of mobility have forced the development of specialised techniques:

Unpredictable variation in network quality

Lowered trust and robustness of mobile elements

Limitations on local resources imposed by weight and size constraints

Concern for battery power consumption

Mobile computing’s growing knowledge base spans the following broad areas:

Mobile networking (mobile IP, ad-hoc protocols, and improved TCP performance in
wireless networks)

Mobile information access (disconnected operation, bandwidth-adaptive file access,
and selective control of data consistency)

Support for adaptive applications (transcoding by proxies and adaptive resource
management)

System-level energy saving techniques (energy aware adaption, variable-speed pro-
cessor scheduling, and energy-sensitive memory management)

Location sensitivity (location sensing and location-aware system behaviour)

Sørensen et al. [88, 89] differentiate mobile work from nomadic work, where nomadic
work refers to anywhere, anytime computing which is not regarded as context-dependent.
Mobile work is performed in a mobile environment dependent of context information
extracted from the physical environment. That is, mobility is necessary to accomplish the
process goals. Mobile work and the local working environment can computationally and
physically mutually influence each other by observed values from sensors or changes made
by actuators.

3.3 Ubiquitous and pervasive computing

Weiser’s vision [99] foresee that computers and humans will seamlessly interact in such
a way that technology becomes invisible to us. Weiser calls this Ubiquitous Computing
which is a reflection on what could happen when computers are so small and cheap that
they fade into the background. Satyanarayanan later introduce the notion of Pervasive
Computing [77].

Lyytinen [64] presents an overview of the dimensions of Ubiquitous Computing (Figure
3.1). This can be used to separate the Ubiquitous and Pervasive paradigms.

This figure presents the dimensions on making the computer invisible. Lyytinen proposes
that the main challenge in relation to Ubiquitous Computing is the integration of large
scale mobility with Pervasive Computing functionality [48].

22

3.3 Ubiquitous and pervasive computing

High

Low

Low High

Level of embeddedness

Level of
mobility

Pervasive
computing

Traditional
business
computing Mobile

computing

Ubiquitous
computing

Figure 3.1: Overview of the Ubiquitous Computing dimensions.

Petersen and Kofod-Petersen [72] deals with Ubiquitous and Pervasive Computing in or-
der to describe Ambient intelligence, which they see as a combination of a number of
paradigms; Ubiquitous Computing [99], Pervasive Computing [77], and Artificial Intel-
ligence [76]. Figure 3.2 shows the relations between these paradigms. The Ubiquitous
Computing aspect addresses the notion of accessibility of the technology, where the tech-
nology and connectivity is available through everyday objects that are in the user’s envi-
ronment. Artificial Intelligence techniques provide the context awareness to establish the
user’s needs and the appropriate response. The Pervasive Computing aspect supports the
architectural aspects to realise the situation.

Artificial
Intelligence
(awareness,
 intelligent
response)

Pervasive
Computing

(architectural
aspects)

Ubiquitous
Computing
(access)

Ambient
intelligence

Figure 3.2: Ambient intelligence paradigms (based on [72]).

Despite the differences in the Ubiquitous Computing and Pervasive Computing paradigms,
we will treat the terms as synonyms in this report, in accordance with Satyanarayanan
[77].

The research agenda of Pervasive Computing subsumes that of mobile computing, but goes

23

Evolution of computer science

much further. Specifically, Pervasive Computing incorporates four additional research
subjects into its agenda [77]:

Effective use of smart spaces:
A space may be an enclosed area or a well-defined open area. The fusion of com-
puting and spatial infrastructure enables sensing and control of one world by the
other. A simple example of this is the automatic adjustment of heating, cooling,
and lighting levels in a room based on an occupant’s electronic profile. Software
on a user’s computer may also behave differently depending on where the user is
currently located.

Visibility of technology:
The ideal expressed by Weiser’s vision [99] is complete disappearance of technology
from a user’s consciousness. In practice, a reasonable approximation to this ideal is
minimal user distraction. This can be achieved if a pervasive computing environment
continuously meets user expectations and rarely present surprises.

Localized scalability:
As smart spaces grow in sophistication, the intensity of interactions with the sur-
roundings increases. The presence of multiple users will further complicate this
problem. As a means to limit this problem, [77] propose that the density of inter-
actions between peers has to fall off as distance increases between them. If no such
action is taken, both the user and the computing system can be overwhelmed by
distant interactions that may be of less relevance than the in situ interactions.

Masking uneven conditions:
Widespread adoption of ubiquitous computing, if it is ever achieved, is probably
many years or decades away. In the meantime, there will persist huge differences in
the ”smartness” of different environments because of the uneven deployment. One
way to reduce the amount of variation seen by a user is to have his/her personal
computing space compensate for ”dumb” environments by, e.g., letting the system
being capable of disconnected operation.

24

CHAPTER 4

Issues in the ubiquitous domain

Many of the hardware and software technologies necessary to realise ubiquitous computing
exist and are even commercially available. A big part of the research should therefore be
focused on seamless integration of these technologies.

We will in this chapter give an overview of domain issues especially prominent from our
point of view, and analyse them with the intention of finding suitable techniques for
supporting our proof-of-concept implementation and theoretical contribution. Findings
will be described briefly here, and more thoroughly in Chapter 5.

4.1 World perception

The demand for invisibility in ubiquitous computing requires minimal user intrusion,
through Calm technologies [100]. This requires that computers interact and make decisions
on our behalf, which makes it interesting to explore how humans percieive the world and
what mechanisms make us able to learn from experience. This knowledge can be used to
better understand what techniques we should investigate regarding further research.

For computers to be able to react to the environment, they need to be context-aware
(Section 5.1). However, this is not a straight forward procedure; interpretation of infor-
mation is dependent on several factors like the observer’s knowledge, previous experience,
surrounding context, mental and physical shape, interest, stress, and so on. Nevertheless,
such information must be caught and interpreted, letting pervasive applications adapt to
the changing environment while supporting the user in the best possible way.

Schank and Abelson [80], argue that stories about a person’s experiences and the experi-
ences of others are the fundamental constituents of human memory, knowledge, and social
communication.

25

Issues in the ubiquitous domain

4.1.1 Human memory

Memories are processed and stored in the brain. It is estimated that the brain consists of
180 billion nerve cells, connected through each other through synapses1. Each nerve cell
has 2000-5000 synapses, which gives the brain an incredible amount of possible ways to
interconnect and create patterns. In addition, each of these associations has a dynamic
weighting to indicate the strength of each relation. Both cells and synapses may change
with age and experience. All this makes memory possible [53].

Information is provided to the nervous system through sensing, and integrated with pre-
vious information. A nerve cell may be looked at as a small calculator which receives
activating and preventive signals from other cells and performs calculations all the time.
When the calculation equals the expected solution, a nerve signal is triggered. Preven-
tive signals reduce probability for the next cell to forward a signal, and activating signals
amplifies this probability.

The behaviour presented above is in computer science imitated by Artificial neural net-
works (Section 5.4.6). The broad categories to which artificial neural networks are applied,
are classification, function approximation, and data processing.

There are several ways to categorise memories; based on duration, nature of information,
and retrieval of information. The most interesting categorisation from our point of view,
is by the nature or type of information. The information types found in this category are;
declarative (explicit) and procedural (implicit) [107].

Declarative memory requires conscious recall, and can be further sub-divided into semantic
memory and episodic memory. Semantic memory concerns facts taken independent of
context and allows the encoding of abstract knowledge about the world. In contradiction,
episodic memory concerns information specific to a particular context, such as a time
and place. Further, episodic memories refer to a semantic representation and all new
experiences connected to an activity will modify the single semantic representation of this
activity (Figure 4.1).

Episodic
representation

Semantic
representation

Activity

Context

has

affects

Figure 4.1: Declarative memory of an activity.

The semantic representation is suitable for recognition and classification, while the episodic
representation also contains context specific information for each occurrence of the activ-
ity. This information is used to update and modify the semantic representation.

Procedural memory is not based on the conscious recall of information, but on implicit

1Synapses is small gaps in which chemical signals may cross between nerve cells.

26

4.1 World perception

learning. It is revealed when we do better in a given task only because of repetition. No
new explicit memories have been formed, but we are unconsciously accessing aspects of
those previous experiences.

Categorising memories as described above, reveals that we create abstract representations
from context-independent facts about diverse objects, situations, activities, etc. These
representations are then continuously used as reference models in the ongoing process of
recognising and categorising perceived information. Further, by repeating a specific task in
different contexts, the abstract model representing it will become more comprehensive and
robust. Repeating a task within the same context increases the performance. In pervasive
computing, this could be done by specializing the relevant Smart space to support the
execution of a particular task.

Mimicking declarative and procedural memory can help us recognise information and
automate execution of activities with improved quality. Several techniques exist that
support these processes in different ways:

Case-based reasoning (CBR) is the computer science approach to human problem
solving. It provides a reasoning mechanism that uses previous episodic knowledge
to solve new problems (Section 5.4.1).

Fuzzy logic is used to avoid sharp boundaries between similar concepts. It is well
suited for generalising from prototypical cases to new situations (Section 5.4.4).

Ontologies are collections of information that define the relations among terms
(Section 5.3.2).

4.1.2 Obtaining knowledge - sensing and abstracting context

Different senses stimulate specialised areas in the brain. This specialisation or categorisa-
tion represents a separation of concern which could be considered when structuring and
representing environmental information in a pervasive system. Sensor types could be clas-
sified by abstractions representing the human senses. By mimicking human perception
and categorisation, a more intuitive user and programming interface can be achieved. A
technology that supports classification is ontologies (Section 5.3.2) which can be repre-
sented by the Resource description framework.

The abstraction mechanism could be a semantic lookup service like the Semantic Web
(Section 5.3.1). It could use techniques like ontologies, metadata, taxonomies, thesaurus,
and vocabularies to find the proper semantic abstractions.

A reasonable place to localise this kind of sensing service, would be in a Context service,
as described by Sørensen et al. [88, 89] in their work on Smart work processes (Section
6.1). Also, the Context service variant implemented by Bardram in [14] (Section 6.3) is
an interesting choice.

Wittgenstein, an Austrian philosopher who contributed several ground-breaking ideas to
philosophy, observed that concepts that are part of the natural world – such as an orange –
are polymorphic [3]. That is, their instances may be categorized in a variety of ways, and
it is not possible to come up with a useful classical definition, in terms of a set of necessary
and sufficient features, for such concepts. An answer to this problem is to represent a
concept extensionally, defined by its set of instances – or cases [3].

27

Issues in the ubiquitous domain

Structuring sensed information could in addition be based on the type of sensors that are
used to perceive the information. When humans recognise, e.g., an orange, we can use
vision or taste as our strongest sense candidates. Smell and feeling can also contribute
to recognition, but the utmost advantage would be to use a combination of all of them
if available. Information about how objectives are sensed, could be used as a support to
using previous experience, and reasoned over by using Bayesian networks (Section 5.4.3)
to establish a probability of recognition.

4.1.3 Using perceived information

When we walk around in our usual habitat and everything seems familiar, we tend to
think little of what is actually surrounding us. In a situation like this, our attention is first
triggered if some kind of exception comes into being, i.e., when something is distinctively
different than usual. When this happens, we use our senses to collect information about
the new situation, which we then analyse to see if it is interesting and if it requires action.

Based on this observation, we see that certain changes in sensor readings should trigger
further goal-oriented investigations of the environment. Exactly how to respond to changes
in the information flow is activity dependent – does the change effect the execution of the
present or planned activities? If so, the procedure must perhaps be changed to reach the
activity’s goal. This issue is described further in Section 5.5.

When we are challenged by a task that is new to us, it seems like we focus our mental
capacity on observing and reason about information that is relevant for solving it. In
a similar fashion, peers must collect and reason about information sensed from the en-
vironment. What kind of information that should be collected and processed, is again
dependent on the task at hand and should be included in the activity description.

By letting an activity only represent a goal, constraints, success criteria, and execution
context [89], we can use a technique to recognise what needs to be done in order to fulfil
the activity’s demands based on previous experience. CBR (Section 5.4.1) is a technique
that can handle this approach. This approach requires manually provided information to
define new activities, but minimal user interference and dynamic adaption will be ensured
as the system’s case-base grows bigger.

Because humans have a habitual memory [53] (amongst others), tasks we have performed
several times will not demand a lot of mental resources because the execution pattern is
so well imprinted. This ability relates to Schank’s work on dynamic memory [78]; the idea
of remembering earlier situations and using situation patterns in reasoning. (This work
make some of the foundation of CBR). Much of our mental resources are then available,
and the focus can be directed towards something else. This relates to a well imprinted
case in a CBR system. As activities are repeatedly carried out in different environments
under different conditions, the reference case will be more robust (cover more exceptions)
and suit more activities with greater quality. However, if any exceptions should arise
from the regular pattern, we must relocate our mental focus to solve the new tasks. This
phenomena is in cognitive psychology referred to as a breakdown situation [97, 54] (Section
5.5.1). The hierarchical structure of activities is in a continuous floating state, and it is
worth noticing that, according to [22], Activity theory is capable of capturing changing
contexts in such break-down situations.

28

4.2 Resource management

4.2 Resource management

One of the problems when dealing with today’s mobile entities is limited resources on the
device itself. By this we mean constraints on the device performance, memory capabilities,
and energy supply.

Another limitation on resources are those external to a peer, the resources residing in
the environment. These resources are mainly network capabilities, sensors, actuators,
and other peers which can offer some service. This can also be human resources like a
carpenter, plumber, or electrician.

In this section we explore some techniques that support and improve resource manage-
ment.

4.2.1 Remote execution

As we suggests in our depth study [75], one solution to limited local processing power
is cyber foraging, a remote execution technique first proposed by Balan et al. [7]. The
basic idea of using surrogates to support pervasive computing was introduced in Satya-
narayanan’s paper on the challenges of pervasive computing [77].

Cyber foraging lets resource-demanding work be executed by more powerful, often cen-
tralized peers in the network. When such peers are not available, functionality must
be executed on the mobile device. However, when the environment is well-conditioned,
resources should be discovered and used. This implies a work-load of some size, but as net-
works get faster, even small tasks can be distributed for parallel execution. This may not
be on powerful, centralized computers, but other mobile peers (see Peer-to-Peer, Section
5.2.1).

Cyber foraging can decrease the storage, battery, and computation requirements of em-
bedded or mobile devices. This, in turn, leads to decreased size, complexity, and cost.
Devices would need only enough local resources to perform their common tasks, and could
use surrogate resources to perform more complex or less common tasks. A gain from this
is the enabling of new and interesting resource demanding applications for mobile devices.

Sachin Goyal and John Carter [45] describe a surrogate infrastructure based on virtual
machine technology and show how this reduces the response time and energy drain on
the client device. They briefly describe Spectra, which is a remote execution environment,
built by Flinn et al.[41, 42], that allows a mobile device to use the processing power
of a nearby surrogate computer. Spectra monitor application resource usage and the
availability of resources in the local environment to decide when and where to utilize
cyber foraging. Goyal and Carter take an orthogonal approach to this. They focus on
building an infrastructure out of commodity systems and establishing secure surrogate
sessions dynamically. Their clients and surrogates do not share a common file system,
but instead relies on the surrogate to have an Internet connection to locate and download
client application code.

Balan et al. [8] look at data staging and how it is able to provide improved latency for
file access without requiring the staging servers to be trusted. They present a remote
execution system, Chroma, which is able to use extra resources in the environment to
improve application performance. They also describe initial work on an environment
independent surrogate discovery service.

29

Issues in the ubiquitous domain

As Web 2.0 emerges, we also see that more and more applications and functionality moves
from the desktop to the Web interface. This is a form of remote execution that is possible
bacause of high speed network technology and a new way of using existing programming
technology.

4.2.2 Balanced storing of information

In a ubiquitous environment, it is important that required information is always available
where and when needed to support in situ actions. One means to achieve this, is how the
information is stored.

Humans carry with them most of the information (knowledge and experience) they need
to perform daily activities. Hence, the most prominent information stored in our brains
is more or less bound to our usual activities and habitat. If we go away on a vacation, we
adapt to the new place and activities through a learning process – our information base is
dynamic and adaptive. Much of what we experience is kept in memory for later retrieval
and recognition, but because of limited capacity we can not remember every detail.

The brain has to be selective, it must edit and save only what matters. If it did not, it
would probably shortcut from all the associations. We therefore need good filters for what
gets into memory, and what gets out [53]. The same applies for mobile peers. They have
limited resources, and we should be selective of what information is kept and not kept on
an entity.

So how should storing of information in a ubiquitous environment be performed? By using
humans as the reference model, we see that the most important and most frequently used
information for each respective peer should reside on the peer itself. This will assure easily
available information, and allow individual experience to be saved. The best solution to
a given problem may be dependent of the users intentions.

Information that does not point to personal references or frequent use, could then be stored
in universally available data sources like the Web. Environmental bound information, like
activity and context dependent information, could be stored in the environment where it
is most likely to be used.

One problem with this scenario is synchronisation of data, which seems like an impossible
task when dealing with world wide, continually changing information. A solution to this
problem could be the use of Agents (Section 5.2.3) that searches the information we need
in different information spaces, and returns with the best matching result.

4.2.3 Personalising information

Most of the applications we use, is generally stored on our PC. As Web 2.0 emerges, we
see that more and more applications and hence functionality, moves from the desktop over
to the web interface. Web 2.0 loosely describes a category of websites that are known for
interactivity, collaboration and community. This is possible thanks to developments in
underlying web technology. One thing that characterises the sites is simplicity. Often, a
site is an online application which does one thing extremely well. Web 2.0 does not just
offer remote functionality, it contains sites that offers personalised and specific services.
The usual way to tailor a service to an individual user is to save user information and
user behaviour in dedicated profiles.

30

4.3 Cooperation

A profile can be a knowledge base on individual information such as service usage pat-
terns, spatially movement patterns, and identity including occupation and interests. With
the capabilities of the Semantic Web (Section 5.3.1), services could reason over personal
information in an autonomous fashion.

A profile would get richer with use, hence provide better service and at the same time
allow for thin clients and less user interference. Instead of having all possible services
running locally, only a few basic services would be needed to serve as the communication
layer towards the environment. All functionality provided by the environment could then
be accessed remotely, using the profile as reference for how the service should be used. A
user could in addition have different profiles based on, e.g., location and situation.

A profile like this could obviously be vulnerable to abuse. However, much information of
this kind is already exposed on the Internet through a range of different social networking
services. In a way, this is not just a question of privacy, but also about our attitude re-
garding giving away personal information, which is probably dependent on the generation
and habits of the user.

4.3 Cooperation

One of the great envisioned benefits of pervasive computing is the ability of in situ coop-
eration between heterogeneous digital equipment . To be able to cooperate in such a way,
there are some basic properties that must be present.

4.3.1 Sharing resources

One of the ways to support a cooperative environment is to make existing resources
available for everyone to use. This means that every peer should share available resources
such as processing power and possible services residing on peers. One example could be
a location service. This is the kind of resource that every peer probably would posses. If
we need to know the coordinates of another peer, we could just ask this peer’s Location
service. In this way, we use another peer’s resources to gain access to information. This
kind of access should of course be restricted according to personal privacy settings, along
with, e.g., how much bandwidth and processing power we are willing to share with others.
Peer-to-peer resource sharing is also dependent on people’s will to serve the greater good,
just like in traditional distributed peer-to-peer networking.

Besides using resources residing on mobile peers, resources like location bound sensors and
actuators should in principle be equally accessible to anyone with the ability to discover
and use them.

31

Issues in the ubiquitous domain

4.3.2 Solving conflicts

If a resource gets queries from more peers than it can handle, we have a conflict. How
to solve conflicts depends on many different factors. Humans usually have the ability
to negotiate back and forth based on how they prioritise different characteristics, until a
reasonable solution is achieved. We want to obtain this property through some kind of
autonomous negotiating service.

One approach to this, is the Arbitration service described in our depth study [75] and
implemented in Part III. As a foundation to the prioritising process, we listed in our
depth study some characteristics that seems reasonable to compare against each other.

4.3.3 Cooperative planning

In situ, cooperative planning and execution of workflows is a very complex area within
ubiquitous computing. Volatile connections and different interests amongst parties are
just as penetrating as in human sense. For peers to work together on a task, they need
to agree on a common goal and delegate the activities in a reasonable fashion regarding
available resources and will to participate. For this to be possible, we need to have a
workflow (Section 5.5.4), or similar construct, with the necessary activities, constraints,
and success criteria defined.

The Scheduling service (Chapter 15) plan how workflows can be combined to achieve one
or several goals. After the planning process, it schedules run-time with specific resources
needed to execute each activity.

32

CHAPTER 5

Supporting technologies and terms

The movement from the computer desktop to the ubiquitous paradigm, as described by
Weiser [99], implies that the computer system should now adapt to the user’s situation,
instead of the user adapting to the computer [56].

Situation adaption, or services and products customisation/personalisation, consists of
two major components. Contextual information is required along with some mechanism
to reason about this information. When these two components are present, a context-
aware system will be able to deliver context-sensitive services to the users [56].

In this chapter we present context and technologies that will help in gathering contextual
information and reason about it. In addition we present techniques for automatic situation
assessment through learning, mediation in conflicts, construction of dynamic work plans,
and scheduling of resource use.

5.1 Context and context-awareness

The use of context is a very important part in ubiquitous computing. Applications that
wish to support this paradigm have to be context-aware or context-adaptive in order to
respond to their environment. Or as [56] explains: when interaction can occur anywhere
at any time it is imperative that the system adapts to the user in whatever situation the
user is in. Before we start the implementation of such an application, we must therefore
gain a better understanding of what context is and how it can be used.

Definition of context used in the literature falls into two main categories: those who define
context by specific entities, such as location or object; and those who look at context from
a more conceptual viewpoint, and focuses on the relationships and structure of contextual
information (the formal approach) [56].

The term context-aware was first introduced by Schilit and Theimer [82]. They refer
to context as location, identities of nearby people and objects, and changes to those ob-
jects. This places their definition in the first category. Several definitions simply provide

33

Supporting technologies and terms

synonyms for context; for example, referring to context as the environment or situation.
These ways of defining context are difficult to apply [33]. An overview of some of these
definitions can, however, be found in [25].

The more formal definitions of context include Schmidt et al. [83], which defined context
as:

Knowledge about the user’s and IT device’s state.

The well known definition from Dey and Abowd [34] stated that:

Context is any information that can be used to characterise the situation of
an entity. An entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and the
application themselves.

Both definitions described focus on the idea that context is some particular type of infor-
mation.

In the latest definition, the term context is used in the broadest possible sense; it encom-
passes any information that might be useful for defining the user’s situation [55]. There
are potentially many more types of contextual information available than what is used
to define a given situation. Hence, a situation is described by a context, which is an
instance of the contextual information available. Kofod-Petersen and Aamodt [55] stores
such information in a CBR case (Section 5.4.1) so it can be used for case-based situation
assessment. This relates to how we envision using CBR to perceive information (Section
4.1.3).

Greenberg [46] argues that context is a dynamic construct and that Dey and Abowd’s
definition therefore only works for simple and highly routine contextual situations.

Based on the domain independent nature of the AmbieSense system (Section 6.9), Kofod-
Petersen and Mikalsen [56] gives an extension of Dey and Abowd’s context definition:

Context is the set of suitable environmental states and settings concerning a
user, which are relevant for a situation sensitive application in the process of
adapting the services and information offered to the user.

Brézillon and Pomerol take the view that there is no special type of knowledge that
can objectively be called context, they argue that context is in the eye of the beholder,
hence, particular kinds of knowledge can be considered context in one setting and domain
knowledge in another [20, 56].

To facilitate the flexibility these context definitions give, [54, 55] presents an open context
model, first described by [44] which defines the taxonomic structure used in the design
phase of the AmbieSense system (Figure 5.1).

In [34], Dey and Abowd also defines primary context types for characterizing the situation
of a particular entity. These are location, identity, activity, and time. These can further
be used as indices to find secondary context about an entity.

Context-awareness is a term used for devices that have access to information about the
circumstances under which they operate and can react accordingly. Context-aware devices

34

5.2 Cooperation in ubiquitous computing

User context

Task context Environmental context

Physiological context Mental context

Social context Personal context Spatio-temporal context

Figure 5.1: Context in the AmbieSense project (based on [54, 55, 56])

may try to make assumptions about the user’s current situation and use this to act on
the users behalf, relieving her from cognitive and trivial tasks.

There have been several attempts on defining context-aware systems. Most of them are
too specific to be used in a generic way. More general, and widely referenced, is the
definition provided by Dey [33]:

A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task.

Dey and Abowd [34] uses the results of previous work [81, 71] to generalise and categorise
the features of context-aware applications. The result is three categories of features that
a context-aware application can support:

Presentation of information and services to a user.

Automatic execution of a service for a user.

Tagging of context to information to support later retrieval.

Henricksen et al. [50] has created an infrastructure that facilitates a variety of com-
mon tasks related to context-awareness such as modelling and management of context
information. They present a model of context for ubiquitous computing that is able to
capture features such as diversity, quality, and complex relationships amongst context
information.

Many more context-aware applications, frameworks, and middleware have been developed.
Some of the most interesting contributions regarding our own implementation is covered
in Chapter 6. Several other approaches are surveyed in [54, 9, 58].

5.2 Cooperation in ubiquitous computing

For peers to be able to cooperate, information needs to be exchanged. In a pervasive
environment we want this communication to be dynamic and to support heterogeneity.

In this section, we describe some possible techniques for cooperation and interchanging of
information.

35

Supporting technologies and terms

5.2.1 Peer-to-peer communication and collaboration

At the heart of realising and implementing services for a ubiquitous environment lies the
concept of peer-to-peer communication. This network structure supports in its nature
the creation of volatile connections with surrounding resources (peers), and releases peers
from a centralised, less dynamic architecture.

Today’s small mobile devices have an enormous potential of computing power when co-
operating, which can and should be utilised for a shared purpose using a peer-to-peer
approach [65]. Compared to a stationary computer, a PDA has very limited resources.
Letting mobile devices work peer-to-peer and avoiding hot spots (which could easily be-
come a bottleneck) would increase the resource capacity significantly.

However, mobile peer-to-peer networks, such as Mobile ad-hoc networking (MANet)1, face
obstacles related to their volatile nature. While desktop computers working in peer-to-peer
mode are still relatively stable bound to an environment, mobile devices will encounter
and loose other devices frequently. Applications therefore have to tolerate the sudden
coming and going of individual peers.

Working peer-to-peer also means a different and more dynamic type of cooperation com-
pared to working in a hierarchical relationship. Devices have to find each other, and have
to realise what functions the other peers offer.

Avoiding a hierarchical and centralised structure leads to several benefits in mobile peer-
to-peer networks [65]:

Peer-to-peer systems as distributed systems are more reliable. This is because mul-
tiple peers exist for one service.

They also avoid single network paths that might become congested or unavailable.

Peer-to-peer systems have better network performance and require smaller band-
widths. Bottlenecks can be avoided by appropriate routing algorithms between
peers, for instance in a cluster architecture.

Administrative and configuration efforts for centralised infrastructures can be avoided
in a self-configuring system.

Shared resources can be used more efficiently. If a peer does not need a special
resource it could offer it to other peers. In exchange, a peer can get needed resources
from other peers.

Peers with the same interface can communicate directly without an additional en-
vironment.

These benefits are important in ubiquitous computing, as they get the most out of
resource-poor devices, and allow for creation of volatile, in situ networks.

To reduce the complexity of many connections, limited network range can help to reduce
directly coupled peers. This can also be used to limit the boundaries of a Smart space
(Section 3.3).

1A MANet can be defined as ”Network of nodes that just happen to be near each other having no
fixed infrastructure” [108]

36

5.2 Cooperation in ubiquitous computing

5.2.2 CSCW

Computer supported cooperative work (CSCW) is a synergy of computer science and a
range of theoretical and applied human sciences which studies the field of every day
computer use [19]. It is a way to digitally help in the coordination of work activities, mostly
by synchronisation. Cooperation and coordination can happen both in asynchronous or
in synchronous manner as well as distributed in time and space.

Cooperation support in software is not an easy thing. The complexity is made clear
by the fact that activities may be distributed both in time and space, with a varying
number of participants, complex workfields to support, and different specialisations of the
participants.

The most challenging and complex part is the definition of tasks. In addition, task depen-
dencies drive the need to coordinate work activities [23]. As discussed in Section 5.5, tasks
change while working with them. Work processes can be planned thoroughly in advance,
but when put into action they will most likely be performed ad-hoc. This ever changing
tree of tasks and how they are performed is very complex to implement in CSCW.

A technique to compute coordination requirements is described by Cataldo et al. [23].
In the process, they also revealed that coordination requirements are highly volatile, and
frequently extended beyond team boundaries.

To ensure the best possible support in CSCW systems, some guidelines have been elicited
regarding management of task interdependencies and common information spaces:

A way to incorporate task interdependencies is to facilitate mutual awareness among
users. When a user change the state of a work process, this must be conveyed to
others. If tasks in a work process are tightly coupled and interdependent, tasks may
be adjusted according to changes already made in other tasks in the process, possibly
by other participants. This approach is necessary in situations where cooperation
need to be instant. In workflows (Section 5.5.4) with loosely coupled tasks, it is not
equally important with instant awareness of changes made by other participants. In
this case, changes will propagate over time.

It should also be possible to monitor other users, e.g., users working in the same
virtual room or in the same work process. This is especially useful in situations
where entities are cooperating or competing.

The restructuring of plans is most likely performed regularly and it should support
communication between users, means of getting the others attention, and a way to
negotiate re-planning.

Users need to be able to share and locate information made available by others.

Information from old work processes should be made available for reuse.

Domain dependent use of terms should be avoided in general, but not removed as
it is also an important part of cooperation.

CSCW systems are often characterised by the means of a two-times-two matrix, separating
synchronous and asynchronous communication, and distributed users and non-distributed
users (Figure 5.2).

37

Supporting technologies and terms

face-to-face asynchronous

synchronous
distributed

asynchronous
distributed

Same
place

Different
places

Same time Different time

Figure 5.2: A matrix characterizing CSCW by time and space. Inspired by Johansen [52].

Some systems, like e-mail and revision control systems support asynchronous distribution
because they allow people to collaborate being at different places and dispersed in time.
Instant messaging belongs in synchronous distributed because it lets people communicate
in different places but real-time, while localized systems let people collaborate in the same
place but in different time.

The ideal of a full functional CSCW would be to support all of the cells in the matrix.

5.2.3 Agents

Even though there are no definitive agreement of what an agent is [38], a common com-
prehension is that software agents are programs that assist people and act on their behalf
[60]. Agents let people delegate work to them, and can be divided into two groups based
on how they function. Stationary agents executes only on the system where they are
initialised. If they need information which is not on that system or need to interact
with agents on a different system, they typically use a communication mechanism such
as Remote procedure call (RPC) or variants over this (Figure 5.3). Mobile agents, on the
other hand, have the unique ability to transport themselves from one host in a network to
another (Figure 5.4). This ability allows mobile agents to move to a system that contains
services they will interact with, and then take advantage of being in the same host or
network as the service [60].

Application Service

Host A Host B

Figure 5.3: RPC-based approach (based on [60]).

No one is required either to deliver information to the agent or to consume any of its
output. The agent simply acts continuously in pursuit of its own goals. Agents can also
have the ability to communicate with other agents, travel from one host to another (mo-
bile), learn and act according to previous experience. In contrast to the software agents of
object-oriented programming, agents are active entities that initiates the communication
rather than the contrary.

The following reasons for using mobile agents are mentioned in [60]:

38

5.2 Cooperation in ubiquitous computing

Application

Host B

Service

Host A

Figure 5.4: Mobile agent-based approach (based on [60]).

Mobile agents reduce network load, because they operate locally on the remote host
instead of communicating back and forth over the network.

They provide an effective means of overcoming network latency. This is because
a mobile agent resides where the task is performed, and therefore reacts faster to
changes in its runtime environment. Mobile agents bring us closer to real time
behaviour.

Encapsulation of protocols: If we need to use a special proprietary protocol, this
can be established by mobile agents as a ”channel” between the hosts without the
hosts needing to support this protocol natively.

They execute asynchronously and autonomously. By embedding tasks into mobile
agents and let them execute independently in the network, we do not need an open
connection which may be expensive and fragile. Instead, we reconnect with the
agent to collect it, e.g. after the task is complete.

Mobile agents adopt dynamically. Because they can sense their execution environ-
ment, mobile agents can react autonomously to changes and distribute themselves
to where the configuration is optimal for solving a particular problem.

They are naturally heterogeneous, because they are generally computer independent
and transport-layer independent.

They are robust and fault tolerant. Mobile agents react dynamically to unfavourable
situations and events. If a host is being shut down, agents on that host will be given
time to emerge to another host in the network.

These benefits reveal that mobile agents are well suited when delegating activities in a
workflow to several peers in the network, or when using cyber foraging. Protocol encapsu-
lation opens for using proprietary protocols for transmission of information. When using
mobile networks where the business model is pay per transmitted amount of data, mobile
agents could be a significant cost-saver by reducing network traffic in comparison to RPC-
based approaches. Their ability to react to events in a host and emerge to other hosts
is a very useful quality. E.g., in the case of a location-bound task executing in a volatile
network where peers connect and disconnect, the task could continually be performed at
the peers with the most suitable coordinates.

Multiagent systems

Service-oriented computing (SOC) uses ideas from, and are therefore deeply connected
with, multiagent systems (MAS). SOC brings considerations such as the necessity of

39

Supporting technologies and terms

modelling autonomous and heterogeneous components in uncertain and dynamic envi-
ronments.

Such components must be autonomously reactive and proactive, yet able to interact flex-
ibly with other components and environments. As a result, they are best thought of as
agents which collectively form MASs [51].

The key MAS concepts are reflected directly in those of SOC:

Ontologies (simplified representations of knowledge in a domain, developed with the
purpose of facilitating interoperation) (Section 5.3.2).

Process models (simplified representations of activities and their enactment) (Sec-
tion 5.5).

Choreography (simplified business protocols through which services can interact).

Directories and facilitators (simplified ”middle agents” from MASs).

Service-level agreements and quality-of-service measures (automated negotiation
and flexible service execution in dynamic environments).

According to [38], the term ”multiagent system” is applied to a system comprising the
following elements:

An environment

A set of situated, passive objects which can be manipulated by the agents.

An assembly of agents (specific objects) representing the active entities of the system.

An assembly of relations, which link objects (including agents) to each other.

An assembly of operations, making it possible for the agents to perceive, produce,
consume, transform, and manipulate objects.

Operators with the task of representing the application of the operations and how
the context changes due to this.

Rational agents have a belief-desire-intention (BDI) model which recognizes the primacy
of beliefs, desires, and intentions in rational action. BDI architectures have their root
in philosophical tradition of understanding practical reasoning, the process of deciding,
moment by moment, the action to perform to facilitate the goal [101]. The BDI model
have three distinct strengths [109]:

An underlying philosophy based on practical reasoning in humans.

A software architecture that is implementable in real systems.

A family of logics that support a formal theory of rational agents.

A BDI logic called LORA (Logic of rational agents) contains a temporal component which
allows representation of the dynamics of how agents and their environment changes over
time [109]. It also includes a component which allows for the representation of agents

40

5.3 Semantics

actions and their effect. This reflects somehow reinforcement learning, which are described
in Section 5.4.5.

The most interesting application areas for MAS, regarding the ubiquitous domain, are
those regarding pervasive service environments. In these, services are widely available ev-
erywhere and can be developed independently. Services are dynamically selected, engaged,
composed, and executed in a context-sensitive manner [51].

5.3 Semantics

Every device, program, or service that wants to interconnect and exchange information,
needs to find and understand each other. Most solutions attack the problem at a structural
or syntactic level and rely heavily on standardisation of a predetermined set of function-
ality descriptions. JINI, which connects services, and Universal Plug and Play, which
connects devices, are standards based on this approach. Drawbacks with standards like
these are that they are not very dynamic, and get outdated as new functionality needs
comes along. This is possible to prevent by instead basing the approach on semantics,
i.e., base the communication on common meaning.

5.3.1 The Semantic web

The Semantic Web provides a common framework that spans several interesting tech-
niques and solutions for allowing data to be shared and reused on a global scale. It is
developed with the Internet in mind, but on the conceptual level it seems suitable for the
ubiquitous domain and contains interesting concepts for our implementation. We explore
the components of the Semantic Web, with the original Scientific American article [16]
as a starting point.

Most of the Web’s content today is designed with the intent of being read by humans,
not for computer programs to use and manipulate meaningfully. The Semantic Web is an
extension of the current Web that will bring structure to the meaningful content of Web
pages, creating an environment where software agents (Section 5.2.3), roaming from page
to page, can readily carry out sophisticated tasks for users.

The Semantic Web aims to transform the Web from a medium of documents for people, to
a medium for data and information that can be processed automatically, better enabling
computers and people to work in cooperation.

For the Semantic Web to function and fulfil its purpose, the following must be satisfied:

Knowledge must be represented as structured collections of information together
with sets of inference rules that can be used to conduct automated reasoning.

A language must be provided that expresses both data and rules, and that allows
rules from any existing knowledge-representation system to be exported onto the
Web.

The logic of the inference rules must be powerful enough to describe complex prop-
erties of objects but not so powerful that agents can be tricked by being asked to
consider a paradox.

41

Supporting technologies and terms

Two important technologies that the Semantic Web is based upon are eXtensible Markup
Language (XML) and the Resource Description Framework (RDF). XML allows users to
add an arbitrary structure to their documents but says nothing about what the structures
mean. Meaning is expressed by RDF, which encodes it in sets of triples, each triple being
like the subject, verb, and object of an elementary sentence. These triples can be written
using XML tags.

In RDF, a document makes assertions that particular things have properties with certain
values. Subject and object are each identified by a Universal Resource Identifier (URI)2,
just as used in a link on a Web page. The verbs are also identified by URIs, which enables
anyone to define a new concept, a new verb, just by defining a URI for it somewhere on
the Web.

The triples of RDF form webs of information about related things. Because RDF uses
URIs to encode this information in a document, the URIs ensure that concepts are not
just words in a document but are tied to a unique definition that everyone can find on
the Web.

Different terms may be used for a common meaning. Ideally, we must have a way to
discover such common meanings in the data material. A solution to this problem is
provided by the third basic component of the Semantic Web, collections of information
called ontologies (Section 5.3.2). In this context an ontology is a formal definition of
the relationship among terms. The most typical kind of ontology for the Web has a
taxonomy and a set of inference rules. These inference rules provide deductions based on
associations in the dataset, and in that way provide results that are useful and meaningful
to the human user. The use of ontologies makes it much easier to develop programs that
can tackle complicated questions whose answers do not reside on a single Web page.

To avoid that we are provided with false information, we must be able to check for proof
of the deductions performed. A way of doing this is to let a service translate its internal
reasoning into the Semantic Web’s unifying language, and then let an inference engine
in our computer verify the result. For manual control, one could show the relevant Web
pages.

As a means to exploit information gathering from several Web pages and to exchange
proofs written in the Semantic Web’s unifying language, agents (Section 5.2.3) are used.
Another vital feature are digital signatures. Agents should be sceptical of assertions that
they read on the Semantic Web until they have checked the sources of information.

Many automated Web-based services already exist without semantics, but other programs
such as agents have no way to locate one that will perform a specific function. This
process, called service discovery, can only happen when there is a common language to
describe a service in a way that lets other agents ”understand” both the function offered
and how to take advantage of it. The Semantic Web, in contrast, is more flexible. The
consumer and producer agents can reach a shared understanding by exchanging ontologies,
which provide the vocabulary needed for discussion. Agents can even ”bootstrap” new
reasoning capabilities when they discover new ontologies. Semantics also makes it easier
to take advantage of a service that only partially matches a request.

2URIs have global scope. Associating a URI with a resource means that anyone can link to it, refer
to it, or retrieve a representation of it [86]. In addition, URIs can point to anything, including physical
entities, which means we can use the RDF language to describe devices such as cell phones and TVs.
Such devices can advertise their functionality, what they can do, and how they are controlled, much like
software agents. (URLs, Uniform Resource Locators, are the most common type of URI.)

42

5.3 Semantics

In a typical course of events, subassemblies of information are passed from one agent to
another, each one ”adding value,” to construct the final product requested by the end user.
Agents can exploit AI technologies in addition to the Semantic Web. But the Semantic
Web provides the foundation and the framework to make such technologies more feasible.

In addition to describing the meaning of content on the web, semantic descriptions of
device capabilities and functionality will let us achieve adaption and automation with
minimal human intervention also in a ubiquitous environment.

The first concrete steps have already been taken in this area, with work on developing a
standard for describing functional capabilities of devices (such as screen sizes) and user
preferences. Built on RDF, this standard is called Composite Capability/Preference Pro-
file (CC/PP). Initially, it will let cell phones and other nonstandard Web clients describe
their characteristics so that Web content can be tailored for them on the fly. Later, when
we add the full versatility of languages for handling ontologies and logic, devices could
automatically seek out and employ services and other devices for added information or
functionality.

5.3.2 Ontologies

There exists several definitions of an ontology, many contradicting each other [68]. Ac-
cording to [16], ontologies are collections of information. More specific, it is stated that
artificial-intelligence and Web researchers have co-opted the term for their own jargon,
and that for them, an ontology is a data model that formally represents a set of terms
within a domain and the relations between these. In [67], ontologies are defined as com-
mon conceptualisations of knowledge. In [86], it is claimed that ontologies are attempts
to more carefully define parts of the data world and to allow interactions between data
held in different formats.

According to [68], an ontology defines a common vocabulary for researchers who need
to share information in a domain. It includes machine-interpretable definitions of basic
concepts in the domain and relationships among them.

Many disciplines have developed standardised ontologies that domain experts can use to
share and annotate information in their fields. The most typical kind of ontology has a
taxonomy and a set of inference rules.

From a more technical view, an ontology is a formal explicit description of concepts in
a domain (classes), properties of each concept (slots) describing various features and at-
tributes of the concept, and restrictions on slots (facets) [68]. An ontology together with
a set of individual instances of classes constitutes a knowledge base.

Classes are the focus of most ontologies. A class can have subclasses that represent
concepts that are more specific than the superclass. Slots also describe properties of
instances.

In addition to RDF, WC3 provides a Web Ontology Language OWL, developed to use with
the Semantic Web (Section 5.3.1). OWL checks an ontology to see whether it is logically
consistent or to determine whether a particular concept falls within the ontology. OWL
uses the linking provided by RDF to allow ontologies to be distributed across systems
[86].

43

Supporting technologies and terms

Developing an ontology

There are several reasons to develop an ontology, as stated in [68]:

To share common understanding of the structure of information among people or
software agents. This is one of the more common goals in developing ontologies.

To enable reuse of domain knowledge. This is one of the driving forces behind the
development of ontologies.

To make domain assumptions explicit. It will be possible to change these assump-
tions easily if our knowledge about the domain changes.

To separate domain knowledge from the operational knowledge. By doing this,
ontologies can function as easily exchangeable algorithm inputs.

To analyse domain knowledge. Formal analysis of terms (declarative specifications)
are extremely valuable when both attempting to reuse existing ontologies and ex-
tending them.

Often an ontology of the domain is not a goal in itself. Developing an ontology is akin to
defining a set of data and their structure for other programs to use. Problem-solving
methods, domain-independent applications, and software agents use ontologies and
knowledge bases built from ontologies as data.

Ontology development is an iterative process. A stepwise suggestion on how to create an
initial ontology is presented in [68]:

Step 1. Determine the domain and scope of the ontology.

Step 2. Consider reusing existing ontologies.

Step 3. Enumerate important terms in the ontology.

Step 4. Define the classes and the class hierarchy.

Step 5. Define the properties of classes – slots.

Step 6. Define the facets of the slots.

Step 7. Create instances.

After these steps are complete, we will almost certainly need a revision of the initial
ontology. This is then followed by an iterative process that will most likely continue
through the entire lifecycle of the ontology.

5.4 Learning and reasoning

Artificial Intelligence (AI) is concerned with intelligent behaviour in artifacts. Intelligent
behaviour, in turn, involves perception, reasoning, machine learning, communicat-
ing, and acting in complex environments [67]. In this section, we look at some AI
techniques which appear as reasonable candidates to our proof-of-concept implementa-
tion.

44

5.4 Learning and reasoning

5.4.1 Case-based reasoning

Case-based reasoning (CBR) is a body of concepts and techniques that touch upon some
of the most basic issues related to knowledge representation, reasoning, and learning
from experience [87]. Reasoning is usually modelled as a process where conclusions are
drawn by chaining together generalised rules, starting from scratch. In CBR, the primary
knowledge source is not generalised rules but a memory of stored cases recording specific
prior episodes [62]. CBR exploits analogies and similarities with these previously solved
cases to solve new ones [67].

The roots of case-based reasoning in AI dates back to the early 1980s and is found in
the works of Roger Schank on dynamic memory and the central role that a reminding of
earlier situations and situation patterns has in problem solving and learning [3, 78]. In the
same era, Janet Kolodner pioneered CBR, emphasising its use in situations of real-world
complexity [63].

At the Norwegian University of Science and Technology (NTNU), Agnar Aamodt and
colleagues at Sintef have studied the learning aspect of CBR in the context of knowledge
acquisition in general, and knowledge maintenance in particular. We use mainly the work
of Aamodt and Plaza [3] to describe the field more thoroughly in the following.

Concept of CBR

A case-based reasoner solves new problems by adapting solutions to older problems. Gen-
erally a case-based reasoner will be presented with a problem and it searches its memory of
past cases (case base) and attempts to find a case that has the same problem specification
as the case under analysis. If the reasoner cannot find an identical case in its case base,
it will attempt to find a case or multiple cases that most closely match the current case.

In situations where a previous identical case is retrieved, assuming that its solution was
successful, it can be offered as a solution to the current problem. In the more likely
situation that the case retrieved is not identical to the current case, an adaptation phase
occurs. During adaptation, differences between the current and retrieved cases are first
identified and then the solution associated with the case retrieved is modified, taking
these differences into account. The solution returned in response to the current problem
specification may then be tried in the appropriate domain setting.

At the highest level of abstraction, a case-based reasoning system can be viewed as a black
box that incorporates the reasoning mechanism and the following external facets (Figure
5.5).:

The input specification or problem case

The output that defines a suggested solution to the problem

The memory of past cases, the case base, that are referenced by the reasoning
mechanism

In most CBR systems, the case-based reasoning mechanism has an internal structure
divided into two major parts: the case retriever and the case reasoner (Figure 5.6). The
case retriever’s task is to find the appropriate cases in the case base, while the case
reasoner uses the cases retrieved to find a solution to the problem description given. This
reasoning process generally involves both determining the differences between the cases

45

Supporting technologies and terms

Case base
Case

Case-based reasoning mechanismProblem
case

Derived
solution

Figure 5.5: CBR system (based on [87]).

retrieved and the current case, and modifying the solution to reflect these differences
appropriately. The reasoning process may or may not involve retrieving additional cases
or portions of cases from the case base.

Case base
Case

Case retrieverProblem
case

Derived
solutionCase reasoner

Normal interactions Possible interactions

Figure 5.6: Two major components of a CBR system (based on [87]).

Case-based reasoning has been formalized for purposes of computer reasoning as a four-
step process [3]:

1. Retrieve: Given a target problem, retrieve cases from memory that is relevant for
solving it. A case consists of a problem, its solution, and, typically, annotations
about how the solution was derived.

2. Reuse: Map the solution from the previous case to the target problem. This may
involve adapting the solution as needed to fit the new situation.

3. Revise: Having mapped the previous solution to the target situation, test the new
solution in the real world (or a simulation) and, if necessary, revise.

46

5.4 Learning and reasoning

4. Retain: After the solution has been successfully adapted to the target problem,
store the resulting experience as a new case in memory.

These steps are part of the CBR life cycle (Figure 5.7), which represents the process-
oriented view of the descriptive framework presented by Aamodt and Plaza [3]. The
process is supported by supplying the cases with general knowledge (which is usually
domain dependent).

General / domain
knowledge

Previous
cases

Retrieve

Re
us

e

New
case

New
case

Retrieved
case

Solved
case

Revise

R
et

ai
n

Learned
case

Tested
repaired

case

Suggested
solution

Problem

Confirmed
solution

Figure 5.7: Process oriented view of the CBR life cycle (adopted from [3]).

While the process-oriented view provides a global and external view of the CBR process,
the task-oriented view decompose and describe the four top-level steps, where each step
is viewed as a task that the CBR reasoner has to achieve (Figure 5.8). In the figure,
tasks are named in bold letters, while methods are written in italics. The links between
task nodes appears as plain lines and indicates task decompositions. The top-level task is
problem solving and learning from experience and the method to accomplish this task is
case-based reasoning (indicated in a special way by the stippled rectangle). The top-level
task is split into the four major CBR tasks corresponding to the four processes of Figure
5.7, retrieve, reuse, revise, and retain. All the four tasks are necessary in order to perform
the top-level task.

47

Supporting technologies and terms

CBR

Problem solving and
learning from experience

Follow direct
indexes

Search index
structure

Search general
knowledge

Calculate
similarity

Explain similarity

Use selection
criteria

Elaborate
explainations

Copy solution

Copy solution
method

Modify solution

Modify solution
method

Evaluate by
teacher

Evaluate in real
world

Evaluate in model

Self repair

User repair

Extract solutions

Extract relevant
descriptors

Extract solution
method

Extract
justifications

Collect
descriptors

Interpret
problem

Infer
descriptors

Rerun problem

Update general
knowledge

Adjust indexes

Generalise
indexes

Determine
indexes

Identify features

Repair fault

Extract

Select

Search

Initially match

Adapt

Integrate

Index

Copy Evaluate
solution

RetainReviseReuseRetrieve

Figure 5.8: Task-method decomposition of CBR (adopted from [3]).

48

5.4 Learning and reasoning

CBR methods

Actually, ”case-based reasoning” is just one of a set of terms used to refer to a range of
different methods for organizing, retrieving, utilizing and indexing the knowledge retained
in past cases. Cases can be stored and indexed in different ways and structures. How
a case is matched and applied to the present problem also varies. CBR methods may
be purely self-contained and automatic, or they may interact heavily with the user for
support and guidance of its choices. Some CBR methods assume a rather large amount
of widely distributed cases in its case base, while others are based on a more limited set
of typical ones. Past cases may be retrieved and evaluated sequentially or in parallel [3].

The main types of CBR methods mentioned in [3] are:

Exemplar-based reasoning:
In this method, a concept is defined extensionally, as the set of its exemplars3.
Solving a problem is a classification task, i.e. finding the right class for the unclas-
sified exemplar. The class of the most similar past case becomes the solution to the
classification problem. Modification of a solution found is outside the scope of this
method.

Instance-based reasoning:
A specialization of exemplar-based reasoning into a highly syntactic CBR-approach.
It requires a relatively large number of instances in order to close in on a concept
definition, because it lacks general background knowledge. A major focus in this
method is to study automated learning, free from user intervention. Because of
this, the representation of the instances are usually simple (e.g. feature vectors).
Basically, this is a non-generalization approach to the concept learning problem
addressed by classical, inductive machine learning methods.

Memory-based reasoning:
Emphasizes a collection of cases as a large memory, and reasoning is a process of
accessing and searching in this memory. The access and storage methods may rely on
purely syntactic criteria, or they may attempt to utilize general domain knowledge.

Case-based reasoning:
A typical case is usually assumed to have a certain degree of richness of information
contained in it, and a certain complexity with respect to its internal organization,
i.e., not a feature vector holding some values and a corresponding class. Typical
case-based methods are also able to modify, or adapt, a retrieved solution when
applied in a different problem solving context, and they utilises general background
knowledge. Core methods of typical CBR systems borrow a lot from cognitive
psychology theories.

Analogy-based reasoning:
Sometimes used as a synonym to case-based reasoning. However, it is also often
used to characterise methods that solve new problems based on past cases from a
different domain, while typical case-based methods focus on indexing and matching
strategies for single-domain cases. The major focus has been on reuse of past cases,
which is called the mapping problem: Finding a way to transfer, or map, the solution
of an identified analogue to the present problem.

3An exemplar is a well known usage of a scientific theory. It is the well known solution to some puzzle
of the research field, models of excellence.

49

Supporting technologies and terms

Comparison with human reasoning

Schank states in [79] that taking case-based reasoning seriously, as a cognitive model,
implies that experience plays a fundamental role in human learning as well. When humans
encounter a problem, they often try to solve it by using a human equivalent of CBR, or
vice versa. Facing a new problem, a person will most likely refer to a past experience from
a similar problem. Learning from experiences is the fundamental process of case-based
reasoning. People can also learn from other people’s experience through oral or written
account [79]. The similarities may cover the entire case or only the points that led to a
portion of the result. Another part of the case may oppose to the compared case. This is
referred to as interpretive reasoning.

Comparison with rule-based systems

Rule-based systems (Section 5.4.2) has a rule base consisting of a set of production rules
of the form: IF A then B where A is a condition and B is an action. In addition, such
systems have an inference engine that compares the data it holds in the working memory
with the condition parts of rules to determine which rules to fire.

One of the most time consuming tasks when developing a rule-based system, is the knowl-
edge acquisition task. The need for collecting and converting domain-specific information
into some formal representation can sometimes be a huge task, especially if the domain is
not well understood.

Case-based systems usually require significantly less knowledge acquisition. This is be-
cause they involve collecting a set of previous experiences without the added necessity
of extracting a formal domain model from the cases. Another benefit of CBR is that a
system can be created with a small or limited amount of experience, and then be created
incrementally as cases become available.

Challenges

As Aamodt and Plaza points out in [3], there are no universal CBR methods suitable for
every domain of application. The challenge is to come up with methods that are suited for
problem solving and learning in particular subject domains and for particular application
environments. Core problems addressed by CBR research concerns the area of knowledge
representation and methods for retrieval, reuse, revision, and retainment.

Examples of how these problem areas have and can be dealt with are given in, amongst
others, [3] and [57]. Pal and Shiu does it by introducing us to Soft case-based reasoning
(SCBR) which we elaborate in the following.

Soft Case-based reasoning

There has been much progress since the early days of CBR. This includes the under-
standing of concepts such as similarity, relevance, and materiality. In [87], Pal and Shiu
investigates if it is possible to achieve a quantum leap in capabilities of CBR systems
through traditional computing and reasoning methods. As an answer and alternative
to this, they bring us the notion of Soft Case-Based Reasoning (SCBR) which is based
on soft computing, a computing methodology that is a coalition of methodologies which

50

5.4 Learning and reasoning

collectively provide a foundation for the conception, design, and the utilization of intel-
ligent systems. The principal members of the coalition are fuzzy logic, neurocomputing,
evolutionary computing, probabilistic computing, chaotic computing, rough set theory, self-
organizing maps, and machine learning.

By combining and using different methods from these areas, Shiu and Pal propose possible
solutions to the challenges mentioned, except they use some different terms. Instead of
relating to the reuse and revise stages (which in practical application are difficult to
distinguish), they replace and combine these into an adaption stage. The term retain is
replaced by case learning and case-base maintenance. We give an overview of the methods
used in traditional CBR and those used in SCBR, based on [87] (Table 5.1).

Table 5.1: Traditional methods and SCBR methods for addressing
the challenging areas of CBR.

Traditional methods Soft computing techniques
Case representation

relational

object-oriented

predicate

fuzzy sets

rough sets

Case selection and re-
trieval

clustering and classifica-
tion techniques:

weighted feature-
based similarity

weighted Euclidean
distance

Hamming and Lev-
enstein distances

cosine coefficient

k-nearest neighbour
principle

fuzzy clustering and classifica-
tion techniques:

weighted intracluster and
intracluster similarity

fuzzy ID3 classification

fuzzy c-means clustering

feature weighting

– gradient descent and
neural networks

– genetic algorithms

neural networks

neuro-fuzzy model

rough self-organising
maps

51

Supporting technologies and terms

(continued from previous
page)

Traditional methods Soft computing techniques

Case adaption strategies:

reinstantiation

substitution

– constraint-
based

– feedback-based

transformation

methods:

learning adaption
knowledge from case
data

rule- and case-based
reasoning for adap-
tion

adaption matrix

configuration tech-
niques

machine learning:

fuzzy decision tree

back-propagation neural
network

Bayesian model

support vector machine

genetic algorithms

Case-base maintenance

qualitative mainte-
nance

quantitative mainte-
nance

rough-fuzzy approach

fuzzy integral approach

Criticism

Critics of CBR argue that it is an approach that accepts anecdotal evidence4 as its main
operating principle. Without statistically relevant data for backing and implicit general-
ization, there is no guarantee that the generalization is correct [105].

5.4.2 Rule-based expert systems

Rule-based expert systems are knowledge based systems which can implement actions for
given situations. They have a set of definable rules with criteria which match up with
knowledge stored in the systems. Each time knowledge is updated in the system, an

4Anecdotal evidence is argumentation based on data that is too scarce for statistical relevance.

52

5.4 Learning and reasoning

inference engine5 will try to se if any of the defined rules match the thumb-print of the
knowledge represented in the system. If a match is found, the corresponding action will
be performed. Actions may induce new knowledge in the system which, in turn, may
match other rules. This goes on until no more rules can be matched successfully.

Knowledge in the system is represented by facts. Facts, or knowledge, are distinctive,
concrete values, which can be interpreted by the inference engine. Facts can become
known to the system by direct or procedural input. See figure 5.9 for the basic structure
of an expert system.

Expert

Knowledge engineer

User

Knowledge
Acquisition
subsystem

Knowledge base

Facts and heuristics

User
interface

Explanation
subsystem

Inference
engine

Figure 5.9: Basic structure of an expert system. Borrowed from [67].

Humans and computers are fairly distinct in the way we solve complex problems. The
motive for making an expert system is therefore to try to imitate the way humans make
their reasoning.

This would also greatly help people without knowledge of programming to make new
rules in the system, which helps the system to reason. An example of such a rule could

5An inference engine match given rules to the facts, known as knowledge, and reports matches. The
inference engine consists of all the processes that manipulate the knowledge base to deduce information
requested by the user [67].

53

Supporting technologies and terms

be formulated as:

If temperature sensor and heating oven and temperature lower than 20 then
turn on heating oven

and

If temperature sensor and heating oven and temperature higher than 21
then turn off heating oven

Simple rules like these are something everyone can express and would be fairly similar to
how we think.

Rules like these are possible to implement in conventional programming languages but
requires considerable effort because it demands a high level of dynamics, pattern matching,
and insurance of a minimal computational amount. Several expert systems have therefore
been developed to support this kind of operations.

The terms temperature sensor, heating oven, and temperature have to be known to the
system by means of programming it. The same applies to the actual process of turning
on and off the heating oven. The use of this functionality, on the other hand, can be
programmed by rules that are easily understandable to anyone and that resembles how
we think.

A rule-based system is able to learn and make more and more complex reasoning based
on the adding of new, easily definable rules to the system.

5.4.3 Bayesian networks

A Bayesian network (or a belief network) is a probabilistic graphical model that represents
a set of variables and their probabilistic dependencies in a concise and typically tractable
way [104]. It is very similar to expert systems (Section 5.4.2), but instead of working with
true and false logic, like if-then rules, it works with probability theory.

It will then be made up by rules of the following form:

If A is true, then the probability that B is true is X.

Instead of saying; ”if it is cloudy outside, then it will rain”, you can say; ”if it is cloudy
outside, then the probability of rain is 85%”.

In general, Bayesian networks are used for reasoning with uncertain information. An
alternative for this kind of reasoning, among others, is fuzzy logic (Section 5.4.4).

Formally, a Bayesian network is a directed, acyclic graph (DAG) whose nodes are labelled
by random variables [67]. Nodes can represent any kind of variable, be it a measured
parameter, a latent variable or a hypothesis. Efficient algorithms exist to perform inference
and learning in Bayesian networks [104]. Bayesian networks are sometimes called causal
networks because the arcs connecting the nodes can be thought of as representing direct
causal relationships. To construct a Bayesian network for a given set of variables, we draw
arcs from cause variables to immediate effect.

A simple Bayesian network is shown in figure 5.10. Here, the set of variables consists of
three variables; rain, sprinkler, and grass wet. The arcs show how the variables affect each

54

5.4 Learning and reasoning

other, and the tables show their probabilistic dependencies. All variables has two possible
values; true and false.

We see that rain affects the use of the sprinkler, and that both these variables affect the
wetness of the grass. Because we in this case know the probabilistic dependencies between
cause and effect, the model can answer questions like ”What is the likelihood that it is
raining, given the grass is wet?”, however, we do not provide the formula here (see [104]
for details).

Figure 5.10: Bayesian network example (borrowed from [104]).

Advantages of Bayesian networks is that they are memory saving, and it is intuitively easier
for a human to understand direct dependencies and local distributions than complete joint
distribution.

Bayesian networks are used for, among other areas, decision support systems.

5.4.4 Fuzzy logic

The request for further work in [66] claims that it would be possible to use fuzzy logic (FL)
in the inference engines of a context-aware workflow system to handle a wider array of
context states without involving an exception handler. This is because inference engines
originally only deal with absolute values of true or false, while fuzzy logic provides the
possibility of partial truths.

We will look at fuzzy logic as a mean for not being restricted to use crisp values where
this is not beneficial. The following section will give an introduction to fuzzy logic and
provide an example on how to use it.

History and range of use

In 1965 Lotfi Zadeh published a paper called ”Fuzzy Sets” and later stated the principle
of incapability:

As the complexity of a system increases, our ability to make precise and sig-
nificant statements about its behaviour diminishes until a threshold is reached

55

Supporting technologies and terms

beyond which precision and significance become almost mutually exclusive char-
acteristics.

In recent years, fuzzy logic and fuzzy control have been used in many real world applica-
tions and is now an established subject in the areas of control, decision, and knowledge
engineering [11].

Why should we need to use fuzzy concepts? We interpret the world in terms of classifica-
tions expressed in linguistic forms invented by humans. We use fuzzy concepts to avoid
sharp boundaries between similar cases. Some trees are definitely trees and not bushes.
Others are less definitely trees and more possibly bushes [11].

FL provides a simple way to arrive at a definite conclusion based upon vague, ambiguous,
imprecise, noisy, or missing input information. FL’s approach to control problems mimics
how a person would make decisions, only much faster [96].

Various shades of grey are allowed in addition to black and white. Truth can vary in
intensity. There can be varying degrees of temperature, consistence, and so forth. These
can be clustered into respectively linguistic terms such as hot, cold, hard, soft, and so on.
These groupings are clusters introduced to simplify our understanding of the real world
and to encourage meaningful communication between people. All the clusters represent
fuzzy concepts. Remove the fuzziness and you approximate. This approximation can be
very dangerous because our decision foundation may be impaired, [11].

Fuzzy logic provides flexibility in knowledge representation and a robustness in the meth-
ods of inference. An important part of the inferential robustness is the ability of fuzzy
logic to generalize from prototypical cases to new situations. This process of induction is
extremely important in human intelligence. Fuzzy sets can be used in constructing a the-
ory of generalization, a theory of case-based reasoning. This theory will be a method
for interpolating from similar but known situations [11].

Fuzzy sets

A fuzzy set is a range of values that in varying degrees belongs to a term. To clarify
this, we have produced the following example, which will follow you through and help to
explain FL.

Water can be cold, comfortable or hot. Comfortable can be anything from, say, 25 to
35 while cold and hot is respectively below and above. You can even have degrees of
it, like slightly, very and extremely cold or hot. There may also be that the water feels
slightly cold and slightly comfortable. How can we represent this with numbers?

The answer is overlapping sets. These sets can be seen as functions that define the degree
of belonging to a specified term, where the x-axis represents the value range and the y-axis
represents the degree of belonging to the specified term in a range of 0 to 1.

Let’s return to the water example and try to illustrate it. Examine Figure 5.11. Here the
term comfortable is defined as 25 to 35 , cold as anything below 20 and hot anything
above 40 .

The sets of the tree terms overlap. This means that something can actually be a little bit
of both. If we take the temperature 22 it is slightly comfortable, but also slightly cold.

Now, the only thing a computer can reason about this is that, if we ask it how does 39
feels, it would say that it is mostly hot but has a little degree of comfort to it as well.

56

5.4 Learning and reasoning

1

.5

0

20 25 35 40 Temperature (°C)

Term: cold Term: comfortable Term: hot

Degree of
belonging
to term

Figure 5.11: Fuzzy sets of the water temperature example.

This resembles how we human think and reason. This example is a very simple one and
more complex resolution can be done, but for introduction we will stick to the simple one.

To complete the example we will look at a method to adjust the resulting temperature of
a water flow based on litres/minute of hot water mixed with a constant flow of cold water.
To do this we need to define fuzzy sets describing the change of flow of hot water as well.

Change in hot water flow will be described by the terms none defined as 0litres/minute,
decrease as reducing the flow with 1litres/minute to 10litres/minute and increase to raise
the water flow with 1litres/minute to 10litres/minute. An illustration of this can be seen in
Figure 5.12

1

.5

0

-1 0 1

litres/minute

Term: decrease Term: none Term: increase

Degree of
belonging
to term

-10 10

Figure 5.12: Fuzzy sets of a flow of water.

Applying rules

Now we have the base for writing rules. The whole point of fuzzy logic is to mimic the
way we think. Rules are therefore easy to formulate using normal English.

We have already stated that the flow of cold water is constant. The temperature of the
hot and cold water is also constant. The resulting temperature of the mixed water is
therefore reliant on the flow of the hot water. Three rules have to be defined to control
the process of regulating the temperature.

57

Supporting technologies and terms

1. If water temperature is hot then change of hot water flow is decrease.

2. If water temperature is cold then change of hot water flow is increase.

3. If water temperature is comfortable then change of hot water flow is none.

These rules do what they say. If the temperature is cold, increase the hot water flow, if it
is hot, decrease the hot water flow and if it is comfortable, change nothing.

This is easy to implement with crisp values and rules as well, but it would not give smooth
transitions. With crisp values the temperature would, from the smallest change in value,
suddenly pass from being comfortable to cold. Fuzzy logics have smooth transitions all
the way.

Getting a crisp result - Defuzzification

The command to the actuator performing the change of hot water flow has to be a crisp
value. How do we get that from the fuzzy sets and application of rules? If the transitions
is to be smooth, it has to be able to change the water flow fast if its very cold and more
slowly if its only slightly cold.

The fuzzy example we have been looking at has one input value, temperature, and one
regulating value, hot water flow. It is fully possible to have more than one input value, it
is actually normal, but for simplicity we will stick to one.

To achieve a crisp output value, whenever an input value changes, it is tested against the
defined rules. For each rule it matches a result there will be produced and combined to
one crisp value.

A rule matches if the input value belongs to the fuzzy set. E.g., if the input temperature is
22 it matches both rule 2 and 3. The crisp result will then be a combination of change
of water flow terms decrease and none.

Let us look at the match of rule 2, illustrated in Figure 5.13. If we draw a line from 22
and upwards, we find that it intersects the graph for cold at 0.6 on the y-axis. This is how
much the temperature matches the term and also how much of the answer for rule 2 we
should incorporate in our answer. We therefore draw a line and fill everything underneath
0.6 of the term high for hot water flow.

1

.5

0

20 25

Temperature (°C)

Term: cold

Degree of
belonging
to term

1

.5

0

1

litres/minute

Term: increase

1022

Figure 5.13: Result of match of rule 2.

58

5.4 Learning and reasoning

We also do the same for rule 3, since it matches that as well. Here we only have 0.4 match
and mark everything underneath the result for rule 3, the term none. This is illustrated
in Figure 5.14.

1

.5

0

20 25

Temperature (°C)

Degree of
belonging
to term

1

.5

0

0
litres/minute

122

Term: none

-1

Term: comfortable

35 40

Figure 5.14: Result of match of rule 3.

No more rules match the input value of 22 and we therefore can conclude by joining the
two results together (see Figure 5.15).

1

.5

0

-1 0 1

litres/minute

Term: none

Term: increase
Degree of
belonging
to term

-10 10

Figure 5.15: Combination of results of match for rule 2 and 3.

The normal way of calculating the result is by superimposing the results upon each other,
forming a single geometric shape and then calculating the centroid. The x-axis value of
the centroid is then the crisp value. In our case the result would be ≈ 5. This means
that if the temperature is 22 it would increase the hot water flow with 5litres/minute. A
new temperature would then be read and the process starts again until the temperature
is only in the term comfortable, only rule 3 fires, and the water flow is held constant.

5.4.5 Reinforcement learning

Learning from interaction is a fundamental idea underlying nearly all theories of learning
and intelligence. In [93] we are given an introduction to reinforcement learning, which is a
computational approach to learning whereby an agent tries to maximise the total amount
of reward it receives, when interacting with a complex, uncertain environment.

The agent learns what to do by mapping situations to actions, and study the result of these
actions. The learner is not told which actions to take, as in most forms of machine learning,

59

Supporting technologies and terms

but instead must discover which actions yields the most reward by trying them. Actions
may affect not only the immediate reward but also the next situation and, through that,
all subsequent rewards. Trial-and-error and delayed reward are the two most important
distinguishing features of reinforcement learning.

Interaction with the environment provides us with information about cause and effect,
consequences of actions, and what to do in order to achieve goals. Such interactions are
undoubtedly a major source of knowledge about the environment and ourselves. Rein-
forcement learning is much more focused on goal-directed learning than other approaches
to machine learning.

Reinforcement learning is not defined by characterising learning methods, but by char-
acterising a learning problem. The basic idea of the reinforcement learning problem is
simply to capture the most important aspects of the real problem facing a learning agent,
interacting with its environment to achieve a goal. Such an agent must be able to sense
the state of its environment to some extent, and must be able to take actions that affect
the state. The agent must also have one or several goals relating to the state of the envi-
ronment. The formulation is intended to only include just these three aspects: sensation,
action, and goal.

As opposed to supervised learning, which is learning by provided examples, an agent using
reinforcement learning is able to learn from own experience. This introduces a tradeoff
between exploration and exploitation. The agent has to exploit what it already knows,
but it also have to explore in order to make better action selections in the future. In
practice this is a progressive approach where the agent favour the alternatives that seems
best.

Another key feature of reinforcement learning is that it explicitly considers the whole
problem of a goal-directed agent interacting with an uncertain environment. This is in
contrast with many approaches that consider subproblems without addressing how they
fit into the big picture.

5.4.6 Artificial neural networks

Artificial neural networks, also known as parallel distributed processing networks, are
interesting mainly for their ability to learn [67]. However, they do not learn from own
experience, but rather from examples provided to them through supervised learning [93].

More formally, a neural network is a computing solution that is loosely modelled after
cortical structures of the brain. It consists of interconnected processing elements called
nodes or neurons that work together to produce an output function. The output of a
neural network relies on the cooperation of the individual neurons within the network to
operate. Processing of information by neural networks is characteristically done in parallel
rather than sequentially as in earlier binary computers or Von Neumann machines.

A unique property of a neural network is that it can perform its overall function even if
some of the neurons are not functioning. This is because it relies on its member neurons
collectively to perform its function. In other words, it is robust regarding tolerance of error
or failure. Additionally, neural networks are more readily adaptable to fuzzy logic (Section
5.4.4) computing tasks than Von Neumann machines [103]. A conceptual description of a
neural network is given in figure 5.16.

Neural networks are trainable systems that can learn to solve complex problems from a set

60

5.4 Learning and reasoning

Input

Output

Hidden

Figure 5.16: Conceptual view of an artificial neural network (borrowed from [103]).

of provided examples, and generalize the acquired knowledge to solve unforeseen problems.
I.e., they are self-adaptive systems. A neural network does not have to be adaptive, but
its practical use comes with algorithms designed to alter the strength (weight) of the
connections in the network to produce a desired signal flow.

While traditional AI uses computational algorithms to solve problems, neural networks
use networks of agents (Section 5.2.3) as the computational architecture to solve problems.

When it comes to the efficiency of today’s neural networks, current research in theoretical
neuroscience are targeting the question of how complex, and what properties that indi-
vidual neuro elements should have in order to resembling animal intelligence. Recently,
scientists from IBM created an artificial neural network which contained the simulated
equivalent of the number of neurons in an actual mouse cortex (8 ∗ 106), but with less
synapses (6300 instead of 8000 per neuron). The project was run on a BlueGene/L su-
percomputer, but still each neuron was only able to fire about ten times slower than in
real life and the project contained only approximations of one type of neurons [43]. The
shortcomings of this cutting edge project compared to real life implies that we do not have
the knowledge or the technology available yet, to simulate life, but results are promising
for a distant future.

One obstacle for imitating real life is that the brain is massively parallel, even more so than
advanced multiprocessor computers. This means that simulating the behaviour of a brain
on traditional computer hardware is necessarily slow and inefficient. Neural networks
are based on efforts to model information processing in biological systems, which may
rely largely on parallel processing as well as implicit instructions based on recognition of
patterns of sensory input from external sources. Rather than sequential processing and

61

Supporting technologies and terms

execution, at their very heart, neural networks are complex statistic processors.

Even though we have not come so far in simulating real life using artificial neural networks,
these nets have a great utility through the ability to infer a function from observations.
The tasks to which artificial neural networks are applied to, tend to fall within the following
broad categories:

Function approximation, or regression analysis, including time series prediction and
modelling.

Classification, including pattern and sequence recognition, novelty detection and
sequential decision making.

Data processing, including filtering, clustering, blind signal separation and compres-
sion.

5.5 Process modelling

Process modelling for computers have been looked upon as a sequence of tasks to be
performed in ordered succession. This way of ordering work processes has been criticised
because it does not take into account the informal practice that often or always occurs
during execution of a plan [12]. This means that the plan is not followed and is not
of much help or even guidance, thus making the workflow system incapable of actually
supporting the users.

When we perform work, we often do it in an ad hoc fashion. This means that we do not
follow strict plans for how to do things, but instead adapt to the given situation. On the
other hand, we have plans describing almost any major activity we perform. This is called
the planning paradox [13].

We will in this section investigate some of the different theories underlying process mod-
elling, to form a basis for our suggested planning and scheduling architecture, the Schedul-
ing service.

5.5.1 Activity theory

Several approaches to examine activity have been proposed. Some examples of this are
Actor-network theory [61], Situated actions [92], and the Locales framework [40]. Accord-
ing to Kofod-Petersen and Cassens [22], the works of Vygotsky and Leont’ev proposes the
use of activity theory to model context and to describe situations, which is an interesting
theory.

To understand the planning paradox, we must look at one of the core concepts of activity
theory, human activity. Human activity has three basic characteristics [12], which are:

1. Directed towards a material or ideal object. The object distinguishes one activity
from another.

2. The interaction with the object is done by mediating tools, language, etc.

3. How activities are performed varies from one culture to another.

62

5.5 Process modelling

Human knowledge about the world is a result of our interaction with objects. Human
activity can be described as a hierarchy of activities, which consists of one or more actions.
Actions in turn consists of one or more operations, as illustrated in Figure 5.17.

Activity1

Action1

Operation1 Operationn

Human activity

Actionn

Operation1 Operationn

Activityn

Action1

Operation1 Operationn

Actionn

Operation1 Operationn

Figure 5.17: The descriptive hierarchy of human activity.

As a result of how human characterize activities, an activity performed on an object is
done to satisfy a need. The human reflections on the activity and the expected result are
the motive of the activity. Actions are controlled by conscious goals which are the human’s
anticipation of the action’s result. Actions are often poly-motivated. This means that two
or more actions can temporarily merge, motivating the same action. Each operation is
effectuated by the concrete physical condition of the action.

All three levels of human activities are guided by motivation. The anticipated result
guides the activity and the perception of the environmental state of the activity. Memory
of prior results forms a person’s anticipation. If the measure of anticipation and result
yields differences, it gives rise to new knowledge and experience.

This hierarchical description helps to understand the fundamental role planning has in
human cognition and activities. Based on prior experience, we plan our actions to realise
the activity. These plans are implemented through operations which are adjusted to the
concrete physical conditions of the actions (the context state). This adjustment makes
the operations situated or contextually influenced.

It is important to note that this hierarchical composition is not fixed over time. If an
action fails, the operations comprising the action can get conceptualised, they become
conscious operations and might become actions in the next attempt to reach the overall
goal. This is referred to as a breakdown situation [54] (Section 4.1.3). In the same manner,
actions can become automated when done many times and thus become operations. In
this way, we can model a change over time.

An expanded model of activity theory, Cultural Historical Activity Theory (CHAT) (Fig-
ure 5.18), covers the facets of social and cultural context. This model expands the basic
triangle of mediation, which shows how an activity is composed of a subject, an object,
and a mediating artifact or tool. A subject is a person or group engaged in an activity.
An object is held by the subject and motivates the activity. Since we consider social
activities, the acting subject is part of a community. The relations between the subject
and the community, as well as between the community and the object are mediated by a
set of rules and the division of labour [54]. Rules are accumulations of knowledge about
how to something.

63

Supporting technologies and terms

Artefact

Subject Object

Rules Community Division of labour

Activity The basic
 triangle of
 mediation

Figure 5.18: Cultural Historical Activity Theory (based on [54])

5.5.2 Situated planning and actions

The process of decomposing goals and workflows into activities, builds on several assump-
tions about future results. Typically, problems arise when these assumptions are not right.
These deviations from anticipated results are however not exceptions, but normal, and
form the basis for learning and enhancing future actions. Based on this, a plan is only a
resource used in the making and execution of an activity, and is subsequently enhanced.

Bardram discuss in [12] how plans are made out of situated actions, and in turn are realised
in situ. He claims that work can be characterised as situated planning, an understanding
which is backed up by activity theory (Section 5.5.1) which emphasise on the connection
between plans and the contextual conditions for realising these plans.

Based on activity theory, a plan can be defined as [12]:

A cognitive or material artifact which supports the anticipatory reflection of
future goals for actions, based on experience about recurrent structures in life.

Some guidelines are also given in [12] about which characteristics a computer tool sup-
porting situated planning should posses:

Producing and altering plans in the course of work:
In order for plans to become resources for the future realisation of an activity, the
plan should be made as a part of the activity. The tool should support ongoing
creation and modifications of plans based on experience.

Sharing plans within a work practice:
Plans should be shared between actors involved in an activity to support coordina-
tion and cooperation.

Executing plans according to the conditions of the work:
Since the anticipated result and actual result often differentiate, the tool should
support altering or skipping of actions based on the user’s need.

Inspecting plans and their potential outcome:
A tool should provide a way for the users to see the potential outcome of the plan

64

5.5 Process modelling

and to see the actions it consists of and their needed resources. This can be done by
simply displaying a list or by simulating the execution of the plan and being able to
alter it. The plan should also reveal the conditions under which the plan is useful.
Our solution is practically built around this idea.

Monitoring the execution of plans:
Having an overview of the unfolding of activities is essential. The tool should recog-
nise and support any deviations from the plan. This should also include any initial
deviations. The ability to trace backwards to the original plan should also be sup-
ported.

Plans represents anticipation of how work will be performed, while actual work itself is
ad-hoc [91]. A plan therefore becomes a resource as guidance to how to proceed while
rarely followed strictly. Plans are generated as a result of work as well. If work has been
performed successfully, a plan may be constructed representing the work, acting as a plan
the next time around.

Nevertheless, plans are important resources in handling collaboration, coordination, and
execution of complex tasks as they ensure that no important parts are forgotten and are
thus widely and successfully used.

5.5.3 Planning and scheduling

As a core aspect of human intelligence, planning has been studied since the earliest days
of AI and cognitive science [1]. Planning can be thought of as determining all the small
tasks that must be carried out to accomplish a goal. Planning also takes into account rules
(constraints) which control when certain tasks can or cannot be executed. Scheduling can
be thought of as determining whether adequate resources are available to carry out the
plan [73].

The work of creating plans and schedules are usually based on general goals. The executing
entity (agent) must then design plans on how to achieve these goals. The design work can
be divided into the following tasks [73]:

Receive a request for a plan for the next schedule horizon.

Obtain goals for the next schedule horizon.

Break goals into smaller tasks needed to accomplish the goals.

Gather needed information.

Determine rules (constraints) which govern when certain tasks can or cannot take
place.

Generate the plan and return it.

In a ubiquitous setting, planning and scheduling will in most situations be triggered by
location and other context. Hence, the runtime environment is highly dynamic which
results in the need of planning and scheduling as continuously running services.

65

Supporting technologies and terms

Distributed, continual planning

In [18], Brenner and Nebel describes an approach to continual planning in dynamic (multi
agent) environments. They emphasize an integration of planning, execution, and monitor-
ing as a continuous cycle. This approach prepares for extension of the executing agent’s
knowledge as a part of the plan, and then revising the planning decisions in light of the
new knowledge.

Through the years there has been changing perspectives on planning that have led to
an interest in Distributed, continual planning (DCP). Some of these perspectives ignore
context (Section 5.1) in the planning process, while others tolerate, exploit, or establish
planning and execution context [32].

Planning is a very complex area, and simplifications have been made to make planning
more feasible. Several assumptions are made in [49, 18], which belongs to the perspective
that do not embody context in the planning process:

An agent is typically assumed to know everything that is relevant to the planning
problem and to know exactly how its available actions can change the world from
one state into another.

The planning agent is assumed to be in control of the world, so that the only changes
to the state is the result of the agent’s deliberate actions.

The agent’s preferred world states are constant throughout a planning episode. It
will not change its mind about what goals to achieve while planning or executing
the plan.

These simplifications allow the planning problem to be serialized: A planning agent first
formulates a plan and then executes it. It is also assumed that the planning and execution
for one episode have no conjunction with the planning and execution done for previous or
future episodes.

In the real world, however, context needs to be taken into account, and plans do not
always proceed as expected. One approach to handling this kind of uncertainty, is to
enumerate the possible states that might arise at execution time and plan for each of
them. This may result in a very large conditional plan (universal plan) with possible
execution alternatives. Which part of the universal plan is executed depends entirely on
the environmental context at execution time [17, 84].

If the knowledge available to the agent is insufficient or suggests an intractably large set
of possible states, a better approach is to formulate a nominal plan, monitoring progress,
and, if deviations, repair by halting the execution and create a revised plan [6, 36].

In complex environments, changing context can make goals and aspects of the world evolve
continuously rather than be fixed throughout a planning episode. In this setting an agent
should continually evaluate and revise its plans [29].

Continual planning recognizes that plan revision should be an ongoing process rather than
one that is triggered only by failure of current plans. It also adopts the perspective of not
planning in too much detail too far into the future because evolving circumstances can
render such details obsolete. Continual planning, therefore, tolerates the planning and
execution context by maintaining flexibility and opportunism [32].

66

5.5 Process modelling

If an agent has the knowledge to do so, it should not only tolerate the presence of context
such as other agents, but also exploit it through cooperation. Highly flexible coordina-
tion and communication is important in addressing uncertainties in complex, dynamic
domains. Flexibility and reusability can be reached by providing agents with general
models of teamwork [94]. This opens for a system of agents to engage in distributed,
continual planning. The idea of allowing agents to exploit the larger multiagent context
for cooperative planning and execution opens the door to purposely establishing such a
context to improve what agents can accomplish [90].

Agents that have formulated abstract plans can analyse potential relationships between
their possible plans, commit to particular constraints on how they will realize these plans,
and then incorporate these influences in their elaboration decisions in a decentralized way
[27].

The problem of constructing plans in a distributed environment has been approached from
two different directions [32]:

One approach has begun with a focus on planning and how it can be extended into a
distributed environment, where the process of formulating or executing a plan could
involve actions and interactions of a number of participants. This approach allows
for parallel execution of plans and is referred to as cooperative distributed planning
(CDP).

The other approach has begun with an emphasis on the problem of controlling and
coordinating the actions of multiple agents in a shared environment and has adopted
planning representations and algorithms as a means to an end. This approach
is referred to as negotiated distributed planning (NDP). The emphasis is not on
cooperatively defining the best group plan, as in CDP, but to convice other agents
to accommodate its own preferences.

Reasoning and negotiation techniques are needed that allows agents to exploit the op-
portunities of coordination, refine their plans based on other agents’ evolving plans, and
modify plans based on contextual information.

5.5.4 Workflow

Automation of work processes is an important property in ubiquitous computing, and
is supported by the WfMC reference model. Previous work on Smart work processes
has looked at how to incorporate context-awareness into workflow standards. We are
interested in using workflows in the planning of schedules based on context.

WfMC’s workflow definitions, shown in the Figure 5.19, tells us that an activity is a mean
to ensure certain goals or what is intended to happen. Activities are further divided into
atomic tasks, which refer to what is actually happening.

We will use workflow definitions in much the same sense as Sørensen, Wang, and Conradi
[89]. They state that an activity can be defined in a process model by providing goals,
preconditions (constraints) and postconditions (success criteria), invariants, and the use
or production of artefacts and resources. Context or context changes can affect an activity
in different ways, making it a context-aware activity.

Kofod-Petersen and Cassens [22] states that one of the most important context param-
eters available in many situations is the activity performed by an entity present in the

67

Supporting technologies and terms

Tasks

Goals Business Process
(i.e what is intended to happen)

Process Definition
(a representation of what

is intanded to happen)

Sub Processes

Activities

Manual Activities
(which are not managed as

part of the workflow system)

Automated
Activities

Workflow Management
System

(controls automated aspects of
the business prcess)

Process Instances
(a representetion of what

is actually happening)

Activity Instances

Work Items
(task allocated to a

workflow partisipant)

Invoked Applications
(computer tools/applications
used to support an activity)

is defined in a is managed by a

via

include one
or more

which
include

And/or

during execution
are represented by

composed of

which may be

or

used to create
& manage

Figure 5.19: Workflow terminology (based on [28])
.

68

5.5 Process modelling

environment. They believe that focusing on activities will gain a better understanding of
context and context awareness. This is in accordance with our use of activities, which has
a central role in our contribution.

Context-aware workflows are a means to ease the development of context-aware applica-
tions. Previous work within the MOWAHS project directed towards Smart work processes
has looked at how to incorporate context-awareness into workflows. Nødtvedt and Nguyen
[66] states that interface 1, 2, and 3 in the WfMC workflow reference model [28] supports
being context-aware. Hauso and Røed [48] concludes their thesis by stating that using
context in workflows process enactment is feasible and will be increasingly important in
the future. Development of prototypes supporting context-aware workflow processes are
therefore important research.

Wieland et al. [102] continues this pursuit by suggesting new ways of incorporating
context-awareness in workflows. They state that to achieve this, workflow meta-models
should allow the modelling of context in workflows and the use of context to control
the flow between activities. A workflow managing system should then be coupled to a
context-provisioning platform, to become aware of the corresponding process meta-models
(representing technical processes).

Our own contribution within the development of context-aware workflows center around
the generation of workflows based on contextual state in an automated fashion, and how
they adapt to changes in this context state (Chapter 14).

69

Supporting technologies and terms

70

CHAPTER 6

Frameworks and middleware

In this chapter we present the frameworks and middlewares of interest or considered for
our proof-of-concept implementation.

6.1 Smart work processes architecture

Mobile work is work processes performed in a mobile environment and dependent of
context information extracted from the physical environment [88, 89] (Section 3.2).

Mobile work and context can mutually influence each other; mobile work can change the
state of the environment by performing activities, and the environment state are most
likely to have an impact on several aspects related to the execution of mobile work.

A way of supporting mobile work is given by Sørensen et al. [88, 89] through the notion
of Smart work processes.

The concept is a combination of ubiquitous computing and workflow. Smart work pro-
cesses enables adaptation of work processes to dynamic working environments and can
be used as a means to coordinate multiple actors. These processes are sentient and adapt
to relevant context by sensing the environment, perform context-based reasoning to reach
process goals, and perform actuations which may change the workflow.

This makes Smart work processes especially suited for using context information to mon-
itor and coordinate activities within a context-rich environment. Coordination amongst
activities needs to be performed between work processes and the work environment. Coor-
dination is also needed between multiple actors performing cooperative or possibly com-
peting work processes, and with respect to some stated paramount requirements like
safety, time, and economy.

An activity may be affected by context or context changes in several ways. When activities
are dependant on the contextual state, it needs to include specifications and rules for how
context relates to the activity, and how context affects the activity. Context states could
also trigger adaptation of workflows by changing or introducing new activities. These

71

Frameworks and middleware

mechanisms coincide to situated planning (Section 5.5.2).

The SWP architecture (Figure 6.1) [88, 89] is a conceptual architecture supporting Smart
work processes. It consists mainly of components and services that separate concerns
related to a sensing, cooperative environment. It also functions as a guide on how to
delegate responsibility amongst services, and how they are interconnected.

The SWP architecture will function as a reference model for our work. The architectural
solutions we propose can be looked upon as services in the components for cooperation
(COWCS) and workflow enactment (CAWES), and these will therefore be emphasized in
the following introduction of the different components.

An actuator is responsible for changing the environment based on input from an actuator
service.

A sensor is responsible for measuring and transmitting sensor readings to a context ser-
vice.

The actuator service initiates actuations on the environment by receiving instructions
from CAWES and translate these to the correct actuator.

The context service provides all communication with sensors, and filters the information
it receives to reduce the workload. This is thought done by client-based subscription on
context. It is only the implemented services and available sensors that sets the limitations
on what kind of context to collect.

The Client-based, Context-aware Workflow Enactment Service (CAWES) interacts with
the other components directly and indirectly, and is the enactor regarding execution of
workflows. It is responsible for monitoring and executing delegated activities or fragments
of these. The delegation is taken care of by the Server-based Workflow Enactment Service
and COWCS.

CAWES is also responsible for trigging new tasks based on surveillance of the present
execution state, information from COWCS and the Server-based Workflow Enactment
Service, and contextual input from the Context service.

In addition, CAWES send contextual information about the activity state back to COWCS
and the Server-based Workflow Enactment Service, and updates the environment by ini-
tiating actuations using the Actuator service.

CAWES could be extended to also maintain historical data for the purpose of automation
of tasks and better utilization of resources. This could be done by saving data from the
execution process and use a suited reasoning technology to utilize it at a later stage.

The Client-based, Cooperative Workflow Coordination Service (COWCS) is responsible for
managing and coordinate activities in a multi-actor environment based on policies. It is
the component which other actors interact with, and therefore it should support exchange
of process goals, to let actors know if they have convergent activities which may be solved
in a cooperative manner. Current state of executing activities should be provided to keep
actors up to date and be able to synchronize their tasks.

COWCS has close interaction with CAWES, regarding sharing of resources with other
actors. Planned activities should be collectively known because it might influence the
ordering of tasks and the use of resources. Coordination needs should be broadcasted
because external resources not directly available for the actor might be crucial for the
execution of a task. The information it sends to CAWES, is event triggered, based on
context reasoning.

72

6.2 Context Toolkit

The Server-based Workflow Enactment Service is also updated by COWCS, and provides
a distributed way of communicating with CAWES. Its purpose is to support traditional
workflow and high level process management for the involved participants.

Mobile WorkerMobile Worker

 Context-aware
workflow

enactment service
(CAWES)

Cooperative
Workflow

Coordination
Service

(COWCS)

Server-based
Workflow

Enactment Service

Mobile Worker

Client

Context ServiceContext ServiceContext Service
Actuator ServiceActuator ServiceActuator Service

ActuatorActuatorActuator SensorSensorSensor

Figure 6.1: An architecture for Smart work processes.

6.2 Context Toolkit

The Context Toolkit [33, 35] is a context-aware architecture which embrace several func-
tions: It is a design process for context-aware applications, a conceptual framework, and a
Rapid Application Development (RAD) tool. It aims to add the use of context to existing
noncontext-aware applications and to evolve existing context-aware applications.

In the design process you choose which context-aware behaviour to implement, determine
what context is required, determine what hardware is required, interpret context, and
choose context-aware behaviour.

The conceptual framework consists of the following components:

BaseObject: communication, global time

Widget: sensor independent presentation of context

Service: Widget including manipulation of context

Discoverer: can be asked for components

Interpreter: interprets context

Aggregator: represents summary on several Widgets

73

Frameworks and middleware

The framework is built on the concept of enabling applications to obtain the context
they require without them having to worry about how the context was sensed (much like
the SWP architecture). A context widget, an abstraction that implements this concept,
is responsible for acquiring a certain type of context information. It then makes that
information available to applications in a generic manner, regardless of how it is actually
sensed. Applications can access context from widgets using traditional poll and subscribe
methods. This functionality is preserved by the Context service in the SWP architecture.

Context widgets operate independently from the applications that use them. This eases
the programming burden by not requiring the application designer to maintain the context
widgets, while allowing to easily communicate with them. Because context widgets run
independently of applications, there is a need for them to be persistent and available all
the time. The SWP architecture implements as mentioned a similar tactic, by separating
this as a service provided outside of the clients (application) boundaries.

Because an important part of context is historical information, the Context Toolkit pro-
vides support for the storage of context. Context widgets automatically store all of the
context they sense, and make this history available to any interested applications. Appli-
cations can then use historical information to predict the future actions or intentions of
users.

This prediction or interpretation functionality is encapsulated in the Context interpreter
abstraction. Interpreters accept one or more types of context and produce a single piece of
context. An example is converting from a name to an e-mail address. A more complicated
example is interpreting context from all the widgets in a conference room to determine
that a meeting is occurring.

The Context Toolkit makes in other words the distribution of the context architecture
transparent to context-aware applications, mediating all communications between appli-
cations and components.

Context aggregators aggregate or collect context. It is responsible for all the context for
a single entity. Aggregators gather the context about an entity (e.g., a person) from the
available context widgets, behaving as a context proxy for applications.

The toolkit’s object-oriented API provides a superclass called BaseObject which offers
generic communication abilities to ease the creation of own components.

6.3 JCAF

The Java Context Awareness Framework (JCAF) is a closed source project developed
in Java. It is described as a service infrastructure and programming framework for cre-
ating context-aware applications, developed by Jacob E. Bardram, a professor at the IT
University of Copenhagen (http://www.itu.dk/people/bardram/pmwiki/).

The motivation for developing JCAF was the need for more generic programming frame-
works supporting context-aware computing, and through this, help programmers develop
and deploy context-aware applications faster [14].

The JCAF runtime infrastructure consists of three layers; a context client layer, a context
service layer, and a context sensor and actuator layer.

The Context service layer consists of several Context services which are connected in a
peer-to-peer setup, each responsible for handling context in their specific environment. A

74

6.4 JXTA

network of services can then cooperate by querying each other for context information,
and it brings the notion of hops when resolving context information, which constricts the
propagation over the network.

Context clients are the context-aware applications accessing one or more Context services.
Clients can add or remove context information, they can add, query for, and use context
transformers, and they can adjust the topology of the context service network.

Context sensor and actuators are also implemented. Sensors are components that can
update a specific entity in context, where the communication to the governing context
service is handled. Actuator components can either use the poll strategy or get informed
when the desired context information is changed. This way it can perform actuations
based on values in context. The entity heating oven could have the relations location,
surface temperature, and switch. By changing the switch value in context, you could turn
on the heating oven.

This infrastructure fits perfectly to the Smart work processes architecture [89] (Section
6.1), as they both have the same abstraction of the responsibilities of a Context service.

6.4 JXTA

Background

JXTA (Juxtapose) is an open source, peer-to-peer, cross-platform technology created by
Sun Microsystems in 2001. It is defined as a set of XML based protocols that allow
any device connected to a network to exchange messages and collaborate in spite of the
network topology. It was designed to allow a wide range of devices to communicate in a
decentralized manner [106]. JXTA can be virtually ported to any computer language as
bindings, with the Java binding as the most mature implementation.

Manner of operation

JXTA peers create a virtual overlay network1 which allows a peer to interact with other
peers directly, even when some of the peers are behind firewalls and NATs or use different
network transports. In addition, each peer is identified by a unique ID, a 160 bit SHA-12

URN3 in the Java binding, so that a peer can change its localization address while keeping
a constant identification number [106]. It is able to create networks across carriers like
IrDA and Bluetooth, as well as TCP/IP.

Peers

JXTA defines two main categories of peers: edge peers and super-peers. The super-peers
can be further divided into rendezvous peers and relay peers.

Edge peers are usually defined as peers that have transient, low bandwidth network
connectivity, like mobile entities.

1An overlay network is a network built on top of another network.
2SHA-1 is a hash function which produces an unique message digest from any given input.
3A Uniform Resource Name (URN) is a Uniform Resource Identifier (URI) that uses the urn scheme,

and does not imply availability of the identified resource.

75

Frameworks and middleware

Rendezvous peer is a special purpose peer that is in charge of coordinating the peers in
the JXTA network. Rendezvous peers are used for instance to forward requestst, dis-
cover and cache advertisements, and to bridge between different network segments,
even running different transport protocols.

Relay peer allows the peers that are behind firewalls or NAT systems to take part in
the JXTA network. This is performed by using a protocol that can traverse the
firewall, like HTTP, for example.

It is worth noting that any peer in a JXTA network can be a rendezvous or relay as soon
as they have the necessary credentials or network/storage/memory/CPU requirements.

Peer groups

A peer group is a collection of peers that have a common set of interests. A peer group
provides a scope for message propagation and a logical clustering of peers. In JXTA, every
peer is a member of a default group, NetPeerGroup, but a given peer can be member of
many sub-groups at the same time.

Each group should normally have at least one rendezvous peer and it is not possible to
send messages between two groups. In our case, only one group is created

Advertisements

Advertisements are programming language neutral metadata structures that describes any
resource in a peer-to-peer network (peers, groups, pipes, services, etc). The communica-
tion in JXTA can be thought as the exchange of one or more advertisements through the
network.

Pipes

A pipe is a virtual unidirectional connection between peers. Pipes are used by JXTA to
exchange messages and data. Input and output pipes exist that can be bound at runtime
to different peers. A pipe works asynchronously. There are special pipes that can be
bound to multiple endpoints.

Architecture

JXTA defines a three layer architecture:

The JXTA Core is responsible for basic level operations such as communication. The
core includes protocols and provides general security mechanisms. In this way, the JXTA
Core is comparable to the kernel of an operating system. It controls features like peer
groups (building), peer pipes, and peer monitoring.

JXTA Services support higher-level functions such as searching, file and resource shar-
ing, indexing, and caching. JXTA Services enable features needed for platform indepen-
dent collaboration.

76

6.5 jCOLIBRI

JXTA Applications use peer services as well as core layer functions. Example appli-
cations are content management, shared searching, distributed computing, and instant
messaging.

6.5 jCOLIBRI

The Case-Based Reasoning framework jCOLIBRI is a technological evolution of COLIBRI
using description logic (DL), and an object-oriented framework in Java. COLIBRI (Cases
and Ontology Libraries Integration for Building Reasoning Infrastructures) is a domain
independent architecture in LISP/LOOM.

jCOLIBRI can use application-independent ontologies and CBROnto. CBROnto is on-
tologies that includes task and method knowledge about CBR [31]. Describing methods,
it is used to formalize the CBR problem solving methods, that are organized in a library
around the tasks they resolve. This allows for DL reasoning with the problem solving
method descriptions to check their applicability regarding an external context formed by
the domain knowledge and the cases.

The design of the framework comprises a hierarchy of Java classes plus a number of XML
files organized around the following elements:

Tasks and Methods. XML files describe the tasks supported by the framework along
with the methods for solving those tasks. Customized tasks and methods, based on
provided interfaces, can be added.

Case Base. Different connectors are defined to support several types of case per-
sistency, from file systems to databases. One can easily create own connectors by
implementing a given interface and configure an XML file.

Cases. A number of interfaces and classes are included in the framework to provide
an abstract representation of cases that support any type of actual case structure.
A case structure consists of all properties a case is built up of, organized in a tree.
This definitions is configurable and held in an XML file.

Problem solving methods. The actual code that supports the methods included in
the framework. Building a CBR system is a configuration process where the system
developer selects the tasks the system must fulfil and for every task assigns the
method that will do the job. Ideally, the system designer would find every task
and method needed for the system at hand, so that you would program just the
representation of cases. However, in a more realistic situation a number of new
methods may be needed and, less probably, some new task. Since jCOLIBRI is
designed as an extensible framework, new elements will smoothly integrate with the
available infrastructure as long as they follow the framework design. This is done
by implementing given interfaces and configuring the XML files.

CommonKADS is the leading methodology to support structured knowledge engineering
and is a good candiate for becoming the de facto European standard and point of reference
[85]. It regards knowledge based system (KBS) development as continuous improvement
of a set of models [85]. Each is a model of various aspects of the KBS and its environ-
ment. These sets are separate but collaborating and is reflected in jCOLIBRI as domain
knowledge (CBROnto and ontologies) and problem solving methods (PSMs) and represent
commonly occurring, domain-independent problem-solving strategies [31].

77

Frameworks and middleware

6.6 Creek

Creek is a knowledge intensive case-based reasoning system, or KI-CBR. A traditional
CBR case is formed by specific knowledge to solve problems. Creek seeks to combine the
specific with general domain knowledge to enhance the description logic reasoning around
the cases, the similarity functions and their solutions [2].

The cases are represented as parts of the general domain knowledge network. This renders
the system able to reason about the cases, their concepts and their relations, to better
calculate case similarities and to gain better knowledge of what the actual case represents.
Linking this to the Semantic Web, the system is able to make use of the distributed
knowledge from the system. This property is similar to the CBROnto of jCOLIBRI in
Section 6.5.

The case-bases, domain models and how theses are related is described with the Creek
OWL Vocabulary (http://creek.idi.ntnu.no/owl/).

Being a KI-CBR with a general domain knowledge description of cases, it falls into the
same category as jCOLIBRI, but there are some differeces between them [39].

In jCOLIBRI, the PSMs does not get direct access to the ontologies of CBROnto.

In jCOLIBRI, there is a separation between domain independent CBR concepts and
the knowledge in the domain model used in KI-CBR systems.

6.7 SOCAM

SOCAM proposes an ontology-oriented approach to support context reasoning and con-
text knowledge sharing, and a service-oriented approach to support interoperability be-
tween different context-aware systems. It also proposes a formal context model based
on ontology using Web Ontology Language (OWL) to address issues including semantic
context representation, capturing context classification information, and enabling context
reasoning and context knowledge sharing [95].

The middleware uses a central server, called context interpreter, which gains context data
through distributed context providers and offers it in mostly processed form to the clients.
The context-aware mobile services are located on top of the architecture, thus, they make
use of the different levels of context and adapt their behaviour according to the current
context [10].

6.8 CoBrA (Context Broker Architecture)

CoBrA is an agent-based architecture for supporting context-aware systems in smart
spaces (e.g., intelligent meeting rooms, smart homes, and smart vehicles). It uses the Web
Ontology Language (OWL) to define ontologies for context representation and modelling.
It defines rule-based logical inference for context reasoning and knowledge maintenance,
and provides a policy language for users to control the sharing of their private information.
Central to CoBrA is a server agent called context broker. Its role is to maintain a consistent
model of context that can be shared by all computing entities in the environment, and to

78

6.9 Ambiesense

enforce the user-defined policies for privacy protection [26]. A service like this could be
implemented in the context service component in the SWP architecture.

6.9 Ambiesense

AmbieSense is a context-aware system that sets out to give relevant information to the
right situation and user [5]. It does this by providing the ambient landscape with intelligent
equipment. The system and its reference architecture supports the development of mobile
information services that are ubiquitous, personalised and adapted to the situation.

Ambiesense access different information depending of user’s interests and the current
context and location. To achieve this, the system uses two context technologies, Context
middleware and Context tags. Context middleware runs on mobile devices and in the
provided Content service. Agents personalises and adapts the information system in
terms of information extraction, retrieval, filtering, and presentation. Hence, they help
the mobile users to get the right information to the right situation.

Context tags is a means of capturing and communicating information about the surround-
ings and communicate with mobile devices. They automatically send the contextual in-
formation about the surroundings to the mobile users who travel. The effect is that the
user is relieved from specifying the context around him. Context tags can be networked
and integrated with existing computers and wireless network infrastructures.

A user context is capable of describing the user’s interests, his state, the social setting,
the spatio-temporal aspects, and other entities in the surroundings, like the open context
model described by Kofod-Petersen et al. [54, 55, 56] promise (Section 5.1).

The corner-stones of the AmbieSense system are:

wireless context tags

mobile devices

intelligent agents

personalised and context-sensitive information services

79

Frameworks and middleware

80

PART III

Arbitration

81

CHAPTER 7

Arbitration introduction

When two or more actors operate in the same environment, conflicts can occur. Instead
of just discovering conflicts ad-hoc, it is preferable to also be able to discover them based
on scheduled workflow activities. By discovering conflicts early, the Scheduling service is
able to better plan future activities.

We need a service that can recognise and remember conflicts. An architectural approach
to this was proposed in our depth study [75]. We will present a slightly modified version
of that architecture in Chapter 8 and make a proof-of-concept implementation.

The design and further investigation will be dictated by our research questions in Section
2.1.

The implementation starts with scenarios in Chapter 9. These are meant to give us a
basis for creating requirements. We then follow up with requirements and architecture
in Chapter 10 and 11. After this, we will discuss the choice of technologies for our
implementation in Section 12.1. These technologies are presented in Chapter 6 and later
evaluated in the discussion (Section 16.3).

Chapter 12 describes the actual proof-of-concept implementation.

83

Arbitration introduction

84

CHAPTER 8

Arbitration service

In our depth study we created an idea and an architecture that discovers and handles
workflow conflicts in a context-rich heterogeneous environment. This approach is repro-
duced here with some minor changes. For the original approach we refer to our depth
study [75]. Some of the features described in this architecture is not part of the proof-of-
concept implementation. This is because we set out to answer our research questions and
focus on this.

We start of by describing how we view conflicts in the environment and how they can be
discovered.

8.1 Possible conflicts

By arbitration we mean the ability to solve conflicts that may occur. If we look at the
scenario in Section 9.1, the clients of the two persons have a goal that is not achievable
without cooperation. One will try to raise the temperature by turning the ovens on, and
the other one will turn the ovens off to lower the temperature.

Both clients will try to use the heating service for the room. If this service had a schedule,
the clients could discover the conflict by the fact that the heating service told the second
client that another client is already using the service. This is a preferable way of discovery,
and is a conflict based on use of a resources, namely a resource conflict.

We use the term resource, because it might not only be the use of an actuator that has
conflicts. It is obvious that actuators may only support one operation at a time, or
over time, hence causing conflicts if more than one entity wants to use it simultaneously.
However, other services like sensors, lookup services and so on, may also have restrictions
on their use. Sensors may be prohibited from sending results to more than ten clients at
a time due to limitations in bandwidth or the update frequency of the requests. This tells
us that all resources may be the source of a conflict.

Resource conflicts are fairly easy to detect, but not the only conflicts that may arise.

85

Arbitration service

The trickier conflicts to detect are the ones that are linked to goals, or goal conflicts. A
Business process and a Process definition, as they appear in WfMC ’s workflow definition
(Figure 5.19), are goals as they only describe what is intended to happen and not witch
resources that are used. Resources may change during adaptive workflow as described in
Section 14.3.

The scenario in Section 9.1 describes first a resource conflict, but if we look closer at the
case, it really is a goal conflict. Both actors intend to change the temperature to different
values. Arbitration must therefore check for possible goal conflicts when a resource conflict
is detected.

It is fairly clear that resource conflicts may occur without goal conflict, but somewhat
harder to envision that a goal conflict occurs without a resource conflict.

If we look at the scenario in Section 9.3, we have such a situation. There, the two forklifts
do not share any resources that are in conflict. They both move different pallets to and
from different locations, but a conflict occurs anyway. Although the main goal is not in
conflict, some of the sub-goals are. The sub-goal of forklift 1 is to navigate out of the
corridor while forklift 2 has a sub-goal of navigating in. These subgoals are clearly in
conflict whilst no resources are, unless you view the actual corridor as a resource.

8.2 Architectural overview

Figure 8.1 shows the architecture of the Arbitration service in combination with the Smart
work processes architecture (Section 6.1). In the figure, we see that arbitration resides
within the Cooperative workflow coordination service (COWCS) component within the
SWP architecture (Section 6.1).

Cooperative workflow coordination service

Case
repository

CBR

Context-aware workflow
enactment service

Server-based workflow
enactment service

Conflict
discoverer

Arbitrator

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Figure 8.1: Architecture of the arbitration service within Smart Work Process.

One of the major components in the arbitration architecture is the Case repository. This
handles persistency of prior conflicts and their solution and is the repository used by the
CBR system (Section 5.4.1).

The Conflict discoverer component communicates with the context-aware workflow en-
actment service (CAWES), the local arbitrator, and the CBR system. It will search both

86

8.3 Discovering conflicts

local and remote workflows for conflicts.

If conflicts are found, the Arbitrator component is responsible for negotiating which entity
is to become the conflict handler, ask CBR for solutions, getting user input to create new
cases, and handling the actual mediation.

8.3 Discovering conflicts

Conflicts regarding resources are commonly found during scheduling of activities. These
are then discovered when a schedule tries to allocate resources. The allocation starts with
a task querying the resource for usage time in a specific period given by the schedule. It
may enquire different periods if alternative executions are scheduled.

A query would return one of the following results:

The resource is available at the queried time. A degree of certainty would be prefer-
able. If the resource is heavily used or knows the specific period it is particularly
popular, it should answer that the queried time-slot, although available, might be
taken if it is not allocated immediately.

Another task has allocated the time-slot, so a conflict must be resolved to possibly
be able to use the resource at this time.

The resource is not available. Most likely this answer would be given if security,
authentication, access rights, or other usage criteria are not satisfied.

The scheduling mechanism could deliberately select a plan containing conflicts if it was
very advantageous in other ways. If this is done, it is up to the arbitration service to try
to resolve it.

The activity diagram in Figure 8.2 shows how the Arbitration service gets informed of pos-
sible goal-based conflicts locally. Figure 8.3 shows an elaboration of the Conflict discovery
component.

The basis for discovery of this type of conflict is case-based reasoning. This means that
the system will learn by prior experience and use that information to discover when a
conflict might arise. If conflicts are found, information about them are stored and conflict
arbitration is engaged.

8.4 Arbitration

Figure 8.4, shows an activity diagram depicting the arbitration process for a detected
conflict.

The first thing for the arbitrator to do, is to negotiate who get to manage the arbitration.
It could be done by one of the conflicting entities, or by a third party in the network.
In both cases the clients must supply their knowledge, and user interaction might be
required. The figure does not show these steps while arbitration is done remotely.

The first time a conflict is encountered, the CBR solution may seem a bit cumbersome.
It will not recognise any conflicts without an existing case-base, and therefore it does not

87

Arbitration service

Cooperative workflow coordination
service

Context-aware workflow enactment
service

Goal activation

Goal up for activation Check for historical data

Resolve conflict

[No prior conflicts
or low probability
of becoming one]

Discover possible conflicts

[Prior knowledge with
high probability of

conflict]

[No conflicts found]

[Conflicts found]

Invoke goal enactment

[Goal reached]

[Unable to
reach goal]

User intervention

Discover possible conflicts

[No conflicts found]

[Conflicts
found]

[Goal
cancelled]

[Goal changed]

[Conflict resolved
without changes]

[No solution found]

[Conflict
resolved with

changes]

Figure 8.2: Activity diagram showing how the Arbitration service gets informed of possible
goal-based conflicts locally.

88

8.4 Arbitration

Selective clients or broadcast

Check local goals

[Local
request]

Use CBR to check for conflict

[Remote request]

Figure 8.3: Activity diagram showing how the Arbitration service checks for conflicts both
locally and remote.

[No solution or no obvious solution][Handled remote]

Negotiate resolver

Answer remote questions

Use CBR to fetch possible solutions (Locally and remote)
[Handled locally]

User interactionUpdate knowledge

[Obvious solution]

Figure 8.4: Activity diagram showing arbitration when a conflict has been detected.

89

Arbitration service

know how to solve it. In the training of a system, it would be normal for a person to
interact and tell the system how to reach a solution in the conflict. As more cases are
learnt, the utility and quality of the system will improve.

Ideally, the system could try to port or adapt solutions of other conflicts to resolve the
current problem (RQ 1.2).

Peers throughout the environment will keep their own case-base as they experience new
conflicts. This information must however be shared to gain most benefit from the service.
To ensure easy access to all available historical data amongst mobile devices, a CBR proxy
could be established. If a stationary, more powerful peer exists in the environment, this
could function as a server which holds data conceived in the relevant Smart space (Section
3.3).

To decide which entities that should get possible advantages in a negotiation process,
weighed scoring could be a solution. Examples of scoring criteria can be found in our depth
study [75]. Useful information about the activities causing arbitration can be fetched from
the scoring mechanism (which may be part of the activity description), so that a priority
can be made.

90

CHAPTER 9

Scenarios

We have written three scenarios for the Arbitration service. Each describes different parts
of the planned proof-of-concept implementation functionalities.

9.1 Temperature adjustment

Motivation

This scenario describes the workings of the workflows resource lookup service, how the
implementation should discover conflicts that has been found before, selection of a solu-
tion, and the user interaction with the system. It is kept as simple as possible to not draw
attention away from the important functions of an arbitration system.

Scenario

John is sitting in his office. He is preparing for a meeting with one of his colleagues in the
meeting room across the hallway.

As he enters the room, his personal digital assistant discovers that there is a temperature
control service in the room. It quickly finds out that John’s preferred temperature is 22
while the actual temperature in the room is only 20 . It creates a task to regulate the
temperature to 22 , so that he will be comfortable during the meeting. The small size
of the room and the advanced ventilation system quickly adjusts the temperature. It has
acknowledged that the desired temperature is within the administrative boundaries set
by the service provider.

As he reads through his papers, Lisa, his colleague, enters the room. Her personal digital
assistant discovers the service as well, and creates a task to regulate the temperature to
her preference which is 24 . The temperature service acknowledges her right to adjust
the temperature, but identifies a conflict between the two requests. As this is not the first
time such a problem has arisen, the system sees that the normal solution to this problem

91

Scenarios

is to join the two tasks and calculate the mean between the desired temperatures. An
informative text shows up for the task in the personal digital assistant of both indicating
that a compromise has been reached. The information is given, but no visual or audible
alert is provided due to the commonness of the solution. If the service had been in
any doubt about the solution, it would have given a notification to the participants and
possibly halted the compromise, pending interaction.

The system then adjusts the temperature to 23 , only to regulate it down to idle tem-
perature when they leave the room.

Challenges in scenario

Separate conflicting tasks from those who can be performed in parallel.

Reach an agreement on parameters when merging of tasks is needed.

Automate as many of the decisions as possible to prevent the user from having to
interact all the time.

Making sure that tasks are within the administrative boundaries of the service. This
may be minimum and maximum temperatures, how fast to regulate temperature, if
their stay in the room is of such length that it serves a purpose, security concerning
who are allowed to be part of it, quality of data, and the possibility to pre-adjust
the temperature to their preferences before they arrive at the room.

The use of fuzzy sets instead of crisp values would make these kind of transitions
smoother and more dynamic, but also more complex to implement.

9.2 Humidity adjustment

Motivation

As the scenario in Section 9.1, this scenario is very basic. It is only intended to depict
the narrow problem of knowledge transfer between domains. This scenario is a direct case
where the system is able to use a general domain knowledge network to detect a conflict
not before discovered based on a prior discovered one.

Since John’s digital assistant already knows how to handle the temperature conflict in
Section 9.1, he follows us also in this scenario.

Scenario

After work, John goes to the gym. He usually goes there after work, since there are fewer
people there then. Most of his colleagues goes there before work, but John likes that most
of the equipment is free for use.

After changing, he enters the equipment room to start his work out. Susan, the accoun-
tant, is performing yoga while John steps up to the treadmill. Susan’s personal assistant
has been adjusting the temperature and humidity of the room to her likings, but now that
John enters, two conflicts arise. Since Johns assistant knows how to solve the temperature
conflict, this is resolved only with a silent information message on the display. Now John

92

9.3 Warehouse conflict

likes the humidity of the room to be fairly high because he does not like to get a dry
throat when he runs, Susan on the other hand, likes it fairly dry as she does not want to
get clammy doing her yoga. Neither of the digital assistants have ever seen a conflict like
this before, but Johns assistant quickly suggests using the same solution to this problem
as to the temperature due to their similarity of nature. John says that this seems to be
a great solution, selects it, and enters that; in the future, if something is this similar, do
not ask me, just solve it.

When Frank enters the room, his digital assistant is automatically brought up to speed
by Susan and Johns, and they all work out in an environment of their liking.

Challenges in scenario

How to automatically discover conflicts that have not been discovered before.

If a possible conflict is discovered, how can the case or solution be adapted. Espe-
cially regarding complex solutions using fuzzy sets or concrete knowledge.

Automate as many of the decisions as possible to prevent the user from having to
interact all the time

9.3 Warehouse conflict

Motivation

The two prior scenarios have been very primitive. The workflows are very basic, as many
things are in real life, but often the conflict are more complex. This scenario is intended
to give a more practical use of an Arbitration and Scheduling service (Chapter 15) in a
work situation.

Scenario

PalletStorage Ltd. is a company handling intermediate storage of pallets. They have for
a great deal of time looked for ways to automate the handling of pallets to save money
and make shipping and storage more efficient.

Last week, two automated forklifts were delivered. These forklifts will fetch pallets and
place them at designated locations. These locations are governed by a server keeping
track of which pallet is to be placed where.

One day the two forklifts, conveniently named forklift 1 and forklift 2, where to place
pallets besides each other in a narrow corridor.

As forklift 1 placed its pallet in the end of the corridor, forklift 2 recognized that forklift
1 was already there, and that the corridor was to narrow to pass each other. Having been
in a similar situation before, forklift 2 waits until forklift 1 has exited the corridor before
entering.

The first time they were in a situation like this, forklift 2 followed after forklift 1 into the
corridor. This resulted in that forklift 2 blocked forklift 1 from getting out and forklift 1
blocked forklift 2 from placing its pallet, ending in neither getting their work done. The

93

Scenarios

Fo
rk

lif
t

2

Fo
rk

lif
t

1

Figure 9.1: Showing forklift conflict in warehouse with driving patterns and placement of
second pallets.

situation was solved by forklift 2 backing out, letting forklift 1 pass it, before entering
again.

Forklift 2 waited outside because it anticipated that a conflict could occur, having been
in the situation described above, it asked forklift 1 if they might end up in a conflict if it
entered.

This way the forklifts cooperate and foresee future problems that may occur, completing
the work in an efficient way.

Another solution, the forklifts have not learned, is that forklift 2 could enter and place
the pallet near forklift 1, leaving it to this to do the job. This way the forklifts could
cooperate on moving several pallets into an awkward position, not having to wait on each
other exiting the corridor and hence being even more effective.

The supervisor aims to tell the forklifts, the next time they enter a situation like this, to
use that solution, rendering them capable of taking that decision in the future.

Challenges in scenario

How to find conflicts regarding what is intended to be done, without any conflicts
with location of pallets and no pre-stored data about the situation.

To store a solution and reuse it when a similar situation occurs.

If several solutions are found, which is the best? The one where forklift 2 waits or
the one where it leaves the pallet for forklift 1 to place.

94

CHAPTER 10

System requirements

We have decided to develop a vertical prototype of a workflow enactment system with
focus on the Arbitration service described in Chapter 8. For this to work, we also need a
context-aware platform for the services to run on. The following sections will outline the
requirements for the system.

10.1 Communication requirements

The first thing the system must support is communication between peers. This require-
ment is critical for running and testing the implemented services, as they are supposed to
work not only locally on clients, but also between clients. The platform must support an
open communication standard to ensure that all kind of peers can take part in the net-
work, without limitations caused by proprietary and non-interoperable standards. This
forms the functional requirement F1.

Another communication requirement is that connections between peers needs to be flex-
ible, allowing clients to enter and leave a network as they please. This requirement, F2,
emerges from the volatile nature of ubiquitous computing, where heterogeneous equip-
ment enter and leave network coverage area and need to establish connections to be able
to communicate and cooperate.

Sharing of context information, workflow schedules, arbitration information, sensors, actu-
ators and other information between clients requires that all components are addressable.
With this, a client can discover if the remote client is running a specific component and
that communication can be routed directly to one component on another client. This is
our requirement F3.

Since F2 dictates that the network is of ad-hoc fashion, the components of the imple-
mentation should not, unless strictly necessary for the functionality of the component, be
dependent on a network connection being present (F4). Especially is this important for
workflow enactment components.

95

System requirements

10.2 Context requirements

The system’s utilitarian value is decided by its ability to respond to a dynamic environ-
ment. A workflow is dependant on context information to execute and the arbitration
and planning services need context to make the right decisions. The system needs to be
context-aware (F5). See Section 5.1 for more information on context-awareness.

Requirement F6 states that contextual information should be shared in the peer-to-peer
network, enabling other clients to look up information relevant to them. Forwarding of
all context will be too resource demanding and serve little purpose, so the peers should
collaborate in building a “world context”.

To avoid having several communication technologies, the Context service should use the
same communication interface as the rest of the application. This forms requirement F7.

No handling of sensitivity, confidentiality, validation, correctness, accuracy or time-since-
update is necessary in this implementation.

10.3 Resources requirements

The system must support sensors, actuators and information sources. These are from here
on called resources (F8). Resources should, as with context, use the implemented peer-to-
peer communication interface which form the single point of communication (F9). This is
to ensure that the communication implementation is reliable and support interoperability.
Requirement F10 states that all resources running on a client should be searchable and
accessible from all clients in the network. This is to support an actual environment and
enable cooperation.

10.4 Workflow enactment requirements

As a method for testing the arbitration component, requirement F11 states that the
system must be able to enact basic workflows. The complexity of the workflow enactment
component should be kept at a minimum, but it must support functionality as start, pause,
and stop (F12). As the inclusion of start and stop is fairly obvious, pause is justified as
a probable part of an arbitration solution.

Solving a conflict regarding a workflow might involve adapting it or joining two or more
together. The system must therefore support dynamic changes to workflows, F13, and
monitoring or connecting to a remotely executed workflow, F14.

For the workflow enactment to be of any value, it must be able to use context and resources
during execution (F15).

10.5 Arbitration requirements

The arbitration component is the base of our proof-of-concept implementation. Our ar-
chitecture is based on CBR, and there are some requirements in connection with this.

First of all, the it must be able to recognise a possible conflict from prior learned cases

96

10.6 Functional requirements summary

(F16). When new cases are entered or learned, these must be saved to a persistent storage
(F17).

When searching through the workflow context for possible conflicts it must be able to sort
any hits according to relevance. Requirement F18 describes this, which is important to
select the case best matching the current situation.

If a prior conflict is found but it is only similar, it must be able to adapt (F19) this case
so it can be stored in the repository. If no prior cases are found for a conflict the user
must be able to enter a desired solution, F20. Both F19 and F20 enables the system to
learn from either experience or input.

The arbitration service must be able to detect conflicts, not only amongst local workflows,
but most importantly between itself and other peers (F21). It must therefore be able to
communicate, using the single point of communication, with other clients to search for
possible conflicts.

It may not always be desirable that a local client performs the arbitration. It may want
to leave this responsibility to the other client or a third party. The negotiation of who
will be responsible for performing arbitration is stated as requirement F22.

As is possible with context and resources, the arbitrator must be able to draw knowledge
from the other peers in the network to help it perform arbitration, F23.

After a new conflict is discovered or during arbitration, the case representing this conflict
and solution should be passed to all parties (F24). This is to enable clients to learn from
each other. A client may detect a conflict which is known to it but not to the other peer.

For the arbitration service to actually be able to perform arbitration, it must be able to
remove, add, or adapt workflows in the workflow enactment service, (F25).

10.6 Functional requirements summary

Communication

F1 Support an open communication standard, i.e., not be bound by hard-
ware or proprietary standards.

F2 Support ad-hoc, in-situ connecting and disconnecting of clients.
F3 Software components on a client should be addressable from the net-

work.
F4 The software should not be dependent on a communication service al-

ways being present.

Context

F5 The system needs to be context aware.
F6 A client should share context with other clients.
F7 The context client should use the communication component.

Resources

97

System requirements

F8 Incorporate sensors, actuators and other knowledge information.
F9 Should use the existing communication component.

F10 Distribution of resource information and/or discovery of resources in the
environment.

Workflow enactment

F11 Enact basic workflows.
F12 Handle start, pause, stop of workflows.
F13 Handle dynamic changes to workflows.
F14 Monitoring of workflows executed remotely.
F15 Read and manipulate resources.

Arbitration

F16 Find similar conflicts in the repository.
F17 Persistent repository.
F18 Order similar conflicts according to the degree of similarity.
F19 Adapt prior solutions to new conflicts and store them in the repository.
F20 Call for solution if none is found.
F21 Be able to discover conflicts between other clients and itself.
F22 Negotiate which client is responsible for the arbitration.
F23 Make use of other clients knowledge.
F24 Distribute solution to participants so that they also learn.
F25 Must be able to remove, add or adapt workflows in the workflow enact-

ment component.

10.7 Non-functional requirements

R1 Separation of concern. Functionality must be clearly separated in the
architecture.

R2 The architecture must be platform independent.
R3 Response times must be within reasonable and expected limits. If this

is not achieved, information must be displayed.
R4 Because this is a research implementation the architecture must be easy

to evaluate and understand.
R5 It must have a high level of maintainability.
R6 Loose coupling between components.

98

CHAPTER 11

Architectural description

This architectural description is based on the IEEE Recommended Practice for Architec-
tural Description of Software-Intensive Systems, IEEE Std. 1471-2000 [47].

It is a result of the arbitration architecture proposal from Chapter 8 and our prestudy
[75], and is the guideline for our proof-of-concept implementation.

11.1 Architectural drivers

The architectural drivers of our vertical proof-of-study implementation are as follows:

Separation of concerns (SoC)

It is important for the architecture to clearly separate the different aspects of the im-
plementation. The arbitration part must be clearly separated from workflow enactment,
context, network, the graphic user interface, and other parts of the application.

This will greatly help us develop each component by itself and keep an iterative develop-
ment process.

It is also a great contributor for easy evaluation and traceability of the implemented
functions as well as helping with problem discovery.

Modifiability

Components of the implementation must be easy modifiable. Bearing in mind that this
is a prototype implementation, it must be readily able to test different implementations
of components.

It might be that one of the implemented resource does not perform as expected. It might
then be helpful to create another, slightly different, implementation and easily exchange

99

Architectural description

these. Some components of the system, namely services, should be so loosely coupled that
they can be exchanged runtime.

Testability

The system must, in an extension to modifiability, also provide testing options and good
diagnostics information. This is important to ensure that all components deliver results
as intended.

The architecture must support monitoring of selected components and maintain diagnos-
tics information.

Accountability

Since this is a decision support utility, it is very important that the system can account for
all decisions it makes. In our case, it is most useful to test that the components perform
as expected.

If there is any unsuspected behaviour, why did it go wrong? If the CBR detects a conflict
between two workflows, what were the deciding factors? How did it reach a conclusion
that a new situation resembled an already known case to a degree that it constitutes a
conflict?

All these questions must be readily answered by the implementation to be able to test
that it behaves as expected or wanted, and so that any unsuspected behaviour can be
recorded and analysed.

11.2 Stakeholders and concerns

There are no intended end users of this architecture. It is part of a master thesis as a
proof-of-concept implementation. The stakeholders are therefore the master students and
teaching supervisors.

Master students

Indahl, Christian

Rud, Kjell Martin

Teaching supervisors

Sørensen, Carl-Fredrik

Kofod-Petersen, Anders

11.3 Architectural patterns

The most prominent patters are descibed below. In addition to these, there is a widly
use of the basic control patterns Sequence - execute activities in sequence, Parallel Split

100

11.3 Architectural patterns

- execute activities in parallel, and Synchronisation - synchronise two parallel threads of
execution.

Blackboard pattern

We will have a framework-class that serves as a blackboard where all components can
get hold of an instance of another component. The components available from the
framework-class will be log, network, arbitration, ontologies, context, workflow subsys-
tem, and graphic user interface (GUI).

This is chosen because it is built as a block system in an incremental way. By using this
acrhitectural pattern, each block can get access to another block directly from the black-
board and it radically reduces the maintanence demands if changes to the architecture
were to occur.

This helps in realising the SoC and Modifiability architectural drivers.

Control loop pattern

This pattern will be used by almost all types of monitors in the implementation.

Services that monitor peers, context and resources will utilise this pattern as they will
need to constantly have an updated list of peers and search for new conflicts.

It will also be an important part of arbitration and workflow enactment. The arbitration
service will take advantage of this pattern to search for possible conflicts and in workflow
enactment it will be used to check incentives for and for monitoring of remotely executing
workflows.

Exclusive choice pattern

This will be a widely used pattern. A choice on execution path will be made from several
alternatives based on input.

Typically this would be a workflow with a conditional statement. If we view the workflow
execution path as a branch forking, where each forked branch executes a different set of
statements, and then joins, exclusive choice means that only one branch will be selected
each time.

Observer pattern

It defines a way for classes to be loosely coupled and for one class (or many) to be notified
when another is updated. Basically, this means that when something happens in one
place, you notify anyone who is observing.

This pattern will be found throughout the implementation. It will be the main way to
trigger the different actions. If the Conflict discoverer finds a possible conflict, it will
inform of this through the observer pattern implementation.

Since a loose coupling is highly desirable, this will also be the only way of interaction
between the GUI and the business logic.

101

Architectural description

11.4 Views

Uses view

Figure 11.1 shows the top level uses view for our architecture. The idea is that the
components are primarily independent of each other, in accordance with SoC.

All communication between the user and the software will be done through the GUI
component. No interaction or display of values will be done by the other modules. To
achieve this, the components must use the observer pattern to tell the GUI of changes or
input needed.

The Log component will maintain a log of all infomation, supplied with source and level,
that is of interrest. The different levels are information, debug, error and fatal error. It
is the logs responsibility to filter out any messages.

The Network component will support the application with all communication needs. It
will create a network connection, and inform, using the observer pattern, interrested
parties when it is connecting, connected, disconnecting and disconnected.

It will also help other components to communicate or establish connections with other
peers.

Searching all peers it finds, the Arbitration component will try to discover possible conflicts
between the local workflow enactment and the remote peer. If it finds any, it will engage
in an abitration process. Conflicts will be searched using CBR and ontologies.

The system will use ontologies to classify different type of workflow processes, solutions to
conflicts, and context sources. Because of this variety of use, the Ontologies component
will be made available from the framework.

For the arbitration process to succeed it must be able to see which workflow processes
that are planned or executing. Along with other components needing to create or update
workflows, we found it useful to make Workflow enactment accessible from the framework.

The Context subsystem will be available from the framework blackbord class. The work-
flow enactment and the arbitration service will depend on contextual information, sensors
and actuators. This renders the component as a high in demand component which justifies
it as a blackboard component.

Framework

GUI Ontologies ArbitrationContextWorkflowNetworkLog

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

B
la

ck
b
o
ar

d
 c

o
m

p
o
n
en

ts

«uses»

Figure 11.1: Show the uses view of the architecture.

102

11.4 Views

Process view

Figure 11.2 depicts the arbitration process.

First, a search for peers is done. If no peers are found, it will wait and try again later. For
each peer that is found, it will search for possible conflicts. Then the following happens:

If no conflicts are found; wait a configurable period and restart the process of search-
ing.

If an obvious confict is found; Start the arbitration process on involved workflows,
wait a configurable period, and restart the process of searching.

If a possible conflict is found; Ask the user to select an appropriate action. This
could be to ignore it or to adapt the solution from the possible conflict to solve this
specific one. If the latter is chosen, it will adapt and learn the case. This will then
later appear as an obvious solution.

[No conflicts found]

Search for peers

Check for conflicts

Wait

Invoke arbitration

Select solution

[No peers found]

[Obvious conflict found]

[Peers found]

[C
o
n
ti
n
u
e

ex
ec

u
ti
o
n
]

[E
xi

t
p
ro

g
ra

m
]

{The search is done amongst
previously solved conflicts.}

[Similar conflict found]

Figure 11.2: Show the arbitration process.

103

Architectural description

104

CHAPTER 12

Implementation

Our proof-of-concept implementation has the following capabilities:

Forms a peer-to-peer network with other clients running this implementation.

Running sensors, actuators, and contextual sources, letting all clients on the network
use them. These are here on called resources.

Create and execute workflows that can utilize resources.

Identify conflicts new occurences of known conflicts.

Predict new possible conflicts based on resemelance with known, adapt and store
these. A new case is then learned.

Perform basic arbitration on running workflows.

In total there are 233 classes and interfaces origining from 123 java files with 12,215 lines
of code, but only a few major and important classes are covered in this implementation
description.

12.1 Choice of technology

We chose JXTA as our communication component. JXTA is the industry-leading P2P
technology, supported by over 30,000 members worldwide with downloads exceeding 12
Million [30]. It support several different communication technologies as Bluetooth, wire-
less, IrDA, wired, and others. Implementations of JXTA is created for C/C#, J2SE, and
J2ME. This makes it a powerfull tool.

Since our implementation is suppose to work in heterogenous evironments, and support
ad hoc mobile work, a peer-to-peer solution was required. JXTA was therefore a perfect
solution for our proof-of-concept implementation.

105

Implementation

Our implementation needs to be context-aware. After considering several frameworks the
choice fell on JCAF. JCAF, or Java Context-Aware Framework, is created by Jacob E.
Bardram as a closed source project. Supporting peer-to-peer context service, implemented
in Java, support for contextual listeners, and easy implementation of context subscribers
and consumers, it fell as a natural choice.

We needed to find a CBR system that could be integrated with our implementation. Since
the other technologies were implemented in Java we needed to find a CBR system that
also supported this. The choice fell on jCOLIBRI which is a mature KI-CBR framework,
supporting customization of almost every part of the CBR process.

Our proof-of-concept application also needed to implement ontologies. A technology sup-
porting this is Jena. It ships with jCOLIBRI distribution and is instanciated and used by
jCOLIBRI if the description logic extension is used. We do therefore not need any other
implementation than this, so Jena is the choice for ontologies.

12.2 CIKMR package

This is the base package for the proof-of-concept implementation. The important classes
of this package are Framework and XMLRepresentation.

Framework is based on the blackboard design pattern. It provides access to the important
components of the application. XMLRepresentation is an interface implemented in all
classes that has an xml representation.

12.2.1 Framework

This is the class implementing the Blackbord pattern from the Architectural Description,
(AD), in Chapter 11.

Figure 12.1 shows the components provided by the Framework class. It also shows which
components that are services and resources. What constitues a service and a resource is
covered later on together with a more detailed explanation of each component.

There are two main methods of the Framework class, startup and shutdown. These are the
methods that are invoked to start and stop the application. They will handle all object
instanciation and destructions. This is done through method invocations and by firing
events. An activity diagram of the startup and shutdown process is provided in figure
12.2.

12.2.2 XMLRepresentation

The interface for all classes that can be represented by XML. It defines methods for
creating an XML representation of a class instance and to restore the state of an instance
from an XML representation.

It is used in a wide variety of classes. The complete set of statements, activities and goals
for workflow enactment, representation of conflict searches, solutions and other classes.

The different XML schemes will be presented together will the classes or activity they
represent.

106

12.2 CIKMR package

ServiceService

ResourceResource

GUI Ontologies

ArbitrationService

Service
manager

Resource
managerScheduler

Network

Resource

Log

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

B
la

ck
b
o
ar

d
 c

o
m

p
o
n
en

ts
S
er

vi
ce

s

«uses»

R
es

o
u
rc

es

+startup()
+shutdown()

Framework

Figure 12.1: Shows the blackboard design pattern of the Framework class in the CIKMR
package.

107

Implementation

[Network started]

[Network not started]

[Network started]

[Network not started]

[Network started]

[Network not started]

«precondition»
{User presses the
exit button}

[Found old configuration][No configuration]

Network Arbitration serviceService managerFramework

Instanciate log

Instanciate network

Instanciate arbitration service

Add arbitration service

Instanciate scheduler service

Add scheduler service

Instanciate resource manager service

Instanciate graphical user interface

Add resource manager service

Start network

Stop network

Register service

Start service

Register service

Start service

Register service

Start service

Start all services

Stop all services

Save case base

Show graphical user interface

Framework loaded Load case base

Load JColibri packages

Load Jena ontologies

Configure JXTA Retrieve old configuration

Connect to world peer group

Connect to CIKMR peer group

Disconnect CIKMR peer group

Disconnect world peer group

Framework unloading

Hide graphical user interface

Configure JColibri

Figure 12.2: Shows the startup and shutdown process of Framework class.

108

12.3 Network package

12.3 Network package

This package is responsible for the applications network connection. An activity diagram
of the network lifecycle is provided in figure 12.3.

It has three major classes. These are Network, PeerGroupConnection, and ConnectionSta-
tus. The Network class is accessible from the Framework, as shown in Figure 12.1, and is
the accesspoint of the applications network. PeerGroupConnection is the class responsible
for configuringJXTA and connecting to the peer groups. ConnectionStatus holds status
information on the connections.

12.3.1 Network

This class is the access point and the manager for the applications network connection. It
creates an instance of the PeerGroupConnection class and has a connect and a disconnect
method.

The other important part of this class is that it creates and holds an instance of the
ServiceManager class. It informs this instance when the network is connected or discon-
necting. The ServiceManager class will be described later.

12.3.2 PeerGroupConnection

The application uses JXTA for network transport and is therefore part of a peer-to-peer
network. This class is responsible for configuring JXTA, setting up the peer groups and
connecting to them. An illustration of this is found in figure 12.3 depicting the network
lifecycle.

It starts by checking for existing configuration. This configuration is only present if the
application has been run before and the configuration was successfully stored. If found,
it will load it and continue, if not, it will create a new configuration and ask for display
name to be entered. After this, it will first connect to the world peer group. This is the
default peer group that all jxta clients must be members of. Second, it will connect to a
specific peer group created for this project.

No rendezvous peers or relay peers are used in this setup due to the small scale of this proof-
of-concept implementation. Hence the peer-to-peer network that evolves when running
the application is based only on edge peers.

12.3.3 ConnectionStatus

An instance of this class holds the status of the connection. It will inform all listeners
when the connection enters the different stages or of errors that occur. The connection
stages are:

Disconnected

Connecting

– Configuring network

– Connecting to world peer group

109

Implementation

Configure JXTA Retrieve old configuration

Connect to world peer group

Connect to CIKMR peer group

[Found old configuration][No configuration]

Disconnect CIKMR peer group

Disconnect world peer group

Instanciate connection status

Instanciate service manager

Inform listeners of connection start«precondition»
{Connect method is invoked}

Inform listeners of connected

Inform listeners of disconnecting

Inform listeners of disconnected

«precondition»
{Disconnect method is invoked}

Figure 12.3: Shows the lifecycle of the applications network component.

110

12.3 Network package

– Connecting to project peer group

Connected

Disconnecting

The error classifications are:

Unclassified

Timed out

Error connecting to world peer group

Error connecting to peer group

Figure 12.4 shows a screenshot of the implementation connecting to the project peer
group. The current stage of the connection process can be seen in the status bar in the
lower left corner. From the log, we can see that it found the configuration on persitant
storage and used that instead of creating a new. The log is read bottom-up.

Figure 12.4: This screenshot shows the implementation connecting to the project peer
group.

111

Implementation

12.4 Services package

This is one of the most important packages of the application.

A service is a software component that is dependent on an existing network connection.
As an alternative to letting all individual components listen to the ConnectionStatus
component of the network package, a service is started and stopped by the ServiceManager
when a network connection is established or lost.

It also serves another important purpose. Since this application should be easily ex-
tendable, it needed a way to grow without changing to many classes or interfaces. By
incorporating services, we have given the application the means to grow by just adding
new services at run-time. All services are given access to the network.

Any component implementing a service is meant to be part of the application itself and
not part of any context sources, sensors or actuators. A higher evolved version of a service,
called a resource, is implemented for these. It will be covered in detail in Section 12.5.

This package has the ServiceManager class which has the repsonsibility of managing
all services at runtime, a Service interface defining a service, and an AbstractService
implementing listener methods. In addition there are some helper classes.

12.4.1 ServiceManager

The workings and some of the responsibilities of this class is covered in both Figure 12.1
and 12.2. It is a very simple, yet important class. One instance is created and managed by
the Network class. During run-time is holds and manages a list of all registered Services.

When the network is connected, it starts all registered services. When the network dis-
connects it stops all services before the disconnection happens.

It also defines methods to register and unregister services and lookup methods. These
lookup methods include type-wise lookups where you can ask the manager for a specific
type of service. This is meant to prevent components to instantiate several instances of
the same service. One example of this the PeerDiscovery service, Section 12.4.3. It is not
an essential part of the application and need therefor not be a static part of the imple-
mentation. It is added by the components that need it, in present case three components,
but they do not know in which order they are instantiated or about the others that may
need it. The correct paradigm to use when a service is needed is therefor to first check if
the service exists, if not, instantiate and add it.

12.4.2 Service

This is an interface defining a service. Most essential components in the implementation
use this. It has three methods that are called during the different stages of the lifecycle.

init(ServiceManager s) This method gets called once, and only once, on each service.
It is called when the service is registered with the ServiceManager.

start(PeerGroup p) Gets called on every registered service when a network connection
has been established, or right after init(ServiceManager s) if a network connection
was already established upon registering.

112

12.5 Resources package

stop() Called when the service is unregistered while connected or when the network is
disconnecting.

AbstractService is an abstract class that implements add, remove and fire methods for the
ServiceListener interface.

12.4.3 Peer Discovery Service

This is a service that periodically scans the network for changes in peer composition. It
will maintain a list of the peers it currently knows about, adding new when found and
removing those it lost contact with.

Application components can use this service to list and communicate with peers. It will
also inform interested parties when a new peer is found or when contact has been lost and
the peer is removed from the list.

Figure 12.5 shows how this service works. The discovery service of JXTA is asynchronous.
The three paths are therefor one thread that sends broadcast messages to the network
requesting peer advertisements, one thread removing peers from the list that has not given
any sign of life for a while, and a listener that receives the responds from the other peers
and updates the list.

12.5 Resources package

This package was first intended to support sensors and actuators. A resource is here
defined as a smart entity from which you can invoke advertised methods on. This is
almost like RMI over JXTA but with advertisement of the methods, parameters and
return values.

Since this application needs to be context-aware, we looked for existing context software
to implement. The choice first fell on Java Context-Aware Framework (JCAF) developed
by Jacob E. Bardram. When implementing it, we found that it could not communicate
over JXTA but used RMI with direct IP addressing of other context servers. Since this
breaks with our peer-to-peer design, workarounds and other solutions were considered.

Our application does not need complex context representation to perform its task as a
proof-of-concept for arbitration using CBR and ontologies. Our choice was therefor to use
resources as our context framework. Although resources does not fulfil most well known
paradigms of context modelling, like Henricksen et al. [50], it will serve our needs the
best. It also means that we will save time on our implementation. This by avoiding
having to implement complex workarounds and context integrity systems. Furthermore,
it will ease the implementation of workflows, leaving us with only one type of information
and actuation source.

This package therefor represents sensors, actuators, context and any other resources
needed by our implementation.

The client always communicates with a resource over JXTA even though it is created,
executed, and used on the same client.

113

Implementation

«precondition»
{Service is started}

«precondition»
{Peer advertisement recieved} Start monitor thread

Broadcast peer advertisement request

Wait

Start timeout thread

Inform listeners of service start

Extract peer information

Reset timeout variable Add peer to list

Inform listeners of found peer

Wait

Add one to each peer timeout variable

Remove peer from list

Inform listeners

Wait

Inform listeners of service stop

[Peer not in list]

[Peer in list]

[Stop service]

[Stop service]

[Stop service]

[Continue service]

[Continue service]

[Continue service]

[Timout variable to high]

[Timout variable ok]

Figure 12.5: Shows how the peer discovery service works.

114

12.5 Resources package

12.5.1 Basic manner of operations

A resource has one class, AbstractResourceService, that is the base of the actual resource.
By extending this class you can make a sensor, actuator, context, or information source.

A resource can be used from any client. To allow this, a remote snippet of the resource,
namely the Resource class, is instanciated on each client that discovers the resource. This
snippet holds information on what type of resource it is, what methods it has, and lets
the client invoke methods on the remote resource. These snippets are the only thing the
clients need to know about to use the resource. The actual implementation or location of
execution is irrelevant. An illustration of this can be seen in figure 12.6. More detailed
information on each component of resources is described further on.

Client 1

Client 3

Client 2

+getDescription()
+invokeMethod()

Resource

AbstractResourceService
-Implementation of a resource

+getDescription()
+invokeMethod()

Resource

+getDescription()
+invokeMethod()

Resource

+getDescription()
+invokeMethod()

Resource

AbstractResourceService
-Implementation of a resource

+getDescription()
+invokeMethod()

Resource

+getDescription()
+invokeMethod()

Resource

Figure 12.6: Shows where resources are executed and how they are used in a network of
clients.

There are four major classes of this package is the ResourceDescription, AbstractResource-
Service, Resource, and ResourceManagerService.

12.5.2 ResourceDescription

This is a meta data class that describes a resource. An implementation of a resource must
specify this description.

The following things are contained within the description:

Descriptive text of the resource.

The ontology individual that describes the type of the resource. This is referred to
as type elsewhere in this document.

The ontology individual representing its physical location.

A list of methods that the resource supports. For each method the following things
are described.

115

Implementation

– The method name

– A list of parameters that must be passed. This list consists of the parameters
data types in order of appearance.

– The data type of the return value.

All data types can be used. New data types can be registered run-time to add support
for new types. Currently int, double, boolean, String and void is implemented.

This description is converted to XML by the AbstractResourceService and sent to peers
requesting it. It is then converted back to a ResourceDescription hierarchy in a Resource
instance on the requesting peer. Within the Resource instance, address information to
the peer implementing the resource is held. The resource is then ready to be used.

The DTD and example XML can be found in Appendix A, while Appendix B show how
to create a resource description in Java.

12.5.3 AbstractResourceService

This is the class to extend when writing sensors, actuators and context sources. It is based
on the AbstractService class and it therefore inherits from the Service interface.

To create a resource, all you have to do is to create the ResourceDescription, as explained
above, and to implement the methods you added in the description. To start and stop
the resource, register and unregister it with the ServiceManager. The rest is handled by
the implementation. It will create an JXTA server pipe, advertise it, and wait for clients
to connect and use the resource.

Clients can either ask for the description or invoke methods. If the description is asked
for, it will send the XML variant of the resource description. If a method invocation
request comes, it will find the method in the description, look up the actual method using
Java reflection and try to invoke it with the supplied parameters. After invocation it will
return the result to the invoking client.

Both the request to invoke methods on the resource and the result is passed as XML. DTD
and example of an invocation request can be found in Appendix C and the invocation
result XML in Appendix D. Several methods can be invoked in one request to reduce the
network traffic overhead.

12.5.4 Resource

As AbstractResourceService handles all communication and invocation on the server side,
Resource handles everything on the client side. An instance of this class presents a client
with the resource description and ways to invoke the declared methods on the resource.
This is therefore the only class consumers of resources have to interact with. The gener-
alization of resources makes it easy to implement workflows that utilize resources of great
variety and enables clients to run methods on resources which they do not have, or want,
the class definition of.

116

12.6 Workflow, Workflow Enactment and Scheduling packages

12.5.5 ResourceManagerService

For clients to utilize resources, they needs to be able to search for available resources. The
ResourceManagerService is available through the Framework class.

The ResourceManagerService will scan the network for resources. When it finds one,
it will ask for its resource description and add it to the list of known resources. The
resource is then ready to be used by the client. It defines methods for iterating through
and searching amongst the discovered resources. Any resource fetched from an instance
of this class can be used directly, regardless of which client it is running on. It will remove
any resource that has not responded to the scan for some time. All listeners are informed
of findings and removals of resources from the list.

12.6 Workflow, Workflow Enactment and Scheduling
packages

To test our arbitration service we need a workflow system. Within a workflow system lies
the actual defenition of workflows, executing them and scheduling. The three packages,
workflow, workflowenactment, and scheduling support these criterias.

12.6.1 Workflow package

This package defines the actual components of a workflow and the execution of statements.
A workflow is built up of three main classes. The larges component is ExecutableAcivity.
This is again divided in two, namely a Goal and an Activity. A Goal can consist of other
goals and activities. An Activity can only have Statements. Both ExecutableActivity and
Statement are extensions of the Executable interface.

Figure 12.7 shows the class diagram of the Workflow package.

«interface»
Executable

«interface»
XMLRepresentation

ExecutableActivity

Statement

Wait UseResourceSetDefined Invoke

Incentive

Goal FindResourceExecuteCondition CompareActivity IsDefined

Figure 12.7: Shows the relations between the classes of the workflow package.

The DTD of the XML workflow definition is supplied in Appendix E and a complete
example of a XML workflow definition, controlling the temperature of the room the client

117

Implementation

is in, is provided in Appendix F. The example is a workflow implementation of the scenario
in Section 9.1.

Figure 12.8 shows a screenshot where workflows can be selected from the list of known
workflows on the left or written as an XML definition directly into the textfield. The
workflow can then be added to the schedule.

Figure 12.8: Shows a screenshot of the tab where workflows can be selected or written in
as an XML definition.

Executable

This is the interface that defines a workflow item that can be executed. As seen in Figure
12.7, it is the base for all workflow elements. It has two methods.

execute() : boolean is the methods invoked when the workflow item, a goal, activity or
statement is to be executed. It returns a boolean value indicating if the execution itself
was successful. If a fatal error occured during execution it will return false, and if no
errors occured it will return true, regardless of any result of the execution.

The second method, getResult() : boolean, returns the result of the execution. This
method is defined so that all classes extending Executable can be used in a conditional
block.

Table 12.1 show the values returned from the different methods dependent on failures and

118

12.6 Workflow, Workflow Enactment and Scheduling packages

result of execution for the FindResource statement. The FindResource statement looks up
a resource, specified by parameters, from the ResourceManager and stores it in a named
variable.

FindResource execute() getResult()
Execution error false false
Resource not found true false
Resource found true true

Table 12.1: Return value matrix for FindResource.

ExecutableActivity

This is the base class for the two blocks, Goal and Activity, of a workflow.

An ExecutableActivity has two important features. It has a parameter called type. This is
a ontology individual that describes the nature of what the activity does. These ontologies
can describe things like, turn on heating oven, turn off lights, and is the basis for arbitration
on workflows covered later on.

The other important feature is the id. A specific id can be set on it, so that it can
be executed from an Execute statement. All ExecutableActivities defined in a workflow
XML will reside in a pool. The order of definition in the XML file is not important for
the execution. This way the ExecutableActivities can call each other regardless of any
predefined execution tree.

This functionality can be compared to Procedural programming where the workflow is
considered as the class, ExecutableActivities as the procedures and Statements as each
code line within a procedure. We saw this as a better approach that sequential workflows.

An Activity is an extension of ExecutableActivity. Within it, it can only hold Statements.
These are executed in order of definition in the workflow XML file.

The method execute() will return true if all statements within an Activity were executed
without any errors, and getResult() will true if all statements returned true on their
getResult().

The Goal class is the root of all workflows. As with Activity, it is an extension of Ex-
ecutableActivity. It defines a greater goal than an Activity, so where an activity might
turn on a heating oven, a goal can control the temperature by combining several Activities
or other Goals. A goal can therefore not contain any Statements directly but only other
ExecutableActivities.

Since it is the root of a workflow, it must also define an entry point. This is done by the
Incentive class.

Incentive is an extension of the statement Condition. In its definition, an ExecutableAc-
tivity can be specified to execute if the incentive is true and one to execute if it is false.
In addition to this a execution interval is specified.

There are two things that separates it from Condition:

1. It is executed continually in the specified intervals regardless of any other Executable-
Activities it has started.

119

Implementation

2. It triggers only on a change in the result. So when the result changes from false
to true it executes the ExecutableActivity specified for true. When it changes from
true to false, it stops the ExecutableActivity specified for true and starts the one
specified for false.

The incentive should therefor check if all resources that is needed by the goal is present
and available. To follow up on the workflow XML example in Appendix F. To control the
temperature, it checks that a temperature sensor and a temperature actuator is present
in the same room as the client. If so is, it will start to adjust the actuator according to
the sensor. If the sensor suddenly disappears, it stops and executes the false Executable-
Activity. Likewise, if the sensor appears again it will execute the true condition again,
unless the false condition has halted the workflow with a control statement.

The goal also hold all variables for the executing activities and their statements. When
a goal tries to resolve a variable and it does not have it, it will cascade upwards in the
tree of goals to resolve it. This way one can combine many smaller goals into larger goals,
sharing information.

All workflow elements are completely modifiable run-time. You can change any specified
values, add, and remove statements, activities, and goals.

Statement

This class is the base for all single statements executed in a workflow. As described above,
a statement is the smalest part of a workflow definition. It performs one and only one
specific task. Several statements can be combined into one Activity. The currently defined
statements are:

IsDefined Test whether a variable is defined or not. The name of the variable to check
for is passed as an argument. If the variable exsists, regardless of value, getResult()
returns true.

SetDefined Changes the value of a defined variable or creates the variable if not defined.
Both the name of the variable and the value is passed as arguments.

Execute This statement executes a defined ExecutableActivity or performs a workflow
control statement. If an id is supplied as an argument, it will look up the Exe-
cutableActivity with the matching id and execute it. If a control argument is given,
it will ask the workflow enactment service to execute a control command. This could
be commands to halt the execution, pause it or control other workflows.

Condition This is a special form of statement as it is the only statement that can have
sub-statements. Its task is to perform complex conditional blocks and can start
execution of an ExecutableActivity for the result of either true or false. Using the
argument binding, it can combine the getResult() with either and or or. When and
binding is used, it will execute statements until finished or one statement returns
false. When or binding is used, it will execute statements until one statement return
true or finished. It will then execute the ExecutableActivity defined for respectivly
true or false, dependant on the result.

Compare A single statement comparing to values. The two values can either be passed
explicitly or as variables. It supports several methods. These are string equals,

120

12.6 Workflow, Workflow Enactment and Scheduling packages

string equals ignoring case, boolean, numeric equals, numeric less, numeric less or
equals, numeric greater, and numeric greater or equals. The result of the comparison
is return with getResult(). Both Condition and Compare can be negated with an
argument.

Wait Pauses the workflow for a given amount of milliseconds. This provided so the
workflow can execute periodical tasks in a control loop. A control loop can be
formed by calling the Execute statement to execute an Activity within the same
Activity.

FindResource This looks up a resource from the ResourceManager. Parameters can be
passed to search the ResourceManager for type, location or combinations of these.
If a matching resource is found, it stores the resource in a variable named by an
argument. A matrix describing the return values of the methods execute() and
getResult() can be found in Table 12.1.

UseResource This is a wrapper for the Invoke statement. It is provided so that many
Invokes can be made on a resource in one statement, saving network resources. This
statement has only one argument with the variable name holding the resource to
use.

Invoke One ore more of this statement can be defined within a UseResource statement.
It will invokes a method on the resource fetched by UseResource, with given pa-
rameters. The result of the invocation will be placed in a variable named by an
argument.

All arguments or parameters to statements can either be entered explicitly or looked up in
the workflows set of variables. The syntax for an explicitly passed value is the value itself.
If the value is to be found in a variale, the variable name is surronded by {variable-name}.
<wait milliseconds="5000"/> results in a 5 seconds sleep, while
<wait milliseconds="${sVar}"/> result in a period of sleep in milliseconds equaling
the value found in the variable sVar.

For more detailed information on the workings and possible arguments, we refer to the
implementation JavaDoc or the DTD specification in Appendix E. The JavaDoc is not
provided with this report as it is not considered important for answering our research
questions.

12.6.2 Workflow enactment package

This package has the responsibility of executing the actual workflows and monitor work-
flows executed on other peers. It has four major classes. Workflow, WorkflowContext,
RemoteWorkflowServer, and RemoteWorkflowConnector. The two latter are for cooper-
ating with other peers.

Figure 12.9 shows a screenshot of the workflow from Appendix F executing on a peer.
There are commands for defining variables in the running workflow context, commands
to start and stop the workflow, connect to remote workflows, and manage participants.
The log shows the execution progression for that workflow.

121

Implementation

Figure 12.9: This screenshot shows the workflow from Appendix F executing on a peer.

122

12.6 Workflow, Workflow Enactment and Scheduling packages

Workflow

This is a wrapping class for workflows and the only workflow interface towards the appli-
cation. It creates a WorkflowContext for the workflow to execute within and a Remote-
WorkflowServer for other peers to connect to and monitor that workflow. It will also
handle the list of participants that are allowed to connect and be a part of the workflow.

WorkflowContext

This is the running context of the workflow. It will receive any control statements from the
executing workflow and user interface. It is this context the workflow execution checks for
the halt flag when performing a controlled and clean exit. It will also give the workflow
access to a log. In this way, it can either pass the log entries on to the application
log or keep a separate log for each executing workflow. The last alternative is the one
implemented in our application.

RemoteWorkflowServer

This is a class that enables other workflows to connect to the workflow this server is
associated with. Upon workflow instanciation, it creates a JXTA server pipe. It will only
respond to peers that are added as participants to the workflow.

If a peer requests, it will respond with a status message containing the state of execution,
e.g. if it is running, and the remaining log entries recieved since last time it sent a status
message to that peer. It maintains a counter that is incremented each time a log message
is added. The current counter value is passed with the status message. When a peer
requests a status message it will provide the RemoteWorkflowServer with the value of the
counter from the last call. This way it can calculate and send only the new entries.

The server does not support recieving workflow control commands or workflow adaption
messages, although this is supported by the implementation.

The DTD and an example of the status message sent from this server to participants is
provided in Appendix G.

RemoteWorkflowConnector

An instance of this class is created in a Workflow when a request has been made to
connect to a workflow executed remotely. It will stop the current execution of the local
workflow, connect to the remote, and periodically ask for status messages. The status
messages include the log messages added to the remote workflow since the last time a
status message was recieved.

If RemoteWorkflowConnector does noe recieve a response for a configurable amount of
iterations, it will asume that contact is lost with the remote workflow or the peer in
general. It will then stop monitoring and return control to the local workflow definition.

This is a strategy used in arbitration for some of the goals in need of cooperation.

123

Implementation

12.6.3 Scheduling package

This package holds only one important class; Scheduler. Currently, this package only
supports a very basic scheduler.

Scheduler

An instance of this class holds a list of currently loaded workflows in the application. It
is accessible through the Framework class as one of the major components. This is the
only interface for the application to manage workflows.

As with several other classes, it will also create a JXTA server pipe. It is used to give
other peers access to the description of all currently running local workflows. Primarily
this function is used by the arbitration service in our implementation, but it can also be
used so that other can see what workflows are running on you system and thereby create
an awareness amongst cooperating entities.

The description only holds the ontology individual for type, ontology individual for lo-
cation, and address information of the workflow for those that have this information
supplied. See Section 12.7.2 on ConflictDiscoverer for a more detailed description of this
XML message. The DTD and an example can be found in Appendix I.

12.7 Arbitration package

This is the package that that searches for conflicts and performs arbitration on workflows.
The cbr sub-package has all classes defining the CBR implementation of our application.

Figure 12.10 is an activity diagram and Figure 12.11 is a message sequence diagram of
the search for possible conflicts and the arbitration process.

12.7.1 Arbitration

This class instantiates and controls everything needed to perform arbitration internally
and with other clients. It is the only class needed by other components to perform
arbitration and is accessible thourgh the Framework class.

It will instantiate the ArbitrationCBR class, a ConflictDiscoverer and a private class
controlling a JXTA server pipe for communication with arbitration services on other
clients.

ConflictDiscoverer is responsible for discovering possible conflicts and fires an event if so
happens. This class is explained later on.

When a conflict is identified, this class performs arbitration on the workflows. It currently
supports three strategies. For all three there is two variants, one to perform the strategy
on the local client and one to perform it on the remote client. This support is useful as it
is dependant on the order of the conflicting workflows. In a conflict between two different
workflows, there might always be desirable to let a specific of them wait. This way it can
ensure that one type of workflow is halted or put on wait when it comes into conflict with
a specific other. The tree strategies are:

124

12.7 Arbitration package

Arbitration

ConflictDiscoverer

Create and start a monitor thread for peer
«precondition»
{A new peer is found
by PeerDiscoverer}

Fetch workflow description from peer

Fetch local workflow description

Create a prioritized list of queries

Get first query

Check with CBR for prior conflictsGet next query

Mark stop and remove peer monitor thread
«precondition»
{PeerDiscoverer lost
contact with the peer}

[M
o
n
it
or

 t
h
re

ad
 m

ar
ke

d
 f
or

 r
em

o
va

l]

[M
on

it
o
r

th
re

ad
 n

ot
 m

ar
ke

d
 f
o
r

re
m

o
va

l]

[No prior conflict found]

[More queries]

Wait a defined time

[No more queries]

Ask for desired solution

[Prior similar conflicts found]

Invoke solution

[Two or more perfect matches] or
[No perfect match, one or more similar]

[One perfect match]

[U
se

r
ca

n
ce

ls
]

[User selects a
perfect match]

Adapt case

Store case in CBR as a new learned case

[Similar case selected]

Figure 12.10: Shows the process of searching, adapting, arbitration, and learning cases.

Client 2

ConflictDiscovererArbitration Scheduler ArbitrationScheduler

Get workflows description

Return workflows description

Get workflows description

Return workflows description

Get possible conflicts

Return possible conflicts

Handle conflict

ArbitrationCBR

Inform of conflict and solution

Arbitration response

Client 1

Figure 12.11: Shows the messages passed between different components in the arbitration
process.

125

Implementation

Halt This strategy halts a running workflow based on a conflict with another. The work-
flow is completly stopped and must be started manually to execute again. Which
workflow is stopped, is dependant on the solution description. It will not be removed
from the application scheduler as it might still be needed.

Wait A workflow waits for another workflow to finish before it continues. This is done by
pausing the workflow in conflict and creating a local workflow that connects to the
remote by using the RemoteWorkflowConnection covered earlier in this document.
When RemoteWorkflowConnection either looses contact or the remote workflow is
halted or finished, it will return control to the waiting workflow causing it to continue
execution. The generated workflow for remote connection is then removed from the
scheduler.

Adapt Adaption is a complex task to perform on two workflows. In this proof-of-concept
implementation we have only made one adaption strategy. It creates a workflow
that combines the two workflows in conflict. This only supports workflows that are
of the same nature (tries to achieve the same goal). It does so by gathering all
numeric variables in the executing workflows’ context and for every variable name
that is common to both workflows it creates a mean value. These new variables
are then the basis for the merged workflow. The original workflows are then put on
wait while the cooperation is in progress. When the cooperation is disbanded the
original workflow is reactivated.

Figure 12.12 shows a screenshot of an adapted solution to the temperature conflict de-
scribed in Section 9.1. There are two workflow tabs. The first is the original workflow
controlling temperature and the second, the one visible, is the adapted solution. As can
be seen in line 1 in the log, the desired temperature is 22 . This is a mean between the
two clients that had 20 and 24 as their respective desired temperatures.

The Arbitration class communicates with arbitration services on other clients. The DTD
specifying the XML message and an example of the adapt strategy above, is provided in
Appendix H.

A possible conflict may not always be a perfect match. If a working case resembles a
known conflict to a certain extent, it will be regarded as a conflict. This is made possible
by the ontology classifications to enable the system to learn. If a solution is chosen, it
is adapted by copying the classifications of the working cases and stored. This way the
system learns new conflicts from old.

Whenever an arbitration service performs arbitration, it sends the case that it based the
solution on, possibly adapted, to the other client. This is a way of ensuring that all clients
are aware of the basis of the arbitration decicion and so they can learn the case, if not
already known. This way, knowledge of conflicts is shared between clients. The case is
passed as a part of the arbitration message defined in Appendix H.

12.7.2 ArbitrationCBR

This is the class controlling the jColibri system. Here the different tasks and methods of
the four CBR-cycles are defined, configured and executed. After instanciating the jColibri
core, ArbitrationCBR loads the different configuration packages.

All task and methods are configured during instanciation. Task and methods are roughly
defined as in Figure 5.8, where the vertically arranged boxes are tasks and the decompo-

126

12.7 Arbitration package

Figure 12.12: Shows an adapted workflow based on two workflows trying to control the
temperature of a room.

127

Implementation

sition of those are methods. Each task and methods is customizable. Which class is to be
responsible for each task or method is decided by a complete class name. jColibri requires
that all classes used in tasks or methods are described in their configuration files. When
each method is configured and each task is configured with methods, jColibri is ready to
be used.

jColibri comes with Jena. This is a Java framework using RDF models, created by IBM,
and is the base for our use of ontologies. When ArbitrationCBR loads jColibri it, in turn,
loads Jena. The loaded instance of Jena is then, through a jColibri bridge made available
to the whole implementation through the Framework class.

jColibri is implemented with one context that the cases resides within. Case searching,
adaption and learning can only be done within this context. Since our system is based on
many threads that may access ArbibrationCBR, and thereby jColibri, at the same time,
we needed to make the implementation thread safe. This is done by defining synchronized
methods for searching possible conflicts and to store learned cases. An activity diagram
showing this behaviour can be found in Figure 12.13.

To get a working implementation, some jColibri tasks and methods had to be specialized
to work.

Connector

The connector is the component reading and writing the case base to and from persistent
storage. Because of problems with jColibri reading in from file and instantiating the
ontology individuals from Jena, we had to implement our own connector. More about this
problem is described in Technology evaluation in Section 16.3 in the discussion chapter.

CaseSimilarity

This class computes the similarity between two cases. It is done by calculating the distance
between the two cases’ describing individuals in the ontology tree. This way it determines
how close the nature of operation of the cases are and can determine if there is a possible
between them. If they are close, there might be a conflict and Arbitration can perform
adaption of the case. It returns the percentage of nearness in the interval [0, 1].

If an individual is a perfect match, it returns 1.0. If it is part of the same leaf it returns
0.75 and if it is one leaf up or down in the tree, it returns 0.5. For any other cases it
return 0. An illustration of this can be seen in Figure 12.14.

Each case has four parameters. They are:

Case1 This is the ontology individual of the first workflows entity.

Case2 This is the ontology individual of the second workflow entity.

Location This is a double describing the importance of location nearness.

Participants Unused in this implementation, but intended to inform about the impor-
tance of the composition of participants executing the workflows.

The total case similarity between cases is calculated by jColibri as the mean value of the
similarity of these four properties. jColibri does not have the built in function of properties

128

12.7 Arbitration package

Configure and instanciate jColibri

Read all cases from persistancy layer

Store all learned cases to persistency layer

Tear down jColibri

Clear context

Add learned case to working context

Invoke jColibri storeCasesTask

Clear context

Load all cases into context

Set the query case

Run the jColibri computeSimilarityTask

Filter the resulting context based on location parameter

Retrieve and return any results

[Learn case]

[P
ro

g
am

 e
xi

ti
n
g
]

[Progam executing]

[Search conflicts]

Figure 12.13: Shows the process of searching and learning cases in ArbitrationCBR.

129

Implementation

Cases

Adjust_value

Control_value

Adjust_temperature

Adjust_light

Adjust_humidity

Control_temperature

Control_light

Control_humidity

Activities

Goals

Move_object

Move_crate

Move_box

Adjust_one_oven

Adjust_many_ovens

1.0

0.75

0.5

0.5

Figure 12.14: Shows how the similarity between ontology individuals is calculated.

130

12.7 Arbitration package

being able to be exclusive. During the calculation of similarity, location and participants
always return 1.0. A filtering based on location is done after jColibri has calculated the
similarity. We call this way of filtering context triggers and more about this strategy can
be read in Section 16.3 in the discussion chapter.

The location parameter of the query-case is calculated the same way as the case ontologies.
If the value of location is 1, it means that there only is a conflict if the two workflows are
executed in the same location. If it is 0, it means that location is of no importance. If
the result of the calculatiion of the distance between the locations of the two workflows is
higher than the value stored for location in the case then tells us if we have a conflict.

In addition to the four parameters describing the conflict, it has two parameters describing
the solution. These are Solution and Parameter. Solution is an ontology individual
describing the solution strategy and Parameter is string intended to provide important
information on how to invoke the solution strategy.

ConflictDiscoverer

This class searches for possible conflicts. Figure 12.10 shows the activities of the Conflict-
Discoverer.

It will listen to the PeerDiscovery service and maintain a list of conflict searching threads,
one thread per known peer. Periodically, each thread will ask the peer it is responsible for,
to supply a description of the workflows it is executing. It will then create a prioritised
list of cases which will be matched up against the known conflicts by ArbitrationCBR.

The list is created based on workflow description XML messages. These XML workflow
description messages are fetched from the Scheduler of the peer each searching tread is
responsible for and is matched up against the local workflow. This list is created by first
matching every node in the same position in the tree. Then it completes the list by adding
all combinations not yet in the list. Figure 12.15 shows an illustration of this process.

The DTD and an example of such a workflow description XML message can be found in
Appendix I.

131

Implementation

Stage 2

Stage 1

Control_temperature Control_temperature

Move_crate

Adjust_temperature Adjust_temperature

Control_light

Adjust_light

Client 2Client 1

Control_temperature Control_temperature

Move_crate

Adjust_temperature Adjust_temperature

Control_light

Adjust_light

Client 2Client 1

Figure 12.15: Show how the conflict discoverer sets up the list of conflicts to search for.

132

PART IV

Planning

133

CHAPTER 13

Scenario - Dice factory

Motivation

Planning can be very important in connection with performing work processes. Plans can
represent the difference between success and failure in achieving the respective goals of a
process. However, as the following scenario shows, work processes are dynamic constructs
which might demand restructuring in order to achieve best possible results. Plans must
therefore have the ability to adapt to changes in the environment.

Scenario

CuttingWood is a company that makes different type of customized wood products. One
day they get an order to make 5000 uncoated dices to be delivered 2 days later. The
next day they get an order for 3000 red coated dices for another company, with the same
delivery date as the first order.

Their automated production system is able to produce 4000 dices a day, and calculates
when to start producing the orders. It has already started producing the first order and
has finished 1000 dices when the second order comes in. It checks the production orders
and sees that the coating for dices needs one day to finish. If it continues to produce the
first order it would not be able to deliver the second order in time.

But the automated production system is smarter than that. It figures out that it can halt
the first production and start producing the second order, which it would finish during the
day. Then these dices can be sent off to coating, and the system can continue production
of the first order. Doing this, it can actually finish both orders in time.

The system realizes that the first order has priority since it is not only is placed first, but
also is currently in production and has a greater potential for profit due to its size. By
checking the time table and availability of the production system, it realizes that coating
and production of dices could be done in parallel. Acknowledging this, it de-prioritizes
the first order to make way for the second one, so that it can be shipped off to coating
whilst the system finishes producing the first order.

135

Scenario - Dice factory

The production system then tells the ordering system to accept order number two, and
invokes its re-planned work processes. In this way ordering of tasks at CuttingWood is
done in a most efficient way, always utilizing the full capacity of the available production
equipment.

Challenges in scenario

Resolving which processes can be executed in parallel

Can the work process be satisfied if reordered

Knowing the availability of resources and the interdependency between them

Guaranteeing delivery based on uptime and throughput of the production system

136

CHAPTER 14

Workflow generation

When planning how to perform work, it can be wise to divide the task into its constituent
parts (activities). Activities would then perhaps have to be performed in a certain order
to achieve the goal of the task. These chains of activities are represented as workflows
(Section 5.5.4 and Chapter 13). Activities may need to have certain conditions fulfilled
before they can execute. As this foundation (context) may change and alter the situation,
workflows should be dynamic (adaptive workflows). By this we mean that they should
be able to rearrange activities or import substitute activities which are suited to adapt
to the new situation. Workflows then make up the foundation for creating a plan, which
also must be dynamic in the sense of available resources and context states.

In this Chapter, we start with a proposal on how to fetch context, as context is a founda-
toional part of situated planning (Section 5.5.2). After this, we elaborate how to possibly
generate workflows based on current context with minimal human interference and dy-
namically keep these up to date as the execution context changes. We then look at how
activities’ effect on context can be stored, used, and improved.

14.1 Gathering context - the context service

The Smart work processes (SWP) architecture, the Java Context Aware Framework (JCAF),
and the Context Toolkit (Section 6.2) all provide versions of a component that obtains
context from the environment, abstracts it, and provides it to subscripting components
or services.

We want to keep the property of personalised representation of context, as well as process-
ing all kinds of context in one service. Therefore, we have moved away from the Context
widget of the Context Toolkit and instead focused on merging the Context services pro-
vided in SWA and JCAF (Figure 14.1).

In this figure we show what functionality we think such a service should offer. The setting
is represented by a Smart space (Section 3.3), where information resources reside along
with context demanding services. The Context service will bridge the gap of this supply

137

Workflow generation

Supporting technologies

Smart space

Context service

Context demanding
services

Sensor and peer
resources

uses

uses

Context service

Semantic
abstraction and

translation

Resource proxy

Registration and
access control

uses

uses

Semantic web
Ontologies
Metadata
Taxonomies
Thesaurus
Vocabularies

Figure 14.1: How we imagine a Context service (based on a fusion of the existing Context
services provided by Sørensen et al. [88, 89], and Bardram [14]).

and demand situation, making information from heterogeneous resources look the same
to any subscriber.

The Context service itself consists of a Registration and access control which controls
the subscribers and their requests for context information regarding both type and se-
mantic abstraction level. The Semantic abstraction and translation component provides
the correct semantic representation of the requested context type to each subscriber, us-
ing, e.g., Semantic web, ontologies, metadata, taxonomies, thesaurus, and vocabularies, as
mentioned in section 4.1.2.

A smart space can have a dedicated resource proxy to reduce network traffic, control and
schedule resource use, and perhaps control access rights. With a stationary proxy residing
in the Smart space, the resource proxy component in the client only provides an interface
for this. If a stationary proxy is non-existing, the client component can act as a resource
proxy to serve other clients when present in the Smart space.

We have not elaborated if and how to use historical context data for reasoning purposes,
but on an entity with enough memory and processing capacity this can be added to the
Context service model. If present, such a component should also contain or manage a his-
tory of semantic abstraction lookups already performed, so that these could be ”learned”
and a local lookup could be adequate.

With the gathering of context in place, we can start elaborating how to create workflows
based on context and other constraints.

138

14.2 Obtaining activities from goals - generating workflows

14.2 Obtaining activities from goals - generating work-
flows

In order to automate as much as possible regarding the creation of workflows, the con-
stituent parts of such workflows must be able to be localised based on the simple knowledge
of what we want to achieve, or how to reach the goal of workflows. In the following we
describe the structure of activity descriptions and what technologies that can be used to
serve this purpose.

If not available, provide a manual description of each activity needed to achieve the
goal. This description should contain constraints (when can the task be executed)
and success criteria (when are the task complete). Some tasks may also include
quality criteria (preferred fidelity). Dependencies in the goal–activity hierarchy are
only downwards, which indicates that a goal can obtain knowledge of what activ-
ities that is needed to achieve it, but that an activity does not know whether it
belongs to a certain goal or not. An activity is then a reusable asset, but to exploit
this reusability we must be able to determine the appropriateness of the activity
regarding the goal.

As activities are described, they are also saved and made available in the network.
Because they are provided by different users with different intents, activities are
not necessarily inter-exchangeable without further ado. Different users may define
different activities for achieving the same goal or defining similar activities to achieve
a different goal. User intent could be conserved by using specific tasks to achieve a
specific goal. To make activities universally traceable, they could be given a unique
address as part of the activity scheme. This could be done by using, e.g., the resource
description framework (Section 5.3.2) provided by W3C.

To gain best possible results when using activities provided by others, we suggest
that reinforcement learning (Section 5.4.5) is used to study the results different
activities provide (due to e.g. fidelity and other criteria) and that the results from
this process is may be included in the activity description or provided by other
information sources. In this way we can map what combinations provide the best
result in achieving the goal.

In order to automate as much as possible, we want to reuse and modify activities
used in similar situations. To gain an overview of different activities’ relationships,
we suggest that they are described by ontologies (Section 5.3.2). Ontologies offers a
description of the concept (activity), the activity’s properties, and the restrictions
of these properties. This implies a schema structure which is possible to combine
with the activity properties already described.

For a goal to obtain knowledge of what activities it need to execute, we suggest
that case-based reasoning (Section 5.4.1) is used to recognise what has been good
solutions in the past.

When the necessary and optimised activities to achieve a goal (based on current context)
are obtained, these constitute the initial workflow. As the context state changes, e.g.,
based on other actors’ plan executions, we have to adapt to these changes.

139

Workflow generation

14.3 Adaptive workflow

Even though we base our planning aproach on workflows, coordination amongst activities
needs to be performed between work processes and the work environment. We must
perform context-based reasoning to reach process goals, and perform actuations which
may change the workflow. This, amongst others, is supported by the SWP architecture
(Section 6.1), which can be used to facilitate the coordination of multiple actors. The
implementation of such mechanisms are usually addressed by using multi-agent systems
(Section 5.2.3).

Managing the dynamics of ad-hoc activities and process changes implies that we must
solve conflicts amongst actors. To support the dynamics, we must solve these conflicts
in an automated manner, requiring minimal intervention from users. As an alternative
to agents, we suggest the already elaborated and implemented Arbitration service (Part
III) for this purpose. A solved conflict will most likely apply changes to a plan, triggering
readaptation and rescheduling.

An adaptation can result in restructuring of the workflow. Methods for supporting this
includes: late binding, on-the-fly workflow process composition, partial execution, reusable
process fragments and component libraries, selection constraints, termination constraints,
build constraints, and workflow templates. These methods are explained in [48], and will
not be elaborated further.

How workflows are adapted to the new situation may also change. Context states could
trigger adaptation of workflows both by changing the existing activities or introducing
new activities. However, we keep to the latter, as this best makes use of the following
approach.

Using expert systems (Section 5.4.2) for the adaptation of workflow require that rules are
made for all different exceptions. To make such a system more robust, we could add the
properties of fuzzy logic (Section 5.4.4). This would lead to a more tolerant workflow, not
failing its plan because of some unexpected variants in the context. FuzzyJess [21] is an
example of a system that combines a rule-based expert system and fuzzy logic.

We will however use another approach for adaptation, namely Case-based reasoning (Sec-
tion 5.4.1). CBR offers a knowledge base of experience from previous cases. If the con-
textual foundation changes so an activity in a workflow, and thereby the workflow itself,
cannot execute, a different set of activities which satisfies the new conditions can be au-
tomatically obtained and selected. However, this is only possible if the case-base contains
the needed activities from previous executions. If not, the alternatives are to adapt the
existing activities to the new situation or manually enter a new solution. As more vari-
ants of activities are stored in the case-base, the system will grow more robust and less
dependent of human interference.

In Figure 14.2, we have extended the workflow definition presented in Section 5.5.4 to
contain a conceptual CBR solution.

In the figure, when planning is done, tasks are ready to be executed. This is done using
the resources available in the actors environment. Feedback on each single task (activity)
execution and result, accompanied by feedback on how the goal was fulfilled, is the subject
for reasoning about how planning of work could be improved in the future. Now that we
have historical data, these may be used at a later occasion when a similar goal or task is
to be executed by any entity with access to the case-base.

140

14.3 Adaptive workflow

Adaptive workflow

Business Process
(i.e what is intended to happen)

Process Definition
(a representation of what

is intended to happen)

Sub Processes

Activities

Manual Activities
(which are not managed as

part of the workflow system)

Automated
Activities

Workflow Management
System

(controls automated aspects of
the business prcess)

Process Instances
(a representation of what

is actually happening)

Activity Instances

Work Items
(task allocated to a

workflow participant)

Invoked Applications
(computer tools/applications
used to support an activity)

is defined in a is managed by a

via

include one
or more

which
include

And/or

during execution
are represented by

composed of

which may be

or

used to create
& manage

Planned work Performed work

Creation of
new cases

CBR case-base

Figure 14.2: Adaptive workflow by using CBR (based on [28]).

141

Workflow generation

An activity may be affected by context or context changes in several ways. When activities
are dependant on the contextual state, they need to include specifications and rules on how
context relates to the activity, hence how context affects the activity and how the activity
affects context. The first can be obtained by having constraints and success criteria in the
activity description and/or central databases, as described abowe. The latter is perhaps
more complicated, as an activity’s effect on context is not necessarily deterministic.

One of the important information types related to an activity, is then how its execution is
expected to affect context. This information is valuable when trying to construct a future
context and thereby construct better plans.

14.4 Obtaining, storing, and improving activities’ con-
text influence

Every activity added or changed in a workflow will affect the context. How this information
is obtained can be solved in several different ways:

The information could be part of the activity’s scheme.

It could be collected from an external database, with a reference to one or more
activities.

It could be fetched through knowledge systems.

These methods are very similar to how we picture the gathering of already defined activ-
ities in order to achieve a goal. How the information is actually resolved, depends on its
complexity and size, which we do not elaborate in this thesis. The different methods have
their pros and cons, such as different portability abilities and resource demands.

However, to improve the knowledge of how activities affect the environment, we see neural
nets (Section 5.4.6) and reinforcement learning (Section 5.4.5) as possible candidates when
learning of the cause and effects of activity execution. A problem with this approach is the
need of execution in a isolated environment, without other actors influencing the results
by their own executions.

Now that gathering of current contextual information, making workflows, workflow adap-
tion, and obtaining activities context influence are elaborated, the next thing to do is to
create an actual work plan based on the best combinations of workflows that fulfils the
contextual requirements.

142

CHAPTER 15

Scheduling service

In our depth study [75], we developed a service architecture for planning and scheduling
activities in a dynamic environment. It uses context as one of the driving forces in the
planning process, and emphasizes on smart use of resources based on supply and demand.
The ordering in which activities are executed, is based on resource availability. If the
activities’ interdependencies allows it, workflows may be processed in parallel, possibly
distributed, to save execution time and exploit available resources.

In the previous chapter, we obtained necessary contextual information, made workflows,
elaborated workflow adaption, and proposed how to manage knowledge of activities’ con-
text influence. In this chapter we will explain the components and planning process of
the Scheduling service, where optimal ordering of workflows and use of resources is em-
phasised.

15.1 Context extensions

To be able to create a schedule, we need to know what will be the result of tasks executed
and apply this in the process of planning ahead. As task execution incentives is context
information, it is vital that contextual changes imposed by planned tasks are recorded to
present the remaining tasks with a predicted context at a time in the future.

In order to do this, we propose context extensions. Context extensions are new, anticipated
context that builds on the initial context. Hence, one context extension is a description
which implies how the execution of a certain activity is expected to affect specific types of
context in the real world, and thereby the foundation for simulating the outcome of the
activity execution.

Figure 15.1 presents a timeline showing how the context is predicted to evolve over time.
At t0, or present time, we have a context c0. This is the base context and context resolution
at this point shows buffered context collected by a Context service (Section 6.1).

Fetching the base context by using the Context service could be a resource demanding

143

Scheduling service

Context
ext., c1

Context
from client

Context
ext., c0

Context
ext., c2

Context
ext., cx

timelinet 0 t 1 t 2 t x

Figure 15.1: Context is resolved backwards through the context extensions and finally to
the current context.

process depending of the amount of context to collect. More details can also increase the
computational cost of decision making [17]. It is therefore important that only relevant
context are gathered and that for every update, only requested context is gathered (this
will be based on the constraints of the queued activities). In this way, c0 only contains
relevant context information with as little resource use as possible.

These context extensions are created by a context builder. It is placed in the architecture
as shown in Figure 15.3 in the architectural overview of the scheduling service. The
context builder component is responsible for creating a context extensions for each end of
an activity in a schedule, as illustrated in Figure 15.5. It will build an context extension
chain for each evaluated schedule.

Context information is fetched from the context extensions by a context resolver. If context
information is not present, the context resolver will ask the previous context extension for
this information. In this way, the context resolver backtracks trough context extensions,
until the desired context is found or c0 and the current context is reached without results.
In this way, a chain of evolving context can be created and resolved using as little resources
as possible.

15.2 Architectural overview

As a foundation for our approach in making the Scheduling service, we use the Smart
work processes architecture (Section 6.1) to outline the service and get a better overview,
hence delegate responsibility and plan how the service should connect with other services
in the architecture.

Figure 15.2 shows the scheduling architecture located in the Context-aware workflow en-
actment service (CAWES) component of the Smart work processes architecture. CAWES
is decomposed revealing the workflow, context, and enactment subsystems with their use
of a task scheduler and supporting systems like expert systems, CBR, reinforced learn-
ing, and empiric databases. It also depicts the other important parts of the Smart work
processes architecture in need of the scheduler.

Figure 15.3 shows the actual architecture of the scheduler. The Context builder is re-
sponsible for generating context as it is anticipated to be after execution of activities. A
Scoring resolver will fetch and generate weighed scores for each task based on a dynamic
set of criteria. (Examples of such criteria are stipulated in the Scoring chapter of [75].)

144

15.2 Architectural overview

Context-aware workflow enactment service

Workflows
subsystem

Workflow
scheduler

Enactment
subsystem

Context
subsystem

Support
systems

«uses»«uses»

«uses»

«uses»

«uses»

«uses»

Cooperative workflow
coordination service

Server-based workflow
enactment service

«uses»

«uses»

Figure 15.2: Scheduling placed in the context of Smart work processes architecture.

The scheduler then use the Context builder to generating alternative schedules based on
contextual state, before it selects the most appropriate.

Workflow scheduler

Context
builder

Scoring
resolver

Scheduler

«uses»«uses»

Context
resolver

«uses»

Figure 15.3: The architecture of the proposed scheduler.

While developing the architecture, we tried two different strategies of generating the
schedule. The first strategy used an incrementally changing context where the change
was made based on the simulated execution of a group of activities capable of being
processed in parallel. An illustration of one of the plans and its context extensions can be
found in Figure 15.4. This formed a planning tree made up of several branches because of
all the different combinations of concurrent activities. One context extensions is created
for each group of activities capable of concurrent execution in every branch, and this
would have lead to major processing problems and unnecessary delayed execution times
for some activities. The difference between the two approaches can be seen in Figure 15.4
and 15.5.

The second and better approach was less resource demanding and more dynamic, and
therefore better supported continually planning (Section 5.5.3). Figure 15.5 shows a
schedule put together by the second approach with context extensions.

The method for building the simulated context in the second approach, relies on the

145

Scheduling service

A

G

D

E F

H

B C

c 0 c 1 c 2 c 3 c 4 c 5 c 6 time

ac
ti
vi

ti
es

Figure 15.4: Expected context evolution over time for the first schedule approach.

estimated time of completion for each activity and not a group of concurrent activities.
More context extensions are created in the second approach, but as seen in the Figures
15.4 and 15.5, it plans much more efficiant. Combined with the scoring mechanism to
make a selection of activities to schedule next, the processing needs and utilitarian value
of the schedule is greatly increased.

Before an activity may begin execution, the scheduled contextual foundation must be
in place (the activity’s constraints must be satisfied). Therefore, instead of viewing the
schedule as levels of tasks, we will view it as levels of context which then can be matched
against the activity constraints. An illustration of this can be seen in Figure 15.5.

A

G

D

E F

H

B

ac
ti
vi

ti
es

C

c 0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 time

Figure 15.5: Expected context evolution over time for the second schedule approach.

15.3 The scheduling process

Scheduling will be performed with the steps presented in Figure 15.6 and elaborated in
the following enumerated list.

Step 1. Build a context extension based on the current context.

Collecting all context information would be too much. This could be solved by
collecting only the information requested by the tasks as necessary to execute or
other information the task requests.

146

15.3 The scheduling process

Build current context
extension

Add currently executing
activities

Build context extensions for
activities added

Select context extension for
first activity to finish in
schedule or current context if
first time

Step 2

Step 3

Step 4

Step 5

Step 6

Step 1

Find all combinations of
activities able to execute at
selected context extension
and create a new schedule
for them

If activities were added; go
to step 3

Step 7

Order the groups based on
score and select the schedule
with highest rating

Context
ext., c0

Ac0

Context
ext., c1 & c2

Ac0

c1

c0

B

B

c2

Ac0

c1

B

c2

DC
Ac0

c1

B

c2

D
Ac0

c1

B

c2

DC
Ac0

c1

B

c2

E

E
c3

c4

c5

Figure 15.6: Stepwise description of the scheduling process in the second schedule ap-
proach.

147

Scheduling service

Step 2. Add the tasks to the schedule that already exists. All combinations of existing tasks,
including no tasks, would be set up as schedules. This is to allow score calculation
of the schedule with aim to stop execution of tasks if it is found most effective.

Step 3. Build context extensions for every task in each of the schedules. A context extension
is an addition to the former context extension so that information is not duplicated
in the system. How context for a given stage, e.g. c1, is calculated is explained
earlier in this Section.

Step 4. For each schedule, select the context extension for the next stage, that is the next
task to finish. If you are at stage c0 the next stage would be c1.

Step 5. Find all combinations of tasks, which have satisfied execution criteria at the current
context extension stage and that has no or manageable conflicts and create schedules
for them.

Step 6. If tasks were added to schedules in the prior step, go to step 3.

Step 7. Calculate score for each schedule and select the one with highest score.

15.4 Markov decision processes

Planning under uncertainty is a central problem in the study of automated sequential
decision making, and has been addressed by researchers in many different fields, including
AI planning, decision analysis, operations research, control theory and economics. Many
planning problems common in these fields can be modelled as Markov decision processes
(MDPs) and analysed using the techniques of decision theory [17].

The scheduling process have some of the same characteristics as MDPs, so we make a
comparison:

In MDPs, it is commonly assumed that a (context) state contains enough information to
predict the next state. In other words, any information about the history of the system
relevant to predicting its future is captured explicitly in the state itself. Formally, this
assumption, the Markov assumption, says that knowledge of the present state renders
information about the past irrelevant to making predictions about the future [17]. Hence,
Markovian models reflects the fact that the present state is sufficient to predict future
state evolution. This is the same assumption we make, when we gather information by
using a Context service and then, in the Context builder, base our predictions of future
context-states on this present state.

It is also common in MDPs to assume that the effects of an event depend only on the
prevailing state, and not the stage or time at which the event occurs. This, however, is
contradictory with our approach. We assume simulation of activity execution in a specified
time as the foundation for predicting future context.

15.5 Problems and challenges

The proposition explained here, has some weak points. The scheduler may be very re-
source demanding if many activities exists in queue and these can form many possible

148

15.5 Problems and challenges

compositions. The scheduling service could then profit from being hosted by a powerful
peer, or when necessary being distributed through cyber foraging (Section 4.2.1).

If the context resolution for some reason is not able to resolve required context information,
execution parameters may not be satisfied. Then predictions of context information must
be manually entered, hence requiring user interaction with the client. This transformation
of knowledge from the user to the client may be cumbersome. However, the greatest risk of
this approach is that manually entered context are being kept and used by the scheduler,
even if its outdated.

Scheduling workflows and activities based on resources on a location to which a moving
entity is heading, can be tricky. This is however possible if the entity is connected to a
widespread network or use a wireless technology with long reach. Estimated speed and
route would be needed. The appropriate Smart space (location with ubiquitous services)
could be found by deducting the location, using ontologies (Section 5.3.1). Then the
needed resources can be asked for within this location, and scheduled as normal.

149

Scheduling service

150

PART V

Discussion and conclusion

151

CHAPTER 16

Discussion

16.1 Context

The extended context definition provided by Kofod-Petersen and Mikalsen (based on Dey
and Abowd [34]), is a good formal representation of context and interesting for our work.
It describes context as domain independent, and match our use of context in the Scheduling
service (Chapter 15) and Arbitration service (Part III).

Most formal definitions of context focus on the idea that context is some particular type of
information. However, we serve contextual information, information providers, actuating
entities, and services in the same component in our implementation, where they all are
assembled into the term resources.

The open context model provided by Kofod-Petersen and Aamodt [55] is an interesting,
domain independent categorisation of context from the user’s perspective. It provides
better understanding of how to implement and reason over context in a context-aware
application by showing what types of context exist and how it can be arranged.

The infrastructure created by Henricksen et al. [50] is concerned with development of
appropriate context modelling concepts for pervasive computing, and seems like a reason-
able way to show the relations amongst context. It retains formality and generality and
gives indications of information quality.

However, we have not been able to find any ready to use implementations of the above
models, and therefore not used any of them in our prototype. Instead we have developed
support only for the contextual information needed for our purpose.

The Smart Work Processes (SWP) architecture (Section 6.1) represents a generic frame-
work for the ubiquitous paradigm with little limitations on what functionality to imple-
ment. It provides separation of concern regarding how to structure features in a context-
aware application. It also retains coordination amongst entities (COWCS) and lays no
restrictions on heterogeneity. These are all qualities we would like to preserve.

The Java Context Awareness Framework (JCAF) (Section 6.3) is a generic service in-

153

Discussion

frastructure and programming framework for creating context-aware applications. The
runtime infrastructure consists of three layers; a context client layer, a context service
layer, and a context sensor and actuator layer. While the SWP architecture is a model
for how to implement services in a ubiquitous environment, the JCAF actually provides
a Java programming framework supporting some of the same ideas.

JCAF is a peer-to-peer context framework, which seems to support Dey’s definition of
context. We chose JCAF for our implementation because we thought it included a ready
to use context framework, defining both the context model and lookup functions. However,
it appeared that it did not satisfy our needs on some areas (Section 16.3).

The Context Toolkit (Section 6.2) is also an interesting architecture and programming
framework. It is similar to the SWP architecture in many ways, but differs in some areas.
One of the differences is the Context widget component’s ability to store historical context.
Widgets are public resources, which contain one context type only. They reside on servers
in a distributed network. This could be a hurdle regarding mobile peer-to-peer networks
which should have the ability of working disconnected from larger networks.

However, having a mechanism acting as an expert on the local context in a Smart space
based on reasoning of historical context, could provide a considerable support when trying
to predict how plans should be built, executed, and adapted. Hence, we will stick to this
as a good idea.

One thing we find missing in the Context toolkit architecture is the ability to affect the
environment by the use of actuators. This makes it a read-only tool for the use in context-
aware applications.

Kofod-Petersen and Mikalsen [56] also argue that the Context toolkit’s ability to reason
about contextual information must be implemented for each domain and application.
Thus, making it flexible only in the design and implementation phase, and not in run-
time.

Baldauf et al. [9] indicates that the Context toolkit takes a step towards a peer-to-peer
architecture, but that it needs a centralised discoverer where widgets, interpreters, and
aggregators can be registered in order to be found by client applications. We agree in that
a discoverer is needed. However, instead of a centralised approach, we rather propose a
discoverer that works in a volatile, Mobile Ad-hoc Network (MANet) fashion.

Both the SWP architecture and JCAF use Context services (Section 14.1) to obtain
relevant context from the environment. These are also similar to the Context widget
described in the Context Toolkit.

The Context service provided in the SWP architecture are generalised, hence it does not
provide a thoroughly described service, but a framework. However, according to the
spesification, it provides all communication with sensors and it filters the information it
receives founded on client-based context subscription (type and abstraction) to reduce
the workload. We picture it to be available both public and personalised. The Context
services residing in the public domain can provide context information from a Smart space
to the user, while those locally on a client can provide personalised context to be used by
services in the Smart space.

Rather than using one of the context models or context gathering services discussed, we
have implemented a Resource discoverer in our implementation. The Resource discoverer
is proactive in discovering resources in the environment. It provides and updates an
overview of resources within e.g., a Smart space automatically. However, the service is

154

16.2 Planning

not restricted to a defined spatial area, and resources can be found on request from a user
within the whole network. Hence, we have not implemented restrictions on the number
of allowed hops in the network, such as Bardram has done in JCAF’s Context service and
Satyanarayanan propose in [77]. The reason we have not done this is mainly the small
scale implementation, which do not suffer from network congestion.

In our theoretical description of a Context service (Section 14.1), we have mainly mixed
elements from SWP and JCAF.

Ontologies (Section 5.3.2) can be used to describe the meanings, or semantics of context,
and thereby reason about contextual relations. The context infrastructure provided by
Henricksen et al. do not seem to provide such posibilities. Here, entities are connected to
attributes and other entities through associations, but we are not able to reason about,
e.g., how related the attributes of different entities are (only a textual description is
provided). We think it could be interesting to introduce ontologies into this model, to
enable such reasoning techniques.

Creek seems to use an ontology network for describing all contextual information in a
classification fashion. This also appears like an exciting idea, which reminds of the neurons
and synapses in the brain.

SOCAM proposes an ontology-oriented approach to support context reasoning and context
knowledge sharing. The middleware uses a central server to fetch context from distributed
context providers. This context information is then not situated, which conflicts with the
non-centralised properties of mobile peer-to-peer (Section 5.2.1). It also violates with
Satyanarayanan’s ideas of localised scalability in pervasive computing (Section 3.3).

CoBrA is an agent-based architecture for supporting context-aware systems in Smart
spaces. Central to CoBrA is a server agent called context broker. Its role is to main-
tain a consistent model of context that can be shared by all computing entities in the
environment. This is similar to what both the Context widget and Context service can
provide.

A language that can describe ontologies is the Ontology Web language (OWL). A part of
it, the Resource description framework (RDF), is used to write ontologies to files.

We describe resource types by classifications, through the use of ontologies written in the
RDF language (Section 5.3.1 and 5.3.2).

16.2 Planning

According to Bardram [12] and Suchman [91], plans are a resource for guidance and in
the making and execution of activities. They should be dynamic, continually adapting as
activities are executed, reflecting successful work and contain suggested improvements. If
these actions are fulfilled, a plan will be a highly reusable asset when scheduling workflows.

Activity theory emphasise on the connection between plans and the contextual conditions
for realising these plans. Bardram discuss how plans are made out of situated actions,
and in turn are realised in situ. He characterise this as situated planning.

Situated planning constitutes a complex research area, frequently addressed by the use of
multi-agent systems (Section 5.2.3) to ensure cooperation in the process.

Agents (Section 5.2.3) could help a lot in the planning work. They could fetch other
entities’ plans and start planning on that basis. They could actually perform different

155

Discussion

parts of the plan, both to serve their host and to help others. If other actors change the
context unfortunately, agents could change the context state back so that the initial plan
still could be carried out (avoiding rescheduling).

Regarding the key concepts of multiagent systems and service oriented computing the
following are taken into account:

Ontologies are adopted to facilitate interoperation and dynamic reuse of artifacts
such as activities and experience.

Process modelling is the foundation for planning and scheduling, which is needed to
allocate resources based on work and context states.

The prototype workflow is adaptive because it can change dynamically due to con-
textual triggers.

The service protocols we use (choreography) for entities (services) to interact, is
based on JXTA (Section 6.4) and XML, which seems like a fair choice based on the
open source and platform independent profile on the implementation.

We have not used directories or facilitators because of the low scale implementation,
where we are served just as well by letting entities interact in a MANet fashion.

Quality-of-service measures are proposed to be a part of each activity, where different
fidelities can be achieved through different stated constraints and success criteria.

However, we do not use agents when addressing some of the issues in this field. The
Scheduling service (Chapter 15) make plans based on how future context will look like
when combining already known workflows in different ways. From this, a plan is selected
that combines context state and workflow execution in the best possible way.

This constitutes the foundation for setting up a best possible schedule for all activities
with regards on total resource use in the relevant environment (Smart space). Resources
are supposed to have their own schedules, but they do not necessarily have to be ”smart”,
hence control which entities are granted access. This can be taken care of by an Arbitration
service (Part III) where the involved parties agrees on a solution.

Bardram provides some guidelines for producing and altering plans. The workflow compo-
nent in the prototype implementation (Part III) supports in situ construction and recon-
figuration. This makes it ready for adaptive workflow techniques based on the dynamic
environment, and thereby supports Bardram’s chain of thoughts about situated planning.

As a part in the process of obtaining workflows in an automatic fashion, we have come up
with proposals for how to obtain activities based on only knowing what goal to achieve
(Section 14.2).

By using the Markovian model’s assumption that the present state is sufficient to predict
future state evolution, the Scheduling service represents an approximated situated plan-
ning approach through assumptions. As knowledge about how activities influence context
grows better with learning, context predictions will also get better.

The scheduler is supposed to prevent conflicts and use resources in the best possible
way. Nevertheless, when meeting a conflict state based on other actors interference in the
environment, the Arbitration service is invoked. This service is implemented as our proof-
of-concept prototype, and uses CBR in the mediate process to fetch and reuse previously

156

16.3 Arbitration

solved conflicts. Ontologies are then used to beneficial exploit previously solutions which
are similar to the new conflict, and therefore can be used directly or adapted to fit the
new case.

We have not elaborated any specific solution in sharing of plans, but actors should know
each other’s plans to be able to adjust own plans accordingly and cooperate in executing
activities and sharing results.

By continually revising and evolving plans and schedules according to the contextual
conditions of the environment, our combined architecture supports adaptive workflow and
situated planning.

16.3 Arbitration

We developed a proof-of-concept application to learn about different factors of arbitration
between clients. We started out with our work from the Architectural approaches sup-
porting scheduling and arbitration of workflow processes in a cooperative environment [75]
prestudy. Here we outlined an architecture that supports scheduling and arbitration using
artificial intelligence, but did not go into details of the inner workings and challenges of
our approach.

Because of the shear size of the work implementing the arbitration service, we ended
up limiting it to only this. The scheduler service has been updated with new theories,
knowledge and ideas as these have come to us.

The challenge was then to produce a proof-of-concept implementation to learn more about
the specifics of arbitration and to test if our architectural approach was viable.

First we created a peer-to-peer network of all devices running our implementation. Sec-
ond, was to make context sources, sensors, and actuators available. None of the considered
technologies for context-awareness were implemented. This was because the technologies
did not have adequate support, were to complex for our use, or required too much inte-
gration code. We attempted to integrate JCAF without much success. The evaluation
of JCAF can be found in Section 16.3. Since the Resource package (Section 12.5) could
fill this role without much change, we decided to use this to achieve context-awareness
instead.

Context information is classified with ontologies for type and location. This is the same
approach as, amongst others, CoBrA and SOCAM have used. This greatly increases our
applications ability to handle different implementations of a specific type, search, and
reason around context sources. This is by us considered as a must for an arbitration
service to be able to reason around resource requirements of workflows and conflicts.

Another finding was context integrity. When context information is created and main-
tained by fluctuating peers rather that stationary servers in one location, context frame-
works might find themselves in a situation where two systems have defined the same entity
with appurtenant information. When searching or reasoning on context, this appurtenant
information must be merged, so that all context information is available in one deductive
chain. Likewise, when one peer leaves the location, it must pass its discovered context
information onto peers that still have interest in it. This is a challenge for context systems
of today.

The biggest challenge we faced was to represent a conflict in a CBR case. After brain-

157

Discussion

storming on different representation, we found no obvious solution that were dynamic
enough to represent all possible scenarios we came up with. The closest we came was
the use of ontologies. For each case, both sides workflow, goal or subactivity that, when
combined, results in a conflict, is represented by an ontology class or individual. This
requires an ontology network depicting the nature of the activity to be created and passed
with the workflow definitions.

Using this solution, we found that cases that are similar in nature could be detected even
though the context snapshots were inherently different.

This presents us with both benefits and drawbacks. The most eminent drawbacks are
that the ontology network must be well defined and that workflows must be tagged with
the right individual. The benefits are that only two values are needed to store a repre-
sentation of a conflict. It also has low storage costs, low search costs, and a high degree
of accountability. We have effectively reduced the complex comparison of two dynamic
tree structures with possibly different datatypes and structures, into comparing only the
distance between two ontology individuals in a network.

Good as this is, it is not enough to say that a conflict is impending. It may be dependent
on the state of context information. Lets use our room temperature scenario in Section
9.1. This conflict could be described by the ontology individual Control temperature. If
both actors in the scenario are in the same room there is a conflict, but if they are in
neighbouring rooms there is no conflict. A conflict description must therefor take into
account some other criterias to say that a conflict is present. This type of information is
as complex as the description of a workflows nature, but not as easy to abstract into one
ontology individual.

Our solution to this problem was to introduce contextual or state triggers. In our CBR
cases there are two, namely location and participants. In the implementation description,
the location trigger is called a filter. This is to describe the programmatic function and
not introduce a new and possibly confusing term there. The list of triggers for each case
should be dynamic and support nesting. Each trigger should have information on what
context or state to look up, preferably by use of general domain knowledge, and how to
compare it.

Our triggers were statically defined in the CBR case base as jColibri does not support
dynamic case structures without comprehensive customisation. The location trigger was
defined as a double ranging in the interval [0, 1]. This trigger concerns location nearness.
Locations are, in our implementation, also defined by ontologies. The nearness of two
places is defined as the distance in the ontology network. The value 1.0 means the
same location, 0.75 means very close and so on. The trigger returns true if the location
nearness of the conflicting parties is close, e.g. higher, than the one defined in the conflict
description. This way you can ignore the conflict unless they are in the same location.

Triggers can be seen as conditions that either contribute to the similarity or excludes the
case. Since many triggers may act as a set of rules we propose expert systems supporting
fuzzy logic in combination with case based reasoning. The execution effective expert
systems can filter out a set of cases based on their triggers that can later be searched
by the CBR implementation. This would dramatically reduce the computational power
needed to perform conflict retrieval. The fuzzy logic support renders the triggers of cases
able to use fuzzy terms and reasoning during case retrieval.

When running the scenario in Section 9.1 (Scenario 1) we found that our implementation,
as described in Chapter 12, was able to detect conflicts using the location trigger as

158

16.3 Arbitration

intended. When the clients at a later time tried to control the temperature of a common
but different location, it only informed of and performed arbitration on the conflict. This
was because it already new about the conflict from running Scenario 1.

The use of ontologies to classify activities and transfer knowledge between domains were
also tested. When we ran the scenario in Section 9.2 (Scenario 2) after Scenario 1, it
found that the nature of the activities in the known conflict from Scenario 1 were very
close to the ones being currently executed in the room. It detected and informed the
user of a possible conflict and a possible solution to it. When the solution was chosen,
the triggers and solution of the known conflict was copied over to a new case with the
activity classifications of the newly discovered conflict. This showed that is was able to
predict and learn using general domain knowledge, as it was able to detect the conflict
in Scenario 2 only knowing about the conflict from Scenario 1. Using the implemented
general arbitration strategy of adaption, it was also able to solve the newly discovered
conflict and the newly learned case was then stored in persistency.

The scenario in Section 9.3 was not tested, but has been taken into account when designing
the proof-of-concept implementation. In theory it should be able to solve the conflict by
recognizing the conflict because it looks ahead in the workflow. Since the solutions are
sensitive to the order of the actions involved in the conflict, it can always put one specific
action on wait when in conflict with another. This means that it does not matter which
forklift that discovers the conflict, the one outside the corridor will always wait as long as
this is the desired solution. The second solution proposed in the scenario is not supported
by our proof-of-concept implementation.

We have not developed a viable strategy for storing the solution to a conflict in our CBR
case base. The reasons for this are several:

1. It was not the focus of our research.

2. We did not implement and test our solution with a fully developed workflow enact-
ment system.

3. Good solutions will require advanced workflow adaption. A system that supports
this along with the classifications of activities does not exist today and would be
required to create a good solution structure.

However, we have seen that using ontologies to describe the solution, can be useful. It
can then perform adaption on workflows without knowing anything about the workflows
up front. Our adaption strategy merged workflows from two clients by taking the mean
value of all numeric variables in the workflows with common identifier. This is a very
basic and crude solution, but goes to show that some conflicts can be solved based on
the mere nature of the solution strategy. We do not propose this as a final solution to
the solution description, but combined with an XML adaption or solution description, it
could resourcefully resolve complex problems.

The system has no problem choosing a solution when there is only one well suited. How-
ever, we believe that most of the time in real life, there will be many solutions to a problem.
When several solutions are available for a conflict and the CBR system is unable to sepa-
rate them, we need another way to select the best solution. For this we propose a scoring
mechanism like the one presented in our depth study [75]. This scoring mechanism could
take into account several factors like security, reasoning around the current situation, em-
pirical use personal, cultural, and global, and other relevant factors. A total score of how

159

Discussion

relevant the solution is could then be the basis for a selection of a solution. This would
relieve human interaction, which is highly desirable.

Requirements

Communication

F1 Support an open communication standard, i.e., not be bound by hardware
or proprietary standards.
This requirement is fulfilled with the implementation of JXTA. This
technology is open source and the API is abstracted away from hard-
ware and protocols. It supports interoperability across different peer-
to-peer systems and communities, is platform independent supporting
multiple/diverse languages, systems, and networks, and is envisioned for
every digital device.

F2 Support ad-hoc, in-situ connecting and disconnecting of clients.
This requirement is fulfilled by many components of the implementa-
tion. First, JXTA supports this nature, secondly all components that
communicate with other peers are written so they cancel their current
task that required communication with other clients, if the connection
is lost.

F3 Software components on a client should be addressable from the network.
Each component that can receive messages, creates an input pipe. The
pipe is named accordingly, so that other clients can search it up and
address it directly.

F4 The software should not be dependant on a communication service al-
ways being present.
Some parts of the software are dependent in nature. But the none
dependent parts, like the CBR subsystem, workflow enactment and logs
work without a connection present.

Context

F5 The system needs to be context aware.
The system is made context-aware through the use of the Resource pack-
age described in Section 12.5. This is though not an ideal context aware-
ness as this also has a lot of the weaknesses, described in the discussion
on our proof-of-concept implementation, of JCAF.

F6 Share context with other clients.
This is supported through advertisement of the resource communication
pipes. A resource is available to everyone who are members of the
projects peer group.

160

16.3 Arbitration

F7 Should use the communication component.
Resources uses JXTA for communication.

Resources

F8 Incorporate sensors, actuators and other knowledge information.
Because of resources in practice is RMI over JXTA it is possible to
implement nearly any component desired.

F9 Should use the existing communication component.
Resource uses JXTA for communication.

F10 Distribution of resource information and/or discovery of resources in
the environment.
This is handled by JXTA. A resource creates a server pipe with a de-
scriptive pipe name. The pipe advertisement is made searchable in the
entire project peer group. All clients can connect and use the resource.

Workflow enactment

F11 Enact basic workflows.
Through the packages described in Section 12.6, a basic workflow struc-
ture and enactment is defined.

F12 Handle start, pause, stop of workflows.
These functions are implemented through the packages described in Sec-
tion 12.6 on workflows, workflow enactment and scheduling.

F13 Handle dynamic changes to workflows.
A workflow can be dynamically changed during execution without stop-
ping or pausing it. Functionality for each ExecutableActivity and State-
ment can be added, removed or changed.

F14 Monitoring of workflows executed remotely.
This is implemented through the RemoteWorkflowServer and Remote-
WorkflowConnector classes.

F15 Read and manipulate resources.
This functionality is implemented in the statements FindResource and
UseResource described in Section 12.6.

Arbitration

F16 Find similar conflicts in the repository.

161

Discussion

This is achieved through jColibri in combination with ontology classifi-
cations with customized similarity methods and the filters, also called
triggers, described in Section 12.7.

F17 Persistent repository.
This requirement is fulfilled by jColibri with our customisation of the
Connector.

F18 Order similar conflicts according to the degree of similarity.
Done by the similarity function of jColibri and our customizations. A
value in the interval [1, 0] describes the degree of similarity.

F19 Adapt prior solutions to new conflicts and store them in the repository.
This is handled by the Arbitration class. It will create a new instance
of a conflict-solution case and copy the new conflict description to that.
This case is then stored, and thereby learned.

F20 Call for solution if none is found.
This requirement is not implemented in our proof-of-concept applica-
tion. New conflicts, not a result of an adaption, must be manually
entered in the conflict repository.

F21 Be able to discover conflicts between other clients and itself.
This requirement is achieved in combination of the ConflictDiscoverer
and ArbitrationCBR class, as described in Section 12.7.

F22 Negotiate which client is responsible for the arbitration.
This has not been implemented. In our implementation, the client that
discoverers the conflict will control the arbitration process.

F23 Make use of other clients knowledge.
This is achieved by sharing solutions to conflicts that arises. Either if
it is already defined or if it is a newly discovered and adapted conflict.
They can also use the knowledge from resources residing on another
client.

F24 Distribute solution to participants so that they also learn.
This is done during the arbitration process.

F25 Must be able to remove, add or adapt workflows in the workflow enact-
ment component.
The Arbitration class has full access to the workflow enactment subsys-
tem, and is able to add, remove and adapt workflows.

162

16.3 Arbitration

Technology evaluation

JXTA

We started the implementation by setting up JXTA and creating a peer discovery service
that kept track of all peers that were connected to our peer group. Setting up JXTA
is quite complex but good tutorials exist. Since our peer group was open (without any
security) it was fairly easy to connect.

During implementation of the peer discovery service, a problem regarding caching of
advertisements occurred. JXTA caches all found advertisements and passes them on to
the other peer when a discovery request is received.

This results in that advertisements from peers that are no longer part of the network is
still returned through other peers on the network.

We wanted to keep an updated list of all peers currently on the network. The list should
have the property of keeping adding a peer when found, keeping it in the list while
connected, and remove it when it is disconnected.

Since the peers do not inform others when they disconnect we needed to create a list that
was synchronized with periodically request for peer advertisements.

To overcome the problem of caching of peers, we needed to flush all peer advertisements
from the local repository. The implemented method of flushing all advertisements of one
type did not seem to work as expected.

The solution was to remove all advertisements of remote peers, locally, after they were
discovered and synchronized with the list. This way, only the advertisement of our local
peer is sent to others when a request is received.

Each entry in the peer list, has a timeout variable that hold the count of discovery requests
that have been sent since the last advertisement was received. If this passed a defined
amount, it will assume that the peer has disconnected and remove it from the list.

The same problem occurred for pipe advertisements but was a known situation at that
time and therefor easy to overcome.

To set up a pipe was an easy affair that only needed a few lines of code. After fiddling
around with peer advertisements, and discovering a solution, it was also easy to look
up pipe advertisements and keep these advertisements up to date. Four types of pipes
were implemented. Input pipe, output pipe, server pipe and bidirectional pipe. All were
easily implemented, but especially easy bidirectional communication was achieved with
the combination of JxtaServerPipe and JxtaBiDiPipe.

One of the great features of JXTA is that it is implemented for both J2SE, J2ME and
C/C++/C#. This allows a greater diversity of clients and other implementations. Com-
bined with the ability to form peer-to-peer networks over Internet and through firewalls,
along with protocol and carrier independencies, makes it a powerful tool.

JCAF

This looked as the optimal solution. A context aware framework for Java, developed by
one of the leading scientist in the field of context, Jakob E. Bardram. After some time we
found the framework not suited for our implementation. This is based on several different
factors.

163

Discussion

When implementing the solution, we would have to make some work-arounds to make the
framework suitable. Although a fairly good basic tutorial was available, the Javadoc was
almost not existing and very poorly written. This made the workarounds more cumber-
some.

To implement and use the program from within our code was very easy. With the supplied
tutorial it took only a few lines of code to get started.

JCAF supports linking several context sources together. It is built upon the thought that
there are some context servers and many consumers. These servers can be interconnected
explicitly via JavaRMI using IP addresses. This practise is in contrast to our implemen-
tation that needs context to be maintained in a peer-to-peer fashion, without dedicated
servers.

JXTA is designed to communicate over several different communication technologies and
protocols. To implement context sources that depend on the IP protocol was therefor not
desirable.

JCAF does not support pluggable communication components. This would have solved
the two drawbacks mentioned above.

The framework supports adding listeners to entities in context. This could either be done
by adding a listener to a single entity or adding a listener to the context server for all
entities. It will fire events for changes in the entities.

What this listener service greatly lacks, is the possibility to add a listener to the actual
context server, possibly with filters, to be informed of additions, changes, and removals of
entities. The add listener method thought to do this only adds to the entities currently
present in the context. No events are fired when a new entity is added.

If your application uses context information, it needs to be able to search all context
sources for the desired information or in some way deduce it from other entities.

There exists only one method for looking up context information in JCAF. This uses only
the id of the entity as a parameter and does not, as far as we know, support wildcards.
Discovery of prior unknown sources and types of context is therefor very cumbersome.
This severely reduces the utilitarian value of the whole context framework, and is by
us considered to render JCAF unusable in our implementation. A workaround could be
implemented, but the solution would be much less than ideal as the search would be
implemented over JXTA, resulting in context being managed, searched and used over
both RMI and JXTA.

This framework has a very good representation of context but due to our need for search-
able context sources rather that relations between context elements, the decision to im-
plement context as Resources (See Section 12.5) was made.

jColibri

jColibri comes with Javadoc documentation. This is incomplete as only some methods
are documented.

On their web cite there are some video tutorials that do help you get started, even though
these, as the Javadoc, seems incomplete. The best method to learn how to use jColibri
ended up to be the try and fail -method.

We could not find any instructions on how to implement jColibri in our application. From

164

16.3 Arbitration

the jColibri graphical interface you could set up the cycles and export it to Java code.
This java code did not let itself start with our implementation without errors. There were
a lot of configuration files and classes that needed to be copied to our project folder. We
ended up copying all code and configuration folders from jColibri. This meant that the
extra components and examples also followed. Some editing of the exported java file was
also needed to get the paths correct.

jColibri should come with description on how to implement it as it clearly is intended also
to be used in stand-alone java applications.

When jColibri finally was implemented and started there was time to tweak it to fit our
application. This showed to be more complicated that expected. The configuration of
jColibri is an endless list of adding statements to the configuration that you will run later
on. These statements were not added as java object instances but as complete string class
references for jColibri to instantiate. All this code was placed in one method and was
hard to get on top of.

The modifiability of jColibri is very good. Every task and statements of every step is
modifiable.

jColibri supports the use of ontologies through Jena. The standard connector should be
able to write and read ontology individuals to and from persistent storage. Nevertheless,
it did not, reason unknown, manage to restore the individuals from storage. No error
messages were seen, and a solution not found. We therefor ended up writing our own
connector.

To achieve the desired functionality, we needed to exchange some of the tasks and state-
ments with our own. Many extensions were written before we ended up with using only
the following four.

We had to write our own connector. It is the component that reads and writes the case
base to persistent storage. The reason was problems with reading of ontology individuals.

The out of the box methods for calculating the similarity of two ontologies did not function
as expected. This was possibly because a case has two individuals from the same tree.
This is a restriction in jColibri, possibly not intentionally. It required us to copy the
classes and individuals in the ontology tree to two separate root nodes. Fortunately, this
can be done in RDF by only referencing so that changes are reflected in both branches.

After this the similarity function still did not functions as expected. We therefor ended up
writing a task to calculate the similarity between to ontology individuals. The description
of this task can be found in Section 12.7.2.

The properties that jColibri calculates the similarity from is constructed as a tree. The
default method of jColibri is to calculate the mean value for each element in a node, and
propagate up to one single mean value of the top of the tree. This methods excludes the
possibility of having a value that defines the case as not similar, independent of the other
values. We could have created our own task for this merging of leaf values as well, but
ended up inserting a filter in the chain of tasks to achieve our goal. The similarity tasks
of location and participants was therefor implemented always returning 1.0.

jColibri was clearly implemented to perform a complete cycle on each call. The jColibri
instance has only one context. In this context all the operations on cases are done. It
first loads all cases into context, calculates similarity, chooses the best matches, performs
adaption using the query object also in context, before it performs retention. During all
these tasks the working cases-list is updated. Since we have a multi-thread model, there

165

Discussion

is a great chance that one thread is in the process of adapting the cases in the working
cases-list whilst another thread clears the context and loads all the old cases. The access
to jColibri therefor had to become thread-safe.

This was done, in a somewhat clumsy, but the only viable way. Since our implementation
could not guarantee that a cycle is completed without breaks for user input and slow
communication lines, the cycle had to be broken up into pieces, letting each thread execute
only parts of the cycle. This was achieved by bypassing jColibri on some things, like
adaption of cases. Each synchronized access point to a part of the cycle clears the context
and prepares it, by restoring working cases and query before it continues the execution of
that cycles.

This is considered by us as a great weakness of jColibri. A separate context should be
created for each invocation of a cycle, so that it easily can be used in a multi-threaded
application.

jColibri has it own definition of a case and query. These objects have a structure where
you can set key and value pairs to create a tree of properties. To read values out of these
objects required several lines of code, was cumbersome and provided no type security.

Most programs use an internal object to represent a case and solutions. We had to write
our own converter between jColibri’s case representation and our own.

Since so much of the CBR-cycle needs to be customized, jColibri could consider to support
user created objects to be better integrated with the application using it.

Jena

Jena comes as a part of and is instantiated and configured with jColibri. We have not
discovered any disadvantages with Jena and have only positive feedback about the ease
of use and good overview of this component.

16.4 Research questions

RQ1

How can we represent a conflict between two clients in a dynamic and generic way in a
Case-based Reasoning case repository, so it can:

RQ1.1

Recognize the same conflict in a different context?

Storing a representation of a situation is not too difficult. The problem lies within filtering
out the important information and storing it. This should not only be done to save storage
space, but mostly because some contextual information is not important and therefore
can hinder the situation from being recognized. E.g., you want to recognise a control
temperature conflict regardless of a chair’s position in the room.

The selection of these properties, or contextual elements is subject to constant research
and is not a part of our study. We only see how this information can be stored in a case

166

16.4 Research questions

repository when it has been identified.

Our solution is to represent the nature of the conflicting workflows or activities as on-
tologies in the case-base. By doing this we are able to predict conflicts in workflows or
activities of similar nature.

In the case-base, the contextual states that identify a conflict are stored as a tree. These
are called contextual or state triggers, as they may check for more than just context.
Triggers must contain the general domain knowledge of the context entity so they can
reason for interchangeable context entities and the state that must be satisfied.

An expert system should sit between the case repository and the main CBR cycle. It should
check contextual and state triggers and filter the list of cases to achieve efficiency. The
computer-intensive process of CBR similarity-computation could be limited to a minimum
by being used in combination with the very cost effective expert system.

RQ1.2

Predict a possible conflict that is similar in nature to ones that are known?

The proposed answer to this question also include the use of ontologies. The workflows’ or
activities’ classifications that make up the conflict description depict their nature. Classi-
fications in proximity should encounter the same difficulties in concurrent and cooperative
situations.

As a result of the classifications, it is possible to derive and possible foresee problems
that are not composed of the same workflows or activities as the ones known. Using this
technique, the system is able to learn a new unknown conflict by itself, adapt, and invoke
a solution.

There is a great challenge to this approach. That is to keep the general domain knowledge
consistent, correct and maintain the semantic quality in a network where changes can be
made by anyone.

RQ2

How can we support in situ planning of work processes with minimal user interference?

In the quest of a system which requires a minimum of interference from the user when
planning and executing work, a technique must be elaborated that can automate this
based on available knowledge and information.

Our prerequisites in the elaboration of this question are that workflows are made up by a
chain of activities, the motivation for a workflow is to achieve a goal, and that workflows
are the constituent parts of a plan. We derive the following subquestions:

RQ2.1

What mechanisms are needed to automatically construct workflows with only the desired
goal as a starting point?

167

Discussion

Basic criteria for being able to address this question is the presence of contextual informa-
tion to base decisions upon, and a method to obtain such information. The requirement
of minimal user interference indicates that activities must be obtained from some sort of
knowledge or experience base. An activity must then have certain attributes that makes
it possible to filter relevant activities from those not suited for achieving the goal.

We believe that one attribute should contain information of contextual requirements that
must be satisfied before the activity can be executed. Another attribute should be success
criteria, which give us an understanding of what the activity aims to achieve. Provided
fidelity is also be relevant where quality is important for fulfilling the goal. As activities
are reusable assets, it is also of interest to know about how well an activity accomplish
its function.

With access to this information, and available activities, we have the basics for finding and
adapting the activities that best suits the contextual situation and results in achievement
of the workflow’s goal.

RQ2.2

How can existing technologies be combined to support automatic workflow construction?

Gathering contextual information is proposed done by a Context service (Section 14.1),
which is based on already existing research.

To be able to provide the mentioned attributes in an activity description, we have ended
up with a structure based on the Resource description framework (Section 5.3.1 and 5.3.2).
This language supports ontologies (Section 5.3.2), which allows measuring of hierarchical
relationships with other activities.

How an activity has actually performed and what results it has delivered, can be measured
by using Reinforcement learning (Section 5.4.5). This information should probably be
included into the activity description along with the other attributes. Such information
could then be used in finding the best suitable activity amongst similar activities.

The actual proposition for finding suitable activities when assembling a workflow is based
on Case-based reasoning. By saving experience about which activities best satisfies what
goal, makes us capable of reusing whole workflows. If no complete workflows exists that
satisfy the goal, it is possible to construct a workflow, based on activitie’s attribute values,
by choosing activities that constitutes the difference in current situation and the goal’s
desired situation.

RQ2.3

How can workflows be made adaptive based on context?

Situated planning as described by Bardram [12], is a consequence of actions performed in
situ which changes the contextual conditions.

To keep a workflow situated (executable in the current situation) while context changes,
it needs to be adaptive. An adaptive workflow must be able to exchange one or more of
the activities that represents its constituent parts, so that constraints are satisfied.

By using the mechanisms and technology refered to in RQ2.1 and RQ2.2, it should be

168

16.5 Research methods

possible to obtain better suited activities and insert these to the relevant workflow. How-
ever, it is not desirable with workflow adaption whenever a contextual parameter changes.
To make workflows more robust, we suggest the use of Expert systems (Section 5.4.2) with
Fuzzy logic (Section 5.4.4) when interpreting an activity’s constraints and success criteria.

However, exceptions in the process will occur from time to time because of contextual
change. For obtaining substitute activities we suggest case-based reasoning or soft case-
based reasoning which have better capabilities and include fuzzy logic amongst other tech-
niques.

RQ2.4

How to ensure minimal replanning?

Replanning takes place when the current plan cannot execute due to context conditions.
Reordering and finding combinations of workflows that works, or re-constructing the rel-
evant workflows are then alternatives for getting a functional plan.

However, such replanning is resource demanding, and should therefore be kept at a mini-
mum. We suggest an alternative approach, the Scheduling service, where contextual state
are simulated based on activities’ assumed influence on context (Chapter 15). Information
of an activity’s context influence should also be in its description, as stipulated in RQ2.1.
The creation and improvement of such information could be taken care of by Artificial
neural nets (Section 5.4.6) and Reinforcement learning (Section 5.4.5).

Another means to achieve less replanning is to avoid conflicts. If a conflict occur amongst
actors, replanning is most likely an outcome for one or more parties. One way of preventing
conflicts, is to share schedules with other entities within the perimeter of the relevant
environment.. By doing this, other planning services can take these schedules into account
when planning. With many actors within an area, this could however lead to massive
distribution of schedules, and diminish the value of the approach. Letting resources keep
an up to date schedule for when they are available and when they are booked by some
entity, seems like a more reasonable approach.

When conflicts arise, they need to be solved. The negotiation process is conducted by the
proposed and implemented Arbitration service (Part III). How this solves conflicts will
also affect the need of replanning.

16.5 Research methods

Here we will evaluate our research methods. Figure 2.1 shows how the different methods
have been used during our project.

RM1 Literature survey

We have used RM1 to read up on theories and technologies that will help us understand
the problem domain. Doing this, we have gained valuable knowledge that has helped us
construct our research questions and thereby also helped us form our scenarios. During our
project, this method has been used several times to gain knowledge on newly discovered
topics.

169

Discussion

RM2 Descriptive study

This method has been used to go deeper into the problem domain and develop it further.
When selecting our scenarios, we used RM2 togheter with the results of RM1 to identify
what key points the scenario had to contain.

Using a descriptive study, we grew more familiar with the state-of-the-art from our re-
searchfield. This helped us form our problem definiton, which again was a guidance for
our research questions.

This method also directly contributed to the making of our own contribution and conclu-
sion.

RM3 Analytical study

Having obtained a deeper knowledge of the domain in question and formed research ques-
tions, RM3 was used to break our findings into more understandable pieces. We then
restructured these and added our own thoughts to the work.

During the implementation phase, analytical study contributed to the decisions that were
taken.

RM4 Scenario building

We have created scenarios to help the readers, and our selves, understand how the system
would ideally work and the problems that have to be overcome.

The scenarios were the foundation for the planning, architecural design, requirements and
development of our proof-of-concept implementation.

RM5 Requirements elicitation – Greenfield engineering

RM5 was used to extract requirements from the constructed scenarios and the prior work
from our prestudy [75].

170

CHAPTER 17

Conclusion

In this chapter we summarise the most important techniques and results provided in
the report. We chose to present these by the two main parts, which is planning and
arbitration. Because these are somehow interconnected, a slight overlapping takes place
while describing some topics.

Planning

Planning of activities with respect to the current context, or situated planning as described
by Bardram [12], is a dynamic and intricate process. We have divided this area into several
parts to make it more manageable.

The basic challenge is to obtain the current environmental context. This is the foundation
for reasoning about how planning of work processes should change with the environmental
state. For this purpose, we have elaborated a Context service (Section 14.1) derived from
previous research conducted mainly by Sørensen et al. (SWP) [88, 89], Dey (Context
Toolkit) [33, 35], and Bardram (JCAF) [14].

A comparison of components from these frameworks has made us able to merge what we
consider the best solutions in the different approaches. This makes us able to provide one
solution that better suits our comprehension of such a service’s responsibilities. We believe
important roles for a Context service is to provide only relevant context information,
with the correct abstraction, to the right user. In addition, we believe that a Context
service should be able to reside both locally on a client (serving personalised context)
and in a Smart space (serving environmental context). Storing of historical context is
also considered for reasoning purposes, however, it should not be stored uncritical due to
resource constraints.

The resulting Context service architecture is more concrete than the one described in the
SWP architecture, but more conceptual than the one in implemented in JCAF. The idea
of storing historical context for reasoning purposes is fetched from the Context toolkit,
but not represented in the architecture. Because an implementation of the Context service
has not been carried out, we lack information of how suitable the proposed architecture is

171

Conclusion

for the intended area of application. Techniques for achieving the suggested functionality
does however exist.

Activities make up the constituent parts in a work process, and can be put together to
achieve a goal (achieve a certain change in context). We propose that an activity should
contain clearly defined actions (what it will do to achieve its part of the goal), constraints
(preconditions for when certain tasks can or cannot happen), success criteria (postcondi-
tions for when a task is fulfilled), fidelity (the activity’s QoS), contextual influence (how
an activity are anticipated to affect context), scoring values (to help in arbitration deci-
sions), and ontologies describing different parts of arbitration proceedings (classifications
of the activity’s nature, regarding e.g. conflicts and problem solving). Activities can be
described by using XML.

The information residing in an activity description is vital for its user. The properties
mentioned here are those we find interesting regarding our work and are used by both the
planning and reasoning mechanisms we describe. Many other properties could possibly
be included to support other functionality in other services. An activity’s amount of
inherent information directly affects network congestion when exchanged amongst peers.
If activity properties are to be stored in the actual activity description or other places like
on centralised servers, is not elaborated. What is important, is that such information is
always obtainable and linked to its respective activity so that activities can be reusable
assets no matter where they reside in the environment.

The motivation for a workflow is represented by a goal. A workflow is further built up
by activities that are able to achieve this goal when executed. In order to automate the
creation of workflows, the workflows’ constituent activities needs to be obtained. From
this, a requirement follows that activities are suited for reaching the goal in the relevant
contextual situation.

The approach we have chosen for finding suitable workflows based on a goal, includes
several techniques. One of these is case-based reasoning. This learning and reasoning
mechanism is able to find the most appropriate solutions from a case-base of previously
created workflows. However, this approach requires that a suitable workflow has been
previously provided.

If suitable workflows are not available through this approach, alternative solutions can be
provided by building workflows from single activities (derived from other workflows). By
using information provided in activity descriptions (described above), it is possible to find
a combination of available activities which satisfies a workflow’s goal and the contextual
situation.

Ontologies provide the possibility of relating activities to each other based on classification,
making it easier to compare and find the activities that are needed. Reinforcement learning
could be used to rate workflows and activities based on their performance, which then
could be yet another information property in an activity description.

The success of an approach to automatically build workflows is rooted in how to represent
an activity to make it publicly applicable for this purpose. We believe this is an important
challenge to be addressed.

Actions taken in an environment affects the context. Changes in context may prevent
already generated workflows from executing. Workflow adaption is then the process where
activities in a workflow are modified or exchanged to suit the new contextual state.

In order to minimise the need for adaption, we suggest that expert systems along with

172

fuzzy logic is used when deciding if the contextual state is out of bounds compared to the
activity constraints. This can make the system more tolerant to changes, hence less prone
to exceptions.

However, when a workflow is no longer capable of execution due to changes in context,
it should adapt to the new situation. For this we suggest to use the same approach as
when automatically fetching activities to build workflows. The weakness in this approach
becomes visible when no good substitutes exists. Then suitable activities must be added
manually by the user.

When workflows are generated and up to date, they are assembled into a plan in a way
that best utilises resources by the Scheduling service (Chapter 15). Information about
how context will change in the environment can be obtained based on the knowledge
of how other actors plan on using resources. This knowledge can be obtained from the
relevant resources by requesting their schedules. When knowing which activities that will
be executed in the environment in a certain time span, each activity’s assumed context
influence can be used to build a total context extension. This makes it possible to plan
ahead in a situated planning manner.

One weakness with how this whole planning process is suggested done, is the demand for
computational power when many workflows are to be planned and activities obtained. In
addition, continually updating other actor’s schedules to avoid conflicts and ensure correct
context simulation, can be network demanding and then very power consuming.

Arbitration

We set out to find a way to represent a conflict between two clients in a dynamic and
generic way in a case-based reasoning case repository. The complexity of a situation makes
this difficult as a system is unable to know which information is important to recognise
a conflict. If information is stored about the conflict that is not comparable between the
different instances of the same conflict, it is impossible for the system to recognise it.
Another problem is the computational power required to perform continually comparison
of all cases, in constantly growing case repository, to all situations a client is involved
with.

We found that using ontologies to describe the nature of an activity or goal, together
with contextual and state triggers, renders the system able to recognise a known conflict
and predict a similar unknown conflict. By running the scenario in Section 9.2 after the
scenario in Section 9.1, our implementation discovered a conflict not prior known. This
was a direct result of the ontologies depicting the nature of the activities.

Although not implemented in our proof-of-concept implementation, we propose using an
expert system with fuzzy reasoning capabilities to perform initial filtering of cases based
on the defined triggers to dramatically decrease the systems computational requirements.

Each case is described by two ontologies. These depict the nature of the goals or activities
that were the cause of the conflict. The requirements for the ontology network is that
each individual in the network describes an action or goal, and that the nature of the
actions and goals is deductible from it.

When workflows are defined, the correct individual must be associated with the activities
and goals that constitute the workflow. By having this information, a system is able to
reason around the nature of the workflow it is executing and easier detect and predict
conflicts and choose solutions.

173

Conclusion

To match a perceived situation against the cases in the repository is then comprised
of calculating the distance of nature between the matching individuals describing the
current perceived situation and the known conflict. The result is a percentage depicting
the resemblance.

This alone is not enough to constitute a conflict. It may be that the two activities or
goals must be executed in the vicinity of each other to be in a state of conflict. This is
achieved by the contextual and state triggers. A trigger is intended to either inform that
the described conflict can not occur because of the context situation, or contribute to the
calculation of the case similarity.

We propose that triggers can perform a variety of operations and are organised as a
dynamic tree construct. Their nature could be like the static location trigger implemented
in our proof-of-concept application. It filters out cases that does not fulfil the demand of
workflow execution proximity.

Because of the rule nature of triggers, we furthermore suggest that an expert system filters
the list of cases based on triggers before the CBR system performs similarity calculations.
This way, the computational effective expert systems can filter cases that, because of
the triggers, can not occur. This leaves the CBR system with only performing similar-
ity calculations on a reduced set of cases, dramatically improving the conflict searching
process.

When the system learns more and more conflicts and solutions to them, there most likely
will be more than one solution for each conflict. The question is then to select the best
solution for that particular situation. We propose using a scoring mechanism to solve this
problem. The scoring mechanism should take into account several factors like security,
reasoning around the current situation, empirical use of solution both personal, cultural,
and global, and other relevant factors. A total score on the relevance of the solution is
then decisive for the selection of a solution. This would relieve human interaction, which
is highly desirable.

174

CHAPTER 18

Further work

Pervasive computing is a very broad research area where much work is yet to be done. A lot
of work done in this field has focused on providing different architectures and frameworks
on how to best interact with the environment in a pervasive way. These approaches have
been based on ontologies, context reasoning, distributed proxy servers, scarce resources
in mobile device and so on.

Our contribution has been split into an arbitration part, focused on finding a way to store
conflict representations in a CBR repository, and a planning part, elaborating techniques
for achieving automatic situated planning and adaption of work processes. We will now
present future work that is needed to improve on our findings.

General

Keep the general domain knowledge consistent, correct and maintain the semantic
quality in a network where changes can be made by any.

Create a context framework that supports lookup of entities maintained on several
peers in a mobile ad-hoc network.

Arbitration

There is much more to be done in the area of arbitration. Our work focuses on the
discovery of conflicts and not the solution. Although it seems like a good idea, much more
research must be done on context and state triggers to say if it is a viable solution.

Construct solutions
How do people communicate solutions to a device? Is the best way in the form of
a discussion? Could the device store the discussion between conflicting parties and
later use that discussion as a basis for resolving a similar conflict?

175

Further work

Select solutions
Many known conflicts may match a situation and have different solutions. How can
we choose the best amongst these.

Case adaptation
When the device has learned a way to solve a specific problem, how can it adapt
the solution to other problems? Will this be possible without human intervention?

Triggers
Further elaborate the viability of context and state triggers.

Expert systems Investigate if the potential gain of filtering the case-base with a expert
system before passed on to a CBR system.

Large scale tests
Perform large scaled tests of the proof-of-concept implementation. How does it
react when there are many cases in the repository, many peers, and many and large
workflows?

Planning

We think one of the success criteria for a general context-aware system is how easy new
workflows can be defined and executed in order to achieve the user’s goal. Another criteria
is the quality provided to the user when addressing the goal. The following points are
suggestions of what should be pursued and improved within the planning domain presented
in this thesis.

Implement the provided planning approach
We have in this report given a more or less specified set of ideas regarding the whole
lifecycle of obtaining context and work descriptions, for then to plan how to perform
the work and schedule resources for execution. A step towards a generic, context-
aware system would be to create an implementation of the mechanisms described,
possibly using and extending the service-oriented context-aware platform described
in this thesis.

Prediction of context states
We describe a method for how to simulate future context for better planning pur-
poses. This method is based on context influence information connected to each
activity, and assembled into context extensions. An implementation which investi-
gates this technique further are needed in order to improve it and find out if it is a
feasible approach.

Evolve the workflow scope
The CBR based approach for finding suitable workflows requires that similar work-
flows actually exists in the case base. How can we automatically generate new useful
workflows based on already existing workflows in a sparse workflow-base, relieving
users from the input job and drastically improve deployment time and system util-
ity? Filtering mechanisms for preserving a good QoS must also be developed. This
implies to keep the case-base at a reasonable level.

Provide better and faster results
The proposed approach for constructing workflows based on single activities requires

176

that a suitable activity description is provided. What this description should contain
on a general basis, and how this information should be obtained, still needs to bee
addressed in order to create good solutions. In addition, solutions are needed that
promote the use of effective expert systems as filtering mechanism, while focusing
on quality when comparing and selecting similar activities.

177

Further work

178

PART VI

Appendix

179

APPENDIX A

Resource DTD

The DTD, Document Type Definition, describing a resource.

1 < !ELEMENT re sou r c e (type , d e s c r i p t i on , l o ca t i on , method+)>
2 < !ELEMENT type (#PCDATA)>
3 < !ELEMENT de s c r i p t i o n (#PCDATA)>
4 < !ELEMENT lo c a t i o n (#PCDATA)>
5 < !ELEMENT method (parameter)>
6 < !ELEMENT parameter EMPTY>
7

8 < !ATTLIST method name CDATA #REQUIRED>
9 < !ATTLIST method returnType CDATA #REQUIRED>

10 < !ATTLIST parameter type CDATA #REQUIRED>

An example XML file of a resource description.

1 < !DOCTYPE re sou r c e SYSTEM ” re sou r c e . dtd”>
2

3 <r e s ou r c e>
4

5 <type>Temperature sensor</ type>
6 <d e s c r i p t i o n>A temperature s enso r .</ d e s c r i p t i o n>
7 < l o c a t i o n>White room</ l o c a t i o n>
8

9 <method name=”getTemperature ” returnType=”double ”/>
10 <method name=” setTemperature ” returnType=”void ”>
11 <parameter type=”double ”/>
12 </method>
13

14 </ r e sou r c e>

181

182

APPENDIX B

Java resource description example

An example how to write the code that creates an resource description xml like the
example of Appendix A.

1 ResourceDescr ipt ion r e s ou r c eDe s c r i p t i on ;
2 r e s ou r c eDe s c r i p t i on = new ResourceDescr ipt ion () ;
3

4 // Sets the popular description of the resource
5 r e s ou r c eDe s c r i p t i on . s e tDe s c r i p t i on (”A temperature s enso r . ”) ;
6

7 // Set the ontology type of the resource
8 r e s ou r c eDe s c r i p t i on . setType (
9 Framework . o n t o l o g i e s .

10 getInstanceByLocalName (”Temperature sensor ”)
11) ;
12 // Set the ontology based location of the resource
13 r e s ou r c eDe s c r i p t i on . s e tLoca t i on (
14 Framework . o n t o l o g i e s . getInstanceByLocalName (”White room”)
15) ;
16

17 // Add a method for getting the current temperature
18 ResourceMethod getTemperatureMethod = new ResourceMethod () ;
19 getTemperatureMethod . setMethodName (”getTemperature ”) ;
20 getTemperatureMethod . setReturnType (”double ”) ;
21 r e s ou r c eDe s c r i p t i on . addMethod (getTemperatureMethod) ;
22 // Add a method for setting the temperature
23 ResourceMethod setTemperatureMethod = new ResourceMethod () ;
24 setTemperatureMethod . setMethodName (” setTemperature ”) ;
25 setTemperatureMethod . setReturnType (” void ”) ;
26 setTemperatureMethod . addParameter (” double ”) ;
27 r e s ou r c eDe s c r i p t i on . addMethod (setTemperatureMethod) ;

183

184

APPENDIX C

Invoke methods DTD

The DTD, Document Type Definition, describing the request to invoke methods.

1 < !ELEMENT invokeMethods (method+)>
2 < !ELEMENT method (parameter)>
3 < !ELEMENT parameter EMPTY>
4

5 < !ATTLIST method name CDATA #REQUIRED>
6 < !ATTLIST parameter va lue CDATA #REQUIRED>

An example XML file of a request to invoke methods.

1 < !DOCTYPE re sou r c e SYSTEM ”invokeMethods . dtd”>
2

3 <invokeMethods>
4 <method name=” setTemperature ”>
5 <parameter va lue=” 21 .3 ”/>
6 </method>
7 <method name=”getTemperature ”/>
8 </ invokeMethods>

185

186

APPENDIX D

Invoked methods result DTD

The DTD, Document Type Definition, describing the results of method invocations.

1 < !ELEMENT invokedMethodsResult (method+)>
2 < !ELEMENT method EMPTY>
3

4 < !ATTLIST method name CDATA #REQUIRED>
5 < !ATTLIST method code CDATA #REQUIRED>
6 < !ATTLIST method value CDATA #REQUIRED>

An example XML file of the results of method invocations.

1 < !DOCTYPE re sou r c e SYSTEM ” invokedMethodsResult . dtd”>
2

3 <invokedMethodsResult>
4 <method name=” setTemperature ” code=”0” value=””/>
5 <method name=”getTemperature ” code=”0” value=” 21 .3 ”/>
6 </ invokedMethodsResult>

187

188

APPENDIX E

Workflow DTD

The DTD of a workflow definition.

1 < ! -- Goal -->
2 < !ELEMENT goa l (i n c en t i v e ,
3 goa l ,
4 a c t i v i t y)>
5 < !ATTLIST goa l id CDATA>
6 < !ATTLIST goa l type CDATA>
7

8 < ! -- Incentive --−>
9 < !ELEMENT in c en t i v e (i sDe f i n ed ,

10 s e tDe f ined ,
11 cond i t i on ,
12 compare ,
13 f indResource ,
14 useResource ,
15 execute ,
16 wait)>
17 < !ATTLIST in c en t i v e i n t e r v a l CDATA ”10000”>
18 < !ATTLIST in c en t i v e i f t r u e CDATA>
19 < !ATTLIST in c en t i v e i f f a l s e CDATA>
20 < !ATTLIST in c en t i v e binding (and | or) ”and”>
21

22 < ! -- Activity -->
23 < !ELEMENT a c t i v i t y (i sDe f i n ed ,
24 s e tDe f ined ,
25 cond i t i on ,
26 compare ,
27 f indResource ,
28 useResource ,
29 execute ,

189

30 wait)>
31 < !ATTLIST a c t i v i t y id CDATA>
32 < !ATTLIST a c t i v i t y type CDATA>
33

34 < ! -- IsDefined --−>
35 < !ELEMENT i sDe f i n ed EMPTY>
36 < !ATTLIST i sDe f i n ed name CDATA #REQUIRED>
37

38 < ! -- SetDefined -->
39 < !ELEMENT setDe f ined EMPTY>
40 < !ATTLIST setDe f ined name CDATA #REQUIRED>
41 < !ATTLIST setDe f ined value CDATA #REQUIRED>
42

43 < ! -- Condition --−>
44 < !ELEMENT cond i t i on (i sDe f i n ed ,
45 s e tDe f ined ,
46 cond i t i on ,
47 compare ,
48 f indResource ,
49 useResource ,
50 execute ,
51 wait)>
52 < !ATTLIST cond i t i on i f t r u e CDATA>
53 < !ATTLIST cond i t i on i f f a l s e CDATA>
54 < !ATTLIST cond i t i on binding (and | or) ”and”>
55

56 < ! -- Compare --->
57 < !ELEMENT compare EMPTY>
58 < !ATTLIST compare l s CDATA #REQUIRED>
59 < !ATTLIST compare r s CDATA #REQUIRED>
60 < !ATTLIST compare type (Str ingEqua l s IgnoreCase |
61 Str ingEqua l s |
62 NumericEquals |
63 NumericGreater |
64 NumericGreaterEquals |
65 NumericLess |
66 NumericLessEquals |
67 Boolean) #REQUIRED>
68

69

70 < ! -- FindResource -->
71 < !ELEMENT f indResource EMPTY>
72 < !ATTLIST f indResource type CDATA #REQUIRED>
73 < !ATTLIST f indResource l o c a t i o n CDATA>
74 < !ATTLIST f indResource name CDATA>
75 < !ATTLIST f indResource l o c a l (t rue | f a l s e) ” f a l s e ”>
76

77 < ! -- UseResource --->
78 < !ELEMENT useResource (invoke)>
79 < !ATTLIST useResource name CDATA #REQUIRED>

190

80

81 < ! -- Invoke -->
82 < !ELEMENT invoke (parameter)>
83 < !ATTLIST invoke method CDATA #REQUIRED>
84 < !ATTLIST invoke name CDATA>
85

86 < ! -- Parameter --−>
87 < !ELEMENT parameter EMPTY>
88 < !ATTLIST parameter va lue CDATA #REQUIRED>
89

90 < ! -- Execute --->
91 < !ELEMENT execute EMPTY>
92 < !ATTLIST execute id CDATA>
93 < !ATTLIST execute c on t r o l CDATA>
94

95 < ! -- Wait -->
96 < !ELEMENT wait EMPTY>
97 < !ATTLIST wait m i l l i s e c ond s CDATA #REQUIRED>

191

192

APPENDIX F

Workflow XML example

An example XML file of a workflow definition. This is a complete example of controlling
the temperature of the room the client currently is in. The temperature is controlled to
match the user defined variable desiredTemperature.

A walk-through of the workflow is provided as comments in the xml example.

1 < !DOCTYPE re sou r c e SYSTEM ”workflow . dtd”>
2

3 < ! -- Top level goal with the ontology individual for
4 controlling temperature set. -->
5 <goa l id=” controlTemperature ” type=” Contro l temperature ”>
6

7 < ! -- This is the access point of the worfklow. It is defined
8 with check intervals of 10 sec, execute the activity
9 with id ’ c on t r o l ’ when it turns true, and to nothing

10 when it becomes false. When the binding is set to ”and”
11 it will only execute the next statment if the prior
12 returned true. Likewise, if it is ” or ” it will drop the
13 rest of the statments if a statement return true. -->
14 < i n c en t i v e i n t e r v a l=”10000” i f t r u e=” con t r o l ”
15 i f f a l s e=”” binding=”and”>
16 < ! -- Check if the user has defined a desired temperature. -->
17 <i sDe f i n ed name=”desiredTemperature ”/>
18 < ! -- Look for a location sensor running locally on the
19 client and store it in a variable called locationSensor
20 if found. -->
21 <f indResource type=” Loca t i on s en so r ”
22 name=” l o ca t i onSen so r ”
23 l o c a l=” true ”/>
24 < ! -- Executes the activity with id ” getLocat ion ” -->
25 <execute id=” getLocat ion ”/>

193

26 < ! -- Look for a temperature sensor in the location specified
27 by the ” cur rentLocat ion ” variable and store it in a
28 variable called temperatureSensor , if found. -->
29 <f indResource type=”Temperature sensor ”
30 l o c a t i o n=” { cur rentLocat ion }”
31 name=” temperatureSensor ”
32 l o c a l=” f a l s e ”/>
33 < ! -- Look for a temperature actuator in the location
34 specified by the ” cur rentLocat ion ” variable and
35 store it in a variable called temperatureSensor ,
36 if found. -->
37 <f indResource type=”Temperature actuator ”
38 l o c a t i o n=” { cur rentLocat ion }”
39 name=” temperatureActuator ”
40 l o c a l=” f a l s e ”/>
41 </ i n c en t i v e>
42

43 < ! -- An activity that gets the current location of the
44 client. -->
45 <a c t i v i t y id=” getLocat ion ”>
46 < ! -- Use the resource in variable ” l o ca t i onSen so r ” -->
47 <useResource name=” l o ca t i onSen so r ”>
48 < ! -- Invoke the method ” getLocat ion ” and store the result
49 in the variable ” cur rentLocat ion ”. -->
50 <invoke method=” getLocat ion ” name=” currentLocat ion ”/>
51 </useResource>
52 </ a c t i v i t y>
53

54 < ! -- The main activity for this goal. It has an ontology type
55 of adjust temperature. -->
56 <a c t i v i t y id=” con t r o l ” type=”Adjust temperature ”>
57 < ! -- Execute the ” readTemperature” activity. -->
58 <execute id=”readTemperature”/>
59 < ! -- Perform a condition. If true, execute ” turnOnActuator”
60 activity, if false, execute ” turnOffActuator ”. -->
61 <cond i t i on i f t r u e=”turnOnActuator”
62 i f f a l s e=” turnOffActuator ”
63 binding=”and”>
64 < ! -- Compare the values of the two variables
65 ” currentTemperature ” and ” des iredTemperature ”. -->
66 <compare l s=” { currentTemperature }”
67 r s=” { desiredTemperature }”
68 type=”NumericLess”/>
69 </ cond i t i on>
70 < ! -- Wait 10 seconds. -->
71 <wait m i l l i s e c ond s=”10000”/>
72 < ! -- Execute itself again. (Loop) -->
73 <execute id=” con t r o l ”/>
74 </ a c t i v i t y>
75

194

76 <a c t i v i t y id=” turnOffActuator ”>
77 < ! -- Sets the variable ” l e v e l ” to the value ”0”. -->
78 <s e tDe f ined name=” l e v e l ” va lue=”0”/>
79 < ! -- Executes ” setTemperatureActuator ” activity. -->
80 <execute id=” setTemperatureActuator ”/>
81 </ a c t i v i t y>
82

83 <a c t i v i t y id=”turnOnActuator”>
84 < ! -- Sets the variable ” l e v e l ” to the value ”1”. -->
85 <s e tDe f ined name=” l e v e l ” va lue=”1”/>
86 < ! -- Executes ” setTemperatureActuator ” activity. -->
87 <execute id=” setTemperatureActuator ”/>
88 </ a c t i v i t y>
89

90 <a c t i v i t y id=”readTemperature”>
91 < ! -- Use the resource stored in variable
92 ” temperatureSensor ”. -->
93 <useResource name=” temperatureSensor ”>
94 < ! -- Invoke the method ”getTemperature ” and store the
95 result in the variable ” currentTemperature ”. -->
96 <invoke method=”getTemperature ” name=”currentTemperature ”/>
97 </useResource>
98 </ a c t i v i t y>
99

100 <a c t i v i t y id=” setTemperatureActuator ”>
101 < ! -- Use the resource stored in variable
102 ” temperatureActuator ”. -->
103 <useResource name=” temperatureActuator ”>
104 < ! -- Invoke the method ” s e tLeve l ” with a parameter. -->
105 <invoke method=” s e tLeve l ”>
106 < ! -- Set the parameter to the value of the variable
107 ” l e v e l ”. -->
108 <parameter va lue=” { l e v e l }”/>
109 </ invoke>
110 </useResource>
111 </ a c t i v i t y>
112

113 </ goa l>

195

196

APPENDIX G

Workflow server and connector DTD

The DTD for the status message passed between workflows and an example xml message.

1 < !ELEMENT workf lowStatus (pa r t i c i pan t s , l og)>
2

3 < !ELEMENT pa r t i c i p an t s (p a r t i c i p an t)>
4 < !ELEMENT pa r t i c i p an t EMPTY>
5

6 < !ELEMENT log (entry)>
7 < !ELEMENT entry (#PCDATA)>
8

9 < !ATTLIST workf lowStatus running (t rue | f a l s e) #REQUIRED>
10

11 < !ATTLIST pa r t i c i p an t peerName CDATA #REQUIRED>
12 < !ATTLIST pa r t i c i p an t peerID CDATA #REQUIRED>
13

14 < !ATTLIST log code CDATA #REQUIRED>
15

16 < !ATTLIST entry a c t i v i t y CDATA #REQUIRED>
17 < !ATTLIST entry statement CDATA #REQUIRED>
18 < !ATTLIST entry l e v e l CDATA #REQUIRED>

197

The xml example of a status message sent from the RemoteWorkflowServer component
to the RemoteWorkflowConnector component.

1 < !DOCTYPE re sou r c e SYSTEM ”workf lowStatus . dtd”>
2

3 <workf lowStatus running=” true ”>
4

5 <pa r t i c i p an t s>
6 <pa r t i c i p an t peerName=” Chr i s t i an ”
7 peerID=”uuid −59616261646162614E504720503250 . . .
8 3317FEC6556FD04675B397F7AE372BEC9403”/>
9 <pa r t i c i p an t peerName=” K j e l l ”

10 peerID=”uuid −92873926536162614E504720503250 . . .
11 3317FEC6556FD04675B397F7AE3E7BA29E5F”/>
12 </ pa r t i c i p an t s>
13

14 <l og code=”27”>
15 <entry a c t i v i t y=” a c t i v i t y −1894712674”
16 statement=”UseResource”
17 l e v e l=”1”>
18 Method invoked s u c c e s s f u l l y . Re su l t : 19 .34
19 </ entry>
20 </ log>
21

22 </workf lowStatus>

198

APPENDIX H

Arbitration DTD

The DTD of a arbitration message.

1 < !ELEMENT a rb i t r a t i o n (c o n f l i c t ? , s o l u t i o n)>
2 < !ATTLIST a r b i t r a t i o n peerName CDATA #REQUIRED>
3 < !ATTLIST a r b i t r a t i o n peerID CDATA #REQUIRED>
4

5 < !ELEMENT con f i c t EMPTY>
6 < !ATTLIST c on f i c t case1 CDATA #REQUIRED>
7 < !ATTLIST c on f i c t case2 CDATA #REQUIRED>
8 < !ATTLIST c on f i c t l o c a t i o n CDATA #REQUIRED>
9 < !ATTLIST c on f i c t p a r t i c i p an t s CDATA #REQUIRED>

10 < !ATTLIST c on f i c t s o l u t i o n CDATA #REQUIRED>
11 < !ATTLIST c on f i c t parameter CDATA #REQUIRED>
12

13 < !ELEMENT so l u t i o n (parameter)>
14 < !ATTLIST so l u t i o n type (wait |
15 waitRemote |
16 ha l t |
17 haltRemote |
18 adapt |
19 adaptRemote) #REQUIRED>
20

21 < !ELEMENT parameter EMPTY>
22 < !ATTLIST parameter name CDATA #REQUIRED>
23 < !ATTLIST parameter va lue CDATA #REQUIRED>

199

An example of an arbitration xml message between two clients. This example shows the
adaption strategy mean for the workflow xml example in Appendix F, where the variable
desiredTemperature is passed to the other client to create a new common mean value.

1 < !DOCTYPE re sou r c e SYSTEM ” a r b i t r a t i o n . dtd”>
2

3 <a r b i t r a t i o n peerName=”Chris ”
4 peerID=”uuid −59616261646162614E504720503250 . . .
5 3317FEC6556FD04675B397F7AE372BEC9403”>
6

7 <c o n f i c t case1=” Con t r o l l i g h t ” case2=” Con t r o l l i g h t ”
8 l o c a t i o n=” 1 .0 ” pa r t i c i p an t s=” 0 .0 ”
9 s o l u t i o n=” Use case 2 ” parameter=” nu l l ”/>

10

11 <s o l u t i o n type=”adaptRemote”>
12 <parameter name=”workflowID” value=”952836725”/>
13 <parameter name=”pipeID”
14 value=”uuid−E62C28E82FA6162614E504720503250 . . .
15 3317FEC6556FD04675B397F7AE372BEC9403”/>
16 <parameter name=”desiredTemperature ” value=” 21 .5 ”/>
17 </ s o l u t i o n>
18

19 </ a r b i t r a t i o n>

200

APPENDIX I

Workflow description DTD

The DTD of workflow description message used by Scheduler and ConflictDiscoverer.

1 < !ELEMENT workf lows (goa l , a c t i v i t y)>
2 < !ATTLIST workf lows peerName CDATA #REQUIRED>
3 < !ATTLIST workf lows peerID CDATA #REQUIRED>
4

5 < !ELEMENT goa l (goa l , a c t i v i t y)>
6 < !ATTLIST goa l id CDATA #REQUIRED>
7 < !ATTLIST goa l type CDATA #REQUIRED>
8 < !ATTLIST goa l l o c a t i o n CDATA #REQUIRED>
9 < !ATTLIST goa l pipeID CDATA #REQUIRED>

10 < !ATTLIST goa l workflowID CDATA #REQUIRED>
11

12 < !ELEMENT a c t i v i t y EMPTY>
13 < !ATTLIST a c t i v i t y id CDATA #REQUIRED>
14 < !ATTLIST a c t i v i t y type CDATA #REQUIRED>
15 < !ATTLIST a c t i v i t y l o c a t i o n CDATA #REQUIRED>
16 < !ATTLIST a c t i v i t y pipeID CDATA #REQUIRED>
17 < !ATTLIST a c t i v i t y workflowID CDATA #REQUIRED>

201

An example of a workflow description file generated by the Scheduler and parsed by the
ConflictDiscoverer to check for possible conflicts.

1 < !DOCTYPE re sou r c e SYSTEM ” work f lowDescr ipt ion . dtd”>
2

3 <workf lows peerName=” K j e l l ”
4 peerID=”uuid −29616261646162614E504720503257 . . .
5 3317FEC6556FD04675B397F7AE372BEC9403”>
6

7 <goa l id=” controlTemperature ”
8 type=” Contro l temperature ”
9 l o c a t i o n=”White room”

10 pipeID=”uuid−A3916261646162614E504720503229 . . .
11 3317FEC6556FD04675B397F7AE372BECAC24”
12 workflowID=”2937261923”>
13

14 <a c t i v i t y id=” con t r o l ”
15 type=”Adjust temperature ”
16 l o c a t i o n=”White room”
17 pipeID=”uuid −59616261646162614E504720503253 . . .
18 3317FEC6556FD04675B397F7AE372BECDA91”
19 workflowID=”2937261923”>
20

21 </ goa l>
22

23 <a c t i v i t y id=” a c t i v i t y −29438727”
24 type=” Ad ju s t l i g h t ”
25 l o c a t i o n=”Green room”
26 pipeID=”uuid−E928A826EC6162614E504720503250 . . .
27 E27CFEC6556FD04675B397F7AE372BEC2F35”
28 workflowID=”182749012”>
29

30 </workf lows>

202

Glossary

Actuator A person or machine that can do work, move,
or act.

AD Architectural Description
Ad hoc An ad hoc arrangement is one which is un-

planned and which takes place only because a
situation has made it necessary.

AI Artificial Intelligence
Ambient computing Is a combination of a number of paradigms;

ubiquitous computing, pervasive computing,
and artificial intelligence.

Arbitration Arbitration is the judging of a dispute.
Architecture The manner in which the components of a com-

puter or computer system are organized and in-
tegrated.

Asynchronous Not synchronous. See Synchronous

BDI Belief-Desire-Intention

CAWES Context-Aware Workflow Enactment Service
CBR Case-based reasoning
CC/PP Composite Capability/Preference Profile
CDP Cooperative Distributed Planning
CHAT Cultural Historical Activity Theory
CoBrA Context Broker Architecture
COLIBRI Cases and Ontology Libraries Integration for

Building Reasoning Infrastructures
COWCS Cooperative Workflow Coordination Service
CSCW Computer Supported Cooperative Work
Cyber foraging Utilize compute resources available in the envi-

ronment to augment the capabilities of mobile
devices.

DAG Directed, Acyclic Graph
DCP Distributed, Continual Planning

203

DL Description Logics
DTD Document Type Definition

Fuzzy Lacking in clarity or definition.

GUI Graphic User Interface

IrDA Infrared Data Association

J2ME Java 2 Micro Edition
J2SE Java 2 Standard Edition
JCAF Java Context-Aware Framework
jCOLIBRI Java Cases and Ontology Libraries Integration

for Building Reasoning Infrastructures

KBS Knowledge Based System
KI-CBR Knowledge Intensive Cased-Based Reasoning

LORA LOgic of Rational Agents

MANet Mobile Ad-hoc Network
MAS Multiagent systems
MDP Markov Decision Process
MOWAHS MObile Work Across Heterogeneous Systems

NAT Network Address Translation
NDP Negotiated Distributed Planning

OWL Ontology Web Language

P2P See Peer-to-peer
PDA Personal Digial Assistant
Peer-to-peer A peer-to-peer (or P2P) computer network is a

network that relies primarily on the computing
power and bandwidth of the participants in the
network rather than concentrating it in a rela-
tively low number of servers. P2P networks are
typically used for connecting nodes via largely
ad hoc connections.

204

Pervasive computing Seamlessly integrates computation into the en-
vironment, rather than having computers which
are distinct objects.

PSM Problem Solving Method

RAD Rapid Application Development
RDF Resource Description Framework
Reasoning Reasoning is the process by which you reach a

conclusion after considering all the facts.
RMI Remote Method Invocation

SCBR Soft Case-Based Reasoning
Scheduling Scheduling is the process of making a plan that

gives a list of goals and activities, together with
the times at which each goal or activity should
be executed.

Sensor A device that measures or detects a real-world
condition, such as motion, heat or light and con-
verts the condition into an analogue or digital
representation. An optical sensor detects the in-
tensity or brightness of light, or the intensity of
red, green and blue for colour systems.

SHA-1 Secure Hash Algorithm - 1
Situated To be placed in a site, situation, context, or cat-

egory.
Smart spaces Ordinary environments equipped with sensing

systems that can perceive and react to peo-
ple without requiring them to wear any special
equipment.

SOC Service-oriented computing
SoC Separation of Concern
SOCAM Service-oriented Context-Aware Middleware
SWP Smart Work Processes
Synchronous Occurring, existing, or operating at the same

time.

Ubiquitous computing See Pervasive computing
URI Universal Resource Identifier
URN Universal Resource Name

W3C World Wide Web Consortium
WfMC Workflow Management Coalition

XML Extended Markup Language

205

206

Bibliography

[1] AAAI. Planning and Scheduling. http://www.aaai.org/AITopics/html/planning.html,
Accessed may 25th 2007 2003.

[2] Agnar Aamodt. Knowledge-intensive case-based reasoning in creek. In ECCBR,
pages 1–15. Springer Berlin / Heidelberg, 2004.

[3] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches. Artificial Intelligence Com-
munications, 7(1):39–52, 1994.

[4] Ananda Amatya. Requirements. http://www.dcs.warwick.ac.uk/ doron/-
course/cs223/chap4.ppt, Accessed december 10th 2006.

[5] AmbieSense. AmbieSense EU IST project. http://www.ambiesense.net/, Accessed
june 12th 2007 2005.

[6] J. A. Ambros-Ingerson and S. Steel. Integrating planning, execution and monitoring.
In J. Allen, J. Hendler, and A. Tate, editors, Readings in Planning, pages 735–740.
Kaufmann, San Mateo, CA, 1990.

[7] Rajesh Balan, Jason Flinn, M. Satyanarayanan, Shafeeq Sinnamohideen, and Hen-I
Yang. The case for cyber foraging. In EW10: Proceedings of the 10th workshop on
ACM SIGOPS European workshop: beyond the PC, pages 87–92, New York, NY,
USA, 2002. ACM Press.

[8] Rajesh Balan, Jason Flinn, M. Satyanarayanan, Shafeeq Sinnamohideen, and Hen-I
Yang. The case for cyber foraging. In EW10: Proceedings of the 10th workshop on
ACM SIGOPS European workshop: beyond the PC, pages 87–92, New York, NY,
USA, 2002. ACM Press.

[9] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A Survey on Context-
Aware Systems. International Journal of Ad Hoc and Ubiquitous Computing, 2004.

[10] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A Survey on Context-
Aware Systems. International Journal of Ad Hoc and Ubiquitous Computing, 2004.

[11] J. F. Baldwin, editor. Fuzzy Logic.

[12] Jakob Bardram. Plans as situated action: An activity theory approach to workflow
systems. In ECSCW, pages 17–, 1997.

[13] Jakob Bardram. Plans as situated action: An activity theory approach to workflow
systems. In ECSCW, pages 17–, 1997.

207

[14] Jakob E. Bardram. The java context awareness framework (jcaf) - a service infras-
tructure and programming framework for context-aware applications. In Proceedings
of the 3rd International Conference on Pervasive Computing (Pervasive 2005), Lec-
ture Notes in Computer Science, pages 98–115. Springer Berlin / Heidelberg, 2005.

[15] Allen Dutoit Bernd Bruegge. Requirements Elicitation.
http://www.cs.fsu.edu/ gaitrosd/classes/cop3331/Chapter4/ch4lect1.ppt, Ac-
cessed december 10th 2006.

[16] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, 2001.

[17] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of Artificial Intelli-
gence Research, 11:1–94, 1999.

[18] Michael Brenner and Bernhard Nebel. Continual planning and acting in dynamic
multiagent environments. In PCAR ’06: Proceedings of the 2006 international sym-
posium on Practical cognitive agents and robots, pages 15–26, New York, NY, USA,
2006. ACM Press.

[19] Barry Brown and Nicola Green, editors. Wireless world: social and interactional
aspects of the mobile age. Springer-Verlag New York, Inc., New York, NY, USA,
2002.

[20] P. Brzillon and J. Pomerol. Contextual knowledge sharing and cooperation in in-
telligent assistant systems. volume 62 (3) of Le Travail Humain, pages 223–246,
1999.

[21] National Research Council Canada. FuzzyJess. http://www.nrc-cnrc.gc.ca/, Ac-
cessed October 17th 2006.

[22] Jörg Cassens and Anders Kofod-Petersen. Using Activity Theory to Model Context
Awareness: a Qualitative Case Study. In Geoff C. J. Sutcliffe and Randy G. Goebel,
editors, Proceedings of the Nineteenth International Florida Artificial Intelligence
Research Society Conference, pages 619–624, Melbourne Beach, 2006. AAAI Press.

[23] Marcelo Cataldo, Patrick A. Wagstrom, James D. Herbsleb, and Kathleen M. Carley.
Identification of coordination requirements: implications for the design of collabo-
ration and awareness tools. In CSCW ’06: Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, pages 353–362, New York, NY,
USA, 2006. ACM Press.

[24] European Usability Support Center. Requirements Engi-
neering and Specification in Telematics, Scenario Building.
http://www.ucc.ie/hfrg/projects/respect/urmethods/scenario.htm, Accessed
december 10th 2006.

[25] Guanling Chen and David Kotz. A survey of context-aware mobile computing re-
search. Technical report, Dept. of Computer Science, Dartmouth College, November
2000.

[26] Harry Chen. An Intelligent Broker Architecture for Pervasive Context-Aware Sys-
tems. PhD thesis, University of Maryland, Baltimore County, December 2004.

208

[27] Bradley J. Clement and Edmund H. Durfee. Top-down search for coordinating the
hierarchical plans of multiple agents. In AGENTS ’99: Proceedings of the third
annual conference on Autonomous Agents, pages 252–259, New York, NY, USA,
1999. ACM Press.

[28] Workflow Management Coalition. Terminology & glossary. Technical Report 3,
Workflow Management Coalition, 1999.

[29] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment.
Artificial intelligence, 42(2-3):213–261, 1990.

[30] CollabNet. JXTA. www.jxta.org, Accessed feb 12th 2007 2006.

[31] Belé Díaz-Agudo and Pedro A. González-Calero. Cbronto: A
task/method ontology for cbr. In Proceedings of the Fifteenth International Florida
Artificial Intelligence Research Society Conference, pages 101–105. AAAI Press,
2002.

[32] Marie desJardins, Edmund H. Durfee, Charles L. Ortiz Jr., and Michael Wolverton.
A survey of research in distributed, continual planning. AI Magazine, 20(4):13–22,
1999.

[33] Anind K. Dey. Understanding and Using Context. Personal and Ubiquitous Com-
puting Journal, 5:4–7, 2001.

[34] Anind K. Dey and Gregory D. Abowd. Towards a better understanding of context
and context-awareness. the 1st International Symposium on Handheld and Ubiqui-
tous Computing, pages 304–307, 1999.

[35] Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications.
Human-Computer Interaction (HCI) Journal, 16:97–166, 2001.

[36] Richard J. Doyle, David Atkinson, and Rajkumar Doshi. Generating perception
requests and expectations to verify the execution of plans. In AAAI, pages 81–88,
1986.

[37] Norfolk East of England RDSU and Suffolk (Norwich). Epidemiolog-
ical Research Strategies & Study Design. http://www.east-of-england-
rdsu.org.uk/resources/docs/infosheet-2.pdf, Accessed december 10th 2006.

[38] Jacques Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[39] Mikael Kirkeby Fidjeland. Distributed knowledge in case-based reasoning - knowl-
edge sharing and reuse within the semantic web. Master’s thesis, Norwegian Univer-
sity of Science and Technology, Department of Computer and Information Science,
2006.

[40] Geraldine Fitzpatrick.

[41] J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned remote execution for
pervasive computing, pages 61–66. HotOS-VIII. 2001.

209

[42] Jason Flinn, SoYoung Park, and M. Satyanarayanan. Balancing performance, en-
ergy, and quality in pervasive computing. In ICDCS ’02: Proceedings of the 22 nd
International Conference on Distributed Computing Systems (ICDCS’02), page 217,
Washington, DC, USA, 2002. IEEE Computer Society.

[43] James Frye, Rajagopal Ahnanthanarayanan, and Dahrmendra S. Modha. Towards
real-time, mouse scale cortical simulations. Technical report, IBM, 2007.

[44] Ayse Göker and Hans I. Myrhaug. User context and personalisation. In ECCBR
Workshops, pages 1–7, 2002.

[45] Sachin Goyal and John Carter. A Lightweight Secure Cyber Foraging Infrastructure
for Resource-Constrained Devices.

[46] Saul Greenberg. Context as a Dynamic Construct. Human-Computer Interaction
(HCI) Journal. Special Issue: Context-Aware Computing, pages 257–268, 2001.

[47] IEEE Architecture Working Group. Ieee std 1471-2000, recommended practice for
architectural description of software-intensive systems. Technical report, IEEE,
2000.

[48] Frode Hauso and Øivind Røed. Adaptive Mobile Work Processes. Technical report,
2005.

[49] James Hendler, Austin Tate, and Mark Drummond. Ai planning: systems and
techniques. AI Mag., 11(2):61–77, 1990.

[50] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling context
information in pervasive computing systems. In Pervasive ’02: Proceedings of the
First International Conference on Pervasive Computing, pages 167–180, London,
UK, 2002. Springer-Verlag.

[51] Michael N. Huhns, Munindar P. Singh, Mark Burstein, Keith Decker, Ed Dur-
fee, Tim Finin, Les Gasser, Hrishikesh Goradia, Nick Jennings, Kiran Lakkaraju,
Hideyuki Nakashima, Van Parunak, Jeffrey S. Rosenschein, Alicia Ruvinsky, Gita
Sukthankar, Samarth Swarup, Katia Sycara, Milind Tambe, Tom Wagner, and
Laura Zavala. Research directions for service-oriented multiagent systems. IEEE
Internet Computing, 9(6):65–70, 2005.

[52] Robert Johansen. Groupware. Computer Support for Business Teams. The Free
Press, New York and London, 1988.

[53] P̊al Johan Karlsen. Slik f̊ar du bedre hukommelse. H. Aschehoug & Co., 2004.

[54] Anders Kofod-Petersen. A Case-Based Approach to Realising Ambient Intelligence
among Agents. PhD thesis, Norwegian University for Science and Technology, 2007.

[55] Anders Kofod-Petersen and Agnar Aamodt. Case-Based Situation Assessment in
a Mobile Context-Aware System. In Antonio Krüger and Rainer Malaka, editors,
Artificial Intelligence in Mobile Systems 2003 (AIMS), pages 41–49. Universität des
Saarlandes, October 2003.

[56] Anders Kofod-Petersen and Marius Mikalsen. Context: Representation and Reason-
ing – Representing and Reasoning about Context in a Mobile Environment. Revue
d’Intelligence Artificielle, 19(3):479–498, 2005.

210

[57] Janet L. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

[58] Mari Korkea-aho. Context-Aware Applications Survey.
http://users.tkk.fi/ mkorkeaa/doc/context-aware.html, Accessed june 8th 2000.

[59] Reading Success Lab. Descriptive Research - Defined. http://www.cognitive-
aptitude-assessment-software.com/Glossary/DescriptiveResearch.html, Accessed
december 10th 2006.

[60] Danny B. Lange and Mitsuru Oshima. Programming and deploying Java mobile
agents with aglets. Addison Wesley, 1998.

[61] Bruno Latour. Science in Action: How to Follow Scientists and Engineers Through
Society. Harvard University Press, October 1988.

[62] David Leake. CBR in context: The present and future. Technical report, 1996.

[63] David B. Leake. Case-Based Reasoning: Experiences, Lessons and Future Direc-
tions. MIT Press, Cambridge, MA, USA, 1996.

[64] Kalle Lyytinen and Youngjin Yoo. Introduction. Commun. ACM, 45(12):62–65,
2002.

[65] Nico Maibaum and Thomas Mundt. Jxta: A technology facilitating mobile peer-to-
peer networks. In MOBIWAC ’02: Proceedings of the International Workshop on
Mobility and Wireless Access, page 7, Washington, DC, USA, 2002. IEEE Computer
Society.

[66] Jon Ole Nødtvedt and Man Hoang Nguyen. Mobility and context-awareness in work-
flow systems. Technical report, Norwegian University for Science and Technology,
2004.

[67] Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998.

[68] Natalya F. Noy and Deborah L. McGuinness. Ontology development 101: A guide
to creating your first ontology. Technical report, Stanford University School of
Medicine, 2001.

[69] Georgia Tech College of Computing. Requirements Elicitation. http://www-
static.cc.gatech.edu/classes/AY2002/cs6300 fall/req1/Reqts.ppt, Accessed decem-
ber 10th, 2006 2000.

[70] Purdue University OWL. Types of Research Papers.
http://owl.english.purdue.edu/workshops/hypertext/ResearchW/types.html,
Accessed december 10th 2006.

[71] Mr. Jason Pascoe. Adding generic contextual capabilities to wearable computers.
In ISWC ’98: Proceedings of the 2nd IEEE International Symposium on Wearable
Computers, page 92, Washington, DC, USA, 1998. IEEE Computer Society.

[72] Sobah Abbas Petersen and Anders Kofod-Petersen. The non-accidental tourist:
Using ambient intelligence for enhancing tourist experiences. In Luis Camarinha-
Matos, Hamideh Afsarmanesh, and Martin Ollus, editors, Proceedings of the 7th
IFIP Working Conference on Virtual Enterprises, volume 224 of IFIP International
Federation for Information Processing, Helsinki, Finland, September 2006. Springer
Verlag.

211

[73] NASA Ames research center. Planning and Scheduling.
http://ic.arc.nasa.gov/projects/remote-agent/pstext.html, Accessed may 25th
2007 2003.

[74] USA Richard M. Jacobs, Villanova Univeristy. Educational Research: Descriptive
Research. http://www83.homepage.villanova.edu/richard.jacobs/EDUptive.ppt,
Accessed december 10th 2006.

[75] Kjell Martin Rud and Christian Indahl. Architectural approaches supporting
scheduling and arbitration of workflow processes in a cooperative environment. Tech-
nical report, Norwegian University for Science and Technology, 2006.

[76] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[77] M. Satyanarayanan. Pervasive computing: vision and challenges. Personal Com-
munications, IEEE, 8(4):10–17, 2001.

[78] Roger C. Schank. Dynamic Memory: A Theory of Reminding and Learning in
Computers and People. Cambridge University Press, New York, NY, USA, 1983.

[79] Roger C. Schank. Goal-based scenarios: Case-based reasoning meets learning by
doing. In David Leake, editor, Case-Based Reasoning: Experiences, Lessons &
Future Directions, pages 295–347. AAAI Press/The MIT, 1996.

[80] Roger C. Schank and Robert P. Abelson. Knowledge and memory: The real story.
pages 1–85, 1995.

[81] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications.
In IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz,
CA, US, 1994.

[82] Bill Schilit and M. Theimer. Disseminating active map information to mobile hosts.
IEEE Network, 8(5):22–32, 1994.

[83] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo Tuomela, Kristof Van
Laerhoven, and Walter Van de Velde. Advanced interaction in context. In HUC
’99: Proceedings of the 1st international symposium on Handheld and Ubiquitous
Computing, pages 89–101, London, UK, 1999. Springer-Verlag.

[84] M. J. Schoppers. Universal plans for reactive robots in unpredictable environments.
In John McDermott, editor, Proceedings of the Tenth International Joint Conference
on Artificial Intelligence (IJCAI-87), pages 1039–1046, Milan, Italy, 1987. Morgan
Kaufmann publishers Inc.: San Mateo, CA, USA.

[85] Guus Schreiber, Bob Wielinga, Robert de Hoog, Hans Akkermans, and Walter Van
de Velde. Commonkads: A comprehensive methodology for kbs development. IEEE
Expert: Intelligent Systems and Their Applications, 09(6):28–37, 1994.

[86] N. Shadbolt, W. Hall, and T. Berners-Lee. The semantic web revisited. In IEEE
Intelligent Systems, pages 96–101, 2006.

[87] Simon C. K. Shiu and Sankar K. Pal. Foundations of soft case-based reasoning.
Wiley, 2004.

212

[88] Carl-Fredrik Sørensen. Adaptive Mobile Work Processes in Context-Rich, Heteroge-
neous Environments. PhD thesis, Norwegian University for Science and Technology,
2005.

[89] Carl-Fredrik Sørensen, Alf Inge Wang, and Reidar Conradi. Support of smart work
processes in context rich environments. In In Proceedings of the IFIP TC8 Working
Conference on Mobile Information Systems - 2005, Leeds, UK, 2005.

[90] Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment,
and low-bandwidth communication for real-time strategic teamwork. Artificial In-
telligence, 1999.

[91] Lucy Suchman. Plans and situated actions. The problem of human-machine com-
munication. Cambridge University Press, 1987.

[92] Lucy A. Suchman. Plans and situated actions: the problem of human-machine
communication. Cambridge University Press, New York, NY, USA, 1987.

[93] Richard S. Sutton and Andrew G. Barto. Reinforcement learning, an introduction.
MIT Press, 2000.

[94] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research,
7:83–124, 1997.

[95] Gu Tao, Pung Hung Keng, and Zhang Da. SOCAM.
http://www.comp.nus.edu.sg/ gutao/gutao NUS/SOCAM.htm, Accessed de-
cember 4nd 2005.

[96] Various Encoder: the newsletter for seattle robotics society. Fuzzy Logic - An In-
troduction. http://www.seattlerobotics.org/encoder/mar98/fuz/fl part1.html, Ac-
cessed September 25th 2006.

[97] Lev Semenovic Vygotskij. Mind in society : the development of higher psychological
processes. Cambridge, Mass. : Harvard University Press, 1978.

[98] Alf Inge Wang. MOWAHS. http://www.mowahs.com/, Accessed September 19th
2006.

[99] Mark Weiser. The Computer for the 21st Century. IEEE Pervasive Computing,
1(1):18–25, January–March 2002. Reprinted from Scientific American, 1991.

[100] Mark Weiser and John Seely Brown. The coming age of calm technolgy. pages
75–85, 1997.

[101] Gerhard Weiss, editor. Multiagent systems: a modern approach to distributed arti-
ficial intelligence. MIT Press, Cambridge, MA, USA, 1999.

[102] Matthias Wieland, Oliver Kopp, Daniela Nicklas, and Frank Leymann. Towards
context-aware workflows. In Proceedings of the Ubiquitous Mobile Information and
Collaboration Systems (Caise’07 Workshop), Trondheim, Norway, June 11-12th,
2007, pages 0–0. University of Stuttgart : Collaborative Research Center SFB 627
(Nexus: World Models for Mobile Context-Based Systems), Springer Verlag, June
2007.

213

[103] Various Wikipedia.org. Artificial neural networks.
http://en.wikipedia.org/wiki/Artificial neural networks, Accessed may 14th
2007.

[104] Various Wikipedia.org. Bayesian network. http://en.wikipedia.org/wiki/Bayesian network,
Accessed March 29 2007.

[105] Various Wikipedia.org. Case-based reasoning. http://en.wikipedia.org/wiki/Case-
based reasoning, Accessed may 12th 2007.

[106] Various Wikipedia.org. JXTA. http://en.wikipedia.org/wiki/JXTA, Accessed Jan-
uary 29 2007.

[107] Various Wikipedia.org. memory. http://en.wikipedia.org/wiki/Memory, Accessed
March 8 2007.

[108] Various Wikipedia.org. Mobile ad-hoc network.
http://en.wikipedia.org/wiki/Mobile ad-hoc network, Accessed may 21th 2007.

[109] Michael Wooldridge. Reasoning about rational agents. MIT Press, 2000.

214

