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Abstract: Through monitoring of buildings, it can be proven that the performance of envelope
elements and energy supply systems deteriorates with time. The results of this degradation are higher
energy consumption and life cycle costs than projected in the building design phase. This paper
considers the impacts of this deterioration on the whole building energy performance with the
goal of improving the accuracy of long term performance calculations. To achieve that, simplified
degradation equations found in literature are applied on selected envelope elements and heating
system components of a single-family house in Germany. The energy performance of the building
over 20 years is determined through simulations by EnergyPlus and MATLAB. The simulation
results show that, depending on maintenance and primary heating system, the building can consume
between 18.4% and 47.1% more primary energy over 20 years compared to a scenario in which no
degradation were to occur. Thus, it can be concluded that considering performance drop with time is
key in order to improve the decision-making process when designing future-proof buildings.
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1. Introduction

The building sector is responsible for approximately 40% of the total energy consumption in the
European Union (EU) [1]. Due to this fact, improving the energy performance of buildings is key in
reaching the EU target of 20-20-20 (20% CO, emissions reduction, 20% increase in energy efficiency
and 20% more energy from renewable sources until the year 2020 compared to the levels of 1990) [2].
As a means of achieving this goal, the Energy Performance of Building Directive 2010/31/EU, (EPBD)
recast [3] obliges EU member states to evaluate their national requirements on the energy performance
of buildings following the so-called “cost optimal methodology”. The methodology framework was
published as EU supplementary EBPD recast in 2012 [4] and, subsequently, the member states assessed
their national requirements as of 30 June 2012 and submitted the respective reports [5].

In Germany, the energy consultancy Ecofys evaluated the requirements of the German Energy
Saving Ordinance that was active at that time (EnEV 2009) on behalf of the Federal Ministry of
Transport, Building and Urban Development by applying the aforementioned methodology to various
standard building types [6]. Additionally, since the energy efficiency of buildings can be increased
either by improving envelope thermal properties or by upgrading the technical equipment, different
energy efficiency measures and measure packages were compared as part of this study.

However, the calculations according to EnEV do not completely depict reality. For that reason,
applying building energy simulations can be a first step toward achieving higher accuracy. Nonetheless,
there are various uncertainty sources that can influence the building performance assessment process.
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Some of these sources, such as the impact of climate change on future considerations [7,8] have already
been examined to a satisfactory level. Still, there are others that are yet to be put under thorough
examination, one of them being the ageing of buildings and their components.

The performance of both building envelope elements and energy supply systems deteriorates
with time as a result of natural ageing, mismanagement and poor maintenance [9]. This decline can
best be defined as “performance degradation”. It leads to lower energy efficiency and higher life cycle
costs than projected, since its effects are generally not being taken into consideration, neither by energy
calculation norms nor by conventional simulation models or existing optimization concepts [2,10,11].

The purpose of this paper is the simplified examination of the impact of performance degradation
of selected components on the overall building energy performance. First, a short review on building
performance degradation is carried out. Subsequently, the building considered for the case study
(a single-family house in Germany) and the model used for simulating its energy performance are
introduced. Finally, the way in which degradation is considered in the simulations is described,
and the results of the predicted building energy performance are presented. The assessment of these
results leads to first conclusions about the extent of the impact of degradation on the long-term energy
performance of buildings.

2. Review of Building Performance Degradation

As mentioned, the impact of building ageing on its energy efficiency is generally neglected in current
performance assessments. Nevertheless, some studies examine the influence of degradation on whole
building thermal performance while also taking climate change into account [9,12]. De Wilde et al. [12]
use the open source building simulation software EnergyPlus V 5.0 to simulate the performance
of a supermarket in Plymouth, UK, over 40 years, while the IDA ICE model is implemented by
Waddicor et al. [9] for the energy performance simulations of a library building in Turin, Italy, over
50 years. In a thesis by Magnuson, [13] the impact of heating, ventilation, and air conditioning (HVAC)
component degradation on two buildings of the University of Kansas in Lawrence, KS, USA, is examined.
Here, as well as in [9], simple deterministic models are applied for degradation consideration, whereas
in [12] both a deterministic and a stochastic method are used. Regardless of the used degradation
models, these three studies conclude that building energy performance is very sensitive to its ageing
and particularly to the degradation of mechanical components used for heating, ventilation, and air
conditioning (HVAC).

The amount of reviewed studies is not sufficient for drawing definite conclusions on the impact
of ageing on the whole building energy performance. Hence, a more thorough examination of the
degradation of the single building elements is needed for predicting building long term performance.
Even though there is limited amount of quantitative data available on the long-term performance
of single building elements and mechanical components [12], there are studies that deal with the
degradation of some of them. An overview of such studies on HVAC systems and different insulation
types can be found in [14]. According to this article, the components for which the most reliable
degradation values are available are boilers and heat pumps. As far as insulation is concerned,
the ageing of extruded polystyrene (XPS), polyisocyanurate (PIR), polyurethane (PUR), and vacuum
insulation panels (VIPs) has been reviewed to a satisfactory level.

Generally, HVAC performance deteriorates with time because of natural ageing and wear due
to operation. This performance degradation is expressed by a drop in the Coefficient of Performance
(COP) of an HVAC system. Struck et al. [15] present a method for predicting the COP drop of HVAC
systems over their lifetime. According to this study, long-term HVAC performance depends on part
load performance and annual COP drop expressed by a degradation factor. Similar degradation
factors that take maintenance quality into account are applied by the national renewable energy
laboratory (NREL) of the US department of energy to equations predicting performance decline over
time. These equations can be of either linear [16] or exponential [17] nature. Indeed, there are many
causes of performance decline associated with inadequate maintenance, especially for heat pumps and
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chillers. These include fouling in the condenser tube [18] as well as oil fouling on heat exchangers due
to leaks from the compressor [19]. Wang et al. [20] quantify the effect of such issues and present the
results on the simulated energy consumption of an office building in Chicago, USA. An additional
cause of COP drop is the change in ground temperature in the case where ground is used as an energy
source [21].

The degradation of the building envelope elements comes as a result of the external and internal
climate of the building. The external climate factors that impact the envelope include but are not
limited to solar radiation, extreme temperatures, moisture, and pollution. The internal environment
is dependent upon both the external climate and occupant behavior [22]. The performance decline
of insulation can best be quantified by conducting accelerated climate ageing tests in the laboratory.
Singh et al. [23] apply the simulation software Agesim in addition to such laboratory measurements in
order to predict future performance of XPS and polyisocyanurate (PIR) boards. Results from this and
other studies show that the largest amount of performance degradation of most insulation elements
occurs during the first two years after installation.

The different degradation characteristics of three vaccum insulation panel (VIP) barrier envelope
types after subjection to high temperature, alkali, and stress concentration were investigated by
Li et al. [24]. Their main conclusion was that the combination of increased temperature and alkalinity
leads to the highest degradation rates. In an assessment of the performance of VIPs after five years
of installation, Molletti et al. [25] reported a degradation of 10%. As far as glass wool insulation is
concerned, Stazi et al. [26] carried out an experimental study on buildings constructed in the 1980s
with a glass wool insulation layer in the envelope cavity. One key finding of this study was that
the thermal conductivity has risen by 12% during the investigated time frame. Finally, Lakatos [27]
assessed the impact of moisture accumulation on aerogel blankets and found out that the thermal
resistance of insulation elements decreases by at least 20% if they contain at least 20% moisture and
that wall surface heat transfer coefficient changes with 1 W/m? K if 0.28 kg of water are sprayed on it.

3. The Case Study

3.1. Building Description

In order to study the effect of ageing on building performance by means of energy simulations
one of the buildings assessed in the report by the Federal Ministry of Transport, Building and Urban
Development is selected. It is a single-family house located in Wiirzburg, Germany, and has a usable
area of 148.8 m?, according to EnEV calculations. The specifications regarding building structural
design and geometry are taken from the German national building database [28]. The most important
data regarding building geometry is presented in Figure 1 and Table 1.

Figure 1. The assessed reference building.
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Table 1. Assessed building design data.

Section Design Specification Value
Living space 110 m?

Width of base plate 94m

L . Length of base plate 10.5m
Basic dimensions Perimeter 398 m
Floor height 2.75m

Floor number 2

Area of north facade 40 m?

Area of west facade 36 m?

Area of south facade 40 m?

2

Envelope specifications Area of east facade 36 m
Total wall area 125 m?
Total Roof area 118 m?

Total window area 27 m?

Basement area 99 m?
Heated volume 465 m?

Calculated usable area Usable area according to EnEV 148.8 m?

Since the goal of the report by the German ministry was the assessment of the EnEV requirements,
the assumed building envelope and HVAC specifications for this report are exactly the ones defined
for the reference building in DIN V 18599. DIN V 18599 is the German norm where the standard
calculation procedure for the energy assessment of buildings according to EnEV is documented. The
same energy-relevant data is being used for the purposes of the current case study. The resulting

building configuration is shown in Table 2.

Table 2. Energy performance relevant data.

Element Type Component Configuration
Walls U-Value = 0.28 W/m2-K
Roof U-Value = 0.20 W/ m* K
Envelope elements Floor U-Value = 0.35 W/ m2-K
Windows U-Value = 1.30 W/ m* K
All envelope elements Added AU due to thermal bridging: 0.05 W/m?-K
Primary heating system Condensing gas boiler, system efficiency = 0.89
Mechanical components Domestic hot water system From primary heatlr.lg sysﬂtem + Solar thermal
collector with 59% coverage
Ventilation system According to DIN V 18599, no heat recovery

Apart from the required U-values, there are no further specifications regarding the used insulation
material. Therefore, the thicknesses of envelope elements with given thermal properties have to be
adapted in order to achieve these U-values. Furthermore, the effects of thermal bridging have to be
taken into account by adding 0.05 W/m? K to each envelope element’s U-value.

For the purposes of the current article, it was decided to assess the performance deterioration
of condensing gas boilers, air-source heat pumps, and XPS insulation. In addition to the sufficient
literature on these elements, all three of them are widely used in buildings in Germany. Hence,
the assessment of their ageing on the energy performance of the case study building can increase
accuracy when planning real buildings in this country. A detailed description of the XPS thermal
insulation properties and the insulation thicknesses required to reach the U-values for the envelope

elements as listed in Table 1 is provided in Table 3.
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Table 3. Detailed information on building envelope element insulation.

XPS Insulation Properties Base Element U-Value incl.
Building Element A 0 Cp Thickness U-/Va;ue Therma/l ]indging
WmK  kgm®)  (/kg-K) (cm) (W/m™-K) (W/m®K)
External Wall 0.035 35 1400 10.7 0.28 0.33
External Roof 0.035 35 1400 16.2 0.20 0.25
Ground floor 0.035 35 1400 8.8 0.35 0.40

3.2. Building Energy Model (BEM)

3.2.1. BEM Characteristics

The energy consumption for lighting, appliances and other equipment is not considered in EnEV
and, as a consequence, in the report of the German ministry. Hence, the energy model is used to
simulate only the thermal performance of the building. This is being done through the combined use
of the advanced building simulation software EnergyPlus V 5.0 and MATLAB. EnergyPlus V 5.0 is
responsible for carrying out an annual dynamic thermal simulation with a time step of six per hour
to determine the building heating energy demand. For the heating energy demand simulation, it is
assumed that the building HVAC system can meet all thermal loads (ideal heating system). The data
used for approximating the outdoor weather conditions is derived from the German reference climate
tables in DIN V 18599. The modeled building consists of two thermal zones, one for each floor, while
the mechanical ventilation rate is set at 0.33, and the natural infiltration rate at 0.17 air changes per
hour. The fact that only the heating energy demand is an EnergyPlus simulation output means that
neither the electricity consumption of the ventilation system nor the fuel (natural gas or electricity)
consumption of the central heating component are part of the EnergyPlus simulation.

The simulated results for the building heating energy demand flow into MATLAB for
post-processing. Here, the performance of the heating system is emulated using annual system
efficiency factors that take distribution losses into account and are derived from the respective
calculations in the German ministry report. This way, the energy consumption for heating and domestic
hot water is determined. For the reference building from the German ministry report, a condensing
boiler is used as the central component with annual system efficiency amounting to 89%. Additionally,
the electricity consumption of the ventilation system is calculated according to the assumed mechanical
ventilation rate. Finally, the primary energy factors of 1.1 for natural gas and 2.6 for electricity, as listed
in EnEV 2009, are applied in order to calculate the primary energy consumption.

3.2.2. BEM Validation

In order to validate the EnergyPlus energy model, the simulated heating energy demand has to be
compared with the demand found in the German ministry report. The latter is the result of calculations
conducted in accordance with DIN V 18599, using suitable software. The initial simulation of the
reference building and comparison with the calculations made by the German government yields the
results shown in Table 4 for the heating energy demand.

Table 4. Comparison between report and simulation results for reference building heating demand.

Results Source Heating Demand (kWh/m?-a) Deviation
Report 76.27 ]
Simulation 76.34 0.09%

The observed deviation of 0.09% can be rated as negligible. However, when simulating the
building energy performance after implementation of energy-saving measure packages, deviations of
up to 28% can be observed, as shown in Table 5.
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Table 5. Comparison between report and simulation results for heating demand, different packages.

Measure Package U-Values incl. Thermal Bridging (W/m?-K) Heat Demand (kWh/m?-a) Deviation (%)
Wall Roof Floor Windows Report Simulation
Reference 0.33 0.25 0.4 1.35 76.3 76.3 0.1
Package 1 0.17 0.19 0.23 1.05 493 57.0 15.6
Package 2 0.17 0.19 0.23 1.05 36.6 44.6 21.7
Package 3 0.17 0.13 0.23 0.8 279 35.8 282

It is evident that these deviations are the largest in cases where the U-values of the envelope
elements are reduced significantly. Thus, it can be stated that calculations according to EnEV 2009
overestimate the positive influence of insulation improvement on building energy demand, at least
when compared to the simulation results. Since the envelope elements’ thermal properties deteriorate
with time, it is important that these deviations in heating demand are corrected before considering
degradation impact on building energy performance. After application of a fitting equation for
correcting the simulated heating demand, the deviations for reference building and Packages 1-3 lie at
—1.87%, 5%, 1.75%, and —3.6%, respectively, which can be viewed as acceptable. The heating demand
for the simulated reference building is now 74.85 kWh/ m?-a.

3.3. Consideration of Performance Degradation in BEM

After the successful validation of the building energy model, modifications can be undertaken
in order for performance degradation of selected envelope elements and heat supply systems to be
taken into account. As mentioned, the degradation of a condensing gas boiler, an air-source heat pump,
and XPS insulation is taken into account for the purposes of this article. This means that in addition to the
presented reference building with a condensing gas boiler as primary heating system, the same building
with an air source heat pump as central heating component has to be simulated. Since maintenance
quality is a major factor influencing the long-term performance of HVAC components, it is fitting to
cover the extremes by considering one scenario with annual professional maintenance and one with poor
maintenance for the building primary heating component. On the other hand, the building envelope
configuration remains the same for all assessments. Thus, four different scenarios in total are assessed in
respect to building energy performance over a life span of 20 years.

For the examined heat pump and boiler, it was decided that the exponential degradation model
presented in [17] is the most suitable for predicting future performance, since the frequency of faults
and failures in mechanical components is low during the first years of operation and sharply increases
during the last ones. The exponential equation applied is the following:

Eff = BaseEff-(1 — M)?8¢, 1)

with Eff being the annual efficiency (SEER, EER, HSPF, AFUE) of the equipment at a certain age, and
BaseEff the efficiency of the Pre-Retrofit equipment when new. M is the factor used to consider the
impact of maintenance quality, and age is the age of the equipment in years.

Performance degradation of insulation material can be expressed as a rise in thermal conductivity
(A) with time. A function expressing this relationship for XPS can be developed by fitting data from [23].
As a first step, the A-values found there have to be multiplied by a factor of 1.59. This is done because
the listed thermal conductivity for the first year has a value of 0.022 W/m-K, while it is assumed to lie
at 0.035 W/m-K for the purposes of the current study. Subsequently, the polyfit function of MATLAB
is used to determine the correct equation.

Aage = 1/(—0.000097502-(age — 1)° + 0.0054-(age — 1)* — 0.1126-(age — 1)°

2
+1.0895-(age — 1)? — 4.9677-(age — 1) + 28.7371)-W /m-K. @
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The scenarios that result for the different central heating components and maintenance levels as
well as the respective total energy and primary energy consumption for the first year of operation
are shown in Table 6. Since the building envelope remains unchanged, the heating demand lies at
74.85 kWh/m?2.a for all four cases, as presented in Section 3.2.2.

Table 6. Four different heating system scenarios for degradation assessment.

System Characteistic Maintenance primary Eneray for
Scenario y Heating, DHW and Project Life (Years)
Annual System Ventilation, 1st Year
Efficiency, 1st Year Solar Collector Level M-Factor (KWh/m?-a)
Boiler 1 0.89 YES HIGH 0.005 91.5 20
Boiler 2 0.89 YES LOW 0.015 91.8 20
Heat pump 1 1.94 NO HIGH 0.01 75 20
Heat pump 2 1.94 NO LOW 0.03 74.8 20
4. Results

As a first step, the impact of the performance decline of single elements on building energy
consumption for heating, DHW and ventilation over 20 years is examined. The effect of insulation
thermal conductivity rise is shown in Figure 2, while the results of the efficiency drop of boiler and
heat pump for the two different maintenance scenarios are presented in Figure 3.

In Table 7, an overview of the key results regarding single building element degradation is
provided. It is worth noting that the building can consume up to 29.7% more primary energy than
expected over the life cycle of 20 years, if air-source heat pump is the central heating component and it
is not maintained properly. Additionally, the energy savings of the heat pump system compared to the
boiler system are nullified after 20 years in the case that both components undergo poor maintenance.

Heating demand in kWh/m?a.
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Figure 2. Impact of extruded polystyrene (XPS) insulation degradation on (a) heating demand;
(b) primary energy.
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Figure 3. Impact of (a) boiler; (b) heat pump degradation on building primary energy consumption,

two maintenance scenarios.

Table 7. Cumulative results for single element degradation.

Cumulative Additional

Element Primary Heating Maintenance Difference Year 20-Year 1 (kWh/m?-a) o b 20
. . rimary Energy over
Degrading System Quality Heat Demand Primary Energy Years (kWh/m?2)

XPS insulati Boiler Not relevant 13.6 (+18.1%) 17.1 (+18.8%) 242.1 (+13.3%)

nsuiation Heat pump Not relevant 13.6 (+18.1%) 13 (+17.3%) 183.7 (+12.2%)
Boiler HIGH 0 (+0%) 8.2 (+9%) 80.6 (+4.4%)

Central heating Boiler LOW 0 (+0%) 27.3 (+29.7%) 260.2 (+14.2%)
component Heat pump HIGH 0 (+0%) 13.1 (+17.4%) 126.9 (+8.5%)
Heat pump LOW 0 (+0%) 48.7 (+65.2%) 443 (+29.7%)

The combined effects of insulation and heat supply system degradation are evaluated next.
As expected, the building energy performance deterioration with time is considerably higher in this
case. The effect of envelope degradation is more dominant during the first three years, as can be
concluded by the fact that maintenance quality does not play a major role in energy performance
in this time frame. For the next 10 years, the rise in energy consumption is almost linear, since the
envelope degradation rate diminishes while HVAC degradation is increased, whereas in the last year
of operation, the high impact of mechanical degradation is evident through the exponential energy
consumption increase. The projected primary energy consumption for all four assessed scenarios is
depicted in Figure 4.

The key findings regarding the combined impact of insulation, boiler and heat pump degradation
on overall building performance are shown in Table 8. Even if the central heating component of the
building is a professionally maintained boiler, the total primary energy consumed over 20 years is
at least 18.4 % higher than the projected value without degradation. For a poorly maintained heat
pump, this value lies at 47.1%. This means that in such a case the building consumes in a time interval
of 20 years the primary energy it would consume in 29 years and four months if no degradation
occurred. An additional value that stands out in this scenario is the primary energy consumption in the
20th year, which is almost twice as high (+96.2%) as its expected value, if its coefficient of performance
remained stable.

Table 8. Cumulative results for insulation and primary heating system degradation.

X Primary Heating Maintenance Difference Year 20 - Year 1 (kWh/m?2-a) lemulative Additional
Scenario System Quality - - Primary Energy over 20
eat Demand Primary Energy Years (kWh/m?2)
1 Boiler HIGH 13.6 (+18.1%) 27 (+29.6%) 336.5 (+18.4%)
2 Boiler LOW 13.6 (+18.1%) 50 (+54.6%) 546.8 (+29.8%)
3 Heat pump HIGH 13.6 (+18.1%) 28.8 (+38.4%) 332.2 (+22.2%)
4 Heat pump LOW 13.6 (+18.1%) 71.8 (+96.2%) 702.8 (+47.1%)
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Figure 4. Combined impact of XPS and (a) boiler; (b) heat pump degradation on building primary
energy consumption.

5. Conclusions

In this article, the impact of performance degradation of XPS insulation, gas boilers, and air-source
heat pumps on the long-term building energy performance is examined through simulation of different
scenarios. Due to the limited amount of quantitative data, simplified degradation equations have
to be introduced to project the future performance of the mentioned elements. The application
of these degradation models leads to a significant rise in building energy consumption with time.
In the case where single component degradation is considered, the additional primary consumption
over the course of 20 years is 4.4-29.7 % higher than in a scenario without degradation, while the
combined effects of component ageing lead to values between 18.4% and 47.1%. Thus, it is evident that
performance degradation is a significant factor that has to be taken into account for energy performance
assessments in the early design phase of a building.

HVAC component performance is very susceptible to decline due to ageing. Highly complex
systems, such as the assessed air-source heat pump, are set to perform considerably worse than
expected if they are not maintained properly, with energy consumption after 20 years reaching values
that are almost twice as high as the initial ones. For that reason, proper annual maintenance is
crucial for moderating the consequences of performance deterioration due to natural ageing and
mechanical wear.

The demonstration of the significance of taking performance degradation into account is possible
even with the low amount of components and the high degree of simplification that are characteristic
of this paper. Nonetheless, it should be expected that the real extent of building performance decline
due to component ageing and malfunction is considerably higher. Due to the limited amount of data
available, more accurate quantification of the long-term performance of a wider range of components
is required. This would principally require extensive building performance monitoring and data
acquisition. Additionally, since it is highly unrealistic to claim that degradation occurs solely due to
ageing and poor maintenance and that its values consequently follow predefined functions of time,
a closer look has to be taken into each building element. The wider usage of simulation tools that
emulate component behavior that leads to a higher wear, such as the constant switching on and off
of heat pumps, can be a useful means of achieving that. Only through taking such steps to improve
the predictability of long term energy performance will it be possible to reach the required maximum
accuracy when designing future-proof energy-efficient buildings.
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