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Summary

The development of horizontal drilling technology have enabled the production of oil
and gas from thin layers. With the development of shallow, horizontal subsea wells,
new challenges arises. The occurrence of compressive forces affects horizontal reach
and tubing movement. These challenges can be seen in direct relation to buckling. The
consequences of buckling can be costly work-overs and even loss of integrity.

The integrity of a well construction is essential, and design factors are included in the
stress analysis to ensure safe and profitable hydrocarbon recovery. The highest design
factor is used for axial loads, as they are subject to the highest uncertainty. Exceeding
the buckling limit can introduce local bending forces. The tubing will permanently de-
form, if yield strength is exceeded by triaxial stress due to buckling. Deformation of the
tubing can lead to loss of drift, or even loss of integrity and discharge to the environ-
ment as a worst case scenario. A better understanding of buckling can reduce the risk
of severe axial failures.

Compressive forces are introduced early in the completion process. When the tubing
is lowered, the compressive forces are mainly induced by friction. The occurrence of
compression and geometrical imperfections can buckle the string, and affect the limit
of reach in horizontal wells. A model is therefore developed to predict buckling during
tubing installation. The model is applied on a generic well design for a shallow subsea
field to investigate the tubing integrity for producers and injectors.

Post installation, the tubing is anchored between the wellhead and the production packer.
Cyclic temperature and pressure loads induces tubing movement. Initiation of buck-
ling causes additional tubing movement. A second model is developed to evaluate load
cases and ensure that buckling does not affect the well integrity.

Literature review show that preexisting industry standard buckling models were devel-
oped at a time without widespread use of digital calculation aids. Consequently, the
models are developed by simplifying assumptions enabling use of only hand calcula-
tions. These models have further been implemented in industry software, and are still
in use today, despite these simplifying assumptions.

The digital aids are rapidly developing, and this opens the possibility of a new buckling
model with no simplifying assumptions. When the simulations matches a real scenario,
the model becomes more reliable. This thesis is the first step of achieving this long-term
objective.
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Sammendrag

Brønnteknologiske utviklinger har gjort det mulig å bore horisontalt for å produsere olje
og gass fra tynne lag. Med utviklingen av grunne, horisontale undervannsfelt kommer
nye utfordringer. Kompresjonskrefter påvirker både horisontal rekkevidde og rørbeveg-
else. Dette kan sees i direkte relasjon til bøying elle bukling av rør. Konsekvenser av
bukling kan være kostbar brønnservice og tap av brønnintegritet.

Brønnintegritet er essensielt, og sikkerhetsfaktorer er inkludert i analysen for å sikre en
trygg og lønnsom utvinning av hydrokarboner. Den høyeste sikkerhetsfaktoren brukes
på aksielle laster, da det er knyttet høy usikkerhet til disse. Bøyning eller bukling er en
konsekvens av kompresjon og geometriske ufullkommenheter. Hvis bukling oppstår,
vil det skape lokale bøyespenninger. Produksjonsrøret deformeres hvis spenningene
øker utover styrken på materialet. Permanent deformering av røret kan føre til at man
ikke kommer gjennom med intervensjonsverktøy. Deformasjon kan også gå på bekost-
ning av brønnintegritet, samt i verste fall føre til miljøutslipp. En økt forståelse av buk-
ling kan redusere risikoen for alvorlig aksiell svikt.

Kompresjonskrefter introduseres tidlig i kompletteringsprosessen. Når produksjon-
srøret senkes ned i brønnen er kompresjonskreftene i hovedsak skapt av friksjon. Forekom-
sten av høy kompresjon og geometriske ufullkommenheter kan føre til at røret bukles,
og dette påvirker rekkevidden, spesielt i horisontale brønner. En modell er utviklet for
å forutse når og hvor bukling skjer under installasjon av produksjonsrøret. Modellen er
anvendt på et generisk brønndesign for et grunt undervannsfelt for å undersøke rørin-
tegritet for produsenter og injektorer.

Etter installasjon vil produksjonsrøret være fastspent mellom brønnhodet og produk-
sjonspakningen. Syklisk temperatur og trykk vil skape bevegelse i røret. Bukling vil føre
til ekstra bevegelse. Ytterligere en modell er utviklet for å evaluere laster, og for å sørge
for at bukling av produksjonsrøret ikke går på bekostning av brønnintegriteten.

En gjennomgang av tilgjengelig litteratur viser at industriens buklingmodell ble utviklet
på en tid uten utbredt bruk av digitale hjelpemidler. Følgelig har modellene blitt utviklet
på grunnlag av forenklende antagelser for å kunne gjøre beregningene for hånd. Disse
modellene har videre blitt implementert i industriens programvare, og de er fortsatt i
bruk, på tross av endringer i forutsetningene.

Digitale verktøy utvikles stadig, og dette åpner muligheten for å lage en ny bukling-
modell uten forenklede antagelser. Når simuleringene ligner et realistisk scenario, blir
modellen mer pålitelig. Denne avhandlingen er det første steget mot å oppnå dette
langsiktige målet.
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Chapter 1

Introduction

The development of horizontal drilling technology have enabled the production of oil
and gas from thin layers. This technology has been practiced on the Norwegian conti-
nental shelf since the 1990’s and especially the Troll field. Some recent fields are shallow
and deviated, which means that the drill pipe during drilling and casing/tubing during
installation will be in compression. Knowing the operational limits for buckling to un-
derstand where failure may occur and to know the limit of reach is important in life
cycle integrity well design.

Frictional drag is a concern when the tubing is lowered in a long-reach horizontal well.
If these drag forces becomes high, buckling can be initiated, and in the worst case cause
lock-up before reaching the desired depth. Consequences of not reaching the desired
depths can be lack of zone isolation. It is evident that the completion phases are very
time-consuming amounting to nearly half of the total well construction time (Aadnoy,
2010, 241). An evaluation of the completion strategy can therefore be valuable for the
company.

Forces during production is another aspect. Cycles of temperature and pressure on a
tubing in compression may cause buckling post installation. Buckling length changes
and the packer force must be calculated to evaluate where the neutral stability point is
located. The packer force can both induce or reduce compressive stresses, thus it can
be able to buckle a tubing more severely or even unbuckle it. It is important to predict
buckling shape and severity for future intervention. As the effective inner area is re-
duced in a buckled tubing, tool passage can be a problem. Deformation of tubing can
lead to loss of integrity and discharge to the environment in a worst case scenario.

Lack of knowledge have caused costly failures in the past (Lubinski et al., 1962, 659). It is
therefore important to understand the theoretical foundation behind design software
programs used in the industry. A better understanding can mitigate potential errors
and wrong simulations.

A frictional drag model have been proposed by Aadnoy et al. (2010). These equations
are applicable for running completion in a well with both inclination and azimuth. The

1
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drag forces are calculated by dividing the well into a 3D well path, i.e. ideal sections. A
limitation of the model is that it is derived from a soft-string model, i.e. bending stresses
are neglected. The predicted contact force will therefore be underestimated. Another
limitation is that the well is divided into large sections, and the uncertainty arises when
a point of interest lies within a section. A consequence is that dog leg variations within
each section are not accounted for. Dog leg variations will give a higher frictional force
than expected.

Lock-up in coiled tubing is a topic frequently discussed. Lock-up occurs when the ap-
plied surface force exceeds the tubings capacity to move further into the horizontal well.
This analogy is used to explain how compressive forces adds up when a long-reach hor-
izontal well is developed.

1.1 Industry

WellCat is part of the landmark EDM, and it is the most used soft ware tool for advanced
tubing and casing design in the industry. The fall project (Remmen et al., 2017) revolved
around the industry standards and practices for casing and tubing design. Load cases
were evaluated in detail, and the software WellCat was used to analyze the importance
of all input parameters for the casing design of a subsea well in the Norwegian sector.

The remaining challenge is to clarify the theoretical foundation behind the buckling
calculations performed in WellCat. The WellCat manual (Halliburton, 2001) states that
Bellarby (2009) and Mitchell et al. (1999) are the sources for buckling analysis.

The main limitation of full understanding of how the software performs design, is the
lack of technical details in the engineering performed. It is therefore challenging to
understand the theoretical basis behind the calculations.

1.2 Literature

A comprehensive literature study on buckling was conducted, and the most acknowl-
edged theory and methods are presented.

Lubinski et al. (1962) provided a model for helical buckling for tubing sealed in pack-
ers. The model is mainly developed for a vertical well with no friction. Mitchell et al.
(1999) developed a theoretical understanding of the previous mentioned model, and
developed equations for application of the model in deviated wells. It is challenging to
understand and reproduce the Lubinski et al. (1962) model. Some of the assumptions
taken does not apply for modern wells, and modifications needs to be done.

The main limitations of the theoretical foundations is the basic assumptions. Uncer-
tainty arises when the assumptions does not match the realistic scenario.
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Axial forces are subject to the greatest uncertainty. Since they are dependent on pres-
sure, temperature, bending and drag. The consequences associated with axial failure
can be serious, whether it is a tensile or compressive failure. As axial failure could cause
considerable damage on people and surface equipment, a relatively high design factor
is used (Bellarby, 2009, 521-522).

1.3 Objective and Approach

The aim of this thesis is to investigate and reduce some of the uncertainties by develop-
ing a buckling model combining installation of the completion and operational cycles
with critical buckling limits. The initial compression and buckling present in the string
after installation will also be useful for simulation of the operational cycles. A remain-
ing challenge will then be to create a visual representation of buckling, when and where
it occurs. Numerical aids can improve axial load analysis by dividing the tubing into
indefinite small cross-sections.

This thesis can contribute to better understanding of when and where buckling occurs,
and the importance of a thorough investigation of this matter throughout the entire
lifetime of a completion. By a better understanding of the load limits, costly work-overs
and time consuming interventions can be avoided. Numerical aids improves the drag
analysis by dividing the tubing into indefinite small cross-sections.

Two models were developed in MatLab. The first model is a representation of a scenario
where a tubing is installed in a shallow, horizontal well. Buckling induced by drag forces
are presented by implementing buckling limits. Lock-up scenarios are then predicted.
The second model is an implementation of the buckling analysis used in WellCat. Both
models are generalized to apply for both vertical and deviated wells, and results for a
shallow, horizontal well are presented.

Figure 1.1: Sketch of well profile used in buckling analylsis
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Chapter 2

State of the Art

When a structure is subjected to a compressive force, it can be forced to take another
shape than it originally holds. It is said that the structure has buckled if it suddenly
deflects sideways. Buckling is a structural instability that can lead to failure, and it is a
subject of discussion in several areas of engineering. In petroleum engineering, buck-
ling is a relevant subject within casing and tubing design, drilling, coiled tubing and
snubbing.

2.1 Critical Buckling Limit

Imagine that a tubing is subjected to an increasing compressive force. The critical buck-
ling limit is found at the instant moment when the tubing snaps into a buckled shape.
Buckling can be categorized in sinusoidal buckling and helical buckling, thus there are
one limit for sinusoidal buckling and another for helical buckling. The critical buckling
limit has been derived by a range of authors:

2.1.1 Vertical well

The first critical buckling limit for a weightless rod in a vertical section was derived by
Euler in 1757. (Hearn, 1997).

Lubinski et al. (1950) and Wu et al. (1995) included weight in the derivation of the criti-
cal sinusoidal and helical buckling limit, respectively, in a vertical well.

2.1.2 Deviated well

Dawson et al. (1984) considered the effect of well deviation on the critical buckling limit
for sinusoidal buckling. This limit is well established, and still used in the industry, even
for helical buckling (Halliburton, 2001) (Horgen, 2010).

5
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Mitchell et al. (1999) found that a helical buckling limit could be derived by multiplying
the limit developed by Dawson et al. (1984) with a constant. The region between these
limits was defined as a transition where either sinusoidal or helical buckling can occur.

Dawson et al. (1984) neglected well curvature in the derivation of the critical buckling
limit.

He et al. (1995) showed that the established equation by Dawson et al. (1984) was con-
servative in curved sections. It was therefore developed a new critical buckling limit, in-
cluding the curvature effects. Their model indicated that curvature stabilizes the pipe,
hence resulting in a higher critical buckling limit than previously expected.

Aasen et al. (2002) did a thorough investigation of the available models, to find that
many buckling limits only varied by the coefficients.

2.2 Buckling During Operations

Lubinski et al. (1962) published a well known model regarding helical buckling of a tub-
ing in a vertical well. The main focus of Lubinski et al. (1962) was to calculate the
effective axial force by investigating length changes due to pressure and temperature
changes. The slack-off force from the installation phase was also included in the analy-
sis. A triaxial analysis was performed to investigate permanent deformation due to the
increased bending stress, a consequence known as permanent corkscrewing.

When Lubinski et al. (1962) presented the model for helical buckling in a vertical well,
Mitchell et al. (1988) investigated the foundation of the model. The solution was put in
a more theoretical context to make the model applicable for deviated wells.

The model presented by both Lubinski et al. (1962) and Mitchell et al. (1988) was based
on the assumption that the pipe instantly took a helical shape when reaching the crit-
ical buckling limit. It was however recognized by Mitchell et al. (1997) that sinusoidal
buckling could occur before helical buckling, hence a new theoretical model was devel-
oped.

A fourth order differential equation for the helix angle was derived by Mitchell et al.
(1997). The solution of the differential equation was found to be very useful when pre-
dicting the effect of well deviation on buckling shape, tubing length change, contact
force and bending stress.

Mitchell et al. (1999) presented a more practical applicable model based on the equa-
tions in Mitchell et al. (1997). Correlations were developed to match the complex mod-
els. The correlations was compared to the results (Lubinski et al., 1962) presented, and
it was shown that the buckling length change depended on the buckling shape. A con-
vincing discovery was that the result presented by Lubinski et al. (1962) predicted an
increase in tubing length for an increase in deviation angle, while Mitchell et al. (1999)
predicted the opposite. Lateral gravity forces is proven to prevent buckling, and it was
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concluded that Mitchell et al. (1999) predicted a more realistic scenario. Another find-
ing was that (Lubinski et al., 1962) over predicted tubing movement. For a fixed tubing,
the axial loads would by this method be underestimated, and this could lead to a non-
conservative design. The model presented by (Mitchell et al., 1999) was proven to be
better when designing a tubing in a deviated well.

Mitchell et al. (1999) gave a better understanding of the consequences of helical buck-
ling versus sinusoidal buckling in a deviated well. The bending stress, buckling strain
and length change is depending on whether the buckling is sinusoidal or helical shaped.
The contact force is the last main factor affected by the buckling shape. When the buck-
ling shape changes from sinusoidal to helical, the contact force increases significantly.

2.3 Buckling During Installation

The contact force is an important part of the torque and drag analysis. A coiled tub-
ing operation can be strongly affected by friction. The friction forces will add up to the
compression forces, and when the tubing snaps in to a helical shape, the contact force
will increase even more. At one certain point, this can cause lock-up, and we will not
be able to push the coiled tubing further into the well by applying a higher force on the
surface. This analogy can also be used for tubing installation, as the tubing diameter is
significantly small compared to the tubing length.

Aadnoy et al. (2010) presented a three-dimensional friction model for the drag analy-
sis. This model includes contact force, dogleg angle and the capstan effect. The string
was considered to be either tension- or weight-dominated, depending on whether the
wellbore section is straight or curved. This assumption simplified the drag equations
significantly, and a set of only two equations could be used to calculate drag in a well-
bore with both inclination and azimuth. One can further use this drag force to calculate
the hook load on surface and the axial load throughout the entire completion.
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2.4 Timeline of Previous Work

Figure 2.1 presents a timeline of present state of the art.

Figure 2.1: Timeline of previous work presented in state of the art



Chapter 3

Literature Study

A study of critical buckling limits for vertical and deviated well sections has been con-
ducted. The effective axial force is defined, and its importance in buckling analysis is
justified.

Finally, the theoretical foundation behind two models was investigated:

1. Buckling during installation

2. Buckling during operations (i.e. production, injection and other load cases)

The model of buckling during installation is based on the three-dimensional friction
model developed by Aadnoy et al. (2010).

The model of buckling during operations is the existing model used for buckling analy-
sis in the industry leading software WellCat. This model is developed by Lubinski et al.
(1962) and Mitchell et al. (1999).

The aim of this chapter is to obtain a better understanding of failures related to sinu-
soidal or helical buckling, and to prevent potential failures in the future.

9
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3.1 True Axial Force vs. Effective Axial Force

This section is written to clarify the difference between the true axial force and the ef-
fective axial force. The term "buckling force" is also frequently used in the literature ,
while the term "fictitious force" has contributed to more confusion around this subject
(Lubinski et al., 1962) (Aasen et al., 2002) (Mitchell et al., 1999) (Aadnoy et al., 2009).

Tension is defined as a positive force, while compression is defined as negative.

3.1.1 Tubing string without packer

The axial force at the top of the string includes the weight of the string and the hydro-
static pressure acting on the bottom of the string.

3.1.1.1 True Axial Force

Aadnoy et al. (2009) presents the true axial force as:

Fa = (zT V D − z)wl +pi ,T V D Ai −po,T V D Ao (3.1)

where z is the vertical depth of interest. At the top of the string, z = 0, the entire string
weight is included. At the bottom of the string, z = zT V D , the string weight equals zero,
and the only forces acting are the hydrostatic pressure. The pressure terms are evalu-
ated at the bottom of the tubing, regardless of depth of interest. Ai and Ao is the inner
and outer area of the tubing respectively. At the bottom of the string, the true axial force
becomes:

Fa = pi ,shoe Ai −po,shoe Ao (3.2)

3.1.1.2 Effective Axial Force

The inner and outer pressure will affect the structural stability, so one can not rely on the
compressive forces alone when buckling is calculated. The axial force combined with
inner and outer pressure is summed up to make buckling calculation more convenient.
The resulting force is called the effective axial force. When this effective force exceeds
a certain limit, buckling will occur. The effective axial force is not a true force that can
be measured, but it is useful to predict buckling tendencies. The effective axial force is
defined as:

Fe f f = Fa −pi Ai +po Ao (3.3)

These pressure terms are evaluated along the string.

Every long completion will be subjected to geometrical imperfections, and bends or
irregularities will be present. Figure 3.1 illustrates a typical bend. The inner side of
the bend will be in compression, while the outer side of the bend will be in tension.
The part in tension will have a bigger inside area than the part in compression. The
pressure will therefore act on a larger area on the tensile side, and the pipe will become
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more unstable. At a certain point it can snap into a buckled shape, even though the
entire pipe is in tension.

Figure 3.1: Geometrical imperfections induces bends in the tubing. The inside of the
bend has a smaller area than the outside of the bend.

Compression and internal pressure will therefore promote buckling, while tension and
external pressure reduces the chance of buckling (Bellarby, 2009, 492). Also note that a
sufficiently high internal pressure can cause the effective axial load to be negative, al-
though the true axial force is positive.

3.1.2 Tubing string with packer

3.1.2.1 True Axial Force

The hydrostatic pressures acting on the bottom of the tubing will now act on cross-
sections of both the tubing and the packer. The true axial force are presented by Lubin-
ski et al. (1962) as:

Fa = (Ap − Ao)Po − (Ap − Ai )Pi (3.4)

To calculate the axial force at surface, the string weight is simply added to equation
(3.4).

3.1.2.2 Effective Axial Force

Lubinski et al. (1962) introduced the term "fictitious force" as the "effective force" at the
bottom of the string. The equation for fictitious force is:

F f = Ap (Po −Pi ) (3.5)

Equation (3.5) is obtained by inserting equation (3.4) in to (3.3). If the inner and outer
area is carefully expressed as the cross-sectional area in which the pressures are acting,
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equation (3.1) and (3.3) can be correctly used for any general case. The string weight
must be included to find the effective force at surface.

When the tubing is fixed, and loads affect tubing movement, the packer will act with an
opposing force. This is presented in detail in section 3.4.

The true and effective axial force is plotted towards depth in figure 3.2. Note that the
effective axial force equals zero at the bottom of the string. The reason for this is that
the pressure terms cancels each other out at this point. This can be easily seen if the
equation for true axial force is inserted in the equation for effective axial force.

Where the true axial force crosses the z-axis, the string is neither in compression nor
tension. This is the point of zero axial load, and it is frequently denoted as the neutral
point. The neutral point will not give us useful information on whether the string buck-
les or not. Buckling analysis requires knowledge of the effective axial force. This point
where the effective axial force crosses the z-axis is defined as the neutral stability point
(NSP).
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Figure 3.2: True and effective axial force from initial conditions and the squeeze ce-
menting load case presented in Lubinski et al. (1962). The packer configuration enables
free movement of the tubing.

Bellarby (2009) defines the neutral stability point as the boundary where buckling can-
not occur and where it may occur, and one can therefore use the effective buckling
force to evaluate at which depth the string buckles. This method is convenient, but
utterly conservative. It is therefore developed critical buckling forces to make realistic
predictions of buckling initiation.
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3.2 Critical Buckling Limit

The critical buckling limit determines when and where buckling is initiated. When the
buckling limits are presented, it is convenient to consider compression as a positive
force. Buckling will not occur if the effective axial force is below the critical buckling
limit. The sinusoidal buckling limit is the lowest buckling limit, then follows the heli-
cal buckling limit. In this section, the different buckling limits are presented, and the
assumptions are clearly stated.

3.2.1 Euler’s equation

Euler was the first to present a second order differential equation to represent buckling
in a weightless rod Hearn (1997). The following assumptions forms the basis of this
theory:

1. The column is subjected to axial loading

2. Material of the column is homogeneous and isotropic

3. The material of column is elastic and obeys Hooke’s law

4. The length of the column is very large compared to the other dimensions

5. Self-weight of the column is neglected

6. The column is straight before loading

Equation (3.6) is a solution of this differential equation, and indicates the buckling limit,
Fcr :

Fcr = n
π2E I

L2 (3.6)

where E I is the bending stiffness, and L is the tubular length. The coefficient, n, is de-
pendent on the end conditions. For fixed-free end conditions, n = 1

4 . For fixed-fixed
end conditions, n = 4 (Hearn, 1997, 28).

Euler’s equation is fundamental for understanding elastic stability theory, but it does
not consider tubulars confined within another circular cylinder. Laterally constrained
pipes also presents more complex characteristics, and the equation has to be modified
for application in well configurations (Cunha et al., 2003).

3.2.2 Pitch

Lubinski et al. (1962) derived an expression for the pitch, P , of a helix within a confining
cylinder. The assumption of a vertical suspended weightless pipe was the basis of this
theory. A helix geometry is displayed in figure 3.3.
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Figure 3.3: Visualization of helix geometry within a confining cylinder

The derivation of the pitch is included in Appendix A. By rearranging equation (A.14),
Lubinski’s equation for the pitch is obtained:

P =
√

8π2E I

F f
(3.7)

where the force, F f , is the fictitious force (Lubinski et al., 1962), also known as effective
axial force at the bottom of the string. Equation (3.7) describes the pitch at the very
bottom of the tubing string.

3.2.3 Vertical well

Both Euler and Lubinski et al. (1962) assumed a weightless rod when deriving equation
(3.6) and (3.7) for critical buckling.

Buckling limits were also derived by considering tubular weight. Lubinski et al. (1950)
derived the following solution for sinusoidal buckling in a vertical well:

Fcr = 1.94(E I w2
b)1/3 (3.8)

where wb is the buoyed weight in [lb/in].

Wu et al. (1995) presented the following solution for helical buckling in a vertical well:

Fcr = 5.55(E I w2
b)1/3 (3.9)

Aasen et al. (2002) revisited several buckling models, and came to the conclusion that
the different sources had presented similar coefficients to determine the critical buck-
ling limit for vertical wells. The practical relevance of these coefficients are limited, as
the buckling limit is generally low for vertical wells.
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3.2.4 Deviated well

Inclination needs to be considered for deviated wells. Well inclination will stabilize the
tubular, and a higher axial force will be required for buckling to be initiated. Dawson
et al. (1984) presented an expression for sinusoidal buckling in inclined wells:

Fcr = 2

√
E I wbsinα

rc
(3.10)

where α is the well inclination and rc is the radial clearance.

This equation is called the Paslay-Dawson equation. The equation is based on the as-
sumption that the radial clearance, rc , is small in comparison with the pitch length, P .
That is, 2πrc

P << 1. Another assumption is that the well curvature is negligibly small.
Hence, the equation applies for straight, inclined wellbores.

Mitchell et al. (1999) used the Paslay-Dawson equation to define the critical limits and
the transition between sinusoidal and helical buckling. The buckling force must exceed
the Paslay-Dawson force to initiate sinusoidal buckling. The following equation defines
a region where the buckling may be either sinusoidal or helical:

Fcr = 1.4 ∼ 2.8×2

√
E I wbsinα

rc
(3.11)

The variation between 1.4 and 2.8 reflects uncertainty of when sinusoidal buckling switch
to helical buckling while loading, and visa versa while unloading. The buckling force
must exceed 1.4 to initiate helical buckling, and when it exceeds 2.8, only helical buck-
ling occurs.

3.2.5 He and Kyllingstad’s model for curved sections

He et al. (1995) derived an improved formula for critical buckling loads in curved wells.
They saw one significant limitation with one specific assumption the Paslay-Dawson
equation is based on. Derivations of the Paslay-Dawson equation is based on the as-
sumption that the well curvature is negligibly small. He et al. (1995) generalized this
equation by substituting wbsinα with a normal contact force which includes curvature
effects. They called this normal contact force F1nbc , and obtained the following equa-
tion:

Fi cr = βF1nbc E I

rc
(3.12)

where Fi cr is the improved critical buckling force and F1nbc is the normal contact force
including curvature effects. β is a coefficient that determines whether the buckling
regime becomes sinusoidal or helical. β=4 is used for sinusoidal buckling and β=8 for
helical buckling.

The normal contact force including curvature effects is given by:
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F1nbc =
√

(wsinα+Fa aα)2 + (Fasinαaφ)2 (3.13)

where Fa is the axial force, aα is the inclination build rate and aφ is the azimuth build
rate.

He et al. (1995) conducted a small-scale experiment with a string within a transparent
tube. The tube had a vertical part, a curved part and a horizontal part. When the string
was located in the curve, it became more resistant to buckling. I.e. the critical buckling
limit was higher than expected in the curved section, while the pipe buckled in both
the straight vertical and horizontal section. It was therefore shown that the established
equation by Dawson et al. (1984) was conservative in curved sections.

3.2.6 Summary of critical buckling limits

Table 3.1 presents the critical buckling limits presented in this chapter.

Table 3.1: Critical buckling limits for vertical, straight deviated and curved well sections.

TYPE VERTICAL STRAIGHT DEVIATED CURVED

Sinusoidal Fcr = 1.94(E I w2
b)1/3 Fcr = 2

√
E I wb sinα

rc
Fi cr = 4F1nbc E I

rc

Helical Fcr = 5.55(E I w2
b)1/3 Fcr = 1.4 ∼ 2.8×2

√
E I wb sinα

rc
Fi cr = 8F1nbc E I

rc

3.2.7 Limitations of theory

Both Euler and Lubinski et al. (1962) assumed that the tubing was straight before load-
ing. This is not the case in real well completions.

Dawson et al. (1984) neglected the curvature effects when deriving the equation for si-
nusoidal buckling in deviated wells. As curvature effects will stabilize the tubing, the
critical buckling limit by Lubinski et al. (1962) is conservative in curved sections.

He et al. (1995) show that curvature effects stabilizes the tubing, but the results were
only conducted from one small-scale experiment.
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3.3 Buckling During Installation

3.3.1 Hook load

The hook load is the actual weight of a pipe measured at surface. Generally, this force
includes the weight of the string in air, reduced by any force that tend to reduce that
weight. The most commonly known opposing force to the hook load, is the buoyancy
force. Another opposing force is friction, also known as the drag force.

Fst ati c = Fwei g ht −Fbuoy anc y (3.14)

Fd ynami c = Fwei g ht −Fbuoy anc y ±Fdr ag (3.15)

Fst ati c is the hook load when no movement is induced and Fd ynami c is the hook load
after induced movement. The drag force will be negative when lowering the string, and
positive when hoisting the string.

3.3.2 Tubing-to-casing drag

Bellarby (2009) defined tubing-to-casing drag as a contact force that derives from three
main sources:

1) Forces due to gravity. This will be the normal force, which is the component of the
tubing weight that acts perpendicular to the casing. The normal force will increase as
the inclination increases.

2) Frictional forces from buckling. When the tubing takes the form of a sinusoidal or
helical buckling shape, it will immediately contact the casing. If buckling is initiated, it
causes an increase in locally generated forces.

3) Frictional forces from the capstan effect. This effect occurs when the tubing passes
through doglegs. If the tubing is in tension, it will be pulled to the high side of the bend.
If the tubing is in compression, it will be pushed to the low side of the bend.

Figure 3.4 shows how all three contributions to the contact force can occur at the same
time. In this figure, the neutral stability point is located below the first build section.
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Figure 3.4: Illustration of how the capstan effect, buckling contact and tubing weight
contributes to the drag force Bellarby (2009).

If the drag force becomes sufficiently high, it causes tubing lock-up when running on
hole. If the compressive forces exceeds the buckling limit, the contact force induced
by buckling will be added. The drag forces are especially important for extended-reach
wells with high inclination.

3.3.3 Three-dimensional drag analysis

A two-dimensional analysis considers the curvature by inclination. Hereby the friction,
including the capstan effect, plays a significant role. By considering azimuth, the drag
force can be modelled in three dimensions. The three-dimensional analytic drag model
by Aadnoy et al. (2010) can be applied for all wellbore shapes. The model is based on
soft-string theory (Aadnoy, 2010, 244).

The drag analysis can be modeled by only two sets of equations, whereas they each rep-
resent the gravitational and tensional friction effects. The first equation is developed
for straight, inclined wellbore sections:

F2 = F1 +∆Lw
(
cosα−µsinα

)
(3.16)

where ∆L is the section length and µ is the friction factor.

The second equation is developed for curved wellbore sections:

F2 = F1eµ|θ2−θ1|+∆Lw
(sinα2 − sinα1

α2 −α1

)
(3.17)

The first part of equation (3.17) is known as the capstan effect. The magnitude of this
effect depends on the dogleg angle, which is calculated in the following manner:

θ = cos−1
[

sinα1sinα2cos(φ1 −φ2)+cosα1cosα2

]
(3.18)
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where α is the inclination, φ is the azimuth and θ is the dog leg angle in radians. The
capstan effect is derived from the assumption that the pipe is weightless, hence weight
is added at the end of the bend.

Subscript 1 is the deepest position, 2 is the highest.

3.3.4 Limitations of theory

Soft string model neglects the bending stiffness, E I . Neglecting bending stiffness im-
plies that the bending moment and bending stress is neglected, and that the calculated
contact force will be lower than in reality. By not predicting the correct axial load, the
buckling severity can be under estimated.

When the string is located in a straight section, it is assumed that the friction contribu-
tion solely comes from the gravitational normal force. It is therefore said that equation
(3.16) is "weight-dominated". When the string is located in a curved section, it is as-
sumed that the tension is much higher than the weight of the pipe in the bend. The
string is assumed to be weightless. Equation (3.17) is therefore said to be "tension-
dominated".

The purpose of these assumptions was to simplify the equations. The equations are eas-
ier to use, and easier to understand. When tension or compression dominates, equation
(3.17) is correct. However, the "tension-dominated" equation can lead to errors at the
parts of the string where tension and compression does not dominate (Aadnoy et al.,
2010, 34). In a highly inclined build section, the weight can be the dominating effect.
The exact equation in App. E in Aadnoy et al. (2010) should therefore be applied.

The end-condition F1 is assumed to be zero. This is correct if the hole is clean, and no
initial force pushes the string backwards when it is run in hole.
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3.4 Buckling During Operations

To understand the concept regarding tubing movement, length changes and packer
forces, one can start by imagining a tubing configuration where the packer permits free
motion. When the tubing is subjected to an operation, (i.e. any load case), the pres-
sure and temperature change will lead to changes in the axial force. The change in axial
force implies that the tubing length will change. The effects causing length changes are
known as buoyancy, ballooning, thermal expansion, drag and slack-off (Remmen et al.,
2017). When all length changes are calculated, one imagines the same tubing being an-
chored in a packer. Tubing movement is now restricted, thus are the length changes
transformed to a packer force. This method is developed by Lubinski et al. (1962), and
used in the industry software WellCat (Halliburton, 2001). The method can be confus-
ing. The purpose of this chapter is to explain the procedure presented by Lubinski et al.
(1962) and to enhance the understanding of this topic. A graphical representation is
added at the end of this section.

3.4.1 Lubinski’s model

The theory in this section is mainly based on the model presented by Lubinski et al.
(1962), but Bellarby (2009) and Aadnoy et al. (2010) are also used for further under-
standing of the aforementioned model.

Lubinski et al. (1962) presented compression as a positive force and tension as a nega-
tive force. The opposite is more commonly used. In the following section, compressive
is considered negative, while tension is considered positive.

Lubinski et al. (1962) used the notation Fa for the direct piston force acting on the tub-
ing, and F f for the fictitious piston force that promotes buckling. This implies that Fa

is the true axial force and F f is the effective axial force at the bottom of the string. The
fictitious force F f is replaced by Fe f f for consistency.

3.4.1.1 Packer that permits free motion

A freely hanging tubing only supported by pressure was imagined. Pressure acted on
the cross-sectional area of both the tubing and the packer. This opposing force caused
the tubing to shorten. This physical shortening in the tubing was expressed by Hooke’s
law:

∆L1 =
Lp

E As
F (3.19)

where Lp is the tubing length, and F is the true axial force. When the outer and inner
pressure changed, the length change was obtained:

∆L1 =
Lp

E As

[
(Ap − Ao)∆Po − (Ap − Ai )∆Pi

]
(3.20)

It is assumed that helical buckling occurs when Fe f f < 0. There will be a physical length
change due to the buckling itself, and this length change will always be negative, as the
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tubing shortens when it snaps into a helical shape. The length change is promoted by
the effective force acting on the bottom of the tubing. Any length change due to helical
buckling is calculated by a non-linear equation:

∆L2 =− r 2
c

8E I w
F 2

e f f (3.21)

where the weight, w , was defined as:

w = wl +wi −wo

= wl +ρi Ai −ρo Ao
(3.22)

and ρi is the fluid density in the tubing, and ρo is the fluid density in the annulus. ws ,
wi and wo is the weight of tubing in air, weight of liquid inside tubing and weight of
liquid outside tubing respectively. The unit for w is [lb/in]. Equation (3.22) equals the
equation for buoyancy factor when two different fluids are present on the inside and
the outside of the pipe, times the weight of string in air (Aadnoy et al., 2010, 25).

The effective force, Fe f f , was calculated with equation (3.5). When the outer and inner
pressures changed, the length change due to buckling was expressed as:

∆L2 =− r 2
c

8E I w

[
A2

p (∆Po −∆Pi )2
]

(3.23)

Equation (3.23) is valid under the assumption that the initial inner pressure equals the
initial outer pressures.

Change in pressure and temperature causes indirect elongation or shortening of the
tubing. When the change in inner pressure is larger than the change in outer pressure,
the radial force will promote ballooning. This radial pressure will cause the tubing to
contract, and visa versa will reverse ballooning cause the tubing to elongate. The length
change due to radial pressure and flow inside tubing was expressed by Lubinski et al.
(1962) as:

∆L3 =−µ

E

∆ρt −R2∆ρa − 1+2µ
2µ δ

R2 −1
L2

p − 2µ

E

(∆pi −R2∆po)Lp

R2 −1
(3.24)

where µ is Poisson’s ratio. R is the ratio between OD and ID of the tubing, ∆ρ is the
change in density from initial conditions to load case conditions and δ is the drop of
pressure per unit length due to flow.

Note that ∆p is the change in surface pressure.

Fluid drag induced axial loads are often ignored in hand calculations and in many soft-
ware packages (Bellarby, 2009, 489-490). For ballooning in static conditions, the follow-
ing equation can be used:

∆L3 = −2µL

E(Ao − Ai )
(∆pi Ai −∆po Ao) (3.25)

In equation (3.25), ∆p is the average change in pressure between surface and packer.
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A positive temperature change will cause thermal expansion, and a negative temper-
ature change will cause thermal contraction. The length change due to temperature
changes is expressed by (3.26) by both Lubinski et al. (1962) and Bellarby (2009).

∆L4 = LpCt∆T (3.26)

where Ct is the coefficient of thermal expansion.

The total operational length change, ∆L will then be the sum of these:

∆L =∆L1 +∆L2 +∆L3 +∆L4 (3.27)

The freely suspended tubing will now have changed its physical length by ∆L.

3.4.1.2 Packer that permits limited motion

The same tubing was then configured with a packer that permitted limited motion. The
tubing can be installed in compression on purpose. Lubinski et al. (1962) explained that
a shoulder on the tubing is removed, so the tubing can be elongated with the length
corresponding to this compressive force, Fso . The length elongation is ∆L5. This expla-
nation is confusing because it does not apply for a practical well installation.

A more practical example to explain the procedure behind "slack-off" is attempted. To
install a tubing in compression, a stick-up length is required. The stick-up length is an
additional length that we denote∆L5. When this additional length is slacked off and the
tubing is installed in the tubing hanger, this results in an additional force. This force is
called the "slack-off"-force, Fso . The opposite of a slack-off force, is a "pick-up"-force.
Due to Hooke’s law of deformation, this elongation will be cancelled when the tubing is
landed. The sum of all length changes will after installation equal zero:

∆L =∆L1 +∆L2 +∆L5 = 0

∆L5 =−
(
∆L1 +∆L2

)
=−

( Lp

E As
Fso −

r 2
c

8E I w
F 2

so

) (3.28)

When the tubing is subjected to loading, the total operational length change will be:

∆L =∆L1 +∆L2 +∆L3 +∆L4 +∆L5 (3.29)

This length change will apply to the limited motion of the tubing, and the seal length
must be within this ∆L.

3.4.1.3 Packer that permits no motion

The final scenario was to imagine a tubing configuration where the packer permits no
motion. There will then be no physical length changes in the tubing, because it can not
physically move from its position. Instead of physically change its length, the packer
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will subject an opposing force to this calculated length change.

The problem was explained as a sequence.

The effective force was earlier defined as the force defining the neutral stability point.
The fictitious force is consecutive. The fictitious force was plotted towards length change,
where the negative part of F indicated buckling, while the positive part of F indicated
no buckling.

Lubinski et al. (1962) simulated a squeeze cementing load case. The effective axial force
at packer depth was calculated and plotted as if the packer permitted free motion. The
case considered however, was a packer permitting no tubular movement. The force
associated with the calculated length changes would therefore be transferred to the
packer. The packer force were shown to be tensile, thus it reduced the compressive
effective force at the packer depth.

F∗
e f f = Fe f f +Fp (3.30)

The corresponding axial force for an anchored tubing is:

F∗
a = Fa +Fp (3.31)
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Figure 3.5: Reproduction of the length change and packer force calculation in the model
proposed by Lubinski et al. (1962)

A new coordinate system was presented with Fe f f as the origin. The shortening of the
tubing ∆L was plotted, and it was clear that the packer force was located at the positive
side of the x-axis in the new coordinate system. A flow chart is presented for further
understanding of this method:
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3.4.2 Mitchell’s non-linear differential equation

One of the main limitations of the model developed by Lubinski et al. (1962) is that it
was limited to helical buckling in vertical wells. Mitchell et al. (1988) investigated the
derivation of helical buckling by Lubinski et al. (1962) and developed an approximate
analytic solution of non-linear buckling equations for arbitrary well deviation. The so-
lutions were developed to solve sinusoidal and helical buckling problems in a tubing
with weight.

Mitchell et al. (1999) presented the lateral displacements as:

u1 = rc cos(λ)

u2 = rc sin(λ)
(3.32)

where the helix angle, λ, is given by a differential equation:[
−E Iλ′′′′+2E I (λ′)3 −Fλ′

]
+

(
wl /rc

)
sin(λ) = 0 (3.33)

F is the value of the axial force in the buckled state, also known as the effective axial
force or fictitious force.

According to Mitchell et al. (1999), general solutions to equation (3.33) are difficult to
obtain. The Galerkin method with cubic interpolation was used to calculateλ as a func-
tion of z. This method is too complex and slow for use in casing and tubing design, so
Mitchell et al. (1999) presented approximate correlations to make the model more prac-
tical.

3.4.3 Mitchell’s correlations

3.4.3.1 Helix Angle

Mitchell et al. (1999) presented correlations for the non-linear differential equations de-
veloped for buckling in deviated wells. By identifying that there can be both sinusoidal
and helical buckling regime, parameters like helix angle, bending stress and bending
strain were conditionally developed.

When a string is buckled like a sinusoidal, the bend of the helix, λ, will change through
the S-shape. Thus, the maximum helix angle was found for sinusoidal buckling. The
maximum helix angle, λmax , for sinusoidal buckling was given by Mitchell et al. (1999)
as:

λ′
max = 1.1227p

2E I
F 0.04

e f f (Fe f f −Fcr )0.46 (3.34)

For helical buckling, the helix angle is assumed to be constant (Bellarby, 2009, 496). The
helix angle was given as:

λ′ =
√

Fe f f

2E I
(3.35)
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3.4.3.2 Buckling Strain

The buckling strain, εb , was defined as the buckling length change per unit length, thus
the elongation is unitless. Lubinski et al. (1962) followed the weightless string principle
and derived an expression for the ε, using the geometry of a helix configuration (Figure
3.3). For the case of sinusoidal buckling, Mitchell et al. (1999) developed a correlation
of the average strain. It was assumed that sinusoidal buckling occurs up to 2.8×Fcr .
The buckling strain was conditionally determined:

εb =


0 Fe f f < Fp

−0.7285
r 2

c
4E I F 0.08

e f f

(
Fe f f −Fp

)0.92
Fp < Fe f f < 2.8Fp

− r 2
c

4E I Fe f f Fe f f > 2.8Fp

(3.36)

In figure 3.6, it is clear that the amount of buckling strain is significantly reduced for
values of F below the helical buckling limit.
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Figure 3.6: Comparison of buckling strain by Lubinski et al. (1962) and Mitchell et al.
(1999).

To find the buckling length change,∆Lb (=∆L2), the buckling strain was integrated with
respect to z. z was integrated between the bottom of the string and the neutral stability
point. It was assumed that the neutral stability point was located within the string.

∆Lz =
∫ n

0
εz d z (3.37)

Further,

Fz

z
= Fe f f

n
(3.38)



28 CHAPTER 3. LITERATURE STUDY

Inserting the equation for helical buckling strain in equation (3.37), and integrating
from 0 to n gives:

∆Lz =
∫ n

0
− r 2

c

4E I
Fz d z

=
[
− r 2

c

8E I
F 2

z

]n

0

=− r 2
c

8E I
nFe f f

(3.39)

The neutral stability point, n, can be calculated by:

n = Fe f f

w
(3.40)

where w has to be defined as in equation 3.22. Inserting equation (3.40) for (3.39), gives
the final equation for sinusoidal and helical buckling length changes. The same proce-
dure is performed with the correlations for buckling strain, and the conditional buck-
ling length changes are given as:

∆Lb =


0 Fe f f < Fp

− r 2
c

4E I (Fe f f −Fcr )[0.3771Fe f f −0.3668Fcr ] Fp < Fe f f < 2.8Fp

− r 2
c

8E I w F 2
e f f Fe f f > 2.8Fp

(3.41)

The length change correlation for sinusoidal and helical buckling is presented in figure
3.7.
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Figure 3.7: Comparison of buckling length change by Lubinski et al. (1962) and Mitchell
et al. (1999).

Applying the buckling length change by Mitchell et al. (1999) into the Lubinski et al.
(1962) model, the packer force reduces slightly. The result is seen in figure 3.8.
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Mitchell et al. (1999) is used instead of Lubinski et al. (1962).

3.4.3.3 Bending moment and stress

The buckling severity depends on whether the tubing is sinusoidal or helically buckled.
The pitch will also vary along the string. When buckling first is initiated, the pitch is
expected to be high. The more severely the tubing buckled, the smaller the pitch gets.

The dog leg curvature of the helix in [rad/in] was given as:

κ=
{

rcλ
′2
max Sinusoidal Buckling

rcλ
′2 Helical Buckling

(3.42)

The higher dog leg curvature, the higher bending moment. Bending moment, M , was
generally given as:

M = E Iκ (3.43)

The bending moment was further given for the different buckling regimes:

M =


0 Fe f f < Fcr

0.6302rc F 0.08
e f f

(
Fe f f −Fcr

)0.92
Fcr < Fe f f < 2.8Fcr

0.5000rc Fe f f Fe f f > 2.8Fcr

(3.44)

The bending moment is directly related to the bending stress, σb .

σb = M ×OD

2I
(3.45)
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Conditionally:

σb =


0 Fe f f < Fcr

0.3151 ODrc
I F 0.08

e f f

(
Fe f f −Fcr

)0.92
Fcr < Fe f f < 2.8Fcr

0.2500 ODrc
I Fe f f Fe f f > 2.8Fcr

(3.46)

3.4.4 Limitations of theory

A limitation of Lubinski et al. (1962) is that the method is developed for vertical wells.
Friction between tubing and casing is not included. In horizontal wells, friction will be
of importance and should not be neglected.

Lubinski et al. (1962) assumes that the tubing buckles when the tubing is subjected to
an effective axial force. This is a conservative buckling limit.

When applying the change in effective force in equation (3.23), it is assumed that the
initial inner pressure equals the initial outer pressure. Equation (3.23) has to be mod-
ified to apply for cases where the initial inner pressure does not equal the initial outer
pressure.

Another assumption is that the neutral stability point is within the string. This is of-
ten true for vertical wells, but for multiple completions or shallow, horizontal wells, the
neutral stability point can be shifted to a location above the string of interest (Lubinski
et al., 1962).

It was challenging to compare the results from Lubinski et al. (1962) and Mitchell et al.
(1999), as the entire example in Lubinski et al. (1962) is developed to work for a verti-
cal well. To compare the results, Mitchell et al. (1999) assumed a kick-off point (KOP)
at 2000 ft, and constructed a well path consisting of one vertical section and one sail
section. This is not a realistic scenario, and considerations regarding build-sections is
therefore not included.

Mitchell et al. (1999) assumed sinusoidal buckling for Fcr < Fe f f < 2.8Fcr . It is an un-
certainty of whether helical or sinusoidal buckling occurs between 1.4Fcr and 2.8Fcr .
In theory, the maximum limit of stable sinusoidal buckling occurs at 2.8Fcr . In prac-
tice however, helical buckling will occur before reaching that limit. This is because of
irregularities in the actual geometry. This assumption can lead to under-estimation of
buckling length changes.
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3.5 Permanent Corkscrewing

Casing and tubing design is planned within the elastic regime. When the yield point,
σyi eld , is exceeded, a plastic regime is reached. When a pipe buckles and enters the
plastic regime, the pipe goes through a permanent deformation. This is defined as an
axial failure.

It is important to be aware of the correlations by Mitchell et al. (1999) when investigat-
ing post-buckling behavior. Permanent corkscrewing damages the tubing string, and it
should therefore be carefully considered which buckling regime that might be present
at the time of each load. As bending stress occurs on both the inside and outside of the
bend, the positive and negative bending stress should be accounted for. Severe bend-
ing stress could cause the string to yield at the outermost fiber instead of the innermost
fiber. Bending stress is included in the total axial stress implemented in the von Mises
equation in section 3.5.

The permanent corkscrewing limit be obtained by the von Mises criterion:

2σ2
V ME =

√
(σθ−σr )2 + (σr −σz )2 + (σz −σθ)2 (3.47)

As an industry practice, it is established that casing and tubing strings are limited to the
elastic stress-strain regime. For thick-walled cylinders, Lame’s equations can be applied
for the radial and tangential stress components, σr and σθ respectively, as a function of
pressure (Bellarby, 2009, 515):

σr =
r 2

i r 2
o (po −pi )

r 2
o − r 2

i

1

r 2 + pi r 2
i −por 2

o

r 2
o − r 2

i

σθ =− r 2
i r 2

o (po −pi )

r 2
o − r 2

i

1

r 2 + pi r 2
i −por 2

o

r 2
o − r 2

i

(3.48)

When Lame’s equations are inserted in the von Mises criterion, one can express one
relation for permanent corkscrewing at the outer wall, and another relation for perma-
nent corkscrewing and the inner wall.

Permanent corkscrewing at the outer wall is given by equation (3.49):

σo =
√

3
[Pi −Po

R2 −1

]2 +
[Pi −R2Po

R2 −1
+σa ±σb

]2 ≤σyi eld (3.49)

Permanent corkscrewing at the inner wall is given by equation (3.50):

σi =
√

3
[R2(Pi −Po)

R2 −1

]2 +
[Pi −R2Po

R2 −1
+σa ± σb

R

]2 ≤σyi eld (3.50)

where R is the ratio between the outer and inner diameter of the tubing. The pressures,
Pi and Po are the pressures at the packer after the relevant load. The total axial stress is
given as:
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σz =σa ± σb

ro
rc (3.51)

The axial stress, σa , is the total axial load divided on cross-sectional area, As .

The bending stress,σb , is given depending on the buckling type and well deviation. The
sign in front of the bending stress, ±, is chosen as the one that gives the highestσo orσi .

Lubinski et al. (1962) used bending stress for helical buckling exclusively when calculat-
ing how permanent corkscrewing relates the the initial slack-off or pick-up force, and
figure 3.9 is a reproduction of this:

-8 -6 -4 -2 0 2 4 6 8

Initial Slack-Off and Pick-Up Force [lb] ×10
4

0

2

4

6

8

10

12

14

T
ri
a
x
ia

l 
S

tr
e
s
s
 [
p
s
i]

×10
4 Permanent Corkscrewing

Sigmao Initial

Sigmao

Sigmai

Figure 3.9: Triaxial stress plotted towards initial slack-off or pick-up force. This is a
reproduction of the results presented in Lubinski et al. (1962).

σo,i ni t i al is the initial yield after slack-off but before any pressures or temperatures have
changed. The dotted lines represents the available grades for this tubing. When the
triaxial stress exceeds a line, the line above should be chosen, and the available grade
can be read of at the y-axis.



Chapter 4

Results

Tubing design is determined by analyzing load cases and investigating critical parame-
ters. In this chapter, the critical parameters are clarified and evaluated, a drag analysis
is performed to predict lock-up situations, and operational load cases are run to calcu-
late the packer force and to locate the neutral stability point. Both models investigated
whether buckling affects the well integrity by permanent corkscrewing.

The theories are tested on a shallow, horizontal well path with a dry x-mas tree. Figure
4.1 presents a simple sketch. The purpose of using this design, is to observe how pres-
sure and temperature affects the axial force in a tubing installed in a horizontal well.

Figure 4.1: Sketch of well profile used in buckling analysis

33
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4.1 Critical Buckling Limit

The critical buckling limit was plotted as a function of relevant parameters. Relevant
parameters in buckling analysis are bending stiffness, weight, inclination and radial
clearance. By evaluating these parameters, the tubing configuration can be optimized.
The critical buckling limit was evaluated for a vertical well section, a deviated straight
well section and a horizontal well section.

4.1.1 Effect of relevant parameters

A large radial clearance implies that the tubing is small relative to the confining casing.
The tubing will tend to lean towards the sides of the casing to reach the equilibrium po-
sition. When the tubing has significant radial space, the buckling severity will increase
due to reduced stability. The critical buckling limit for a vertical well is independent of
radial clearance. Radial clearance affects the critical buckling limit for deviated wells. A
well inclination of 45° is used. Figure 4.2a shows a correlation between radial clearance
and the critical buckling limit. The opposite effect will be seen for bending stiffness and
weight. A higher weight implies a larger tubing thickness. If the thickness increases,
bending stiffness increases accordingly because of the definition of moment of inertia.
It is evident that the trend will be positive for increasing values of bending stiffness and
weight.

Increased inclination will provide support and stability to the tubing. Figure 4.2b shows
how the critical buckling limit increases with inclination. A horizontal section will pro-
vide more stability than a section with a smaller inclination. Note that these are strictly
a simulation of sail sections with different inclinations. As equation 3.10 does not in-
clude curvature effects, the plot will not apply for curves sections. For a vertical well,
i.e. no inclinations, the limits presented in equation (3.8) and (3.9) should be used.
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Figure 4.2: Effect of radial clearance and inclination on critical buckling limit in a devi-
ated well section with 45°inclination.
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4.1.2 D/t-ratio

The outer diameter to thickness ratio, D/t-ratio, will affect the geometric instability of
the tubing. If this ratio is high, i.e. a thin-walled pipe, the instability naturally increases.

One of the failure modes in casing and tubing design is collapse. Buckling is previously
stated to be suppressed by high external pressure. However, if the tubing is thin-walled,
it is showed that the tubing fails because of buckling before it fails because of collapse.

One can categorize pipes with different D/t-ratios, in three collapse regimes. The first
one is for low D/t-ratios. This is called yield collapse, and it is here Lame’s equations are
valid. The second region is plastic collapse, where the collapse limit is adapted to API
empirical data. The last one, but most relevant to the buckling scenario, is the elastic
collapse. Pipes within this D/t-category seems to collapse at a trend matching Euler’s
buckling equation. (Remmen et al., 2017)

Figure 4.3a presents a range of tubings with low D/t-ratio. The figure shows no correla-
tion between D/t-ratio and the critical buckling limit. Only L80 pipes were chosen, and
the D/t-ratios were calculated to be within yield or plastic collapse regime (Remmen
et al., 2017). In figure 4.3b it is clearly a correlation between high D/t-ratios and the
critical buckling limit. This result is expected for tubings in the elastic collapse region,
where the thin-walled piped experiences buckling before collapse.
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Figure 4.3: Effect of D/t-ratio on the critical buckling limit in a deviated well section
with 45°inclination and a horizontal well.
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4.2 Critical Buckling Ratio

In this section, a set of API tubings are compared to a 3 1/2" #9.2 L80 tubing by deriving
a critical buckling ratio. The ratio is the relation between an arbitrary API tubing and
the initially chosen tubing. If the ratio is ≥ 1, the tubing will be better than the initially
chosen one, and if the ratio is ≤ 1, the tubing is worse. This method can therefore be
used to see if one choice of tubing is better than another with regards to buckling.

4.2.1 Vertical well

The critical limit is calculated by equation (3.8) for sinusoidal buckling, and equation
(3.9) for helical buckling. The ratio for sinusoidal buckling will equal the ratio for helical
buckling, as they only differ by coefficients. The critical buckling ratio, F∗

cr for a vertical
well is:

Fcr∗=
1.94 ∼ 5.55 3

√
E I w2

b

1.94 ∼ 5.55 3
√

E Ii w2
b,i

= 3

√√√√ I w2
b

Ii w2
b,i

(4.1)

where the notation i is the tubing initially chosen. The variables in equation (4.1) is
the moment of inertia, I , and the buoyed weight, wb . Generally, one can increase the
tubing weight to increase the critical buckling limit. One can also increase moment of
inertia by increasing tubing OD, and even the lowest corresponding weight will increase
the limit.

4.2.2 Deviated well

The critical buckling limit in a deviated well is calculated by equation (3.10) and (3.11).
The ratio for sinusoidal buckling will equal the ratio of helical buckling. The critical
buckling ratio for a deviated well is:

Fcr∗=
1.4 ∼ 2.8×2

√
E I wb sinα

rc

1.4 ∼ 2.8×2

√
E Ii wb,i sinα

rc,i

=

√√√√√ I wb
rc

Ii wb,i
rc,i

(4.2)

Note that the buckling ratio for a deviated well is independent of inclination. It can
therefore be applied for both inclined and horizontal sections. The radial clearance will
affect the buckling limit for deviated and horizontal wells. In an inclined or horizontal
well, the radial clearance affects the critical buckling limit.

For the 4" #10.7 tubing marked with green, it can be seen that this tubing is a better
choice than the 3 1/2" #12.7 tubing. The lower radial clearance in the deviated section
will stabilize the tubing. The critical buckling limit for vertical wells is not depending
on the radial clearance, hence other factors like bending stiffness and weight will be
dominating. The results are presented in table 4.1.
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Table 4.1: A set of tubing configurations from 2 7/8" to 4 1/2" is compared to the 3 1/2"
#9.2 tubing. The tubings are sorted from best to worst with regards to buckling.

VERTICAL INCLINED/HORIZONTAL
OD [in] w [lb/ft] rc [in] Fcr* OD [in] w [lb/ft] rc [in] Fcr*
4 1/2" 12.6 0.7105 1.64 4 1/2" 12.6 0.7105 2.34
3 1/2" 12.7 1.2105 1.36 4" 10.7 0.9605 1.52
4" 10.7 0.9605 1.29 3 1/2" 12.7 1.2105 1.35
4" 9.5 0.9605 1.14 4" 9.5 0.9605 1.35
3 1/2" 10.2 1.2105 1.11 3 1/2" 10.2 1.2105 1.11
3 1/2" 9.2 1.2105 1.00 3 1/2" 9.2 1.2105 1.00
3 1/2" 7.7 1.2105 0.85 3 1/2" 7.7 1.2105 0.86
2 7/8" 8.6 1.5230 0.81 2 7/8" 8.6 1.5230 0.67
2 7/8" 6.4 1.5230 0.61 2 7/8" 6.4 1.5230 0.51

4.2.3 Moment of inertia and radial clearance

Figure 4.4a presents how moment of inertia affects the critical buckling ratio. A clear
correlation is seen for both the vertical and deviated section.

Figure 4.4b presents how radial clearance affects the critical buckling ratio. Even though
the critical buckling ratio in the vertical section is not directly proportional to the radial
clearance, a correlation is seen. Radial clearance is calculated from the outer diameter,
and the outer diameter will strongly affect the moment of inertia. Hence, a correlation
will still be present here.
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Figure 4.4: Effect of moment of inertia and radial clearance. The markers above "1" in-
dicates the range of tubings that can withstand buckling better than the initially chosen
tubing.
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4.3 Buckling During Installation

The installation of a completion string in a long horizontal well is often one of the most
critical operations. The purpose of investigating this subject is to predict lock-up situa-
tions and permanent corkscrewing due to helical buckling.

The friction model by Aadnoy et al. (2010) was developed for two well configurations.
One was compiled from the traditional ideal well path theory, while the other was com-
piled in the Landmark software Compass. Drag calculations in two dimensions are
presented for a range of friction coefficients, and the effective force is calculated and
compared to the critical buckling limit.

4.3.1 Construction of ideal well path

The traditional way of hand-calculating torque and drag is by dividing the well path into
ideal sections. The well path is presented in figure 4.5.

Figure 4.5: The ideal well path divided in sections. Each well section is indexed from
1 to 6. The subscripts between each section represents the order of drag-calculation.
Subscript 1 is before subscript 2 and so on.

The curved sections was calculated as if the build angle was constant throughout the
entire curve. The curved well length was then calculated by knowing the radius of cur-
vature. Figure 4.6 illustrates this technique.
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Figure 4.6: Illustration of an arbitrary build section to show the technique of calculating
section length in an ideal well path curve.

Consider the two vertical lines, H1 and H2. These lines can be expressed by trigonome-
try:

H1 = Rsinα1 (4.3)

H2 = Rsinα2 (4.4)

The height of the section will now be the difference between these lines:

h = H1 −H2 = R
(
sinα1 − sinα2

)
(4.5)

The radius of curvature is then found to be:

R = h

sinα1 − sinα2
(4.6)

The measured length of the section is now calculated using the arc length equation:

∆L = R ×α (4.7)

For each build section, the section length is calculated by equation (4.7). The technique
is illustrated for the first and second build section in Appendix C. The height and angle
of the sail section is known, and the section length is easily found by trigonometry. The
vertical and horizontal section lengths are given.

During drag-calculations, one begin with the lowermost section and calculate upwards.
It is convenient to use the ideal well path method for hand-calculations due to the re-
duced amount of iterations.
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4.3.2 Construction of real well path

The equivalent well path is compiled in the Landmark software Compass. The well path
was then exported to excel as 99 data points, and further was measured depth, total ver-
tical depth and inclination easily exported to MatLab. 99 iterations were conducted to
calculate the radius of curvature and the remaining parameters. In the ideal well path,
the radius of curvature naturally had to be constant throughout the bend. The real well
path provides a set of radius of curvature similar to the ideal well path. There is a slight
difference in radius of curvature from the ideal and real well path. The real well path
shows dog leg variation. This is not found in the ideal well path.

Figure 4.7a presents the ideal well path, and figure 4.7b presents the real well path.
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Figure 4.7: Presentation of ideal well path and real well path.

Figure 4.8a shows the ideal and real well path in the same graph, while figure 4.8b shows
the deviations in the curved section.
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4.3.3 Verification of static hook load

The program is verified by comparing the static hook load to the dynamic hook load
with coefficient of friction equal to zero. The vertical projected height principle is used
to calculate the static hook load (Aadnoy, 2010).
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Figure 4.9: Dynamic hook load and static hook load overlaps at µ=0

4.3.4 Results from drag analysis

Figure 4.10, 4.11, 4.12 and 4.13 present the results from the drag analysis.

Notice how the hook load changes when the friction factor increases, and also notice
the difference between the ideal and the real well path.
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Figure 4.11: Dynamic and static hook load for µ=0.3
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Figure 4.12: Dynamic and static hook load for µ=0.4
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4.3.5 Implementation of critical buckling limits

The effective axial force is calculated. Well fluids will be present when running in hole,
and this will create an opposing force when lowering the string. This effect is included
when the true axial forces is calculated. Further, the effective axial force is calculated
and compared to the critical buckling limit.

Figure 4.14, 4.15 and 4.16 present the results after implementation of the critical buck-
ling limits. Sketches are included for a clear visualization of each buckling regime.

-4 -3 -2 -1 0 1 2 3 4

F [lb] ×10
4

0

500

1000

1500

2000

2500

M
D

 [
m

]

Axial Force when lowering string

Dynamic Hook Load µ =0.25

Effective Axial Load

Sinusoidal

Minimum Helical

Maximum Helical

(a) µ=0.25 for the real well path
(b) Sketch of buckling scenario when µ=0.25
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Figure 4.16: Buckling during installation when µ=0.45

4.3.6 Permanent corkscrewing

When pressure and temperature is not changed in the well, i.e. during lowering of the
completion, permanent corkscrewing occurs when the bending stress at the outer wall
exceeds the yields strength. The derivation is conducted from the outer stress in equa-
tion (3.49). Pi =Po gives:

σo = |Pi (1−R2)

R2 −1
+σa ±σb |

= |−Pi +σa ±σb |

= |−Pi + −Pi (Ai − Ao)

As
±σb |

= |±σb |
=σb ≤σyi eld

(4.8)

Figure 4.17 shows a plot of triaxial stress versus the effective axial force. The triaxial
stress on the outer wall has been reduced to the bending stress. The relation between
bending stress and effective axial stress is linear.

If the bending stress exceeds the available grades, permanent corkscrewing will occur.
The effective axial force required to permanently deform the pipe is calculated and
marked in the plot. The minimum effective axial force required is ≈130000 psi, and
this force is not encountered in any of the drag scenarios. The lowest grade available is
therefore applicable for buckling scenarios during installation.
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4.4 Buckling During Operations

Theoretical models for buckling during operations are developed and used in the in-
dustry. The models are modified and applied for a shallow, horizontal well.

It is assumed that the completion fluid has the density equivalent to sea water, reservoir
pressure is 70bar and reservoir temperature is 17°C.

4.4.1 Packer force and neutral stability point

The packer force is calculated using the Lubinski et al. (1962) method.

The neutral stability point is found by calculating the true and effective axial force for
an anchored tubing, thus including the packer force (B.S. Aadnoy, personal communi-
cation, May 27, 2018). The vertical projected height principle is used to calculate tubing
weight (Aadnoy, 2010). Inserting equation (3.30) and (3.31) in equation (3.40) results in
the following expression:

n =
F∗

f

w
= Fe f f

w
(4.9)

The calculation procedure for axial forces at surface is presented:

F∗
a = TVD×wl +Po(Ap − Ao)−Pi (Ap − Ai )+Fp = Fa +Fp

F∗
e f f = F∗

a −pi Ai +po Ao = Fe f f +Fp

Further, the calculation procedure for axial forces at the packer is presented:

Fa∗= Po(Ap − Ao)−Pi (Ap − Ai )+Fp = Fa +Fp

Fe f f ∗= Fa ∗−pi Ai +po Ao = Fe f f +Fp

Capital P is the pressure at packer level, and lowercase p is the pressure at surface. Note
how the pressures are used in each equation. A flow chart for further understanding of
F∗

e f f is presented.



Sum up the total length
change

Packer force and neutral stability point

Start

Packer permitting no
motion

Calculate length changes 

H
el

ic
al

 B
uc

kl
in

g

Ba
llo

on
in

g
Th

er
m

al
 E

xp
an

si
on

H
oo

ke
's 

La
w

Fa

Ff

Calculate Ff* = Ff + Fp

Calculate packer force

dL

dL

Fp

Fp

Ff

Ff*

Find the neutral stability
point with the new Ff*

4.4. BUCKLING DURING OPERATIONS 47



48 CHAPTER 4. RESULTS

4.4.2 Buckling in thermal environments

Buckling will get more severe with a combination of high temperatures and high inner
pressure. Thermal expansion is often a dominating length change effect that can greatly
affect the packer force. The model is therefore run for two load cases, one cold and one
hot for comparison:

1. Shut-in

2. Start bullheading

Figure 4.18 presents the temperature cycles for the load cases shut-in and start bull-
heading. It is assumed that this well is installed while circulating fluid with a tempera-
ture of 10 °C. The temperature cycle for start bullheading equals the temperature cycle
for production.

Figure 4.18: Temperature cycles for shut-in after installation and start bullheading after
production.

The initial condition is the temperature after installation. After shut-in, the temperature
will approach the geothermal gradient. After production, the temperature will increase
at wellhead. bullheading is initiated by applying a high surface pressure.
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4.4.2.1 Shut-in

The tubing will shorten due to ballooning and the negative thermal effect, and this
causes the packer to act with a tensile force. The packer force is now located within
the tensile region on the plot, and it means that the tensile force causes the tubing to
unbuckle. Figure 4.19 shows that the neutral stability point is located below the string.
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Figure 4.19: Packer force and neutral stability point during shut-in

4.4.2.2 Start bullheading

A bullheading operation can be subsequent to a clean-up operation, and the pump
pressure is determined as if the well is gas filled. If the fluid contents is heavier, i.e. oil
filled, the burst load will be higher than if the well actually contains gas. The tubing will
in both cases elongate due to the positive thermal effect, and this causes the packer to
act with a compressive force.

Both scenarios were simulated to illustrate the effect. Figure 4.20a present the start
bullheading procedure in a gas filled well. Figure 4.20b show that the neutral stability
point was located within the build section.

Figure 4.20c show that the packer force was larger for the oil filled well than the gas filled
well. Figure 4.20d show that the neutral stability point was now located in the vertical
section.
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Figure 4.20: Packer force and neutral stability point for start bullheading.
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4.4.3 Set packer procedure

When the tubing is installed, pressure needs to be applied to set the packer. As the
reservoir pressure in a shallow well is low, this is the the highest pressure the tubing
will experience. Figure 4.21 shows that the high inner pressure will cause the tubing to
buckle, even though it is in complete tension.
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Figure 4.21: Packer force and neutral stability point during set packer
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4.4.4 Implementation of critical buckling limits

The critical buckling limits are implemented to be compared with the effective axial
force. Different authors have presented a range of critical buckling limits, and the most
acknowledged are included in the scripts to create a realistic scenario.

Buckling induces bending stress, and this will be locally superimposed to the true axial
stress. A bend consists of both a tensile part and a compressive part. If the axial stress
is tensile, the tensile stress from the outer bend will be added. If the axial stress is com-
pressive, the compressive force from the inner bend will be added.

Figure 4.22 includes the bending stress when each buckling regime is clarified.

-3 -2 -1 0 1 2 3 4

Force [lb] ×10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
e
p
th

 [
ft
]

0

100

200

300

400

500

600

D
e
p
th

 [
m

]

True vs. Effective Axial Force

Fa Load Case

Feff Load Case

Fa with Bending

NSP

Sinusoidal buckling

Minimum helical buckling

(a) Set packer

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Force [lb] ×10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
e
p
th

 [
ft
]

0

100

200

300

400

500

600

D
e
p
th

 [
m

]

True vs. Effective Axial Force

Fa Load Case

Feff Load Case

Fa with Bending

NSP

Sinusoidal buckling

Minimum helical buckling

(b) Start bullheading with gas filled well

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Force [lb] ×10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
e
p
th

 [
ft
]

0

100

200

300

400

500

600

D
e
p
th

 [
m

]

True vs. Effective Axial Force

Fa Load Case

Feff Load Case

Fa with Bending

NSP

Sinusoidal buckling

Minimum helical buckling

(c) Start bullheading with oil filled well

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Force [lb] ×10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
e
p
th

 [
ft
]

0

100

200

300

400

500

600

D
e
p
th

 [
m

]

True vs. Effective Axial Force

Fa Load Case

Feff Load Case

Fa with Bending

NSP

Sinusoidal buckling

Minimum helical buckling

(d) Shut-in

Figure 4.22: Implementation of critical buckling limits for operations.

Both sinusoidal and helical buckling will occur during the set packer load case. Both
buckling regimes will cause extra bending stresses, that locally superimpose to the true
axial force.
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4.4.5 Permanent corkscrewing

The completion can be initially installed in compression by purpose. Lubinski et al.
(1962) investigated how different values of initial slack-off/pick-up can cause the pipe
to permanently deform due to high bending stresses.

Figure 4.23 plots initial slack-off and pick-up versus triaxial stress.
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Figure 4.23: Triaxial stress in tubing during start bullheading and set packer

It is clear that the triaxial stress does not exceed the minimum grade available for this
tubing, that is 40ksi. The tubing does not permanently corkscrew when slack-off/pick-
up forces are between -10000 and 10000 lb. However, it should be noticed that for slack-
off forces higher than 7500 lb, the bending stress induces higher triaxial stress at the
outer wall than the inner wall for start bullheading.

It is not expected that permanent corkscrewing will be an issue during any operations.
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Chapter 5

Discussion and Evaluation

5.1 Buckling During Installation

5.1.1 Evaluation of parameters

Friction factors between 0.0 and 0.5 was used in the analysis. When lowering the string,
the friction factor mainly depends on the fluid type, and whether the tubing is in con-
tact with a metal or non-metal surface. In most cases, it will be metal-to-metal. Table
5.1 presents a range of theoretical friction factors.

Table 5.1: A range of typical friction factors depending on lubrication and interfaces.
(Mitchell et al., 1996)

MATERIALS SURFACE CONDITIONS µ STATIC µ KINETIC
Metal on metal Clean 0.40-1.00 0.30-1.00
Metal on metal Unlubricated 0.20-0.40 0.15-0.30
Metal on metal Lubricated 0.05-0.12 0.05-0.12

Metal on unmetal Unlubricated 0.40-0.60 0.30-0.80
Metal on unmetal Lubricated 0.05-0.12 0.05-0.12

By evaluating the friction factors, one can determine which completion fluid that should
be used. It is evident that a completion fluid with lubrication is preferable.

When lowering the string, drag will occur due to the dynamic friction factor. If the com-
pressive forces exceeds the buckling limit and causes the string to get stuck or even lock
up, a static friction factor applies. The static friction factor is higher than the dynamic
friction factor. A tubing should be designed based on the worst-case-scenario, and it
can therefore a better choice to use the static friction factor to avoid potential lock-up.
To predict a realistic scenario, a variation of friction factors should be used.

The string is normally not rotated during tripping. When rotating the string, the friction
is reduced, thus it is common with lower friction factors in drilling operations. Dynamic
friction factors experienced while drilling are between 0.1 and 0.3.

55
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5.1.2 Lock-up conditions

Lock-up can be defined as the situation when the surface axial force turns from ten-
sion to compression. In this case, the additional surface weight will cause the tubing to
buckle in the upper part of the well. If the compression is increased further at surface,
the buckling severity will consequently increase. The lower part of the tubing will not
be significantly affected by this, as the drag force will add as additional friction force in
the first pitches (He et al., 1995, 13). Hence, the tubing can not be pushed any further
into the horizontal section.

Some completions are designed for zone isolation. It is critical that the horizontal part
of the completion gets installed at the correct depth. A buckled liner or tubing will be
shorter than the initial length, and lack of predictions can cause tubing assemblies to
be at wrong depth in relation to the reservoir. An intervention to get a proper overview
of the tubing location can be costly, and is something that should be avoided.

It was expected that the both well paths would give similar curves. It was rather found
that the real well path was very much affected by the coefficient of friction. When the
coefficient of friction increases from 0.4 to 0.5, the tubing configuration locks-up for the
real well path, while the hook load remains in tension for the ideal well path.

In the ideal well path, the dog leg angle is constant throughout the curved sections. This
is not the case in the real well path. Since the real well path is adjusted to certain tar-
gets in Compass, small dog leg variations will occur. In Compass, this is seen as rapid
changes in inclination, creating an incremental curve instead of a smooth curve. In real
wells, dog leg variations will occur due to irregularities in the wellbore. This is called
tortuosity, and causes friction to build up while the string is lowered. Qualitatively, one
can assume that tortuosity is included in the friction factor (B.S. Aadnoy, personal com-
munication, May 30, 2018). One can therefore reach higher values than expected. One
should therefore carefully consider the dog leg variation and friction factors when in-
stalling a completion in a long-reach horizontal well.

This reasoning can be verified. A full-scale experiment was conducted on a research
well, and it was found that local curvatures were significant, as they contributed to an
earlier lock-up situation than expected from the ideal model. (Weltzin et al., 2009)

The critical limit for helical buckling is higher than the compressive force in the hori-
zontal section. Drag in the straight section was calculated under the assumption that
weight dominates. One will not expect any helical buckling here, as the buckling limit
is high and the tubing is stable. However, the growth of sinusoidal buckling can be ex-
pected, and this causes associated increase in contact forces (Payne et al., 1996).
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5.1.3 Evaluation of critical buckling limits

For the vertical section, the critical buckling limits are calculated by equation (3.8) and
(3.9). It is clear that the buckling limit in the vertical section is low, and the transition
between sinusoidal and helical buckling will not be of significant importance in these
simulations.

For the deviated sections, equation (3.10) is used. The limit increases significantly in
the build up from 0 to 85 degrees. The limit in the tangential section is constant before
it increases slightly from 85 to 90 degrees.

According to Mitchell et al. (1999), there is a transition period between 1.4 and 2.8 times
the Paslay Dawson equation where helical buckling can occur. Figure 5.1 illustrates how
the limits are defined.
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Figure 5.1: Sinusoidal buckling limit is defined by the Paslay Dawson equation. The
transition between sinusoidal and helical buckling occurs between 1.4 and 2.8 times
the Paslay Dawson limit.

5.1.3.1 Effect of curvature

For the highest friction considered, µ=0.45, one can not see any indications of helical
buckling in the straight, deviated sections. Using the Paslay-Dawson equation in the
curved sections, indicates a transitional region for helical buckling.

According to He et al. (1995), a curved section will provide additional support to a tub-
ing in compression. If one includes the contact forces initiated by curvature effects like
build-up/azimuth rate, the buckling limit can actually be higher than expected. If the
limit for sinusoidal buckling is higher than expected in the first build up section, the
pipe will remain straight at the low side of the bend.
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The tangential section will not experience any buckling as it is below the sinusoidal
buckling limit. Moving further down to the horizontal section in the well, the model
proposed by He et al. (1995) does not apply. Hence buckling can be present in this
straight section, even if it is suppressed in the build sections.

Figure 5.2 presents a graphical visualization of this scenario.

(a) µ=0.45 with the curved sections clearly illus-
trated

(b) Sketch of buckling scenario when µ=0.45 ac-
cording to He et al. (1995)

Figure 5.2: Buckling during installation when µ=0.45. The effects of curvature is in-
cluded in the sketch.

5.1.3.2 Hypothetical scenario of helical buckling in horizontal section

Consider a case where the effective axial force exceeds the helical buckling limit in the
horizontal section.

To understand the consequences, a hypothetical scenario is analyzed. To get the effec-
tive axial force to exceed the minimum helical buckling limit in the horizontal section,
the friction factor had to be set to µ = 0.6. The effective axial force will now be within the
helical transition zone in the horizontal section. If geometrical irregularities is present,
helical buckling can occur in the horizontal section.

According to table 5.1, a friction factor of 0.6 matches the combination "clean surface,
metal on metal" or "unlubricated, metal on unmetal". It can therefore theoretically be
a scenario when running pipe in an open hole with water based mud.
If it is assumed that any curvature increases the buckling limit over the operational
force, the following scenario is expected: The tubing will helically buckle in the vertical
section. It will not be buckling in the curved section. Helical or sinusoidal buckling will
be present in the tangential section, while there is no buckling in the next curved sec-
tion. Finally, there will be either helical or sinusoidal buckling in the horizontal section.
Figure 5.3 presents the hypothetical scenario of installation of the completion with a
friction factor of 0.6.
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Figure 5.3: Hypothetical scenario of buckling during installation when µ=0.6

Previous knowledge have shown that the tubing locks-up for a friction factor of 0.45.
Adding more weight on surface, will only cause the vertical section to buckle more
severely, without affecting the tubing in the horizontal section. Figure 5.3 is therefore
an unrealistic scenario for this well path.

5.1.4 Quality and shortcomings

Analyzing a real well path had the advantage that it included the tortuosity effect in the
build up sections. The dog leg variation caused friction to build up in the string, thus
pushing the neutral stability point higher up than expected.

A shortcoming of the model is that it was simulated with a constant friction factor. In
real well operations, the friction factor will vary due to fluid parameters like viscosity
and density. If the well is not clean, remains could cause friction to build up.

In this analysis it was assumed that the tubing string was lowered within a casing that
ensures a constant radial clearance. If the string was entering a section with a larger
radial clearance, it would decrease the buckling limit in the deviated section, hence in-
creasing the possibility of buckling. Figure 5.4 shows that the radial clearance affects
whether there is a possibility for helical buckling in the horizontal section or not. A
lower radial clearance will stabilize the tubing.
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Figure 5.4: Comparison of critical buckling limits for a tubing inside a 6 5/8" casing and
9 5/8" casing

Radial clearance is shown to be of importance. The largest casing increases the possi-
bility of buckling in the deviated sections. There are two situations that will cause the
radial clearance to increase: a smaller tubing outer diameter, or a larger casing inner
diameter.

If the tubing were to enter the open hole, both friction and radial clearance would in-
crease. This is not accounted for in the model.

When analyzing drag forces while lowering the string, it was convenient to include the
buckling limits in every section.

Contact force due to helical buckling was not included in the drag model. Weltzin et al.
(2009) did a full-scale experiment where no friction where experienced in the vertical
section, even though helical buckling was present. The theoretical model can therefore
be correct when not including friction in the vertical part. Weltzin et al. (2009) con-
cluded that friction from sinusoidal buckling could be of significance in deviated wells.
The contact force from sinusoidal buckling is calculated in the same manner as the nor-
mal force from the tubing weight (Mitchell et al., 1999). The contact force induced by
helical buckling would probably replace the normal force from the tubing weight.

5.1.5 Future improvements

The model is based on two equations where one is assumed to be tension-dominated,
and the other weight-dominated. Numerical aids are beneficial for complex calcula-
tions, thus both tension and weight should be implemented in all sections.

An argument for simulating scenarios for high friction factors is to create a worst case
scenario, as is common practice in tubing design. The program should be able predict
the earliest possible time of a potential lock-up situation.
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The model by He et al. (1995) should be implemented, to get a clear representation of
buckling in the curved sections.

A future improvement is to implement vectors with exact measurements for each part
of the well. A vector consisting of friction factors adjusted for the realistic scenario
would give a more reliable result. A vector could also include different radial clear-
ances. Variations could be due to wear, tubing connections or crossovers. An open hole
will also have varying diameter due to washouts and other irregularities.

The contact force due to helical buckling in the deviated sections should be included if
buckling is present. The induced contact force can make it more difficult to reach the
desired depth. This is particularly important for perforation and zone-isolation.

There should be conducted full-scale experiments to be able to predict buckling in hor-
izontal wells. Few full-scale experiments give a poor foundation for the analytic models.
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5.2 Buckling During Operations

5.2.1 Implementation challenges

When implementing the model by Lubinski et al. (1962) on a shallow, horizontal subsea
well, some considerations had to be done:

1. Lubinski et al. (1962) defines compression as a positive force and tension as a
negative force. A complete review of the model had to be done to change com-
pression to a negative force and tension to a positive force.

2. Well path configuration. Lubinski et al. (1962) uses a vertical well in the model.
The correct measurements for TVD and MD had to be implemented in the script
for accurate hydrostatic pressure calculation.

3. Packer configuration. Lubinski et al. (1962) uses a packer configuration that gives
Ap 6= Ai . A polished bore receptacle (PBR) is assumed to be installed, hence the
packer bore, Ap , equals the inner area, Ai .

4. The well design pressure (WDP) had to be considered. The wellhead on a shal-
low, horizontal well will have a lower tolerance for pressure than a deep, verti-
cal well. The load cases therefore needed to be adjusted to WDP. For this well,
WDP=1892psi.

5. The load cases involves fluids in static conditions. Equation (3.24) is therefore
replaced by equation (3.25) in the model to evaluate the ballooning effect in static
conditions.

5.2.2 Load cases that can induce buckling

According to theory, positive length changes in combination with a high inner pressure
will give the worst buckling scenario. Tubing elongation leads to compressive packer
forces, and when compression adds up in the bottom of the string, the neutral stability
point will be located higher than it was.

Tubing elongation is caused by slack-off, thermal expansion and reverse ballooning.
Slack-off is not recommended in a long horizontal well, as the weight applied on the
surface can cause unwanted buckling in the vertical section. Reverse ballooning oc-
curs when the change in outer pressure is higher than the change in inner pressure. An
increase in outer pressure will stabilize the tubing, thus this is not the worst case with
regards to buckling. This leaves thermal expansion as the critical effect.

Buckling was not associated with neither the shut-in or start bullheading load case.
These are considered to be of secondary importance, and the discussion of these is
therefore added to Appendix A.
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5.2.3 Set packer procedure

Initially, the lower part of the tubing will be in compression due to the pressure acting
on the bottom of the tubing. When the process of setting the packer is initiated, the in-
ner pressure will increase. The ballooning effect will cause the tubing to contract. When
the packer opposes this desired length change, it acts with a tensile force. The packer
force is high enough to leave the entire tubing in tension. According to theory in section
3.1, the tubing can buckle even though it is completely in tension.

For the set packer situation, the neutral stability point is located in the vertical section.
Figure 5.5 shows results of the simulation. The effective force at the bottom of the string
is also higher than the effective force at the bottom of the vertical section.
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Figure 5.5: The effective axial force exceeded the critical buckling limits in the vertical
section. No buckling is shown below the vertical section
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5.2.4 Evaluation of buckling length changes

When buckling occurs, the tubing will have the desire to shorten due to the buckling
itself. According to theory, the are two ways to calculate buckling length change. The
method depends on the buckling shape and well deviation.

The Lubinski et al. (1962) method is developed for a vertical well. It was assumed that a
fictitious force at the bottom of the tubing will induce helical buckling from the bottom
of the string up to the neutral stability point. The length change is in other words cal-
culated from the effective force at packer depth.

The buckling length change calculation is more complex when several buckling regimes
are evaluated in a deviated well.

The critical buckling limit for the vertical section is compared with the effective axial
force. The limits suggests that the vertical region below the neutral stability consists of
three scenarios: first no buckling, then sinusoidal buckling and finally helical buckling.
Figure 5.5 shows that buckling is suppressed in the build-up section. Due to the dis-
cussion in 5.1.3, the limits can be expected to be even higher. It is therefore confidently
assumed that no buckling occurs within this region.

Let the vertical section in figure 5.5 be considered as an isolated system. The effective
axial force acting on the bottom of the tubing in the vertical section will be the force
that induces the helical buckling. It is therefore this force that should be used to give
more accurate predictions for helical buckling length changes.

The vertical region consists of both sinusoidal buckling and helical buckling. Equation
(3.21) for helical buckling will overestimate the length change, while equation (3.41)
for sinusoidal buckling will underestimate the length change. The real length change
is found between these solutions. A weighted average should be calculated to find an
approximate length change over the vertical section.

5.2.4.1 Weakness in model

The model is set by default to calculate the buckling length change associated with he-
lical buckling. One single iteration is required to calculate the length change associated
by sinusoidal buckling instead. This is assumed reasonable for vertical well sections
due to the uncertainty on the critical buckling limits in the vertical well. The transition
zone between helical and sinusoidal buckling can be relatively small, and the helical
buckling length change will give the worst-case scenario. Buckling length change is de-
viated sections should be modified, as the transition between sinusoidal buckling and
helical buckling would be of significance.

However, the effective axial force used in the calculation is the force at packer depth.
This is not correct, and a weakness in the model.
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5.2.4.2 Future improvement

A future recommendation is to implement the following iterations if buckling occurs in
the vertical section for a general well path:

1. Implement load case

2. Calculate the effective axial force as if the tubing was free to move

3. Assume helical buckling in entire tubing

4. Calculate buckling length change with the effective axial force at the bottom of
the string

5. Find packer force and plot the effective axial force with the critical buckling limits

6. If buckling only occurs in the vertical section, find effective axial force at the bot-
tom of the helical buckling region and sinusoidal buckling region

7. Return to the buckling length change calculation, and calculate the a new weighted
average of the buckling length change using the force for helical and sinusoidal
buckling respectively.

8. Repeat procedure. Calculate packer force and plot the effective axial force with
the critical buckling limits.

9. Repeat until the buckling length change converges.

The length change associated with buckling is often the smallest length change. The
consequences of over- or underestimating this length changes is not severe compared
to the other effects. However, this contributes to the uncertainty that revolves around
axial forces. A more accurate prediction of buckling length change will improve axial
analysis.
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5.2.5 Vertical depth sensitivity

The same well path was considered as a subsea well with wet x-tree, to see the effect
of a reduced vertical section. 400 meters of the vertical section is now replaced with
seawater, and the initial hydrostatic pressures will now be the weight of the water. The
reservoir pressure and temperature is assumed to be the same as in the previous case.
The neutral stability point is calculated for the same load cases as earlier. The main
difference is that the tubing length is reduced by 400 meters, and the vertical section
now equals 50 m. This subsea well is based on an existing well path under development
known by the author.

Figure 5.6 shows where the neutral stability point was located during each load case.
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Figure 5.6: Location of neutral stability point in a shallow subsea well with wet tree

The set packer case causes the neutral point be located above the string. It means that
compression will be expected at the wellhead. At the wellhead, the main concern is
wellhead growth. This takes place when the tubing is under compression at the tubing
hanger. As the wellhead is an important element in the primary barrier envelope, this
should be carefully considered. To avoid this problem, a packer that require a lower set
pressure should be considered.
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5.2.6 Quality and shortcomings

5.2.6.1 Evaluation of parameters

Tubing and casing properties are defined as input. This makes it convenient to investi-
gate whether the impact of radial clearance on buckling. The model is further general-
ized to work for any load case. The load cases can easily be implemented in the model
by defining densities, pressures and temperatures.

It is assumed that the tubing is thick-walled when permanent corkscrewing is calcu-
lated. This is the same assumption used in the WellCat software. For the pipe consid-
ered in this thesis, this assumption is correct. If another tubing is desired, and it does
not fall in under the definition "thick-walled", the analysis of permanent corkscrewing
should be modified.

The model developed by Lubinski et al. (1962) does not account for couplings or con-
nections. It is possible that high bending stresses causes the threads to deform, thus
making connections the weak points in the completion. Failures related to connections
might be both structural and leak failures (Bellarby, 2009, 544). A future improvement
would be to include the effects of bending stress on connections.

The buckling models presented in this thesis does not include friction. Vibrations will
most likely occur during production or injection, and cause the frictional forces to be
negligible with regards to buckling severity. However, will vibration effects not neces-
sarily mitigate friction in highly deviated wells. It is previously presented by Mitchell
et al. (1996) that friction can affect the axial stress during production or injection. A
future improvement would be to evaluate buckling by considering friction.

The entire model takes on average between 2 seconds to run. It is therefore a time
efficient method to evaluate length changes, packer forces, neutral stability point, per-
manent corkscrewing and critical buckling.

5.2.6.2 Evaluation of the pitch

The theoretical expression for pitch is given by Lubinski et al. (1962) in equation (3.7).
The pitch is defined as the length between to spirals. The pitch will decrease with in-
creasing compression, and will the tubing buckle more severely at the bottom part of
the string. However, assumptions behind this equation limits the application. The pitch
in equation (3.7) is defined as the distance between spirals, just above the lower end of
the tubing. The pitch is not included in this model due to its limited practical applica-
tion.

A future improvement would be to estimate a variation of the pitch over an entire buck-
led interval. This would make it possible to determine the exact location of the string in
the well. This technology could also be applied in drilling engineering when hole clean-
ing is a problem. While circulating the well, it will be beneficial that the pipe is located
at high side. This will create a flow path below the pipe, and the accumulated mud or
dirt can be flushed out. (S. Sangesland, personal communication, March 13, 2018)
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5.2.6.3 Temperature and pressure implementation

Lubinski et al. (1962) developed the model from a vertical well, while Mitchell et al.
(1999) added a sail section directly to the vertical section. Neither of those assumptions
are valid when developing the model for a horizontal well. The main problems are the
temperature and pressure calculations. A future improvement is to include exact mea-
surements of pressure and temperatures in the entire well. In a deviated well, the hy-
drostatic pressure will be the same throughout the entire horizontal section, causing the
mean pressure to be underestimated by the traditional arithmetic average. A weighted
average of the pressure and temperature would give a better estimation.

5.2.6.4 Evaluation of geometrical imperfections.

The theory behind critical buckling limits suggests that the effective axial force needs
to exceed a critical limit before sinusoidal buckling occurs. I.e. the tubing is assumed
perfectly straight before the sinusoidal is developed. The critical buckling limits deter-
mined for a vertical well is debated (Cunha et al., 2003), and different coefficients to
determine sinusoidal and helical buckling is suggested. A long tubing run in a well can
be subjected to multiple defections. In a vertical well, the practical importance of the
different coefficients is therefore limited.

An experimental and analytic study of sinusoidal buckling in vertical wells was con-
ducted by Salies et al. (1994), and it was found that equation (3.8) by Lubinski et al.
(1950) is a good approximation for a a tubing length equivalent to 7.94× ( E I

wb
)1/3. For

strings with lengths greater than this, L
( E I

wb
)1/3 > 7.94, the critical limit is less. A quick cal-

culation shows that the length of the vertical section considered in this thesis is equiv-
alent to 33× ( E I

wb
)1/3. Hence, the analytic limit for sinusoidal buckling can be less than

expected according to Salies et al. (1994). Further, the experiments conducted in Salies
et al. (1994) confirmed that the critical buckling limit was less. When the length was
further increased, the critical limit decreased towards a constant value.

The author assumes that geometrical imperfections will determine when the real criti-
cal limit is reached. The longer the pipe is, the more deflections is present. It is therefore
possible that sinusoidal buckling occurs between Fe f f = 0 and Fe f f = 1.94(E I w2

b)1/3 in
a vertical well. Full-scale experiments should be performed to give a better foundation
for the analytic models.

5.2.7 Evaluation of industry software

WellCat assumes that helical buckling occurs in vertical sections when Fe f f is nega-
tive. This leaves no room to evaluate how different buckling regimes impacts the stress
regime. This assumption affects length change calculations, packer force predictions,
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contact force and bending stress.

WellCat uses equation (3.10) to determine whether the tubing buckles or not in straight
deviated sections (Horgen, 2010). This critical buckling limit determines when stable
sinusoidal buckling occurs. By using the Paslay Dawson equation to predict the onset
of helical buckling, an implicit safety factor will be included. This is therefore a conser-
vative method to predict buckling. It can be useful for critical well applications (Aasen
et al., 2002), but it contributes to the uncertainty of axial force analysis.

The model presented in this thesis includes the critical buckling limits, thus opens the
possibility to investigate this further. The simulation of a horizontal well gives a more
complex result than a vertical well. The study of buckling during operations show that
WellCat is conservative in its buckling analysis for both vertical and straight deviated
wells.
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Chapter 6

Conclusion

• A comprehensive study of the theoretical foundation behind buckling analysis is
conducted, and the most acknowledged theory behind critical buckling limits are
presented.

• A critical buckling ratio is suggested. This method can be used to see if one tubing
is better than another with regards to buckling.

• A buckling model has been developed for installation of a completion. The model
accounts for dog leg variations in all well sections, and predicts lock-up in the
string. The drag forces were underestimated when dog leg variations was not
included.

• WellCat is found to perform conservative buckling analysis for both vertical and
straight, deviated wells.

• Buckling analysis is improved by supplementing the existing models with the lat-
est of theory. These models were modified to be applicable for all well designs.

• The model developed for well operations is an integrated model that calculates
the axial forces, the packer force and permanent corkscrewing. An initial installa-
tion strategy can also be chosen by implementing a variation of slack-off or pick-
up forces.

• The calculation of buckling length change have contributed to uncertainty of the
actual axial forces. A more accurate prediction of buckling length improves axial
analysis.

• Compressive forces and geometrical imperfections affects the likelihood of buck-
ling. It is found that buckling can occur even if the tubing is completely in tension.

• Transforming the subsea well from a dry tree to a wet tree causes significant dif-
ference because of the reduction in vertical extent. Wellhead growth is expected
to be a problem for the subsea well during the set packer procedure.

• Buckling is not equivalent to failure. Permanent corkscrewing did not occur for
installation nor critical operations.
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Chapter 7

Further Work

7.1 Buckling During Installation

• Apply the weight- and tension equation in App. E from Aadnoy et al. (2010) for
more accurate drag-analysis in the horizontal section.

• Include the critical buckling limit by He et al. (1995) for the curved sections.

• Implement vectors to account for a variation parameters like radial clearance and
friction factor in the installation phase.

• Include contact force by helical buckling in drag calculations.

• The three-dimensional model presented by Bellarby (2009) neglects bending stiff-
ness. The bending forces should be implemented in such a model to give a re-
alistic view of the drag analysis. A recently published model (Mirhaj et al., 2016)
presents a three-dimensional stiff-string model for torque and drag. Further work
can be to compare these models and evaluate the effect of bending stress.

• Full-scale experiments should be conducted to predict accurate buckling scenar-
ios in horizontal wells.

7.2 Buckling During Operations

• Implement the iterative process for buckling length changes

• Include measurements of exact pressure and temperatures during operations, or
calculated a weighted average.

• Develop an equation for the pitch over the entire buckled interval.

• Include the effect of friction between the tubing and casing.

• Conduct full-scale experiments in horizontal wells to evaluate the importance of
friction in temperature dominant operations.

• Include the effects of bending stress on connections.
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7.3 General

Further work is to investigate the tubing condition from installation to further opera-
tions. This model will be able to account for tubing wear from the installation process.
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Appendix A

Additional Information

A.1 Derivation of Pitch

Figure A.1 displays the geometry of a helix confined within a cylinder.

Figure A.1: Visualization of helix geometry within a confining cylinder

Basic trigonometry is used to obtain the following relations:

sinθ = Fa

F
(A.1)

sinθ = Pp
P 2 +4π2r 2

(A.2)

Combining equation (A.1) and (A.2) gives the expression for Fa :

Fa = F
P√

p2 +4π2r 2
(A.3)
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Conservation of energy is used to find the force required to buckle a string. The princi-
ple goes as following:

Ei = E f (A.4)

where Ei and E f is the initial and final energy in the system, respectively.
Energy can not just occur nor disappear, hence we say that energy is conserved. The
initial energy must equal the final energy. We consider the tubing string to be a static
system, hence the kinetic energy is zero. Before the tubing is subjected to deforma-
tion, potential energy will build up in the system. The potential energy consist of strain
energy of compression, strain energy of bending and the potential energy of a force sub-
jected to the material.

Strain energy, Ustr ai n , is the energy stored in a system undergoing deformation. For a
cylinder, strain energy is defined as:

Ustr ai n = 1

2

V

E
σ2 = 1

2

As L

E

F 2
a

A2
s
= 1

2

L

E

F 2
a

As
(A.5)

where V is volume, As is the cross-sectional area and σ is the axial stress.
By combining equation (A.3) and (A.5), the strain energy of compression, Uc is ob-
tained:

Uc =
F 2

a L

2As E
= F 2P 2L

2As E(P 2 +4π2r 2)
(A.6)

When a string is bent, it will store energy from the bending. This is called the bending
strain energy, Ub , and it is given by:

Ub = LE IC 2

2
(A.7)

where C is the curvature of the helix.
When the curvature of the helix is given by

C = 4π2r

p2 +4π2r 2 (A.8)

the strain energy of bending becomes:

Ub = 8π4r 2E I L

P 2 +4π2r 2 (A.9)

From geometric similarities, the potential energy from the subjected force is obtained:

U f = F Lh = F PLp
P 2 +4π2r 2

− F 2P 2L

As E(P 2 +4π2r 2)
(A.10)

where U f is the potential energy from a subjected force, and Lh is the length of the helix
measured along its axis.

The total potential energy, U , of the system is equal to the sum of strain energies Uc
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and Ub and the potential energy from the subjected force, U f . Equation (A.6), (A.9) and
(A.10) is combined to give the final expression for U :

U =− F 2P 2L

2As E(P 2 +4π2r 2)
+ 8π4r 2E I L

(P 2 +4π2r 2)2 + F PL√
p2 +4π2r 2

(A.11)

The equilibrium is obtained by minimizing the total potential energy.

dU

dP
= 0

P (P 2 +4π2r 2)

As E
F 2 − (P 2 +4π2r 2)3/2F +8π2E I P = 0

(A.12)

The equation was the derivative of total potential energy with respect to the pitch with
constant r. Once a helical buckled pipe contacts the wall, r is constant, and P is there-
fore the only variable (Kwon et al., 1988).

This expression results in two roots. The smallest root corresponds to the smallest po-
tential energy, hence we solve the equation for the smallest root. The following expres-
sion is obtained:

F = As E
p

P 2 +4π2r 2

2P

[
1−

√
1− 32π2I P 2

As (P 2 +4π2r 2)2

]
(A.13)

Two assumptions were made to simplify this expression. First, P 2 À 4π2r 2. This as-
sumption is found reasonable, as it is backed up by other authors (Mitchell et al., 1988).
The other assumption is that the second term in the square root will be small. For prac-
tical reasons, lets call this term a. Using Taylor expansion on

p
1−a, the expression can

be simplified to 1− a
2 . Equation (A.13) can then be reduced to:

F = As E

2

[
1− (1− 16π2I P 2

As P 4 )
]
= 8π2E I

P 2 (A.14)

By rearranging equation (A.14), equation (3.7) in section 3.2.2 is obtained.
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A.2 Construction of Build Sections

Figure A.2 and A.3 was used to calculate the length change of each curved section. The
technique was described in section 4.3.1.

Figure A.2: Illustration of build to horizontal section

Figure A.3: Illustration of build from vertical section
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A.3 Shut-in

During installation, fluids will be circulated in the well. The circulating fluid is affected
by surface temperature, and it will be warmer than the sea water temperature. If shut-
in is required, the fluids in the well will become static, and the heat will transfer to the
surroundings. In practice, this means that the temperature will approach the geother-
mal gradient. The highest part of the tubing will experience the highest temperature
decrease. This will make the tubing contract, and consequently will more tension build
up in the tubing string.

It is assumed that gas fills up the well, and the inner pressure will increase. Figure A.4
shows the true and effective axial force when the well is shut in. The length changes
associated with this load will only be negative, thus the neutral stability point conse-
quently moves downwards. In this case, the point is located below the string. As the
tubing is entirely in tension through the build sections, it is expected that it is located
at the high side of the curvatures.

Buckling is definitely not associated with this load case.
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Figure A.4: The negative length changes causes the entire tubing to be in tension during
the shut-in load case.
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A.4 Start bullheading

The tubing has to be designed to withstand a kill-operation at any time. If there are
reasons to kill the well, a surface pressure equivalent the shut-in wellhead pressure (SI-
WHP) plus an additional safety margin will be applied. This is known as the well design
pressure (WDP). The pressure needs to be this high to ensure the gas filled well is killed.
If the well is oil filled when this pressure is applied, the pressure will consequently in-
crease due to the hydrostatic column of oil.

The highest temperature difference in the well after production will be present at the
tubing head. This thermal effect will cause the tubing to expand. This positive length
change will contribute to a higher compressive load in the tubing.

Effects encountered due to increased inner pressure are ballooning and buckling. Bal-
looning will have a shortening effect on the tubing, thus reduce the compressive loads.
Increasing inner pressure also causes structural instability due to geometrical imper-
fections, and consequently decreases the effective axial force. Buckling will also occur,
and there will be a shortening associated with this effect.

Figure A.5 shows the true and effective axial force when start bullheading is initiated in
a gas-filled well. The negative length changes causes the tubing above the horizontal
section to be in tension. The inner pressure applied at surface will cause the effective
axial force to be shifted to a more compressive state than it was initially, but it is still not
enough to expect buckling to occur in any of the sections. The neutral stability point
will be located in the build section, and the neutral point is located at the bottom of the
build section. This indicates that most part of the tubing is located at the high-side of
the curve.
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Figure A.6 shows the true and effective axial force when start bullheading is initiated in
a oil filled well. The negative length changes are dominating, indicating that the tubing
will be completely in tension. However, the high inner pressure will cause the effective
axial force to shift towards a more negative state than it was initially. The neutral stabil-
ity point will consequently move upwards, and be located in the vertical section. The
effective axial force is not high enough to cause buckling in any of the lower sections.
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Figure A.6: Critical buckling for start bullheading in a oil filled well.

The start bullheading load case covers the production load case with regards to buck-
ling. During production, the temperature increase will equal the start bullheading case.
However, the surface pressure is forced to be very low to be able to produce from the low
reservoir pressure. The inner pressure will thus be lower than in the start bullheading
scenario.
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Appendix B

Critical Buckling Limit

This appendix includes the MatLab scrips used for compiling results from critical buck-
ling limit. The limit is compiled for sinusoidal and helical buckling in a vertical section,
straight deviated section of 45 ° and a horizontal section.
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Critical Buckling Limit

Critical Buckling Force in a vertical section

Critical Buckling Force in an inclined section @ 45 deg

Critical Buckling Force in a horizontal section

Critical Buckling Force in an inclined section @ 0-90 deg

Plotting

clear
clc

Critical Buckling Limit

% Tubing inputs

% Casing sizes with high D/t-ratios:
%OD        = [18.625 18.625 18.625 18.625 20.000 20.00 20.00 20.000]; %in
%weight    = [87.5   94.5   106    117    94     106.5 133   169];    %lb/ft
%ID        = [17.755 17.689 17.563 17.439 19.124 19.00 18.73 18.376]; %in

% Tubing sizes with low D/t-ratios:
 OD       = [2.875 2.875 3.5   3.5   3.5   3.5   4     4     4.5  ]; %in
 weight   = [6.4   8.6   12.7  10.2  9.2   7.7   9.5   10.7   12.6 ]; %lb/ft
 ID       = [2.441 2.259 2.750 2.922 2.992 3.068 3.548 3.476 3.958]; %in

E        = 30*10^6;                       %psi   Young's modulus
I        = (pi/64)*(OD.^4-ID.^4);         %in4   moment of inertia
t        = (OD-ID)./2;                    %in    thickness

dtratio  = OD./t;                         %      D/t-ratio

% Wellpath inputs for deviated well
incl     = 45*pi/180;                     %rad   inclination

% Fluid properties
rhosw    = 1.02;                          %sg    sea water density
rhosteel = 7.89;                          %sg    steel density
buoyedw  = (1-rhosw/rhosteel).*weight/12; %lb/in buoyed weight

% Investigate collapse region for grade L80

% D/t-ratio is a vector.

for i = 1:length(dtratio)
    if dtratio(i) < 13.38
        % Thick-walled tubing: Yield collapse
        disp(['Yield Collapse for tubing ', num2str(OD(i)), ...
            'in and #', (num2str(weight(i)))]);
    elseif dtratio(i) < 22.47
        % Plastic Collapse
        disp(['Plastic Collapse for tubing ', num2str(OD(i)), ...
            'in and #', (num2str(weight(i)))]);
    else
        % Thin-walled tubing: Elastic collapse
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        disp(['Elastic Collapse for tubing ', num2str(OD(i)), ...
            'in and #', (num2str(weight(i)))]);
    end
end

% Casing Inputs
%csgID = [32 32 32 32 32 32 32 32];
csgID = [5.921 5.921 5.921 5.921 5.921 5.921 5.921 5.921 5.921]; %in

% Radial Clearance
rc       = csgID/2-OD/2;                  %in

Yield Collapse for tubing 2.875in and #6.4
Yield Collapse for tubing 2.875in and #8.6
Yield Collapse for tubing 3.5in and #12.7
Yield Collapse for tubing 3.5in and #10.2
Plastic Collapse for tubing 3.5in and #9.2
Plastic Collapse for tubing 3.5in and #7.7
Plastic Collapse for tubing 4in and #9.5
Plastic Collapse for tubing 4in and #10.7
Plastic Collapse for tubing 4.5in and #12.6

Critical Buckling Force in a vertical section

% Sinusoidal buckling is defined by Lubinski et. al (1950)
Fcsinv   = 1.94*(E*I.*buoyedw.^2).^(1/3); %lb

% Helical buckling is defined by Wu et. al (1995)
Fchelv   = 5.55*(E*I.*buoyedw.^2).^(1/3); %lb

Critical Buckling Force in an inclined section @ 45 deg

% Sinusoidal buckling is defined by Dawson et. al (1984)
Fcsinincl = sqrt((4*E*I.*buoyedw.*sin(45*pi/180))./rc);

% Minimum and maximum helical buckling is defined by Mitchell et. al (1996)
Fchelinclmin = 1.4*sqrt((4*E*I.*buoyedw.*sin(45*pi/180))./rc);
Fchelinclmax = 2.8*sqrt((4*E*I.*buoyedw.*sin(45*pi/180))./rc);

Critical Buckling Force in a horizontal section

% Sinusoidal buckling is defined by Dawson et. al (1984)
Fcsinhor = sqrt((4*E*I.*buoyedw.*sin(90*pi/180))./rc);

% Minimum and maximum helical buckling is defined by Mitchell et. al (1996)
Fchelhormin  = 1.4*sqrt((4*E*I.*buoyedw.*sin(90*pi/180))./rc);
Fchelhormax  = 2.8*sqrt((4*E*I.*buoyedw.*sin(90*pi/180))./rc);

Critical Buckling Force in an inclined section @ 0-90 deg

varincl     = linspace(0,90,10);

% Sinusoidal buckling is defined by Dawson et. al (1984)
Fcsinvarincl = sqrt((4*E*I(5).*buoyedw(5).*sin(varincl*pi/180))./rc(5));
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% Minimum and maximum helical buckling is defined by Mitchell et. al (1996)
Fchelvarinclmin = 1.4*sqrt((4*E*I(5).*buoyedw(5).*sin(varincl*pi/180))./rc(5));
Fchelvarinclmax = 2.8*sqrt((4*E*I(5).*buoyedw(5).*sin(varincl*pi/180))./rc(5));

Plotting

% Plot radial clearance vs. critical buckling force

figure(1)
plot(rc,Fcsinincl,'ko',rc,Fchelinclmax,'k*','markersize',10)
grid minor
legend('\fontsize{16}Sinusoidal buckling','\fontsize{16}Helical buckling')
title('\fontsize{16}Effect of radial clearance on critical buckling limit')
xlabel('\fontsize{16}Radial clearance [in]');
ylabel('\fontsize{16}Critical buckling limit [lb]');

% Plot weight vs. critical buckling force

figure(2)
plot(buoyedw,Fcsinincl,'ko',buoyedw,Fchelinclmax,'k*','markersize',10)
grid minor
legend('\fontsize{16}Sinusoidal buckling','\fontsize{16}Helical buckling' ...
    , 'location', 'northwest')
title('\fontsize{16}Effect of weight on critical buckling limit')
xlabel('\fontsize{16}Weight [lb/in]');
ylabel('\fontsize{16}Critical buckling limit [lb]');

% Plot D/t-ratio vs. critical buckling force
figure(3)
plot(dtratio,Fchelinclmax,'ko', ...
    dtratio,Fchelhormax,'k*','markersize',10);
grid minor
legend('\fontsize{16}Inclined well','\fontsize{16}Horizontal well','location','northwest');
title('\fontsize{16}The effect of D/t-ratio on critical buckling limit');
xlabel('\fontsize{16}D/t-ratio');
ylabel('\fontsize{16}Critical buckling limit [lb]');

% Critical Buckling Ratio

% Ratio1 is the critical buckling ratio for a vertical well.
% Index 5 corresponds to a 3 1/2" #9.2 tubing.
ratio1 = Fchelv/Fchelv(5);

% Ratio2 is the critical buckling ratio for deviated well.
% Index 5 corresponds to a 3 1/2" #9.2 tubing.
ratio2 = Fchelinclmax/Fchelinclmax(5);

% Plot of moment of inertia vs. critical buckling ratio

figure(4)
plot(I,ratio1,'ko',I,ratio2,'k*','markersize',10);
xL = xlim;
line(xL, [1 1],'color','black','linestyle','--');  %x-axis
grid minor
legend('\fontsize{16}Vertical well','\fontsize{16}Inclined/Horizontal well','location','nor
thwest');
title('\fontsize{16}Effect of I on critical buckling ratio');
xlabel('\fontsize{16}Moment of inertia [in4]');
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ylabel('\fontsize{16}Fcr*');

% Plot of radial clearance vs. critical buckling ratio

figure(5)
plot(rc,ratio1,'ko',rc,ratio2,'k*','markersize',10);
xL = xlim;
line(xL, [1 1],'color','black','linestyle','--');  %x-axis
grid minor
legend('\fontsize{16}Vertical well','\fontsize{16}Inclined/Horizontal well','location','nor
theast');
title('\fontsize{16}Effect of radial clearance on critical buckling ratio');
xlabel('Radial clearance [in]');
ylabel('\fontsize{16}Fcr*');

% Plot of inclination vs. critical buckling limit

figure(6)
plot(varincl,Fcsinvarincl,'ko',varincl,Fchelvarinclmin,'k*',varincl,Fchelvarinclmax,'kx','m
arkersize',10);
grid minor
legend('\fontsize{16}Sinusoidal buckling','\fontsize{16}Min helical buckling','\fontsize{16
}Max helical buckling','location','northwest');
title('\fontsize{16}Effect of inclination on critical buckling limit');
xlabel('Inclination [deg]');
ylabel('\fontsize{16}Critical buckling limit [lb]');

 

89



 

 

90 APPENDIX B. CRITICAL BUCKLING LIMIT



 

 

91



Published with MATLAB® R2016a

92 APPENDIX B. CRITICAL BUCKLING LIMIT



Appendix C

Buckling During Installation

This appendix includes the MatLab scripts used for constructing well paths and per-
forming drag calculation with a variation of friction factors.

The first script constructs the ideal well path. The technique described in section 4.3.1
is used to calculate the build section length. Drag calculations are performed using the
traditional method: one section at the time, using one subscript for each section.

The second script imports data from Compass, and constructs the real well path. Drag
calculations are performed by creating 99 index points, thus including dog leg varia-
tions.

The third and last script uses the real well path, and implements the critical buckling
limits.
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Contents

INPUTS

Three-dimensional model by Bernt S. Aadnoy

Ideal Wellpath

clc
clear all

INPUTS

MW        = 1.1;                        % mud weight [sg]
rhosteel  = 65.5/8.33;                  % density of steel [sg]
BF        = 1-MW/rhosteel;              % buoyancy factor [sg]
wDP       = 0.1343;                     % weight of 3 1/2" tbg [kN/m]

% Wellpath Calculations

TVD       = [669.62 667 660 650 450 0]; % total vertical depth [m]
incl      = [89.9 89.9 85 85 0 0];      % well inclination [deg]
incl      = incl*pi/180;                % well inclination [rad]

h         = [0 ...                      % height of each cross-section [m]
             TVD(1)-TVD(2) ...
             TVD(2)-TVD(3) ...
             TVD(3)-TVD(4) ...
             TVD(4)-TVD(5) ...
             TVD(5)-TVD(6)];

R         = [0 ...                      % radius of curvature [m]
             0 ...
             h(3)/(sin(incl(2))-sin(incl(3))) ...
             0 ...
             h(5)/(sin(incl(4))-sin(incl(5))) ...
             0];

L         = [0 ...                      % total well length [m]
             1503.11 ...
             R(3)*abs(incl(3)-incl(2)) ...
             h(4)/cos(incl(4)) ...
             R(5)*abs(incl(5)-incl(4)) ...
             h(6)];

MD        = [sum(L) ...                 % measured depth [m]
             sum(L)-L(2) ...
             sum(L)-L(2)-L(3) ...
             sum(L)-L(2)-L(3)-L(4) ...
             sum(L)-L(2)-L(3)-L(4)-L(5) ...
             sum(L)-L(2)-L(3)-L(4)-L(5)-L(6)];

% To investigate for different friction factors
my        = linspace(0.00,1.0,11);      % friction factor
azi       = [0 0 0 0 0 0];              % azimuth [rad]
WOB       = 0;                          % weight on bit

% Calculate dogleg angle
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DL        = zeros(1,length(L));

for i=1:(length(L)-1)
   DL(i+1) = acos (sin(incl(i))*sin(incl(i+1))*cos(azi(i)-azi(i+1)) ...
            + cos(incl(i))*cos(incl(i+1)));
end

% Equations Lowering String

% If the static hook load equals the axial force with no friction,
% then the code is correct.

staticweight = zeros(1,length(TVD));
statichookload = zeros(1,length(TVD));

for i = 1:length(TVD)
    staticweight(i)  = TVD(i)*BF*wDP;
    statichookload(i)  = staticweight(1)-staticweight(i);
end

statichookload = statichookload*224.8089; % kN to lb

Three-dimensional model by Bernt S. Aadnoy

F         = zeros(1,length(L));
hookload  = zeros(1,length(my));

F(1)      = WOB;

%This friction factor is currently being evaluated
my = 0.5;
for j=1:length(my)
    for i=2:length(L)
        if incl(i)-incl(i-1) == 0
             % the section is straight
            F(i) = F(i-1) + BF*wDP*L(i)*(cos(incl(i))-my(j)*sin(incl(i)));
        else % the section is curved
            F(i) = F(i-1)*exp(-my(j)*abs(DL(i)-DL(i-1)))+ BF*L(i)*wDP*( sin(incl(i))-sin(in
cl(i-1)) )/(incl(i)-incl(i-1));
        end
    end
    hookload(j)=F(6);
    hookload(j)=hookload(j)*224.8089;

    % Plot Axial Force vs. TVD

    figure(j)
    plot(F*224.8089,MD,'k',statichookload,MD,'k-.')   % convert from [kN] to [lb]
    xL = xlim;
    yL = ylim;
    line([0 0], yL,'color','black');  %y-axis
    set(gca,'YDir','reverse')
    axis([-20000 20000 0 MD(1)])
    grid minor
    title('\fontsize{16}Axial Force when lowering String')
    legend(['\fontsize{12}Dynamic Hook Load \mu =' num2str(my(j))] ...
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        ,'\fontsize{12}Static Hook Load', 'location','southeast');
    xlabel('\fontsize{16}F [lb]')
    ylabel('\fontsize{16}MD [m]')

end

Ideal Wellpath

% TVD is plotted on the y-axis

y       = flip([669.62 667 660 650 450 0]);

% Horizontal departure is plotted on the x-axis

x1      = 0;
x2      = 0;
x3      = R(5)-sqrt(R(5)^2-(TVD(4)-TVD(5))^2);
x4      = x3 + (cos(pi/2-incl(3))*L(4));
x5      = x4 + sqrt(R(3)^2-(R(3)-(TVD(2)-TVD(3)))^2);
x6      = x5+cos(pi/2-incl(1))*L(2);

x       = [x1 x2 x3 x4 x5 x6];

% Vertical section

verticalsection    = linspace(TVD(6),TVD(5),10);

for i = 1:length(verticalsection)
    xv(i) = 0;
    yv(i) = verticalsection(i);
end
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% Build section

build1 = linspace(TVD(5),TVD(4),10);
inclb = linspace(incl(5),incl(4),10);

for i = 1:length(build1)
    yb(i) = TVD(5)-R(5)*sin(pi+inclb(i));
    xb(i) = R(5)+R(5)*cos(pi+inclb(i));
end

% Tangent section

tangentsection = linspace(0,L(4),10);

for i = 1:length(tangentsection)
    xt(i) = x(3) + tangentsection(i)*cos(-5*pi/180);
    yt(i) = TVD(4) - tangentsection(i)*sin(-5*pi/180);
end

% Build section

build2 = linspace(TVD(3),TVD(2),10);
inclb2 = linspace(incl(3),incl(2),10);

for i = 1:length(build2)
    yb2(i) = (TVD(2)-R(3))-R(3)*sin(pi+inclb2(i));
    xb2(i) = x(5)+R(3)*cos(pi+inclb2(i));
end

% Horizontal section

horizontalsection = linspace(0,L(2),10);
inclh = acos((TVD(1)-TVD(2))/L(2));
for i = 1:length(horizontalsection)
    xh(i) = x(5) + horizontalsection(i)*cos(-pi/2+inclh);
    yh(i) = TVD(2) - horizontalsection(i)*sin(-pi/2+inclh);
end

% Plot well path

figure(2)
plot(x,y,'ko',xv,yv,'k',xb,yb,'k',xt,yt,'k',xb2,yb2,'k',xh,yh,'k','markersize',10)
set(gca,'YDir','reverse')
legend('\fontsize{16}Section markers','\fontsize{16}Ideal well path')
axis([-100 2000 0 700])
grid minor
xlabel('\fontsize{16}Horizontal departure [m]')
ylabel('\fontsize{16}Total vertical depth [m]')
title('\fontsize{16}Ideal well path')
hold on
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Contents

INPUTS

Three-dimensional model by Bernt S. Aadnoy

Real well path

clc
clear all

INPUTS

% Load Data from Compass

load('TVD.txt')
TVD=TVD';
load('MD.txt')
MD=MD';
load('incl.txt')
incl=incl'*pi/180;

MW        = 1.1;                        % mud weight [sg]
rhosteel  = 65.5/8.33;                  % density of steel [sg]
BF        = 1-MW/rhosteel;              % buoyancy factor [sg]
wDP       = 0.1343;                     % weight of 3 1/2" tbg [kN/m]
OD        = 0.0889;                     % outer diameter [m]
ID        = 0.0759968;                  % inner diameter [m]
Ai        = pi/4 * ID^2;                % inner area [m2]
Ao        = pi/4 * OD^2;                % outer area [m2]

% Pressure Calculations
g         = 9.81;                       % gravity [m/s2]

for i = 1:length(TVD)
    Pi(i) = MW*g*TVD(i);                % hydrostatic inner pressure [Pa]
    Po(i) = Pi(i);                      % hydrostatic outer pressure [Pa]
end

% Wellpath Calculations

h = zeros(0,length(TVD));
R = zeros(0,length(TVD));

for i = 2:length(TVD)
    h(i) = TVD(i-1)-TVD(i);             % height of sections [m]
end

for i = 2:length(TVD)
    if incl(i)==incl(i-1)
         % the section is straight
        R(i) = 0;                       % radius of curvature [m]
    else
        % the section is curved
        R(i)=h(i)/(sin(incl(i-1))-sin(incl(i)));
    end
end
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L = zeros(1,length(TVD));

for i = 2:length(TVD)
    L(i) = MD(i-1)-MD(i) ;               % total well length [m]
end

% To investigate for different friction factors
my        = linspace(0.00,1.0,11);      % friction factor
WOB       = 0;                          % weight on bit

azi = zeros(1,length(TVD));

% Calculate dogleg angle

DL = zeros(1,length(L));  % rad
for i=1:(length(L)-1)
   DL(i+1) = acos (sin(incl(i))*sin(incl(i+1))*cos(azi(i)-azi(i+1)) ...
            + cos(incl(i))*cos(incl(i+1)));
end

% Equations Lowering String

% If the static hook load equals the axial force with no
% friction, then the code is correct.

staticweight = zeros(1,length(TVD));
statichookload = zeros(1,length(TVD));

for i = 1:length(TVD)
    staticweight(i)  = TVD(i)*BF*wDP;
    statichookload(i)  = staticweight(1)-staticweight(i);
end

statichookload = statichookload*224.8089; % kN to lb

Three-dimensional model by Bernt S. Aadnoy

F = zeros(1,length(L));
hookload = zeros(1,length(my));
Feff = zeros(1,length(L));

F(1) = WOB;

my = 0.5;
for j=1:length(my)
    for i=2:length(L)
        if incl(i)-incl(i-1) == 0
             % the section is straight
            F(i) = F(i-1) + BF*wDP*L(i)*(cos(incl(i))-my(j)*sin(incl(i)));
        else % the section is curved
            F(i) = F(i-1)*exp(-my(j)*abs(DL(i)-DL(i-1)))+ BF*L(i)*wDP*( sin(incl(i))-sin(in
cl(i-1)) )/(incl(i)-incl(i-1));
        end
    end

    % Plot Axial Force vs. TVD
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    figure(j)
    plot(F*224.8089,MD,'k',statichookload,MD,'k-.')   % convert from [kN] to [lb]
    xL = xlim;
    yL = ylim;
    line([0 0], yL,'color','black');  %y-axis
    set(gca,'YDir','reverse')
    axis([-20000 20000 0 MD(1)])
    grid minor
    title('\fontsize{16}Axial Force when lowering String')
    legend(['\fontsize{12}Dynamic Hook Load \mu =' num2str(my(j))] ...
        ,'\fontsize{12}Static Hook Load', 'location','southeast');
    xlabel('\fontsize{16}F [lb]')
    ylabel('\fontsize{16}MD [m]')

end

Real well path

% Load horizontal departure from Compass

load('HD.txt')
HD=HD';

markersx = [HD(1) HD(53) HD(59) HD(64) HD(84) HD(99)];
markersy = [TVD(1) TVD(53) TVD(59) TVD(64) TVD(84) TVD(99)];

figure(2)
plot(markersx,markersy,'r*',HD,TVD,'r','markersize',10)
legend('\fontsize{16}Section markers','\fontsize{16}Real well path')
set(gca,'YDir','reverse')
axis([-100 2000 0 700])
grid minor
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xlabel('\fontsize{16}Horizontal departure [m]')
ylabel('\fontsize{16}Total vertical depth [m]')
title('\fontsize{16}Real well path')
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Contents

INPUTS

Three-dimensional model by Bernt S. Aadnoy

Buckling Limits

Permanent Corkscrewing

clc
clear all

INPUTS

% Load Data from Compass

load('TVD.txt')
TVD=TVD';
load('MD.txt')
MD=MD';
load('incl.txt')
incl=incl'*pi/180;

% Inputs for drag model in SI units

MW        = 1.1;                        % mud weight [sg]
rhosteel  = 65.5/8.33;                  % density of steel [sg]
BF        = 1-MW/rhosteel;              % buoyancy factor [sg]
wDP       = 0.1343;                     % weight of 3 1/2" tbg [kN/m]
OD        = 0.0889;                     % outer diameter [m]
ID        = 0.0759968;                  % inner diameter [m]
Ao        = pi/4 * OD^2;                % outer diameter [m2]
Ai        = pi/4 * ID^2;                % inner diameter [m2]

% Pressure Calculations in SI
g         = 9.81;                      % gravity [m/s2]

Pi = zeros(1,length(TVD));
Po = zeros(1,length(TVD));

for i = 1:length(TVD)
    Pi(i) = MW*g*TVD(i);               % hydrostatic inner pressure [kPa]
    Po(i) = Pi(i);                     % hydrostatic outer pressure [kPa]
end

% Wellpath Calculations

h = zeros(0,length(TVD));
R = zeros(0,length(TVD));

for i = 2:length(TVD)
    h(i) = TVD(i-1)-TVD(i);             % height of sections [m]
end

for i = 2:length(TVD)
    if incl(i)==incl(i-1)
         % the section is straight
        R(i) = 0;                       % radius of curvature [m]
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    else
        % the section is curved
        R(i)=h(i)/(sin(incl(i-1))-sin(incl(i)));
    end
end

L = zeros(1,length(TVD));

for i = 2:length(TVD)
    L(i) = MD(i-1)-MD(i);               % total well length [m]
end

% To investigate for different friction factors
my        = linspace(0.00,1.0,11);      % friction factor
WOB       = 0;                          % weight on bit

azi = zeros(1,length(TVD));

% Calculate dogleg angle

DL = zeros(1,length(L));
for i=1:(length(L)-1)
   DL(i+1) = acos (sin(incl(i))*sin(incl(i+1))*cos(azi(i)-azi(i+1)) ...
            + cos(incl(i))*cos(incl(i+1)));
end

% Equations Lowering String

F = zeros(1,length(L));
hookload = zeros(1,length(my));

F(1) = WOB;
Fcsin = zeros(1,length(L));
Fcmin = Fcsin;
Fcmax = Fcsin;
Feff  = zeros(1,length(L));

Three-dimensional model by Bernt S. Aadnoy

my = 0.45;
for j=1:length(my)

    for i=2:length(L)
        if incl(i)-incl(i-1) == 0
             % the section is straight
            F(i) = F(i-1) + BF*wDP*L(i)*(cos(incl(i))-my(j)*sin(incl(i)));
        else % the section is curved
            F(i) = F(i-1)*exp(-my(j)*abs(DL(i)-DL(i-1)))+ BF*L(i)*wDP*( sin(incl(i))-sin(in
cl(i-1)) )/(incl(i)-incl(i-1));
        end
        Fa(1) = F(1) + Pi(1)*Ai - Po(1)*Ao;
        Fa(i) = F(i) + Pi(1)*Ai - Po(1)*Ao;
        Feff(1) = Fa(1) - Pi(1)*Ai + Po(1)*Ao;
        Feff(i) = Fa(i) - Pi(i)*Ai + Po(i)*Ao;
    end
    hookload(j)=F(6);
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Buckling Limits

% Inputs for Buckling Limit in oil field units

buoyedw  = 9.2*BF;                      % buoyed weight [lb/ft]
buoyedw  = buoyedw/12;                  % buoyed weight [lb/in]
OD       = 3.5;                         % outer diameter [in]
ID       = 2.992;                       % inner diameter [in]
I        = (pi/64)*(OD.^4-ID.^4);       % moment of inertia [in4]
E        = 30*10^6;                     % Young's modulus psi
csgID    = 5.921;                          % casing inner diameter [in]

% Test for bigger casing

%csgID = 9.063;

% Radial clearance

rc       = csgID/2-OD/2;

% Sinusoidal Buckling Limit
    for i = 1:length(TVD)
        if incl(i) == 0
            % Vertical section
            Fcsin(i) = -1.94*(E*I.*buoyedw.^2).^(1/3);              %lb
        else
            % Deviated sail section
            Fcsin(i) = -sqrt(4*E*I.*buoyedw.*sin(incl(i))./rc);     %lb
        end
    end

% Minimum Helical Buckling Limit
    for i = 1:length(TVD)
        if incl(i) == 0
            % Vertical section
            Fcmin(i) = -5.55*(E*I.*buoyedw.^2).^(1/3);              %lb
        else
            % Deviated sail section
            Fcmin(i) = -1.4*sqrt(4*E*I.*buoyedw.*sin(incl(i))./rc); %lb
        end
    end

% Maximum Helical Buckling Limit
    for i = 1:length(TVD)
        if incl(i)==0
            % Vertical section
            Fcmax(i)  = -5.55*(E*I.*buoyedw.^2).^(1/3);             %lb
        else
            % Deviated sail section
            Fcmax(i) = -2.8*sqrt(4*E*I.*buoyedw.*sin(incl(i))./rc); %lb
        end
    end

    % Plot drag force mot TVD
    figure(j)
    plot(F*224.8089,MD,'k',Feff*224.8089,MD,'k--',Fcsin,MD,'g',...
        Fcmin,MD,'b',Fcmax,MD,'r')
    axis([-45000 40000 0 MD(1)])
    xL = xlim;
    line(xL,[450 450],'color','black','linestyle',':');  %x-axis
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    line(xL,[MD(53) MD(53)],'color','black','linestyle',':');
    line(xL,[MD(64) MD(64)],'color','black','linestyle',':');
    line(xL,[MD(84) MD(84)],'color','black','linestyle',':');
    line(xL,[862.58 862.58],'color','black','linestyle',':');  %x-axis
    yL = ylim;
    line([0 0], yL,'color','black');  %y-axis
    set(gca,'YDir','reverse')

    grid minor
    title('\fontsize{16}Axial Force when lowering string')
    legend(['\fontsize{12}Dynamic Hook Load \mu =' num2str(my(j))],...
    '\fontsize{12}Effective Axial Load','\fontsize{12}Sinusoidal',...
    '\fontsize{12}Minimum Helical', ...
    '\fontsize{12}Maximum Helical','location','southeast');
    xlabel('\fontsize{16}F [lb]')
    ylabel('\fontsize{16}MD [m]')

end

Permanent Corkscrewing

grades    = [40 55 75 80 105]*1e3;      %psi

%Feff = 224.8089*Feff; %kN to lb

Feff = linspace(-150000,150000,100);

% so is the initial slack-off
so = zeros(1,length(F));

106 APPENDIX C. BUCKLING DURING INSTALLATION



% pressure from Pa to psi
Pi = Pi*0.145037738;

for i = 1:length(Feff)
    if Feff(i) < 0
        % compression
        so(i) = abs(OD*rc*(-Feff(i))./(4*I));
    else
        % tension
        so(i) = 0;
    end
end

% Maximum effective axial force
Feffmax = -grades(1)*4*I/(OD*rc);

figure(2)
plot(Feff(1:50),so(1:50),'b',Feffmax,grades(1),'ko','markersize',10)
hold on
xlim([-150000 150000])
ylim([0 140000])
xL = xlim;
yL = ylim;
line(xL, [grades(1) grades(1)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(2) grades(2)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(3) grades(3)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(4) grades(4)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(5) grades(5)],'color','black','linestyle','--');  %x-axis
line([0 0],yL,'color','black')
hold on
grid minor

xlabel('\fontsize{16}Effective axial force [lb]')
ylabel('\fontsize{16}Triaxial stress (reduced to bending stress) [psi]')
title('\fontsize{16}Permanent Corkscrewing')
legend('\fontsize{16}Sigmao Initial','\fontsize{16}Max Effective Axial Force', ...
    '\fontsize{16}Grades')
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Appendix D

Buckling During Operations

This appendix includes the MatLab scripts used for compiling results from the method
proposed by Lubinski et al. (1962) and Mitchell et al. (1999).

The first script is a pure reproduction of the model presented in the paper "Helical
buckling of tubing sealed in packers" by Lubinski et al. (1962).

The second script is an implementation of the correlations for buckling strain and buck-
ling length change presented by Mitchell et al. (1999). The script compares the buckling
strain and buckling length change in the model presented by Lubinski et al. (1962) and
Mitchell et al. (1999).

The third script is used for compiling results. The script is modified to apply for the well
investigated, but the procedure of calculation is similar to the first script.

The fourth script is used for a subsea field with wet x-tree. The script is modified by
adding a sea level, and hydrostatic pressure due to seawater.
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Plotting

Neutral stability point if the tubing is fixed

clc
clear all

tic

INPUTS

% Tubing Inputs
OD        = 2.875;                      %in     outer diameter
weight    = 6.5;                        %lb/ft  dry weight
ID        = 2.441;                      %in     inner diameter
grades    = 10^3.*[40 55 75 80 105];    %psi    yield strength
E         = 30*10^6;                    %psi    Young's modulus
poisson   = 0.3;                        %       Poisson's ratio
Ct        = 6.9*10^(-6);                %/F     coeff. of thermal expansion
Lp        = 10000*12;                   %in     tubing length
Dp        = 3.25;                       %in     packer bore diameter

Ao        = pi/4*OD.^2;                 %in2    outer area
Ai        = pi/4*ID.^2;                 %in2    inner area
As        = Ao-Ai;                      %in2    cross-sectional area
Ap        = pi/4*Dp^2;                  %in2    packer bore area
R         = OD./ID;                     %ratio  OD/ID-ratio
ws        = weight./12;                 %lb/in  dry weight of tubing
I         = (pi/64)*(OD.^4-ID.^4);      %in4    moment of inertia

% Casing Inputs
csgOD     = 7;                          %in     outer diameter
csgweight = 32;                         %lb/ft  dry weight
csgID     = 6.094;                      %in     inner diameter
rc        = (csgID-OD)/2;               %in     radial clearance

% Fluid Properties
rhot      = 1/231*[7.297 15];           %psi/in tubing initial-final
rhoa      = 1/231*[7.297 7.297];        %psi/in annulus initial-final
drhot     = rhot(2)-rhot(1);            %psi/in tubing change in density
drhoa     = rhoa(2)-rhoa(1);            %psi/in annulus change in density
wi        = rhot.*Ai;                   %lb/in  tubing initial-final
wo        = rhoa.*Ao;                   %lb/in  annulus initial-final
w         = ws + wi - wo;               %lb/in  total initial-final

% Pressures
pi        = [0 5000];                   %psi    surface initial-final
po        = [0 1000];                   %psi    surface initial-final
Pi        = pi+rhot*Lp;                 %psi    packer initial-final
Po        = po+rhoa*Lp;                 %psi    packer initial-final
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dp        = [pi(2)-pi(1) po(2)-po(1)];  %psi    change in surface pressure
dP        = [Pi(2)-Pi(1) Po(2)-Po(1)];  %psi    change in packer pressure

% Temperature
dT        = -20;                        %F      avg. change in temperature

% Calculate Forces as if the tubing is free to move
Fa        = (Ap-Ao)*Po-(Ap-Ai)*Pi;      %lb     true axial force
Ff        = Ap*(Po-Pi);                 %lb     effective axial force

% Calculate length change associated with Ff
dLf       = Lp/(E*As).*Ff(2)-rc^2/(8*E*I*w(2)).*Ff(2).^2; %in

disp(['The length change related to Ff is ', num2str(dLf), ' in'])

% Critical Buckling Limit (Paslay Dawson)
Fcr = sqrt((4*E*I.*w(2))./rc);

The length change related to Ff is -192.6254 in

Length Changes: Packers Permitting Free Motion

% All length changes are in inches

% The first length change is deformation due to the true axial force acting
% on the bottom of the tubing. Hooke's law is used:
dL1       = Lp/(E*As)*((Ap-Ao)*dP(2)-(Ap-Ai)*dP(1));

% The second length change occurs due to helical buckling. If the change in
% outer pressure is higher than the change in inner pressure, there will be
% no helical buckling (Lubinski et. al (1962)), hence:

if dP(2)>dP(1)
    % No helical buckling
    dL2   = 0;
else
    % Helical buckling. Calculate length change with a non-linear equation.
    dL2   = -rc^2*Ap^2*(dP(2)-dP(1)).^2/(8*E*I*w(2));
    % Sinusoidal buckling length change by Mitchell:
    % Ff(2) = -Ff(2); % Change signs for Mitchells equation
    %dL2 = -(rc)^2/(4*E*I*w(2))*(Ff(2)-Fcr)*(0.3771*Ff(2)-0.3668*Fcr);
    % Ff(2) = -Ff(2); % Change back for the remaining model
end

% Calculate length change due to radial pressure due to ballooning
% and fluid flow
delta     = 0; % Pressure drop per unit length
dL3       = -(poisson/E)* ...
            ((drhot-R^2*drhoa-(1+2*poisson)/(2*poisson)*delta)*Lp^2/(R^2-1))...
            -(2*poisson/E)*((dp(1)-R^2*dp(2))*Lp/(R^2-1));

% The fourth length change occurs due to temperature change, also known as
% thermal expansion or thermal contraction.
dL4       = Lp*Ct*dT;

% Total length change is then:
dL        = dL1+dL2+dL3+dL4;
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disp(['If the tubing is free to move, the total length change is ', ...
    num2str(dL),' in'])

% Neutral stability point if the tubing is free to move
nfree      = (Ff./w(2))/12; %ft

disp(['If the tubing is free to move, the neutral stability point is ', ...
    num2str(nfree),' ft from the bottom'])

If the tubing is free to move, the total length change is -165.32 in
If the tubing is free to move, the neutral stability point is 0     -8636.6248 ft from the 
bottom

Length Changes: Packers Permitting Limited Motion

Define slack-off force

Fso       = -20000; %lb
% Stick-up length is then
dL5       = - ((Lp/(E*As).*Fso-rc^2/(8*E*I*w(1)).*Fso.^2));
% Including stick-up length, the total length change is:
dL        = dL+dL5;

disp(['If the packer permits limited motion, the total length change is ',...
    num2str(dL), ' in'])

If the packer permits limited motion, the total length change is -115.6379 in

Length Changes: Packers Permitting No Motion

The packer will oppose to the desired length change "dLp".

dLp       = dLf-dL;

% Plotting F vs. dL'
% Define F as a vector
F        = linspace(-80000,80000,10000);
% Make sure dL' is the same size vector as F
dLfnutt  = zeros(1,length(F));

% Make a loop to calculate dL' for every F.
for i = 1:length(F)
    if F(i) < 0
        % Compression
        dLfnutt(i) = Lp/(E*As).*F(i)-rc^2/(8*E*I*w(2)).*F(i).^2;
    else
        % Tension
        dLfnutt(i) = Lp/(E*As).*F(i);
    end
end

% Make a loop to calculate the roots of dL' when dL is known.
for i = 1:length(dLp)
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    if dLp(i) < 0
        % Compression
        % 'coeff' is the coefficients in the non-linear equation
          coeff = [-rc^2/(8*E*I*w(2)) Lp/(E*As) -dLp];
        % 'roots' calculates the F corresponding to dLp
          Ffstarroots = roots(coeff)';
        % 'Ffstar' is the effective axial force when the tubing is fixed
          Ffstar = Ffstarroots(2);
        % 'Fp' is the packer force
          Fp = Ffstar - Ff(2);
        % 'Fastar' is the true axial force when the tubing is fixed
          Fastar = Fa(2)+Fp;
          if Fp(i) > 0
            disp(['The tubing is shortening, and the packer' ...
              ' force is a tension: ',num2str(Fp(i)),'lb']);
          else
            disp(['The tubing is lengthening, and the packer' ...
              ' force is a compression: ',num2str(Fp(i)),'lb']);
          end
    else
        % Tension
        % 'coeff' is the coefficients in the linear eq: Hooke's law
          coeff = [0 Lp/(E*As) -dLp];
        % 'roots' calculates the F corresponding to dLp
          Ffstarroots = roots(coeff);
          % 'Ffstar' is the effective axial force when the tubing is fixed
          Ffstar = Ffstarroots(2);
        % 'Fp' is the packer force
          Fp = Ffstar - Ff(2);
        % 'Fastar' is the true axial force when the tubing is fixed
          Fastar = Fa(2)+Fp;
          if Fp(i) > 0
              disp(['The tubing is shortening, and the packer' ...
              ' force is a tension: ',num2str(Fp(i)),'lb']);
          else
              disp(['The tubing is lengthening, and the packer' ...
              ' force is a compression: ',num2str(Fp(i)),'lb']);
          end
    end
end

disp(['The fictitious force when the tubing is fixed is ', ...
    num2str(Ffstar),' lb'])

The tubing is shortening, and the packer force is a tension: 35904.4633lb
The fictitious force when the tubing is fixed is -30474.61 lb

Plotting

figure(1)
plot(F,dLfnutt,'r',Ffstar,dLp,'r*',Ff(2),dLf,'ro','markersize',10)
hold on
xL = xlim;
yL = ylim;
line([0 0], yL,'color','black');  %y-axis
line(xL, [0 0],'color','black');  %x-axis
hold on
line([Ff(2) Ff(2)],yL,'color','black','linestyle','-.')
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line(xL, [dLf dLf],'color','black','linestyle','-.')
hold on
line([Ffstar Ffstar],yL,'color','black','linestyle','--')
line(xL, [dLp dLp],'color','black','linestyle','--')
grid minor
xlabel('\fontsize{16}Axial Force [lb]')
ylabel('\fontsize{16}dL [in]')
title('\fontsize{16}Axial Force vs. Length Change')
legend('\fontsize{16}Axial Force vs. Length Change','\fontsize{16}Ff*', ...
    '\fontsize{16}Ff','location','northwest')

Neutral stability point if the tubing is fixed

n         = (Ffstar./w(2))/12;                 %ft
disp(['If the tubing is fixed, the neutral stability point is ', ...
    num2str(n),' ft from the bottom'])

toc

If the tubing is fixed, the neutral stability point is -3965.0715 ft from the bottom
Elapsed time is 2.553992 seconds.

Published with MATLAB® R2016a

114 APPENDIX D. BUCKLING DURING OPERATIONS



Contents

INPUTS

Lubinski Buckling Strain

Mitchell Buckling Strain

Plotting

Lubinski Buckling Length Change

Mitchell Buckling Length Change

Plotting

clc
clear all

INPUTS

% Tubing Inputs
OD        = 2.875;                      %in     outer diameter
weight    = 6.5;                        %lb/ft  dry weight
ID        = 2.441;                      %in     inner diameter
grades    = 10^3.*[40 55 75 80 105];    %psi    yield strength
E         = 30*10^6;                    %psi    Young's modulus
poisson   = 0.3;                        %       Poisson's ratio
Ct        = 6.9*10^(-6);                %/F     coeff. of thermal expansion
Lp        = 10000*12;                   %in     tubing length
Dp        = 3.25;                       %in     packer bore diameter

Ao        = pi/4*OD.^2;                 %in2    outer area
Ai        = pi/4*ID.^2;                 %in2    inner area
As        = Ao-Ai;                      %in2    cross-sectional area
Ap        = pi/4*Dp^2;                  %in2    packer bore area
R         = OD./ID;                     %ratio  OD/ID-ratio
ws        = weight./12;                 %lb/in  dry weight in lb/in
I         = (pi/64)*(OD.^4-ID.^4);      %in4    moment of inertia

incl = linspace(0,pi/3,100);            %rad, well inclination

% Figure (9) in "Buckling Analysis in Deviated Wells: A Practical Method"
% by Mitchell et al. KOP = 2000 ft
TVD = (2000 + 8000*cos(incl))*12;       %in

% Casing Inputs
csgOD     = 7;                          %in     outer diameter
csgweight = 32;                         %lb/ft  dry weight
csgID     = 6.094;                      %in     inner diameter
rc        = (csgID-OD)/2;               %in     radial clearance

% Fluid Properties
rhot      = 1/231*[7.297 15];           %psi/in tubing initial-final
rhoa      = 1/231*[7.297 7.297];        %psi/in annulus initial-final
drhot     = rhot(2)-rhot(1);            %psi/in tubing change in density
drhoa     = rhoa(2)-rhoa(1);            %psi/in annulus change in density
wi        = rhot.*Ai;                   %lb/in  tubing initial-final
wo        = rhoa.*Ao;                   %lb/in  annulus initial-final
w         = ws + wi - wo;               %lb/in  total initial-final
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pi = 3.1416;

% Dawson Paslay Equation
% Dawson Paslay limit is defined with 0 inclination.
% This is a conservative assumption.
Fcr = sqrt((4*E*I.*w(2))./rc);

% Fictitious Force
% For the general case of arbitrary variation of F (Mitchell et al)
Feff = Fcr*linspace(0,4.50,1000);

Lubinski Buckling Strain

The buckling strain is defined as a vector.

epsilonLUB = zeros(1,length(Feff));
for i = 1:length(Feff)
     if Feff(i) > 0
         % Helical buckling when the fictitious force is in compression (+)
         epsilonLUB(i) = -(rc)^2/(4*E*I)*Feff(i);
     else
         % No buckling
         epsilonLUB(i) = 0;
     end
end

Mitchell Buckling Strain

The buckling strain is defined as a vector.

epsilonMIT = zeros(1,length(Feff));
for i = 1:length(Feff)
    if Feff(i) < Fcr
        % No buckling
        epsilonMIT(i) = 0;
    elseif Feff(i) < 2.8*Fcr
        % Sinusoidal Buckling
        epsilonMIT(i) = -0.7285*(rc)^2/(4*E*I)*(Feff(i)).^(0.08)*(Feff(i)-Fcr)^(.92);
    else
        % Helical Buckling
        epsilonMIT(i) = -(rc)^2/(4*E*I)*Feff(i);

    end
end

Plotting

figure(1)
plot(Feff/Fcr,-epsilonLUB*4*E*I/rc^2,'k--',...
    Feff/Fcr,-epsilonMIT*4*E*I/rc^2,'k')
legend('\fontsize{16}Lubinski',...
    '\fontsize{16}Mitchell Correlation','location','northwest')
grid minor
xlabel('\fontsize{16}F/Fcr')
ylabel('\fontsize{16}4EIe/r2')
title('\fontsize{16}Buckling Strain Comparison')
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yL = ylim;
% Define PD-limit
line([1 1],yL,'color','black','linestyle',':');
% Define helical buckling limit (Mitchell)
line([2.8 2.8],yL,'color','black','linestyle',':');

Lubinski Buckling Length Change

The buckling length change is defined as a vector.

dLbLUB = zeros(1,length(Feff));
for i = 1:length(Feff)
     if Feff(i) > 0
         % Helical buckling when the fictitious force is in compression (+)
         dLbLUB(i) = -(rc)^2/(8*E*I*w(2))*Feff(i)^2;
     else
         % No buckling
         dLbLUB(i) = 0;
     end
end

Mitchell Buckling Length Change

The buckling length change is defined as a vector.

dLbMIT = zeros(1,length(Feff));
for i = 1:length(Feff)
    if Feff(i) < Fcr
        % No buckling
        dLbMIT(i) = 0;
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    elseif Feff(i) < 2.8*Fcr
        % Sinusoidal Buckling
        dLbMIT(i) = -(rc)^2/(4*E*I*w(2))*(Feff(i)-Fcr)*(0.3771*Feff(i)-0.3668*Fcr);
    else
        % Helical Buckling
        dLbMIT(i) = -(rc)^2/(8*E*I*w(2))*(Feff(i)^2);

    end
end

Plotting

figure(2)
plot(Feff/Fcr,-dLbLUB*8*E*I*w(2)/rc^2,'k--',...
    Feff/Fcr,-dLbMIT*8*E*I*w(2)/rc^2,'k')
legend('\fontsize{16}Lubinski',...
    '\fontsize{16}Mitchell Correlation','location','northwest')
grid minor
xlabel('\fontsize{16}F/Fcr')
ylabel('\fontsize{16}-8EIwdLb/r2')
title('\fontsize{16}Buckling Length Change Comparison')
yL = ylim;
% Define PD-limit
line([1 1],yL,'color','black','linestyle',':');
% Define helical buckling limit (Mitchell)
line([2.8 2.8],yL,'color','black','linestyle',':');
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INPUTS

Length changes and packer forces

Critical buckling limits

Length Changes: Packers Permitting Free Motion

Length Changes: Packers Permitting Limited Motion

Length Changes: Packers Permitting No Motion

Plotting with constant slack-off/pick-up

Plotting with variating slack-off/pick-up

Neutral Stability Point

Plotting axial loads and neutral stability point

Permanent Corkscrewing

Plotting with constant slack-off/pick-up

Plotting with variating slack-off/pick-up

Plotting axial loads and neutral stability point with critical buckling

Including locally imposed bending loads on axial loads

Plotting bending stress

clc
clear all

INPUTS

tic
% Tubing Inputs
OD        = 3.5;                        %in     outer diameter
weight    = 9.2;                        %lb/ft  dry weight
ID        = 2.992;                      %in     inner diameter
grades    = 10^3.*[40 55 75 80 105];    %psi    yield strength
E         = 30*10^6;                    %psi    Young's modulus
poisson   = 0.3;                        %       Poisson's ratio
Ct        = 6.9*10^(-6);                %/F     coeff. of thermal expansion
% Total length of well
Lp        = 2523.1;                     %m      value from Compass
Lp        = Lp*39.37;                   %in     converting from m to in
% Total vertical depth
TVD       = 669.62;                     %m      value from Compass
TVD       = TVD*39.37;                  %in     converting from m to in
% Tubing calculations
Ao        = pi/4*OD.^2;                 %in2    outer area
Ai        = pi/4*ID.^2;                 %in2    inner area
As        = Ao-Ai;                      %in2    cross-sectional area
Ap        = Ai;                         %in2    packer bore area PBR
R         = OD./ID;                     %ratio  OD/ID-ratio
ws        = weight./12;                 %lb/in  dry weight of tubing
I         = (pi/64)*(OD.^4-ID.^4);      %in4    moment of inertia
% Casing Inputs
csgID     = 5.921;                      %in     inner diameter
rc        = (csgID-OD)/2;               %in     radial clearance
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% Fluid Properties
rhosw     = 1/231*8.68;                 %psi/in sea water density
rhog      = 1/231*1;                    %psi/in gas density
rhoo      = 1/231*7.68;                 %psi/in oil density
% Pressures
Pr        = 1015.3;                     %psi    70 bar reservoir pressure
Pg        = rhog*TVD;                   %psi    gas-filled well
SIWHP     = Pr - Pg;                    %psi    shut-in wellhead pressure
WDP       = SIWHP + 508;                %psi    35 bar safety margin
Ppacker   = 4278.6;                     %psi    295 bar set packer pressure

Length changes and packer forces

 % Load case: Set packer
rhot      = [rhosw rhosw];              %psi/in initial-final
rhoa      = [rhosw rhosw];              %psi/in initial-final
pi        = [0 Ppacker-rhot(2)*TVD];    %psi    surface initial-final
po        = [0 0];                      %psi    surface initial-final
dT        = 0;                          %C      avg. change in temperature
dT        = dT*1.8;                     %F
%
% % Load case: Start bullheading (gas filled well)
% rhot      = [rhosw rhog];               %psi/in initial-final
% rhoa      = [rhosw rhosw];              %psi/in initial-final
% pi        = [0 WDP];                    %psi    surface initial-final
% po        = [0 0];                      %psi    surface initial-final
% dT        = 3;                          %C      avg. change in temperature
% dT        = dT*1.8;                     %F

% % Load case: Start bullheading (oil filled well)
% rhot      = [rhosw rhoo];               %psi/in initial-final
% rhoa      = [rhosw rhosw];              %psi/in initial-final
% pi        = [0 WDP];                    %psi    surface initial-final
% po        = [0 0];                      %psi    surface initial-final
% dT        = 3;                          %C      avg. change in temperature
% dT        = dT*1.8;                     %F
%
% % Load case: Shut-in
% rhot      = [rhosw rhog];               %psi/in tubing initial-final
% rhoa      = [rhosw rhosw];              %psi/in annulus initial-final
% pi        = [0 SIWHP];                  %psi    surface initial-final
% po        = [0 0];                      %psi    surface initial-final
% dT        = -4;                         %C      avg. change in temperature
% dT        = dT*1.8;                     %F

% Density calculations
drhot     = rhot(2)-rhot(1);            %psi/in change in density
drhoa     = rhoa(2)-rhoa(1);            %psi/in change in density
wi        = rhot.*Ai;                   %lb/in  tubing initial-final
wo        = rhoa.*Ao;                   %lb/in  annulus initial-final
w         = ws + wi - wo;               %lb/in  total initial-final

% Pressure calculations
Pi        = pi+rhot*TVD;                %psi    packer initial-final
Po        = po+rhoa*TVD;                %psi    packer initial-final
dp        = [pi(2)-pi(1) po(2)-po(1)];  %psi    change in surface pressure
dP        = [Pi(2)-Pi(1) Po(2)-Po(1)];  %psi    change in packer pressure

% Calculate Forces as if the tubing is free to move
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Fa        = (Ap-Ao)*Po-(Ap-Ai)*Pi;      %lb     true axial force
Ff        = Ap*(Po-Pi);                 %lb     effective axial force

% Calculate length change associated with Ff
dLf       = Lp/(E*As).*Ff(2)-rc^2/(8*E*I*w(2)).*Ff(2).^2; %in

disp(['The length change related to this force is ', num2str(dLf), ' in'])

The length change related to this force is -30.9725 in

Critical buckling limits

Critical buckling for vertical well

Fcr       = (E*I.*w(2)^2).^(1/3); %lb
% Sinusoidal buckling is defined by Lubinski et. al (1950)
Fcsinv    = 1.94*Fcr; %lb
% Helical buckling is defined by Wu et. al (1995)
Fchelv    = 5.55*Fcr; %lb
% Critical buckling for deviated section (Paslay Dawson)
incl      = linspace(0,85*3.1416/180,100); % build from 0 to 85 degrees
TVDbuild  = linspace(450,650,100);         % vertical depth of build section
% Sinusoidal buckling is defined by Dawson and Paslay (1984)
Fcrsindev = sqrt((4*E*I.*w(2)*sin(incl))./rc);
% Helical buckling is defined by Mitchell et. al (1999)
Fcrheldev = 1.4*Fcrsindev;
% Critical buckling for horizontal section
Fcrsinhor = sqrt((4*E*I.*w(2)*sin(3.1416/2))./rc);
Fcrhelhor = 1.4*Fcrsinhor;

Length Changes: Packers Permitting Free Motion

All length changes are in inches

% The first length change is deformation due to the true axial force acting
% on the bottom of the tubing. Hooke's law is used:
dL1       = Lp/(E*As)*((Ap-Ao)*dP(2)-(Ap-Ai)*dP(1));
% The second length change occurs due to helical buckling. If the change in
% outer pressure is higher than the change in inner pressure, there will be
% no helical buckling (Lubinski et. al (1962)), hence:
if dP(2)>dP(1)
    % No helical buckling
    dL2   = 0;
else
    % Helical buckling. Calculate length change with a non-linear equation.
     dL2   = -rc^2*Ap^2*(dP(2)-dP(1)).^2/(8*E*I*w(2));
    % Sinusoidal buckling length change by Mitchell:
    % Ff(2) = -Ff(2); % Change signs for Mitchells equation
    % dL2   = -(rc)^2/(4*E*I*w(2))*(Ff(2)-Fcr(2))*(0.3771*Ff(2)-0.3668*Fcr(2));
    % Ff(2) = -Ff(2); % Change back for the remaining model
end
% Calculate radial pressure due to ballooning and fluid flow
%delta     = 0; % Pressure drop per unit length
%dL3       = -(poisson/E)*((drhot-R^2*drhoa-(1+2*poisson)/(2*poisson)*delta)*Lp^2/(R^2-1)).
..
%            -(2*poisson/E)*((dp(1)-R^2*dp(2))*Lp/(R^2-1));
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% Ballooning equation from Jonathan Bellarby "Well Completion Design"
avgdpi     = (dp(1)+dP(1))/2;   %psi, average pressure change
avgdpo     = (dp(2)+dP(2))/2;   %psi, average pressure change
dL3        = -(2*poisson/E)*(avgdpi*Ai-avgdpo*Ao)*(1/(Ao-Ai))*Lp;

% The fourth length change occurs due to temperature change, also known as
% thermal expansion or thermal contraction.
dL4       = Lp*Ct*dT;

% Total length change is then:
dL        = dL1+dL2+dL3+dL4;

disp(['If the tubing is free to move, the total length change is ', ...
    num2str(dL),' in'])

% Neutral stability point if the tubing is free to move
nfree     = (Ff./w)/12;         %ft
disp(['If the tubing is free to move, the neutral stability point is ', ...
    num2str(nfree(2)),' ft from the bottom'])

If the tubing is free to move, the total length change is -19.1516 in
If the tubing is free to move, the neutral stability point is -2878.1739 ft from the bottom

Length Changes: Packers Permitting Limited Motion

Define slack-off force

Fso       = 0; %lb

% Variation of initial slack-off/pick-up
% Fso       = linspace(-10000,10000,100); %lb

%Length change due to slack-off or pick-up
dL5       = - ((Lp/(E*As).*Fso-rc^2/(8*E*I*w(1)).*Fso.^2));

% Including stick-up length, the total length change is:
dL       = dL+dL5;

disp(['If the packer permits limited motion, the total length change is ',...
    num2str(dL), ' in'])

If the packer permits limited motion, the total length change is -19.1516 in

Length Changes: Packers Permitting No Motion

The packer will oppose to the desired length change "dLp".

dLp     = dLf-dL;

% Plotting F vs. dL'
% Define F as a vector
F       = linspace(-40000,40000,10000);
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% Make sure dL' is the same size vector as F
dLfnutt = zeros(1,length(F));

% Make a loop to calculate dL' for every F.
for i = 1:length(F)
    if F(i) < 0 && F(i) > -Lp*w(2)
        % Compression
        dLfnutt(i) = Lp/(E*As).*F(i)-rc^2/(8*E*I*w(2)).*F(i).^2;
    else
        % Tension
        dLfnutt(i) = Lp/(E*As).*F(i);
    end
end

% Define vectors
Ffstar = zeros(1,length(Fso));
Fp     = zeros(1,length(Fso));
Fastar = zeros(1,length(Fso));

for i = 1:length(dLp)
    if dLp(i) < 0
        % Compression
        % 'coeff' is the coefficients in the non-linear equation
          coeff = [-rc^2/(8*E*I*w(2)) Lp/(E*As) -dLp(i)];
        % 'roots' calculates the F corresponding to dLp
          Ffstarroots = roots(coeff)';
        % 'Ffstar' is the effective axial force when the tubing is fixed
          Ffstar(i) = Ffstarroots(2);
        % 'Fp' is the packer force
          Fp(i) = Ffstar(i) - Ff(2);
        % 'Fastar' is the true axial force when the tubing is fixed
          Fastar(i) = Fp(i)+Fa(2);
          if Fp(i) > 0
            disp(['The tubing is shortening, and the packer' ...
              ' force is a tension: ',num2str(Fp(i)),'lb']);
          else
            disp(['The tubing is lengthening, and the packer' ...
              ' force is a compression: ',num2str(Fp(i)),'lb']);
          end
    else
        % Tension
        % 'coeff' is the coefficients in the linear eq: Hooke's law
          coeff = [0 Lp/(E*As) -dLp(i)];
        % 'roots' calculates the F corresponding to dLp
          Ffstarroots = roots(coeff);
        % 'Ffstar' is the effective axial force when the tubing is fixed
          Ffstar(i) = Ffstarroots;
        % 'Fp' is the packer force
          Fp(i) = Ffstar(i) - Ff(2);
        % 'Fastar' is the true axial force when the tubing is fixed
          Fastar(i) = Fp(i)+Fa(2);
          if Fp(i) > 0
              disp(['The tubing is shortening, and the packer' ...
              ' force is a tension: ',num2str(Fp(i)),'lb']);
          else
              disp(['The tubing is lengthening, and the packer' ...
              ' force is a compression: ',num2str(Fp(i)),'lb']);
          end
    end
end
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disp(['The fictitious force when the tubing is fixed is ', ...
    num2str(Ffstar),' lb'])

The tubing is shortening, and the packer force is a tension: 14041.8376lb
The fictitious force when the tubing is fixed is -9075.8233 lb

Plotting with constant slack-off/pick-up

figure(1)
plot(F,dLfnutt,'r',Ffstar,dLp,'r*',Ff(2),dLf,'ro',Ffstar,dLf,'b>',...
    'markersize',10)
hold on
xL = xlim;
yL = ylim;
line([Ff(2) Ffstar],[dLf dLf],'linestyle','-')
line([0 0], yL,'color','black');  %y-axis
line(xL, [0 0],'color','black');  %x-axis
hold on
line([Ff(2) Ff(2)],yL,'color','black','linestyle','-.')
line(xL, [dLf dLf],'color','black','linestyle','-.')
hold on
line([Ffstar Ffstar],yL,'color','black','linestyle','--')
line(xL, [dLp dLp],'color','black','linestyle','--')
grid minor
xlabel('\fontsize{16}Axial Force [lb]')
ylabel('\fontsize{16}dL [in]')
title('\fontsize{16}Axial Force vs. Length Change')
legend('\fontsize{16}Axial Force vs. Length Change' ...
, '\fontsize{16}Ff*','\fontsize{16}Ff','\fontsize{16}Fp', ...
    'location','northwest')
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Plotting with variating slack-off/pick-up

figure(1) plot(F,dLfnutt,'r',Ffstar,dLp,'r*',Ff(2),dLf,'ro','markersize',10) hold on xL = xlim; yL = ylim; grid minor

line([0 0], yL,'color','black'); %y-axis line(xL, [0 0],'color','black'); %x-axis hold on line([Ff(2)
Ff(2)],yL,'color','black','linestyle','-.') line(xL, [dLf dLf],'color','black','linestyle','-.') hold on grid minor xlabel('\fontsize{16}Axial
Force [lb]') ylabel('\fontsize{16}dL [in]') title('\fontsize{16}Axial Force vs. Length Change') legend('\fontsize{16}Axial Force vs.
Length Change' ... , '\fontsize{16}Ff*','\fontsize{16}Ff', ... 'location','northwest')

Neutral Stability Point

% Neutral Point when the tubing is fixed
n         = ([0 Ffstar]/w(2))/12;                 %ft

% True vs. Effective Axial Load
% Capital P is the pressure at packer level, and lowercase p is the
% pressure at surface. Note how the pressures are used in each equation.

% Initial Conditions

% Surface (z=0)
% True Axial Load
Fas(1) = TVD*ws  + Po(1)*(Ap-Ao) - Pi(1)*(Ap-Ai);
% Effective Axial Load
Ffs(1) = Fas(1) - pi(1)*Ai + po(1)*Ao;

% Packer (z=zshoe)
% True Axial Load
Fap(1) = Po(1)*(Ap-Ao) - Pi(1)*(Ap-Ai);
% Effective Axial Load
% Assumes that the pressure is bled of after setting the packer, hence Fp=0
Ffp(1) = Fap(1) - Pi(1)*Ai + Po(1)*Ao;
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% After Load Case

% Surface (z=0)
% The packer force will adjuct the true axial load, and this effect will
% also be included when calculating the effective axial load. Lubinski used
% a star "*" to describe these loads when the tubing is anchored.
% True Axial Load
Fas(2) = TVD*ws  + Po(2)*(Ap-Ao) - Pi(2)*(Ap-Ai) + Fp;
% Effective Axial Load
Ffs(2) = Fas(2) - pi(2)*Ai + po(2)*Ao;
% Packer (z=zshoe)
% True Axial Load
Fap(2) = Po(2)*(Ap-Ao) - Pi(2)*(Ap-Ai) + Fp;
% Effective Axial Load
Ffp(2) = Fap(2) - Pi(2)*Ai + Po(2)*Ao;

Plotting axial loads and neutral stability point

figure(2)
plot([Fas(1) Fap(1)],[0 TVD]/12,'k', ...
     [Ffs(1) Ffp(1)],[0 TVD]/12,'r', ...
     [Fas(2) Fap(2)],[0 TVD]/12,'k--', ...
     [Ffs(2) Ffp(2)],[0 TVD]/12,'r--', ...
     0, TVD/12+n,'ro')
ylim([0 TVD/12]);
yL = [0 TVD/12];
xL = xlim;
line([0 0], yL,'color','black');
line(xL,[0 0],'color','black');
line(xL,[TVD/12 TVD/12],'color','black');
legend('\fontsize{16}Fa Initial Conditions', ...
    '\fontsize{16}Feff Initial Conditions', ...
    '\fontsize{16}Fa Load Case', ...
    '\fontsize{16}Feff Load Case', ...
    '\fontsize{16}NSP','location','northwest')
set(gca,'YDir','reverse')
grid minor
ylabel('\fontsize{16}Depth [ft]')
yyaxis right
ylim([0 670])
line(xL,[450 450],'color','black','linestyle',':');
line(xL,[650 650],'color','black','linestyle',':');
set(gca,'YDir','reverse')
xlabel('\fontsize{16}Force [lb]')
ylabel('\fontsize{16}Depth [m]')
title('\fontsize{16}True vs. Effective Axial Force')
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Permanent Corkscrewing

% Initial Conditions after slack-off but before changing P and T

% 'soinitial' is the stress at outer wall after slack-off
soinitial = zeros(1,length(Fso));

for i = 1:length(Fso)
    if Fso(i) < 0
        soinitial(i) = abs(Fso(i)/As + OD*rc*Fso(i)./(4*I));
    end
end

% Permanent Corkscrewing after changing P and T

% 'so' is stress at the outer wall
so = zeros(1,length(Ffstar));
% 'si' is stress at the inner wall
si = so;

% Change signs of effecti
Ffstar = -Ffstar;
Fastar = -Fastar;

for i = 1:length(Ffstar)

    if Ffstar(i) < 0
        % No buckling
        sigmab = 0;
        % elseif Ffstar(i) < 5.55*Fcr && Ffstar(i) > 1.94*Fcr
        % Sinusoidal Buckling
        % sigmab = 0.3151*OD*rc/I*Ffstar(i).^(0.08)*(Ffstar(i)-Fcr).^(0.92);
        % elseif Ffstar(i) > 5.55*Fcr
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    else
        % Helical Buckling
        sigmab = OD*rc/(4*I).*Ffstar(i);
    end

    sigmaa = Fastar(i)/As;

        soplus   = sqrt(3*((Pi(2)-Po(2))/(R^2-1))^2 + ...
                    ((Pi(2)-R^2*Po(2))/(R^2-1)+sigmaa+sigmab)^2);
        sominus  = sqrt(3*((Pi(2)-Po(2))/(R^2-1))^2 + ...
                    ((Pi(2)-R^2*Po(2))/(R^2-1)+sigmaa-sigmab)^2);
        so(i)    = max(soplus,sominus);

        siplus   = sqrt(3*(R^2*(Pi(2)-Po(2))/(R^2-1))^2 + ...
                    ((Pi(2)-R^2*Po(2))/(R^2-1)+sigmaa+sigmab./R)^2);
        siminus  = sqrt(3*(R^2*(Pi(2)-Po(2))/(R^2-1))^2 + ...
                    ((Pi(2)-R^2*Po(2))/(R^2-1)+sigmaa-sigmab./R)^2);
        si(i)    = max(siplus,siminus);

end

Plotting with constant slack-off/pick-up

figure(3)
plot(Fso,soinitial,'bo',Fso,so,'ro',Fso,si,'yo','markersize',10)
hold on
xL = xlim;
line(xL, [grades(1) grades(1)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(2) grades(2)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(3) grades(3)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(4) grades(4)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(5) grades(5)],'color','black','linestyle','--');  %x-axis
%yL = [0 120000];
yL = ylim;
line([0 0], yL,'color','black');  %y-axis
hold on
grid minor
xlabel('\fontsize{16}Initial Slack-Off and Pick-Up Force [lb]')
ylabel('\fontsize{16}Triaxial Stress [psi]')
title('\fontsize{16}Permanent Corkscrewing')
legend('\fontsize{16}Sigmao Initial','\fontsize{16}Sigmao',...
    '\fontsize{16}Sigmai','location','southeast')
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Plotting with variating slack-off/pick-up

% figure(3)
% plot(Fso(1:50),soinitial(1:50),'b',Fso,so,'r',Fso,si,'y','markersize',10)
% hold on
% xL = xlim;
% % line(xL, [grades(1) grades(1)],'color','black','linestyle','--');  %x-axis
% % line(xL, [grades(2) grades(2)],'color','black','linestyle','--');  %x-axis
% % line(xL, [grades(3) grades(3)],'color','black','linestyle','--');  %x-axis
% % line(xL, [grades(4) grades(4)],'color','black','linestyle','--');  %x-axis
% % line(xL, [grades(5) grades(5)],'color','black','linestyle','--');  %x-axis
% %yL = [0 120000];
% yL = ylim;
% line([0 0], yL,'color','black');  %y-axis
% hold on
% grid minor
% xlabel('\fontsize{16}Initial Slack-Off and Pick-Up Force [lb]')
% ylabel('\fontsize{16}Triaxial Stress [psi]')
% title('\fontsize{16}Permanent Corkscrewing')
% legend('\fontsize{16}Sigmao Initial','\fontsize{16}Sigmao',...
% '\fontsize{16}Sigmai','location','southeast')

Plotting axial loads and neutral stability point with critical buckling

figure(4)
plot([Fas(1) Fap(1)],[0 TVD]/12,'k', ...
     [Ffs(1) Ffp(1)],[0 TVD]/12,'r', ...
     [Fas(2) Fap(2)],[0 TVD]/12,'k--', ...
     [Ffs(2) Ffp(2)],[0 TVD]/12,'r--', ...
     0, TVD/12+n(2),'ro', ...
     -[Fcsinv Fcsinv],[0 450*39.37]/12,'g', ...
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     -[Fchelv Fchelv],[0 450*39.37]/12,'b', ...
     -Fcrsindev,TVDbuild*39.37/12,'g', ...
     -Fcrheldev,TVDbuild*39.37/12,'b', ...
     [-Fcrsinhor -Fcrsinhor],[650 669.62]*39.37/12,'g', ...
     [-Fcrhelhor -Fcrhelhor],[650 669.62]*39.37/12,'b')
ylim([0 TVD/12]);
yL = [0 TVD/12];
xL = xlim;
line([0 0], yL,'color','black');
line(xL,[0 0],'color','black');
line(xL,[TVD/12 TVD/12],'color','black');
legend('\fontsize{12}Fa Initial Conditions', ...
    '\fontsize{12}Feff Initial Conditions', ...
    '\fontsize{12}Fa Load Case', ...
    '\fontsize{12}Feff Load Case', ...
    '\fontsize{12}NSP', ...
    '\fontsize{12}Sinusoidal buckling', ...
    '\fontsize{12}Helical buckling', ...
    'location','northwest')
set(gca,'YDir','reverse')
grid minor
ylabel('\fontsize{16}Depth [ft]')
yyaxis right
ylim([0 670])
line(xL,[450 450],'color','black','linestyle',':');
line(xL,[650 650],'color','black','linestyle',':');
set(gca,'YDir','reverse')
xlabel('\fontsize{16}Force [lb]')
ylabel('\fontsize{16}Depth [m]')
title('\fontsize{16}True vs. Effective Axial Force')

Including locally imposed bending loads on axial loads
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TVDvector = linspace(0,TVD/12,1000);
Favector  = linspace(Fas(2),Fap(2),1000);
Feffvector = linspace(Ffs(2),Ffp(2),1000);
% Define compression as positive
Favector  = -Favector;
Feffvector = -Feffvector;
Fbendvector = zeros(1,length(Favector));

for i = 1:length(Feffvector)
    if TVDvector(i) < 450*39.37/12
        if Feffvector(i) < Fcsinv
            % No  buckling
            Fbendvector(i) = Favector(i);
        elseif Feffvector(i) < Fchelv
            % Sinusoidal buckling
            if Favector(i) < 0
                % Tubing is in tension
                Fbendvector(i) = Favector(i) ...
                - 0.3151*OD*rc/I*Feffvector(i).^(0.08)*(Feffvector(i)-Fcsinv).^(0.92);

            else
                % Tubing is in compression
                Fbendvector(i) = Favector(i) ...
                + 0.3151*OD*rc/I*Feffvector(i).^(0.08)*(Feffvector(i)-Fcsinv).^(0.92);
            end
        else
            % Helical buckling
            if Favector(i) < 0
                % Tubing is in tension
                Fbendvector(i) = Favector(i) - OD*rc/(4*I).*Feffvector(i);
            else
                % Tubing is in compression
                Fbendvector(i) = Favector(i) + OD*rc/(4*I).*Feffvector(i);
            end
        end
    else
        Fbendvector(i) = Favector(i);
    end
end

% Define compression as negative:
Fbendvector = -Fbendvector;

Plotting bending stress

figure(5)
plot([Fas(2) Fap(2)],[0 TVD]/12,'k--', ...
     [Ffs(2) Ffp(2)],[0 TVD]/12,'r--', ...
     Fbendvector,TVDvector,'k-.',...
     0, TVD/12+n(2),'ro', ...
     -[Fcsinv Fcsinv],[0 450*39.37]/12,'g', ...
     -[Fchelv Fchelv],[0 450*39.37]/12,'b', ...
     -Fcrsindev,TVDbuild*39.37/12,'g', ...
     -Fcrheldev,TVDbuild*39.37/12,'b', ...
     [-Fcrsinhor -Fcrsinhor],[650 669.62]*39.37/12,'g', ...
     [-Fcrhelhor -Fcrhelhor],[650 669.62]*39.37/12,'b')
ylim([0 TVD/12]);
yL = [0 TVD/12];
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xL = xlim;
line([0 0], yL,'color','black');
line(xL,[0 0],'color','black');
line(xL,[TVD/12 TVD/12],'color','black');
legend('\fontsize{16}Fa Load Case', ...
    '\fontsize{16}Feff Load Case', ...
    '\fontsize{16}Fa with Bending', ...
    'location','northwest') %, ...
%     '\fontsize{12}Fa Load Case', ...
%     '\fontsize{12}Feff Load Case', ...
%     '\fontsize{12}NSP', ...
%     '\fontsize{12}Sinusoidal buckling', ...
%     '\fontsize{12}Helical buckling', ...
%     'location','northwest')
set(gca,'YDir','reverse')
grid minor
ylabel('\fontsize{16}Depth [ft]')
yyaxis right
ylim([0 670])
line(xL,[450 450],'color','black','linestyle',':');
line(xL,[650 650],'color','black','linestyle',':');
set(gca,'YDir','reverse')
xlabel('\fontsize{16}Force [lb]')
ylabel('\fontsize{16}Depth [m]')
title('\fontsize{16}True vs. Effective Axial Force')

toc

Elapsed time is 6.661067 seconds.
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clc
clear all

INPUTS

tic
% Tubing Inputs
OD        = 3.5;                        %in     outer diameter
weight    = 9.2;                        %lb/ft  dry weight
ID        = 2.992;                      %in     inner diameter
grades    = 10^3.*[40 55 75 80 105];    %psi    yield strength
E         = 30*10^6;                    %psi    Young's modulus
poisson   = 0.3;                        %       Poisson's ratio
Ct        = 6.9*10^(-6);                %/F     coeff. of thermal expansion
% Total vertical depth
TVDsw     = 400;                        %m      sea water depth
TVDsw     = TVDsw*39.37;                %in     converting from m to in
TVD       = 269.62;                     %m      vertical well depth
TVD       = TVD*39.37;                  %in     converting from m to in
% Total length of well
Lp        = 2523.1-TVDsw;               %m      value from Compass minus
                                        %       sea water depth
Lp        = Lp*39.37;                   %in     converting from m to in
% Tubing calculations
Ao        = pi/4*OD.^2;                 %in2    outer area
Ai        = pi/4*ID.^2;                 %in2    inner area
As        = Ao-Ai;                      %in2    cross-sectional area
Ap        = Ai;                         %in2    packer bore area PBR
R         = OD./ID;                     %ratio  OD/ID-ratio
ws        = weight./12;                 %lb/in  dry weight of tubing
I         = (pi/64)*(OD.^4-ID.^4);      %in4    moment of inertia
% Casing Inputs
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csgID     = 5.921;                      %in     inner diameter
rc        = (csgID-OD)/2;               %in     radial clearance

% Fluid Properties
rhosw     = 1/231*8.68;                 %psi/in sea water density
rhog      = 1/231*1;                    %psi/in gas density
rhoo      = 1/231*7.68;                 %psi/in oil density
% Pressures
Pr        = 1015.3;                     %psi    70 bar reservoir pressure
Pg        = rhog*TVD;                   %psi    gas-filled well
SIWHP     = Pr - Pg;                    %psi    shut-in wellhead pressure
WDP       = SIWHP + 508;                %psi    35 bar safety margin
Ppacker   = 4278.6;                     %psi    295 bar set packer pressure
Psw       = rhosw*TVDsw;                %psi    sea water pressure

Length changes and packer forces

% Load case: Set packer
rhot      = [rhosw rhosw];              %psi/in initial-final
rhoa      = [rhosw rhosw];              %psi/in initial-final
pi        = [Psw Ppacker-rhot(2)*TVD];  %psi    surface initial-final
po        = [Psw Psw];                  %psi    surface initial-final
dT        = 0;                          %C      avg. change in temperature
dT        = dT*1.8;                     %F

% %Load case: Start bullheading (gas filled well)
% rhot      = [rhosw rhog];               %psi/in initial-final
% rhoa      = [rhosw rhosw];              %psi/in initial-final
% pi        = [Psw WDP];                  %psi    surface initial-final
% po        = [Psw Psw];                  %psi    surface initial-final
% dT        = 3;                          %C      avg. change in temperature
% dT        = dT*1.8;                     %F
%
% % Load case: Start bullheading (oil filled well)
% rhot      = [rhosw rhoo];               %psi/in initial-final
% rhoa      = [rhosw rhosw];              %psi/in initial-final
% pi        = [Psw WDP];                  %psi    surface initial-final
% po        = [Psw Psw];                  %psi    surface initial-final
% dT        = 3;                          %C      avg. change in temperature
% dT        = dT*1.8;                     %F
%
% % Load case: Shut-in
% rhot      = [rhosw rhog];               %psi/in tubing initial-final
% rhoa      = [rhosw rhosw];              %psi/in annulus initial-final
% pi        = [Psw SIWHP];                %psi    surface initial-final
% po        = [Psw Psw];                  %psi    surface initial-final
% dT        = -4;                         %C      avg. change in temperature
% dT        = dT*1.8;                     %F

% Density calculations
drhot     = rhot(2)-rhot(1);            %psi/in change in density
drhoa     = rhoa(2)-rhoa(1);            %psi/in change in density
wi        = rhot.*Ai;                   %lb/in  tubing initial-final
wo        = rhoa.*Ao;                   %lb/in  annulus initial-final
w         = ws + wi - wo;               %lb/in  total initial-final

% Pressure calculations
Pi        = pi+rhot*TVD;                %psi    packer initial-final
Po        = po+rhoa*TVD;                %psi    packer initial-final
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dp        = [pi(2)-pi(1) po(2)-po(1)];  %psi    change in surface pressure
dP        = [Pi(2)-Pi(1) Po(2)-Po(1)];  %psi    change in packer pressure

% Calculate Forces as if the tubing is free to move
Fa        = (Ap-Ao)*Po-(Ap-Ai)*Pi;      %lb     true axial force
Ff        = Ap*(Po-Pi);                 %lb     effective axial force

% Calculate length change associated with Ff
dLf       = Lp/(E*As).*Ff(2)-rc^2/(8*E*I*w(2)).*Ff(2).^2; %in

disp(['The length change related to this force is ', num2str(dLf), ' in'])

The length change related to this force is 153.4786 in

Critical buckling limits

Critical buckling for vertical well

Fcr       = (E*I.*(w(2)).^2).^(1/3); %lb
% Sinusoidal buckling is defined by Lubinski et. al (1950)
Fcsinv    = 1.94*Fcr; %lb
% Helical buckling is defined by Wu et. al (1995)
Fchelv    = 5.55*Fcr; %lb
% Critical buckling for deviated section (Paslay Dawson)
incl      = linspace(0,85*3.1416/180,100); % build from 0 to 85 degrees
TVDbuild  = linspace(50,250,100);          % vertical depth of build section
% Sinusoidal buckling is defined by Dawson and Paslay (1984)
Fcrsindev = sqrt((4*E*I.*w(2)*sin(incl))./rc);
% Helical buckling is defined by Mitchell et. al (1999)
Fcrheldev = 1.4*Fcrsindev;
% Critical buckling for horizontal section
Fcrsinhor = sqrt((4*E*I.*w(2)*sin(3.1416/2))./rc);
Fcrhelhor = 1.4*Fcrsinhor;

Length Changes: Packers Permitting Free Motion

All length changes are in inches

% The first length change is deformation due to the true axial force acting
% on the bottom of the tubing. Hooke's law is used:
dL1       = Lp/(E*As)*((Ap-Ao)*dP(2)-(Ap-Ai)*dP(1));
% The second length change occurs due to helical buckling. If the change in
% outer pressure is higher than the change in inner pressure, there will be
% no helical buckling (Lubinski et. al (1962)), hence:
if dP(2)>dP(1)
    % No helical buckling
    dL2   = 0;
else
    % Helical buckling. Calculate length change with a non-linear equation.
     dL2   = -rc^2*Ap^2*(dP(2)-dP(1)).^2/(8*E*I*w(2));
    % Sinusoidal buckling length change by Mitchell:
    % Ff(2) = -Ff(2); % Change signs for Mitchells equation
    % dL2   = -(rc)^2/(4*E*I*w(2))*(Ff(2)-Fcr(2))*(0.3771*Ff(2)-0.3668*Fcr(2));
    % Ff(2) = -Ff(2); % Change back for the remaining model
end
% Calculate radial pressure due to ballooning and fluid flow
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%delta     = 0; % Pressure drop per unit length
%dL3       = -(poisson/E)*((drhot-R^2*drhoa-(1+2*poisson)/(2*poisson)*delta)*Lp^2/(R^2-1)).
..
%            -(2*poisson/E)*((dp(1)-R^2*dp(2))*Lp/(R^2-1));

% Ballooning equation from Jonathan Bellarby "Well Completion Design"
avgdpi     = (dp(1)+dP(1))/2;   %psi, average pressure change
avgdpo     = (dp(2)+dP(2))/2;   %psi, average pressure change
dL3        = -(2*poisson/E)*(avgdpi*Ai-avgdpo*Ao)*(1/(Ao-Ai))*Lp;

% The fourth length change occurs due to temperature change, also known as
% thermal expansion or thermal contraction.
dL4       = Lp*Ct*dT;

% Total length change is then:
dL        = dL1+dL2+dL3+dL4;

disp(['If the tubing is free to move, the total length change is ', ...
    num2str(dL),' in'])

% Neutral stability point if the tubing is free to move
nfree     = (Ff./w)/12;         %ft
disp(['If the tubing is free to move, the neutral stability point is ', ...
    num2str(nfree(2)),' ft from the bottom'])

If the tubing is free to move, the total length change is 91.5191 in
If the tubing is free to move, the neutral stability point is -2878.1739 ft from the bottom

Length Changes: Packers Permitting Limited Motion

Define slack-off force

Fso       = 0; %lb

% Variation of initial slack-off/pick-up
% Fso       = linspace(-10000,10000,100); %lb

%Length change due to slack-off or pick-up
dL5       = - ((Lp/(E*As).*Fso-rc^2/(8*E*I*w(1)).*Fso.^2));

% Including stick-up length, the total length change is:
dL       = dL+dL5;

disp(['If the packer permits limited motion, the total length change is ',...
    num2str(dL), ' in'])

If the packer permits limited motion, the total length change is 91.5191 in

Length Changes: Packers Permitting No Motion

The packer will oppose to the desired length change "Lp".

dLp     = dLf-dL;
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% Plotting F vs. dL'
% Define F as a vector
F       = linspace(-40000,40000,10000);
% Make sure dL' is the same size vector as F
dLfnutt = zeros(1,length(F));

% Make a loop to calculate dL' for every F.
for i = 1:length(F)
    if F(i) < 0 && F(i) > -Lp*w(2)
        % Compression
        dLfnutt(i) = Lp/(E*As).*F(i)-rc^2/(8*E*I*w(2)).*F(i).^2;
    elseif F(i)<-Lp*w(2)
        % Equation (26) in "Helical buckling of tubing sealed in packers"
        % by Lubinski et. al (1962)
        dLfnutt(i) = Lp/(E*As).*F(i)-rc^2/(8*E*I*w(2)).*F(i).^2*(-Lp*w(2)/F(i)*(2+Lp*w(2)/F
(i)));
    else
        % Tension
        dLfnutt(i) = Lp/(E*As).*F(i);
    end
end

Ffstar = zeros(1,length(Fso));
Fp     = zeros(1,length(Fso));
Fastar = zeros(1,length(Fso));

for i = 1:length(dLp)
    if dLp(i) < 0
        % Compression
        % 'coeff' is the coefficients in the non-linear equation
          coeff = [-rc^2/(8*E*I*w(2)) Lp/(E*As) -dLp(i)];
        % 'roots' calculates the F corresponding to dLp
          Ffstarroots = roots(coeff)';
        % 'Ffstar' is the effective axial force when the tubing is fixed
          Ffstar(i) = Ffstarroots(2);
        % 'Fp' is the packer force
          Fp(i) = Ffstar(i) - Ff(2);
        % 'Fastar' is the true axial force when the tubing is fixed
          Fastar(i) = Fp(i)+Fa(2);
          if Fp(i) > 0
            disp(['The tubing is shortening, and the packer' ...
              ' force is a tension: ',num2str(Fp(i)),'lb']);
          else
            disp(['The tubing is lengthening, and the packer' ...
              ' force is a compression: ',num2str(Fp(i)),'lb']);
          end
    else
        % Tension
        % 'coeff' is the coefficients in the linear eq: Hooke's law
          coeff = [0 Lp/(E*As) -dLp(i)];
        % 'roots' calculates the F corresponding to dLp
          Ffstarroots = roots(coeff);
        % 'Ffstar' is the effective axial force when the tubing is fixed
          Ffstar(i) = Ffstarroots;
        % 'Fp' is the packer force
          Fp(i) = Ffstar(i) - Ff(2);
        % 'Fastar' is the true axial force when the tubing is fixed
          Fastar(i) = Fp(i)+Fa(2);
          if Fp(i) > 0
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              disp(['The tubing is shortening, and the packer' ...
              ' force is a tension: ',num2str(Fp(i)),'lb']);
          else
              disp(['The tubing is lengthening, and the packer' ...
              ' force is a compression: ',num2str(Fp(i)),'lb']);
          end
    end
end
disp(['The fictitious force is ', ...
    num2str(Ffstar),' lb'])

The tubing is shortening, and the packer force is a tension: 13870.5965lb
The fictitious force is -9247.0644 lb

Plotting with constant slack-off/pick-up

figure(1)
plot(F,dLfnutt,'r',Ffstar,dLp,'r*',Ff(2),dLf,'ro',Ffstar,dLf,'b>',...
    'markersize',10)
hold on
xL = xlim;
yL = ylim;
line([Ff(2) Ffstar],[dLf dLf],'linestyle','-')
line([0 0], yL,'color','black');  %y-axis
line(xL, [0 0],'color','black');  %x-axis
hold on
line([Ff(2) Ff(2)],yL,'color','black','linestyle','-.')
line(xL, [dLf dLf],'color','black','linestyle','-.')
hold on
line([Ffstar Ffstar],yL,'color','black','linestyle','--')
line(xL, [dLp dLp],'color','black','linestyle','--')
grid minor
xlabel('\fontsize{16}Axial Force [lb]')
ylabel('\fontsize{16}dL [in]')
title('\fontsize{16}Axial Force vs. Length Change')
legend('\fontsize{16}Axial Force vs. Length Change' ...
, '\fontsize{16}Ff*','\fontsize{16}Ff','\fontsize{16}Fp', ...
    'location','northwest')
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Plotting with variating slack-off/pick-up

figure(1) plot(F,dLfnutt,'r',Ffstar,dLp,'r*',Ff(2),dLf,'ro','markersize',10) hold on xL = xlim; yL = ylim; grid minor

line([0 0], yL,'color','black'); %y-axis line(xL, [0 0],'color','black'); %x-axis hold on line([Ff(2)
Ff(2)],yL,'color','black','linestyle','-.') line(xL, [dLf dLf],'color','black','linestyle','-.') hold on grid minor xlabel('\fontsize{16}Axial
Force [lb]') ylabel('\fontsize{16}dL [in]') title('\fontsize{16}Axial Force vs. Length Change') legend('\fontsize{16}Axial Force vs.
Length Change' ... , '\fontsize{16}Ff*','\fontsize{16}Ff', ... 'location','northwest')

Neutral Stability Point

% Neutral Point when the tubing is fixed
n         = ([0 Ffstar]/w(2))/12;                 %ft

% True vs. Effective Axial Load
% Capital P is the pressure at packer level, and lowercase p is the
% pressure at surface. Note how the pressures are used in each equation.

% Initial Conditions

% Surface (z=0)
% True Axial Load
Fas(1) = TVD*ws  + Po(1)*(Ap-Ao) - Pi(1)*(Ap-Ai);
% Effective Axial Load
Ffs(1) = Fas(1) - pi(1)*Ai + po(1)*Ao;

% Packer (z=zshoe)
% True Axial Load
Fap(1) = Po(1)*(Ap-Ao) - Pi(1)*(Ap-Ai);
% Effective Axial Load
% Assumes that the pressure is bled of after setting the packer, hence Fp=0
Ffp(1) = Fap(1) - Pi(1)*Ai + Po(1)*Ao;
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% After Load Case

% Surface (z=0)
% The packer force will adjuct the true axial load, and this effect will
% also be included when calculating the effective axial load. Lubinski used
% a star "*" to describe these loads when the tubing is anchored.
% True Axial Load
Fas(2) = TVD*ws  + Po(2)*(Ap-Ao) - Pi(2)*(Ap-Ai) + Fp;
% Effective Axial Load
Ffs(2) = Fas(2) - pi(2)*Ai + po(2)*Ao;
% Packer (z=zshoe)
% True Axial Load
Fap(2) = Po(2)*(Ap-Ao) - Pi(2)*(Ap-Ai) + Fp;
% Effective Axial Load
Ffp(2) = Fap(2) - Pi(2)*Ai + Po(2)*Ao;

Plotting axial loads and neutral stability point

figure(2)
plot([Fas(1) Fap(1)],[0 TVD]/12,'k', ...
     [Ffs(1) Ffp(1)],[0 TVD]/12,'r', ...
     [Fas(2) Fap(2)],[0 TVD]/12,'k--', ...
     [Ffs(2) Ffp(2)],[0 TVD]/12,'r--', ...
     0, TVD/12+n,'ro')
ylim([0 TVD/12]);
yL = [0 TVD/12];
xL = xlim;
line([0 0], yL,'color','black');
line(xL,[0 0],'color','black');
line(xL,[TVD/12 TVD/12],'color','black');
legend('\fontsize{16}Fa Initial Conditions', ...
    '\fontsize{16}Feff Initial Conditions', ...
    '\fontsize{16}Fa Load Case', ...
    '\fontsize{16}Feff Load Case', ...
    '\fontsize{16}NSP','location','northwest')
set(gca,'YDir','reverse')
grid minor
ylabel('\fontsize{16}Depth [ft]')
yyaxis right
ylim([0 270])
line(xL,[50 50],'color','black','linestyle',':');
line(xL,[250 250],'color','black','linestyle',':');
set(gca,'YDir','reverse')
xlabel('\fontsize{16}Force [lb]')
ylabel('\fontsize{16}Depth [m]')
title('\fontsize{16}True vs. Effective Axial Force')
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Permanent Corkscrewing

% Initial Conditions after SO but before changing P and T

soinitial = zeros(1,length(Fso));

for i = 1:length(Fso)
    if Fso(i) < 0
        soinitial(i) = abs(Fso(i)/As + OD*rc*Fso(i)./(4*I));
    end
end

% Permanent Corkscrewing after changing P and T

so = zeros(1,length(Ffstar));
si = so;

Ffstar = -Ffstar;
Fastar = -Fastar;

for i = 1:length(Ffstar)

    if Ffstar(i) < 0
        % No buckling
        sigmab = 0;
        % elseif Ffstar(i) < 5.55*Fcr && Ffstar(i) > 1.94*Fcr
        % Sinusoidal Buckling
        % sigmab = 0.3151*OD*rc/I*Ffstar(i).^(0.08)*(Ffstar(i)-Fcr).^(0.92);
        % elseif Ffstar(i) > 5.55*Fcr
    else
        % Helical Buckling
        sigmab = OD*rc/(4*I).*Ffstar(i);
    end
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    sigmaa = Fastar(i)/As;

        soplus   = sqrt(3*((Pi(2)-Po(2))/(R^2-1))^2 + ...
                    ((Pi(2)-R^2*Po(2))/(R^2-1)+sigmaa+sigmab)^2);
        sominus  = sqrt(3*((Pi(2)-Po(2))/(R^2-1))^2 + ...
                    ((Pi(2)-R^2*Po(2))/(R^2-1)+sigmaa-sigmab)^2);
        so(i)    = max(soplus,sominus);

        siplus   = sqrt(3*(R^2*(Pi(2)-Po(2))/(R^2-1))^2 + ...
                    ((Pi(2)-R^2*Po(2))/(R^2-1)+sigmaa+sigmab./R)^2);
        siminus  = sqrt(3*(R^2*(Pi(2)-Po(2))/(R^2-1))^2 + ...
                    ((Pi(2)-R^2*Po(2))/(R^2-1)+sigmaa-sigmab./R)^2);
        si(i)    = max(siplus,siminus);

end

Plotting with constant slack-off/pick-up

figure(3)
plot(Fso,soinitial,'bo',Fso,so,'ro',Fso,si,'yo','markersize',10)
hold on
xL = xlim;
line(xL, [grades(1) grades(1)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(2) grades(2)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(3) grades(3)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(4) grades(4)],'color','black','linestyle','--');  %x-axis
line(xL, [grades(5) grades(5)],'color','black','linestyle','--');  %x-axis
%yL = [0 120000];
yL = ylim;
line([0 0], yL,'color','black');  %y-axis
hold on
grid minor
xlabel('\fontsize{16}Initial Slack-Off and Pick-Up Force [lb]')
ylabel('\fontsize{16}Triaxial Stress [psi]')
title('\fontsize{16}Permanent Corkscrewing')
legend('\fontsize{16}Sigmao Initial','\fontsize{16}Sigmao',...
    '\fontsize{16}Sigmai','location','southeast')
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Plotting with variating slack-off/pick-up

% figure(3)
% plot(Fso(1:50),soinitial(1:50),'b',Fso,so,'r',Fso,si,'y','markersize',10)
% hold on
% xL = xlim;
% % line(xL, [grades(1) grades(1)],'color','black','linestyle','--');  %x-axis
% % line(xL, [grades(2) grades(2)],'color','black','linestyle','--');  %x-axis
% % line(xL, [grades(3) grades(3)],'color','black','linestyle','--');  %x-axis
% % line(xL, [grades(4) grades(4)],'color','black','linestyle','--');  %x-axis
% % line(xL, [grades(5) grades(5)],'color','black','linestyle','--');  %x-axis
% %yL = [0 120000];
% yL = ylim;
% line([0 0], yL,'color','black');  %y-axis
% hold on
% grid minor
% xlabel('\fontsize{16}Initial Slack-Off and Pick-Up Force [lb]')
% ylabel('\fontsize{16}Triaxial Stress [psi]')
% title('\fontsize{16}Permanent Corkscrewing')
% legend('\fontsize{16}Sigmao Initial','\fontsize{16}Sigmao',...
% '\fontsize{16}Sigmai','location','southeast')

Plotting axial loads and neutral stability point with critical buckling

figure(4)
plot([Fas(1) Fap(1)],[0 TVD]/12,'k', ...
     [Ffs(1) Ffp(1)],[0 TVD]/12,'r', ...
     [Fas(2) Fap(2)],[0 TVD]/12,'k--', ...
     [Ffs(2) Ffp(2)],[0 TVD]/12,'r--', ...
     0, TVD/12+n(2),'ro', ...
     -[Fcsinv Fcsinv],[0 50*39.37]/12,'g', ...
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     -[Fchelv Fchelv],[0 50*39.37]/12,'b', ...
     -Fcrsindev,TVDbuild*39.37/12,'g', ...
     -Fcrheldev,TVDbuild*39.37/12,'b', ...
     [-Fcrsinhor -Fcrsinhor],[250 269.62]*39.37/12,'g', ...
     [-Fcrhelhor -Fcrhelhor],[250 269.62]*39.37/12,'b')
ylim([0 TVD/12]);
yL = [0 TVD/12];
xL = xlim;
line([0 0], yL,'color','black');
line(xL,[0 0],'color','black');
line(xL,[TVD/12 TVD/12],'color','black');
legend('\fontsize{12}Fa Initial Conditions', ...
    '\fontsize{12}Feff Initial Conditions', ...
    '\fontsize{12}Fa Load Case', ...
    '\fontsize{12}Feff Load Case', ...
    '\fontsize{12}NSP', ...
    '\fontsize{12}Sinusoidal buckling', ...
    '\fontsize{12}Helical buckling', ...
    'location','northwest')
set(gca,'YDir','reverse')
grid minor
ylabel('\fontsize{16}Depth [ft]')
yyaxis right
ylim([0 270])
line(xL,[50 50],'color','black','linestyle',':');
line(xL,[250 250],'color','black','linestyle',':');
set(gca,'YDir','reverse')
xlabel('\fontsize{16}Force [lb]')
ylabel('\fontsize{16}Depth [m]')
title('\fontsize{16}True vs. Effective Axial Force')

Including locally imposed bending loads on axial loads
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TVDvector = linspace(0,TVD/12,1000);
Favector  = linspace(Fas(2),Fap(2),1000);
Feffvector = linspace(Ffs(2),Ffp(2),1000);
% Define compression as positive
Favector  = -Favector;
Feffvector = -Feffvector;
Fbendvector = zeros(1,length(Favector));

for i = 1:length(Feffvector)
    if TVDvector(i) < 50*39.37/12
        if Feffvector(i) < Fcsinv
            % No  buckling
            Fbendvector(i) = Favector(i);
        elseif Feffvector(i) < Fchelv
            % Sinusoidal buckling
            if Favector(i) < 0
                % Tubing is in tension
                Fbendvector(i) = Favector(i) ...
                - 0.3151*OD*rc/I*Feffvector(i).^(0.08)*(Feffvector(i)-Fcsinv).^(0.92);

            else
                % Tubing is in compression
                Fbendvector(i) = Favector(i) ...
                + 0.3151*OD*rc/I*Feffvector(i).^(0.08)*(Feffvector(i)-Fcsinv).^(0.92);
            end
        else
            % Helical buckling
            if Favector(i) < 0
                % Tubing is in tension
                Fbendvector(i) = Favector(i) - OD*rc/(4*I).*Feffvector(i);
            else
                % Tubing is in compression
                Fbendvector(i) = Favector(i) + OD*rc/(4*I).*Feffvector(i);
            end
        end
    else
        Fbendvector(i) = Favector(i);
    end
end

% Define compression as negative:
Fbendvector = -Fbendvector;

Plotting bending stress

figure(5)
plot([Fas(2) Fap(2)],[0 TVD]/12,'k--', ...
     [Ffs(2) Ffp(2)],[0 TVD]/12,'r--', ...
     Fbendvector,TVDvector,'k-.',...
     0, TVD/12+n(2),'ro', ...
     -[Fcsinv Fcsinv],[0 50*39.37]/12,'g', ...
     -[Fchelv Fchelv],[0 50*39.37]/12,'b', ...
     -Fcrsindev,TVDbuild*39.37/12,'g', ...
     -Fcrheldev,TVDbuild*39.37/12,'b', ...
     [-Fcrsinhor -Fcrsinhor],[250 269.62]*39.37/12,'g', ...
     [-Fcrhelhor -Fcrhelhor],[250 269.62]*39.37/12,'b')
ylim([0 TVD/12]);
yL = [0 TVD/12];
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xL = xlim;
line([0 0], yL,'color','black');
line(xL,[0 0],'color','black');
line(xL,[TVD/12 TVD/12],'color','black');
legend('\fontsize{16}Fa Load Case', ...
    '\fontsize{16}Feff Load Case', ...
    '\fontsize{16}Fa with Bending', ...
    'location','northwest') %, ...
%     '\fontsize{12}Fa Load Case', ...
%     '\fontsize{12}Feff Load Case', ...
%     '\fontsize{12}NSP', ...
%     '\fontsize{12}Sinusoidal buckling', ...
%     '\fontsize{12}Helical buckling', ...
%     'location','northwest')
set(gca,'YDir','reverse')
grid minor
ylabel('\fontsize{16}Depth [ft]')
yyaxis right
ylim([0 270])
line(xL,[50 50],'color','black','linestyle',':');
line(xL,[250 250],'color','black','linestyle',':');
set(gca,'YDir','reverse')
xlabel('\fontsize{16}Force [lb]')
ylabel('\fontsize{16}Depth [m]')
title('\fontsize{16}True vs. Effective Axial Force')
toc

Elapsed time is 7.038854 seconds.
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