
Exploring the navigational faceted search

Mei Jain Fung

Master of Science in Computer Science

Supervisor: Trond Aalberg, IDI

Department of Computer Science

Submission date: February 2018

Norwegian University of Science and Technology

Summary

Today we have access to a broad range of information right at our fingertips. For decades,
the technology for information retrieval has assisted humans in information seeking. While
the conventional search approaches work well in retrieving information when the user
knows what information to look for, user studies show that the user has a harder time
finding relevant information when the user wants to discover new information about a
specific topic.

Much work has been done in the library domain in the attempt to describe features and re-
lationships between different bibliographic entities, such as in the FRBR model. However,
usage of these models in real-world applications has been less systematically explored and
users still experience difficulties scanning through a long list of information. Luckily in
recent years, faceted search has become increasingly common in online information ac-
cess, including bibliographic catalogues, and more effort is being put into the design of
the user interface, addressing the weaknesses in conventional search approaches.

The thesis starts with giving the reader an introduction to theory around faceted search and
look at some successful design patterns for search applications. Further, the implementa-
tion made and the functionality will be explained on the search application BIBSURF, with
an information collection organized by the FRBR model. Finally, the researcher examines
how the different filtering strategies perform, both by analyzing use cases and perform
user studies. To conclude, the ultimate goal of this thesis is to provide future practitioners
on this topic a contribution of a usability study to explore the quality of the user interface
of search applications supporting non-professional searchers in rich information seeking
tasks.

i

Preface

My interest in web development, especially development on the client side, lead me to
choose this master project. This project has given me the opportunity to aid in designing
a user interface for a search application and to learn React js, a popular yet powerful
JavaScript library for building user interfaces.

Only in the last decade, the design of user interfaces has been user-centered focusing more
on the usability. User studies show that search applications incorporating navigation have
high success and more search applications are adapting to this trend, particularly online
bibliographic catalogues, and e-commerce. However, much more research and user studies
need to be done to be able to create powerful user interfaces to fully exploit the rich and
complex information collection available today.

Furthermore, writing best practice programs are talked and discussed a lot and the knowl-
edge is usually gained through years and years of writing programs. However, few best
practices are documented in detail. I want to use this opportunity to additionally document
my findings on best practices for developing web applications.

Starting with only basic knowledge of user interface design, HTML, CSS and JavaScript,
I am happy to have learned to adapt to learning new skills and technologies. I would like
to especially thank my supervisor, Trond Aalberg, for all the helpful advice and support
throughout the past two semesters. Further, I would like to thank my family and friends
for the constant support and thank all the people participating in this user study!

ii

Table of Contents

Summary i

Preface ii

Table of Contents iv

List of Tables v

List of Figures viii

Abbreviations ix

1 Introduction 1
1.1 Project Description . 2
1.2 Research Methodology . 3
1.3 Thesis Outline . 3

2 Background 5
2.1 The user task . 5
2.2 Exploratory search . 6
2.3 Faceted classification . 10
2.4 Faceted navigation . 10
2.5 Faceted search . 11
2.6 Search Interfaces . 11

3 Implementation and design 13
3.1 Data model . 13
3.2 Functional requirements . 16
3.3 Component tree . 18
3.4 UML . 19

3.4.1 Use Case . 19
3.4.2 Sequence diagram . 20

iii

3.5 Implementation . 22
3.5.1 React . 22
3.5.2 Create-react-app . 24
3.5.3 Axios . 25
3.5.4 React-bootstrap . 26
3.5.5 Uuid . 26

3.6 User Interface . 27
3.6.1 Form box . 29
3.6.2 Breadcrumbs . 29
3.6.3 Home page . 30

3.7 Faceted filtering . 31
3.7.1 And sub-tree selection algorithm 31
3.7.2 Conjunction and . 32
3.7.3 Disjunction or . 33
3.7.4 Andor . 34
3.7.5 Sub-tree . 35

4 Experiment 39
4.1 Preliminary test . 40
4.2 Observations . 44
4.3 Final test . 45

5 Discussion 49
5.1 Final observations . 49

5.1.1 And . 49
5.1.2 Or . 49
5.1.3 Andor . 49
5.1.4 Subtree . 50

5.2 Result scores . 51
5.3 Conclusions . 54

Bibliography 55

Appendix 59
Appendix A: UI elements . 61
Appendix B: Contract . 65

iv

List of Tables

1.1 Research Questions . 3

3.1 FRs: Search for results . 16
3.2 FRs: Refine search result by facet categories 17
3.3 JavaScript frameworks and libraries for building UIs 23
3.4 Entity type for each facet . 32

4.1 Design challenges for each filter option 40
4.2 Scenarios in preliminary test . 41
4.3 Random numbers for deciding the filter method 43
4.4 Survey questions . 43
4.5 Scenario used in final test . 47
4.6 Random numbers for deciding the order of filter method to be used 47

5.1 Scores in preliminary test . 51
5.2 Multiple choice in preliminary test . 52
5.3 Scores in final test . 53
5.4 Multiple choice in final test . 53

v

vi

List of Figures

2.1 Faceted search . 11

3.1 FRBR: Group 1 Entities and Primary Relationships 14
3.2 Display: Manifestation . 14
3.3 Display: Expression . 15
3.4 Display: Work . 15
3.5 FRBR graph of a work . 15
3.6 Component tree . 18
3.7 Use Case Diagram: Search application BIBSURF 20
3.8 Sequence Diagram: Enter a search query 21
3.9 Sequence Diagram: Choose a category to refine the results 21
3.10 Abstract system architecture . 22
3.11 JSX syntax example . 24
3.12 Code snippet: an axios’s get call . 25
3.13 UI Specialization project . 28
3.14 UI Final . 28
3.15 UI Form box for selecting filter options and categories in a facet 29
3.16 UI Breadcrumbs . 29
3.17 UI Homepage . 30
3.18 Procedural pseudo-algorithm . 31
3.19 Decomposing a FRBR graph to a set of branches 32
3.20 UI Andor display . 35
3.21 UI Categories in facets . 36
3.22 Work with the whole tree displayed . 37
3.23 Work with the sub-tree displayed . 37

4.1 UI in final test . 45
4.2 UML: Use case in final test . 46

5.1 UI disjoint categories in a facet . 50
A1 Empty query in final UI with an overview of all the available facets 61

vii

A2 Work display . 62
A3 Expression display . 63
A4 Manifestation display . 63
A5 BIBSURF UI original . 64

viii

Abbreviations

BIBSURF Discover Bibliographic Entities by Searching for
Units of Interest, Ranking and Filtering

CRA Create React App
CSS Cascading Style Sheets

DOM Document Object Model
Flamenco FLexible information Access using MEtadata in

Novel COmbinations
FR Functional Requirement

FRBR Functional Requirements for Bibliographic Records
HTML Hypertext Markup Language
HTTP HyperText Transport Protocol

HTTPS Hypertext Transfer Protocol Secure
IFLA International Federation of Library Associations and

Institutions
IR Information Retrieval
JS JavaScript

JSX JavaScript XML
JSON JavaScript Object Notation

NTNU Norges teknisk-naturvitenskapelige universitet
(Norwegian University of Science and Technology)

Q Question
RDF Resource Description Framework

RF Relevance Feedback
RQ Research Question
UI User interface

UML Unified Modeling Language
uuid Universally Unique Identifier

url Uniform Resource Locator
UX User Experience

WWW/ web World Wide Web
XML Extensible Markup Language

ix

x

Chapter 1
Introduction

As digital information is increasing on the World Wide Web (WWW/ Web), search systems
need to support more effective searches in aiding end users to rapidly find the information
they are looking for. Search applications from different domains are now focusing more
on the user experience (UX) and design. Today, users expect search interfaces to provide
some degree of filtering on the collection of items. Just to give some examples, the domain
of e-commerce, filtering mechanisms have become de facto standard providing filters for
price, product description, rating, and brand. Digital libraries have also benefited from the
rich data structure that is available in the information collection, providing filters for pub-
lication date, type of media and roles like author and translators. Lastly, the area of video
creation has exploded on the web in the last decade. Looking at the video-sharing website,
YouTube1, statistics from 2016 show that 300 hours of video are uploaded to YouTube
every minute and 4,950,000,000 videos are viewed on YouTube everyday (StatisticBrain,
2016). Search application for video collections can, for example, provide filters for genre,
upload date, and video duration, from companies like Netflix2, Amazon3 and YouTube.

One objective of information retrieval systems is to help the user understand the options
and content of the database the user is searching. However, (Ercegovac, 2006) sites that
user studies point out that end users face problems when searching in online library cata-
logs particularly when scanning through long displays. Fortunately, usability study shows
that search interfaces supporting both keyword search and browsing of the retrieved result
set have high success for search in relatively large information collections [(English et al.,
2002)]. In addition, utilizing the consistency in design across different websites minimizes
the learning time, and users immediately know how to interact with the web page. Since
consistency in UI design increases the familiarity and predictability, which increases the
usability.

1https://www.youtube.com/
2https://www.netflix.com/
3https://www.primevideo.com/

1

Chapter 1. Introduction

The International Federation of Library Associations and Institutions4 (IFLA), is an inter-
national organization, promoting a high standard of provision and delivery of library and
information services. The Functional Requirements for Bibliographic Records (FRBR)
is a conceptual, entity-relationship model developed by the IFLA Study Group as a gen-
eralized view of the bibliographic universe (IFLA, 1998). FRBR provides a new set of
concepts with an update of terminologies and relationships around bibliographic entities
as an opportunity to re-examine existing cataloging rules and principles. IFLA together
with other interested parties encourages the use and evolution of the FRBR model in bibli-
ographic search applications to facilitate international standardization and to reduce costs
for cataloguing on a global scale (Tillett, 2003).

Improving search interface, particularly bibliographic catalogues, would be useful such
as in technical, environmental, earth sciences, pharmaceutical and biomedical literature
where resources are likely to evolve over a longer period of time within large projects,
where multidisciplinary teams working together, and among distributed laboratories. In
addition, to aid people, who do not specialize in search or people with only basic knowl-
edge of how to use computers, in using digital search systems.

This master thesis is a continuation from the previous course, TDT4501 Computer Sci-
ence, Specialization Project, Spring 2017 (Fung, 2017) where the researcher implemented
the client side using React on the search application BIBSURF, a search system for ranking
and filtering of bibliographic RDF data, developed by researchers at NTNU, Trondheim,
and University of Ljubljana, Slovenia (Aalberg et al., 2016). The master thesis contin-
ues with a focus on the usability of filters in a search application with data following the
FRBR model. The researcher has in addition implemented the support for different fil-
tering strategies for conjunction (”and”), disjunction (”or”), a combination of ”and” and
”or” and different views for displaying the information collection formed with the FRBR
model.

1.1 Project Description
To summarize, the objective of this project is:

• implement the client side of BIBSURF, using the React js library;

• design and implement strategies for refinement of search results with ”and”, ”or”
and ”andor”;

• develop an approach to view the entire hierarchy tree of FRBR entities or only
branches of the tree;

• and conduct a user study to explore the interpretation of the filtering mechanism
with a novel design approach from the perspective of end users.

Table 1.1, specifies the research questions for this thesis.

4https://www.ifla.org/

2

https://www.ifla.org/

1.2 Research Methodology

Id Description
RQ-1 How can we implement a dynamic user interface for search application

with data formed with the FRBR model?
RQ-2 How can we best present categories to the end user in a neat and intuitively

way?
RQ-2.1 Does the user understand the design associated with the categories?

(Categories are attached with two numbers, the former representing the
total number of results matching the categories and the latter with the total
number of available results that matches the categories.)

RQ-3 Does the user understand the refined result when categories are applied to
the search?

Table 1.1: Research Questions

1.2 Research Methodology
The project is divided into three main parts: a literature study, an implementation part, and
a user study.

The literature study started with exploring relevant theory and research studies around the
topic of this master thesis. The bibliography of books, conference documents and journal
articles from the master thesis in Spring 2017 by Dana Music, a study analyzing strategies
and techniques for filtering of search results (Music, 2017), was used as a starting point of
the literature study.

The implementation followed the guidelines for developing a React application: breaking
the UI into a component hierarchy to create simple, reusable and testable views. In addi-
tion, from the literature study, a set of design approaches was implemented following a set
of design principles.

Lastly, the user study followed the user study conducted Spring 2017 (Aalberg et al., 2017)
and the user tests were analyzed with a combination of observations during tests, and users’
reflections from surveys and informal interviews after the tests.

1.3 Thesis Outline
Chapter 2: Background presents relevant theory around faced search.

Chapter 3: Implementation and design explains the structure of BIBSURF’s informa-
tion collection, the system’s functionality, and implementation.

Chapter 4: Experiment describes in detail the test plan used for conducting a user study
on the implemented system.

Chapter 5: Discussion presents the end results of the user study, including conclusions.

3

Chapter 1. Introduction

4

Chapter 2
Background

This chapter aims to present relevant theory around the faceted search for supporting open-
ended and knowledge discovery tasks. Section 2.1 presents a general grouping of user
tasks when pursuing answers using search interfaces and section 2.2 continues in explain-
ing what is meant by exploratory search. Section 2.3 and 2.4 explains the key concepts of
faceted classification and faceted navigation before diving into the topic of faceted search
in section 2.5. Finally, section 2.6 wraps the chapter by presenting some design principles
for building effective search interfaces.

2.1 The user task
Information can be found everywhere and the demand for robust search applications are
growing from researchers and practitioners. What is a good user interface (UI) for search,
depends highly on the type of answers that the users are pursuing (Hearst et al., 2002).
Generally, user tasks can be divided into three categories:

1. Fact-finding: e.g. What is the capital of China?

2. Open-ended: e.g. Find a good crime novel to read.

3. Text mining1/ knowledge discovery: e.g. What are some promising untried treat-
ments for Alzheimers Disease?

Tasks like finding the capital of a country, only requests for short and precise answers.
Standard search systems let the user do simple lookups with keywords (e.g. ”capital
China”) or directly with a natural language question (e.g. ”What is the capital of China?”).

1https://www.ibm.com/support/knowledgecenter/en/SS3RA7_17.1.0/ta_guide_
ddita/textmining/shared_entities/tm_intro_tm_defined.html accessed: 6. February
2018. Text mining is the process of analyzing collections of textual materials in order to capture key concepts
and themes and uncover hidden relationships and trends without requiring that you know the precise words or
terms that authors have used to express those concepts.

5

https://www.ibm.com/support/knowledgecenter/en/SS3RA7_17.1.0/ta_guide_ddita/textmining/shared_entities/tm_intro_tm_defined.html
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_17.1.0/ta_guide_ddita/textmining/shared_entities/tm_intro_tm_defined.html

Chapter 2. Background

Open-ended tasks like finding a book to read typically require some browsing in the avail-
able collection when the user does not have any specific in mind. Considering the men-
tioned task of finding a book to read, a user normally wants to look through books in a
specific genre, from a specific author, or books with the highest review ratings. Further,
the user may change the task criteria during the search process, for example, to start look-
ing for popular books or books in a different genre if the user notices interesting books
from a well-known author or gets inspired by positive or negative book reviews from other
users. Search systems should, therefore, support browsing on a collection with specific
attributes, and support a dynamic exploration flow without any interruptions. Lastly, when
discovering answers to questions like finding treatments for diseases, it typically involves
the ability of tracking trails of reasoning, performing comparisons, summarizing, and pro-
cessing the information in detail.

The information retrieval (IR) research community has for decades aided with techniques
and methods for manipulating, storing, retrieving and distributing information. Traditional
IR systems usually provide a textual query or direct search and when queries are carefully
specified, the systems returns back a ranked list of precise results. This model has for a
long time dominated database management systems and is used in major search engines
provided by companies like Google2, Yahoo!3 and Microsoft4. These systems work well
for tasks like fact-finding or question-answering scenarios where the user usually have a
clue that the information exists (White and Roth, 2009).

However, traditional IR systems are not sufficient for finding answers to open-ended or
knowledge discovery tasks. Luckily, more and more systems are adapting to interfaces that
support what is called ”exploratory search”. Both open-ended and knowledge discovery
tasks share the search and the browsing component that are required to support exploratory
search. However, an analysis of search systems fully capable of supporting knowledge
discovery tasks is out of scope for this master thesis. This chapter will, therefore, focus on
search systems aiding users in answering open-ended tasks, where users execute what is
called ”exploratory search”.

2.2 Exploratory search

With the vast amount of information highly accessible to users, search applications should
aid users in solving complex problems where the user is uncertain of whether the infor-
mation being sought exists. Exploratory search can be defined as information-seeking
problems that are open-ended, persistent and multifaceted, where the process typically
is opportunistic, with multiple iterations and by using multiple tactics before achieving
a final goal (White and Roth, 2009). An exploratory search may require days, weeks or
even months, where users repeat the process of navigating through relevant documents in
a collection, exploiting the information, and making decisions about their next steps. Ex-

2https://www.google.com
3https://www.yahoo.com
4https://www.bing.com

6

2.2 Exploratory search

ploratory search can, therefore, have a significant impact on a user’s personal development
and requires capable search applications that support users needs.

With the growth of digital information on the web, search applications face several chal-
lenges. The following list is some challenges that are often mentioned in literature:

• Zero-hit: too specific or ill-formed search queries entered by the user can lead the
system to return an empty result set. Shneiderman states that up to 30% of searches
at some services have zero-hit outcomes (Shneiderman et al., 1997).

• Information overload: on the contrary if a vague query is performed or searches on
an information rich-topic, the system can return back a huge number of hits, leading
to distractions where users overlook the relevant information displayed among the
result set.

• Difficulty forming queries with Boolean expressions: online bibliographic sys-
tems today support Boolean queries, an example is NTNU’s university library5 in
the advanced search, users can form queries with the Boolean operators for ”and”,
”or” and ”not”. Unfortunately, (Hearst, 1999) sites that user studies show that users
have difficulties in forming Boolean queries and often misjudges the retrieved re-
sults. Users with limited knowledge of Boolean syntax may be confused by the
semantics of the natural language. As an illustration, a query for ”chicken and pig”
would indicate documents for topics for chicken and pig rather than documents for
both the topics at the same time, while a query for ”chicken or pig” would indicate
documents where the topics are separated.

• Difficulty using correct terminology: search queries are build from users exist-
ing knowledge, and users may not recall or know the specific terminologies used
in literature. Besides, manual query formulation or reformulation process is an in-
tellectual task where end users find it difficult to formulate queries relevant to their
information needs.

• Diverse user tasks: as the definition of exploratory search states, users usually
are uncertain of what the end goal might be or what information is needed. Systems
should, therefore, support exploratory search at the same time support rapid lookups
when users know what to look for.

• User feeling lost or overwhelmed: exposing the user to excessive or disorganized
information may distract the user from overlooking the relevant information and
cause confusion about what the user is suppose to do next.

In the process of exploratory search, search applications should aid the end users with for-
mulating their queries and clarifying any vague information needs, learn from the existing
information collection, investigate solutions to the information problems and help keep
track of the progress of their search. To guide the development of future search applica-
tions in solving the mentioned challenges, (White and Roth, 2009) have collected a list of
features that must present to support exploratory search activities:

5https://www.ntnu.no/ub

7

Chapter 2. Background

1. Support querying and rapid query refinement
As users typically have difficulties forming their own search queries, systems should
therefore help users formulating and refining queries in real-time. Some common
techniques in the IR community includes relevance feedback (RB), query sugges-
tion and query completion. In relevance feedback, the user has the possibility to give
implicit or explicit feedback on the relevance of the information retrieved in user’s
initial search. The feedback is then further used by the system to retrieve relevant
queries or documents to the user based on the previous information that was rele-
vant to the user (Salton and Buckley, 1990). Query suggestion gives suggestions of
queries to use after user’s initial search, based on the search history of other users.
And query completion provides query suggestions, most commonly appearing as a
drop-down below the search box, when the user starts typing, to support the user in
building their query.

2. Offer facets and metadata-based result filtering
Users usually express a desire for search interfaces to organize the search results
into meaningful groups, to help the users get an overview of the results and to help
with deciding what to do next. User study also show that users even changes their
search habits when search interfaces provides structural groupings of the result set
(Kules and Shneiderman, 2008). It is possible to group a collection of informa-
tion using different methods, and many open research questions discusses how to
generate useful groupings. Two popular methods are clustering and faceted catego-
rization. Clustering groups items according to some measure of similarity (Hearst,
2006). For example in document clustering, similarity is computed by common
words and phrases. Clustering is an automated process and can easily be applied
to text collections. However, some weaknesses of clustering includes the lack of
predictability and difficulty combining multiple dimensions in a meaningful man-
ner or labeling the groupings. Faceted categorization defines a set of meaningful
categories hierarchies describing specific characteristic that are assigned to items.
A collection can therefore be easily grouped together across multiple dimensions.
The biggest drawback with faceted categorizations, is that the category hierarchies
is build by hand and assignment of categories to items can only be automated with a
certain accuracy. Faceted categorization will be discussed more later in this chapter.

3. Leverage search context
As mentioned, the user queries are not well defined according to their information
needs. Systems should therefore collect as much information about the user and
the task context, either asking the user explicit to rank useful queries or implicitly
monitoring user’s interaction behavior, to resolve any query ambiguity (e.g. a query
for ”Apple” may mean the technology company or simply a fruit).

4. Offer visualizations to support insight and decision making
Humans are more aware of images and visual information (Hearst, 1999). For exam-
ple, consider the contrast of describing the feature of a human face versus an image
of the person or analyzing a table of numbers versus the same information displayed
as a scatter plot. Graphical visualization of the result set can therefore help users

8

2.2 Exploratory search

understand and analyze the available data and to support hypothesis generation and
trend spotting.

5. Support learning and understanding
Systems should present information to the user depending on user’s current knowl-
edge and skill level to support learning and understanding (two important aspects
of exploratory search) to increase users confidence and feeling in control during
problem solving.

6. Facilitate collaboration
Different people have different perspectives, experiences, expertise, and vocabulary.
And collaboration between multiple users to solve a common problem task can be
more effective than searching information individually. Systems should allow for
multiple users to compose queries or examine search results. In e-commerce, rec-
ommendation methods are used a lot to recommend items that other users also have
purchased and liked.

7. Offer histories, workspaces, and progress updates
Information searching is an iterative process where it typically involves examining
multiple information sources and perform multiple search sessions that users have
to keep track on. Search systems should therefore offer structured user interaction
records, ”workspaces” and progression status, to support the users in revisiting re-
sults efficiently, to help organize their work progress, and keep track on where the
users are located in the search process. One example of a history mechanism rele-
vant for this study, is the use of ”breadcrumbs”. Breadcrumbs are usually displayed
as a button or a link reflecting the sequence of links or searches the user have clicked
or searched on since the beginning of the search process. From its functionality, the
name has been named after Grimm’s fairy tale of Hansel and Gretel where Hansel
leaves a trail of breadcrumbs to remember their path. (Nielsen, 2007) states that user
testing show many benefits and no downsides to breadcrumbs.

8. Support task management
Allowing for persistent storage of session state, including queries used, document
viewed and marked and paths followed, to be retrieved in later sessions, help users
to investigate multiple sessions simultaneously and rediscover previous information.

With the rapid evolution in technology and rich information collections, users demand
more robust search applications to help with solving exploratory problem tasks. Further,
in this chapter, the second feature presented in White’s and Roth’s list of search application
features, (”offer facets and metadata-based result filtering”), and the faceted search will be
described in more detail, as this thesis focuses on the use of facet categories to filter on a
set of results.

9

Chapter 2. Background

2.3 Faceted classification
Before being able to search effectively in a collection of information, the information
needs to be organized in a structured and meaningful manner. One method, as mentioned,
is faceted classification. A short definition is that a facet, also called dimension or feature
type, is an orthogonal set of categories or a category hierarchy relevant to the collection,
that is used as a way to classify information (Tunkelang, 2009). To give some examples in
the context of bibliographic library collections, some meaningful facets can be ”Author”,
”Form of work” and ”Language”. Each facet, in turn, contains a set of values or labels,
also called categories, that will be used as the preferred terminology throughout this report,
like ”Novel”, ”Short story” and ”TV adaptation” in the facet for ”Form of work”.

2.4 Faceted navigation
When a set of faceted hierarchies are defined and categories assigned to items in a col-
lection, the resulting interface is known as faceted navigation. Navigation in the context
of facets includes the act of viewing or navigating through an information collection with
specific attributes or characteristics as a result of the categorization of different facets.
Creating queries in an information collection that a user has limited knowledge about,
can be challenging. The option to navigate can, in this case, help users get an overview
of the information collection available and promote new ideas from the exposure of the
information content.

The objective of faceted interfaces is to allow users with flexible navigation, provide pre-
views, organize results in a meaningful way, and support both the expansion and refine-
ment of the search (White and Roth, 2009). Much of the success of faceted navigation
derives from the early work of query preview, a method for supporting dynamic querying
where a visual display of the available results for the current query are displayed to the
user in real time while the user is forming a search query (Plaisant et al., 1999). Faceted
navigation has adapted to this key feature of giving a preview of the total available results
for each category. This is usually accomplished by presenting a numeric value wrapped
in parentheses on the right side of each category label to specify the total results matching
each category. Letting the user know the result size of category collections, can support
user’s decision making of the next steps, and avoid empty result set as this technique of
faceted navigation only lets the user choose within categories with results available.

Faced navigation systems as discussed helps end users in getting an overview of the in-
formation collection available, provides a fast exploration of relevant information to user
needs and avoids the zero-hit paradigm. However, developing faceted navigation systems
comes with a cost. Much effort is needed in designing and deciding which facets are the
most meaningful for a collection, how should the facets be displayed to the user without
overwhelming or cause confusion to the user and in addition, both existing and future
contents must have metadata applied consistently for each facet. Furthermore, the faceted
navigation adds interaction cost by introducing the users with multiple options to compre-
hend and manipulate.

10

2.5 Faceted search

2.5 Faceted search
Finally, the key topic for this master thesis is presented in this section. This chapter has
mentioned that traditional search systems, often only provides a simple search field for the
user to enter. Further, a more powerful mechanism of faceted navigation was presented
letting the user easily and rapidly traverse through a large collection of information with
specified characteristics. Faceted search is, simply put, a search interface supporting both
free text search and faceted navigation, figure 2.1. Faceted search inherits the aspect of
allowing the user to explore the available collection, avoiding zero-hit and at the same time
allowing the users to add additional queries when the users have a more confident idea of
their information needs to retrieve a smaller collection with a higher precision.

Figure 2.1: Faceted search

2.6 Search Interfaces
An extensive selection of books and research materials can be found describing the algo-
rithms behind search engines and information retrieval systems. Only in the last decade,
computer scientist and nonprofessionals have come to realization of the enormous impor-
tance of usability and UI design (Hearst, 2009). Shneiderman, an expert in the field of
effective human-computer interface design, also believes that improving the search design
can solve most of the challenges mentioned in the beginning of this section, for instance
leading to a greater number of positive outcomes, shortening the learning times, improving
user effectiveness, reducing errors, increasing the likelihood for the user to keep on using
the system, and raising user satisfaction (Shneiderman et al., 1997).

The topic of UI design raises, however, a new set of challenges. The classical challenge in
designing UIs is considering the diversity of end users. Users using a search application
for the first time needs time to get an overview and understanding of all the possible user
interactions (buttons, inputs, information, etc.), infrequent users need structure, familiar
landmarks, reversibility, and safety during exploration, while experienced users want more
shortcuts to speed repeated tasks.

In addition, in many cases when users are looking for information, the information is to
be used in completing a more complex task. Information searching requires, therefore,

11

Chapter 2. Background

a high level of concentration of the users and any distractions or complexity in the UI
should be avoided. On the other hand, search applications have developed more complex
functionality to exploit the rich and complex information. Consequently, UI designers
face the challenges in creating simple and intuitive UI, that at the same time does not
compromise the full potential of the implemented functionality.

All search interfaces can be improved to have decent or good UIs. However, inconsistency
across different search interfaces can cause slower user performance, uncertainty, mistaken
assumptions, and in worst case failures to find relevant documents. With the growing
topic of UI design, Shneiderman has offered design principles for building effective search
interfaces:

• Strive for consistency: using the same terminology, instructions, layout, color, and
fonts across the search interface increases the user performance and satisfaction.

• Provide shortcuts skilled users: users who know exactly what to look for should
be able to directly retrieve back the result with few clicks.

• Offer informative feedback: the search application should inform the user how
to search for information, what happens after the search and why the system act
accordingly, to help users better understand its function and to learn to use the search
application as efficiently as possible.

• Design for closure: allowing users to make multiple choices can be disorienting.
The system should, therefore, let the user know clearly when they have reached an
end of the searching process.

• Offer simple error handling: error messages should be specific, constructive, and
no more technical than necessary.

• Support user control: most users prefer a sense of control, and systems should let
users initiate action, monitor progress of long searches, to always let the user feel in
control.

• Reduce short-term memory load: during users search process, the users’ goal may
change. Instead of letting the users themselves keep track of every step of the search
process, the system should provide mechanisms to reduce the short-term memory
load to help users focus more on the task at hand. Examples are offering histories to
permit easy reversal of action and presenting all vital information on the same page,
preventing the need for sliders.

12

Chapter 3
Implementation and design

This chapter aims to present the implemented system with a description of the system’s
functionality, the technologies used and design choices made for this project. Section
3.1 starts with an introduction to the data structure in BIBSURF’s information collection.
Section 3.2 and 3.3 explains the functional requirements for BIBSURF and presents in
more detail, the communication flow from the perspective of an end user in a use case
diagram and the flow from the perspective of the system in sequence diagrams. Section
3.4 describes the implemented system and the technologies used. Finally, the filtering
algorithm along with the design are described in section 3.5.

3.1 Data model

This section aims to explain the FRBR’s Group 1 entities: item, manifestation, expression,
and work where the BIBSURF’s information collection is formed after. Figure 3.1 shows
a diagram of the relationship between the different entities, where the image is taken from
the FRBR’s final rapport (IFLA, 1998). The diagram indicates that a work is realized
through one or more (expressed with a double arrow in diagram) than one expression and
in turn, an expression is the realization of one and only one (single arrow) work. An
expression may be embodied in one or more than one manifestation and so on.

The FRBR considers a manifestation as the physical form that bears the same intellectual
or artistic content and physical features of a given work. Whereas an item is a single exem-
plar of a manifestation. Figure 3.2 shows how the textual information in a manifestation
is displayed in the implemented system.

An expression is the intellectual or artistic realization of a work in the form of alpha-
numeric, musical, or choreographic notation, sound, image, object, movement, etc., or any
combination of forms. Figure 3.3 shows the display of an expression listing the manifes-
tations that embody the expression in the single tab named Editions.

13

Chapter 3. Implementation and design

Lastly, a work is the distinct intellectual or artistic creation. Figure 3.4 shows the display
of a work where each expression that is a realization of the work, is displayed in its own
tab. Figure 3.5 displays the work as a tree structure.

To put everything in perspective with an example, consider Shakespeare’s Romeo and
Juliet. The example is a representation of a work. A publication of the work in the form
of a novel is the expression, and the different editions of the novel are the manifestations.
One exemplar of an actual physical book is the item.

Figure 3.1: FRBR: Group 1 Entities and Primary Relationships

Figure 3.2: Display: Manifestation

14

3.1 Data model

Figure 3.3: Display: Expression

Figure 3.4: Display: Work

Figure 3.5: FRBR graph of a work

15

Chapter 3. Implementation and design

3.2 Functional requirements
Table 3.1 and 3.2, specifies the functional requirements for BIBSURF:

Id Description
FR1 The search field lets the user enter one or more terms or phrases to do a new

search on the system when ”Submit” button or enter key is clicked and the
categories already selected from a previews search gets reset.

FR1.1 A ”breadcrumb” button is created representing the query for the search.
FR1.2 Facets with categories are updated to let the user refine the result set with a

set of categories.
FR1.3 The categories in a facet is ordered in the by highest total results and

alphabetically by name if two or more categories have the same total
available results.

FR11 Only the first two facets are open.
FR1.4 Maximum 25 results units are retrieved back to the user.
FR1.5 The first tab of the two first results units are open for expression or work

display.
FR1.6 A ”Next” button is created at the bottom of the results to get the next 25

results if the search has more result units.
FR2 User can choose matching criteria for match, display, ranking and collection

by clicking on the options from the dropdown boxes, and the search gets
reset.

FR3 When a user clicks on a ”breadcrumb”, the query is removed from the search
along with the ”breadcrumb” and the search gets reset.

FR4 User can view the RDF data in XML format using the RDF link, and view
the graphical visualization of the RDF data using the graph link for each
result unit.

FR5 The expression view includes an ”Edition” tab to view the list of
manifestations of the expression.

FR6 The work view includes multiple tabs of expressions of the work, grouped
by type and language.

FR7 Expressions or works includes an additional ”Related works” tabs if the
result unit includes related works.

FR8 The user can view a list of contents when ”show more” button is clicked in
manifestations.

Table 3.1: FRs: Search for results

16

3.2 Functional requirements

Id Description
FR9 User can view or hide the categories in a facet by clicking on the ”+”/”-”

button.
FR10 A facet shows a maximum of 6 categories and user can view and hide the

rest of the categories by clicking on the ”more”/”less” button.
FR11 User can select a category to refine the search result by clicking on the

checkbox and a new search is performed.
FR12 User can remove all selected categories by clicking on the ”Clear all filters”

button placed at the top of the facets.
FR13 Search performed with AND logic retrieves results matching all the selected

categories (conjunction/ ”and” between all the categories, e.g. category1 and
category2 and category3).

FR14 OR logic retrieves results matching at least one of the selected categories
(disjunction/ ”or” between all the categories, e.g. category1 or category2 or
category3).

FR15 ANDOR logic retrieves results matching at least one of the selected
categories in each of the facets with categories selected (”or” between
categories in the same facet and ”and” between facets, e.g. category1 and
(category2 or category3).

FR15.1 Only one facet where the first category is selected by the user, let the user
select multiple categories.

FR15.2 When only one category is selected and the user selects the second category
from a different facet, then the facet where the second category got selected,
lets the user select multiple categories.

FR16 The expression and work display have the option to view the ”sub-tree” of
the results and only the parts of the expression or work that matches the
selected categories are shown.

FR17 The first number after each category shows the total hit of the category for a
search.

FR18 When categories are selected, each category may include a second number
with a ”+” symbol and parentheses around used in ”or” and ”andor” option
to show the total result available but not shown in the result set.

FR19 For ”andor” option when categories are selected in multiple facets,
categories shows the first number and only a ”+” symbol in parentheses
without any number.

FR20 For each category, the category text is set to a maximum of 26 letters to fit
into a single line.

Table 3.2: FRs: Refine search result by facet categories

17

Chapter 3. Implementation and design

3.3 Component tree
Figure 3.6 presents all the hierarchy structure of the components or JavaScript classes
created for this project.

Figure 3.6: Component tree

• App: the App is the container component fetching all the data from the server, ma-
nipulates and stores the data in states and receives query input and category check-
box, dropdown and button changes and handles them accordingly.

• Header: displays the title of the application.

• Querybox: receives user input and sends it back to the App component to perform
a search and in addition displays the query input as breadcrumbs.

• Dropdownbox: the App creates four Dropdownbox components to display all the
options for a match, ranking, display and collection as the query parameters to send
back the App component.

• Results: passes the data from the App component to its child components Cate-
gorygroup components and a Resultlist component, receives events from its child

18

3.4 UML

component and send it back to the parent App component to handle, displays the
category crumbs and in addition displays the view of the form box for choosing the
filtering option on the search result.

• Categorygroup: or ”facet”, displays all the available categories in the respective
facet and sends events to its parent if user check or unchecks the checkboxes of the
categories.

• Resultlist: displays the results with the Manifestation, Expression, or Work compo-
nent(s) according to the display type.

• Manifestation: displays textual information for a manifestation and includes an
expandable list of contents.

• Expression: displays two tabs, with Manifestation component(s) in the first tab and
a RelatedWorks component in the second tab if the expression has any related works
associated with it.

• Work: displays information in multiple tabs where each expression with a unique
type and language property are grouped in one tab displaying an Expression compo-
nent and an additional RelatedWorks component as a tab if the work has any related
works.

• RelatedWorks: displays a list of related works.

• Title: the Manifestation, Expression, and Work components display a Title compo-
nent as a part of the heading displaying the names of persons and their respective
titles or roles (e.g. director, actor, author, etc.).

3.4 UML

Unified Modeling Language (UML) is a standard way to visualize the design of a system
with different abstractions. A visualization can be used to bring out the bigger picture by
hiding or masking details or to focus more on different aspects of the system.

3.4.1 Use Case

The use case diagram in figure 3.7 shows how the end user can interact with the system.
From the home page, the user is presented with a single search field and the only inter-
action with the system is to add a query to perform a search. After a search, the user is
presented with a list of the results. From this point on the user can choose to remove the
existing search query, change the search criteria, including the change of display, match
type, ranking, collection, filter option and filter with sub-tree, and lastly, adding categories
to the search to refine the result set.

19

Chapter 3. Implementation and design

Figure 3.7: Use Case Diagram: Search application BIBSURF

3.4.2 Sequence diagram
The sequence diagrams show the interaction flow on the client side.

Figure 3.8 shows the sequence diagram when a user enters a query. When the user enters
the query, the child component sends the query up to the parent component App. The App
component handles the query and calls a get request to the server. When the response is
returned back to the App component, it then sets the returned results as the new state by
calling setState(). After the state is updated, the new state is passed down to the child
component Results and further sends the results to its child component Resultlist which
triggers a render to update the view. Now the user can view the results of the search.

The sequence diagram in figure 3.9 follows the same flow where the child component
reads the user interaction, sends data to the root component App to handle, the App com-
ponent calls a request, updates the state when the response is returned back and sends the
new states to the child component to update the view.

20

3.4 UML

Figure 3.8: Sequence Diagram: Enter a search query

Figure 3.9: Sequence Diagram: Choose a category to refine the results

21

Chapter 3. Implementation and design

3.5 Implementation
In order to keep track of when and what changes have been made and allowing for the easy
undoing of changes, the open source version control system, Git1, was used. A repository
was made and uploaded to Github2, a web-based hosting service. The source code can be
found using this link: https://github.com/trondaal/bibsurf3.

Figure 3.10 shows an abstract system architecture of the BIBSURF application, using
eXist, an open source native XML database, at the server side, React js with its local state
management system at the client side and axios to fetch data from the server to the client
side. All development was developed using the text editor Atom4.

Figure 3.10: Abstract system architecture

3.5.1 React
React js5 is a JavaScript (JS) library for building interactive user interfaces for web, mobile
and desktop platforms. React has in recent years grown significantly in popularity and are
used by several big companies6 like Facebook7, Instagram8 and Airbnb9. React only deals
with the view layer and additional libraries needs to be used to handle things such as data
flow, routing, authentication and etc.

1https://git-scm.com/
2https://github.com/
3The source code was published here to be available after the student has graduated
4https://atom.io/
5https://reactjs.org/
6https://github.com/facebook/react/wiki/Sites-Using-React
7https://www.facebook.com/
8https://www.instagram.com/
9https://www.airbnb.com/

22

https://github.com/trondaal/bibsurf
https://git-scm.com/
https://github.com/
https://atom.io/
https://reactjs.org/
https://github.com/facebook/react/wiki/Sites-Using-React
https://www.facebook.com/
https://www.instagram.com/
https://www.airbnb.com/

3.5 Implementation

From the specialization project (Fung, 2017), a comparison of the framework Angular10

and the libraries jQuery11 and React, was made to propose a suitable structure for building
the client side of the search application, BIBSURF. To summarize the choice for using Re-
act, was based on the lightweight library that supported building a UI that could achieved
the functional requirements for this system, at the same time allowing for scalability for
future development. React has additionally a well-written documentation and a growing
community for collaboration and support. Table 3.3 shows a comparison between the
framework and libraries:

React JQuery Angular
License BSD MIT MIT
Language JSX JavaScript JavaScript
Data binding One-way One-way Two-way
DOM Virtual Regular Regular

Component based X x X

Design for testability x x X

Templating directives x x X

Form validation x x X
Routing x x X

Learning curve Low Low High

Table 3.3: JavaScript frameworks and libraries for building UIs

The fundamental concepts of React includes building components, use of states, props
and PropTypes and the use of a virtual Document Object Model (DOM). Components are
basically a JS class with the render method to create the view for the user by outputting
HTML-content, which is implemented using JavaScript XML (JSX) or JS code. JSX is
simply a JS extension incorporating HTML-like syntax elements. Figure 3.1112 taken
from reactjs.org shows an example of a variable declaration with a JSX element. States
in React’s local storage. To change states, the asynchronous method setState() is used,
and a re-render is triggered. And this.state is used for accessing the data. Data passed
from a parent component to a child component is passed with props. PropType in React
is used for type checking, thus for each component, it can check the expected props it
will receive. This can help catching bugs in the system, by requiring for specific props
using .isRequired attribute. Lastly, the HTML DOM is a mechanism for presenting and
interacting with the view presented to the user. Elements of HTML become nodes in the
DOM, and dynamic changes on the contents of a page is done by manipulating the DOM,
usually done with the use of JavaScript. The virtual DOM is a virtual representation of
a DOM object, in other words, a copy of the real DOM. Virtual DOM cannot change the
content on a page but is much faster to update than the regular DOM. React uses the virtual

10https://angularjs.org/
11https://jquery.com/
12https://reactjs.org/docs/introducing-jsx.html

23

https://angularjs.org/
https://jquery.com/
https://reactjs.org/docs/introducing-jsx.html

Chapter 3. Implementation and design

DOM, and whenever a re-render is triggered, the virtual DOM gets updated. Now React
can a do a ”diff” computation to compare the last virtual DOM with the updated one, React
can then find the exact virtual DOM elements that have been changed and can update only
those changes to the regular or ”real” DOM to update the content of the page. Using the
virtual DOM to find out what has changed before updating the changes to the DOM, is
much faster than doing DOM manipulation directly on the DOM.

Figure 3.11: JSX syntax example

React components can be categorized into two categories: containers/stateful components
and stateless components. Stateless components simply have one task to display data
received from its parent React component. Containers, on the other hand, are the ones
doing the work of fetching data from external sources, feed data it to its child components
and receive input and events to initiate actions. The components implemented in this
project is structured in a hierarchy with one container component, App, as the root node.
Figure 3.6 explained earlier in this chapter summarizes all the components created for this
project.

3.5.2 Create-react-app
This project uses the module create-react-app13 (CRA), a starter project developed by
Facebook that lets developers start developing React applications without needing to set
up configuration. The advantages of using this package are that it does not acquire any
time-consuming configurations setup from the developer before creating a running React
application in a couple of minutes. But in turn, it does not support flexible customizing
of the configurations, in other words, it does not allow the developer to configure some
additional dependencies. The main tools used in CRA are:

• Webpack: a bundler tool to collect all the code and dependencies in one JavaScript
file.

• Babel: used to compile ES6, a newer JavaScript update, to work with older browsers.

13https://github.com/facebook/create-react-app Support for building single-page React
applications, and offering a modern build setup with no configuration.

24

https://github.com/facebook/create-react-app

3.5 Implementation

3.5.3 Axios
Axios’14 GET method was used to fetch the results from the server. The method accepts
a url and optionally some specified parameters. The query is constructed by the terms
or phrases from user input, separated by a space. And the other parameters are from the
selected options in the Dropdown components. Figure 3.12 shows an example of a request
for getting the first 25 results:

Figure 3.12: Code snippet: an axios’s get call

The response is a JSON object, mapping a value for next, results, categories and roles, and
are manipulated and stored on the client side as states:

• next: the url to get the next 25 hits.

• results: an array list of the results of the first 25 hits.

• categories: an object including all the categories and their respective count of the
total result.

• roles: an object including all the roles and their respective count of the total result.
14https://www.npmjs.com/package/axios, A promise based HTTP client for the browser and

node.js

25

https://www.npmjs.com/package/axios

Chapter 3. Implementation and design

3.5.4 React-bootstrap
The BIBSURF UI, originally used jQuery UI15 elements to build parts of the UI. However,
the UI showed some incompatibility when the UI was re-written in React-components.
Therefore the React-Bootstrap16 framework was used to build some of the application’s
UI elements as the researcher had worked with the Bootstrap17 library before. The project
uses the following React-bootstrap components: Button, FormControl, Well, Panel, Col-
lapse and Col. The FormControl is used to create the input field for query search and the
dropdown boxes for the user to select the query options. React-Boostrap has a Tab com-
ponent available, however, it was not possible to hide the tab contents so one tab needs
to be open initially. For that reason, it was decided to create a custom tab feature for this
project since the React-bootstraps’ Tab component did not meet the needs of this project.
To emulate the tabbed feature, the Button component was used to represent a tab, the Col-
lapse component was used to view the tab information and lastly, the Panel was used to
put the all the content with basic border and padding. In addition, a new state value ac-
tiveTab was added, storing the currently active tab to get the correct information to show
in the Collapse component, and a second state open to decide when to open and close the
Collapse component. When the user clicks on the tab which is currently the active tab, the
information in the Collapse component will be hidden (state open set to false), or if the
user clicked on a tab that is not active the information will be changed accordingly (state
open set to true if it was false). Lastly, the Col component is React-bootstrap’s grid system
for placement of responsive elements and this project uses Col to create a neat placement
of the search input field and submit button on the opening home page.

3.5.5 Uuid
Uuid18 generates cryptographically strong and random id’s. Uuids were applied as the key
property of child components. Keys help React identify which elements that have been
changed when updating the virtual DOM. Each item in the BIBSURF collection includes
a unique id, and this id could in practice have been used as the key. However, each item
may be listed multiple times in the application, thus having the same key for multiple
elements. It was therefore decided to create new unique id keys with the uuid library to
assign each child component.

15https://jqueryui.com/ jQuery UI is a set of user interface interactions, effects, widgets, and themes
built on top of the jQuery JavaScript Library.

16https://react-bootstrap.github.io/ The most popular front-end framework, rebuilt for Re-
act.

17https://getbootstrap.com/ Bootstrap is an open source toolkit for developing with HTML, CSS,
and JS

18https://www.npmjs.com/package/uuid Simple, fast generation of RFC4122 UUIDs.

26

https://jqueryui.com/
https://react-bootstrap.github.io/
https://getbootstrap.com/
https://www.npmjs.com/package/uuid

3.6 User Interface

3.6 User Interface
The final implemented UI and an explanation of the design choices will be presented in this
section. Figure 3.13 shows the implemented UI from the author’s specialization project
(Fung, 2017) and figure 3.14 shows the final UI implemented. The changes made in the
UI design includes the following:

• an adjustment in the design for ”and” logic,

• design for ”or” and ”andor” logic,

• a form box for selecting the filter option,

• removal of the breadcrumbs for the selected categories,

• a button for removing all selected categories,

• a button for retrieving the next 25 search results, and

• a home page.

27

Chapter 3. Implementation and design

Figure 3.13: UI Specialization project

Figure 3.14: UI Final

28

3.6 User Interface

3.6.1 Form box

Figure 3.15a) shows the form box created to let the user choose a filter option to refine
the search result. The form box includes a radio button group for choosing one of the filter
option for ”and”, ”or”, and ”andor”, and a checkbox at the bottom to choose if the result
should show the complete result items or only the parts satisfying the selected categories,
for the expression and work display. The form box was created following the same design
as the form boxes for each facet as shown in figure 3.15b) as a comparison.

Figure 3.15: UI Form box for selecting filter options and categories in a facet

3.6.2 Breadcrumbs

BIBSURF uses breadcrumbs to represent all the search queries performed by the user.
When submit is entered for a search query, a button with the search query as the label is
created at the left side of the search field as shown in figure 3.16. Each breadcrumb has
a red X associated to indicate to the user that the breadcrumb will be removed when the
breadcrumb is clicked on.

From the original BIBSURF UI, breadcrumbs, placed on top of the facets, were also used
to represent or remove the categories selected to refine the search results as shown in
figure 3.13 or in appendix B. The breadcrumbs were only allocated a small section of
space in UI surface. As users chose several categories to filter the search results, the list of
breadcrumbs grew accordingly and pushed the placements of facets further to the bottom
of the page. As the breadcrumbs took up space, it was decided to remove the breadcrumbs.
In the new implementation, users need to click on the checkboxes for each category to add
or remove the filter to the search result. In addition, a button was added above the facets
to provide the functionality to remove all the selected categories for the current search.

Figure 3.16: UI Breadcrumbs

29

Chapter 3. Implementation and design

3.6.3 Home page
Test users, from the user study described in the next chapter, felt that the initial start-
ing page was missing a home page. For this reason, a simple home page was created
during the work of this thesis, as shown in figure 3.17. The home page consists of a
search field to enter a search query, a button to submit the query, the title for the search
application and a background. The simplicity of the design was inspired by the home
page of the online university library at NTNU19. The image used as the background
for the home page was taken from a photo competition at NTNU for international stu-
dents (spring 2015), that were open to all international students that studied at NTNU
in the autumn semester 2014 and/or spring semester 2015. The image can be found us-
ing this link: https://www.facebook.com/NtnuInternational/photos/
a.586435994832890.1073741848.167232473419913/588911511252005/
?type=3&theater.

”Petals of Dandelion, this photo was captured in spring 2013 in Flakk near
Trondheim during my stay at NTNTU.”

— Hammad Majeed, master’s degree student from Pakistan.

Figure 3.17: UI Homepage

19https://www.ntnu.no/ub

30

https://www.facebook.com/NtnuInternational/photos/a.586435994832890.1073741848.167232473419913/588911511252005/?type=3&theater
https://www.facebook.com/NtnuInternational/photos/a.586435994832890.1073741848.167232473419913/588911511252005/?type=3&theater
https://www.facebook.com/NtnuInternational/photos/a.586435994832890.1073741848.167232473419913/588911511252005/?type=3&theater
https://www.ntnu.no/ub

3.7 Faceted filtering

3.7 Faceted filtering

This section aims to describe the filtering method and visualization used when users select
categories to refine the search result.

3.7.1 And sub-tree selection algorithm

This chapter aims to present the idea of the filtering algorithms used to filter the informa-
tion collection, by explaining the algorithm for the ”and” selection with sub-tree filtering
of works. Figure 3.19 visualize the decomposition of a FRBR graph to a set of branches.

Figure 3.18 describes the procedural pseudo-algorithm to the query. The algorithm sim-
ple checks for each entity level (work, expression, manifestation) and returns back all
the branches where no categories or all the selected categories for the current entity type
matches with the entity for all entity levels.

Figure 3.18: Procedural pseudo-algorithm

• resultset: search result (graphs with work as node)

• categories: set of selected criteria each as a tuple of (entitytype, category, value)
where entitytype is the type of entity that the selected criteria applies to (e.g. author
is a work-level category, language is an expression-level category as shown in table
3.4)

The algorithm for ”or” selection with sub-tree filtering of works, works similar to the
algorithm for the ”and” selected described above. The ”or” selection uses ”at least one”
instead of ”all” in the ”and” selection in the matching criteria. The next sections describe
the implemented visualizations of the faceted filtering.

31

Chapter 3. Implementation and design

Figure 3.19: Decomposing a FRBR graph to a set of branches

Facets Entity type
Form of Work, Artist, Author, Compiler,
Composer, Contributor, Director,
Interviewee, Interviewer, Lyricist,
Screenwriter

Work

Abridger, Adaptor, Conductor, Narrator,
Performer, Translator, Language, Content
Type

Expression

Type of Media, Type of Carrier Manifestation

Table 3.4: Entity type for each facet

3.7.2 Conjunction and

From the server, the response of the query request returns a JSON object with the available
categories, an example shown below:

{
” c a t e g o r i e s ” : {

”m: c a r r i e r T y p e ” : {
” book ” : 18 ,
” a u d i o book ” : 3 ,
” v i d e o ” : 5

} ,
”w: formOfWork ” : {

” L i t e r a r y c r i t i s i s m ” : 2 ,
” Au tob iog raphy ” : 2 ,
”TV a d a p t a t i o n ” : 5 ,
” Biography ” : 2 ,
” Novel ” : 12

}
}

}

32

3.7 Faceted filtering

The label of each category is used as the key in the JSON mapping the value of the total
hit of results. All the available categories with the total number of hits, retrieved from the
server, are displayed the same way in all the filter options for ”and”, ”or” and ”andor” as
shown in figure 3.21a).

The initial UI from the specialization project was only using ”and” logic as the only fil-
tering option to refine a search. Each category is associated with a number in parentheses
representing the total hit for the search query. For each selected category the total number
of hit for each category gets updated and only non-empty categories are displayed to the
user.

In addition to the numbers associated with the categories, categories with filter option for
”or” and ”andor” may have an additional number associated to each category, as will be
discussed in the next sections. After experimenting with different placements of paren-
theses, it was evaluated that the most suitable design was to surround the second number
in parentheses in cases where categories included two numbers for the filtering option for
”or” and ”andor”. It was therefore decided to remove the parentheses around the first
number with a total hit, to keep a consistent design across the different filtering options.
Accordingly, the numbers for each category in ”and” option was without parentheses as
shown in figure 3.21b).

3.7.3 Disjunction or
The ”or” option show all the results matching any of the selected categories. Figure 3.21c)
shows the display of the categories for ”or” option. The first number represents the total
number of hit, displayed and retrieved the same way as the ”and” option. When categories
are chosen, the remaining unchecked categories may include a second number showing the
total number of available hit that is not shown in the result set. From the initial search, all
of the available hit on a search is presented. To get the second number, the App component
stores the value from the initial search and when new categories are added to the search,
the second number can be calculated by subtracting the initial values with the new values
(3.1).

x = v0 − vN (3.1)

• x = the second number showing the total number of hit that is not shown in the result
set.

• v0 = the value of total hit in the initial search.

• vN = the value of total hit when categories are applied to the search result.

When categories with two numbers are checked, the second number would be calculated
to be zero. Instead of just showing a zero, the second number gets removed if the result
is zero, and the category shows the first number a with total number of hit. From the

33

Chapter 3. Implementation and design

perspective of the user, when the category is checked, the second number gets merged into
the first number. It was therefore decided that it was appropriate to add a ”+” symbol to
indicate that new results are added to the result display.

3.7.4 Andor
The ”andor” option combines the ”and” and ”or” option and a visualization of the display is
shown in figure 3.21d). It allows ”and” between the facets and ”or” between the categories
in each facet. Because of this flexibility, letting the user combine categories across multiple
dimensions at the same time using a more strict selection algorithm, the probability of
zero-hit is increased. To address the challenge of zero-hit, a set of rules was designed:

• Reduce the flexibility by allowing only one facet with the ability for choosing multi-
ple categories, where the chosen facet will be referred to as the ”or-box” in the con-
text of ”andor” option throughout this thesis since the categories within this facet or
”box” is selected with an ”or” option. The ”or-box” can be chosen in two different
ways:

– The facet where the first category is clicked on is chosen to be the ”or-box”.

– Experimenting with different interaction patterns, the researcher considered
the scenario when a user first selects one category from a facet and then wants
to select multiple categories from a second facet, e.g. the user searches for
works, and selects first the category ”Novel” as the ”Form of Work” and further
selects multiple categories in the facet of ”Author”. This was done by checking
if only one category is selected in the first facet and when the user chooses
the second category within a different facet than the first category. Then the
category in the second facet is chosen to be the ”or-box”.

• If the user removes a category within the ”or-box” while categories are selected
within other facets, then the client side of the system handles this by removing all
categories that are not present in the ”or-box”. Consider the scenario where the user
chooses the categories ”Novel” and ”Short story”, and the facet of ”Form of work”
is chosen to be the ”or-box”. The user then selects one author in the ”Author” that
only has a short story. Now the user removes the category for ”Short story”. This
will lead to a zero-hit since the already chosen author only has a short story and
not a novel. The current state of the system does not support validating if removing
categories leads to zero-hit. It was therefore decided to handle this by unchecking
categories outside the ”or-box” when the user chooses to remove a category in the
”or-box”.

The visualization of the ”or-box” follows the design of the categories in ”or” option. How-
ever, the system does not support for calculating the second number for the scenario where
the user has selected categories across multiple facets. So instead of showing the total num-
ber of available hit, only the ”+” surrounded with parentheses is shown to indicate that the
category may have more available results, figure 3.20b). The idea of the ”andor” option is
to offer a more exploratory search process compared to the stricter option of ”and”. Hence,

34

3.7 Faceted filtering

when categories are selected, the user still sees the categories without any hit to maintain
the overview of the categories where the user may decide to relax its selected categories in
order to explore the different categories available.

Figure 3.20: UI Andor display

3.7.5 Sub-tree
The original UI did not include the option to view the sub-tree of works or expressions.
Figure 3.19 presented with a view of the tree structure of a work. In the original UI when
at least one branch satisfied with the selected categories, the ”whole” tree of the work was
displayed. The option of sub-tree was developed in this project using the algorithms as
presented earlier, offering the user to view only the sub-tree of works or expressions. Fig-
ure 3.22 is an example of a work displaying the whole tree where the categories ”spoken
word” and ”English” were selected. From the figure, all other expressions of the work
in different languages (German, Croatian, Italian, etc.) are also displayed. Figure 3.23
shows the same example of the work with the same categories applied, however with the
option to view the sub-tree instead. In this figure, only the expression for spoken word in
the language English is displayed. Categories view zero-hit are disabled as can be seen in
figure 3.20b).

35

Chapter 3. Implementation and design

Figure 3.21: UI Categories in facets

36

3.7 Faceted filtering

Figure 3.22: Work with the whole tree displayed

Figure 3.23: Work with the sub-tree displayed

37

Chapter 3. Implementation and design

38

Chapter 4
Experiment

This chapter describes how the user study was conducted and explores the users’ under-
standing of the implemented filtering mechanism as described in the research questions
RQ-2.1 and RQ-3 from table 1.1 in chapter 2: ”Does the user understand the design as-
sociated with the categories?” and ”Does the user understand the refined result when cate-
gories are applied to the search?”. This user study lets users test the implemented design,
explained earlier in this report, and is divided into two different iterations. In the first test,
the researcher discovered: situations where the test approach caused confusion to the user,
and limitations in exploring the research questions. Hence, a second test where explored
with adjustments from the feedback in the first test.

All participants participated in this user study are students at NTNU. The participants were
asked to sign a form allowing the researcher to record the computer screen with audio
during the test and allowing the results to be used in this report. The contract form can
be found in the appendix A. The test executions use researchers’ laptop and the computer
screen was recorded using the Screen Recording functionality in Office’s PowerPoint, an
accessible and easy to use tool for the researcher. During this test, the users are presented
with the term ”filter” to what this project has been referring to as a category, as the users
are more familiar with the term filter.

During testing, the user will be asked to think aloud and the researcher will not assist the
user in solving the tasks, to avoid influencing the users’ decisions or understanding of the
application. Further with the screen recordings including audio, the observations can be
analyzed more precisely afterward, including overlooked details in the initial observations.
Additionally, the completion time of each task can be noted more precisely and eliminate
any inconsistency in registering the completion time. After the test, the user is asked to
answer a short survey followed by an informal interview to collect additional information.

Each filter option has different challenges in how to best present the categories in a way
that it easy for the user to understand the application’s functionality used in different con-
texts. In other words, the goal of this experiment is to see if the user is able to understand

39

Chapter 4. Experiment

the application with the given design of the categories. Table 4.1 below describes the
challenges in creating a user-friendly design when the different filter options are applied
in this experiment.

And When categories are applied with ”and” as filter option, the user has to
toggle between multiple categories to view all the right results. For
example, when a user wants to get results from multiple categories in a
specific facet.

Or The filter option ”or”, increases the result set as more categories are
applied. Consequently, this filter option may lose its value if the user
retrieves the original result set after a lot of categories are applied.

Andor The design chosen to display the categories for ”andor” are not
conventional compared to other search applications with filters. It is
therefore interesting to explore if the user observes the difference in
behaviour, depending on which categories are applied first and second.

Sub-tree When the sub-tree filtering is disabled, the users have to navigate through
the tabs of different languages and content types to find the right results
even though the categories for language or content type are already
applied. This experiment wants to observe if the user finds this
inconvenient, preferable or do not take notice of this at all.

Table 4.1: Design challenges for each filter option

4.1 Preliminary test
The first test approach, uses a similar methodology as a user study conducted earlier in
Spring 2017, to be able to compare and support this research. The user study from Spring
2017 was conducted by my supervisor and his colleagues (Aalberg et al., 2017), exploring
the different displays of the results and compared their ability to support different user
tasks using BIBSURF. To summarize, the results indicated that the work display worked
well in exploring and learning about repertoires, but made it difficult to identify specific
manifestations or expressions. The expression display, in turn, worked well when looking
for publications in specific languages. While the manifestation display remained consis-
tent for the different user tasks.

In the preliminary test, a total of 6 users participated covering the different filter options:
two users testing each filter option, ”and”, ”or” and ”andor”, where one user uses filtering
with the option of retrieving the sub-tree of the results and the other user uses filtering
retrieving the whole tree. Each user will be given the same 4 tasks to solve, described
in table 4.2 below, including the scenarios, predefined queries and the objective for each
task.

40

4.1 Preliminary test

Scenario 1 You have recently seen the movie ”Murder on the Orient Express”,
based upon a novel by Agatha Christie, and would like to read the novel.

Query ”Murder on the Orient Express”
Task Find one book of the novel available in English.
Objective The user have to identify one edition of the novel. Using the ”and” or

”andor” option with the sub-tree filtering, the exact results is given back
to the user when the right combination of categories are applied.
Categories appropriate for this task are: Novel (Form of Work), book
(Type of carrier), Christie Agatha (Author), English (Language).

Scenario 2 You got an assignment from school to write an essay around the life of
Agatha Christie.

Query ”Agatha Christie”
Task Find the available autobiographies and biographies of Agatha Christie.
Objective This task takes advantage of the ”or” or ”andor” option to retrieve

multiple results from a specific facet, in this case ”Form of Work”. The
goal is to get result of both autobiographies and biographies. Categories:
Autobiographies (Form of Work) and Biographies (Form of Work).

Scenario 3 You have read one version of the novel ”Don Quixote” in English and
are interested in reading the novel in other languages as a way to practise
your language skills.

Query ”Don Quixote”
Task Find one book of the novel available in Spanish and one in Italian.
Objective In this case the user wants books in different languages. Hence, this task

exploits the ”andor” option with the sub-tree filtering option, to filter on
novels at the same time allowing the user to choose multiple languages.
Categories: Novel (Form of Work), book (Type of carrier), Spanish
(Language), Italian (Language).

Scenario 4 You like listening to audio books and have recently liked the audio
books narrated (”forteller”) by David Suchet.

Query ”David Suchet”
Task Find one electronic audio book available, that are narrated by David

Suchet.
Objective David Suchet appears as author, actor and narrator. Using the ”and” or

”andor” option with the sub-tree filtering easily retrieves the exact results
back to the user. Categories: Novels (Form of Work), David Suchet
(Narrator), audio book (Type of Carrier), electronic (Type of Media).

Table 4.2: Scenarios in preliminary test

41

Chapter 4. Experiment

As the objective is to explore the intuitiveness of the presented categories, the filter option
will be hidden to the user during testing, to explore the design quality of the categories.
Further, to focus on the users’ interaction with the categories to refine a search, the user is
given predefined display, query, and tasks. Lastly, only the work display will be used for
all test scenarios, to be able to explore the filtering with sub-tree and to keep this research
as consistently as possible as this research does not further explore the different display
options.

The results use the following measurements to analyze the users’ understanding of the
filtering mechanism:

• Description score: users understanding of the filtering option after all tests are
finished, where 5 = complete description, 4 = one element of description missing, 3
= two elements missing, 2 = three elements missing and 1 = no relevant description.

• Success score: successful completion of each task where 5 = complete success, 3 =
partial success and 1 = no success.

• Time: the time needed to complete each task.

The execution of each user test followed the following steps:

1. First, the user is asked to fill in a form to let the researcher record the computer
screen and audio during testing.

2. The user is then asked to pick a number between 1-6 to choose a filtering option,
where each filter option is assigned a random number as shown in table 4.3. Hence,
the user will not know which filtering option is chosen.

3. Further, the user is introduced to this research as followed: ”This research explores
the use of filters in search applications. Together with my supervisor, we have cre-
ated a search application, called BIBSURF, where you can search in a small collec-
tion of novels. I would like you to use this system to solve 4 different tasks with
different scenarios. For each task, type in the given query and choose your filters to
minimize the search result. During the test I want you to think aloud and try as best
as you can to

• express your first impressions,

• explain what you want to do and

• what you expect the application to do.

As my research is focusing on the use of filters, I want you to pay attention to the
numbers and the plus symbol behind each filter and explain to me what the numbers
and plus indicate and what the filters do to the results after you have finished all
the tests. For each task, stop whenever you feel you have found your answer. The
results retrieved from this application is structured in a hierarchy.”

4. After the introduction, the user is given the tasks to look at and start whenever the
user is ready.

42

4.1 Preliminary test

5. When the user finishes with all the tasks, the user is given a short survey form to
answer described in table 4.4 with both multiple choice questions and open-ended
questions to respond with their own answers.

6. Finally, there will be an informal interview between the researcher and the user to
collect additional information.

And Or Andor
Full tree 5 2 3
Sub-tree 4 6 1

Table 4.3: Random numbers for deciding the filter method

Question Type Description

Q1 Multiple
choice

I use filters to refine a search on web sites that provides
search with filters. (eg. Zalando, eBay, Oria)

Q2 How familiar are you with search in bibliographic
catalogs? (eg. Oria)

Q3 How easy was the application to use?
Q4 Would you like to use this system again?
Q5 How confident did you feel using the application?
Q6 Open-ended Describe how the filtering mechanism works.
Q7 How did you interpret the numbers behind the filters?
Q8 If you could change one thing about the design of the

filters, what would it be and why?
Q9 What did you like the most abut the design of the filters and

why?
Q10 Other comments about the search application or the test in

general?

Table 4.4: Survey questions

The objective of the survey questions is to collect additional data and get an awareness
about the users and users impressions and understanding of the implemented applica-
tion. Questions Q1-Q2 asks the users about their previous experiences with using filters in
search applications and questions Q3-Q5 asks about users impression of the implemented
application. Further Q6-Q7 asks the user to describe the implemented filtering mechanism
and finally, questions Q8-Q10 asks for feedback on the design and other comments about
the user study. The survey were given to the users using SurveyMonkey1, an online survey
software, to collect the data.

1https://no.surveymonkey.com/

43

https://no.surveymonkey.com/

Chapter 4. Experiment

4.2 Observations
The overall impression of the test process from the participants in the preliminary test were
good and from the results, the tasks were successfully completed without any significant
difficulties. However, the tasks used in the test plan limited the exploration of users’
impression and understanding of the filtering mechanism.

Most of the time, the user were focused on completing the given task, to find the differ-
ent manifestations. Additional, the work display where received as overwhelming in the
beginning, with a lot of elements displayed at the same time. For this reason, users were
focusing on the results and used most of the time to be accustomed to the display of the
results and paying no or little attention to the categories.

During testing, the search toolbar served as a distraction: Users tried to type in their own
query or extend the predefined queries when they were allowed to type in the queries in the
search field. Further, when users were exploring the application, in the beginning, users
tried to change the ”Match” criteria in the toolbar.

When a new search query is applied, only the first two category groups of filters and the
first two works in the results are open while the rest are closed by default. The users
participated did not notice this feature in the very beginning during the first three tasks.
Consequently, in the first two tasks, some users only explored the available results that
were initially open. Users did not notice the possible to open other facets either, since the
first two facets were initially open. Hence, only the categories in the first two facets were
used in the beginning.

From the informal interviews, users thought that the first two facets occupies a lot of space
and found it inconvenient to scroll down the list of facets to find the categories the user
were looking for. One example, where the facet of ”Language” was placed almost at the
bottom of the list. Additionally, users do not understand which categories are included in
the facets of ”Type of Content”, ”Type of Media”, or ”Type of Carrier” and force the user
to open each facet to find out its content.

The queries used in the preliminary test were also too specific, returning only a small set of
results. Users were, therefore, able to identify the right manifestations nearly immediately
after a new query search. Further, when the users got more familiar with the tabs on
each work, the tabs were used to look for works in specific languages instead of using the
categories to filter for language. In the last task users only uses one or two categories to
find the right manifestations.

44

4.3 Final test

4.3 Final test
The observations from the preliminary test revealed for potential improvements, thus a
new test plan was designed for a final test. The changes in the test plan for the final test
includes:

• further customization of the tasks for this experiment described in table 4.5 includ-
ing:

– letting the user use all three filter options with only one scenario,

– use the query ”murder” to get a long list of results and,

– suggest filters / categories for the users to use,

• and a customized UI for the users during testing as shown in figure 4.1 including:

– hiding the toolbar and unused facets and

– having all the facets and tabs in the results to be initially open.

Figure 4.1: UI in final test

The scenarios created for the user study earlier in Spring 2017 worked well when the
objective was to explore the display of the result set. From the observations, the new
scenarios created for this experiment worked poorly in achieving the objective of this
experiment. Since the scenarios created for this experiment followed the same structure as
the scenarios earlier in Spring 2017.

45

Chapter 4. Experiment

Figure 4.2: UML: Use case in final test

From the experiences from the preliminary test, the users only focused on one assignment
at a time. Hence, the focus was towards identifying the manifestations asked in the tasks.
Furthermore, users used most of the time to understand the display of the results during the
test instead of analyzing the behaviour of the application when categories were applied.
Finally, when users were asked to describe the filtering mechanism after the test, the users
could only give a brief description. Therefore, in the final test, it was decided to change
to directly ask the users to describe the functionality when categories are applied as the
actual task of the test instead of asking the user to identify specific manifestations. Now,
the users will have to pay attention to the behaviour of the application when categories are
applied to each filter option.

When users got familiar with the categories and the display of the results, the remaining
tasks felt repetitive without gaining a new understanding of the filtering mechanism. Users
were therefore in the final test only given one scenario all the three different filter options.
Additionally, each user will use the filter options in different order. To be able to observe
if users will be influenced by the previous filter option when working with the next filter
option. The order in which filter option the user is to be presented with was selected
randomly. The users were asked to choose a number representing the order in which filter
option to be used, Table 4.6 shows the different orderings. The option to show the sub-
tree will be alternated for each user, where the first user has the option of retrieving the
sub-tree, the second user retrieves the whole tree, the third user with sub-tree and so on.

The queries used earlier in Spring 2017 were designed to return a small set of results and
aims to let the users describe the presented display of the results. For this experiment, the
main goal is to let the user explore the use of categories. As the test was created following
the same flow as in the user study in Spring 2017, the queries were too specific for this
experiment when users were only asked to identify specific manifestations. As a conse-
quence, users did not apply any categories or only used a small set of categories before the
users could identify the manifestations. In the final test, the query ”murder” was used to
get a larger set of results. This was decided to prevent the users from spotting the man-
ifestations that were asked for in the scenario immediately. As a consequence, applying
categories to the search becomes essential to be able to find the correct information at a
faster pace, and motivates the user to use the categories to refine the results. As in real
search applications, usually, have a larger database retrieving a long list of results even

46

4.3 Final test

Scenario You are interested in works by the author Agatha Christie and would like
to discover her collection of novels. You are additionally a language
enthusiast and would like to discover in which languages the novels are
available in. You have made a query in the library and retrieved a list of
results.

Filters Suggested filters to use are Novel in ”Form of work”, book in ”Type of
Carrier” and Christie, Agatha as the ”Author”. Additionally, use
English, French in ”Language”.

Task For each filter method: Explain what each filter you apply does to the
result set and what the numbers behind the filters represent.

Objective As the query ”Murder” returns a large set of results, the use of categories
becomes essential. Using ”and” as the filter option returns all the results
matching all the categories applied. The ”or” option, however, expects
the user to carefully choose the categories since adding more categories
increases the retrieved results. In this case, when the category ”Christie
Agatha” in ”Author” is chosen, the user can utilize the numbers behind
other categories to get an overview of what is included in the results that
match the selected category. Suggesting the users to choose categories
for multiple languages, exploits the last filter option, ”andor”. The users
can choose multiple languages with ”or” logic in the facet of
”Language”, at the same time refine the results from categories in other
facets of the ”and” logic.

Table 4.5: Scenario used in final test

A-O-AO A-AO-O O-A-AO O-AO-A AO-A-O AO-O-A
1 6 5 2 4 3
A = And, O = OR, AO = Andor

Table 4.6: Random numbers for deciding the order of filter method to be used

with specific search queries.

From the observations in the preliminary test, users needed some time to be accustomed to
the UI when users were allowed to interact with the entire application. The toolbar became
a distraction and users wanted to change the ”Match” criteria or add an additional query to
the search. Further, the users needed to scroll through the list of categories to find suitable
categories to apply on the results. Hence, the toolbar and facets that were not used in the
final test were hidden to focus on the design of the relevant categories. All the categories
and the first tab on each work in the results were set to be initially open to keep the UI
consistent as some users did not realize this feature in the beginning. In addition, the users
were not informed of the query used, to prevent distracting the users from the actual task.

The execution of the final test follows the steps in the preliminary test. However, instead
of asking the users to describe the answers of the tasks orally, the users are asked to write

47

Chapter 4. Experiment

down the answers on a piece of paper. Writing down the answers challenges the users to
formulate a more specific and clear answer to the tasks.

After the test, the user is asked to answer a short survey, which includes a subset of the
survey given in the preliminary test. In the final test, a customized UI was used, therefore
questions Q3-Q5, questions about the impression of the application, where excluded in the
survey for the final test. Further, questions Q6-Q7 were excluded as they were used as the
tasks during testing. The survey given after the final test includes the questions Q1-Q2 and
Q8-Q10.

48

Chapter 5
Discussion

A summary of the end results and conclusions are presented in this chapter.

5.1 Final observations

5.1.1 And
Most of the users were familiar with using filters on different applications and were used
with a numeric value for each category to indicate the total available results. Hence, the
users did not have any difficulties in working with this filter option. However, especially
users in the preliminary test who did not test the different filtering options expressed a
preference for having the first numbers in parentheses.

5.1.2 Or
The tasks both in the preliminary test and the final test were designed to utilize the category
”Novel” as it retrieved back a large set of results. This was useful when using the filter
option for ”and” or ”andor” where the user could narrow down the results by applying
additional categories. In ”or” filtering, when users choose the ”Novel” category first, then
almost the same results as the initial search are displayed. Most users had difficulty in
noticing any changes when more categories were applied and tried to look for an update
button. However, the users who did notice the behaviour thought the design was intuitive
and interesting as most of the users had not seen similar approaches. In addition, a few
users expected the filtering mechanism to work as ”and”, and were surprised and confused
when they did not get what they expected.

5.1.3 Andor
The filter option ”andor” is the most complex filter option implement. The user tests
indicated that users struggled the most to understand the complete functionality of this

49

Chapter 5. Discussion

filter option. The categories in some facets are disjoint, thus each category does not have
any works in common. Therefore when users choose its first category within a disjoint
facet, the other categories will be associated with a zero as shown in figure 5.1. In this case,
some users needed some time to understand the purpose of the number zero displayed and
further considered it pointless. Therefore, the users would rather prefer that the numbers
remained the same as in the initial search. Moreover, some users realized immediately that
the behaviour of the first category filters inside the first category group acted as an ”or”
logic. In this case, users thought that the results would only get larger when more filters are
applied. Users would therefore often apply only one or two filters and removing selected
filters before applying new ones. Further, when categories within multiple facets have been
selected, the facet allowing the user to selected multiple categories got confusing when the
second number disappeared and instead only displayed with the ”+” symbol. Lastly, a user
tends to choose all the categories in mind at the same time before looking at the remaining
available categories. This leads to the users overlooking the changes in ”andor” option
when the user clicks on the second category in a different facet.

Figure 5.1: UI disjoint categories in a facet

5.1.4 Subtree
All users retrieving the whole tree of the works, expected the tabs to disappear when they
applied categories for ”Language” and ”Type of Content”. This behaviour was expressed
as strange and users suggested that the system could at least have changed the active tab
to match the corresponding category selected. However, the mechanism for the tabs was
received well. Most users thought that the display of the tabs in each work was displayed
neatly and therefore did not mind that the tree was displayed.

50

5.2 Result scores

5.2 Result scores

Filter option Description
score

Scenario Success
score

Time in
seconds

AND 5 1
2
3
4

5
5
5
5

72
90
73
63

AND w/sub-tree 1 1
2
3
4

5
5
5
5

88
206
82
98

OR 5 1
2
3
4

5
5
5
5

147
165
128
233

OR w/sub-tree 5 1
2
3
4

5
3
5
5

283
42
60
141

ANDOR 3 1
2
3
4

5
5
5
5

69
33
39
72

ANDOR w/sub-tree 3 1
2
3
4

5
5
5
5

94
120
61
64

Table 5.1: Scores in preliminary test

51

Chapter 5. Discussion

Statement Option %

Q1 I use filters to refine a search on web sites
that provides search with filters. (eg.
Zalando, eBay, Oria)

Always
Most of the time
Almost half of the time
Some of the time
Never or almost never

0.0
83.3
0.0

16.7
0.0

Q2 How familiar are you with search in
bibliographic catalogs? (eg. Oria)

Very familiar
Quite familiar
A little familiar
Not at all familiar

0.0
33.3
66.7
0.0

Q3 How easy was the application to use? Very easy
Quite easy
A little easy
Not at all easy

0.0
83.3
16.7
0.0

Q4 Would you like to use this system again? Very likely
Likely
A little likely
Not at all likely

16.7
50.0
33.3
0.0

Q5 How confident did you feel using the
application?

Very confident
Quite confident
A little confident
Not at all confident

16.7
66.7
16.7
0.0

Table 5.2: Multiple choice in preliminary test

52

5.2 Result scores

Filter option Description Time in seconds

Whole tree and 5 176
andor 3 457
or 5 318

Sub tree or 5 456
and 5 148
andor 4 477

Whole tree or 5 335
andor 3 221
and 5 379

Sub andor 3 577
and 5 357
or 3 523

Table 5.3: Scores in final test

Statement Option %

Q1 I use filters to refine a search on web sites
that provides search with filters. (eg.
Zalando, eBay, Oria)

Always
Most of the time
Almost half of the time
Some of the time
Never or almost never

0.0
100.0
0.0
0.0
0.0

Q2 How familiar are you with search in
bibliographic catalogs? (eg. Oria)

Very familiar
Quite familiar
A little familiar
Not at all familiar

0.0
50.0
50.0
0.0

Table 5.4: Multiple choice in final test

53

Chapter 5. Discussion

5.3 Conclusions
Based on guidelines for building a React application, this project successfully developed
a dynamic search application meeting the functional requirements described in chapter 3.
This project contributed to the implementation of different filtering strategies, the imple-
mentation of paginating the results and storing local states for a rapid and efficient update
for opening and hiding tabs in the results. The relatively small project made it manageable
to use React’s local state management system using this.state and this.setState() to update
the view. However, in a growing application, the state management system can slowly be-
come chaotic with local states. Redux and Mobx are two state management systems that
can be considered when BIBSURF reaches the face of growth.

The user study conducted in this thesis revealed some obstacles in the UI design for pro-
viding a positive experience to the user when using the filtering mechanism created in this
project. First-time users needed some time to be accustomed to the UI and thought par-
ticularly the view of the results were overwhelming in the very beginning. In many cases,
the users did not notice the change in the results and got confused when the categories
applied did not seem to do anything to the results. Some users thought the titles for each
work displayed too much information, particularly when the title of the work is quite long
combined with multiple roles associated with the work. Additionally, the titles use similar
blue color as hyperlinks, and users expected these to be clickable.

Luckily, the user study also indicated that the search application BIBSURF was well re-
ceived. Apart from the overwhelming view in the beginning, users still thought the pre-
sented UI of the application was structured in a neat and organized way especially when
they got more familiar with the UI. Users thought the filters were easy to use, well struc-
tured and thought that the previews of the total number of hit were useful. Users reacted
positively when the design was similar to other filtering systems they have used and acted
with similar behaviours. Most people had to spend some time understanding the design
of the categories, but after being accustomed to the design, the users found it useful when
they realized how it worked providing them with new and interesting filtering options.
However, much work is still needed before a design is accepted as a standard, especially
design patterns that do not follow the main conventional design.

Usability testing is a time-consuming and complex study. This thesis only scratches the
surface of a usability test. With the test plan provided in this study, future researchers can
base their research on the work and results in this thesis.

Some future work to be considered are user studies targeting users in a specific group of
demographics on a larger scale, to better spot trend. In addition, UI must be more carefully
designed when attempting in designing for inconsistent views.

54

Bibliography

Aalberg, T., Merčun, T., Žumer, M., 2016. Bibsurf: Discover bibliographic entities by
searching for units of interest, ranking and filtering. http://doi.acm.org/10.
1145/2910896.2925434 accessed: 1. february 2018. In: Proceedings of the 16th
ACM/IEEE-CS on Joint Conference on Digital Libraries. JCDL ’16. ACM, New York,
NY, USA, pp. 207–208.

Aalberg, T., Merčun, T., Žumer, M., 2017. Interactive displays for the next generation
of entity-centric bibliographic models. https://brage.bibsys.no/xmlui/
bitstream/handle/11250/2468540/ICADL2017-Paper-17.pdf?
sequence=2 accessed: 1. february 2018. Lecture Notes in Computer Science.

English, J., Hearst, M., Sinha, R., Medhurst, K., Yee, K.-P., 03 2002. Flexible search
and navigation using faceted metadata. http://flamenco.berkeley.edu/
papers/flamenco02.pdf accessed: 7. february 2018. Unpublished.

Ercegovac, Z., jun 2006. Multiple-version resources in digital libraries: Towards user-
centered displays. Journal of the American Society for Information Science and Tech-
nology 57, 1023–1032.

Fung, M. J., 2017. Creating dynamic and interactive web applications for displaying large
set of data. Unpublished.

Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., Yee, K.-P., Sep. 2002. Find-
ing the flow in web site search http://flamenco.berkeley.edu/papers/
cacm02.pdf accessed: 5. february 2018. Commun. ACM 45 (9), 42–49.

Hearst, M. A., 1999. User interfaces and visualization. In Modern Information Retrieval.
Ricardo Baeza-Yates and Berthier Ribeiro-Neto. http://people.ischool.
berkeley.edu/˜hearst/irbook/print/chap10.pdf accessed: 10. Febru-
ary 2018. Addison-Wesley Longman Publishing Co., Inc.

Hearst, M. A., Apr. 2006. Clustering versus faceted categories for information exploration.
http://doi.acm.org/10.1145/1121949.1121983, accessed: 1. february
2018. Commun. ACM 49 (4), 59–61.

55

http://doi.acm.org/10.1145/2910896.2925434
http://doi.acm.org/10.1145/2910896.2925434
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2468540/ICADL2017-Paper-17.pdf?sequence=2
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2468540/ICADL2017-Paper-17.pdf?sequence=2
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2468540/ICADL2017-Paper-17.pdf?sequence=2
http://flamenco.berkeley.edu/papers/flamenco02.pdf
http://flamenco.berkeley.edu/papers/flamenco02.pdf
http://flamenco.berkeley.edu/papers/cacm02.pdf
http://flamenco.berkeley.edu/papers/cacm02.pdf
http://people.ischool.berkeley.edu/~hearst/irbook/print/chap10.pdf
http://people.ischool.berkeley.edu/~hearst/irbook/print/chap10.pdf
http://doi.acm.org/10.1145/1121949.1121983

Hearst, M. A., 2009. Search User Interfaces. http://searchuserinterfaces.
com/book/ accessed: 6. February 2018, 1st Edition. Cambridge University Press,
New York, NY, USA.

IFLA, 1998. Study Group on the Functional Requirements for Bibliographic Records.
Functional Requirements for Bibliographic Records : final report. https:
//www.ifla.org/files/assets/cataloguing/frbr/frbr_2008.pdf
accessed: 17. February 2018. UBCIM publications ; new series, vol. 19. Munich: K.G.
Saur Verlag.

Kules, B., Shneiderman, B., Mar. 2008. Users can change their web search tactics: De-
sign guidelines for categorized overviews. https://www.sciencedirect.com/
science/article/pii/S0306457307001574?via%3Dihub accessed: 11.
february 2018. Inf. Process. Manage. 44 (2), 463–484.

Music, D., 2017. Strategier og teknikker for filtrering av skeresulteter. https://
brage.bibsys.no/xmlui/handle/11250/2454570 accessed: 9. February
2018. NTNU.

Nielsen, J., 2007. Breadcrumb navigation increasingly useful. http://www.useit.
com/alertbox/breadcrumbs.html accessed: 13. february 2018. Nielsen Nor-
man Group.

Plaisant, C., Shneiderman, B., Doan, K., Bruns, T., Jul. 1999. Interface and data architec-
ture for query preview in networked information systems. http://doi.acm.org/
10.1145/314516.314522 accessed: 7. february 2018. ACM Trans. Inf. Syst.
17 (3), 320–341.

Salton, G., Buckley, C., 1990. Improving retrieval performance by relevance feedback.
http://www.cs.ucr.edu/˜vagelis/classes/CS172/publications/
jasistSalton1990.pdf accessed: 1. february 2018. Journal of the American
Society for Information Science.

Shneiderman, B., Byrd, D., Croft, W. B., 1997. Clarifying Search: A User-Interface
Framework for Text Searches http://www.dlib.org/dlib/january97/
retrieval/01shneiderman.html accessed: 7. February 2018. Corporation for
National Research Initiatives.

StatisticBrain, 2016. Youtube company statistics https://www.statisticbrain.
com/youtube-statistics/ accessed: 9. february 2018. Digital Technology.

Tillett, B. B., 2003. What is frbr? a conceptual model for the bibliographic universe.
https://www.loc.gov/cds/downloads/FRBR.PDF accessed: 18. february
2018. Technicalities 25 (5).

Tunkelang, D., 2009. Faceted search - synthesis lectures on information concepts,
retrieval, and services. http://disi.unitn.it/˜bernardi/Courses/DL/
faceted_search.pdf, accessed: 23. January 2018. Morgan and Claypool Pub-
lishers.

56

http://searchuserinterfaces.com/book/
http://searchuserinterfaces.com/book/
https://www.ifla.org/files/assets/cataloguing/frbr/frbr_2008.pdf
https://www.ifla.org/files/assets/cataloguing/frbr/frbr_2008.pdf
https://www.sciencedirect.com/science/article/pii/S0306457307001574?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0306457307001574?via%3Dihub
https://brage.bibsys.no/xmlui/handle/11250/2454570
https://brage.bibsys.no/xmlui/handle/11250/2454570
http://www.useit.com/alertbox/breadcrumbs.html
http://www.useit.com/alertbox/breadcrumbs.html
http://doi.acm.org/10.1145/314516.314522
http://doi.acm.org/10.1145/314516.314522
http://www.cs.ucr.edu/~vagelis/classes/CS172/publications/jasistSalton1990.pdf
http://www.cs.ucr.edu/~vagelis/classes/CS172/publications/jasistSalton1990.pdf
http://www.dlib.org/dlib/january97/retrieval/01shneiderman.html
http://www.dlib.org/dlib/january97/retrieval/01shneiderman.html
https://www.statisticbrain.com/youtube-statistics/
https://www.statisticbrain.com/youtube-statistics/
https://www.loc.gov/cds/downloads/FRBR.PDF
http://disi.unitn.it/~bernardi/Courses/DL/faceted_search.pdf
http://disi.unitn.it/~bernardi/Courses/DL/faceted_search.pdf

White, R. W., Roth, R. A., 2009. Exploratory Search: Beyond the QueryResponse
Paradigm. http://www.iro.umontreal.ca/˜nie/IFT6255/Books/
ExploratorySearch.pdf accessed: 30. January 2018. Morgan and Claypool
Publishers.

57

http://www.iro.umontreal.ca/~nie/IFT6255/Books/ExploratorySearch.pdf
http://www.iro.umontreal.ca/~nie/IFT6255/Books/ExploratorySearch.pdf

58

Appendix

59

60

Appendix A
UI Elements

Figure A1: Empty query in final UI with an overview of all the available facets

61

Figure A2: Work display

62

Figure A3: Expression display

Figure A4: Manifestation display

63

Figure A5: BIBSURF UI original

64

Appendix B
Contract

I hereby with this contract agree that, Mei Jain Fung, can record the computer screen with
audio included during my test. And permit the use of the test results to be included in the
indicated masters’s thesis at NTNU, during the academic year 2017.

I am informed that I will be kept anonymous in all published works.

Signature Date

65

66

	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Project Description
	Research Methodology
	Thesis Outline

	Background
	The user task
	Exploratory search
	Faceted classification
	Faceted navigation
	Faceted search
	Search Interfaces

	Implementation and design
	Data model
	Functional requirements
	Component tree
	UML
	Use Case
	Sequence diagram

	Implementation
	React
	Create-react-app
	Axios
	React-bootstrap
	Uuid

	User Interface
	Form box
	Breadcrumbs
	Home page

	Faceted filtering
	And sub-tree selection algorithm
	Conjunction and
	Disjunction or
	Andor
	Sub-tree

	Experiment
	Preliminary test
	Observations
	Final test

	Discussion
	Final observations
	And
	Or
	Andor
	Subtree

	Result scores
	Conclusions

	Bibliography
	Appendix
	Appendix A: UI elements
	Appendix B: Contract

