
June 2007
Tor Stålhane, IDI
Trygve Laugstøl, Objectware AS

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Improved Backward Compatibility and
API Stability with Advanced Continuous
Integration

Erik Drolshammer

Problem Description

Backward compatibility can be tested by integrating projects that depend on the previous version
of the service with the new (development) version of the service. If it builds successfully, then the
new version is backward compatible for the functionality utilized by these projects. Otherwise, a
compatibility issue has been identified. Additionally, if integration is done after every change to the
service, it will also be possible to determine what change that caused the build to fail. The concept
is thus to utilize projects that depend on the service as test data and build these projects at
regular intervals with the new version of the service.

The objective of this thesis is to determine if continuous integration can be used to test backward
compatibility for services. Since tool support is necessary to take advantage of the concept, a
prototype will be created as proof of concept. The purpose of the prototype is to determine if an
implementation based on an existing continuous integration server is feasible with the technology
available today. Support for Maven 2 projects is considered important, so it is possible to take
advantage of the metadata in Maven’s Project Object Model (POM). Continuum is therefore chosen
as the underlying build engine, due to its excellent integration with Maven.

Assignment given: 16. January 2007
Supervisor: Tor Stålhane, IDI

Abstract

Services with a stable API and good backward compatibility is important for component-
based software development and service-oriented architectures. Despite its importance,
little tool support is currently available to ensure that services are backward compatible.
To address this problem a new continuous integration technique has been developed.

The idea is to build projects that depend on a service with a new version of the service.
This ensures that the development version is compatible with projects that depend on the
regular version. A continuous integration server is used to initiate builds. This entails that
if a build breaks, the developers get feedback right away, and it is easy to determine which
change that caused the broken build.

We show that an implementation is feasible by implementing a prototype as a proof
of concept. The prototype use Continuum as the underlying build engine and utilize
metadata from the Maven Project Object Model (POM). The prototype has support for
multiple services. Services can thus be checked for compatibility with each other, in
addition to backward compatibility with the regular version.

Keywords: Continuous integration, Continuum, Maven, Component-based software
development (CBSD), Service-Oriented Architecture (SOA), Test-Driven Development
(TDD), agile software development

Preface

This Master’s thesis concludes my master’s program at the Department of Computer
and Information Science (IDI) at the Norwegian University of Science and Technology
(NTNU). The outline for the assignment was proposed by Trygve Laugstøl at Objectware
AS and is related to Open Source Software (OSS) and the Apache Maven Project
Continuum.

I would like to thank Trygve Laugstøl and supervising professor Tor Stålhane for valuable
input and feedback. Their help have been invaluable. Additionally, I would like to thank
the OSS community for quick and to the point answers regarding Continuum and the
technology utilized by Continuum. Finally, I give my thanks to my fellow students at
"Ugle" computer lab for great coffee, numerous on- and off-topic discussions, and great
suggestions during the work on this thesis.

June 5, 2007

Erik Drolshammer

vii

Contents

List of Figures xi

List of Tables xii

Listings xiii

1 Introduction 1
Motivation . 2
Problem description . 2
Audience . 3
Research approach . 3
Project process . 4
Report outline . 4

2 Preliminary study 5
2.1 Important terminology . 6
2.2 Continuous Integration . 7
2.3 Existing implementations . 9
2.4 Maven Project Object Model . 11
2.5 Maven versioning scheme . 14
2.6 Continuum . 15

3 Own contribution 21
3.1 Conceptual solution . 22
3.2 Examples . 24
3.3 Summary . 28

4 Implementation 29
4.1 Strategy . 30
4.2 Proof of concept implementation . 32
4.3 Screenshots . 39

5 Evaluation 45
5.1 Preliminary research . 46
5.2 Prototyping . 49

6 Discussion 53

ix

x CONTENTS

6.1 Utility value . 54
6.2 Theoretical advances . 57

7 Conclusion and further work 61
7.1 Conclusion . 62
7.2 Future work . 63

Bibliography 67

A Acronyms 72

B Web pages 75

List of Figures

2.1 Initial setup . 20

4.1 User adds a Maven 2 project . 34
4.2 doPoC . 35
4.3 build in DefaultBuildController . 36
4.4 Configure administration account . 39
4.5 Logged in as Admin . 40
4.6 Add Maven 2 project from Url . 40
4.7 Projects created . 41
4.8 All projects was built successfully . 41
4.9 Detailed view of the original Test Project 1 42
4.10 Detailed view of a derived version of Test Project 1 43

xi

List of Tables

2.1 Maven versioning scheme examples . 14

3.1 13 new combinations . 26

4.1 All changed files . 32

xii

Listings

2.1 SCM configuration . 12
2.2 ciManagement configuration . 12
2.3 jstl dependency . 13
2.4 Excerpt from components.xml . 16
2.5 plexus.requirement . 16
2.6 Excerpt from continuum-model/src/main/mdo/continuum.mdo 17
2.7 Mandatory software . 19
2.8 Software required for integration tests 19
4.1 dependencyCombinations - find all combinations recursively 35
4.2 Intercepting normal flow . 36
4.3 Build derived projects . 37

xiii

Chapter 1

Introduction

This chapter presents the background for the project. The purpose of this chapter is to
focus the rest of the report and explain what the problem is, why we want to solve it and
how we intend to approach the problem. The motivation section introduce the domain and
outline the context for the problem description. The next section contains the problem
text, followed by a description of intended audience. The following sections explain the
chosen research approach and the project process. The chapter ends with a report outline.

1

2 CHAPTER 1. INTRODUCTION

Motivation

As Information Technology (IT) is becoming ubiquitous, software engineering is becom-
ing increasingly more important. Traditionally, preferred development methodologies
have been plan-based. Today, the need for more rapid changes has made Test-Driven
Development (TDD) and agile1 development methodologies more popular. Continuous
integration is one of the new development practices that is used to support the new work
patterns.

Java software projects often utilize services. How can the developers of these services
know that projects that depend on their artifact will still work with a new version? They
can run all kinds of tests and employ software to check compliance with the Application
Programming Interface (API). In addition, they might want to exploit the fact that there
are projects that utilize their API. Building projects with the new version of the service
will reveal whether they are compatible or not. Ideally, this integration should be done
every time the service is changed, which indicates that automation and tool support is
necessary.

Problem description

Backward compatibility can be tested by integrating projects that depend on the previous
version of the service with the new (development) version of the service. If it builds
successfully, then the new version is backward compatible for the functionality utilized
by these projects. Otherwise, a compatibility issue has been identified. Additionally, if
integration is done after every change to the service, it will also be possible to determine
what change that caused the build to fail. The concept is thus to utilize projects that
depend on the service as test data and build these projects at regular intervals with the
new version of the service.

The objective of this thesis is to determine if continuous integration can be used to test
backward compatibility for services. Since tool support is necessary to take advantage of
the concept, a prototype will be created as proof of concept. The purpose of the prototype
is to determine if an implementation based on an existing continuous integration server is
feasible with the technology available today. Support for Maven 2 projects is considered
important, so it is possible to take advantage of the metadata in Maven’s Project Object
Model (POM). Continuum 3 is therefore chosen as the underlying build engine, due to
its excellent integration with Maven.

1See [1, 2, 3] and the Manifesto for Agile Software Development, http://agilemanifesto.org, for
more information on agile development.

2 http://maven.apache.org/ Last visited: 2007.05.30
3 http://maven.apache.org/continuum Last visited: 2007.05.30

http://agilemanifesto.org
http://maven.apache.org/
http://maven.apache.org/continuum

3

Audience

This report should be interesting for anyone developing services that need to follow a strict
versioning scheme, but the primary audience is Java enterprise developers. The concept is
independent of the Java programming language, but our prototype is based on Continuum
and was made possible by metadata found in Maven’s Project Object Model (POM).
The reader is assumed to have experience with Maven and general Java development.
Familiarity with agile software development, Service-Oriented Architecture (SOA) and
Component-based software development (CBSD) is also advantageous.

Research approach

This thesis consists of two main tasks; describe a conceptual solution and write a
prototype to determine if an implementation is feasible and how the concept works in
practice. In the following, we describe the methods we will apply to solve these tasks.

Concept

The conceptual solution will contain a textual description of the problem and identify
inputs and outputs. This data will be presented as dependency graphs to illustrate how and
when derived projects should be generated. These models will also be used to validate
the prototype. I.e., success is determined by the degree of correspondence between
the expected output presented in the conceptual model and the actual output from the
prototype. Graphical dependency graphs also facilitate communication on the subject,
making it easier to explain and discuss the concept.

Prototype

The purpose of the prototype is to determine whether an implementation based on
Continuum is feasible. The goal is to create a proof of concept, and the focus will be
on the business logic. Production level code quality is not important, and functionality
not essential to illustrate the concept will be omitted. E.g., usability and the Graphical
User Interface (GUI) will have low priority.

By employing evolutionary prototyping the proof of concept code may be iteratively
refined into a fully functional prototype. Evolutionary prototyping is considered better
suited than throw-away prototyping, since the prototype is based on existing software.
With this approach it is at least possible that the prototype can be of some use to the open
source community.

4 CHAPTER 1. INTRODUCTION

Project process

We will begin with the introduction. This ensures that the boundaries for the thesis are
in place before delving into the prestudy. Problem definition and research approach
are considered especially important. Afterwards, we will study state of the art to
avoid reinventing the wheel. Central research topics are existing continuous integration
techniques, existing continuous integration servers, versioning schemes, Maven Project
Object Model (POM) and the architecture of Continuum.

Before we start prototyping, a draft of the conceptual solution and a development
environment for Continuum will be in place. The former will serve as a rough design.
The latter is important to make it possible to take small iterative steps and reduce the risks
of integration. Prototyping may inspire new thoughts and ideas, so we will update the
conceptual solution to reflect any new knowledge after the prototype is finished.

Finally, we will evaluate the prototype and discuss the chosen solution. Future work will
also be identified to make it easier for others to continue the work.

Report outline

Below, brief descriptions of the different logical parts of the rest of the report are provided
for easier navigation. Sequential reading is advised, but, e.g., skipping the prestudy is
possible, if the reader is familiar with the domain.

Part II – Prestudy
The prestudy will explain the concept of continuous integration and its benefits. We
will also examine a few of the most popular continuous integration servers and the
Maven versioning scheme. It ends with an overview of Continuum’s architecture and
a description on how to set up a development environment.

Part III – Contribution
This part consists of chapter 3 and chapter 4. Chapter 3 is our proposed solution to
the problem definition previously described, while chapter 4 describes a prototype that
demonstrates the concept.

Part IV – Evaluation and discussion
This part consists of chapter 5 and chapter 6. Chapter 5 contains an evaluation of the
prototype and the research methods. The focus here is on the project process and the
choices we made. Chapter 6 sets the proposed solution into a wider context and evaluates
its usefulness.

Part V - Conclusion and further work
This chapter is a summary of what we have done. The focus is on our contributions and
why they are interesting. We will also list tasks and topics relevant for future work.

The CD
The CD that is delivered with this report contains the source code for the prototype and
this report as pdf.

Chapter 2

Preliminary study

The purpose of this chapter is to give the reader an introduction to relevant background
information. As explained in the introduction, the reader is assumed to have experience
from the field of software engineering and to be familiar with Maven [4]. Together with
the topics presented in this chapter, this makes up the technological baseline for the rest
of the report.

The chapter begins with a section that defines important terminology, followed by an
introduction to continuous integration and its benefits. Further, section 2.3 contains
a state-of-the-art survey. Its purpose is to determine if our proposed extension or
something similar already exists. Maven’s Project Object Model (POM) and versioning
scheme is explained next, before we describe Continuum’s architecture and summarise the
technology employed. Finally, we present a recipe for how a development environment
for Continuum can be set up.

5

6 CHAPTER 2. PRELIMINARY STUDY

2.1 Important terminology

Concise terminology is important to avoid misconceptions. In the following, we will
describe terms that are used throughout this report. The purpose is not to provide formal
definitions, but to explain how the terms should be interpreted in this report.

A service is a software product that offers a set of features usable by a user or another
software product. We will often use the term dependency synonymously with service, and
we will call a service packaged as a releasable entity for an artifact.

Build - the process of converting source code into standalone software artifacts that can
be run on a computer. A build can include different steps, but here we will assume that at
least compilation and unit tests are performed.

Integration - the process of piecing together the different parts of an application. The
purpose is to check interoperability between sub-components or with other systems. A
typical example is integration with the Database Management System (DBMS) that will
be used in production.

Versioning is a way to “label” a certain build. Different projects use different approaches
and different definitions, but we will stick to the following:

"Software versioning is the process of assigning either unique version names
or unique version numbers to unique states of computer software." [5]

A versioning scheme is thus a description of which label is appropriate given a certain
change. A description of the Maven versioning scheme can be found in section 2.5.

Backward compatibility is defined by the Free Online Dictionary of Computing [6] as
"Able to share data or commands with older versions of itself, or sometimes other older
systems, particularly systems it intends to supplant." For a service, this means that projects
that depend on this service can expect that functionality written for the old API will still
work with the API of the new version.

What is continuous integration?

Continuous integration is perhaps best known as one of the twelve practices of eXtreme
Programming (XP);

Continuous Integration - "Integrate and build the system many times a day,
every time a task is completed." [7, p.54]

We will, however, use a more descriptive definition of the term written by Foemmel and
Fowler:

"Continuous Integration is a software development practice where members
of a team integrate their work frequently, usually each person integrates at
least daily - leading to multiple integrations per day. Each integration is
verified by an automated build (including test) to detect integration errors as
quickly as possible." [8]

2.2. CONTINUOUS INTEGRATION 7

2.2 Continuous Integration

Continuous Integration (CI) is not a new concept. Custom solutions have probably been
around for decades. However, the earliest formal description of the concept we have found
is Steve McConnell’s daily build and smoke test practice [9]. He states that the system
should be built daily, with subsequent integration testing (smoke test). If we extend this
practice by running more frequent, automated builds, and replace the simple smoke test
with a comprehensive test suite, we get what we today consider continuous integration.

The Chrysler Comprehensive Compensation project [10] is assumed to be the first known
application of modern continuous integration. This assumption is based on the fact
that both Kent Beck’s eXtreme Programming eXplained [7], and Matthew Foemmel and
Martin Fowler’s article [8] on the subject, reference this project. In addition, famous
continuous integration servers like CruiseControl [11] and AntHill [12] were first released
in 2001, i.e., 1-2 years after these publications.

2.2.1 Benefits of using continuous integration

This summary is based on the “Benefits of Continuous Integration” from Foemmel’s and
Fowler’s article [8].

Reduced risk

When integration is done only at the end of the project it is impossible to known how
difficult it will be and how long it will take. This impose a huge risk affecting delivery
cost and schedule. Many small problems distributed over the duration of the development
is better than many big problems right before delivery. When continuous integration is
used, integration problems are discovered when they are introduced and can be solved
consecutively. Continuous integration can thus reduce the risks related to integration.

Easier to find bugs

Continuous integration techniques can be used to run tests every time a new task is
completed. This will limit the volume of code that must be reviewed to find a potential
bug and allows diff debugging. The term diff debugging come from the Unix tool diff
which compares two text files and reports the differences line by line. The term is used on
the practice of comparing the code of the last successful build with the code in the new,
unsuccessful build to deduct where the bug might have been introduced.

There is also a psychological phenomenon, known as the Broken Window Theory[13,
chap1.2], to consider. The idea is that bugs are cumulative and that the effort required to
fix a bug increases when a failure is caused by multiple faults. Allowing the number of
bugs to escalate is thus demotivating to the developers.

8 CHAPTER 2. PRELIMINARY STUDY

A good (comprehensive) test suite is a fundamental requirement of continuous integration,
and it affects bug detection and bug tracking directly. Thus, the better the tests, the greater
the benefits.

Frequent deployment

"Keep your project releasable at all times." [2, Tip 13]

Continuous integration makes the status of the build plainly visible. If you trust your tests,
then this status should be a fairly good indication as to whether the software is ready for
deployment or not. This has two advantages:

1. A continuous integration server can be used to deploy the software to a test server
after each successful build. This allows rapid feedback from the customer and can
be used as basis for discussion between customer and development team. In other
words, this practice support agile work patterns and improves collaboration.

2. Frequent builds and frequent deployment reduce the time needed for Quality
Assurance (QA) and testing prior to each release. Continuous integration can thus
facilitate shorter release cycles and reduce time to market.

2.3. EXISTING IMPLEMENTATIONS 9

2.3 Existing implementations

It is hard to prove that a solution to the problem described in the introduction does not
exist, but we will show that it is unlikely. For convenience we will use the term our
suggested extension to mean functionality that solve the problem in the introduction.

2.3.1 Search for references

The shallow descriptions found in books on XP [7, 14] and on agile development
[1, 2, 3], indicate that continuous integration has not been subjected to extensive research.
Searches on “continuous integration” on the ACM Digital Library 1 , IEEE Xplore 2 and
Google Scholar 3 support this suspicion, as little comprehensive research on continuous
integration was found. The only article we found related to advanced continuous
integration concepts was Continuous release and upgrade of component-based software
[15]. This article explain how to use continuous integration to continuously publish
release artifacts and is thus not relevant.

2.3.2 Comparison matrix

Continuous Integration Server Feature Matrix [16] contains a comparison of several
continuous integration servers. Our suggested extension is not mentioned among any
of the features compared, and it is comprehensive list. We believe it is unlikely that this
kind of functionality would be omitted on purpose, if any implementations were known.
This leads us to the conclusion that it is unlikely that any of the nineteen implementations
listed provide anything similar to our suggested extension.

2.3.3 Expert statements

Trygve Laugstøl is a core developer on Maven and Continuum. He is currently employed
at Objectware AS 4 , a Norwegian consulting firm. He has worked with software
development for many years and has lots of experience with Open Source Software (OSS).
T. Laugstøl states that he has not heard of any continuous integration server that contains
our suggested extension. Discussions with other prominent developers in the open source
community all support T. Laugstøl’s statement.

1 http://portal.acm.org Last visited: 2007.05.29
2 http://ieeexplore.ieee.org Last visited: 2007.05.29
3 http://scholar.google.no Last visited: 2007.05.29
4 http://objectware.no Last visited: 2006.01.28

http://portal.acm.org
http://ieeexplore.ieee.org
http://scholar.google.no
http://objectware.no

10 CHAPTER 2. PRELIMINARY STUDY

2.3.4 Spot test

We researched three continuous integration servers, in addition to Continuum, as a final
verification. These three have been chosen because they were mentioned in the resources5

we used when we researched continuous integration for section 2.2, or because they have
been recommended by friends or colleagues.

CruiseControl

CruiseControl was registered at SourceForge in 2001 [11] and is considered the grand-
daddy of continuous integration servers [17]. CruiseControl has an Ant-based Build
Loop, which periodically checks a Version Control System (VCS) for changes, builds
if necessary and sends notifications with the status of the build. A single XML file is used
for configuration, and CruiseControl depends on plug-ins for the actual functionality. This
makes CruiseControl flexible at the cost of complex configuration and setup. As of time
of writing, neither the Default Plugin Registry [18], nor the list of 3rd party plug-ins [19],
include a plug-in that support our suggested extension.

Anthill

AntHill was released in July 2001 and was originally OSS. We have looked at the
commercial version, AntHill Pro, because it has the most features. According to their
own documentation [20] the only supported continuous integration functionality are

• Repository Commit Triggers

• Configurable Quiet Period

• Integration with Testing & Code Coverage Tools

• Robust Notification Schemes

• IDE plug-in

It is thus reasonable to assume that AntHill does not contain our suggested extension.

TeamCity

TeamCity is a modern tool which JetBrains describe as an integrated team environment.
Nothing is mentioned related to our suggested extension in their published feature matrix
[21]. It is thus reasonable to assume that TeamCity does not provide this functionality
either.

5Research resources: [7, 8, 13, 2]

2.4. MAVEN PROJECT OBJECT MODEL 11

2.4 Maven Project Object Model

This section will introduce Mavens’ Project Object Model (POM) and describe elements
relevant to the prototype. General introductory material can be found in [4, 22], or at the
Maven website 6 , and will not be covered here.

2.4.1 POM introduction

The Maven Project Object Model (POM) is an XML representation of a Maven project.
This configuration is stored in a single file named pom.xml and is defined by the Maven
4.0.0 XML schema definition 7 . The justification for using a single file is that it is
necessary to ensure that each Maven 2 artifact is an easily portable unit.

Maven can be considered a build framework more than a dedicated build tool. The
POM is the heart of this framework, where configuration, for all scripts/plug-ins a build
environment needs, is consolidated. The following sections will explain the elements
most relevant to the prototype.

2.4.2 Relevant elements

This section will present elements directly related to continuous integration and explain
what they are used for.

modules element

A project can be divided into multiple modules. When the parent project is added to
Continuum, the parent and all modules are added as separate projects8. Any inheritance
is also resolved, so from the viewpoint of Continuum each project is complete and can be
built separately. This is reflected in the default arguments; –batch-mode –non-recursive,
which ensures that Maven do not build modules when the parent project is built.

scm element

The Source Code Management (SCM)9 element is used by the maven-site-plugin 10 , the
maven-release-plugin 11 and Continuum. An example is shown in listing 2.1.

6 http://maven.apache.org Last visited: 2007.05.29
7 http://maven.apache.org/maven-v4_0_0.xsd Last visited: 2007.05.29
8Projects are added to the same projectGroup, but the concept of a projectGroup is not important in this

context.
9SCM is used synonymously with Version Control System (VCS) throughout this report.

10 http://maven.apache.org/plugins/maven-site-plugin Last visited: 2007.05.30
11 http://maven.apache.org/plugins/maven-release-plugin Last visited: 2007.05.30

http://maven.apache.org
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/plugins/maven-site-plugin
http://maven.apache.org/plugins/maven-release-plugin

12 CHAPTER 2. PRELIMINARY STUDY

<scm>
<connection >scm:svn:http://svn.someCompany.com/someProject/trunk </connection >
<developerConnection >

scm:svn:svn+ssh://svn.someCompany.com/store/svn/someProject/trunk
</developerConnection >
<url >http://someCompany.com/view.cvs </url >

</scm>

Listing 2.1: SCM configuration

The maven-release-plugin use this information when performing SCM operations on the
repository during releases.

The maven-site-plugin use this information as basis for its Source Repository report.
This report shows the different ways to access the SCM repository.

Continuum utilize the SCM information to check out the project from the Version
Control System (VCS) when a project is added to Continuum and when Continuum
checks the repository for updates. The fact that any project can specify the SCM
information in the Maven POM is one of the reasons why it is so easy to add a new Maven
project to Continuum. Extra configuration is only needed if the defaults for schedule,
build goals or build arguments are unsatisfactory.

ciManagement element

The ciManagement element holds information on which continuous integration server is
set up for the project. The listing below shows an example configuration.

<ciManagement >
<system >Continuum </system >
<url >http://ci.someCompany.com </url >
<notifiers >

<notifier >
<type >mail </type >
<configuration >

<address >dev@someCompany.com </address >
<sendOnSuccess >false </sendOnSuccess >

</configuration >
</notifier >
<notifier >

<type >irc </type >
<configuration >

<host >irc.codehaus.org </host >
<port >6667</port >
<channel >#maven </channel >

</configuration >
</notifier >

</notifiers >
</ciManagement >

Listing 2.2: ciManagement configuration

The system and url elements are used by the maven-site-plugin as basis for a Project
Information report named Continuous Integration. The notifiers section specifies where
Continuum shall send feedback after a build. It is also possible to specify which state
changes a notifier is interested in. E.g., do not send email on successful builds, as shown
in the previous listing; <sendOnSuccess>false</sendOnSuccess>.

2.4. MAVEN PROJECT OBJECT MODEL 13

dependency element

The dependency element specifies that a project depends on an artifact. The identifier used
is on the form < groupId >:< arti f actId >:< version > and is called coordinates. In
addition, type and scope can be specified. Type designates how the artifact is packaged,
e.g., jar, war, ear, etc. Scope specifies in which scope the dependency is included. An
example is shown in listing 2.3, where a dependency to JavaServer Pages Standard Tag
Library is defined. This artifact is a jar file identified by javax.servlet : jstl : 1.1.2, and it
is available in the runtime scope.

<dependencies >
<dependency >

<groupId >javax.servlet </groupId >
<artifactId >jstl </artifactId >
<version >1.1.2</version >
<scope >runtime </scope >
<type >jar </type >

</dependency >
...

<dependencies >

Listing 2.3: jstl dependency

Coordinates are used when a project needs to reference another project/artifact, typically
when dealing with aggregation (multimodule projects), inheritance and dependencies.
These concepts are documented in [4, 22], and summaries of dependency scope, transitive
dependencies and DependencyManagement can be found in [23, chap. 3.4.2] or in
Introduction to the Dependency Mechanism [24].

Continuum use the dependencies element to elucidate which artifacts, which services,
a project depends on. This metadata makes it possible for the prototype to create
new derived projects identical to the original project, except for a different set of
dependencies. Metadata that uniquely identifies dependencies is a prerequisite for the
prototype. Combined with the Maven versioning scheme, described in section 2.5, the
version attribute makes it possible to create an ordering of dependencies. I.e., the version
attribute makes it possible to determine if service A is newer than service B.

2.4.3 Summary

To our knowledge, the metadata described here is only available with the Maven POM. A
prototype not based on this POM is thus not feasible, and the prototype should be based
on a continuous integration server that utilize Maven projects.

14 CHAPTER 2. PRELIMINARY STUDY

2.5 Maven versioning scheme

Maven uses the same versioning scheme as the XStream project. This scheme can be
found in on the XStream home page [25] and in Better Builds with Maven [4, p.60] and
complies with best practices for agile development, as described by the Open-Closed
Principle (OCP), [1, chap.9]. This scheme is on the form major.minor.micro and is used
for final releases. Non-final releases can use major.minor.micro-qualifier, while snapshots
can also add a build number; major.minor.micro-qualifier-buildNumber. The examples in
table 2.1 illustrates how this versioning scheme can be used.

Label Type of build
1.2.3-beta-3 build 3 of 1.2.3-beta (snapshot, not a release)
1.2.3-rc normal release prior to final release
1.2.3-2 normal release prior to final release
1.2.3 final release
1.2.6 final release with more functionality than 1.2.3
2.0.0 final release not backwards compatible with 1.x.y

Table 2.1: Maven versioning scheme examples

There are probably several versionings schemes were the examples mentioned are valid.
To correctly apply the Maven versioning scheme, the following interpretation of major,
minor, micro, qualifier and buildNumber should be used.

• Major identifies the API version. The major version is incremented when the
backwards compatibility of the API is broken. Minor and patch versions are then
reset to zero.

• Minor identifies the backwards compatible versions of the API. Revisions can add
new elements to the API, but the original elements cannot be modified. The patch
version is reset to zero when the minor version is incremented. Note, elements may
be annotated deprecated when the minor version is incremented, but not removed
until the major version is incremented.

• Micro identifies bug fixes and other changes that does not affect the API.

• Qualifier identifies a version prior to a final release. The qualifier can be a text
string or an integer, e.g. alpha, beta or rc (release candidate).

• Build number is an increment used to identify different patches of a build and is
not applicable for a normal release.

2.6. CONTINUUM 15

2.6 Continuum

Continuum is an open source continuous integration server released under the Apache
2.0 license [26]. It is designed especially for Maven, but Ant and shell projects are also
supported. This chapter will give an overview of the architecture and technology relevant
to the implementation. We will also explain how to set up a development environment
and describe packages relevant to the prototype.

2.6.1 Architecture

Continuum has a component-oriented12 architecture where each component has its own
Maven module, and each module has one logical responsibility. This improves reuse
and support easy “plugability”, as illustrated by the Apache Geronimo project GBuild.
GBuild 13 is an extension to Continuum which adds support for distributed integration.
GBuild is implemented as a Plexus application, reusing components like continuum-store,
continuum-notification, etc. See Plexus configuration for GBuild [29] for details.

Relevant components

The latest stable release of Continuum, version 1.0.3, is comprised of 18 components.
The components relevant to the prototype are

• continuum-core - core functionality

• continuum-model - the data model

• continuum-plexus-application - IoC-container

• continuum-store - persistence

• continuum-web - web application used for administration

Descriptions of the classes relevant to the prototype can be found in section 4.2.1.

2.6.2 Technology

When writing an extension to an existing product it is essential to have a basic
understanding of the technology employed. We will therefore give a short overview
of the technology relevant to the prototype and explain how it is utilized. For detailed
documentation the reader is referred to their respective web pages.

12See [27] for a quick introduction to components or [28] for a more in-depth approach.
13 http://cwiki.apache.org/gbuild Last visited: 2007.05.28

http://cwiki.apache.org/gbuild

16 CHAPTER 2. PRELIMINARY STUDY

Plexus

Plexus is an Inversion of Control (IoC) container similar to for example the Spring
Framework. According to the Plexus home page 14 , the following features are found
in Plexus, but not in Spring:

• Component life cycles

• Component instantiation strategies

• Nested containers

• Component configuration

• Auto-wiring

• Component dependencies, and

• Various dependency injection techniques including constructor injection, setter
injection and private field injection.

These features are not listed because the reader is assumed to know Spring, but because
the list indicate what kind of functionality Plexus provides. Explaining how Plexus works
is out of scope for this thesis. However, it is not difficult to use the IoC functionality.
The first step is to define a Plexus Component Descriptor in components.xml, and as the
example below shows, the syntax is simple and intuitive.

<component >
<role >org.apache.maven.continuum.DerivedProjectManager </role >
<implementation >

org.apache.maven.continuum.DefaultDerivedProjectManager
</implementation >
<requirements >

<requirement >
<role >org.apache.maven.continuum.DependencyHelper </role >

</requirement >
</requirements >

</component >

Listing 2.4: Excerpt from components.xml

Listing 2.4 shows that the current implementation of the interface DerivedProjectManager
is DefaultDerivedProjectManager and that it requires a DependencyHelper. The next step
is the corresponding declaration in DefaultDerivedProjectManager.java:

/**
* @plexus.requirement
*/

private DependencyHelper dependencyHelper;

Listing 2.5: plexus.requirement

This is all that Plexus needs to wire in the DependencyHelper component, no setter is
required. A guide that explains what the Plexus Component Descriptor is and how to use
it can be found the reference documentation [30].

14 http://plexus.codehaus.org Last visited: 2007.02.13

http://plexus.codehaus.org

2.6. CONTINUUM 17

JDO and JPOX

Continuum uses the Java Data Objects (JDO) 15 specification for persistence. JDO
is a standard specifying which API an implementation must support. No restrictions
are put on the underlying data store, which data stores to support is entirely up to the
implementation.

Continuum uses a JDO implementation named Java Persistent Objects (JPOX) 16 . JPOX
supports JDO 1 and 2 and support for Java Persistence API (JPA) is planned in version
1.2 17 .

In the latest stable release of Continuum, version 1.0.3, persistence is based on a snapshot
of JPOX 1.1, version 1.1.0-20060413. The continuum-store component is responsible for
this.

Modello

The Modello Data Model toolkit is used to generate Continuum’s data model. An excerpt
from Continuum’s Data Model, the definition of ProjectDependency, is listed below.

<class >
<name >ProjectDependency </name >
<version >1.0.0+</version >
<fields >

<field >
<name >groupId </name >
<version >1.0.0+</version >
<type >String </type >

</field >
<field >

<name >artifactId </name >
<version >1.0.0+</version >
<type >String </type >

</field >
<field >

<name >version </name >
<version >1.0.0+</version >
<type >String </type >

</field >
<field >

<name >derived </name >
<version >1.0.0+</version >
<defaultValue >false </defaultValue >
<type >boolean </type >

</field >
</fields >

</class >

Listing 2.6: Excerpt from continuum-model/src/main/mdo/continuum.mdo

The advantage of using a data model toolkit is that the model can be used as basis for
multiple models. According to the Modello home page 18 any of the following models

15 http://java.sun.com/products/jdo Last visited: 2007.02.13
16 http://www.jpox.org Last visited: 2007.02.13
17 http://www.jpox.org/docs/jpox_why.html Last visited: 2007.02.13
18 http://modello.codehaus.org Last visited: 2007.05.13

http://java.sun.com/products/jdo
http://www.jpox.org
http://www.jpox.org/docs/jpox_why.html
http://modello.codehaus.org

18 CHAPTER 2. PRELIMINARY STUDY

can be generated:

• Java Pojos of the DataModel.

• Java Pojos to XML Writer. (provided via xpp3, stax, jdom or dom4j)

• XML to Java Pojos Reader. (provided via xpp3, stax or dom4j)

• XDOC documentation of the DataModel.

• XML Schema to validate the DataModel.

• Java Model to Prevayler Store (actually this plugin is in the sandbox).

• Java Model to JPOX Store.

• Java Model to JPOX Mapping.

The emphasized models are those utilized by Continuum. Java Pojos are used in
continuum-model, XML Writer/Reader in continuum-xmlrpc and JPOX Mapping in
continuum-store. Using Modello minimizes redundancy, at the cost of a bit more complex
setup.

2.6.3 How to build Continuum from source

This section will explain how to set up a development environment for Continuum and
build and run the application. This recipe was included due to the complexity of the setup
procedure.

Requirements

Before you can start on the actual procedure it is important to make sure your environment
satisfies the requirements. Java, Maven 2 and Subversion is mandatory, but Maven 1, Ant
and CVS are only needed by the integration tests and can be skipped. The following
software19 should be installed:

• Java Development Kit 20

• Maven 2

• Subversion console client

• Maven 1

• CVS console client

• Ant

19Links to the software can be found in appendix B.
20We had trouble with Sun Java 6 and java-gjc, while Sun Java 1.5 worked fine.

2.6. CONTINUUM 19

It is possible to use the Windows operating system, but a operating system with a more
sophisticated shell is recommended, because the software mentioned above must be run
from the console.

After installation and configuration is completed, verify that everything is set up correctly
by comparing your output with the output listed below. A line starting with $ is a
command and the subsequent lines are the output.

$ java -version
java version "1.5.0_08"
Java(TM) 2 Runtime Environment , Standard Edition (build 1.5.0_08 -b03)
Java HotSpot(TM) Server VM (build 1.5.0_08-b03 , mixed mode)

$ mvn -version
Maven version: 2.0.4

$ svn --version
svn , version 1.3.2 (r19776)

Listing 2.7: Mandatory software

$ cvs -version
Concurrent Versions System (CVS) 1.12.13 (client/server)

$ ant -version
Apache Ant version 1.6.5 compiled on July 5 2006

$ maven --version
__ __

| \/ |__ _Apache__ ___
| |\/| / _‘ \ V / -_) ’ \ ~ intelligent projects ~
|_| |___,_|_/___|_||_| v. 1.0.2

Listing 2.8: Software required for integration tests

Tip: If any of the commands does not return output similar to this listing, check that
$PATH and $JAVA_HOME are set correctly.

Checking out from version control

Continuum uses Subversion, and we want the latest stable release, which currently is
version 1.0.3. Check out from the console to a folder of you choice. E.g.;

mkdir continuum -1.0.3
cd continuum -1.0.3
svn co http://svn.apache.org/repos/asf/maven/continuum/tags/continuum -1.0.3 .

Build the project

Try to build the project with the following command:

mvn -Denv=test install

20 CHAPTER 2. PRELIMINARY STUDY

The command probably has to be run multiple times to download all dependencies, and
several javax.* dependencies must be downloaded and installed manually due to licensing
issues. Directions for manual installation is given when the build fails. In addition, one
transitive snapshot dependency is no longer available. A workaround is to rename the
final release and install it manually as the snapshot.

wget http://repo1.maven.org/maven2/org/codehaus/plexus/plexus -appserver/1.0-alpha -5/
plexus -appserver -1.0-alpha -5.jar

mvn install:install -file -DgroupId=org.codehaus.plexus -DartifactId=plexus -appserver
-Dversion=1.0-alpha -5-SNAPSHOT -Dpackaging=jar
-Dfile=plexus -appserver -1.0-alpha -5.jar

Tip: If the integration tests fail, just comment out continuum-core-it from the modules-
subsection in the parent pom. These tests are not critical for prototyping.

Start the web application

After the installation is finished, bundle and start the web application with the following
commands:

cd continuum -plexus -application/
mvn plexus:app plexus:bundle -application
target/plexus -test -runtime/bin/plexus.sh

A successful deploy will start a web application at http://localhost:8080/continuum.
Figure 2.1 shows what to expect. After an administration account and other settings are
configured, it is possible to log in and start using Continuum.

Figure 2.1: Initial setup

http://localhost:8080/continuum

Chapter 3

Own contribution

In this section we will describe a solution to the problem described in the introduction.
First we list a set of assumptions. Second, we describe rules governing how the prototype
should react to different use cases. These rules are the actual, conceptual solution and
explain when and what the prototype shall do. Examples with dependency graphs are
used to support the description and show how the concept can be applied in practice. We
have also derived a formula for the complexity. The formula calculate worst case and
show how the number of combinations (and thereby derived projects) grow as the number
of projects or services grow.

21

22 CHAPTER 3. OWN CONTRIBUTION

3.1 Conceptual solution

This section will describe a solution to the problem described in the introduction.

3.1.1 Assumptions

To limit the scope of possible solutions we have identified a list of constraints/assump-
tions. These assumptions are adapted to Continuum’s abstract model, but they are not
implementation specific. The conceptual solution should thus also be useful for other
continuous integration servers which satisfies the same assumptions. We assume that the
underlying build engine

• has the concept of a project.

• can build an arbitrary number of projects.

• supports the concept that a project depends on 0− n services, where a service1

can be unambiguously specified as a dependency found in Maven, i.e., specified by
< groupid >:< arti f actid >:< version >.

3.1.2 Solution description

The idea is to create a new derived project for each new, unique combination of
dependencies. Combinations are found by swapping dependencies from the original
list of dependencies with dependencies from the list of derived dependencies. A swap
can be made if the derived dependency has the same groupid and artifactid as the
original dependency and a newer version. Whether a dependency is newer/higher than
another is determined by the versioning scheme described in section ??. The original
dependency might be called relevant, but we will also use the term original if it can avoid
misunderstandings. The list of active derived dependencies, the dependencies which are
considered for a swap, is termed the input list.

3.1.3 Rules

There are six possible changes that should invoke an action; add/remove projects,
add/remove dependencies from a project and add/remove dependencies from the list of
derived dependencies. The changes and their corresponding actions are as follows:

1. A new project is added → new derived projects should be created if its dependencies
are relevant.

2. A project is removed → the original project and all its derived projects should be
deleted.

1Hereafter the term “service” is used synonymously with “dependency” unless explicitly stated
otherwise.

3.1. CONCEPTUAL SOLUTION 23

3. A new dependency is added to the original project → new derived projects should
be created if the new dependency is relevant.

4. A dependency is removed from the original project → all affected derived projects
should be deleted.

5. A new dependency is added to the input list → new derived projects should be
created if the new dependency is correspondent with a relevant dependency in the
original project.

6. A dependency is removed from the input list → all affected derived projects should
be deleted.

Examples, with representations of how the graphs change, can be found in section 3.2.

3.1.4 Complexity

According to the proposed solution we get two sets of projects; the original projects
and the derived projects. The number of derived projects depend on how many relevant
dependencies each original project have. Worst case is that all projects depend on all
services. Let P be the number of original projects, S the number of services and P’ the
number of new derived projects. If worst case is assumed, the number of derived projects
follows formula 3.1.

P′ = P∗
S

∑
s=1

2s−1 (3.1)

Calculation examples

We will here run through a few examples to demonstrate the rationale behind formula
3.1.4.

Example one: Four projects (P = 4) all depend on two dependencies (S = 2). For each
project there are four possible combinations of dependencies; S1 & S2, S1’ & S2, S1 &
S2’ and S1’ & S2’. Only three of these combinations are new, since the first is the original
combination S1 & S2.

The number of new derived projects are thus 4 ∗ 3 = 12, which is equal to the result we
get by using formula 3.1.

P′ = 4∗∑
2
s=1 2s−1 = 4(20 +21) = 12.

Example two: Let us increase the number of derived dependencies to six, to illustrate
why automation is necessary. I.e., P = 4 and S = 6, still using formula 3.1:

P′ = 4∗∑
6
s=1 2s−1 = 4(20 +21 +22 +23 +24 +25) = 4∗63 = 252

Testing all these combinations manually is clearly not an enticing solution!

24 CHAPTER 3. OWN CONTRIBUTION

3.2 Examples

We will illustrate how the dependency graphs change with two examples. The first
example is simple and its purpose is to provide a graphical representation to make the
solution from section 3.1 easier to understand. The second example is bigger and more
realistic and will be used as input to the prototype to validate the implementation.

3.2.1 Example 1

We have two projects, P10 and P20. The superscript notation is used to enumerate the
generated derived projects. 0 indicate that these projects are original projects. Project P1
depend on two services, Sa and Sb. Project P2 depend on Sa and Sc. The input graph:

P10g̀afbecd P20g̀afbecd

Sav1.0g̀afbecd Sbv1.0g̀afbecd Scv1.0g̀afbecd

��
��
��
��
��
�

��*
**

**
**

**
**

����
��

��
��

��
��

��
��

�

��*
**

**
**

**
**

If we add a new version of Sc, say Sc v1.1, to the input list, then a new derived project,
P21, should be added. This is a new variant of project P2 and it depends on Sa (as the
original project P2) and on the new version of Sc. The graph below illustrates this.

Sav1.0g̀afbecd Sbv1.0g̀afbecd Scv1.0g̀afbecd Scv1.1g̀afbecd

P10g̀afbecd P20g̀afbecd P21g̀afbecd

��
��
��
��
��
�

��*
**

**
**

**
**

����
��

��
��

��
��

��
��

�

��*
**

**
**

**
**

yyrrrrrrrrrrrrrrrrrrrrrrrrrr

��*
**

**
**

**
**

3.2. EXAMPLES 25

When a new version of Sa is added as well, three additional projects should be generated:
P22, P23 and P11. New graph:

Sav1.0g̀afbecd Sav1.1g̀afbecd Sbv1.0g̀afbecd Scv1.0g̀afbecd Scv1.1g̀afbecd

P10g̀afbecd P11g̀afbecd P20g̀afbecd P21g̀afbecd P22g̀afbecd P23g̀afbecd

��#
##
##
##
##
##
##
##

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

��#
##
##
##
##
##
##
##

��3
33

33
33

33
33

33
33

33
33

����
��

��
��

��
��

��
��

��
��

��
�

��3
33

33
33

33
33

33
33

33
33

{{vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

��3
33

33
33

33
33

33
33

33
33

{{vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

		��
��
��
��
��
��
��
��
�

xxppp

		��
��
��
��
��
��
��
��
�

Adding two new dependencies to the input list will thus generate P11,P21,P22 and P23,
for a total of four derived projects.

3.2.2 Example 2

We have three projects; P1, P2 and P3. P1 has dependencies Sa-Sf, P2 has dependencies
Sa,Sc,Sd,Se and P3 has dependencies Sa-Sc. The input graph is shown below.

P10g̀afbecd P20g̀afbecd P30g̀afbecd

Sav1.0g̀afbecd Sbv1.0g̀afbecd Scv1.0g̀afbecd Sdv1.0g̀afbecd Sev1.0g̀afbecd S fv1.0g̀afbecd
		��
��
��
��
��
��
��
��
��
��
��
�

�� ��,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

��9
99

99
99

99
99

99
99

99
99

99
99

99
99

99

""D
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

%%KK

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

����
��
��
��
��
��
��
��
��
��
��

��%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%

��2
22

22
22

22
22

22
22

22
22

22
22

22
2

yyss

||zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

����
��

��
��

��
��

��
��

��
��

��
��

��
��

�

26 CHAPTER 3. OWN CONTRIBUTION

We introduce new versions of the dependencies Sa, Sb and Se. The new combinations
are shown in table 3.1. For convenience ’ is used to denote a derived dependency.

P1 P2 P3
Sa’, Sb, Sc, Sd, Se, Sf Sa’, Sb, Sc, Sd, Se Sa’, Sb, Sc
Sa, Sb’, Sc, Sd, Se, Sf Sa, Sb’, Sc
Sa, Sb, Sc, Sd, Se’, Sf Sa, Sb, Sc, Sd, Se’
Sa’, Sb’, Sc, Sd, Se, Sf Sa’, Sb’, Sc
Sa’, Sb, Sc, Sd, Se’, Sf Sa’, Sb, Sc, Sd, Se’
Sa, Sb’, Sc, Sd, Se’, Sf
Sa’, Sb’, Sc, Sd, Se’, Sf

Table 3.1: 13 new combinations

In the following, the graphs for P1, P2 and P3 is shown. Note that the derived depencies
are not marked with the shorthand ’ anymore, instead the derived dependencies can be
distinguished from the original dependencies by the difference in version.

The graph for project P1 shows the original P1 project and seven derived projects.

P10g̀afbecd P11g̀afbecd P12g̀afbecd P13g̀afbecd P14g̀afbecd P15g̀afbecd P16g̀afbecd P17g̀afbecd

Sav1.0g̀afbecd Sav1.1g̀afbecd Sbv1.0g̀afbecd Sbv1.1g̀afbecd Scv1.0g̀afbecd Sdv1.0g̀afbecd Sev1.0g̀afbecd Sev1.3g̀afbecd S fv1.0g̀afbecd
�� ��/

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//

��?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??

""E
EE

$$J
JJJ

''OOO

����
��
��
��
��
��
��
��
��
��
��
��
��
�

��$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$

��4
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44

��<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

!!D
DD

%%LLL

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$

��,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,

��4
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44

��<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

$$H
HHH

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$

��,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,

��<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

!!D
DD

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

����
��
��
��
��
��
��
��
��
��
��
��
��
�

��$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$

��,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,

��<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

<<
<<

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

����
��
��
��
��
��
��
��
��
��
��
��
��
�

��,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,

��4
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44

yyss

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$

��,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,

yyss

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
��
��
��
��
��
��
��
��
��
��
��
��
�

��$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$

3.2. EXAMPLES 27

The graph for project P2 shows the original P2 project and three derived projects.

P20g̀afbecd P21g̀afbecd P22g̀afbecd P23g̀afbecd

Sav1.0g̀afbecd Sav1.1g̀afbecd Scv1.0g̀afbecd Sdv1.0g̀afbecd Sev1.0g̀afbecd Sev1.3g̀afbecd
�� ��9

99
99

99
99

99
99

99
99

99
99

99
99

99
99

""D
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

%%KK

		��
��
��
��
��
��
��
��
��
��
��
�

�� ��,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

��9
99

99
99

99
99

99
99

99
99

99
99

99
99

99

||zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

		��
��
��
��
��
��
��
��
��
��
��
�

�� ��9
99

99
99

99
99

99
99

99
99

99
99

99
99

99

||zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

����
��

��
��

��
��

��
��

��
��

��
��

��
��

�

		��
��
��
��
��
��
��
��
��
��
��
�

��,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

The graph for project P3 shows the original P3 project and three derived projects.

P30g̀afbecd P31g̀afbecd P32g̀afbecd P33g̀afbecd

Sav1.0g̀afbecd Sav1.1g̀afbecd Sbv1.0g̀afbecd Sbv1.1g̀afbecd Scv1.0g̀afbecd
�� ��9

99
99

99
99

99
99

99
99

99
99

99
99

99
99

%%KK

����
��
��
��
��
��
��
��
��
��
��

��%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%

��?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

��%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%

��2
22

22
22

22
22

22
22

22
22

22
22

22
2

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

����
��
��
��
��
��
��
��
��
��
��

��%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%

3.2.3 Example 3

The purpose of this example is to show what happens when an original project is deleted.
The three final graphs from example 3.2.2 will be used as input graphs for this example.
The combined input graph is not shown, because it is too big and complex to fit the page.
According to the rules in section 3.1.2, all derived projects of an original project should
be deleted when the original project is deleted. Deleting a derived project does not affect
any other projects.

Deleting an original project

When the user deletes P10, all its derived projects should also be removed, i.e., P11−P17.
The combined output graph is equivalent with the graphs for P2 and P3 from example
3.2.2 and is shown on the next page.

28 CHAPTER 3. OWN CONTRIBUTION

P20g̀afbecd P21g̀afbecd P22g̀afbecd P23g̀afbecd P30g̀afbecd P31g̀afbecd P32g̀afbecd P33g̀afbecd

Sav1.0g̀afbecd Sav1.1g̀afbecd Sbv1.0g̀afbecd Sbv1.1g̀afbecd Scv1.0g̀afbecd Sdv1.0g̀afbecd Sev1.0g̀afbecd Sev1.3g̀afbecd
��

 B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

##H
HH

%%KKK

����
��
��
��
��
��
��
��
��
��
��
��

��6
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

��?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??

""F
FF

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��

��.
..

..
..

..
..

..
..

..
..

..
..

..
..

��6
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

""F
FF

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��

��%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%%
%

��.
..

..
..

..
..

..
..

..
..

..
..

..
..

��?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??

||xxx

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

����
��
��
��
��
��
��
��
��
��
��
��

{{vvv

~~||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
|

����
��
��
��
��
��
��
��
��
��
��
��
��
��

wwpp

~~||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
|

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

wwpp

{{vvv

~~||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
|

Deleting a derived project

When a derived project is deleted, no other projects are removed. The output when P23

is deleted is shown below.

P20g̀afbecd P21g̀afbecd P22g̀afbecd P30g̀afbecd P31g̀afbecd P32g̀afbecd P33g̀afbecd

Sav1.0g̀afbecd Sav1.1g̀afbecd Sbv1.0g̀afbecd Sbv1.1g̀afbecd Scv1.0g̀afbecd Sdv1.0g̀afbecd Sev1.0g̀afbecd Sev1.3g̀afbecd
��

 B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

##H
HH

%%KKK

����
��
��
��
��
��
��
��
��
��
��
��

��6
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

��?
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??
??

??

""F
FF

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��

��.
..

..
..

..
..

..
..

..
..

..
..

..
..

��6
66

66
66

66
66

66
66

66
66

66
66

66
66

66
66

""F
FF

||xxx

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

����
��
��
��
��
��
��
��
��
��
��
��

{{vvv

~~||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
|

����
��
��
��
��
��
��
��
��
��
��
��
��
��

wwpp

~~||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
|

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

wwpp

{{vvv

~~||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
|

3.3 Summary

We have described a solution which rely on finding all combinations of dependencies,
where one combination corresponds to one derived project. Six rules describe how and
when the set of derived projects must change. We have also listed a formula for worst
case complexity to illustrate that the number of combinations grows quickly. Examples,
with dependency graphs, are used to illustrate creation and removal of derived projects.

Chapter 4

Implementation

This chapter consists of two parts; a strategy for solving the problem with Continuum
and a description of the proof of concept implementation. We will also provide
screen shots from the implementation to illustrate the connection between concept and
implementation. Example 2, described in chapter 3, is used as basis for the screen shots
to show that the prototype correctly implements the concept.

29

30 CHAPTER 4. IMPLEMENTATION

4.1 Strategy

We have found three approaches to implement the solution proposed in section 3.1:

1. use Continuum’s XML-RPC API

2. build a new application with components from Continuum (like GBuild, [29])

3. modify the existing code base directly

We have chosen the third option, because this will make the extension an integrated part of
Continuum. Integration is beneficial because it will make the extension easily accessible,
without extra downloads or configuration. Additionally, a separate application would
have to be updated whenever a new version of Continuum was released, integration with
Continuum avoids this problem. The greatest disadvantage of this approach is that it is
intrusive. However, this can be mitigated by enforcing clean separation of concerns and
by adding enable/disable functionality.

We will now explain how we plan to implement this solution. Descriptions of the
emphasized classes can be found in section 4.2.1.

4.1.1 Divide and conquer

The process of building a project with Continuum is twofold. The first part checks
for changes in the VCS, update/create the ContinuumProject and saves the project to
persistent storage. The second part loads the project from persistent storage and executes
the Maven executable. The execution use the pom.xml from the checked out project on the
file system, while goals and arguments according to the project’s BuildDefinitions are
provided by Continuum. This means that when we have successfully created and stored
derived projects, Continuum takes care of the building.

However, we need to modify the original pom.xml to build the derived projects with
the correct dependencies. We also want the extension to be transparent to the VCS.
One approach would be to utilize the revert functionality often found in version control
systems, but this limits the implementation to version control systems that have this
functionality. A better approach is to implement revert with functionality from the
java.io package. This approach depend only on Java, not on any external VCS. The
proposed solution is thus to make a copy of the original pom.xml and then revert the
changes after the derived project has been built.

The ContinuumProject is updated from pom.xml after each update from VCS. This means
that any changes that might have been made to ContinuumProject is lost. This is correct
and meaningful for original projects, but this will make all derived projects identical to
the original project. The solution chosen is to make a copy of all attributes that separate an
original project from a derived project. After the project has been updated, these attributes
should be reintroduced to ensure that none of our changes are lost.

4.1. STRATEGY 31

Our proposed solution can be summarized as follows:

• Make Continuum aware of derived projects, see section 4.2.2

– Create/update derived projects according to the rules in section 3.1.

– Store derived projects to persistent storage.

• Build the derived projects with Maven, see section 4.2.3

– Make a backup copy of pom.xml.

– Update pom.xml with the derived dependencies according to the derived
ContinuumProject.

– Build the project.

– Revert the changes. (I.e., overwrite the modified pom.xml with the backup
copy)

– Ensure that the ContinuumProject is not reverted to the state of the original
pom.xml.

32 CHAPTER 4. IMPLEMENTATION

4.2 Proof of concept implementation

The proof of concept implementation described in this chapter explain how the solution
chosen in section 4.1 has been implemented. The purpose is to show that the concept
works, so production quality code is not a priority. This realisation affects not only quality
attributes, but also which features are implemented. Anything not essential to demonstrate
the concept is omitted.

We begin with an overview of files modified or added, before we describe how the
functionality can be implemented.

4.2.1 Files added or modified

Table 4.1 show every file that differs from Continuum-1.0.3, omitting tests.

Change Module File(s)1

Create derived projects continuum-core components.xml,
DefaultContinuum,

DefaultDependencyHelper,

DefaultDerivedProjectManager

continuum-api DependencyHelper,
DerivedProjectManager

continuum-model DependencyGroup

continuum-store JdoContinuumStore

Build derived projects continuum-core ExecuteBuilderContinuumAction,

MavenBuilderHelper,

DefaultMavenBuilderHelper,

MavenTwoBuildExecutor, FileIO

Update data models continuum-model continuum.mdo

Add derived properties continuum-web Summary.vm, View.vm

to GUI
Upgrade JPOX / & continuum-core pom.xml

continuum-updater AntProject, ContinuumBuild,

ContinuumDeveloper,

ContinuumNotifier,

ScmFile, ContinuumProject,

ScmResult, MavenOneProject,

UpdateScmResult

MavenTwoProject,

ShellProject,

CheckOutScmResult

Add Java 1.5 support / & continuum-store pom.xml

Table 4.1: All changed files

1(A “.java" file extension is assumed whenever file extension is omitted.)

4.2. PROOF OF CONCEPT IMPLEMENTATION 33

The files are grouped according to the reason for editing them, and the grouping should
be correspondent to a mapping between the conceptual solution and the implementation.

The most important files are listed below, before sections 4.2.2 and 4.2.3 explain how
we have implemented the pseudo code from section 4.1.1. Changes that are of technical
character, or just pure convenience, are explained section 4.2.4.

Important files

DefaultContinuum - this class is the heart of Continuum. All business logic is initiated
from DefaultContinuum, directly or indirectly.

ContinuumProject - this class is responsible for all project data that Continuum needs.
One ContinuumProject corresponds to one MavenProject. The MavenProject is used for
the actual building process, while the ContinuumProject is used for administration and
GUI.

BuildDefinition - this bean holds the details for when and how a project should be built.

DefaultDerivedProjectManager - a controller class which creates and modifies derived
projects. DefaultDerivedProjectManager utilize DefaultDependencyHelper for process-
ing of ProjectDependency objects.

ProjectDependency - this bean represents a dependency. It has variables like groupId,
artifactId and version.

DefaultDependencyHelper - a helper class which handles the processing of Project-

Dependency objects.

JdoContinuumStore - a JDO implementation. This class is responsible for persistence.

pom.xml - an XML representation of Maven’s POM. This is the central configuration file
for Maven projects.

MavenProject - this class holds all information from a pom.xml file. This information is
the basis for the actual build.

DefaultBuildController - this class is responsible for actions that are initiated for each
build.

MavenTwoBuildExecutor - this class controls the build on the file system. FileIO and
DefaultMavenBuilderHelper are utilized as helper classes.

DefaultMavenBuilderHelper - a helper class that handles transformations to and from
the pom.xml file.

FileIO - a utility class for handling file input and output.

34 CHAPTER 4. IMPLEMENTATION

4.2.2 Make Continuum aware of derived projects

When a user adds a Maven 2 project, addMavenTwoProject() is called on Default-

Continuum. This initiates creation of ContinuumProjects from the metadata found in
the referenced pom.xml. Subsequently, the projects are saved to persistent storage by
JdoContinuumStore. This sequence is shown in figure 4.1.

Actor

DefaultContinuum CreateProjects-
FromMetadata

MavenTwo-
ContinuumProjectBuilder

Jdo-
ContinuumStore<<UI>>

WebApp

Add M2 Project

executeAction(
"create-projects-from-metadata")

buildProjectsFromMetadata

ContinuumProjectBuildingResult

doPoC

storeProjects

addMavenTwoProject

Figure 4.1: User adds a Maven 2 project

After the original project has been persisted, the figure show that doPoc() is called.
doPoc() is responsible for creating the appropriate derived projects and saving them.
Currently it operates on all projects in store, but it will not add a new derived project
if a derived project with the same groupId, artifactId and combination of dependencies
already exists.

The list of derived dependencies are hardcoded2 directly in the doPoc-method. This list is
used as input to the createDerivedProjects method described next.

Create derived projects

The number of dependencies is always constant, but an original dependency can be
substituted with a derived dependency. These combinations of old and new (derived)
dependencies are the basis for adding new derived projects. Below, in listing 4.1, we
explain how these combinations can be found using a recursive algorithm.

We start by splitting the dependencies into groups. Dependencies with the same groupId
and artifactId are placed in the same group. A set obtained by selecting one dependency
from each group is called a selection. Initially currentGroup is 0 and selection and

2Fetching these from an xml-file is added to the further work, see section 7.2.

4.2. PROOF OF CONCEPT IMPLEMENTATION 35

uniqueCombinations are empty. Note that the implementation require that groups and
selection are of equal size.

private void dependencyCombinations(int currentGroup ,
final List <DependencyGroup > groups ,
List <ProjectDependency > selection ,
List <List <ProjectDependency >> uniqueCombinations) {

if (currentGroup == groups.size()) {
uniqueCombinations.add(cloneDependencyList(selection));

} else {
ProjectDependency projectDependency;
DependencyGroup group = groups.get(currentGroup);
for (int i = 0; i < group.size(); i++) {

projectDependency = group.get(i);
selection.set(currentGroup , projectDependency);
dependencyCombinations(currentGroup + 1, groups , selection ,

uniqueCombinations);
}

}
}

Listing 4.1: dependencyCombinations - find all combinations recursively

The algorithm chooses one dependency from the first group and then calls itself
recursively with the index currentGroup incremented by one. The selection now holds one
dependency. This procedure is repeated for all dependencies in the first group. In other
words, a recursive call is spawned whenever a group holds more than one dependency.
uniqueCombinations will thus hold one selection for each possible variant. The recursion
ends when one dependency has been chosen from every group for all recursive calls.

This code is located in DefaultDependencyHelper and is called through a wrapper method
named getAllDependencyCombinations(). This wrapper ensures that the recursive
method is called with the correct parameters. It is also responsible for adding the
unaffected dependencies to each combination found.

getAllDependencyCombinations() is called from the createDerivedProjects() method
in DefaultDerivedProjectManager, as shown in figure 4.2.

DefaultContinuum Jdo-
ContinuumStore

doPoc

DefaultDerivedProjectManager DefaultDerivedDependencyHelper

createDerivedProjects

getAllDependencyCombinations

make projects

return derivedProjects

storeDerivedProjects

Figure 4.2: doPoC

36 CHAPTER 4. IMPLEMENTATION

In createDerivedProjects, one derived project is created for each combination, if the
combination does not already exists. The only combinations that already exists come
from the original projects, so no derived project is created with this combination of
dependencies. The rest of the attributes of the new derived projects are cloned from the
original project.

4.2.3 Build derived projects

A project can be built either when triggered by a schedule or when the user force a build.
Forcing a build is done by manually selecting “Build all" or “Build now" in the GUI.
Either way, DefaultBuildController is responsible for managing the builds.

First the VCS is checked for changes. If none are detected, the build is canceled.
Otherwise, the ContinuumProject is updated from the checked out copy of the project,
and the project is built. Figure 4.3 shows these two actions.

DefaultBuildController MavenTwoBuildExecutorExecuteBuilder-
ContinuumAction

build

UpdateProject-
FromWorkingDirectory-

ContinuumAction

execute("update-project-from-working-directory")

execute("execute-builder")

updateProjectFromCheckOut

Figure 4.3: build in DefaultBuildController

We check whether the project is derived in the build() method in MavenTwoBuildExecutor.
If it is, buildDerivedMavenProject() is called instead of the simple executeShellCommand().
This fork is shown in listing 4.2.

public ContinuumBuildExecutionResult build(Project project ,
BuildDefinition buildDefinition , File buildOutput)
throws ContinuumBuildExecutorException {

...
ContinuumBuildExecutionResult result = null;
if (project.isDerived()) {

result = buildDerivedMavenProject(project , executable , arguments , buildOutput);
} else {

result = executeShellCommand(project , executable , arguments , buildOutput);
}
return result;

}

Listing 4.2: Intercepting normal flow

This is consistent with the requirement of not being overly intrusive. Only the build
process for derived projects are affected, all original projects are built as before.

4.2. PROOF OF CONCEPT IMPLEMENTATION 37

Build process for derived projects

The actual building of derived projects is handled by the buildDerivedMavenProject()

method, while delete, copy and move is handled by the classFileIO class. FileIO is
an utility class which use the java.io-package to perform file system operations. The
structure of buildDerivedMavenProject() can thus be structured according to the strategy
in section 4.1.1.

First we take a copy of pom.xml, then the dependency list is updated with the new versions,
before the modified MavenProject is written to disk, overwriting pom.xml. After the
project has been built with the Maven executable, we revert our changes to pom.xml and
return to the normal execution with the result. See listing 4.3 for source code.

private ContinuumBuildExecutionResult buildDerivedMavenProject(
Project project , String executable , String arguments , File buildOutput)
throws IOException , MavenBuilderHelperException , ContinuumBuildExecutorException {

ContinuumBuildExecutionResult result = null;
File workingDirectory = getWorkingDirectory(project);
String pomPath = workingDirectory + File.separator + "\class{pom.xml}";
String pomBackupPath = workingDirectory + File.separator + "\class{pom.xml}.bak";

FileIO.copy(pomPath , pomBackupPath); //Backup

MavenProject mavenProject = builderHelper.getMavenProject(new File(pomPath));

List <Dependency > updatedDependencyList = builderHelper.createNewDependencyList(
mavenProject.getDependencies(), project.getDependencies());

mavenProject.setDependencies(updatedDependencyList);

PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(pomPath)));
mavenProject.writeModel(out);

result = executeShellCommand(project , executable , arguments , buildOutput);

FileIO.move(pomBackupPath , pomPath); //Rollback
return result;

}

Listing 4.3: Build derived projects

The last thing on the list is to ensure that our changes to the ContinuumProject are
not overwritten. The relevant code is located in DefaultMavenBuilderHelper, where
the method mapMavenProjectToContinuumProject() is responsible for updating the
ContinuumProject with the changes from the MavenProject. Our modifications here
ensure that the version of each project retain the appended counter and that the derived
dependencies are not incorrectly replaced.

4.2.4 Other changes

In addition to the previously described changes, a few modifications were made to speed
up development.

Added Java 1.5 support to speed up development. This was only convenience and should
be reverted to Java 1.4 syntax before a backport is attempted.

38 CHAPTER 4. IMPLEMENTATION

Upgraded JPOX to version 1.1.6. This was done due to multiple bugs in the older JPOX
version, a 1.1.0 snapshot. Upgrading to a current and proper release also made it easier to
get support from the community.

Added derived properties to the GUI to emphasize the differences between original and
derived for dependencies and projects. The logical implementation is not affected by
these changes. They merely make it easier to see what is happening.

4.3. SCREENSHOTS 39

4.3 Screenshots

We will now show a sequence of screen shots. They are taken after the application has
been started3 and it shows the steps initial setup, project checkout and the building of
all projects. We have also included a couple of screen shots that show the differences
between original projects and derived projects.

4.3.1 Initial setup and project checkout

After start-up an administration account must be set up.

Figure 4.4: Configure administration account

3See section 2.6.3 for a description on how to build Continuum from source and start up the server.

40 CHAPTER 4. IMPLEMENTATION

Log in with this account to obtain administration privileges. The next step is to add a
new Maven2 project. Click Add Project → Maven 2.0+ Project, as emphasized in the
lowermost rectangle.

Figure 4.5: Logged in as Admin

A project can be added by submitting an URL to a pom.xml file or by uploading a pom.xml

file directly. We must choose the first option, because the file upload option does not
support multi-module projects. I.e., a project is added to Continuum by submitting an
URL to a pom.xml file.

Figure 4.6: Add Maven 2 project from Url

4.3. SCREENSHOTS 41

4.3.2 Build all projects

The unmodified version of Continuum would have created only the four original projects,
while our version also adds derived projects. The original Test Project 2 and its three
derived variants are emphasized in figure 4.7.

Figure 4.7: Projects created

On screen shot 4.8, the status of the last build for each project is shown to the left of
the project name. The magnified section show that there are four original projects and
thirteen derived projects, and all built without errors.

Figure 4.8: All projects was built successfully

42 CHAPTER 4. IMPLEMENTATION

4.3.3 Details on original and derived projects

The next screen shot shows the details of Test Project 1. We can see that it is a original
project, since it is marked “Derived false” in the section for project details, and because
no dependencies are derived.

Figure 4.9: Detailed view of the original Test Project 1

4.3. SCREENSHOTS 43

A derived project looks somewhat different. The project itself is marked “Derived true”,
and the version is post-fixed by a counter. In addition, one or more of the dependencies
will be marked “Derived true” and have a version different from the corresponding
dependency in the original project.

Figure 4.10: Detailed view of a derived version of Test Project 1

4.3.4 Conclusion

Figure 4.8 shows that there are one parent project, three original test projects and thirteen
derived projects. TestProject 1 generated seven derived projects and TestProject 2 and
3 generated three each. This corresponds to example 3.2.2 from chapter 3. We have
also shown one example of a derived project, figure 4.10, which had a different kind of
dependencies than the original project in figure 4.9. In other words, these screen shots
verify that the prototype is consistent with the conceptual solution.

Chapter 5

Evaluation

In this chapter we will evaluate the prototype and the preliminary research methods. The
purpose of this evaluation is to look back on the process and discuss what went well and
what could have been improved. We will also indicate whether alternative paths could
have been more beneficial.

45

46 CHAPTER 5. EVALUATION

5.1 Preliminary research

This section will evaluate the research done in chapter 2. We will evaluate how we
researched state of the art, the theory on continuous integration and how we studied
Continuum.

5.1.1 State of the art

The value of a proof of concept implementation may be characterised by a number of
factors, but its value drops quickly if it has been done before. It is thus important to do
a thorough “state-of-the-art” study. It is not possible to prove that something never has
been done before, but we can show that it is unlikely.

The first approach was to search “continuous integration” in digital libraries like The
ACM Digital Library, IEEE Xplore and Google Scholar, but we found nothing relevant. A
comparisons matrix maintained at codehaus.org was examined next. The matrix presents
the features of multiple continuous integration servers, but our suggested improvement
was not mentioned. The third approach was to ask around in the open source community.
Still no indication that anything similar had been done before. An expert, Trygve
Laugstøl at Objectware AS, was cited to support the wide range of informal statements
we received. The fourth approach was to explore the documentation of four popular
continuous integration servers. Again we found no indication that this concept had already
been implemented. Finally we skimmed a number of books on the subject. The books did
not contain anything relevant and were therefore not mentioned in chapter 2.

As far as we have been able to uncover, no solution to the problem described in chapter
1 exists, but our research cannot be used to state this as a fact. The sources are much to
informal and incomplete for that. However, the research indicate that if such functionality
exists, then it is not well-known. Writing a prototype to demonstrate the concept should
thus be valuable.

5.1.2 Theory

General theory on continuous integration is relevant background information, since the
conceptual solution and the prototype is based upon these concepts. We also discussed
Maven POM and Maven’s versioning scheme, since they have been used throughout the
report.

The reader is assumed to have prior knowledge of continuous integration, versioning and
Maven. The concepts described were included to allow the reader to brush up on his/her
knowledge. Another objective was to ensure a common understanding of the terms used.

Our research indicate that there are few comprehensive sources on continuous integration
available. The overview in section 2.2 is based on the most comprehensive source we
found, an article by M. Fowler and M. Foemmel [8]. Since continuous integration is not

5.1. PRELIMINARY RESEARCH 47

a complex concept, and the reader is assumed to have some development experience, our
summary should be sufficient as an introduction to our suggested new technique.

5.1.3 Get to known Continuum

It was essential for both planning and implementation to know how Continuum works.
Some documentation was found in the Continuum distribution, but it turned out to be
obsolete. We worked with the latest stable release, version 1.0.3. The only other
alternative would have been trunk, the primary development source code. We tried this
approach, but trunk was too unstable. It would not even build successfully when we tried
it, nor could we find any useful documentation there either.

We tried to use the maven-site-plugin to extract information. We succeeded in running
the plug-in and adding multiple reporting plug-ins, but the reports did not provide much
new information. E.g., when the source code is lacking Javadoc, the Javadoc report do
not contribute much.

Information was acquired by studying the source code and asking questions in the
community. Trygve Laugstøl, the user and developer email lists and the Internet Relay
Chat (IRC) channel #continuum @ irc.codehaus.org were the primary sources.

The greatest advantage of reading source code is that it is 100% accurate. The code
is the software. A disadvantage is that reading source code is a time-consuming task.
Speaking to developers and users that have experience with the software can explain
what the software can do, why something implemented a certain way, how the different
components interact, known bugs, etc. This information may be inaccurate, and it may
be hard to get answers from the most clever people. This method is valuable nonetheless,
because humans can clear up misunderstandings and inspire new, more precise questions
in a way no form of written documentation can do.

It was hard to get an overview of Continuum by reading source code and asking questions.
High-level documentation, had any existed, would have been better suited for a general
introduction to the architecture and important design decisions. Direct questions were
better suited to research implementation details. Especially with little or none Javadoc
available, the opportunity to ask questions about the source code was invaluable. While
studying the source code and asking questions were tedious methods, they worked.

What we learned

Architecture and the technology employed was researched first. During this process
we learned that Continuum had a component-oriented structure. The next logical step
was therefore to identify the components, and their most central classes, relevant to the
prototype . We considered documenting how these central classes interacted, but decided
against it. The expected gain was not expected to outweigh the required effort. We did
however document a couple of relevant sequences to explain the prototype, see section
4.2.

48 CHAPTER 5. EVALUATION

While studying the most relevant components, we had to learn the basics behind the
technology employed. Again, the available documentation was less than satisfactory, but
- again - the community was helpful. Communication through email and IRC turned out
to be most effective.

Summary

Working with Continuum was frustrating due to the lack of documentation. We explored
all options known to us, but none seemed more enticing than studying the source code
and asking questions in the community. Reading documentation and books on the subject
was never an option, because none were found. Was it not so, we would have expected to
get an overview of Continuum far easier and quicker than figuring it out on our own. On
the other hand, documentation and books might get out of synchronisation with the code.
Detailed descriptions of the implementation is especially hard to maintain, so the source
code is often the only reliable reference. Given that we were to implement a prototype,
studying the source code was inevitable.

In retrospect, we do not see that we could have approached the problem in any other way,
given that we did not find any resources that we did not use or at least evaluate.

5.2. PROTOTYPING 49

5.2 Prototyping

This section describes the prototype and the strategy for the implementation. The focus
is on design decisions, and if we would have chosen differently knowing what we know
now.

5.2.1 Strategy

The strategy explains the most important choices we made before and during the work
on the prototype. This was not a poor attempt at a design. The purpose was simply to
describe the choices we made and explain why we chose as we did.

Problem text and underlying build engine

Maven and Continuum is mentioned in the problem definition, so already at this stage we
had an idea that Continuum and its tight coupling to Maven would be an integral part of
the solution. Even though we examined other continuous integration servers, Continuum
was considered part of the baseline, and we never found any reason to consider replacing
it with another continuous integration server.

RPC, component reuse or extension?

As mentioned in section 4.1, we found three viable approaches to utilize Continuum; use
Continuum’s XML-RPC API, build a new application with components from Continuum,
or modify the existing code base directly. We chose the last option, because we wanted
tight integration with Continuum. We still believe this was a good idea and have found
additional arguments in favour of this choice:

Easily accessible test data: Our extension is useless without test data in the form of real
projects. Having one product, instead of two, ensures that all available projects can be
used as test data.

Fine-grained reuse: Since we modified Continuum directly we could reuse code on a
fine-grained level, not being limited to whole components as in alternative two. This
reuse saved a lot of effort and made the implementation lean and easy to understand. One
product is also easier to maintain than two.

The tight coupling to Continuum is an evident trade-off point. Benefits have been
mentioned, so we will now address two drawbacks:

Intrusiveness was listed as a potential problem in section 4.1. Since we were aware of
this from the beginning, we were able to take measures to mitigate the problem. The
tactics we used is discussed in section 5.2.2. The tactics worked, and we consider the
prototype to be minimally intrusive. This disadvantage can thus be neglected.

50 CHAPTER 5. EVALUATION

Limitations inferred by the existing implementation is another drawback. I.e.,
frameworks and libraries have been chosen, Java version and coding style has been set,
the architecture is locked etc. We could ignore some, but not all, of these limitations, since
the implementation was only a prototype. Dealing with JPox was the biggest problem we
encountered. In retrospect, we have identified two main causes:

1. The JPox version used in Continuum 1.0.3 is full of bugs. However, after upgrading
to a newer version, most of the bugs disappeared.

2. It is necessary to define which fields of a class that should be fetched. This
definition is called a fetch group1. By default only primitives and object wrappers
of primitives are part of the fetch group, e.g., String, boolean, Boolean, long, Long,
etc.

This puts extra work on the developer, because he/she must specify which fields
to fetch. The prototype required additional fields not fetched in the original
Continuum implementation. We were thus forced to reload some fields or change
the existing configuration. If all fields were lazily loaded by default, this had not
been a problem. Instead a lot of time was wasted, because it was difficult to identify
what changes were required and where they should be applied. In the end, this
caused reduced readability, since modifications were not co-located.

In spite of the impediment JPox turned out to be, the benefits of reusing the data access
logic outweighed the estimated effort of writing the data access logic from scratch.
The problems we encountered were thus unfortunate, but not something we could have
avoided all together.

The Continuum way or the hard way?

Given Continuum’s architecture, it was reasonable to create a new project for each
combination of dependencies. This is due to the fact that Continuum can build any
project that has been successfully stored. This approach made it possible to reuse existing
functionality and kept our modifications from spreading all over.

Another possibility would have been to store only the original project and build this
project with all possible combinations of dependencies. No extra projects are generated
with this approach, so no extra checkouts from the Version Control System (VCS) are
needed either. Updates should also be easier, since there is only one project that holds all
the combinations. The biggest disadvantage is that this solution requires modifications
several places in the source code. This makes it intrusive and hard to maintain. This
property also makes it harder to ensure correctness, because it is difficult to identify where
changes must be made.

We consider the first option more suitable than the second, because it makes it easier to
follow good object-oriented practices, as described in [1].

1Fetch groups are explained in [31].

5.2. PROTOTYPING 51

5.2.2 Implementation

For an actual product it would be appropriate to evaluate functional and non-functional
requirements. However, the purpose of this proof of concept implementation, is to
demonstrate that the theoretical concept is possible to implement. We will therefore focus
on what is adequately implemented and what is not. The prioritised list of improvements
identified can be found in section 7.2.

Non-functional evaluation

Quality attributes are in general not given much weight in this prototype, only reusability
was given a high priority. Reusability was considered important, because the proof of
concept implementation was based on the latest stable version of Continuum, which is
quite old. In other words, it is likely that the prototype must be ported to a newer version
of Continuum. The tactics chosen were to enforce strict separation of concerns and to
make as few modifications to the existing code base as possible. The same tactics also
reduced intrusiveness. The functionality that create derived projects illustrates this:

The flow of execution is intercepted in DefaultContinuum and doPoc() is executed. This
method holds a list of derived dependencies and utilize functionality in DefaultDerived-
ProjectManager and DefaultDependencyHelper. Locating the correct interception point
in version 1.1 and calling doPoc() should then be sufficient to port the prototype to the
new version. As shown in table 4.1, some additional setup must be made, but these are
technicalities related to Modello and Plexus.

Functional evaluation

According to the rules in section 3.1 there are six changes that should result in an action.
The first two, add and remove projects, are supported. This is enough to demonstrate the
concept. The four other rules describe updates to existing projects and were omitted due
to time constraints. An update to either the input list, or the dependency list in the original
project, requires that the set of derived projects must be recalculated. I.e., derived projects
must be added or removed to reflect the changes in dependencies. This is important
functionality, but not critical for demonstrating the concept.

We also made two other design decisions related to completeness.

• The input list was put directly in the code. This was done to reduce the total
programming effort. This list should be refactored and put in a configuration file.
The format for dependency described in Maven’s project descriptor [32] seems
appropriate.

• Any version change results in new derived projects. The abstract solution states
that only upgrading a dependency should be possible, but we decided to create new
derived projects whenever the version was different from the original. We believe
that this is appropriate, since the purpose of the prototype is to illustrate the concept
and stimulate new ideas. In an actual implementation, however, it seems natural to

52 CHAPTER 5. EVALUATION

let a derived dependency with the same or older version be ignored, with an option
to enable support for any version change.

Both are simple tasks, but not necessary to demonstrate the concept and were omitted.

Summary

The strategy was to extend Continuum and modify the existing code base directly. This
choice was made after carefully considering three alternatives, and in retrospect it still
seems to be a reasonable approach. We focused on reusing functionality in Continuum
and making our extension easy to port to a new version.

The prototype support addition and removal of projects, which should be sufficient to
demonstrate the concept. Support for updating dependencies was not implemented, due
to time constraints.

Chapter 6

Discussion

We will here explain our claimed contribution to the field of System Engineering. This
includes not only chapter 3, but also the results, i.e., the prototype presented in chapter 4.
The purpose of this section is thus to put the work we have done into context and discuss
its usefulness.

Before we explain theoretical advances, we will discuss utility value. This ordering
is advantageous, since it is easier to discuss usefulness when the context of practical
applications is fresh in one’s mind.

53

54 CHAPTER 6. DISCUSSION

6.1 Utility value

This section will explain why our proposed extension to Continuum is useful.

6.1.1 Help developers create backward compatible and stable soft-
ware

The primary functionality is to add a new, unreleased version of a software project as
a derived dependency to Continuum. The developers of this software can then utilize
continuous integration to test whether their new version is compatible with projects that
depend on an old version of the service. This will help developers to follow their chosen
versioning scheme and help keep services backward compatible. Second, the build output
from Maven is available from Continuum, making it easy to determine its origin and
in which phase the build error occurred. This feature should be useful for developers
working on a new version of an existing service, since the developers can trust that
the projects they have in their instance of Continuum that utilize this service, will be
compatible with the new version.

A history of good backward compatibility and an orderly release history indicate a stable
service. This should make it more enticing to utilize the service. An indirect benefit is
thus improved chances of reuse, since clients of the service can be confident that new
versions are backward compatible.

Another indirect benefit is better collaboration with the development teams responsible
for the projects that utilize their service. The rationale is that with automation there is no
doubt as to whether the project builds successfully with the new version of the service
or not. Continuous integration ensures that the status of the build is always known.
A failed build entails that the new version of the service is not backward compatible
with the old version of the service and that the development team responsible for the
service is to blame. However, a successful build does not necessarily guarantee backward
compatibility. If a project turns out to be incompatible with the new version of the service,
despite a successful build, then the problem is that the tests in the utilizing project are
inadequate. The development team responsible for the utilizing project is then in error,
the developers responsible for the service cannot be blamed. Clarifying responsibilities
should have a positive effect on collaboration between the development teams.

It is necessary to have projects that depend on the service in question to take advantage
of our proposed extension. This is not considered a problem, since a service-oriented
architeture does not make sense unless there are consumers interested in the services
offered. A typical scenario is that multiple projects depend on some common core
functionality. Best practice, according to object-oriented principles, is then to write the
functionality in such a way that it can easily be reused. The obvious choice is a separate
component with a well-defined API. This scenario is illustrated by the following example.

6.1. UTILITY VALUE 55

Example

The Apache MyFaces 1 project use Continuum for continuous integration. In terms of
projects, it is not a huge organisation, but it is big enough that multiple projects depend
on a core service. The summary page 2 of MyFaces’ Continuum server show that their
thirteen project groups result in a total of 118 modules/sub-projects. The three projects
Trinidad, Tobago and Tomahawk all depend on the service MyFaces Core - JSF 1.1.
While not all of their 74 modules depend on Core, it is reasonable to assume that the total
API coverage is good, since the Core module holds functionality common to the other
projects.

Using our proposed extension the development team responsible for Core can build all
projects that depend on version 1.1 with the new 1.2-snapshot. This ensures that they will
get feedback whenever the 1.2-snapshot no longer is compatible with version 1.1 and will
make life much easier for developers on all four projects.

The Core service should also be much more enticing to other projects, because they
can check the project summary page for MyFaces and see the status of all the builds.
Developers evaluating Core can be confident that all functionality utilized by Trinidad,
Tobago or Tomahawk will work in version 1.2, if it worked in version 1.1. While no API
coverage is guaranteed, this is much better than having no guarantees at all.

6.1.2 Maven version ranges

Versioning ranges, explained in [4, chap. 3.6], is a way of specifying that multiple
versions of a dependency is acceptable for a project. This can be used to resolve version
conflicts in big projects. E.g., two dependencies use the Springframework as a transitive
dependency. One require [1.1,1.3]3, while the other accepts [1.2,)4. Any version in the
intersection between the two ranges, from 1.2.x to 1.3.y, can be used to solve the version
conflict.

A prerequisite for exploiting version ranges is that releases can be ordered and sorted into
ranges. However, this is not enough. To define an acceptable range, the developer must
know which versions that are compatible. Testing all releases as they become available is
not an option, so the developer must trust that releases adhere to the versioning scheme
employed. Maven version ranges will only be useful when this trust is in place.

According to these premises, we can deduct that our extension can make version ranges
more useful, since it will have beneficial effects on the backward compatibility and
stability of services and help developers adhere to their chosen versioning scheme.

1 http://myfaces.apache.org Last visited: 2007.05.21
2 http://myfaces.zones.apache.org:8081/continuum Last visited: 2007.05.21.
3versions from 1.1. to 1.3, inclusive
4version 1.2 or newer

http://myfaces.apache.org
http://myfaces.zones.apache.org:8081/continuum

56 CHAPTER 6. DISCUSSION

6.1.3 Tool support for complex dependency upgrades

The proposed solution makes it possible to use Continuum to investigate which combi-
nations of dependencies that build successfully, which might be useful when upgrading
multiple dependencies. In the rare case that multiple dependencies are incompatible
with each other, it might save time to use our extension to generate projects with the
different combinations. The purpose is then not to use continuous integration to detect
incompatibility, but to discover which combinations that build successfully.

However, in most cases, experimenting with different versions could just as well be done
manually. This kind of usage is considered a curiosity, because we are not familiar with
any practical use cases. We have nevertheless chosen to describe it, since users often
come up with scenarios that the developers never thought of.

6.1.4 Inspire innovation

The metadata needed for building a Maven project can be found in pom.xml5. This
encourage convention over configuration, since defaults can be loaded from pom.xml. This
is an important driver for Continuum’s architecture and facilitates simpler configuration
than traditional approaches like, e.g., CruiseControl.

Our extension combine the metadata from Maven with test data (the projects) from
Continuum and utilize the concept of continuous integration. I.e., we take existing
concepts and technology and combine them in a new way. This might inspire further
innovation.

5See section 2.4 for an introduction to the Maven’s Project Object Model (POM) and pom.xml.

6.2. THEORETICAL ADVANCES 57

6.2 Theoretical advances

Continuous integration is an old concept that has become increasingly more popular
with the growing popularity of Test-Driven Development (TDD) and agile development
methodologies. While the new work patterns demand more frequent builds than before,
the emphasis is still on building a single service in isolation. We will here discuss a new
continuous integration technique.

6.2.1 Prerequisite

Metadata is needed to realise the new continuous integration technique. We need to know
the dependencies of a project, and we need a continuous integration server that allows us
to modify this set of dependencies and build the project with these modified dependencies.
Maven’s Project Object Model (POM) holds the information we require, and Continuum
satisfies the requirements for the build server. While there are other ways to implement
this concept than using Continuum and Maven, the idea was conceived in this context. Our
research is thus based on the advances made by these two Open Source Software (OSS)
projects.

6.2.2 A new technique

Standard continuous integration builds one service and its dependencies. We propose
to turn this around and build all projects that depend on a service. If a project builds
successfully with the previous version of the service, but not with the new version, then a
compatibility issue has been identified. Successful builds means that the developers can
be confident that all available clients6 still work with the new version of the service. When
testing more than one service, the combinations of new and old versions of services are
also interesting. This means that for projects that depend on more than one service the
different combinations must also be built.

We suggest using a continuous integration server for running builds whenever a change
is detected by the Version Control System (VCS), to obtain the benefits of continuous
integration as described in section 2.2.1.

6.2.3 Contribution and benefits

This is a new angle to continuous integration, which adds a new level of testing. We
exploit projects already built by Continuum as test data and use them to test the API
of a service. The focus is not on checking whether method A and method B has been
implemented, or if they take the correct parameters, but on checking that the functionality
utilized by other projects still work. I.e, we concentrate on testing the functionality that is
actually used. Pure API compliance can be tested by other tools, see [33, 34].

6A client is a project that depend on the service.

58 CHAPTER 6. DISCUSSION

With this technique we achieve better control over changes to the service and can thus
improve backward compatibility. Additionally, better control over changes should mean
that no changes are inadvertently introduced, which should result in more stable services.
Another benefit is that the general quality will increase as the software is put through not
only more testing, but also a different kind of testing. The relevancy of this testing is high,
since users of an API might find ways to utilize the API that the developers did not think
of when writing and testing it.

Stable services with a tidy release history and good backward compatibility indicate a
sound development process. This instills confidence in the service and encourages reuse.
Tool support, as we have described, can thus improve backward compatibility, stability
and service quality and can make a service more interesting to reuse.

6.2.4 Test coverage

This technique exploits projects that depend on the service as test data. The effectiveness
of this technique is thus determined by the number of projects that use the service and
how diverse their usage is. When testing one new version of service, one additional
project must be built for each project that depend on this service. If another service is
added for testing, there are four combinations that must be built. The complexity follows
formula 3.1, and as explained in section 3.1.4, the number of combinations grows quickly.

To avoid congestion it is important that the continuous integration server is able to finish
building projects before the next build is initiated. I.e., there must be balance between
the number of projects to build, the time interval between builds and available hardware
resources. Assuming a fixed hardware budget and a fixed time interval, this gives that it
might not be possible to build all possible combinations. Test coverage is thus not only
limited by the number of available projects that utilize a service, but also by how many
projects the continuous integration server can support with the chosen time interval. This
indicate that the user may have to prioritise which projects to build. Suggestions for future
work that handle this potential problem can be found in section 7.2.1.

6.2.5 Real-life example

We will now present a use case from the NAUT 7 project where Erik Drolshammer is
developer. This example show why backward compatibility is important and demonstrate
the problem that we claim to reduce.

The Acegi Security System 8 depends on the Spring framework. This dependency is
documented in the pom.xml files published at Maven’s central repository 9 . The different
versions of Spring that Acegi depends on is shown below.

7 http://naut.abakus.no Last visited: 2007.05.19
8 http://www.acegisecurity.org Last visited: 2007.05.19
9 http://repo1.maven.org/maven2 Last visited: 2007.05.19

http://naut.abakus.no
http://www.acegisecurity.org
http://repo1.maven.org/maven2

6.2. THEORETICAL ADVANCES 59

Acegi version Spring version
1.0.0 → 2.0-m2
1.0.1/1.0.2 → 1.2.7
1.0.3 → 1.2.8

Acegi use a versioning scheme based on major.minor.patch. The patch version is defined
as: “To retain perfect source and binary compatibility, a patch release can only change
function implementations. Changes to the API, to the signatures of public functions, or
to the interpretation of function parameters is not allowed. Effectively, these releases are
pure bug fix releases.” [35]. Developers should thus expect that releases that differ only
in patch versions are completely backward compatible.

However, this is not necessarily true. Projects that already have a dependency on Spring,
in addition to the transitive dependency from Acegi, may experience version conflicts
when trying to upgrade Acegi. This is due to the fact that two versions of the same
dependency cannot coexist10.

There are no version conflicts in a project that depends on Spring 2.0-m2 and Acegi 1.0.0,
but upgrading to Acegi 1.0.1 will force Maven to make a choice between 1.2.7 and 2.0.x.
If 2.0.x is chosen, and Spring is backward compatible, as they claim to be11, then there is
no problem. However, if 1.2.7 is chosen, and the project utilize functionality found only
in 2.0.x, trouble is inevitable.

Poor backward compatibility does not instill confidence. The kind of behaviour described
above may thus make developers more sceptical to Acegi, affecting their willingness to
utilize the service. Using our extension, with relevant test projects, the Acegi developers
could have detected and fixed this problem prior to release. The problem of backward
compatibility can thus be reduced to “How to ensure that we have enough relevant test
projects?”. Suggestions for how to deal with this new problem can be found in section
7.2.2.

We do not doubt that the Acegi team has lots of tests to check backward compatibility,
but it is unreasonable to assume that they can cover all possibilities. This example shows
that using actual projects as test data can unravel problems that other tests missed.

10See [4, section 3.6] for details on how Maven resolves version conflicts.
11Rod Johnson claims backward compatibility in [36].

Chapter 7

Conclusion and further work

This chapter contains the conclusion and a list of suggestions for future work.

61

62 CHAPTER 7. CONCLUSION AND FURTHER WORK

7.1 Conclusion

We have described a new, advanced continuous integration technique. The concept is to
automatically build projects that utilize a service to test a new version of this service. If not
all projects build successfully with the new version, then a compatibility issue has been
identified. A continuous integration server ensures that the projects are built whenever the
service is changed and alerts the developers when a build error occurs.

The purpose of the new technique is to help developers ensure that their services are
backward compatible, not to test simple API compliance. The new technique is based
on the assumptions that more thorough testing is necessary to ensure good backward
compatibility, and that it is most important to thoroughly test functionality that is actually
used. I.e., if we test the new version of the service with all available projects that utilize
the old version of the service, then we know, for all practical purposes, that the new
version is backward compatible.

Developers that utilize a service will exploit the service in any way possible to achieve
their business goals. This means that the service is tested with combinations of parameters
and environments that the regular functional tests might not cover. This is a beneficial
secondary effect that will improve the overall quality and stability of the service.

A prototype based on the continuous integration server Continuum has been implemented
as proof of concept. We have specified six rules that govern how the prototype should
react to different user actions. Two rules, add new project and remove project, are
essential to demonstrate the concept and are correctly implemented in the prototype. The
four other rules depict updates to existing projects. These are not essential to explain the
concept and are not supported by the prototype. However, it should be a straightforward
matter to add support later, since the prototype was structured to support this extension.
See section 7.2.1 for further details.

The purpose of the prototype was to create a proof of concept. Quality attributes have
therefore not been evaluated. However, continuous integration is resource intensive,
and performance might be an issue in an actual implementation. Worst case complexity
calculations show that the number of additional projects to build grows quickly. Tactics to
improve performance should thus be evaluated when refining the prototype further. Ideas
that came up during prototyping can be found in section 7.2.1.

We have shown that continuous integration can be used to test backward compatibility
of a service. The new technique should also improve quality and increase stability of
the service, since the service is put through additional functional tests. The prototype
demonstrates how the concept works in practice and that an implementation is feasible
with technology available today.

7.2. FUTURE WORK 63

7.2 Future work

This section describes possible steps for future development on the prototype and several
topics suitable for future research. Section 7.2.1 describes possible extensions identified
during prototyping. Section 7.2.2 contains suggestions on how to further extend the
prototype by combining elements from test coverage tools and tools for API compliance
testing. Section 7.2.3 contains a list of questions that can be used as basis for empirical
studies.

7.2.1 Prototype

The purpose of the prototype was to demonstrate a concept. In this section we have
identified steps necessary to transform the proof of concept implementation into fully
functional software. We suggest implementing the features in the order they are described.

Port the prototype to trunk

Continuum 1.1 Alpha 1 was released April 23. 2007, a year after the release of Continuum
1.0.3. A report from their issue tracking system Jira 1 is the only documentation currently
available that lists the changes. This report [37] shows that there are 343 closed issues. In
other words, 1.1-alpha1 has undergone massive changes compared to version 1.0.3. Since
our prototype is based on version 1.0.3, the natural first step is to port it to trunk2 or at
least to the continuum-1.1-alpha-1 tag.

The prototype utilize Java 1.5 syntax, and both version 1.1-alpha and and trunk currently
use Java 1.4. However, as of time of writing there is an ongoing vote on the developer’s
email list 3 as to whether trunk will be upgraded to Java 1.5. It is thus likely that it is
unnecessary to convert the prototype back to Java 1.4 syntax.

Technical improvements

The focus of the prototype was proof of concept. The code quality is thus not comparable
to production code and measures must be taken to improve the quality. More extensive
tests, at least unit tests and integration tests, should be written first. This is necessary to
facilitate refactoring and detect bugs. Code cleanup and bug fixing are implied in this
process.

The next step is to examine JPOX calls. Several suboptimal solutions were chosen in
the prototype and can be optimized. The most serious were due to technical difficulties
related to wiring in the continuum-store component. The work-arounds introduced are
acceptable for the prototype, but not for a finished product and should be fixed.

1 http://www.atlassian.com/software/jira Last visited: 2007.05.26
2The term trunk denotes the main development branch in a VCS.
3 http://mail-archives.apache.org/mod_mbox/maven-continuum-dev/200706.mbox/date

Last visited: 2007.06.05

http://www.atlassian.com/software/jira
http://mail-archives.apache.org/mod_mbox/maven-continuum-dev/200706.mbox/date

64 CHAPTER 7. CONCLUSION AND FURTHER WORK

Support for updates

The set of derived projects must be updated whenever the input list or the dependencies
of the original project are changed. Otherwise the projects would have to be deleted and
re-added to Continuum whenever any of these changes occurred.

We anticipated the need for updates, so the updateDerivedProjects() method in Default-
DerivedProjectManager already support adding new derived projects according to the list
of dependencies that is sent as parameter. updateDerivedProjects() should also remove
derived projects that are no longer relevant. This method can then be used to update the
project list whenever the input list is changed. The steps needed are thus;

• Extend updateDerivedProjects() to remove derived projects that no longer are
relevant.

• Call updateDerivedProjects() every time the input list is changed.

Improve usability

Usability is not critical for a prototype, but it is important for the success of an actual
product. We suggest the following improvements to make it easier to cope with derived
projects.

• The input list should be located in a separate configuration file. The format for
dependency described in Maven’s project descriptor [32] seems appropriate. An
empty file or a missing file should disable our suggested extension all together.
It would also be convenient to have an option to disable all or some of the
dependencies in the configuration file without actually removing the entry.

• It should be possible to choose whether Continuum should use all dependencies
added to the input list as basis for the calculation of combinations or just the
dependencies with newer versions than the corresponding original dependency.
This setting can be placed in the same configuration file as mentioned above.

• Tactics to improve navigation and make the relationship between original project
and its derived variants more explicit:

– Use a tree structure on the project summary page, where each original project
is a top-level node, with its derived projects are children.

– Add a link to the original project in each of the derived projects and a list of
links to the derived projects to the original project.

– Add a link to the original dependency in the derived dependencies.

Improve performance

Bulding and integration are performance intensive activities. This indicate that it can be
beneficial to evaluate tactics that make the implementation more efficient. An effective

7.2. FUTURE WORK 65

tactic is to reduce the number of derived projects that is actually added or built. We
suggest to make it possible for the user to

• disable our suggested extension for certain projects.

• exclude or remove combinations of dependencies, to support that some combina-
tions of dependencies may be irrelevant in the user’s context.

Support for these scenarios allows the user to choose which projects to build and how
extensive and how resource intensive the building will be. Available resources can thus
be spent where there is most to gain.

7.2.2 Combine with other tools?

Our proposed new continuous integration technique is related to API compliance testing
and test coverage. These relations seem to warrant further studies;

• Can existing test coverage tools like Clover 4 , Cobertura 5 or Emma 6 be used to
obtain metrics on utilization coverage for our proposed extension?

• Supplementing our implementation with API compliance testing seems to be an
appropriate extension. Can our proposed feature be combined with existing tools
for testing API compliance?

7.2.3 Empirical studies

If the prototype is incorporated into an actual product, it is important to investigate if
the expected benefits are realised and to what degree. The following questions should be
elucidated:

• Have projects that utilize this new continuous integration technique better backward
compatibility than other similar projects?

• Has collaboration between development teams improved?

• Has the new technique facilitated more frequent releases?

• Has the reputation of the service changed and how has this affected reuse?

4 http://maven.apache.org/plugins/maven-clover-plugin Last visited: 2007.05.22
5 http://maven-plugins.sourceforge.net/maven-cobertura-pluginn Last visited: 2007.05.22
6 http://emma.sourceforge.net/maven-emma-plugin Last visited: 2007.05.22

http://maven.apache.org/plugins/maven-clover-plugin
http://maven-plugins.sourceforge.net/maven-cobertura-pluginn
http://emma.sourceforge.net/maven-emma-plugin

Bibliography

[1] Robert C. Martin. Agile Software Development.
Prentice Hall, 2003.

[2] Venkat Subramaniam and Andy Hunt. Practices of an Agile Developer: Working in
the Real World (Pragmatic Programmers). Pragmatic Bookshelf, April 2006.

[3] Jeff Langr. Agile Java, Crafting Code with Test-Driven Development.
Prentice Hall, 2004.

[4] Vincent Massol and Jason van Zyl. Better Builds with Maven.
Mergere Library Press, October 2006.

[5] Wikipedia. Software versioning.
http://en.wikipedia.org/wiki/Version, January 2007.

[6] Denis Howe. Free Online Dictionary of Computing. http://www.foldoc.org/, May
2007.

[7] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, October 1999.

[8] Martin Fowler. Continuous integration. martinfowler.com, May 2006.

[9] Steve Mcconnell. Daily build and smoke test.
IEEE Software, 13(4):144, 1996.
http://stevemcconnell.com/ieeesoftware/bp04.htm.

[10] Wikipedia. Chrysler Comprehensive Compensation System.
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_
System, January 2007.

[11] Cruisecontrol - Project Details.
http://sourceforge.net/projects/cruisecontrol, January 2007.

[12] Anthill OS - A Bit of History.
http://anthillpro.com/html/products/anthillos, January 2007.

[13] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman
to Master. Addison-Wesley, 1999.

[14] James Newkirk and Robert C. Martin. Extreme Programming in Practice.
Adison-Wesley, 2001.

67

http://en.wikipedia.org/wiki/Version
http://stevemcconnell.com/ieeesoftware/bp04.htm
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System
http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System
http://sourceforge.net/projects/cruisecontrol
http://anthillpro.com/html/products/anthillos

68 BIBLIOGRAPHY

[15] Tijs van der Storm. Continuous release and upgrade of component-based software.
In SCM ’05: Proceedings of the 12th international workshop on Software
configuration management, pages 43–57, New York, NY, USA, 2005. ACM Press.

[16] Continuous Integration Server Feature Matrix.
http://damagecontrol.codehaus.org/Continuous+Integration+Server+
Feature+Matrix, January 2007.

[17] Paul Duvall. Automation for the people: Choosing a Continuous Integration server.
http://www-128.ibm.com/developerworks/java/library/j-ap09056/
index.html#N101CD, September 2006.

[18] Cruisecontrol - Default Plugin Registry.
http://cruisecontrol.sourceforge.net/main/plugins.html#
defaultregistry, January 2007.

[19] Cruisecontrol - 3rd Party CC Stuff.
http://confluence.public.thoughtworks.org/display/CC/
3rdPartyCCStuff, January 2007.

[20] Continuous Integration Features.
http://anthillpro.com/html/products/anthillpro/features/
continuous-integration.html, January 2007.

[21] TeamCity Features’ Comparison Matrix.
http://www.jetbrains.com/teamcity/documentation/featureMatrix.
html, January 2007.

[22] Jason van Zyl and Eirik Bjørsnøs. Maven: The Definitive Guide.
http://www.sonatype.com/book, May 2007.

[23] Henning Jensen and Erik Drolshammer.
Best Practice within Java Web Application Development, 2006.

[24] Introduction to the Dependency Mechanism.
http://maven.apache.org/guides/introduction/
introduction-to-dependency-mechanism.html, June 2007.

[25] The XStream project. About Versioning.
http://xstream.codehaus.org/versioning.html, January 2007.

[26] The Apache Software Foundation. Apache License, January 2004.
http://www.apache.org/licenses/LICENSE-2.0.txt.

[27] Palash Ghosh. Java Component Development: A Conceptual Framework. ONJava,
March 2005.

[28] George T. Heineman and William T. Councill, editors. Component-based software
engineering: putting the pieces together. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001.

[29] application.xml from GBuild.
http://cwiki.apache.org/gbuild/applicationxml.html, February 2007.

http://damagecontrol.codehaus.org/Continuous+Integration+Server+Feature+Matrix
http://damagecontrol.codehaus.org/Continuous+Integration+Server+Feature+Matrix
http://www-128.ibm.com/developerworks/java/library/j-ap09056/index.html#N101CD
http://www-128.ibm.com/developerworks/java/library/j-ap09056/index.html#N101CD
http://cruisecontrol.sourceforge.net/main/plugins.html#defaultregistry
http://cruisecontrol.sourceforge.net/main/plugins.html#defaultregistry
http://confluence.public.thoughtworks.org/display/CC/3rdPartyCCStuff
http://confluence.public.thoughtworks.org/display/CC/3rdPartyCCStuff
http://anthillpro.com/html/products/anthillpro/features/continuous-integration.html
http://anthillpro.com/html/products/anthillpro/features/continuous-integration.html
http://www.jetbrains.com/teamcity/documentation/featureMatrix.html
http://www.jetbrains.com/teamcity/documentation/featureMatrix.html
http://www.sonatype.com/book
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://xstream.codehaus.org/versioning.html
http://www.apache.org/licenses/LICENSE-2.0.txt
http://cwiki.apache.org/gbuild/applicationxml.html

BIBLIOGRAPHY 69

[30] Plexus Component Descriptor.
http://plexus.codehaus.org/guides/developer-guide/configuration/
component-descriptor.html, February 2007.

[31] JPOX. Java Persistent Objects - Fetch-Groups.
http://www.jpox.org/docs/1_1/fetchgroup.html, May 2007.

[32] The Apache Maven Project. Maven project descriptor, May 2007.
http://maven.apache.org/ref/current/maven-model/maven.html.

[33] The Java Compatibility Test Tools.
http://java.sun.com/developer/technicalArticles/JCPtools/, Novem-
ber 2006.

[34] Stuart Ballard. Japitools - Java API compatibility testing tools.
http://sab39.netreach.com/japi/, November 2006.

[35] APR’s Version Numbering.
http://apr.apache.org/versioning.html, May 2007.

[36] Rod Johnson. Spring 2.0: What’s New and Why it Matters.
http://www.infoq.com/articles/spring-2-intro, 2007.

[37] The Codehaus. Release Notes - Continuum - Version 1.1-alpha-1, May 2007.
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=
10540&version=12082&styleName=Html.

http://plexus.codehaus.org/guides/developer-guide/configuration/component-descriptor.html
http://plexus.codehaus.org/guides/developer-guide/configuration/component-descriptor.html
http://www.jpox.org/docs/1_1/fetchgroup.html
http://maven.apache.org/ref/current/maven-model/maven.html
http://java.sun.com/developer/technicalArticles/JCPtools/
http://sab39.netreach.com/japi/
http://apr.apache.org/versioning.html
http://www.infoq.com/articles/spring-2-intro
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10540&version=12082&styleName=Html
http://jira.codehaus.org/secure/ReleaseNote.jspa?projectId=10540&version=12082&styleName=Html

Appendices

71

Appendix A

Acronyms

API Application Programming Interface

CI Continuous Integration

CBSD Component-based software development

DAG Directed Acyclic Graph

DBMS Database Management System

GUI Graphical User Interface

IDI Department of Computer and Information Science

IoC Inversion of Control

IRC Internet Relay Chat

IT Information Technology

JDO Java Data Objects

JPA Java Persistence API

JPOX Java Persistent Objects

JSP JavaServer Pages

NTNU Norwegian University of Science and Technology

OCP Open-Closed Principle

ORM Object-Relational Mapping

OSS Open Source Software

POM Project Object Model

QA Quality Assurance

SOA Service-Oriented Architecture

72

73

TDD Test-Driven Development

VCS Version Control System

SCM Source Code Management

XML Extensible Mark-up Language

XP eXtreme Programming

Appendix B

Web pages

Continuum development environment

Subversion console client
http://subversion.tigris.org/project_packages.html
CVS console client
http://www.nongnu.org/cvs/#downloading
Java Development Kit
http://java.sun.com/javase/downloads
Maven2
http://maven.apache.org/download.html
Maven1
http://maven.apache.org/maven-1.x/start/download.html
Ant
http://ant.apache.org/bindownload.cgi

Continuum technology

Plexus
http://plexus.codehaus.org
JDO
http://java.sun.com/products/jdo
JPOX
http://www.jpox.org
Modello
http://modello.codehaus.org
Apache Velocity Project
http://velocity.apache.org

75

http://subversion.tigris.org/project_packages.html
http://www.nongnu.org/cvs/#downloading
http://java.sun.com/javase/downloads
http://maven.apache.org/download.html
http://maven.apache.org/maven-1.x/start/download.html
http://ant.apache.org/bindownload.cgi
http://plexus.codehaus.org
http://java.sun.com/products/jdo
http://www.jpox.org
http://modello.codehaus.org
http://velocity.apache.org

