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Problem Description

In addition to the physical log in Derby, write a logical log to a Neighbor Node which acts as a hot
standby for the database, ensuring replication and improving the availability of Derby. The hot
standby database will redo the logical log records received. If the primary Derby database crashes
the Hot Standby will become primary and accept connections. Finally, when the crashed Derby
recovers it will synchronize itself with the now active primary and then reenter hot standby mode.
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Abstract
This paper describes the work done to add hot standby replication functionality
to the Apache Derby Database Management System.

The Apache Derby project is a relational database implemented entirely in Java.
Its key advantages are that it has a small footprint and it is based on the standard
Java JDBC and SQL standards. It is also easy to install, deploy and use as well
as it can be embedded in almost any light-weight Java application.

By implementing a hot standby scheme in Apache Derby several features are
added. The contents of the database is replicated at run time to another site pro-
viding online runtime backup. As the hot standby takes over on faults availability
is added in that a client can connect to the hot standby after a crash. Thus the
crash is masked from the clients. In addition to this, online upgrades of software
and hardware can be done by taking down one database at the time. Then when
the upgrade is completed the upgraded server is synchronized and back online
with no downtime.

A fully functional prototype of the Apache Derby hot standby scheme has been
created in this project using logical logs, fail-fast takeovers and logical catchups
after an internal up-to-crash recovery and reconnection. This project builds on
the ideas that are presented in Derby: Write to Neighbor Mode[4].
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This project is an extension of Derby: Log to Neighbor Mode[4]. The chap-
ters 3 and 4 have some minor changes from that project while the rest of the
report has major changes.
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Chapter 1

Introduction

1.1 Derby Overview
Apache Derby is an open source Database Management System (DBMS) written
in pure java, which means that the system is compiled once and can run anywhere
with the help of a Java Virtual Machine (JVM). It also has a small footprint, the
jar file is only 2 MB, meaning that it has significant useful functionality in a small
code size with efficient runtime resource usage.

Derby was started as a java database project named JBMS by Cloudscape Inc, a
newly founded company with main focus on developing Java database technology
in 1996. JBMS was renamed to Cloudscape and released on the market in 1997
with new versions released roughly every six months. In 1999 Cloudscape was
acquired by Informix Software, Inc which was in turn acquired by IBM in 2001.
The product was then re-branded IBM Cloudscape and the following releases
served as embedded databases used in IBM’s Java products and middleware. In
August 2004 IBM contributed the code to the Apache Software Foundation as
Derby and in July 2005 the product graduated from the Apache Incubator into
the Apache DB project. Sun Microsystems, Inc adopted the Derby project and
released a distribution of their own, the Java DB.

Today, the Apache Derby is available as Apache Derby, IBM Cloudscape and
Java DB and it shows great promise especially for the possibilities added with
the embedded environment it supports. Since the footprint of the jar file is so
small it can be embedded into almost anything and it is therefore commonly used
within web applications, development environments and portable devices.[16]

1



CHAPTER 1. INTRODUCTION

1.2 Specification of project
After a few meetings with Svein Erik Bratsberg we came up with the following
specification of what should be done in this project:

1. Ship the logical log to another Derby node in hot standby mode

2. Save the logical log to disk on both nodes

3. Redo all logical log records received by the hot standby

4. Perform takeover if the primary database should fail. Both the primary and
hot standby should have fail-fast semantics.

5. The primary must provide a catchup service to the hot standby when it
reconnects after a failure.

6. Measure the results in means of throughput, response times and hardware
utilization and compare these to the original Derby network server database.

2



Chapter 2

Transactions and Logging

In this section we will take a closer look at some of the fundamentals regarding
replication and logging. The ACID properties of a storage system or database
is often taken for granted. However, all operations done to a database or other
storage system does not necessarily possess all of these properties. To make the
ACID properties a general commodity the transactions were introduced.

2.1 The ACID Properties
The ACID Properties are the cornerstones of database management systems
(DBMS). If they are not upheld the DBMS risk losing committed information
and corrupting data leaving it in an inconsistent state. The four properties are:
[1, 3]

• Atomicity A transaction is seen as atomic it if goes from the initiate state
to the final state while showing all of the work being done in between as
a single, atomic operation or if the operation was never done at all. This
”everything or nothing-at-all”rule ensures that no incomplete or inconsistent
data can ever be returned to the user.

• Consistency The consistency property ensures that a transaction goes
from one consistent state to another. If the application running deems the
new state inconsistent, the transaction is aborted.

• Isolation A transaction needs to be isolated from other actions to protect
it from dirty data. Various locking mechanisms are efficient tools to make
the transaction feel that it is running alone on the required data. No dirty,
uncommitted data written from other transactions must be read by the run-
ning transaction to ensure isolation. The Isolation property is very closely
related to Atomicity in that it hides all intermediate results.

• Durability When a transaction is committed, its changes to the database
are made durable, in such that they are not lost.

2.2 Transactions
A transaction is a collection of actions that together have the ACID properties
covered[1]. All of the actions within a transaction do not need to have covered all

3



CHAPTER 2. TRANSACTIONS AND LOGGING

the ACID properties as long as the transaction can compensate for this in some
way. In this section we will take a closer look at different types of operations
and how these are combined by a transaction to ensure the ACID properties are
upheld. A transaction can have two possible outcomes, either commit or abort.
If a transaction commits, all the changes are saved and made available to the rest
of the database system. If a transaction aborts however, all of its changes are un-
done and its locks are released. In this way a transaction is both atomic, isolated
and durable. If the transaction is consistent or not is however the responsibility
of the application using the database.

We can divide all the possible actions into three groups: Unprotected actions,
Protected Actions and Real Actions[3]. Unprotected actions are actions that lack
all of the ACID properties except consistency. These actions can fail at any time
and if transactions are to use unprotected actions, they must be protected by the
transactions with compensating actions if it fails and needs to be undone or re-
done. An example of an unprotected action is a single disk write. When a block
is written to a disk there is no guarantee for the outcome. Logged writes are
a usual approach to compensate for this unprotected action and it is described
later. Protected actions are actions that are reliable and have all the ACID prop-
erties making these actions are safe building blocks for normal transactions. Real
actions are actions that affect the system in such a way that it is very hard or
impossible to undo its changes. If real actions are to be used in a transaction it
is important that the transaction can guarantee that it will commit before the
real action is performed. In worst case the real action must be undone by a com-
pensating action, but as stated earlier this is either very difficult or impossible.
How real actions can be included in a transaction can be seen in Figure 2.1 where
DRILL HOLE is the real action being deferred until the transaction is guaranteed
to commit.

Figure 2.1: Protected versus real actions in a transaction-oriented evironment [3]

4
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2.3 Logging
To ensure that disk writes have the ACID properties it is important that disk
write actions fall under the protected actions category mentioned in the previous
section. To be sure that the disk write is both atomic and durable it is necessary
to employ a writing mechanism that can guarantee the follow two criteria:

1. The disk write is either done successfully or not done at all

2. The disk write is durable. This means it cannot be reversed due to system
failures after it is written

2.3.1 Physical Logging
One approach to ensure the above criteria is the logged write approach. For every
write to a disk page the old and new values for the page is saved on a log external
to the original data. In this way the write can be both undone and redone if the
write is not successful or the action is forced to abort. The log can also be used
for data replication as well as all the page values are reflected in the log as well as
on the disk. This log can then be used to rebuild the database after a database
failure. To log single blocks like this is known as Block Oriented Logging [2]. The
main benefits from the block oriented logging is that not only data are logged,
but also index pages and the B-Tree structure of the index is logged. This means
that it is easy to revert changes done both to the data itself and the indexes to
an earlier state. Another great asset to the physical logging is that both the undo
and redo operations are always idempotent. This is because these operations al-
ways put the page back to the previous state.[3]

While block oriented logging can guarantee the needed ACID properties it still
has some drawbacks. For each change that is done to a page on a disk the entire
before and after image of the page must be stored in the log. The log itself also
has references to the affected disk pages and this makes the log hard to distribute
for replication purposes.

2.3.2 Logical Logging
The physical log described earlier has references to the affected disk pages. If the
log is to be distributed to other database systems, these need to have identical
physical disk layout. This is in many cases an unreasonable assumption to make.
A logical log however only saves the logical operation along with its redo and
undo mechanisms instead of the changes made to every single block affected by
the operation.[3] This is a highly desirable property especially for replication pur-
poses. If other database systems have got the same database schema1, the logical
log can be used to distribute and replicate the data directly. Another interest-
ing consequence derived from distributing the logical log is that the neighboring
database does not even need to be run on the same operating system or be the
same type of DBMS as the one distributing the log as long as it has the same

1The same tables and fields
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schema as the log distributor. If the neighboring database has the same operating
system, database system and disk layout however, the physical log can also be
used for replication purposes. As mentioned earlier the index pages and B-Tree
structures are logged as well. If the physical log is used for replication purposes
the two databases will be identical. With logical logging however, they are equiv-
alent in that they have the same values for all of its tuples. The index structure
will most likely be different though.

Another very desirable property of the logical log is the drastically reduced log
size. In a naive implementation of block oriented logging the log will be at least
twice the size of the database record it was created for. Let us take a look on an
example: If a block Bb is 4 kB large and the data written is about 300B this means
that the log record is at least 2Bb = 8kB. This means that the log is roughly
13 times as big as it could have been if only the written data was logged. In the
worst case where the record is distributed with small parts over many blocks on
the disk the amount of data written to the log is increased with 2BBNB where NB

is the number of blocks the record is split over. One of the solutions to this prob-
lem is to employ Record Oriented Logging[2]. With record oriented logging the
record itself is being logged with a before and after image instead of logging all of
the disk blocks this record resides on. In this way the maximum amount of data
written to the log for a record R is 2R and a small overhead of the log record itself.

However, this solution still suffers from recording the whole before and after im-
age of the entire record. If only one of one hundred fields of a record is changed it
should not be necessary to log the entire record. To reduce the log size to a min-
imum only the logical operation along with logical undo/redo statements should
be logged, this is called logical logging. The reason for this is that the log con-
sists of logical operations (e.g. update record <R> set field <F> = value <V>)
instead of physical operations (write data <D> to disk block <B>, page <P>).
The logical log is not concerned by the physical layout of the disk and this also a
strength for replication purposes. In this way the log can be used to replicate the
data on a completely different DBMS as long as the table structures are the same.

As we have seen, logical logging is a cheap method2 to ensure the ACID prop-
erties and also provide the system with good replication possibilities to other
systems regardless of the disk layout, hardware or operating systems. However,
the Logical Log has two important drawbacks, namely partial actions and action
cosistency [3]:

• Partial Actions A logical insert may invoke triggers or other mechanisms
while running. If the database crashes while this insert is being done, the
action is left in an inconsistent state, or half done. When the undo is at-
tempted at database restart it is not presented with an action-consistent

2Regarding disk usage, both in size and to minimize utilization of the disk for logging
purposes
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state.

• Action Consistency Simple actions with simple writes or messages are
atomic, in that they are either done completely or not done at all. However
with complex actions involving multiple messages or writes are not neces-
sarily atomic. If a partial complex action is presented to a undo or redo at
database restart this is known as an action inconsistency.

In this project the logical log is chosen for replication purposes in addition to the
physical node-internal log in both Derby databases. The logical log will consist
of simple actions, avoiding partial actions and action inconsistency and physical
log will be used for normal internal recovery. For more details on the log design
choice see chapter 5.

2.3.3 Write-Ahead Logging
A refinement of the logged write described earlier is the Write-Ahead Logging
(WAL). The WAL protocol ensures two very important properties regarding crash
recovery:[7]

1. All log records containing changes to a certain page must be written to a
stable storage before the page itself is written to disk.

2. All log records belonging to a transaction must be written to a stable storage
before the transaction is allowed to commit

These two properties combined ensure the Atomicity and Durability ACID prop-
erties. If a transaction is recorded to be committed, WAL insures that all the
log records belonging to this transaction is stored safely as well. In this way the
transaction can be redone in the events of a crash and can therefore be said to
be durable. With WAL all updates to the database can be done in-place.

2.4 ARIES
Algorithms for Recovery and Isolation Exploiting Semantics (ARIES) is a refine-
ment of the WAL protocol. It has a STEAL/NO-FORCE buffer policy meaning
that pages can be overwritten even if the owner transaction has not committed
(dirty data is allowed in the database) as well as updated pages are not forced
to disk upon commit. In ARIES every log record contains a unique log sequence
number (LSN), a reference to the owner transaction and a reference to the pre-
vious log record for this transaction. Each data page also contain a recoveryLsn
which points to the log record of the last update done to this page.

During normal operation ARIES maintains two control structures: [8]

• A transaction table containing the identification of each running transaction
and it’s status.
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• A dirty page table containing a reference to every dirty page in the system

Periodically ARIES creates checkpoint entries in the log containing the transac-
tion table and the dirty page table to ensure that they survive a crash along with
the rest of the log

After a crash, ARIES has a 3-step recovery algorithm which consists of the Anal-
ysis, Redo and Undo phases. During the analysis the log is checked for the latest
checkpoint and the dirty page table and transaction table are fetched and rebuilt.
The log is the scanned from the checkpoint and the transaction table and dirty
page table are both updated accordingly. If a transaction commit or abort log
record is found in the log the transaction is removed from the transaction table. If
a transaction begin log record is found it is added to the transaction table. When
the state of the database is restored the first recoveryLsn from the dirty page table
is chosen as the firstLsn for the recovery. The next step is the redo phase where
the log is scanned from the firstElement and every log record is redone if needed.
After the redo is completed an undo phase begins where all operations from non-
committed transactions are being undone. For each undo-operation that is done
a Compensating Log Record (CLR) is created. The CLR is a dummy record to
ensure that the undo-operation is only done once, it’s previousLsn is set to the
same as the previousLsn from the log record it is compensating for. If another
crash occurs the CLR will ensure that the recovery process skips the log record
it is compensating for. After the undo-run is completed ARIES writes a new
checkpoint and returns to normal processing again. For more information about
ARIES and it’s recovery scheme see [7, 8].

2.5 Two-Phase Commit Protocol
Commits are operations that are required to be atomic and durable. How to
enforce these two properties on a centralized DBMS is described above by using
ARIES. However, in distributed environments where the transaction can be run-
ning on multiple network nodes simultaneously this task is not trivial. To ensure
the ACID properties it is required that either all or none of the distributed nodes
commit the transaction.[9] In the distributed environment one of the processes
is connected to the user application, called the coordinator. The other processes
are hereby referred to as the subordinates.

When the coordinator decides to commit the transaction a PREPARE message
is sent to all the subordinates telling them to prepare to commit the transaction.
Every subordinate then returns a vote if the transaction should be committed or
not and await the final reply from the coordinator. If any of the subordinates
transmit a NO-vote this acts as a veto and the transaction cannot be committed.
The coordinator then goes into the aborting state and tells all of its subordinates
to abort the transaction as well. However, if all the subordinates vote YES the
coordinator enters the committing state and sends a COMMIT-message to all of
its subordinates. When all the commits have been acknowledged a force-commit
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(a) Coordinator Node (b) Subordinate Node

Figure 2.2: State Diagram for Normal 2PC Behaviour

is written at the coordinator and the transaction is committed on all of the nodes.
The normal message flow between the coordinator and one of its subordinates and
their states can be seen in Figure 2.2 and Figure 2.3.

Some modifications have been made to optimize the Two-Phase Commit (2PC)-
protocol including a Presumed-Abort and Presumed-Commit 2PC protocol. Both
are thoroughly described in [9] . In this project a very simplified 2PC Presumed-
Abort will be used in the two-safe replication approach.
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Figure 2.3: Normal Message Flow in 2PC
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Chapter 3

Replication and Log Distribution

One of the primay goals in this project is as mentioned earlier to ship log records to
a neighboring hot standby database. This chapter will take a look at some of the
potential uses for this distributed log. When it comes to replication, transactions
can have two different properties, either one-safe or two-safe[6]. The transaction
is said to be two-safe if all the log records concerning this transaction are forced
to the neighbor node before the transaction is allowed to commit. The opposite,
one-safe sending, is when the log is saved and sent over in batches either at a
given time interval or when the log buffer fills up. In this way the log can be
sent at times where the server and/or network utilization is low. To keep the
following examples simple we assume that the system consists of one primary
and one secondary database.

3.1 Data Replication
The simplest use of the distributed log is for data replication purposes. The
log can either be stored in its original form as a backup or it may be handled
by another DBMS. In the latter case the DBMS receives the log records and
processes them accordingly. When a commit record is received for a transaction
x, the whole transaction is done at the backup DBMS and committed. If the
primary database is completely lost, the backup database can be used as the
new primary when a new system is built. There are two ways to ship the logical
log, as mentioned earlier: By using one-safe and two-safe replication. Both have
a different set of properties that makes one more desirable than the other in a
chosen environment.

3.1.1 One-Safe Replication
To achieve higher throughput from the system and to reduce the response times,
the running transactions are allowed to commit their changes to the primary
database as usual without synchronizing with the secondary database first[6].
This is also called a-synchronized replication or one-safe replication. For the
transaction controller the replication is completely transparent and the users
of the database system are not affected by transmit delays to the secondary
database. However, the one-safe replication approach has one major drawback:
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The primary database could crash before or while transmitting the log to the
secondary database risking loosing transactions entirely. The potential problem
can be seen in Figure 3.1:

1. The transactions are running normally, T1 is committed and the changes
are propagated to the secondary database

2. Transaction T2 commits on the primary

3. The primary goes down before the commit record for T2 arrives at the
secondary.

4. The secondary becomes the primary without redoing T2 as T2 was not
recorded committed

5. The changes done by transaction T2 is lost, durability is compromised

Figure 3.1: Potential problem with one-safe replication

As shown above, loss of transactions in one-safe replication can pose a serious
problem and can in worst case compromise the durability property.

3.1.2 Two-Safe Replication
An alternative to the one-safe replication method is to make all transactions wait
until the changes are propagated onto the secondary database before they can
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commit. When the log has been confirmed received by the secondary the trans-
action is committed using a 2PC protocol. While the two-safe approach guarantee
the ACID properties it also imposes a performance problem: The response time
for transactions are increased by at least one round time of messages.[6] Since the
2PC protocol does not release its locks until it is committed it does not only in-
crease the response time for transactions, but it also increases lock contention at
the primary which in turn may dramatically affect the performance of the entire
system.[5]

To illustrate this, take a look at two-safe replication during normal execution
in Figure 3.2. There are two transactions active that depend on each-other1. As
we can clearly see the response time for both T1 and T2 will be dramatically
increased from the one-safe replication example shown earlier as T1 needs to wait
for confirmation from the secondary before performing a 2PC and T2 needs to
wait until T1 is committed until it can start at all. With large hot spots like these
in databases this approach will impose serious performance penalties. However,
when the primary crashes after the prepared commit of T2, T2 is not entirely
committed when the crash occurs. In this way T2 will be aborted by the sec-
ondary upon no doCommit confirmation from the 2PC and it will eventually be
aborted by the primary when it goes online and starts the recovery process.

Another problem with the two-safe replication approach is when the secondary
database crashes or the communication lines goes down between the primary and
secondary databases. In a naive implementation of the two-safe approach trans-
actions will still wait for the secondary to respond before they are allowed to
commit and release their locks. Arriving transactions would pile up until either
the secondary would come back online or the primary cannot receive any more
transactions. At best the throughput and response times would be awful. In
worst case the primary would appear as offline after a while, rejecting connec-
tions. However, the ACID properties are still enforced by both the primary and
secondary databases.

An optimized two-safe replication approach has also been researched to achieve
the desirable properties of the two-safe protocol described here optimized by ad-
dition of partial synchrony in the log transfer protocol[5, 6]

1They need exclusive locks on at least one of the same objects in the database
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Figure 3.2: Two-safe replication during normal execution
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3.2 Hot Standby
In systems that require high availability it is important to remove any single point
of failures. If a process goes down it might take the whole system down as well, or
at least the processes that depend on it. To avoid the single point of failure it is
important to have redundancy in processes, this goes for database systems as well.

In the hot standby case the DBMS consists of two identical databases: One
active primary and one passive in hot standby mode[3]. This means that the
active database answers all the requests from the clients and processes these like
usual. However, should the primary fail, the database in hot standby takes over
as the primary while the old primary is set to restart and do recovery work. When
the crashed database comes back online it is either set in hot standby-mode while
the new primary answer all the clients or it tells the now active database that it
is ready to go and takes over as the primary again while the other goes back to
hot standby.

To make the hot standby ready to take over for the old primary it is impor-
tant that it is synchronized with the primary and this is where the distributed
log is needed. For every operation done on the primary, the log record of this
operation is sent to the hot standby and redone there as well. However, when
transmitting only the log records to the hot standby, the transactions running
when the crash occurs will loose their work as the hot standby does not have the
transaction table or lock table. This means that all running transactions must be
aborted upon a primary crash, unless a monitoring process can restart the trans-
actions on the hot standby node. It is also important that the primary is fail-fast
such that the hot standby can take over after a small delay and that the primary
crash is masked as a slight delay only to the connected client transactions.

3.3 ClustRa
In parallel database systems where high throughput and short response times
are very important it is not feasible to force the log to disk on every commit.
ClustRa is a highly available parallel database which employs a main-memory
version logging technique, neighbor Write-Ahead Logging (nWAL) combined with
a node-internal log.[2, 12] The ClustRa database is divided in two databases
running in parallel with a number of nodes with independent failure nodes on
each site. On each node there is a transaction controller, a database kernel, a
node supervisor and an update channel. ClustRa employs two-safe replication
with an early answer to counter the extra time it takes to commit using 2PC: On
normal execution of a request the transaction controller appoints a hot standby
transaction controller on a node on the other site along with a database kernel on
the nodes containing the main and hot standby-replica of the data being changed.
The transaction controller then sends the operation that should be done to the
kernels on both the primary and hot standby node along with the number of log
records the hot standby-node should receive. The update channel on the primary
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Figure 3.3: Two-safe replication with nWAL in ClustRa

node sends the log records over to the hot standby-node where they are redone.
After both the kernels have sent an ack to the active transaction controller it
submits an early answer back to the client and then initiates the rest of the
commit procedures. The above example is illustrated in Figure 3.3, where T0 is
the active transaction controller, K1 and U1 is the active database kernel and
update channel while T3 is he hot-standby transaction controller and K3 is the
hot-standby database kernel. As shown, the distributed log must be written to
two nodes with independent failure nodes before the changes are made to disk
and before the transaction is committed. By logging to both sites an entire site
can crash and the changes will still be reflected on the system.
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Chapter 4

Derby Design

The architectural design described on the official Apache Derby website[15] is
divided into two different views, both will be presented in the following chapter.

4.1 Derby Layers
The Derby system can be divided into layers of functionality to give a overview of
how the different components work together and also to group similar functional-
ity together. The layers in the bottom provide services for the layers above while
concealing the underlying data structures and data. As shown in Figure 4.1 the
layer/box model consists of four layers: JDBC, SQL, STORE and SERVICES.

4.1.1 The JDBC Layer
The Java Database Connectivity (JDBC) layer is the top layer of Derby and is
also the only layer that provides an Application Programming Interface (API) to
other applications or users. This single point of entry ensures that applications
using the Derby database is forced to access it through the JDBC layer. They can
only use prepared statements through the standard java.sql.PreparedStatement
class and not through any of the internal Derby classes.

4.1.2 The SQL Layer
The Structured Query Language (SQL) layer is responsible for the compilation
and execution of SQL queries. The compilation process can be described by five
steps:

1. Parse the query into a tree of query nodes using Javacc

2. Binding the tree nodes to the dictionary to get table names, column names
and so on

3. Optimize the access path selection through the tree

4. Generate a statement plan. This plan is directly compiled to byte code.

5. Loading the generated class and create an instance of this class to represent
the state of the query
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When the compilation is done the statement plan is executed on the object created
in the compilation process. This execution returns a native Derby resultset that
is passed back to the JDBC layer. The JDBC layer then converts the resultset
into a standard JDBC one and represents the results to the client application.
The resultset objects sent to the JDBC layer interface with the Store layer to
fetch data from the raw data store.

4.1.3 The Store Layer
The store layer is responsible for handling the data storage and is divided into the
access and raw sub-layers. The access layer provides the SQL layer with a row
based conglomerate interface. In this way the SQL layer can view the underlying
raw data store as a traditional database store with rows and columns. The raw
store is responsible for storage of the data on disk pages as well as transaction
logging and transaction management.

4.1.4 The Services Layer
The services component is a collection of utility modules used in the entire system.
Some services examples are error logging, cache management and lock manage-
ment. Because of the lack of clear interfaces between the services layer and the
others it is put aside the other layers instead of inside the hierarchy as usual.
Client applications may however not connect to the services layer, the only ex-
ternal interface is as described above through the top of the JDBC layer.

Figure 4.1: Derby: Architectural Overview

4.2 The Module View
Another approach to the derby architecture is to divide the source code into
modules. A running system can be described as comprised by a monitor and a
collection of modules.

4.2.1 The Monitor
A monitor is a way to map external module requests to internal implementations.
In this way the monitor can map different internal versions to different external
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requests with regards to the request itself and the environment of the request.
An example is when a client connects to the JDBC layer as described above, the
Derby system recognizes the version of the Java Virtual Machine (JVM) of the
client. This is then used to determine what JDBC version should be used.

4.2.2 Modules
A module is a set of functionality and is defined by the modules interfaces. The
module is often seen as a black box to the outside world, what happens inside
the module is irrelevant as long as the module responds correctly to incoming re-
quests. The module approach ensures that it is easy to replace modules or write
new ones as long as the interfaces are well designed. It can be safely replaced
without affecting the callers code.

The easiest way to see the source code in Derby as modules is to divide the
source code according to the internal packages in Derby:

Module Derby Package

Network Server org.apache.derby.drda and org.apache.derby.impl.drda
JDBC org.apache.derby.jdbc and org.apache.derby.impl.jdbc
Execution org.apache.derby.impl.sql
Access org.apache.derby.impl.store.access
Lock Manager org.apache.derby.impl.services.locks
Buffer Manager org.apache.derby.impl.services.locks
Logging org.apache.derby.impl.store.raw.log
Data Store org.apache.derby.impl.store.raw.data
Transaction Control org.apache.derby.impl.store.raw.xact

Table 4.1: Derby Modules

As we can see from Table 4.1 there is a connection between the module view and
the layered box view. The logical log implemented by this project will be added
as another module in the store layer and will have interfaces toward the execution
part of the SQL layer where the logging is performed.
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Chapter 5

Design Choices

In this chapter we will take a look at the most important design choices

5.1 Design Goals
To implement a Hot Standby Scheme in the Derby DBMS there are some changes
that need to be done. The following functionality is needed:

• Logical Log
A Logical Log must be created to make the database log not dependant
on the physical layout of the disk. Also when the log is logical only the
appropriate before and after images of the operation need to be written
to the log, not the entire affected disk pages. The logical log is to be
used for replication only and will not be used for any recovery purposes
other than catchup. The physical log of Derby is used for node-internal
transactions and recovery as usual, and thus the problems with partial
actions and actions consistency are avoided as the logical log is only used
to log database tuples.

• Logical Log Shipper and Receiver
A mechanism to transfer the logical log between the primary and the hot
standby database must be created.

• Fail-Fast Mechanism
To avoid long down times it is important that the Hot Standby have a way
to detect that the primary database has died. To implement a fail-fast
mechanism a heart-beat signal is needed between the two nodes. If several
heart-beats are missed the primary is assumed to be down.

• Takeover Mechanism
When a primary database dies it is important that the hot standby is able
to take over. The takeover can be summarized in the following four steps.

1. Discover primary down

2. Abort running transactions

3. Switch internal mode to primary
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4. Accept connections

• Hot Standby Catchup
When the former primary database comes back online after the crash it
needs to be caught up with the new primary. When the hot standby
database is down for some reason the primary database stores its logs on
stable storage while waiting for the hot standby to become active again.
When it does the logical log saved on stable storage must be sent to the hot
standby until it is up-to-date and normal processing can continue. Before
catchup the hot standby is made up-to-crash consistent before it becomes
available. The node-internal physical log is used for this recovery as usual
in derby. When the hot standby is finally recovered the catchup can com-
mense.

5.2 Design Overview
To avoid too many changes inside the Derby core, most of the functionality is
created as services that are started whenever needed. The client connections
to the database goes through the network connection control in Derby and are
passed on to the embedded database. The network interfaces used by the hot
standby implementation should be placed within the network connection control.
However, due to the design of the Derby system, the communication between
the network service and the embedded database is one-way only (except for the
jdbc-connection), so the log shipping and receiving still have to be included in
the derby core. The overall design of the system, including one connected client,
a primary database and a hot standby database can be seen in Figure 5.1. The
client connects to the network server as usual so there is no need to make any
changes in the client software. The server of the primary database then start the
connection and connects to the hot standby server. The network servers exhange
heart-beats and forward the statements from the client to the Derby core. The
core is responsible for creating the logical log and shipping it to the hot standby
where it is redone. The network server is also responsible for setting states in
the core, these states include if the hot standby is alive or if the server is in hot
standby or primary mode.
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Figure 5.1: Design Overview
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5.3 Logical Log Format
The logical log record is based on the DO-UNDO-REDO protocol described in
[3] and should in our case contain the following fields:

• Log Sequence Number (LSN): The LSN is a unique field containing the
sequence number for this particular log record. LSN’s are needed to ensure
the ACID properties when using the ARIES approach to recovery.

• Previous LSN for this Transaction (prevTransLSN): The previous LSN for
this transaction is needed by the recovery agent to roll back the changes
done by a particular transaction.

• Transaction id: The identification for the particular transaction doing this
operation.

• Operation: The type of the operation done is saved in the operations field.
This is necessary both for undo and redo information.

• Table and Record id: The table and record id’s currently being changed by
the logged operation. The table id can be either the name of the table or
some other unique id. The record id is the primary key of the record being
changed.

• State information: The state information is the before and/or after images
of the affected records. In our case the log records can be either Undo-
only, Redo-only or Undo-Redo log records. This means that the log records
stored are smaller and log size is reduced. On insert operations only the
after image is needed, while delete operations only need the before image.
Update operations however require both.

One of the main reasons to employ logical logging in this case is to make repli-
cation to other DBMS nodes possible. As a consequence we can also manage to
reduce the log size as explained in subsection 2.3.2. To keep the log as small as
possible only the changed values are included in the log records. This means that
if we do a query:

UPDATE personInfo set city = ’New York’

We only have to store the key to every post along with the old and new city
instead of storing every single personInfo-record in the log. Considering commit
and abort operations, these log records contain only the LSN, TransactionId and
Operation fields described above.
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The complete overview of the new log format can be seen in Table 5.1

LSN
prevTransLSN
TransactionId
Operation
TableID
Record
States Insert After Image Only

Update Before and After Image
Delete Before Image Only
Commit No Images
Abort No Images

Table 5.1: Logical Log Format

5.4 Logical Log Implementation
To implement a new logical log in the Derby system a new logical log module
is created. The main contents of the module are a Logical Logger service, the
Logical Log object along with their interfaces. The Log Shipper and Receiver are
implemented as a new ’net’ service in the service layer.

5.4.1 Logical Logger
The logical logger will be a simple service containing the log method. The rest of
the functionality regarding logging and shipping will be handled inside the Logical
Logger to keep the implementation clean and to change as little as possible of
the existing Derby system. The two-safe support added to the system is very
simplistic and only ensures that the log records arrive on the backup before the
transactions are allowed to commit.

5.4.2 Logical Log
The logical log is created as a linked list of log records. For simplicity the log is
used and shipped as an object in the java heap instead of translated to byte code
in the way the physical log in Derby is written.

5.5 The Hot Standby Controller
To keep track of the hot standby states a hot standby controller is needed. The
hot standby controller is also responsible for internal database connections used
by redo of arrived logical logs, and to ensure database consistency during takeover
and catchup. The hot standby controller is also the interface the network server
uses to set the states and initialize takeover as shown later in this chapter.
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5.6 Replication Modes
There are two different replication modes to take into concideration in this project.
The one-safe and two-safe replication schemes as mentioned earlier. The one-safe
replication mode is rather straightforward. The primary ships the logical logs at
chosen intervals and is redone at the hot standby node. The two-safe approach
however requires that a 2PC protocol is used, where the primary is not allowed
to commit until the hot standby has signalled to do so. In this project the main
focus is set on one-safe replication. However a two-safe-like replication scheme is
added where 2PC-messages are handed between the primary and the hot-standby
before the log is shipped, to simulate two-safe replication. The 2PC scheme used
is presumed-abort[9]. This means that an abort does not need to use 2PC because
all transactions that are not committed are sooner or later aborted. If no commit
is received at the hot standby the transaction is aborted.

5.7 Communication
There are multiple alternatives concerning which protocol to use for communica-
tion:

• TCP

• UDP

• Java RMI

• SOAP

In our case the most reasonable approach would be to use the TCP-IP protocol.
If we are to use UDP it is more difficult to make guarantees of packages arriving
in the right order or arriving at all. Java RMI uses the RPC approach, that is a
request is sent and an ack is received for every call. This provides a lot of unnec-
essary overhead and will most likely act as a bottleneck in our communication.
In addition to this Java RMI must have a dedicated broker to register services,
which is not necessary when the receiver node does not move from one network
address to another very often. SOAP suffers from the same problems, but in
addition the SOAP messages have a very large xml overhead which renders the
protocol way too slow and cumbersome for our use.

To ensure that the network overhead is as small as possible a TCP-connection
is set up on startup and kept up for the duration of the database server. If the
connection goes down reconnect attempts are made until the connection is up
again.

5.8 Communication Interfaces
To simplify the connection between the two derby nodes a message based request-
response protocol is needed. The primary must contain a client which sends
messages containing logical logs, heart-beat messages and other requests while
the hot standby node must contain a server which answers these requests.
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5.9 Network Server
To implement the hot standby scheme some changes must be made to the Derby
Network Server as it is responsible for the client connections.

5.9.1 Initial Startup
When the database is initially started one database is started in hot standby mode
and another is started as a primary. The primary connects to the hot standby
database at the network address provided with a parameter when the database
is started from command line. When the hot standby gets a connection from
the primary the network address of the primary is saved so that the hot standby
knows where to find the other database if a takeover is necessary.

After this the primary goes on and accepts connections from clients. The hot
standby does however not accept connections until it becomes primary and takeover
is finished. The possible states and their transitions can be seen in Figure 5.2.
As shown the transitions are start → hot standby → primary → end. There is
no way for a hot standby to do a take-back, that is go back to primary after
becoming a hot standby.

Figure 5.2: State Diagram: Network Server

5.9.2 Heartbeat
To enable fail-fast semantics messages telling the hot standby that the primary
is still alive is needed. The primary ships messages saying ”I’m Alive” is sent to
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the hot standby at fixed intervals of time. If no heartbeat messages have been
received by the hot standby within the allowed time1 the primary is assumed
down and takeover is engaged.

5.9.3 Normal Execution
During normal execution, the network server is unchanged with an exception of
the hearbeats sent and received like mentioned above.

5.9.4 Takeover
When the primary is detected as down a takeover is needed. The takeover phase
consists mainly of signalling the hot standby controller to commense takeover and
abort all running transactions and then finally accept incoming connections when
the hot standby controller is ready.

5.9.5 Catchup
If the hot standby has for some reason gone down, either from when it was
primary or hot standby some synchronization between the databases is needed.
The primary might be changed since the last time the hot standby was up. The
primary detects the arrived hot standby and asks it for the last changes in its
local logical log. Everything done from that last change is then sent to the hot
standby to be redone. When the local logical log on both machines match the
databases go back to normal processing.

5.10 Changes to the SQL Layer
Some changes need to be made to the SQL Layer/Execution Module in Derby
to employ our new logical log. However this should be limited to collecting the
information needed for the logical log and to invoke the logical logger with these
values.

1The default timeout value for heartbeat messages has been set to ten seconds.
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Implementation

To implement the suggested log format the log record was divided into two parts:
One part containing the control information of the log record: The transaction
id, LSN of the record along with the previous LSN for this transaction. The
name of the affected table is also included. The other part contains the operation
information: What type of operation this is along with both the before- and after
image of the record being changed. In addition to the logical log and the logger
mechanism a hot standby controller is needed to keep track of the hot standby
states, e.g. Is the hot standby alive? Am I hot standby? Finally the Derby
network server must be changed according to the design choices mentioned in the
previous chapter.

6.1 Network Server
When the derby database is to be used as a standalone DBMS in client/server
mode and not in the standard embedded mode the network server is needed.
The network server is responsible for getting jdbc connections and then forward
the statements to the embedded derby database. How the network server inter-
acts as an intermediate between the clients and internal databases can be seen
in Figure 5.1 in chapter 5. Because of the network server implementation the
invocations between the network server and the derby core are one-way. The net-
work server can invoke methods inside the derby core, but the network server is
implemented as protected and hence cannot be invoked from the outside. Due to
this and the network server being responsible for client connections, the network
server is a natural place to implement the hot standby mechanisms needed. The
drda package is very large, so for simplicity only the affected classes are shown in
Figure 6.1. The communication between the primary and hot standby network
servers is implemented as a logical client and logical server much in the same way
as inside the derby core.

6.1.1 Initial Startup
When the network server is started a NetworkServerControlImpl is started where
the arguments provided by the invoker are processed and the appropriate actions
are taken. The arguments for the network server are added in Appendix B. When
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Figure 6.1: org.apache.impl.services.drda
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the network server is started the hot standby controller and hot standby poller
is initialized in the correct hot standby mode. When these have been initialized
the network server is halted for as long as the database is hot standby using:

1 while ( true ){
2 i f ( ! IS HOT STANDBY)
3 break ;
4 Thread . s l e e p (5000) ;
5 //NOOP − wai t to become primary
6 }

When the network server is set to be primary, the loop is broken and it resumes
its normal execution and accepts client connections. In this way the transitions
are null → hot standby → primary → null as described in the design goals.

6.1.2 I’m Alive and Takeover
During normal execution the added responsibility of the network server is mainly
to send and receive heartbeat messages. The hot standby poller responsible for
these messages has the same transitions and states as the network server itself,
namely null → hot standby → primary → null.

Poller in Hot Standby Mode

When the hot standby poller is started in hot standby mode it goes into a sim-
ple waiting algorithm checking for timeouts. A count-down from ten seconds is
initiated, if the countdown reaches zero the primary database is assumed to be
dead and the correct measures need to be taken. Every time an I’m alive message
is received the counter is reset. However, if the timeout occurs the hot standby
mode is reversed to primary mode and the logical server is asked for the url of
the old primary. This url is then passed to the hot standby controller, then the
NetworkServerControlImpl’s hot standby flag is finally changed to resume the
execution of the network server and accept client connections. The logical server
inside the drda.net package is shut down and the logical client is started to enable
it to send I’m alive messages as soon as the new hot standby database is ready
to reconnect.

Poller in Primary Mode

When the hot standby poller is initiated in primary mode it attempts to send
an I’m alive package to the hot standby and receive an acknowledgment. If the
connection is broken the poller will retry until the attempt is succesful. When a
connection is made or broken the hot standby controller is notified that the hot
standby is alive or dead. Then another I’m alive message is sent every second for
as long as the duration of the server.

6.2 The Logical Log
The logical log is created as a linked list of log records. The logical log has
references to the first and the last log record while the records themselves are
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interconnected. When a new log record is added it is checked that it’s LSN is
greater than the last LSN recorded in the log to ensure that the log records are
not duplicated and that the log records are recorded in strict sequence. An illus-
tration of a small logical log is shown in Figure 6.2. Simple methods to traverse
the logical log are created and new log elements can be added either one by one as
done with the logical logger or in batches as done by the log receiver. To avoid the
log becoming too big and depleting the system memory the log is implemented
as a circular buffer with a maximum size of 20.000. If the log is ”full” the first
element is removed and the next element is added to the end of the log.

Since the logical log acts as a buffer between the logical logger and the log ship-
per it is important that some care is taken when the log is transmitted to the
log receiver. When the log is sent it is also purged to free needed stack space.
To avoid race conditions where log records are added to the log after the log has
been sent, but before it is purged, it is important to create a mechanism to avoid
the problem entirely. When the log is to be sent it is first purged by invoking the
flush method. This clones the entire log and returns it to the invoker and then
resets and empties the log. The log to be sent is now extracted while the log itself
is reset and ready to add more log records.

To avoid race conditions some thread synchronization is required. An example of
a possible and fatal race condition can be describes as follows:

1. Transaction a gets an lsn and start the logical logging of the current oper-
ation.

2. Transaction b gets a new lsn and finishes its logging before a.

3. The logical operation of b is written to the log before the a. When a tries
to add its log record to the log an exception is thrown due to a’s lsn being
smaller than the last one recorded in the log and it is therefore discarded.

4. The logical log missed one or more log records and the log is left in an
inconsistent state.

The logical log also contains some methods to help traverse and split the log
as needed by the hot standby controller and log shipper/receiver. The split()
method returns the subset of the logical log from the lsn provided and to the end,
while the rewind() method returns a log element based on the provided lsn.

The log can easily be written to- and read from disk with the static methods
readFromDisk() and flushToDisk. The log is then written to logicallog/logical.log

The interface for the operation types and images can be seen in Figure 6.3. The
implementation of the log records, the whole log and the operations can be seen
in Figure 6.4 and Figure 6.5.
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Figure 6.2: Logical Log Implementation

Figure 6.3: org.apache.iapi.store.logical.log
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6.3 The Logical Logger
The logical logger is the class responsible for creating logical log records and
adding these to the logical log. The old and new images of the record affected are
used to create logical images that are added to the logical operation corresponding
to the operation in progress (e.g. insert, update or delete). This operation is then
added to a new log record along with the control information mentioned earlier.
Since the logical log is to be shared with another node it is important that the
primary and backup node agree on a LSN numbering convention. This can be
done in two ways:

• The logical logger asks for the next LSN number from the receiver on startup

• The logger employs its own internal LSN numbers and these are changed
when they arrive at the receiver before they are added to the log there.
However, this approach removes the possibility for the logical log to be used
for recovery since the numbering of the distributed log no longer match the
ones recorded by the sender.

In our project the first approach is chosen. When the LSN is received by the
logical logger it begins its normal operations. When the Derby database closes
the connection to the log receiver the latest recorded LSN is written on the re-
ceiver and shipped to the database when it reconnects. However, if the system
would consist of more than one primary database shipping log records to one
hot standby and the logical log is used for replication only, the second option
would be more preferable since the cost of synchronizing the LSNs between the
databases would increase greatly for each new database added to the system.

The Logical Logger is created as a global singleton1 to avoid race conditions
and synchronization issues. The global derby system share this logical logger and
its LSN numbering scheme. If the services provided by this global instance is to
avoid race conditions they need to be synchronized. To avoid these race condi-
tions under heavy load the log, logAndCommit and logAndAbort methods are
synchronized.

To provide one- and two-safe replication the logical logger provides three ser-
vices to the Derby system, the normal logging service along with methods for
committing and aborting the log. When the normal log method is invoked a new
logical log record is created with the LogicalLogFactory and added to the logi-
cal log. The logAndCommit and logAndAbort methods however depend on the
mode set. If the mode is set to ONE SAFE the commit log records are added
to the logical log as if the normal log method was invoked. If the mode is set
to TWO SAFE however the system employs a two-safe-like shipment where a
simple implementation of the two phase commit protocol is used. The commit
operation is put on halt until either the 2pc messages are passed and the log is
received successfully or an error has occurred. If an error occurs during two-safe

1Only one instance of the LogicalLogger can be created
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commit an abort-log record is written instead and the transaction will be aborted
instead. How these modes affect the log shipments are shown in the Log Shipper
section and how they affect commits and aborts are shown in GenericLanguage-
ConnectionContext.

6.4 Hot Standby Controller
To ensure that the log elements received by the hot standby are correctly redone
and to ensure the ACID properties of the database scheme2 some control is needed
and the hot standby controller is created for this purpose.

The hot standby controller has two main purposes: To provide the derby sys-
tem with the states of the hot standby system and to provide the hot standby
access to the embedded database and to redo/undo log records, depending on
aborts or commits.

6.4.1 Hot Standby States
The different states saved in the hot standby controller are:

• hotStandbyAlive The hotStandbyAlive is a boolean telling if the hot
standby is alive or not. It is only needed when the database is in pri-
mary mode and used by the LogShipper to check if the hot standby is alive
before an attempt to ship logs are made.

• hotStandbyUrl The url to the hot standby database. This is set by the
network server on startup as it is passed as an argument to the network
server when started if the database is started in primary mode. However,
if the database is started in hot standby mode, the hotStandbyUrl is set to
the url of the connecting primary. If the primary should go down the hot
standby will become primary and know where the new hot standby will be
when it comes back online.

• isInHotStandbyMode This is a boolean telling the system if this database
is in hot standby mode or not. If isInHotStandbyMode is set to true the
logical logger will be disabled and no log shipments will be attempted.

• replicationMode To support one-safe and two-safe replication as described
earlier the hot standby controlloer has a mode that can be set to either
ONE SAFE or TWO SAFE. These modes will then be read by the logical
logger on commits and aborts and the correct approach is taken as described
earlier.

6.4.2 Hot Standby Support
The states mentioned above are very useful to the hot standby scheme, however
the main responsibility of the hot standby controller is to provide the hot standby
database the mechanisms needed to redo or undo the received log files depending

2The database scheme meaning the primary node and hot standby node combined.
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on the transaction being committed or aborted.

The hot standby controller has an internal, very simple transaction table im-
plemented by a Hashtable containing the transaction id and the lsn of the last log
record done by this transaction. It also has a method to connect to an internal,
embedded database using the Database class. The Database class is responsible
for fetching jdbc connections to a given database. When a logical log is received
by the log receiver it is forwarded to the hot standby controller where it is put in a
log buffer. If the buffer is full a wait-message is returned to the primary database
to signal that it has to retry in a little while due to the full log buffer. The buffer
is needed to avoid the hot standby falling too far behind the primary. If the
primary is not put on wait the memory on the hot standby would fill very quickly
and the system would eventually crash. When the log is added to the buffer it
is eventually reset and scanned from the start. If the transaction is not already
in the transaction table it and the lsn of the log record is added to the transac-
tion table. If the transaction table already contains the transaction it is updated
with the lsn of the log record. Finally if the operation is redoable it is redone.
If the log record is a commit record the transaction is simply removed from the
transaction table and the transaction is considered committed. However if the log
record is an abort record the transaction is rolled back using the private method
abortTransaction. This transaction scans the log from the last lsn recorded in
the transaction table and traverses the log backwards, undoing the records as it
goes. When all the log records have been undone the transaction is removed from
the transaction table and no further actions will be redone or undone on its behalf.

If a takeover is needed due to the primary going down the hot standby con-
troller is notified of this through the setHotStandbyMode method. Before the
mode is set a clean-up is done. The clean-up goes through the transaction table
and aborts all the transactions recorded there in the same manner as before.

The hot standby controller service is shown in Figure 6.6

6.5 Communication

To be able to send and receive logical log records the log shipper and log receiver
was created. The connection between the two are implemented by a TCP socket
that is kept alive for as long as the database is running. To simplify and hide the
communication implementation from the rest of the database a request-response
protocol is created. The communication is created as a service in the service layer
of Derby in the packages
org.apache.derby.impl.services.net,
org.apache.derby.impl.services.net.receiver and
org.apache.derby.impl.services.net.shipper.
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Figure 6.6: org.apache.impl.services.hotstandby

6.5.1 Logial Client and Server
The request-reply protocol needed to exchange both logs and messages between
the primary and the hot standby databases is implemented in the LogicalClient
and LogicalServer . When started, the logical server waits for connections3. When
the Logical Client an attempt to connect to the server is done. If the client is
unable to connect it will wait for a random amount between 0 and 10 seconds
before a reconnection is attempted. When the connection is complete it is kept
up for the duration of the server. If the connection is disconnected a reconnect is
issued until the connection is back up.

To keep the communication protocol simple, well defined messages have been de-
fined. The client is implemented as a singleton, with one available function, send,
to keep it simple and easy to use. The send-method has one input-parameter,
a NetworkPayload and it returns a NetworkPayload. The NetworkPayload is a
simple class containing a type and the object containing the payload to be sent
or retrieved. The different types of payloads available are:

• Log The most important type is the log. The payload contains a LogicalLog
object.

• ACK The ack is an acknowledgement that the request went well. The

3The logical server inside the Derby core listens for connections on port 12345 and on port
12346 in the Network Server described in section 6.1
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Figure 6.7: org.apache.impl.services.net

payload contains a textual representation of what was acknowledged, useful
for logging and debugging purposes.

• 2PC Prepare A simple two-phase-commit prepare message.

• 2PC Vote Commit A vote to commit, a positive answer to a 2PC prepare.

• 2PC Vote Abort A vote to abort, a negative answer to a 2PC prepare.

• 2PC Do Commit A message telling the hot standby that the vote is in
and it should commit now.

• 2PC Commit ACK An acknowledgment that the 2PC commit is done.
When this message is received by the primary it is allowed to commit as
well.

• I’m Alive I’m alive messages are used as heartbeats in the network server.
The payload contains a String with the unix timestamp from when the
message was sent. This timestamp is for debugging purposes only though
and is not used. The I’m alive-messages and protocol is more thoroughly
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described in section 6.1.

• Message String The messages string is a type reserved for simple textual
messages. The message type is not in use.

• LSN Request An LSN request is used when the system is first started to
check if the hot standby is up to date. It is also used when a hot standby
needs to be caught up.

• LSN Response The LSN response is the latest lsn from the database.

• Error The error type is used to notify the requester that something went
wrong along the way and the message was not sent or received correctly.

• Wait The wait message is used by the hot standby to tell the primary
database to slow down its execution in order to help the hot standby keeping
up.

The LogicalClient resets its ObjectOutputStream, puts the NetworkPayload on
the stream and flushes it. The NetworkPayload is then retrieved on the Log-
icalServer. Depending on the type mentioned above, the appropriate action is
taken. Inside the derby core the log, lsn requests and 2PC requests are used.
Incoming logs are handed to the log receiver, LSN and 2PC requests are handled
directly by the LogicalServer. Finally an answer is composed and returned to the
LogicalClient where it is eventually returned to the invoker of the send-method.
The complete net-service can be seen in Figure 6.7

6.5.2 Log Shipper
The log shipper is responsible for the communication between the logical logger
and the log receiver. The log shipper shares the logical log with the logical logger
and in this way the logical log acts as a buffer between the logger and the shipper.
Log records are sent to the log receiver using the Logical Client described above
when one of the following conditions are met:

• A timeout has been detected. A timeout value can be set to the log
shipper to tell it to ship the log on timeouts. This ensures that the log is sent
even if there are long idle times with no operations in the primary datbase.
By setting the timeout value to a short time interval less log records are
prone to be lost if a crash occurs since logs are sent more often. However,
a too short timeout value will make the system send log records more often
and thereby wasting valuable network bandwidth and processing power.

• The logical log size has exceeded a certain limit. When the logical
log size has exceeded a predefined limit the logical log is transmitted. The
reason to send the log when it has exceeded a certain size is to ensure
that it is not lost as with the timeout case above. Since the logical log is
implemented and sent as an object however, it is important to not let the
size of the logical log exceed the allocated stack size4 or the java stack will
overflow resulting in lost log records.

4The java stack view the log as a run-away recursion if it grows too large due to the repeated
next()-invocation on every log element. The limit is found to be close to 3000 elements

41



CHAPTER 6. IMPLEMENTATION

Figure 6.8: State Diagram for the Log Shipper

• Forced sends due to two-safe commits triggered by the logical
logger. When the logical logger is set in two-safe mode the log records
must be sent to the log receiver before their owner transactions can be
allowed to commit. To enforce this policy a method, shipNow, has been
created which attempts to ship all the logical logs including the commit
record at once. If the transmission of the log records goes without any
exceptions a true boolean value is returned to the logical logger and the
transaction in turn which is then allowed to commit. However if an error
occurs and an exception is thrown the shipNow method returns a false back
to the logical logger. This means that the 2PC procedure has failed and
the transaction needs to be aborted, not committed.

The log shipper goes into a loop when started which continually checks if any
of the conditions above are met. If the log is determined to be sent the private
method shipLogs is invoked and the logical log is sent. When a log is sent, the
log object is written on an ObjectOuputStream and the stream is then flushed
and reset. Finally the stream is emptied and is ready to be written to again. The
stream remains open for the full duration of the connection. The different states
of the shipper can be seen in Figure 6.8

6.5.3 Logical Catchup

The log shipper also contains the LSN of the next logical log record. When the
log shipper is initially created this value is set to 0, but when the first LSN is
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requested, the log shipper asks the hot standby for the next LSN. When the next
LSN has been received, the log shipper continues to use and increment this field
if the lsn is the same on both databases. If the hot standby LSN is smaller than
that of the primary a catchup is initiated as described below. If the hot standby
LSN is greater than that of the primary the primary is obviously outdated and
this is considered a critical error. The primary is shut down and the next time it
is started as hot standby it opts the other database for a catchup. The next LSN
is only requested once by the log shipper on startup and then every time a hot
standby resurfaces, this is to provide catchup if needed.

In addition to just shipping the logs to the hot standby the log shipper also
provides catchup for resurfacing hot standby databases. If the hot standby has
been disconnected for some reason, either through a takeover or another discon-
nection issue, it needs to be caught up with the primary before normal execution
can be continued. To avoid the database being halted while the catchup is in
progress it is implemented in a separate thread in the LogicalCathcup class. The
log is scanned for changes after the last remote lsn reported and all log records
with a higher lsn than that are shipped to the HotStandby. The local logical log
is read from disk, compared to the remote lsn reported and split into chunks of
3000 log records who are in turn sent to the HotStandby. This step is repeated
until all of the log residing on the disk is shipped. This is needed as the log on
disk can be changed while the catchup is in progress. Finally the service notifies
the HotStandbyController that the HotStandby is now alive again and normal
log shipping is resumed.

The implementation of the log shipper package is shown in Figure 6.9.
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Figure 6.9: org.apache.impl.services.net.shipper

6.5.4 Log Receiver
The log receiver is created as a simple process which receives, forwards and stores
the logical log. When the log is received it is added to the active log, handed over
to the hot standby controller for processing and finally it is flushed to disk. To
improve the response times of the hot standby scheme an early answer is returned
to the primary when the log is received. Then the log is handed over to the log
receiver. The states and transitions for the logical server and log receiver is shown
in Figure 6.10 while the implementation diagram is shown in Figure 6.11
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Figure 6.10: State Diagram for the Logical Server

45



CHAPTER 6. IMPLEMENTATION

Figure 6.11: org.apache.impl.services.net.receiver
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6.6 Changes to the SQL Layer
To make Derby use the implemented logical log some changes had to be made to
the SQL-layer as well. The changes done to Derby is limited to the classes
org.apache.derby.impl.sql.execute.RowChangerImpl and
org.apache.derby.impl.sql.conn.GenericLanguageConnectionContext

6.6.1 RowChangerImpl
After some investigation the class RowChangerImpl residing in the package
org.apache.derby.impl.sql.execute was found as the most appropriate place to im-
plement the log. The methods insertRow, deleteRow and updateRow contained
all the information needed for our new log:

• insertRow: When a row is inserted the full row is provided with this
method. To find the new key (if any) is done by consulting the data dic-
tionary to find out which column in this row is the key. The name of the
table this record belongs to is also found by checking the built-in dictionary
in Derby. The before image is not needed when creating a new row and is
therefore not included in the new logical insert operation.

• updateRow: The most complex of the three operations is the update op-
eration. When an update operation is performed the old and new rows are
provided to the method. However, these only contain the changed values
and a reference to what page it is stored on the disk. We have decided only
to use the changed values in our logical log and therefore we only need the
changed values, but the old and new key are still required. To find these
we look up the key column from the dictionary as usual. Using this key
information we fetch the key column from the database using the Heap-
ConglomerateController. If the new key is provided with the updateRow
method invocation we now have both the old and the new key. If not the
key is not changed and the new key is the same as the old one.

• deleteRow: The deleteRow method is very similar to the insertRow method.
The difference here is that the entire row is fetched from the database using
the HeapConglomerateController before the delete is executed and put in
the before image of the operation. The after image is set to null.

6.6.2 GenericLanguageConnectionContext
In RowChangerImpl all the operations regarding changes to records are recorded.
However we also need to create logical log records for commit and abort oper-
ations. All transactions that finally either commits or aborts do this through
the doCommit and doRollback methods in GenericLanguageConnectionContext.
Whenever a transaction is to commit the id of the running transaction is fetched
and provided in a logAndCommit or logAndAbort method invocation to the log-
ical logger. The logical logger then returns the result of the commit in terms
of the log records being shipped successfully or not. If the logical logger is set
in one-safe mode logAndCommit or logAndAbort always returns a true value
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and the transaction is allowed to commit. If the mode is set to two-safe how-
ever the logAndCommit or logAndAbort invocation is blocking meaning that the
transaction needs to wait for the outcome before they are allowed to commit.

6.7 A Simple Transaction Example
A simple transaction with one update and a commit can be seen in Figure 6.12.
For simplicity the Derby transaction system as a whole has been encapsulated
in the Derby Transaction object. When an update is done to one or more rows
the operation is done in RowChangerImpl as usual and then logged using the
LogicalLogger. When the transaction decides to commit the doCommit method
within GenericLanguageConnectionContext is invoked. Since two-safe is the cho-
sen mode the transaction is put to wait while the LogicalLogger forces the log from
LogShipper to LogReceiver. Depending upon the answer from the logical logger
the transaction is able to commit. If one-safe replication is selected however the
transaction would commit immediately after the logAndCommit invocation as
shown in Figure 6.13.
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Figure 6.12: Simple Transaction with two-safe commit
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Figure 6.13: Simple Transaction with one-safe commit
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Measured Results

To compare the new hot standby scheme to the original Derby network server
a benchmark is needed. A comparison of the original system and the new sys-
tem using both one-safe and two-safe replication was done using a TPC-B like
benchmark.

7.1 The TPC-B Benchmark
The TPC-B benchmark was created by the Transaction Processing Performance
Council (TPC) to exercise database components in update-intensive database
services such as:[14]

• Significant disk input/output

• Moderate system and application execution time

• Transaction integrity

Transactions are created and run for a limited time and the throughput of the
system is measured in Transactions per Second (TPS). The database system is
set to simulate a simple bank with one or more branches. Each branch has its
own tellers, customers and accounts. Each transaction makes an update to an
account, teller and branch before writing the operation to a history table. To see
the full implementation of the TPC-B like benchmark used in this project see
Appendix A.

7.2 Benchmarking Architecture
The Derby DBMS can, as stated earlier, be used in two different modes: Embed-
ded and Server. To enable multiple clients connecting to the DBMS at once the
server approach was selected. With the server approach the network utilization
also becomes a concern due to the log shipper and receiver sharing their commu-
nication line with the server interface. This can of course be avoided by providing
a dedicated line for the log shipper and receiver. However, as we will see, the
communication line is not the biggest concern, at least not for performance rea-
sons.
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The computers used for both the primary and hot standby servers are two Pen-
tium 4 3GHz computers, both with 1GB of RAM and running Ubuntu Linux. The
network line between the server/client and the server/log server is a 100Mb full-
duplex ethernet line on an unprotected network. Due to the server only having
one network card the network line between the primary/client and primary/hot
standby is shared. The clients are run on a MacBook 2 GHz with 1GB RAM run-
ning Mac OS X 10.4.8. All the computers use Suns Java Developers Kit (JDK)
1.5.0. The complete architecture for the benchmark is shown below in Figure 7.1.

Figure 7.1: TPC-B Benchmark Architecture
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Transactions are running back-to-back, i.e. clients send new transactions to the
server as soon as they receive replies on the previous ones. To achieve multiple
client connections each client is implemented as a thread, these clients share the
same JVM1. The complete source code for the TPC-B Benchmark used is shown
in Appendix A.

7.3 Results
The benchmark was run with one to nine concurrent clients for fifteen minutes
each and the results were collected using vmstat for cpu utilization, iostat for disk
utilization, nload for network utilization and the benchmark itself for throughput
and response times measurements.

7.3.1 Throughput
The throughput achieved in the benchmark is shown in Figure 7.2. As we can
clearly see the original Derby system is superior to both the one-safe and two-safe
replication approaches. While this is no surprise due to the added complexity and
functionality, the results show significant room for improvements. When using
the original network server it is shown that when the system load goes from one
to three clients there is a slight improvement in throughput. The reason for this
is simple: Derby still has some idle times during executions which in turn could
be used for additional transactions. However, the throughput is reduced when
adding more clients.

The one-safe approach has a lower, but steady throughput rate. Still, if the
load is removed from the hot-standby2 the throughput is very close to the orig-
inal system. Also if the benchmark is run from a client connected to a slower
network line the throughput is also very close to the original. The hot standby
cannot keep up the pace, it is just not as fast when redoing the sql statements as
the primary is when it is doing its prepared statements. To understand why this
happens take a closer look at the system implementation described in section 6.4
and section 6.5. If the hot standby redo routine could be improved by either
utilizing prepared statements or some other means to redo the logical logs this
throughput penalty could be avoided. Due to the logical logger having a single-
point-of-entry it also becomes a bottleneck when more than one transaction tries
to log simultaneously. If each transaction had its own logical logger this could
also have been avoided, though some care must be taken in synchronizing these
logical loggers to create log elements on a shared log with a strict lsn numbering
scheme.

As can be seen, the two-safe protocol, not surprisingly, suffer greatly in regards
of throughput. While every transaction need to wait for the 2PC messages and
the logical log to be shipped successfully before they leave the logical logger’s

1All the clients are run from the same client machine
2The load meaning the redo of the received logs
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Figure 7.2: Average Throughput

logAndCommit-method the throughput is restricted by the log shipper and log
receiver in addition to the logical logger. The severe penalty imposed to the
system by the two-safe replication however is expected as this is a well-known
problem with two-safe replication.[3, 5, 6]

7.3.2 Response Times
The average response times shown in Figure 7.3 coincides well with the through-
put observed. While the total throughput of the system increases with the addi-
tion of additional clients to the system the response times are kept low. However,
when the throughput stays constant or decreases the response times increase due
to more transactions waiting for resources and service from the system.

As can be seen the original and one-safe approach performs rather well com-
pared to the two-safe approach. The average response times stays below 300 ms
for the one-safe replication and below 100 ms for the original Derby implementa-
tion. The one-safe approach has roughly the same response times as the original
for few clients, but it does not scale so well when more clients are added. The
reason for this is that the hot standby has trouble keeping up when the load is
high. The two-safe approach however has more dramatic increase in response
times due to the throughput being low and keeps decreasing for each client added
to the system. The increase in average response times for the two-safe approach
is almost linear and it is therefore easy to predict it to keep rising with the same
factor for every added client. It is safe to say that the two-safe approach is not
suited for systems having many connected clients and a generally high database
load. However it is the only way to safely guarantee all the ACID properties for
the system as a whole.
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The maximum and minimum response times are also recorded and shown in
Figure 7.4 and Figure 7.5. There is one surprise in that the two-safe approach
has a lower maximum response time than both the original system and the one-
safe approach. The reason for this might be that all the transactions are served
as quickly as possible all the time, while in the one-safe approach it happens
that the whole primary needs to be halted when the hot standby signals it to
wait due to it having trouble to keep up the pace. However the majority of the
transactions have a response time close to the maximum recorded in the two-safe
approach. The one-safe and two-safe have higher maximum response times, but
most of the transactions have low response times. The maximum response times
gotten from the original Derby network server seem coincidental as the average
response times are so low.

Figure 7.3: Average Response Times
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Figure 7.4: Minimum Response Times

Figure 7.5: Maximum Response Times
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7.3.3 Hardware Utilization
Another interesting aspect of the performance besides throughput and response
times is the hardware utilization and the stress the Derby implementations im-
pose on the server hardware. Measurements were taken every five seconds and the
results can be seen in Figure 7.6 through 7.13. The results of these measurements
accompany the results for the response times and throughput well.

The CPU utilization is a little higher for the one-safe approach than the orig-
inal system, but the graphs are very similar with few exceptions. The two-safe
approach however consumes more CPU resources. The original Derby has a lower
disk utilization than both the one-safe and two-safe approach. The original derby
has fewer resident transactions waiting at any time and therefore achieves higher
throughput, lower response times, lower CPU utilization and also lower disk uti-
lization. The higher disk utilization in both the one-safe and two-safe approaches
can be explained by the logical log being written to disk every time it is shipped
from the primary node. The log is shipped a lot more often when using two-safe
replication and therefore the disk utilization is very high even if the throughput
is low and response times high. The one-safe approach follows the same pattern
as the original.

It can easily be seen by the results that most processing time is spent by waiting
transactions, while few other resources are used: They all have to wait their turn
and no transaction is allowed to commit until their log records are received at the
log receiver. The measured hardware utilizations of the hot standby can be seen
in Figure 7.7 and Figure 7.9. There are no surprises there as the one-safe has a
higher throughput and therefore higher disk and cpu utilization even though the
two-safe approach uses more system resources pr transaction.
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Figure 7.6: CPU Utilization - Primary Node

Figure 7.7: CPU Utilization - Hot Standby Node
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Figure 7.8: Disk Utilization - Primary Node

Figure 7.9: Disk Utilization - Hot Standby Node
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Surprisingly however, the original Derby has a higher network utilization than
the hot standby schemes. Due to a higher throughput and therefore a higher
number of completed transactions, the system has a more intense conversation
with the clients, requests and responses are more rapid which in turn consumes
network utilization. If the test system had two separate lines it would be possible
to view the client load and the load created by the replication. Due to the shared
connection the results from the network utilization need to be normalized to see
the additional strain the replication imposes on the system. This normalized av-
erage network utilization can be seen in Figure 7.12 and Figure 7.13 and shows
the average network utilization per transaction.

As expected the two-safe approach has a higher utilization for each transaction
as the number of logical log records shipped in each shipment are smaller and
shipped more often which in turn generates a larger communication overhead.
The one-safe implementation however ships the logical logs whenever they have
exceeded a certain size. In the implemented benchmark every transaction consists
of three update operations, one insert operation and a commit or abort operation,
a total of five log records. In the two-safe implementation 2PC messages are first
handed between the primary and hot standby and the log is shipped whenever
a transaction commits. This in turn restricts the size of the log shipped greatly,
while in one-safe more log records are sent at once, thus increasing network effi-
ciency and reducing the network utilization.

If the amount of logs shipped each time is too great the hot standby will have
trouble redoing them in time and transactions will pile up on the primary while
waiting for the next shipment. If the buffer is too small however, the log will be
shipped more often, depleting valuable system resources. By trial and error it is
found that a buffer size of 250 log records is close to optimal regarding average
throughput and response times in the one-safe approach. The buffer size was
therefore set to 250 during these benchmarks.
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Figure 7.10: Network Utilization - Primary Node

Figure 7.11: Network Utilization - Hot Standby Node
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Figure 7.12: Normalized Network Utilization - Primary Node

Figure 7.13: Normalized Network Utilization - Hot Standby Node
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As can be seen by the hardware utilization figures it is quite clear that the bottle-
neck is not the communication. The main bottleneck is the waiting time on the
hot standby database which is caused by queued transactions which in turn cre-
ates higher response times and lower overall throughput acchieved by the system.
Great performance improvements could be achieved by improving the efficiency
of the hot standby redo phase.

7.4 TPCB Consistency Check
After the TPC-B like benchmarks were completed a consistency check was per-
formed to ensure that the hot standby and the primary is behaving correctly and
that they both contain the same data after execution. The test goes through all
the tables used in the TPC-B Benchmark, checking the size of the tables first,
then checking the tuples from both databases and comparing them. If any two
tuples are not equivalent the test is failed and stopped. The result of this test is
cited below and the source code for this consistency check is added in Appendix A

[BRANCHES]
Checking size:
[OK] 1:1
Checking contents ...
[OK]
[/BRANCHES]

[TELLERS]
Checking size:
[OK] 10:10
Checking contents ...
[OK]
[/TELLERS]

[ACCOUNTS]
Checking size:
[OK] 100000:100000
Checking contents ...
.......................................
........................................
........................................
........................................
........................................
[OK]
[/ACCOUNTS]

[HISTORY]
Checking size:
[OK] 24399:24399
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Checking contents ...
.......................................
.........
[OK]
[/HISTORY]
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Chapter 8

Conclusion

A lot of work was done both to learn the principles of log and database replication
and to understand the inner workings of the Apache Derby DBMS, both the
embedded server and the network server.

8.1 Derby: Replication and Availability
As shown, a fully functional prototype of the Apache Derby hot standby scheme
has been created using logical logs, fail-fast takeovers and logical catchups after an
internal up-to-crash recovery and reconnection. The performance of the system
has been measured and even if the performance of the system is found to be
worse than the original system, it is encouraging as there are still some room for
great performance enhancements on the hot standby node. A correctness test
has also been performed showing that the implemented DBMS as a whole1 is
working as it should, ensuring that both the databases are equivalent after each
TPC-B Benchmark run. It has also been tested after multiple aborts, takeovers
and catchups and no inconsistencies between the two databases have yet been
found.

8.2 Performance Results
As shown, the hot standby replication scheme has a performance penalty, espe-
cially when it comes to throughput. The reason for this is simply that the hot
standby cannot keep up with the primary database when the transaction load is
high. When the system is run without the load on the hot standby2 the perfor-
mance is very close to the original network server. Also, when the benchmark
is run on a slower network than the one used in the benchmark, the load is not
as high and therefore the hot standby has no trouble keeping the pace of the
primary. In these situations the hot standby scheme and the original network
server run with the same throughput and response times. Hardware utilization
is not surprisingly higher on the one-safe and two-safe replication schemes, but

1The primary and Hot Standby databases combined
2The received logs are not redone or flushed to disk
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not so high that it has serious impact on the server running the database or re-
garding throughput or response times. The network interfaces, connections and
shipment algorithms have been greatly improved from [4] and no longer poses any
significant performance penalties.

8.3 Further Work
The prototype built has some further work to be done, the most important of
these are listed here with some implementation suggestions.

8.3.1 Improved Redo Processing on Hot Standby
As the redo and undo processing on the hot standby is the main reason for
the performance penalties is it preferable to improve how these updates are being
done. In this project, received log records are converted to normal sql queries and
run as normal sql statements on the embedded database. By somehow compiling
prepared statements from these log records, the performance should be improved
a lot. For even better performance the operations could be inserted directly into
the database without going through the jdbc layer.

8.3.2 Slow Down on Catchup When Needed
When the database is under a lot of stress from high transaction loads the hot
standby have problems getting caught up with the primary. The reason for this
is that the primary creates log records faster than the hot standby can process
them and thereby filling up the memory on the primary database until it crashes.
Incoming connections should somehow be slowed down while the hot standby
is catching up, much in the same way that they are set on wait when the hot
standby have problems keeping up during normal processing.

8.3.3 Network Server Router
When the primary goes down an exception is thrown to the client. The client itself
is then responsible for knowing where the hot standby is located and connecting
to it to continue execution of the client software. However, if a dummy network
server is created as a router for these jdbc connections the client no longer needs
to know if it is connected to a database with replication or not. The Network
Server Router knows the URL for the primary and hot standby databases and just
forwards the jdbc calls to the correct database. On a primary database failure the
router can then just pause the transaction until the takeover is completed and then
forward the operations to the new primary. The router should be implemented as
a process pair as well to ensure that it does not become a single-point-of-failure.

8.3.4 Complete 2PC Support for Two-Safe Replication
The two-safe replication scheme created in this project is very simplified in that it
only simulates the 2PC messages handed between the primary and hot standby.
By completing this protocol the hot standby checks if the operation is ok and
then votes accordingly instead of just replying VOTE YES every time
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8.3.5 Failure Handling on Logical Log Write
If the database somehow crashes while writing the logical log to the disk, the
logical log on disk becomes corrupted and it may be unreadable when the database
starts up again. Instead of using a single-write mechanism, the logical log should
be written with some measures of backup. Either that the old written log is copied
first and then overwritten, so that if the logical log is unreadable, the older backup
is read instead. As all the operations logged are idempotent3 it does not matter
if the operation is redone one time too many on the next catchup.

8.3.6 Support for Other SQL Statements
Support for more SQL statements should be added to the replication scheme
to give the hot standby scheme the same functionality as the original network
server. At the moment only update, insert and delete operations are available,
while operations like drop, create and alter have not yet been implemented.

3They always yield the same result no matter how many times they are run
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Chapter 9

Related Work

Some work that can be related to this project have been done, important and
close resembling examples are ClustRa, Continental Pronto and Tandem RDF.

9.1 ClustRa
As shown earlier, ClustRa uses neighbor write-ahead-logging to log record opera-
tions. It is a main-memory logging technique that enables the system to commit
operations without writing log records to disk. The log records are shipped to
two failure-independent nodes and the log records are redone when they arrive
at these nodes. The log records are primary key based and logical in the same
manner as the logical log created by this project. The idea of making the Derby
log receiver a Hot-standby is closely related to the replication approach used in
ClustRa.

9.2 Continental Pronto
The Continental Pronto[10] is an algorithm created to combine the notions of
local area replication and wide area replication. Instead of the low-level log
shipping used in most systems it employs a higher level transaction shipping
through an underlying communication abstraction, called HABcast. Continental
Pronto, when used in local area replication acts like normal local area replication
schemes. When used in wide area replications it is configureable to use both
one-safe and two-safe replication.

9.3 Tandem RDF
Tandems Remote Duplicate Data Facility (RDF) is a service added to the Tandem
Guardian 90 system[3] to mask environmental, operations and software faults by
automatic replication to a second site. A process-pair, the extractor, is designed
to continually inspect the log of the primary site and from time to time ship the
log to another process-pair on the backup, the receiver, where the updates are
reflected. The extractor sends I’m alive messages to the receiver while there is
no activity. In this way the receiver will know if and when the primary server
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crashes. This approach is closely related to the one-safe replication done in this
project. RDF also has the possibility for two-safe replication as well.
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Appendix A

The TPC-B-like Benchmark

A.1 The TPC-B Database Structure
The Entity Relations for the TPC-B database used in the benchmarking of Derby:
Log to Neighbor is shown in Figure A.1. The simulated bank consists of one
branch with 10 tellers and 100.000 accounts. All updates of the teller and account
records are logged in the history table.
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Figure A.1: Entity Relations for the TPC-B Database
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A.2 Source Code
The java source code written to initialize the TPC-B like benchmark is shown in
the following section. TPCBInit is responsible for creating the database, creating
the tables and populate the required data. TPCBOperation is the implementation
of a single TPC-B operation defined in [14] and finally TPCBenchmark is the class
responsible for starting the TPC-B clients and doing the operations, throughput
and response times are also collected here.

A.2.1 TPCBInit.java

1 package t e s t ;
2

3 import java . s q l . Connection ;
4 import java . s q l . DriverManager ;
5 import java . s q l . PreparedStatement ;
6 import java . s q l . SQLException ;
7 import java . s q l . Statement ;
8 import java . u t i l . P rope r t i e s ;
9

10 public class TPCBInit {
11

12 public f ina l stat ic long tps = 1 ;
13 public f ina l stat ic long nbranches = 1 ;
14 public f ina l stat ic long n t e l l e r s = 10 ;
15 public f ina l stat ic long naccounts = 100000;
16 public f ina l stat ic long nh i s t o ry = 864000;
17

18 public stat ic void main ( St r ing [ ] a rgs ){
19 System . out . p r i n t l n ( ” [CONNECT] Connecting . . . ”) ;
20 try {
21 Class . forName ( ”org . apache . derby . jdbc . C l i en tDr ive r ”) .

newInstance ( ) ;
22 } catch ( In s t an t i a t i onExcep t i on e ) {
23 e . pr intStackTrace ( ) ;
24 } catch ( I l l e g a lAc c e s sExc ep t i on e ) {
25 e . pr intStackTrace ( ) ;
26 } catch ( ClassNotFoundException e ) {
27 e . pr intStackTrace ( ) ;
28 }
29

30 Connection conn = null ;
31 Prope r t i e s props = new Prope r t i e s ( ) ;
32 props . put ( ”user ” , ”user1 ”) ;
33 props . put ( ”password ” , ”user1 ”) ;
34
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35 /∗
36 The connect ion s p e c i f i e s c r ea t e=true to cause
37 the database to be crea t ed . To remove the database ,
38 remove the d i r e c t o r y derbyDB and i t s con ten t s .
39 The d i r e c t o r y derbyDB w i l l be c rea t ed under
40 the d i r e c t o r y t ha t the system proper ty
41 derby . system . home po in t s to , or the curren t
42 d i r e c t o r y i f derby . system . home i s not s e t .
43 ∗/
44

45 try{
46 conn = DriverManager . getConnect ion (
47 ”jdbc : derby :// p r o s j e k t . xn−−e g i l s r e n s en−kgb . dk :1527/TPCB;

c r e a t e=true ” ,
48 props ) ;
49

50 conn . setAutoCommit ( fa l se ) ;
51

52 /∗
53 Creat ing a s ta tement l e t s us i s s u e commands aga in s t
54 the connect ion .
55 ∗/
56 Statement s = conn . createStatement ( ) ;
57

58

59

60 /∗
61 ∗ Create the t a b l e s
62 ∗/
63

64 System . out . p r i n t l n ( ” [CREATE] Tables ”) ;
65 s . execute ( ”CREATE TABLE branches ( Bid NUMERIC(9) , PRIMARY

KEY( Bid ) , ” +
66 ”Bbalance NUMERIC(10) , f i l l e r CHAR(88) ” +
67 ” DEFAULT ’SYSTEM ’) ”) ;
68

69 s . execute ( ”CREATE TABLE t e l l e r s ( ”+
70 ”Tid NUMERIC(9) PRIMARY KEY, ”+
71 ”Bid NUMERIC(9) , ”+
72 ”Tbalance NUMERIC(10) , ”+
73 ” f i l l e r CHAR(84) DEFAULT ’SYSTEM ’ , ” +
74 ”FOREIGN KEY ( Bid ) REFERENCES branches ( Bid ) ) ”) ;
75

76 s . execute ( ”CREATE TABLE accounts ( ”+
77 ”Aid NUMERIC(9) PRIMARY KEY, ”+
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78 ”Bid NUMERIC(9) , ”+
79 ”Abalance NUMERIC(10) , ”+
80 ” f i l l e r CHAR(84) DEFAULT ’SYSTEM ’ , ” +
81 ”FOREIGN KEY ( Bid ) REFERENCES branches ( Bid ) ”+
82 ”) ”) ;
83

84 s . execute ( ”CREATE TABLE h i s t o r y ( ”+
85 ”Tid NUMERIC(9) REFERENCES t e l l e r s (Tid ) , ”+
86 ”Bid NUMERIC(9) REFERENCES branches ( Bid ) , ”+
87 ”Aid NUMERIC(9) REFERENCES accounts (Aid ) , ”+
88 ”de l t a NUMERIC(10) , ”+
89 ”time TIMESTAMP, ”+
90 ” f i l l e r CHAR(22) DEFAULT ’SYSTEM’ ” +
91 ”) ”) ;
92

93 s . c l o s e ( ) ;
94

95 /∗
96 ∗ Prime the database
97 ∗/
98

99 PreparedStatement ps ;
100

101 int affRows = 0 ;
102 System . out . p r i n t l n ( ” [ INSERT] branches ”) ;
103 ps = conn . prepareStatement ( ”INSERT INTO branches (Bid ,

Bbalance ) VALUES (? , 0 ) ”) ;
104 for ( int i = 1 ; i <= nbranches∗ tps ; i++){
105 ps . s e t I n t (1 , i ) ;
106 affRows += ps . executeUpdate ( ) ;
107 }
108

109 System . out . p r i n t l n ( ” [ INSERT] t e l l e r s ”) ;
110 ps = conn . prepareStatement ( ”INSERT INTO t e l l e r s (Tid , Bid ,

Tbalance ) VALUES (? , ? , 0 ) ”) ;
111 for ( int i = 1 ; i <= n t e l l e r s ∗ tps ; i++){
112 ps . s e t I n t (1 , i ) ;
113 ps . setLong (2 , 1) ;
114 affRows += ps . executeUpdate ( ) ;
115 }
116

117 System . out . p r i n t l n ( ” [ INSERT] accounts ”) ;
118 ps = conn . prepareStatement ( ”INSERT INTO accounts (Aid , Bid ,

Abalance ) VALUES (? , ? , 0 ) ”) ;
119 for ( int i = 1 ; i <= naccounts∗ tps ; i++){
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120 ps . s e t I n t (1 , i ) ;
121 ps . setLong (2 , 1) ;
122 affRows += ps . executeUpdate ( ) ;
123 }
124

125 System . out . p r i n t l n ( ”Su c c e s f u l l y s e t up and primed the
database ”) ;

126 System . out . p r i n t l n ( ”Af f e c t ed rows : ” + affRows ) ;
127 System . out . p r i n t l n ( ” [DONE] ”) ;
128

129 ps . c l o s e ( ) ;
130

131 conn . commit ( ) ;
132

133 conn . c l o s e ( ) ;
134

135 } catch ( SQLException e ){
136 e . pr intStackTrace ( ) ;
137 }
138

139

140 }
141 }
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A.2.2 TPCBOperation.java

1

2 package t e s t ;
3

4 import java . s q l . Connection ;
5 import java . s q l . DriverManager ;
6 import java . s q l . PreparedStatement ;
7 import java . s q l . Resu l tSet ;
8 import java . s q l . SQLException ;
9 import java . s q l . Timestamp ;

10 import java . u t i l . P rope r t i e s ;
11

12 public class TPCBOperation {
13 private Connection conn ;
14 private Prope r t i e s props ;
15 private PreparedStatement ps1 ;
16 private PreparedStatement ps2 ;
17 private PreparedStatement ps3 ;
18 private PreparedStatement ps4 ;
19 private PreparedStatement ps5 ;
20

21

22 public TPCBOperation ( ) {
23 try {
24 Class . forName ( ”org . apache . derby . jdbc . C l i en tDr ive r ”) .

newInstance ( ) ;
25

26 } catch ( In s t an t i a t i onExcep t i on e ) {
27 e . pr intStackTrace ( ) ;
28 } catch ( I l l e g a lAc c e s sExc ep t i on e ) {
29 e . pr intStackTrace ( ) ;
30 } catch ( ClassNotFoundException e ) {
31 e . pr intStackTrace ( ) ;
32 }
33

34 conn = null ;
35 props = new Prope r t i e s ( ) ;
36 props . put ( ”user ” , ”user1 ”) ;
37 props . put ( ”password ” , ”user1 ”) ;
38

39 try{
40

41 conn = DriverManager . getConnect ion (
42 ”jdbc : derby :// p r o s j e k t . xn−−e g i l s r e n s en−kgb . dk :1527/TPCB;

c r e a t e=true ” ,
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43 props ) ;
44

45 conn . setAutoCommit ( fa l se ) ;
46

47 ps1 = conn . prepareStatement ( ”UPDATE accounts SET Abalance
= Abalance + ? WHERE Aid = ? ”) ;

48 ps2 = conn . prepareStatement ( ”SELECT Abalance FROM accounts
WHERE Aid = ? ”) ;

49 ps3 = conn . prepareStatement ( ”UPDATE t e l l e r s SET Tbalance =
Tbalance + ? WHERE Tid = ? ”) ;

50 ps4 = conn . prepareStatement ( ”UPDATE branches SET Bbalance
= Bbalance + ? WHERE Bid = ? ”) ;

51 ps5 = conn . prepareStatement ( ”INSERT INTO h i s t o r y (Tid , Bid ,
Aid , de l ta , time ) VALUES(? , ? , ? , ? , ? ) ”) ;

52

53

54 } catch ( SQLException e ){
55 e . pr intStackTrace ( ) ;
56 }
57

58 }
59

60

61

62

63 public synchronized long doOneOperation ( long bid , long t id
, long aid , long de l t a ){

64 try{
65

66 long abalance = −1;
67

68

69 ps1 . setLong (1 , d e l t a ) ;
70 ps1 . setLong (2 , a id ) ;
71 ps1 . executeUpdate ( ) ;
72

73 ps2 . setLong (1 , a id ) ;
74 Resu l tSet r s = ps2 . executeQuery ( ) ;
75

76 i f ( r s . next ( ) )
77 abalance = r s . getLong ( ”Abalance ”) ;
78

79 ps3 . setLong (1 , d e l t a ) ;
80 ps3 . setLong (2 , t i d ) ;
81 ps3 . executeUpdate ( ) ;
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82

83 ps4 . setLong (1 , d e l t a ) ;
84 ps4 . setLong (2 , bid ) ;
85 ps4 . executeUpdate ( ) ;
86

87 ps5 . setLong (1 , t i d ) ;
88 ps5 . setLong (2 , bid ) ;
89 ps5 . setLong (3 , a id ) ;
90 ps5 . setLong (4 , d e l t a ) ;
91 Timestamp time = new Timestamp ( System . cur r entT imeMi l l i s ( ) )

;
92 ps5 . setTimestamp (5 , time ) ;
93 ps5 . execute ( ) ;
94

95

96 conn . commit ( ) ;
97

98 return abalance ;
99

100 } catch ( SQLException e ){
101 e . pr intStackTrace ( ) ;
102 return −1;
103 }
104

105 }
106

107

108

109

110 }
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A.2.3 TPCBenchmark.java

1 package t e s t ;
2

3 public class TPCBBenchmark {
4

5

6 public stat ic void main ( St r ing [ ] a rgs ){
7

8

9 TPCBBenchmark benchmark = new TPCBBenchmark ( ) ;
10

11 // Number o f concurrent c l i e n t s
12 int numClients = 9 ;
13 benchmark . startBenchMark ( numClients ) ;
14

15 }
16

17 public void startBenchMark ( int numClients ){
18 System . out . p r i n t l n ( ”S ta r t i ng benchmark with ” + numClients

+ ” c l i e n t s ”) ;
19 for ( int i = 1 ; i <= numClients ; i++){
20 new Thread (new TPCBClient ( i ) ) . s t a r t ( ) ;
21 }
22

23 }
24

25 private class TPCBClient extends Thread{
26

27 private int c l i e n t I d ;
28

29 public TPCBClient ( int c l i e n t I d ){
30 this . c l i e n t I d = c l i e n t I d ;
31 }
32

33

34

35 public void run ( ) {
36 // ten minutes
37 System . out . p r i n t l n ( ”Running c l i e n t ” + c l i e n t I d ) ;
38 long runTime = 1000 ∗ 60 ∗ 15 ;
39 long s t a r t = System . cur r entT imeMi l l i s ( ) ;
40 long end = s t a r t + runTime ;
41 long totalResponseTime = 0 ;
42 int completedTransact ions = 0 ;
43 long maxResponseTime = −1;
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44 long minResponseTime = −1;
45 TPCBOperation operat i on = new TPCBOperation ( ) ;
46

47 while ( System . cur rentT imeMi l l i s ( ) <= end ){
48 long t i d = Math . round (Math . random ( ) ∗ (TPCBInit . n t e l l e r s ∗

TPCBInit . tps − 1) ) + 1 ;
49 long aid = Math . round (Math . random ( ) ∗ (TPCBInit . naccounts∗

TPCBInit . tps − 1) ) + 1 ;
50

51 long de l t a = Math . round (Math . random ( ) ∗ 1000) ;
52

53 long transStartTime = System . cur r entT imeMi l l i s ( ) ;
54 operat ion . doOneOperation (1 , t id , aid , d e l t a ) ;
55 long responseTime = System . cur rentT imeMi l l i s ( ) −

transStartTime ;
56

57 i f (maxResponseTime < responseTime | | maxResponseTime ==
−1)

58 maxResponseTime = responseTime ;
59 i f ( minResponseTime > responseTime | | minResponseTime ==

−1)
60 minResponseTime = responseTime ;
61

62 totalResponseTime += responseTime ;
63 ++completedTransact ions ;
64

65 }
66

67 System . out . p r i n t l n ( ” [ ” + c l i e n t I d + ” ] Completed
t r an s a c t i on s : ” + completedTransact ions ) ;

68 System . out . p r i n t l n ( ” [ ” + c l i e n t I d + ” ] Transact ions per
second : ” + (double ) Math . round ( ( ( double )
completedTransact ions / ( runTime / 1000) ) ∗ 100) / 100)
;

69 System . out . p r i n t l n ( ” [ ” + c l i e n t I d + ” ] Average re sponse
time : ” + totalResponseTime / completedTransact ions ) ;

70 System . out . p r i n t l n ( ” [ ” + c l i e n t I d + ” ] Minimum response
time : ” + minResponseTime ) ;

71 System . out . p r i n t l n ( ” [ ” + c l i e n t I d + ” ] Maximum response
time : ” + maxResponseTime ) ;

72

73 }
74 }
75 }

83



APPENDIX A. THE TPC-B-LIKE BENCHMARK

A.2.4 TPCB Consistency Test
A consistency test is added to the TPCB benchmark to check if the contents of
both the primary and the hot standby are the same.

1

2

3 package t e s t . c o r r e c t n e s s ;
4

5 import java . s q l . Connection ;
6 import java . s q l . DriverManager ;
7 import java . s q l . Resu l tSet ;
8 import java . s q l . SQLException ;
9 import java . s q l . Statement ;

10 import java . u t i l . P rope r t i e s ;
11

12 /∗∗
13 ∗
14 ∗ The TPCBCorrectionCheck i s a c l a s s r e s p on s i b l e f o r

check ing the
15 ∗ cons i s t ency in both the primary and the hot s tandby

database . Both
16 ∗ da tabases need to be s t a r t e d in the o r i g i n a l s e r v e r /

c l i e n t mode .
17 ∗ The conten t s o f the TPCB databases are then compared to

eachother .
18 ∗
19 ∗ @author Eg i l Srensen
20 ∗
21 ∗/
22

23 public class TPCBCorrectionCheck {
24 /∗∗
25 ∗ Connection to the primary database
26 ∗/
27 private Connection primConn ;
28 /∗∗
29 ∗ Connection to the hot s tandby database
30 ∗/
31 private Connection hsbConn ;
32 /∗∗
33 ∗ Proper t i e s i n c l u d i n g username and password
34 ∗/
35 private Prope r t i e s props ;
36 /∗∗
37 ∗ Statement used to execu te s q l q u e r i e s to the primary

database
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38 ∗/
39 private Statement primS ;
40 /∗∗
41 ∗ Statement used to execu te s q l q u e r i e s to the primary

database
42 ∗/
43 private Statement hsbS ;
44

45 /∗∗
46 ∗ Main method to s t a r t the t e s t
47 ∗
48 ∗ @param args No arguments are used
49 ∗/
50 public stat ic void main ( St r ing [ ] a rgs ){
51 TPCBCorrectionCheck check = new TPCBCorrectionCheck ( ) ;
52 check . checkCons i s tency ( ) ;
53 }
54

55 /∗∗
56 ∗ I n i t i a l i z e the t e s t and s e t up connec t ions
57 ∗
58 ∗/
59 public TPCBCorrectionCheck ( ) {
60 try {
61 Class . forName ( ”org . apache . derby . jdbc . C l i en tDr ive r ”) .

newInstance ( ) ;
62 } catch ( In s t an t i a t i onExcep t i on e ) {
63 e . pr intStackTrace ( ) ;
64 } catch ( I l l e g a lAc c e s sExc ep t i on e ) {
65 e . pr intStackTrace ( ) ;
66 } catch ( ClassNotFoundException e ) {
67 e . pr intStackTrace ( ) ;
68 }
69 hsbConn = null ;
70 primConn = null ;
71 props = new Prope r t i e s ( ) ;
72 props . put ( ”user ” , ”user1 ”) ;
73 props . put ( ”password ” , ”user1 ”) ;
74 try{
75 St r ing primUrl = ”lachdanan . e g i l n e t t . com” ;
76 St r ing hsbUrl = ”kratas . e g i l n e t t . com” ;
77 primConn = DriverManager . getConnect ion ( ”jdbc : derby :// ” +

primUrl + ”:1527/TPCB; c r e a t e=true ” , props ) ;
78
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79 hsbConn = DriverManager . getConnect ion ( ”jdbc : derby :// ” +
hsbUrl + ”:1527/TPCB; c r e a t e=true ” , props ) ;

80 } catch ( SQLException e ){
81 e . pr intStackTrace ( ) ;
82 }
83

84 }
85

86

87

88 /∗∗
89 ∗ Check the cons i s t ency o f the two da tabases ( primary and

hot s tandby ) . The s i z e
90 ∗ and con ten t s o f the t a b l e s BRANCHES, TELLERS, ACCOUNTS

and HISTORY.
91 ∗
92 ∗ I f any i r r e g u l a r i t i e s are found , the error i s shown and

the check i s s topped .
93 ∗
94 ∗/
95 public void checkCons is tency ( ) {
96 try {
97 // Temporary v a r i a b l e s
98 St r ing query ;
99 Resu l tSet primRs ;

100 Resu l tSet hsbRs ;
101 int pr imSize ;
102 int hsbSize ;
103 int d i f f ;
104 boolean e r r o r ;
105 int counter ;
106

107 // Create the s ta tements
108 primS = primConn . createStatement ( ) ;
109 hsbS = hsbConn . createStatement ( ) ;
110

111

112 // Check the BRANCHES−t a b l e
113 System . out . p r i n t l n ( ” [BRANCHES] ”) ;
114 e r r o r = fa l se ;
115

116

117 // Get t ing s i z e
118 query = ” s e l e c t count ( bid ) as numBranches from branches ” ;
119 primRs = primS . executeQuery ( query ) ;
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120 hsbRs = hsbS . executeQuery ( query ) ;
121

122 primRs . next ( ) ;
123 pr imSize = primRs . g e t In t ( ”numBranches ”) ;
124 hsbRs . next ( ) ;
125 hsbSize = hsbRs . g e t In t ( ”numBranches ”) ;
126

127 primRs . c l o s e ( ) ;
128 hsbRs . c l o s e ( ) ;
129

130 System . out . p r i n t l n ( ”Checking s i z e : ”) ;
131 i f ( pr imSize == hsbSize )
132 System . out . p r i n t ( ” [OK] ”) ;
133 else {
134 System . out . p r i n t ( ” [ERROR] ”) ;
135 e r r o r = true ;
136 }
137 System . out . p r i n t ( pr imSize+” : ”+hsbSize+”\n”) ;
138

139 // Quit on error
140 i f ( e r r o r )
141 System . e x i t (−1) ;
142

143

144 // Get t ing con ten t s
145 query = ” s e l e c t bid , bbalance , f i l l e r from branches order

by bid asc ” ;
146 primRs = primS . executeQuery ( query ) ;
147 hsbRs = hsbS . executeQuery ( query ) ;
148 System . out . p r i n t l n ( ”Checking contents . . . ”) ;
149

150 d i f f = 0 ;
151 counter = 0 ;
152 while ( primRs . next ( ) && hsbRs . next ( ) ){
153 i f ( ( primRs . g e t In t ( ”bid ”) != hsbRs . g e t In t ( ”bid ”) ) | | (

primRs . g e t In t ( ”bbalance ”) != hsbRs . g e t In t ( ”bbalance ”) ) )
{

154 System . out . p r i n t ( ”\n”) ;
155 d i f f ++;
156 System . out . p r i n t l n ( ” [ERROR] bid : ” + primRs . g e t In t ( ”bid ”)+

” : ”+hsbRs . g e t In t ( ”bid ”)+” , bbalance : ” + primRs . g e t In t (
”bbalance ”) + ” : ” + hsbRs . g e t In t ( ”bbalance ”) ) ;

157 }
158 i f ( counter % 20000 == 0 && counter != 0)
159 System . out . p r i n t ( ”\n”) ;
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160 i f ( counter % 500 == 0 && counter != 0)
161 System . out . p r i n t ( ” . ”) ;
162 counter++;
163 }
164 System . out . p r i n t ( ”\n”) ;
165 primRs . c l o s e ( ) ;
166 hsbRs . c l o s e ( ) ;
167

168

169 i f ( d i f f == 0){
170 System . out . p r i n t l n ( ” [OK] ”) ;
171 }
172 else {
173 System . out . p r i n t l n ( ” [ERROR] ” + d i f f + ” row ( s ) do ( es ) not

match in the two databases . See above ”) ;
174 System . e x i t (−1) ;
175 }
176

177 // Finished check ing the BRANCHES t a b l e
178 System . out . p r i n t l n ( ” [ /BRANCHES] ”) ;
179 System . out . p r i n t l n ( ””) ;
180 e r r o r = fa l se ;
181

182 // Check the TELLERS t a b l e
183 System . out . p r i n t l n ( ” [TELLERS] ”) ;
184

185

186 // Get t ing s i z e
187 query = ” s e l e c t count ( t i d ) as numTellers from t e l l e r s ” ;
188 primRs = primS . executeQuery ( query ) ;
189 hsbRs = hsbS . executeQuery ( query ) ;
190

191 primRs . next ( ) ;
192 pr imSize = primRs . g e t In t ( ”numTellers ”) ;
193 hsbRs . next ( ) ;
194 hsbSize = hsbRs . g e t In t ( ”numTellers ”) ;
195 primRs . c l o s e ( ) ;
196 hsbRs . c l o s e ( ) ;
197

198 System . out . p r i n t l n ( ”Checking s i z e : ”) ;
199 i f ( pr imSize == hsbSize )
200 System . out . p r i n t ( ” [OK] ”) ;
201 else {
202 System . out . p r i n t ( ” [ERROR] ”) ;
203 e r r o r = true ;
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204 }
205

206 System . out . p r i n t ( pr imSize+” : ”+hsbSize+”\n”) ;
207

208 // Quit on error
209 i f ( e r r o r )
210 System . e x i t (−1) ;
211

212 // Get t ing con ten t s
213 query = ” s e l e c t t id , bid , tbalance , f i l l e r from t e l l e r s

order by t i d asc ” ;
214 primRs = primS . executeQuery ( query ) ;
215 hsbRs = hsbS . executeQuery ( query ) ;
216 System . out . p r i n t l n ( ”Checking contents . . . ”) ;
217

218 d i f f = 0 ;
219 counter = 0 ;
220 while ( primRs . next ( ) && hsbRs . next ( ) ){
221 i f ( ( primRs . g e t In t ( ” t i d ”) != hsbRs . g e t In t ( ” t i d ”) ) | | (

primRs . g e t In t ( ”bid ”) != hsbRs . g e t In t ( ”bid ”) ) | | ( primRs
. g e t In t ( ”tba lance ”) != hsbRs . g e t In t ( ”tba lance ”) ) ){

222 d i f f ++;
223 System . out . p r i n t ( ”\n”) ;
224 System . out . p r i n t l n ( ” [ERROR] t i d : ” + primRs . g e t In t ( ” t i d ”)+

” : ”+hsbRs . g e t In t ( ” t i d ”)+” , bid : ” + primRs . g e t In t ( ”bid ”
)+” : ”+hsbRs . g e t In t ( ”bid ”)+” , tba lance : ” + primRs .
g e t In t ( ”tba lance ”) + ” : ” + hsbRs . g e t In t ( ”tba lance ”) ) ;

225 }
226 i f ( counter % 20000 == 0 && counter != 0)
227 System . out . p r i n t ( ”\n”) ;
228 i f ( counter % 500 == 0 && counter != 0)
229 System . out . p r i n t ( ” . ”) ;
230 counter++;
231 }
232 System . out . p r i n t ( ”\n”) ;
233 primRs . c l o s e ( ) ;
234 hsbRs . c l o s e ( ) ;
235

236 i f ( d i f f == 0){
237 System . out . p r i n t l n ( ” [OK] ”) ;
238 }
239 else {
240 System . out . p r i n t l n ( ” [ERROR] ” + d i f f + ” row ( s ) do ( es ) not

match in the two databases . See above ”) ;
241 System . e x i t (−1) ;
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242 }
243

244 // Finished check ing the TELLERS t a b l e
245 System . out . p r i n t l n ( ” [ /TELLERS] ”) ;
246 System . out . p r i n t l n ( ””) ;
247 e r r o r = fa l se ;
248

249 // Checking the ACCOUNTS t a b l e
250 System . out . p r i n t l n ( ” [ACCOUNTS] ”) ;
251

252 // Get t ing s i z e
253 query = ” s e l e c t count ( a id ) as numAccounts from accounts ” ;
254 primRs = primS . executeQuery ( query ) ;
255 hsbRs = hsbS . executeQuery ( query ) ;
256

257 primRs . next ( ) ;
258 pr imSize = primRs . g e t In t ( ”numAccounts ”) ;
259 hsbRs . next ( ) ;
260 hsbSize = hsbRs . g e t In t ( ”numAccounts ”) ;
261 primRs . c l o s e ( ) ;
262 hsbRs . c l o s e ( ) ;
263

264

265 System . out . p r i n t l n ( ”Checking s i z e : ”) ;
266 i f ( pr imSize == hsbSize )
267 System . out . p r i n t ( ” [OK] ”) ;
268 else {
269 System . out . p r i n t ( ” [ERROR] ”) ;
270 e r r o r = true ;
271 }
272

273 System . out . p r i n t ( pr imSize+” : ”+hsbSize+”\n”) ;
274

275 // Quit on error
276 i f ( e r r o r )
277 System . e x i t (−1) ;
278

279 // Get t ing con ten t s
280 query = ” s e l e c t aid , bid , abalance , f i l l e r from accounts

order by aid asc ” ;
281 primRs = primS . executeQuery ( query ) ;
282 hsbRs = hsbS . executeQuery ( query ) ;
283 System . out . p r i n t l n ( ”Checking contents . . . ”) ;
284

285 d i f f = 0 ;
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286 counter = 0 ;
287 while ( primRs . next ( ) && hsbRs . next ( ) ){
288 i f ( ( primRs . g e t In t ( ”a id ”) != hsbRs . g e t In t ( ”a id ”) ) | | (

primRs . g e t In t ( ”bid ”) != hsbRs . g e t In t ( ”bid ”) ) | | ( primRs
. g e t In t ( ”abalance ”) != hsbRs . g e t In t ( ”abalance ”) ) ){

289 System . out . p r i n t ( ”\n”) ;
290 d i f f ++;
291 System . out . p r i n t l n ( ” [ERROR] aid : ” + primRs . g e t In t ( ”a id ”)+

” : ”+hsbRs . g e t In t ( ”a id ”)+” , bid : ” + primRs . g e t In t ( ”bid ”
)+” : ”+hsbRs . g e t In t ( ”bid ”)+” , abalance : ” + primRs .
g e t In t ( ”abalance ”) + ” : ” + hsbRs . g e t In t ( ”abalance ”) ) ;

292 }
293 i f ( counter % 20000 == 0 && counter != 0)
294 System . out . p r i n t ( ”\n”) ;
295 i f ( counter % 500 == 0 && counter != 0)
296 System . out . p r i n t ( ” . ”) ;
297 counter++;
298 }
299 System . out . p r i n t ( ”\n”) ;
300 primRs . c l o s e ( ) ;
301 hsbRs . c l o s e ( ) ;
302

303 i f ( d i f f == 0){
304 System . out . p r i n t l n ( ” [OK] ”) ;
305 }
306 else {
307 System . out . p r i n t l n ( ” [ERROR] ” + d i f f + ” row ( s ) do ( es ) not

match in the two databases . See above ”) ;
308 System . e x i t (−1) ;
309 }
310

311 // Finished check ing the ACCOUNTS t a b l e
312 System . out . p r i n t l n ( ” [ /ACCOUNTS] ”) ;
313 System . out . p r i n t l n ( ””) ;
314 e r r o r = fa l se ;
315

316 // Check the HISTORY t a b l e
317 System . out . p r i n t l n ( ” [HISTORY] ”) ;
318

319

320 // Get t ing s i z e
321 query = ” s e l e c t count ( t i d ) as numHistory from h i s t o r y ” ;
322 primRs = primS . executeQuery ( query ) ;
323 hsbRs = hsbS . executeQuery ( query ) ;
324
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325 primRs . next ( ) ;
326 pr imSize = primRs . g e t In t ( ”numHistory ”) ;
327 hsbRs . next ( ) ;
328 hsbSize = hsbRs . g e t In t ( ”numHistory ”) ;
329 primRs . c l o s e ( ) ;
330 hsbRs . c l o s e ( ) ;
331

332

333 System . out . p r i n t l n ( ”Checking s i z e : ”) ;
334 i f ( pr imSize == hsbSize )
335 System . out . p r i n t ( ” [OK] ”) ;
336 else {
337 System . out . p r i n t ( ” [ERROR] ”) ;
338 e r r o r = true ;
339 }
340

341 System . out . p r i n t ( pr imSize+” : ”+hsbSize+”\n”) ;
342

343 // Quit on error
344 i f ( e r r o r )
345 System . e x i t (−1) ;
346

347 // Get t ing con ten t s
348 query = ” s e l e c t aid , bid , t id , de l ta , time , f i l l e r from

h i s t o r y order by t id , bid , aid , time asc ” ;
349 primRs = primS . executeQuery ( query ) ;
350 hsbRs = hsbS . executeQuery ( query ) ;
351 System . out . p r i n t l n ( ”Checking contents . . . ”) ;
352

353 d i f f = 0 ;
354 counter = 0 ;
355 while ( primRs . next ( ) && hsbRs . next ( ) ){
356 i f ( ( primRs . g e t In t ( ” t i d ”) != hsbRs . g e t In t ( ” t i d ”) ) | | (

primRs . g e t In t ( ”bid ”) != hsbRs . g e t In t ( ”bid ”) ) | | ( primRs
. g e t In t ( ”a id ”) != hsbRs . g e t In t ( ”a id ”) ) | | ( primRs .
g e t In t ( ”de l t a ”) != hsbRs . g e t In t ( ”de l t a ”) ) | | ! primRs .
getTime ( ”time ”) . equa l s ( hsbRs . getTime ( ”time ”) ) ){

357 System . out . p r i n t ( ”\n”) ;
358 d i f f ++;
359 System . out . p r i n t l n ( ” [ERROR] aid : ” + primRs . g e t In t ( ”a id ”)+

” : ”+hsbRs . g e t In t ( ”a id ”)+” , t i d : ” + primRs . g e t In t ( ” t i d ”
)+” : ”+hsbRs . g e t In t ( ” t i d ”)+” , bid : ” + primRs . g e t In t ( ”
bid ”) + ” : ” + hsbRs . g e t In t ( ”bid ”)+” , de l t a : ” + primRs .
g e t In t ( ”de l t a ”) + ” : ” + hsbRs . g e t In t ( ”de l t a ”)+” , time :
” + primRs . getTime ( ”time ”) + ” : ” + hsbRs . getTime ( ”time ”
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) ) ;
360 }
361 i f ( counter % 20000 == 0 && counter != 0)
362 System . out . p r i n t ( ”\n”) ;
363 i f ( counter % 500 == 0 && counter != 0)
364 System . out . p r i n t ( ” . ”) ;
365 counter++;
366 }
367 System . out . p r i n t ( ”\n”) ;
368 primRs . c l o s e ( ) ;
369 hsbRs . c l o s e ( ) ;
370

371 i f ( d i f f == 0){
372 System . out . p r i n t l n ( ” [OK] ”) ;
373 }
374 else {
375 System . out . p r i n t l n ( ” [ERROR] ” + d i f f + ” row ( s ) do ( es ) not

match in the two databases . See above ”) ;
376 System . e x i t (−1) ;
377 }
378

379 // Finished check ing the HISTORY t a b l e
380 System . out . p r i n t l n ( ” [ /HISTORY] ”) ;
381

382 // Close the r e s u l t s e t s
383 primRs . c l o s e ( ) ;
384 hsbRs . c l o s e ( ) ;
385

386 // Close s ta tements and connec t ions
387 primS . c l o s e ( ) ;
388 hsbS . c l o s e ( ) ;
389 primConn . c l o s e ( ) ;
390 hsbConn . c l o s e ( ) ;
391

392 } catch ( SQLException e ) {
393 e . pr intStackTrace ( ) ;
394 }
395 }
396

397

398

399

400

401 }
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Appendix B

Arguments for the Network
Server

In addition to the standard arguments that can be added to derby on startup of
the network server the following have been added for hot standby support:

• hsb A flag to indicate if the server should be started as primary or hot
standby, can be either ”primary” or ”standby”

• hsburl The url to the hot standby, used if the database is started as primary

Examples:
To start the server as primary with a hotstandby located at hsb.example.com:
java -server org.apache.derby.drda.NetworkServerControl start -hsb primary -hsburl
hsb.example.com

To start the corresponding server as hot standby:
java -server org.apache.derby.drda.NetworkServerControl start -hsb standby

These two arguments can of course be combined with all of the arguments al-
ready available in derby.
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Appendix C

Source Code

Due to the large amount of source code created in this project it is supplied as a
zip file to this report. The changed and created classes are listed below.

C.1 The Logical Log System
• org.apache.derby.iapi.store.logical.log.LogicalImage

• org.apache.derby.iapi.store.logical.log.LogicalLoggable

• org.apache.derby.impl.store.logical.log.LogicalLog

• org.apache.derby.impl.store.logical.log.LogicalLogger

• org.apache.derby.impl.store.logical.log.LogicalLogRecord

• org.apache.derby.impl.store.logical.opearations.LogicalAbortOperation

• org.apache.derby.impl.store.logical.opearations.LogicalCommitOperation

• org.apache.derby.impl.store.logical.opearations.LogicalDeleteOperation

• org.apache.derby.impl.store.logical.opearations.LogicalImage

• org.apache.derby.impl.store.logical.opearations.LogicalInsertOperation

• org.apache.derby.impl.store.logical.opearations.LogicalOperation

• org.apache.derby.impl.store.logical.opearations.LogicalOperationFactory

• org.apache.derby.impl.store.logical.opearations.LogicalUpdateOperation

C.2 The SQL Layer
• org.apache.impl.sql.execute.RowChangerImpl

• org.apache.impl.sql.conn.GenericLanguageConnectionContext

C.3 The Communications Service
• org.apache.derby.impl.services.net.LogicalServer

• org.apache.derby.impl.services.net.LogicalClient

• org.apache.derby.impl.services.net.NetworkPayload

• org.apache.derby.impl.services.net.receiver.LogReceiver
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• org.apache.derby.impl.services.net.shipper.LogShipper

• org.apache.derby.impl.services.net.shipper.LogicalCatchUp

C.4 The Hot Standby Service
• org.apache.derby.impl.services.hotstandby.HotStandbyController

• org.apache.derby.impl.services.hotstandby.Database

C.5 The Network Server
• org.apache.derby.impl.drda.NetworkServerControlImpl

• org.apache.derby.impl.drda.HotStandbyPoller

• org.apache.derby.impl.drda.net.LogicalClient

• org.apache.derby.imp.drda.net.LogicalServer
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