
June 2007
Anne Cathrine Elster, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Fault-tolerance for MPI Codes on
Computational Clusters

Knut Imar Hagen

Problem Description

Many applications, e.g. several seismic processing codes, need to be run over several weeks, if not
longer. These applications become a challenge on larger computational clusters, since it is likely
a hardware failure will occur during the execution of the program. These codes therefore need to
be made fault tolerant.

This thesis' main focus is on how to handle the situation when a computer node in the cluster
crashes for MPI (Message Passing Interface) applications.

MPI-2 defines error handling routines, but many lack in current MPI-1 implementations. This
thesis hence includes a study of how to implement exception handling for such MPI codes. A given
application will be used as a test case.

Assignment given: 20. January 2007
Supervisor: Anne Cathrine Elster, IDI

Abstract

This thesis focuses on fault-tolerance for MPI codes on computational clusters.
When an application runs on a very large cluster with thousands of processors,
there is likely that a process crashes due to a hardware or software failure.
Fault-tolerance is the ability of a system to respond gracefully to an unexpected
hardware or software failure.

A test application which is meant to run for several weeks on several nodes is
used in this thesis. The application is a seismic MPI application, written in For-
tran90. This application was provided by Statoil, who wanted a fault-tolerant
implementation. The original test application had no degree of fault-tolerance
–if one process or one node crashed, the entire application also crashed.

In this thesis, a collection of fault-tolerant techniques are analysed, including
checkpointing, MPI Error handlers, extending MPI, replication, fault detec-
tion, atomic clocks and multiple simultaneous failures. Several MPI imple-
mentations are described, like MPICH1, MPICH2, LAM/MPI and Open MPI.
Next, some fault-tolerant products which are developed at other universities
are described, like FT-MPI, FEMPI, MPICH-V including its five protocols, the
fault-tolerant functionality of Open MPI, and MPI Error handlers.

A fault-tolerant simulator which simulates the application’s behaviour is de-
veloped. The simulator uses two fault-tolerance methods: FT-MPI and MPI
Error handlers.

Next, our test application is similarly made fault-tolerant with FT-MPI using
three proposed approaches: MPI_Reduce(), MPI_Barrier(), and the final and
current implementation: MPI Loop. Tests of the MPI Loop implementation are
run on a small and a large cluster to verify the fault-tolerant behaviour. The
seismic application survives a crash of n-2 nodes/processes. Process number
0 must stay alive since it acts as an I/O server, and there must be at least one
process left to compute data.

Processes can also be restarted rather than left out, but the test application
needs to be modified to support this.

v

VI

Acknowledgements

I would like to thank Dr. Anne C. Elster for being my advisor on this Master’s
thesis, and for giving me valuable input throughout the project.

I would also like to thank all the students in room ITV-458 (where I have been
writing my thesis) for responding to some of my questions.

Thanks to Stig-Kyrre Foss at Statoil Research Center Rotvoll for giving us this
interesting thesis assignment, and for letting us use their application as a test
application in my thesis. Thanks to Jon André Haugen and Børge Arntzen,
also from Statoil, for taking their time, explaining the source code of the test
application to me.

vii

VIII

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Message passing and fault-tolerance 1
1.2 Thesis goal and motivation . 2
1.3 Outline . 2

2 Background Material 5
2.1 Computational cluster . 5
2.2 Message passing . 5
2.3 MPI . 5

2.3.1 MPI-1 . 6
2.3.2 MPI-2 . 7

2.4 MPI Implementations . 7
2.4.1 MPICH . 7
2.4.2 LAM/MPI . 7
2.4.3 Open MPI . 8

2.5 Related work . 8
2.5.1 FT-MPI . 8
2.5.2 FEMPI . 10
2.5.3 MPICH-V . 10
2.5.4 Open MPI . 12
2.5.5 MPI Error handlers . 13
2.5.6 Fault-tolerant matrix operation techniques 14

3 Test application 15
3.1 Description of test application . 15
3.2 Simulator . 17

3.2.1 Implementation specification 17
3.2.2 Implementation of FT-MPI 19
3.2.3 Implementation of Error handlers 19

4 Fault-tolerant techniques for MPI 23
4.1 Checkpointing . 23
4.2 MPI Error handlers . 24
4.3 Extending MPI . 24

ix

CONTENTS X

4.4 Replication . 25
4.5 Fault detection . 25
4.6 Atomic clocks . 27
4.7 Multiple simultaneous failures 27

5 Results and discussion 29
5.1 Implementation of FT-MPI in Test application 29

5.1.1 MPI_Reduce() . 29
5.1.2 MPI_Barrier() . 30
5.1.3 MPI Loop . 33

5.2 Testing . 35
5.2.1 Implementation in test application 35
5.2.2 Measurement . 35
5.2.3 Fault-tolerant model . 38

6 Conclusion 43
6.1 Future work . 44

Bibliography 45

Appendices 48

A Source Code of Simulator 49
A.1 Simulator Original . 49
A.2 Simulator with FT-MPI implementation 52
A.3 Simulator with implementation of error handlers 55

A.3.1 Master program . 55
A.3.2 Slave program . 58

B Code snippets from the Test application 61
B.1 MPI_Reduce() . 61
B.2 MPI_Barrier() . 65
B.3 MPI Loop . 68
B.4 PioSend() . 70

C Output from testing of test application 71
C.1 Small cluster . 71
C.2 Large cluster . 74

D Description of bibliography citations 85

E Electronic appendix 87

List of Figures

3.1 Illustration of an example of the output from the test application. 16
3.2 Illustration of an example zoom of the output from the test ap-

plication. 16
3.3 Illustration of the original version of the simulator. 18
3.4 Illustration of the FT-MPI version of the simulator. 20
3.5 Illustration of the error handler version of the simulator (mas-

ter/slave). 22

4.1 Illustration of the ring message fault detection. 26
4.2 Illustration of the atomic fault detection. 27

5.1 Illustration of the I/O server when getting reduce messages from
the clients. 31

5.2 Illustration of the I/O server when getting barrier messages from
the clients. 32

5.3 Illustration of every call to a MPI function, both the I/O server
and the clients. 34

5.4 Test of wall time for communicator rebuilding. 37
5.5 Graph of fault-tolerant model of test application, small cluster. . 40
5.6 Graph of fault-tolerant model of test application, large cluster. . 41

xi

LIST OF FIGURES XII

List of Tables

5.1 Test of the wall time of rebuilding the communicator. 36

xiii

LIST OF TABLES XIV

Chapter 1

Introduction

Fault-tolerance is the ability of a system to respond gracefully to an
unexpected hardware or software failure. There are many levels of
fault-tolerance, the lowest being the ability to continue operation in
the event of a power failure. Many fault-tolerant computer systems
mirror all operations – that is, every operation is performed on two
or more duplicate systems, so if one fails the other can take over.

- Webopedia on "Fault-tolerance"

High-end high performance computing systems have today thousands of pro-
cessors. This number is expected to grow for the next years, as processing
power of a single processor levels off due to energy limits and quantum ef-
fects. The largest number of processors on a cluster today is 131 072, according
to the Top 500 [1] list as of November 2006. A critical issue of systems con-
sisting of such large numbers of processors, is the ability of the system to deal
with processor and other failures. One may believe that this is a job of the op-
erating system, and that the programmer should not have to worry about it.
However, this is not currently the case, hence the motivation for this thesis.

1.1 Message passing and fault-tolerance

In the High Performance Computing (HPC) field, the most common program-
ming paradigm for Computational Clusters is message passing between pro-
cesses. When one or more of the processes fail, it is favourable that the whole
application does not crash. Based on this mentality, there should be a mech-
anism which prevents this application from crashing. There are several ap-
proaches to implement this, but the most common requirements are that a fail-
ure can be detected, there is information available that allows the computation
to continue, and that the computation can be restarted. One example is to han-
dle error codes from the failed processes and restarting them with the previous
known checkpoint as the beginning dataset. A checkpoint is, in brief, a copy

1

CHAPTER 1. INTRODUCTION 2

of the so far computed data, mainly saved to the harddrive. However, the ba-
sic idea with fault-tolerance is that if one process crashes, the other processes
should continue their processing with minor disturbance.

1.2 Thesis goal and motivation

This thesis’ main focus will be on how to handle the situation when a computer
node in the cluster (or a process) crashes for MPI (Message Passing Interface)
applications. MPI-2 defines error handling routines, but many lack in current
MPI-1 implementations. MPI does not define fault-tolerance in either version
of the standard.

This thesis topic was motivated by a larger seismic simulation done at Statoil
Research Center Rotvoll, that runs for several weeks on a large cluster. On
their large cluster there may often encounter node failures that interrupts and
crashes their simulations that have been running for several weeks. This the-
sis analyses several fault-tolerant techniques and shows how to implement
fault-tolerance for such MPI codes. This thesis covers fault-tolerance for a
fairly straightforward case with a collection of smaller independent parts of
a dataset. These parts are distributed among processors on a cluster, and parts
assigned to failing processes will be re-distributed to the processes which are
still alive.

1.3 Outline

• Chapter 1 has been this brief introduction.

• Chapter 2 describes different MPI implementations and related work
which includes several fault-tolerant products and techniques.

• Chapter 3 describes the test application in this thesis. It also describes
a simulator which simulates the behaviour of the test application. The
simulator is made fault-tolerant with two different methods.

• Chapter 4 describes fault-tolerant techniques that are studied and anal-
ysed during this thesis work.

• Chapter 5 is results and discussion where the most important part is to
make the test application fault tolerant. This chapter also contains several
tests.

• Chapter 6 is the conclusion and describes future work.

• Bibliography is a list of citations in this thesis, and a description of them.
Links are included where available.

CHAPTER 1. INTRODUCTION 3

• Appendix A is a source code listing of the simulator in three different
versions. The first version simulates the behaviour of the original test
application, the second is a fault-tolerant implementation with FT-MPI,
and the third is a fault-tolerant implementation of error handlers.

• Appendix B is a source code listing of code snippets from the different
fault-tolerant implementations of the test application.

• Appendix C is a listing of the output from the testing of the fault-tolerant
test application.

• Appendix D gives a list of descriptions of what was gained from the dif-
ferent articles and web sites that are cited in this thesis.

• Appendix E is an electronic collection of files from this thesis. Description
of these files can be found in the sheet called Appendix E and in the
README file included in the zip file.

CHAPTER 1. INTRODUCTION 4

Chapter 2

Background Material

2.1 Computational cluster

A computational cluster is a collection of computer nodes connected in a net-
work. The network connection can be very fast or slow, and the costs of build-
ing the network comes thereafter. A cluster may be contained of hundreds
or even thousands of nodes. Every node may also contain a large number of
processors. The processors may also be multicore, which yields that the total
number of processes run simultaneously can be enormous. The top 500 list [1]
is a list of the 500 most powerful computer systems in the world. A cluster
may be homogeneous or heterogeneous, meaning a set of computers with the
exact same hardware, or a set of computers with different hardware.

2.2 Message passing

Message passing for parallel programming is a sort of communication between
processes, where the communication consists of processes sending messages to
each other. These messages could be a triggering of a function, data packets
or signals. Messages may be sent to a process on the same node, which means
copying data inside the primary memory. The messages could also be sent to
a process on another node, where the messages are sent over the network.

2.3 MPI

Message Passing Interface (MPI) [2, 3] is a library specification for message
passing. It is the de facto standard for communication between the processes
modeling a parallel program on a distributed memory system. MPI does not
define the protocol to be used when passing messages over the network, it is an

5

CHAPTER 2. BACKGROUND MATERIAL 6

application layer interface in the OSI model [4]. MPI’s dual goals are high per-
formance (scalability), and high portability. High productivity of the interface,
in programmer terms, is not one of the key goals of MPI, and MPI is gener-
ally considered to be low-level. It expresses parallelism explicitly, rather than
implicitly. MPI is a specification, not an implementation. MPI has Language
Independent Specifications (LIS) for the function calls, and language bindings.

Most MPI implementations consist of a set of routines which are to be called
from Fortran, C or C++, or by any other language which has an interface with
these API’s. Portability and speed are the main advantages of MPI compared
to older libraries. Portability, because MPI has been implemented for almost
every distributed memory architecture. Speed, because each implementation
is in principle optimised for the hardware on which it runs. MPI is also sup-
ported on shared memory and NUMA [5] architectures.

MPI uses messaging between processes. Each process are assigned an unique
rank identification, an integer from zero to the total number of processes minus
one. There is both point-to-point and collective communication. Point-to-point
communication is when a process sends some data to another process. Collec-
tive communication is when groups of processes communicate. An example of
collective communication can be to find a maximum value of a specified vari-
able which all processes holds, or to distribute an array among all processes.
Collective communication is not very well suited for scalability, because the
more processes in the group, the longer the communication takes to complete.
A given group of processes is called a communicator, and the communicator
used by the processes must be a part of the parameter list of the MPI func-
tions that are either collective or point-to-point. These are specified as intra
communicators. Inter communicators are communicators that lets processes
in different communicators communicate with each other.

There are two versions of the MPI standard, MPI-1 and MPI-2.

2.3.1 MPI-1

The first version of MPI, 1.0, was released in June 1994. About 60 people from
40 organizations, mainly from the United States and Europe, had been meet-
ing in the Message Passing Interface Forum (MPIF) since January 1993 to dis-
cuss and define a set of library interface standards for message passing. MPIF
was not supported by any official standards organization. The forum led to
a new definition, MPI-1.1 which superseded MPI-1.0. A side effect of MPI-2
standardization (completed in 1996) was clarification of the MPI-1 standard,
creating the MPI-1.2 level. About 128 functions comprise the MPI-1.2 standard
as it is now defined.

CHAPTER 2. BACKGROUND MATERIAL 7

2.3.2 MPI-2

The MPI-2 standard describes additions to the MPI-1 standard and defines
MPI-2. These include miscellaneous topics, dynamic process creation and man-
agement, one-sided communications, extended collective communications -
two groups of processes, external interfaces, scalable file I/O, and additional
language bindings. The LIS of MPI-2 specifies over 500 functions and provides
language bindings for Fortran90, C and C++.

It is important to note that MPI-1.2 programs, now deemed "legacy MPI-1 pro-
grams," still work under the MPI-2 standard although some functions have
been deprecated. This is important since many older programs use only the
MPI-1 subset.

2.4 MPI Implementations

MPI is, as previous stated, a specification, not an implementation. In this sec-
tion, some of the known implementations are described.

2.4.1 MPICH

MPICH [6] (also called MPICH1) is a freely available, portable implementa-
tion of MPI, developed at Argonne National Laboratory. It implements the
MPI-1 standard. The current version of MPICH is 1.2.7p1 and was released on
November 4th, 2005.

MPICH2 is, like MPICH1, a freely available, portable implementation of MPI,
developed at Argonne National Laboratory. It implements the MPI-2 stan-
dard. The goals of MPICH2 are to provide an MPI implementation for impor-
tant platforms, including clusters, SMPs, and massively parallel processors. It
also provides a vehicle for MPI implementation research and for developing
new and better parallel programming environments. The current version of
MPICH2 is 1.0.5, released on December 13, 2006. MPICH2 replaces MPICH1
and should be used instead of MPICH1 except for the case of clusters with
heterogeneous data representations (e.g., different lengths for integers or dif-
ferent byte ordering). MPICH2 does not yet support those systems (support is
planned for 2007).

2.4.2 LAM/MPI

LAM/MPI [7] (Local Area Multicomputer) is an MPI programming environ-
ment and development system for heterogeneous computers on a network.

CHAPTER 2. BACKGROUND MATERIAL 8

LAM has a full implementation of MPI-1 and much of MPI-2, and offers exten-
sive monitoring capabilities to support debugging.

At time being, LAM/MPI is in a maintenance mode. Bug fixes and criti-
cal patches are still being applied, but little real "new" work is happening in
LAM/MPI. This is a direct result of the LAM/MPI Team spending the vast
majority of their time working on their next-generation MPI implementation -
Open MPI. The team actually encourages to try migrating from LAM/MPI to
Open MPI, because implementations should be converted without any prob-
lems. Open MPI contains many features and performance enhancements that
are not available in LAM/MPI [8].

2.4.3 Open MPI

Open MPI [9] is a project combining technologies and resources from several
other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI). Its goal is to
build the best MPI library available. Open MPI is an implementation based
on the MPI-2 standard. Open MPI provides a unique combination of novel
features previously unavailable in an open-source, production-quality imple-
mentation of MPI. It has a full MPI-2 standards conformance.

The organizations (and newly-combined projects) contributing to Open MPI
are Indiana University (LAM/MPI), the University of Tennessee (FT-MPI), and
Los Alamos National Laboratory (LA-MPI). Additional collaborators are at
Sandia National Laboratories and the High Performance Computing Center
at Stuttgart (PACX-MPI).

2.5 Related work

2.5.1 FT-MPI

FT-MPI [10] is an abbreviation for Fault-Tolerant Message Passing Interface. It
is developed at the ICL group at the University of Tennessee. There they have a
project called HARNESS (Heterogeneous Adaptive Reconfigurable NEtworked
SystemS) [11]. HARNESS is an experimental Metacomputing System aiming
at providing a highly dynamic, fault-tolerant computing environment for high
performance computing applications. As the HARNESS system itself is both
dynamic and fault-tolerant (no single points of failure), it became possible to
build a MPI plug-in with added capabilities such as dynamic process manage-
ment and fault-tolerance. This plug-in is called FT-MPI.

FT-MPI is an independent implementation of the MPI 1.2 message passing
standard that has been built from the ground up with both user and system

CHAPTER 2. BACKGROUND MATERIAL 9

level fault-tolerance. FT-MPI allows developers to build fault-tolerant or sur-
vivable applications that do not immediately exit due to the failure of a pro-
cessor, node, or MPI task. A number of failure modes are offered that allow
a range of recovery schemes to be used that closely match different classes of
parallel applications. FT-MPI is unique because it avoids restarting surviv-
ing nodes, which can be a considerable advantage on very large scale systems
where rescheduling and restarting of the entire application is the only current
option.

FT-MPI survives the crash of n-1 processes in a n-process job, and, if required,
can respawn/restart them. However, it is still the responsibility of the applica-
tion to recover the data-structures and the data on the crashed processes. The
application discovers any errors from the return code of any MPI call, with
a new fault indicated by MPI_ERR_OTHER. When there is a failure within
a communicator, the communicator is marked as having an error. Once a
communicator has an error state it can only recover by rebuilding it, using
a modified version of one of the MPI communicator build functions such as
MPI_Comm_create(), MPI_Comm_split() or MPI_Comm_dup(). The system
behaves according to the given communicator modes and communication modes.
These can be specified while starting the application. The four communicator
modes are described next.

• SHRINK: The communicator is shrunk so that its data structures con-
tains no holes. This means that a node has been completely left out,
and this forces all the processes to change their ranks with a recall to
MPI_Comm_rank().

• BLANK: This is the same as SHRINK, but this one, as its name implies,
will leave blanks or gaps in the communicator where there used to be
a process. These gaps can be filled in later. This means that all the pro-
cesses retain their respective ranks. If a process communicates with a gap
process, it will get an invalid rank error. The function MPI_Comm_size()
will return the size of the communicator, including the gap processes.

• REBUILD: This is the most complex mode, as it forces the creation of new
processes to fill any gaps. The new processes can either be placed in the
empty gaps with their ranks, or the communicator can be shrunk, so the
new processes are added at last with the highest ranks. This is used for
applications that require a certain number of processes to execute.

• ABORT: This mode actually forces a graceful abort of the application if
an error is detected. This cannot be avoided in the application, so the
only option is to use of the three above communicator modes.

Next are the two communication modes described.

• NOP: No operations on error. This means that no user level message
operations are allowed, and these will simply return an error code. This
is used to allow an application to return from any point in the code to a
state where it can take appropriate action as soon as possible.

CHAPTER 2. BACKGROUND MATERIAL 10

• CONT: All communication that is not to the effected or failed node can
continue as normal. Attempts to communicate with a failed node will
return errors until the communicator state is reset.

2.5.2 FEMPI

FEMPI is an abbreviation for Fault-tolerant Embedded Message Passing In-
terface [12]. The project is in development at the High-performance Comput-
ing and Simulation (HCS) Research Laboratory at the University of Florida.
FEMPI is a lightweight, fault-tolerant design and implementation of the com-
mon MPI standard. Fault-tolerance and recovery is provided through three
stages including detection of a fault, notification of the fault, and recovery
from the fault. FEMPI prevents the entire application from crashing on in-
dividual process failures. On a failure, MPI Restore, a component of FEMPI,
informs all the MPI processes regarding the failure. The status of senders and
receivers are checked before communication to avoid attempts to communi-
cate with failed processes. If the communication partner (sender or receiver)
fails after the status check and before communication, then a timeout-based
recovery is used to recover out of the MPI function call. FEMPI, just like FT-
MPI, survives the crash of n-1 processes in an n-process job, and, if required,
can re-spawn/restart them. However, it is still the responsibility of the High-
Availability Middleware to recover the data structures and the data on the
crashed processes. A program written in conventional MPI can execute over
FEMPI with little or no alteration.

FT-MPI, described in the previous section, attempts to provide fault-tolerance
in MPI by extending the MPI process states and communicator states from
the simple valid, invalid as specified by the standard to a range of states.
The range of communicator states specified by FT-MPI helps the application
with the ability to decide how to alter the communicator, its state and the be-
haviour of the communication between intermediate states on occurrence of a
failure. FT-MPI provides for graceful degradation of applications, but has no
support for transparent recovery from faults. The design concept of FEMPI is
also largely based upon FT-MPI, although there are significant differences as
FEMPI is designed to target embedded, resource limited, and mission-critical
systems where faults are more commonplace, such as payload processing in
space.

2.5.3 MPICH-V

MPICH-V [13, 14] is a research effort with theoretical studies, experimental
evaluations and pragmatic implementations aiming to provide a MPI imple-
mentation based on MPICH (described in Section 2.4.1), featuring multiple
fault-tolerant protocols. It is an automatic fault-tolerant library, which means
that a totally unchanged application linked with the MPICH-V library is a

CHAPTER 2. BACKGROUND MATERIAL 11

fault-tolerant application. The project is in development at the Laboratoire
de Recherche en Informatique at Université de Paris Sud.

The MPICH-V project contains for the time being five versions with some dis-
similarities. The first three are deprecated, but they are working on a new
implementation of all these protocols inside a generic framework, the VCL
version.

V1

The first implementation, called MPICH-V1 ch_xw, was released March 10
2003. It features a fault-tolerant protocol designed for very large scale com-
puting using heterogeneous networks. Its fault-tolerant protocol is well suited
for Desktop Grids and Global computing as it can support a very high rate of
faults, but requires a larger bandwidth for stable components to reach good
performance.

V2

The second implementation, called MPICH-V2 ch_v2, was released first on
June 23 2003. It features a fault-tolerant protocol designed for homogeneous
network large scale computing (typically large clusters). Unlike MPICH-V1, it
only requires a very small number of stable components to reach good perfor-
mance on a cluster. Its uncoordinated checkpoint protocol makes it suitable for
large scale applications, where the large number of nodes induces a low mean
time between failures.

VCausal

The next implementation, called MPICH-VCausal ch_cl, was released first on
December 19 2003. It features a fault-tolerant protocol designed for low latency
dependent applications which must be resilient to a high fault frequency. It
combines the advantages of the other message logging protocols (thus provid-
ing computation progress even with high fault frequency) with direct commu-
nication and absence of acknowledgements (thus avoiding high latency im-
pact).

VCL

The newest implementation for MPICH-1 is MPICH-VCL, called ch_v and was
released on January 25 2006. This version features a fault-tolerant protocol de-
signed for extra low latency dependent applications. The Chandy Lamport

CHAPTER 2. BACKGROUND MATERIAL 12

algorithm [15] used in MPICH-VCL does not introduce any overhead dur-
ing fault free execution. However, it requires restarting all nodes (even non
crashed ones) in the case of a single fault. As a consequence, it is less fault
resilient than message logging protocols, and is only suited for medium scale
clusters. The intention is to implement all the protocols from the earlier ver-
sions in this ch_v implementation.

PCL

Another implementation was released May 01 2007. This implementation is
MPICH-PCL, called pcl and features a Blocking Chandy Lamport fault-tolerant
protocol in the MPICH-2 implementation. This consists of a new channel,
called ft-sock, based on the TCP sock channel, and two components, a check-
point server and a specific dispatcher, supporting large scale and heteroge-
neous applications. A migration capability is also developed. Computation is
now able to restart from a given checkpoint wave.

2.5.4 Open MPI

Open MPI is described in general in Section 2.4.3, and now the fault-tolerant
functionality [16] will be described.

Currently, the fault-tolerant functionality has not been implemented. It is be-
ing developed in separate non-public branches because it is still experimental
and not yet considered stable. Researchers also need to preserve the ability
to publish on the new ideas and techniques that are being developed. The
following fault-tolerant techniques are planned to be supported in Open MPI:

• Coordinated and uncoordinated process checkpoint and restart. Similar
to those implemented in LAM/MPI and MPICH-V, respectively.

• Message logging techniques. Similar to those implemented in MPICH-V.

• Data Reliability and network fault-tolerance. Similar to those imple-
mented in LA-MPI.

• User directed, and communicator driven fault-tolerance. Similar to those
implemented in FT-MPI.

Network failover and data reliability is scheduled to be released in version 1.2.
Subversions of 1.2 has recently been released, but they still lack implementa-
tions of fault-tolerance. Rollback recovery with checkpoint/restart is sched-
uled to be released in version 1.3.

CHAPTER 2. BACKGROUND MATERIAL 13

2.5.5 MPI Error handlers

William Gropp and Ewing Lusk [17] describes how to make a non-transparent
fault-tolerant MPI application. They claim that fault-tolerance is a property of
a program, not of an API specification or an implementation. There are several
ways to approach fault-tolerance:

• Using checkpointing and restarting the application manually after an ap-
plication crash. There are two ways to do this, and one is at the user level,
and the second at the system level. The user level is the easiest as you in
theory only save the computed data to disk, and recover it after a crash.
There must be taken in consideration how often a checkpointing opera-
tion should be done, because it is a performance killer.

• Using a communicator is a fundamental concept in MPI. It is a distributed
object that supports both collective and point-to-point communication.
A failure of one process affects all the other processes in the communi-
cator. This means that using only one communicator is a fragile case.
When building a manager/worker application, inter communicators can
be used. There the manager and a worker are assigned a communicator,
and the manager and another worker are assigned another communica-
tor. No collective operations are needed and the workers do not com-
municate with each other. If one worker dies, work can be assigned to
another worker which has nothing to do at the moment. If MPI-2 is used,
the function MPI_Comm_spawn() can be used to create the inter com-
municators, and when a worker dies, the function can be used to replace
the dead worker.

• Modifying the semantics of certain MPI objects to be slightly different
from those described in the MPI Standard. For example, a communica-
tor can enter a state in which some ranks are defined and not others. In a
standard MPI implementation a process’s rank cannot change. They be-
lieve this is not the way to go in writing production applications, but
rather use a more limited and consistent approach with existing pro-
gramming style (described next).

• Rather than modifying existing semantics, extensions can be added to
MPI that have semantics that support the writing of fault-tolerant pro-
grams. These should also be consistent with all existing MPI semantics.
New functions could be added and co-exist with standard MPI functions.
A central idea is the Process array object, which plays the role of a com-
municator, but differs in several ways. It is in some ways the same as
the BLANK option in FT-MPI, which mark dead nodes, and leaves a gap
in the communicator, which does not change the respective ranks of the
processes.

CHAPTER 2. BACKGROUND MATERIAL 14

2.5.6 Fault-tolerant matrix operation techniques

The paper of Anne C. Elster, M. Ümit Uyar and Anthony P. Reeves [18] is
about algorithmic fault-tolerant matrix operation techniques. These have been
especially tailored for efficient multi-processing on hypercubes. They present
an optimal re-distribution of the data matrix upon a single processor fault
for matrix-vector multiplication. Algorithmic fault-tolerance becomes a chal-
lenge, because of the switching topology, making use of interconnection links
in all hypercube dimensions, where the interconnection involves two orthog-
onal sets of binary trees.

Low communication overhead is maintained, by focusing on re-distributing
the load for each processor to minimize the effect on the remaining partial or-
thogonal trees. Applying the techniques discussed to any row-dependent grid
problem which needs a re-distribution of data upon processor failure/failures
can easily be done. The model they use assumes fault detection where faults
are considered to be permanent faults in one or more of the processors.

Chapter 3

Test application

3.1 Description of test application

The test application to which fault-tolerance is to be implemented, is a MPI ap-
plication which uses a seismic dataset captured from sonars on the sea level.
The goal is to create an image of the sea ground and from this predict where to
find oil. The application processes the information from sensors with a distri-
bution of the dataset to several processes. The dataset contains several shots,
and the processes pick a shot and process it, and then pick another. The pro-
cesses can continue to pick shots for weeks, depending on how many shots
there are in the dataset. There is no communication between the processes dur-
ing the computation of one shot, only before and after the computation. When
all the processes have finished computing their amount of shots, the results
are gathered with the collective communication call MPI_Reduce() or gath-
ered into a file. An example of the output is shown in Figure 3.1 and zoomed
in at a few of the shots viewed in Figure 3.2. If one or more of the processes
have failed during the computation time, the whole application crashes.

The test application is written in Fortran90, and is built with several libraries
to make the code more usable and divided. One of the libraries is named FIO,
and is an abbreviation of Fortran Input Output. In the FIO library there is
a function called FioPfm(), and the application lets rank 0 call this function.
This is a forever loop calling the MPI_RECV() subroutine, and based upon the
messages received from the other processes, rank 0 acts as an I/O server for
them. This means that rank 0 is a single point of failure, because the other
processes may crash, and they can be left out of the communicator, but not
rank 0. The other processes can be left out because the shots that have not
been processed can be run again when everything else is finished.

If the failed processes were detected before the collective call MPI_Reduce(),
the application crash could be prevented.

15

CHAPTER 3. TEST APPLICATION 16

Figure 3.1: Illustration of an example of the output from the test application.
The image shows the modeling of all the shots that are processed.

Figure 3.2: Illustration of an example zoom of the output from the test appli-
cation. The image shows a few shots, a zoom of the whole modeling.

CHAPTER 3. TEST APPLICATION 17

3.2 Simulator

The test application is a heavy code with a huge dataset, and it is meant to run
for several weeks. Because of these statements, it is better to make a simulator
which has a smaller dataset, spreads the dataset among several processes and
computes for a certain amount of time. In the end the MPI_Reduce() will be
called to gather results. During the computation time, some of the processes
will be forced to fail. This means to exit before MPI_Finalize() has been called.

The original version of the simulator will not notice the crashed processes be-
fore MPI_Reduce() is called in the end, and the simulator will not be able to
complete the MPI_Reduce() operation. This simulates the current behaviour
of the test application. Other versions of the simulator is described in the fol-
lowing subsections. They have fault-tolerance implemented, and either restart
or leave out the processes which have crashed before MPI_Reduce() is called.
The fault-tolerance code can then be adapted to the test application.

3.2.1 Implementation specification

The computational idea of the simulator is to have a large dataset as a ma-
trix, which is initialised as submatrices on each of the processes. There is a
fixed value of the total matrix size defined in the code, and this size is divided
among the submatrices. The computation is a rearranging operation on the
submatrices that will be performed N times in a for-loop. This means that the
first element in the submatrix is swapped with the last element, and the second
element swapped with the second last, and so on. In the end, the operation will
be reversed, so the matrix is the same as the original after each computation
round. The number N can be adjusted to make the computation use more or
less time, meaning more or less rounds of matrix rearranging. The simulator
knows how many, but not which of the processes that will fail during the com-
putation. The selection of the failing processes is randomised, and they will
fail in a sequentially order during the computation. When the computation
is finished, the first element in the submatrix is included in the MPI_Reduce()
SUM operation, and the result is printed to stdout. This result is not shown in
the original version if the simulator fails some of the processes, but the other
versions make the simulator print the result and exit gracefully. The behaviour
of the original simulator is illustrated in Figure 3.3.

To start the simulator, the following command line is used:

$ mpirun -np #procs simulator_original #procfail #loops

Where #procs is the number of processes to be spawned, simulator_original is
the application name, #procfail is the number of random processes which will
fail during the computation, and #loops is the number of times the rearranging
operation is to be run on the submatrices. The original implementation can be
found in Appendix A.1.

CHAPTER 3. TEST APPLICATION 18

Figure 3.3: Illustration of the original version of the simulator. The submatrices
of the processes are initialised. Next some computation is performed on the
submatrices. During this computation, a given number of random processes
fail. MPI_Reduce() is called in the end, and the simulator will crash if some
processes have failed.

CHAPTER 3. TEST APPLICATION 19

3.2.2 Implementation of FT-MPI

The FT-MPI version of the simulator uses the FT-MPI system, which means
that FT-MPI must be installed on the computational cluster. FT-MPI is de-
scribed in Section 2.5.1. In detail, after the processes have completed their com-
putation of their submatrices, there is a MPI_Barrier() performed in a do-while
loop which checks if there are failed processes. If there are, a new communica-
tor will be created, and those processes which failed will be restarted. If some
of these restarted processes fail, the do-while loop with MPI_Barrier() will once
again rebuild the communicator and the failed processes will be restarted. If
MPI_Barrier() does not return an error, all the processes may continue to the
MPI_Reduce() operation, and the simulator quits gracefully. The behaviour of
the simulator with the FT-MPI implementation is illustrated in Figure 3.4.

To run the simulator with FT-MPI, the following command line is used:

$ ftmpirun -np #procs -o -s simulator_ftmpi #procfail #loops

Where #procs is the number of processes to be spawned, simulator_ftmpi is
the application name, #procfail is the number of random processes which will
fail during the computation, and #loops is the number of times the rearranging
operation is to be run on the submatrices. The FT-MPI implementation can be
found in Appendix A.2.

3.2.3 Implementation of Error handlers

The meaning of error handlers is that a program can rescue itself if there occurs
errors during the running of a MPI program. It is possible to use error classes
and with this specify which error has occurred. An example is when process 0
is receiving data from all the other processes with MPI_Recv(), and they send
with MPI_Send(). One error from the MPI operations can be the error class
MPI_ERR_RANK which tells that the specified rank is not defined.

When a process exits unexpectedly, the communicator does not know that the
process has crashed. A way to test if a process has crashed is let rank 0 call
the MPI_Iprobe() routine and check if flag is true and the return value equals
MPI_SUCCESS. If not, it may assume that the process has crashed. The reduce
operation can be replaced by a manual reduce which adds the same number
from all the alive processes, and lets rank 0 print the sum. This can be done
with intercommunicators, which means that rank 0 has a communicator for
each other process, and the error handler MPI_ERRORS_RETURN is set for
each intercommunicator. If an error value is returned from the MPI operations,
the intercommunicator is marked as dead by freeing it. Then the process may
exit gracefully with MPI_Finalize(). What happens in the simulator is that
the processes exit unexpectedly, and never call MPI_Finalize(). When dealing
with process crashes, a new approach is required when error handlers are in
the picture.

CHAPTER 3. TEST APPLICATION 20

Figure 3.4: Illustration of the FT-MPI version of the simulator. The submatri-
ces of the processes are initialised. Next some computation is performed on
the submatrices. During this computation, a given number of random pro-
cesses fail. When the computation is finished, MPI_Barrier() is called in a loop
and failed processes are restarted. MPI_Reduce() is called in the end, and the
simulator will print the result on rank 0 and exit gracefully.

CHAPTER 3. TEST APPLICATION 21

A new approach is to run one instance of a master process. This master process
uses the MPI-2 defined MPI_UNIVERSE_SIZE which tells how many nodes
are available. Then the master process spawns slave processes with the uni-
verse size as the maximum count. Individual communicators are made for ev-
ery slave process. Now, if one process dies, the communicator ceases to exist,
which means that the application now has one slave process less, but the appli-
cation still continues. This simulator version must be run with an implemen-
tation of the MPI-2 standard, and LAM/MPI (described in Section 2.4.2) suits
well, because one is allowed to use a special application schema when spawn-
ing processes. With this schema, the programmer can decide how many pro-
cesses to be spawned through the creation of a temporary application schema.
The simulator also needed some major modifications to be converted to a mas-
ter/slave application. An illustration of the master/slave-implementation can
be found in Figure 3.5.

To run the master/slave-simulator, the following command line is used:

$ mpirun n0 ./simulator_errhandler_master #procfail #loops

Where #procs is the number of processes to be spawned, simulator_errhandler_master
is the application name, #procfail is the number of random processes which
will fail during the computation, and #loops is the number of times the rear-
ranging operation is to be run on the submatrices. Both the simulator_errhandler_master
and the simulator_errhandler_slave need to be compiled and run with LAM/MPI.
Use the "-pthread" compiler flag when compiling the programs. The master/slave-
implementation can be found in Appendix A.3.

CHAPTER 3. TEST APPLICATION 22

Figure 3.5: Illustration of the error handler version of the simulator. The master
process is spawning slave processes which are given their own unique id. The
submatrices of the processes are initialised based on this id. Next, some com-
putation is performed on the submatrices. During this computation, a given
number of random slave processes fail. When the computation is finished, the
slave processes send their value to the master process. If the master process
discovers that a slave process has failed, the intercommunicator is freed and
marked as dead. The master process gathers the results from the slaves, prints
the result and exits gracefully.

Chapter 4

Fault-tolerant techniques for MPI

In this chapter there is a collection and description of fault-tolerant techniques
for MPI that are studied or created during this thesis work.

4.1 Checkpointing

Checkpointing is to enable states in an application from where it can be restarted.
An example is in a matrix-matrix multiplication. The original matrices and the
so far computed matrix can be saved in a file with a specific checkpoint iden-
tification. If a process crashes, it can be restarted and identify this last known
checkpoint, which can be loaded into memory, and the multiplication can con-
tinue.

There are several ways to use checkpointing, which includes transparent check-
pointing and manual checkpointing. Another is if the application is designed
to pick a little amount of processing work and save this to a file. This is how
the test application in this thesis works. Manual checkpointing should not
be hard to implement, if the data structures are optimised to be saved to a
file. Transparent checkpointing is a bit harder, because a middleware needs to
analyse state variables and the data structures which are used in the program,
and make automatic checkpoints which automatically should be loaded when
a process is restarted.

If the program is parallel, computation in the program may be dependent on
the rank number of the process. If several MPI operations are called more
or less constantly, maybe the best solution will be to stop computation and
message passing, take a checkpoint of every process, and continue. If one
process crashes, the application can be restarted on every node and use the
last known checkpoint. Another way is to log the MPI messages, and replay
those who are sent to the failed process or processes. The checkpoints may also
be stored at a checkpoint server which handles everything, and keeps track of
which checkpoint to send to which process after a restart.

23

CHAPTER 4. FAULT-TOLERANT TECHNIQUES FOR MPI 24

4.2 MPI Error handlers

The simulator is implemented with error handlers as a master/slave applica-
tion. The prebuilt MPI_ERRORS_RETURN is used, so that error codes are re-
turned after something has failed, unlike the default MPI_ERRORS_ARE_FATAL
which just aborts every process upon a single process failure. An interesting
approach is that an application can use a special constructed error handler
which suits the problem, and maybe also rescue data structures. To use the
matrix-matrix multiplication example again, a special constructed error han-
dler can be made which saves the so far computed matrix to the disk if a pro-
cess fails, and then the application can abort. When the application is started
again, the matrix multiplication may continue from where it failed by read-
ing what was flushed to disk. Such an approach induces that the failure was
not a physical failure, like power loss, etc, but for example an error with the
communicator.

The method with error handlers used in the simulator implementation, a mas-
ter/slave implementation, shows that an application can be made fault-tolerant
without introducing special frameworks built for fault-tolerance. A normal
MPI implementation is then well suited for the problem. Anyway, if the mas-
ter process dies, it is very hard, if not impossible to keep the application alive.

4.3 Extending MPI

The MPI specification can be extended, which means extending it with new
functions or modifying the semantics of the existing functions. The purpose is
to enable fault-tolerance, and let the programmer deal with it. New functions
may be added, but these should also be consistent with existing MPI seman-
tics. An idea here is for example a new implementation of MPI_Send(). If the
function is not able to send a message to another process, and the fault is not
caused by known errors, the function can notify every other process that the
particular process is dead. Together they may make a new communicator and
leave out this dead process.

A similar approach is implemented in FT-MPI, but here everything is known in
states in the communicator, as the states are extended from the simple valid/in-
valid to a range of states. The most important is that if an MPI operation is
called, the new implemented error code MPI_ERR_OTHER is returned. Ev-
ery process that calls an MPI function will have returned this error code, and
they know that a process has failed. Then they collectively may rebuild the
communicator.

CHAPTER 4. FAULT-TOLERANT TECHNIQUES FOR MPI 25

4.4 Replication

Replication can be used to gain a valuable level of fault-tolerance. This can
be done with spawning two processes that do exactly the same computation.
If one of these processes fail, the results from the other one can be sent to a
master process which gathers all the data. Again, this introduces similarities
with the master/slave paradigm where the master is a single point of failure.

The pair of slave processes can be run on different nodes, and these nodes
may be in separate rooms, connected to separate switches and separate power
supplies, etc. The master process should run on a "reliable" node.

A little less conventional, but a lot more easy, is to have two similar clusters
where the same application is run on both of them simultaneously. This intro-
duces more aspects like costs, space and most likely more manual interaction.

4.5 Fault detection

A very important matter concerning fault-tolerance is the ability to detect a
failure. If the failure was not detected, the entire concept of fault-tolerance
would vanish, because a system needs to know if a fault has occurred to re-
spond gracefully to it. An application could have a dedicated thread for every
MPI process which runs a function. This function sends a MPI message in a
ring, where the ring is every process dedicated to the particular application.
See Figure 4.1 for a simple illustration. If one process detects that the send
operation to the next process in the ring never completes, then it may begin
to assume that a failure has occurred. An approach here is to wait for a given
amount of time, and then cancel the send operation, then restart it to see if it
then completes. If the same error once again occurs, the process may assume
that the next process in the ring has failed. The next step is to leave the failed
process out of the communicator, and the process marking the failed process
may continue the ring message to the second next process in the ring.

CHAPTER 4. FAULT-TOLERANT TECHNIQUES FOR MPI 26

Figure 4.1: Illustration of the ring message fault detection. Processes have a
spawned thread which sends MPI messages in a ring of dedicated processes of
an application.

CHAPTER 4. FAULT-TOLERANT TECHNIQUES FOR MPI 27

4.6 Atomic clocks

An interesting case is if every processor on a cluster were run with the exact
same frequency, and the cycles were hit at the exact same time. This would
have resulted in what is called atomic clocks on the processors. If an appli-
cation is written in a way that every process will start at the exact same time
and have exactly the same amount of work to do, then they will also finish
simultaneously. This involves having an operating system that not lets other
processes run on the processors during the computation. If a failure detection
mechanism were used, which checks at a CPU cycle interval the instructions
used on the processor, it could detect if a process were out of order, and failed
in some way. An illustration can be found in Figure 4.2. What then is achieved
is instant failure detection.

Figure 4.2: Illustration of the atomic fault detection. Every processor run with
atomic clocks, and the dedicated processor’s task is to check the instructions
at every processor’s instruction pointer (IP) for equality.

4.7 Multiple simultaneous failures

If one process fails, this could be a somewhat simple task to deal with. If sev-
eral processes fail at the exact same time, there is a good chance that the tech-
niques developed for a single process failure is not suitable. The failures could
be detected with the atomic clock mechanism described in the previous sec-
tion. However, the detection mechanism would have a problem in knowing
which of the processors having the correct instruction, if half or more of the
processes fail.

To approach a fault-tolerant technique, supporting multiple simultaneous fail-
ures, it can be elaborated with the usage of a message logging technique. Let
us say that a Jacobi iteration is to be performed on a distributed matrix. Jacobi
iteration is a series of computation rounds, and it computes, in each round, ev-
ery cell in a matrix with the usage of the cell in the north, west, east and south.
The formula of this computation is 4.1.

CHAPTER 4. FAULT-TOLERANT TECHNIQUES FOR MPI 28

un+1
i,j =

1
4
(un

i−1,j + un
i+1,j + un

i,j−1 + un
i,j+1), i = 1...m, j = 1...m (4.1)

When the cells at the rows and columns at the border of the processes’ sub-
matrices are being updated, they miss an element to compute the given cell.
Either the north, west, east or the south cell. This cell is hosted on another
process’ submatrix. Because of this, MPI messages must be sent between these
processes. These messages could be logged at a reliable server, or a cluster
of these. If one failed process were detected, all the other processes could be
paused, and the process could be restarted and do all the computation again
with the replay of the messages from the reliable logging server. This actually
supports multiple simultaneous failures, because all the other processes which
have not failed, will be paused, and the messages which were sent before the
failure are replayed. If all these messages were sent when the processes were
restarted, the processes would not have to wait for the messages to arrive, just
picking them from the memory.

Chapter 5

Results and discussion

5.1 Implementation of FT-MPI in Test application

This section is about making the test application from Statoil fault-tolerant. Al-
though the simulator is in principle behaving the same as the test application,
the simulator is way more simplified, letting out many of the problems in im-
plementing fault-tolerance. The simulator makes all the nodes do the same
on each computation round, and collective communications can run just fine.
With the test application, this is not the case. The test application is also written
in Fortran90, making the transition from the simulator a lot more difficult. The
fault-tolerant method chosen to be implemented is FT-MPI. This is because
FT-MPI is designed to handle failed processes in a neath way with marking
communicators as failed, and rebuild them with a collective operation. With
the usage of FT-MPI, the need of recoding the entire test application to become
a master/slave application dissipates, and one can focus on the fault-tolerant
part. Next, three approaches of fault-tolerant implementation are described.

5.1.1 MPI_Reduce()

Since rank 0 will act as an I/O server, doing collective communication is a bit
harder. Let us take MPI_Reduce() as an example; all the processes must send a
message to the I/O server to tell that they intend to call the collective function.
The I/O server has to count all processes which have sent this message, and
when this counted number is equal to the communicator size, the I/O server
can enter MPI_Reduce() like all the other processes have done. If one process
has failed before it sends the message to the I/O server, the server will wait
forever, because the message will never arrive. However, if the communica-
tion was successful, the server will send acknowledgement messages to all the
processes in the communicator after the MPI_Reduce() operation. One way
to approach this problem in a fault-tolerant perspective is to observe whether
the I/O server have received one message to be doing the collective commu-
nication, and instead of calling MPI_Recv(), it can begin to call MPI_Iprobe()

29

CHAPTER 5. RESULTS AND DISCUSSION 30

several times. If a new message does not arrive after some given time, then the
I/O server can just go ahead and call the collective communication function.
This will return the error MPI_ERR_OTHER on all the processes, and a new
communicator can be built, so the processes which are alive may continue.
The I/O server can now just send acknowledgement packages to all the pro-
cesses in the communicator, because it has gotten a new communicator size,
and the SHRINK option in FT-MPI has been used. Figure 5.1 illustrates this
behaviour. Code snippet for this implementation can be found in Appendix
B.1.

5.1.2 MPI_Barrier()

The method described above can also be used a bit different, and adapt the pro-
cedure from the fault-tolerant simulator. For every shot which is processed,
MPI_Barrier() can be called to see if all processes are still alive. If they are
not, the I/O server will never get the messages from these failed processes
which are meant to notice the server that a MPI_Barrier() will be called. The
I/O server must wait a given amount of time, and then just skip to the collec-
tive call, in the belief that there are failed processes. If the processes that are
"marked as failed" just use more time than the other processes, and more time
than the amount of time that the I/O server waits, these "failed processes"
will eventually call MPI_Send(). Now, the I/O server is not performing a
MPI_Recv(), it is doing a MPI_Barrier(), so this will lead to a deadlock. This
is also the case for the MPI_Reduce() method above. Another problem with
this approach is that the number of shots are seldom even divided between
the processes. This means that in the end, one or more processes may have
finished their amount of shots, but the rest are still computing their last shot.
The processes which are finished will call MPI_Barrier() one time less, and the
application will hang on that function forever. Figure 5.2 illustrates this be-
haviour. Code snippet for this implementation can be found in Appendix B.2.
This implementation works both when the application uses the MPI_Reduce()
call in the end, and just gathering the modeling of the shots into a file, which
means that the Reduce call is not used.

CHAPTER 5. RESULTS AND DISCUSSION 31

Figure 5.1: Illustration of the I/O server when getting reduce messages from
the clients. The server listens for messages with MPI_Recv(), but after the first
reduce message, it enters a state calling MPI_Iprobe() and actual waiting for a
given amount of seconds. If a message has arrived after some waiting, it calls
MPI_Recv(), otherwise it assumes that there are failed processes, and marking
a fault. If all processes has sent the reduce message, or a fault is marked, the
MPI_Reduce() operation can be performed by all processes. If there is a com-
municator fault, the communicator is rebuilt, and the MPI_Reduce() is per-
formed again.

CHAPTER 5. RESULTS AND DISCUSSION 32

Figure 5.2: Illustration of the I/O server when getting barrier messages from
the clients. This is meant to run for every round of shot processing. The server
listens for messages with MPI_Recv(), but after the first barrier message, it
enters a state calling MPI_Iprobe() and actual waiting for a given amount of
seconds. If a message has arrived after some waiting, it calls MPI_Recv(), oth-
erwise it assumes that there are failed processes, and marking a fault. If all
processes has sent the barrier message, or a fault is marked, the MPI_Barrier()
operation can be performed by all processes. If there is a communicator fault,
the communicator is rebuilt, and the processes may continue on processing the
next shot.

CHAPTER 5. RESULTS AND DISCUSSION 33

5.1.3 MPI Loop

To solve the above problems, there is another approach to implementing fault-
tolerance on the test application. The FIO library, described in Section 3.1 uses
three MPI functions; MPI_Send(), MPI_Recv() and MPI_Reduce(). Every place
these functions are called, they can are encapsulated in a loop, and the return
value is checked from the function call. If the value equals MPI_ERR_OTHER,
there is a problem with the communicator, meaning there is a failed process,
and the communicator needs to be rebuilt. All the other processes will eventu-
ally do a call to one of the MPI functions, and the error value will be returned,
so the collective call to rebuild the communicator will happen on every alive
process. After the communicator has been rebuilt, the loop will continue an-
other time, so that the MPI operation actually will be performed, now in the
new and smaller sized communicator, because the SHRINK option in FT-MPI
has been used. The I/O server on rank 0 will be idle in calling MPI_Recv()
during the computation of the shots. If rank 0 crashes, the whole application
crashes, because the communicator is shrunk, and hence rank 1 in the previous
communicator will become rank 0, but continue on processing shots. It will,
like the other alive processes, call MPI_Send() with destination set to rank 0,
and deadlock. Another issue is somewhat the same as with the MPI_Barrier()
approach when the amount of shots is not evenly divided among the pro-
cesses. If one or more of the processes fail on their last shot computation,
when some processes have finished their amount, the application will hang on
the communicator rebuild, because the finished processes are not calling a MPI
function, thus not aware of that there is a failed process. If one can exclude the
small potential that the I/O server will crash, or that some processes fail on
their last computation of a shot, then this fault-tolerant implementation works
well. Figure 5.3 illustrates this behaviour. Code snippet for this implementa-
tion can be found in Appendix B.3.

There are a few workarounds that needed to be done, though. The FT-MPI
specification says that the return value from MPI functions are either MPI_SUCCESS
or MPI_ERR_OTHER. If a communicator is marked as failed, and MPI_Send()
is called, another value is returned, which is not defined in the FT-MPI system.
It does not work for the process to rebuild the communicator either. If it calls
MPI_Iprobe() two times with MPI_ANY_SOURCE and MPI_ANY_TAG and
checks the return value for MPI_ERR_OTHER before the call to MPI_Send(),
then it gets the right return value. The process may also rebuild the communi-
cator together with all the other processes before the call to MPI_Send(). Code
snippet for this implementation can be found in Appendix B.4.

CHAPTER 5. RESULTS AND DISCUSSION 34

Figure 5.3: Illustration of every call to a MPI function, both the I/O server and
the clients. All the processes call a MPI function before and after the shot pro-
cessing. If the communicator has failed, the MPI function will return an error
message, and the process must enter the rebuild communicator state, and wait
for every process to do so, excluding the failed processes. After the communi-
cator rebuild, the MPI function is called once again, so the application will go
on and function properly.

CHAPTER 5. RESULTS AND DISCUSSION 35

5.2 Testing

5.2.1 Implementation in test application

The final implementation, described in Section 5.1.3, must be tested to approve
that it is working. The idea of the testing is as follows:

1. Run on a cluster with nine nodes

(a) Kill one process after the processing of two shots

(b) Let the application run until it is finished - approx. 16 hours

(c) List the output from the application, including output from FT-MPI

2. Run on a cluster with 100 nodes

(a) Kill four processes - two during the first round of shot processing
and two during the second round

(b) Let the application run until it is finished - approx. 90 minutes

(c) List the output from the application, including output from FT-MPI

The first test is meant to show that the fault-tolerant implementation works for
a small scale cluster, and the second test for a large scale cluster. The two tests
are run on two different clusters, both homogeneous.

The output from these tests show that a process is killed. The I/O server, which
is idle, listening for a message from any process, first notices the failed commu-
nicator and enters the rebuilding communicator state. The other processes no-
tice that the communicator has failed when they have finished the processing
of their current shot. When every process has entered the rebuilding communi-
cator state, the rebuilding can be performed and the processes which are alive
may continue to process the next shot. FT-MPI will output some information
during the exiting of the application, where every process tells that they have
performed a recovery of the communicator. On the second test much of this
information is cut, because it produces a lot of output, and it is practically the
same output for every process. The places where the output is cut are clearly
marked. The listings for the two tests can be found in Appendix C.

5.2.2 Measurement

This test is meant to show how much time is spent for FT-MPI in rebuilding
the communicator. There are two communication modes that are interesting to
test, and that is the SHRINK mode and the REBUILD mode, because ABORT
just aborts every process, and the BLANK mode leaves open rank identifica-
tions unused. These are described in Section 2.5.1. The given numbers are the

CHAPTER 5. RESULTS AND DISCUSSION 36

walltime used in rebuilding the communicator, and the tests are done on a ho-
mogeneous cluster with 50 nodes and the processor Intel Xeon 2.8 GHz. It is
tested with 5 to 50 nodes in the two communication modes. Table 5.1 shows
the results from the tests, and Figure 5.4 shows the graph of the numbers.

The results show that the SHRINK mode compared to the REBUILD mode
scales much better, because the values are somewhat the same with SHRINK,
but with REBUILD the values are merely linear. The implementation of FT-
MPI in the test application uses the SHRINK mode, and these test results show
that it is suitable for scaling to a large number of nodes. A theori behind this is
that with the REBUILD mode, every alive process must be informed that pro-
cesses are rebuilt, but with the SHRINK mode, the failed processes are maybe
left out with a O(1) algorithm, implying a O(n) algorithm for the REBUILD
mode.

n REBUILD SHRINK
5 1.253082 0.345140

10 1.596352 0.339093
15 1.753929 0.354073
20 1.986104 0.352737
25 2.507687 0.356026
30 2.546442 0.363433
35 2.758086 0.364055
40 2.780654 0.357690
45 3.279314 0.364302
50 3.517437 0.362042

Table 5.1: Test of the wall time of rebuilding the communicator. The values
show how much time is spent for FT-MPI to rebuild the communicator from 5
to 50 nodes.

CHAPTER 5. RESULTS AND DISCUSSION 37

Figure 5.4: Test of wall time for communicator rebuilding. The values from
Table 5.1 are shown in this graph. It shows the wall time in seconds for 5 to 50
nodes when FT-MPI is rebuilding the communicator.

CHAPTER 5. RESULTS AND DISCUSSION 38

5.2.3 Fault-tolerant model

The fault-tolerant implementation of the test application can be described with
a model of the overall execution time based on a set of variables. These vari-
ables are described next.

• Overall execution time in seconds of application (E)

• Amount of shots in the dataset (D)
The initial dataset may contain a large or small number of shots which
are picked and modeled by the processes. The overall computation is
finished when every shot is modeled.

• Amount of processors available (P)
A cluster contains a number of available nodes, where each node has a
given number of processes. One process run on one processor, which
yields that the amount of processors is mapped directly to the number of
processes.

• Probability of an overall failure (F)
The probability that there will be process failures during the computation
of the entire application, including the shot dataset. This variable must
be written as a decimal number from 0 to 1.

• Average execution time of one shot (S)
This is the time spent for one process to model one shot. On a Pentium 4
3.4 GHz processor the time spent is around 1800 seconds.

• Average time of communicator rebuilding (R)
Section 5.2.2 describes the scaling of the FT-MPI communicator rebuild-
ing. For the SHRINK option, the time spent is constant, and the average
time is about 0.35 seconds.

The overall execution time in seconds is then modeled like this:

E(D, P, F, S, R) =
D

(P − (F · P))
· S + F · P · S + F · P · R (5.1)

In this equation, the first term is the time of shot modeling with the alive pro-
cesses, the second term is time spent in recomputing the shots in the end, and
the third term describes total time spent in communicator rebuilding. The sec-
ond term yields that the shots that are not modeled are run with a single pro-
cess, and not in parallel, which means that this model is resilient to a low fault
frequency.

To compensate for this, and do the recomputing of the shots in parallel when
all nodes are alive, shots may be divided among the processors. It then comes
down to that term two is replaced by only one S, since F · P < P, meaning that
the number of failed processes is less than the total number of processes. To

CHAPTER 5. RESULTS AND DISCUSSION 39

let this model support that if the probability of a failure equals zero, a need
to introduce a new variable appears. This variable is called X and must be a
boolean which is either 0 or 1. The meaning of the variable is
if (F > 0) then (X = 1) else (X = 0)
The new model with parallel execution of failed shots is then modeled like
this:

E(D, P, F, S, R, X) =
D

(P − (F · P))
· S + S · X + F · P · R (5.2)

Figure 5.5 shows the two functions plotted in graphs. The free variable is F -
the probability of an occurring failure, and the values are spread from 0 to 1.
D = 231 because this is the amount of shots in the dataset received from Sta-
toil. P = 9 because this is the number of processors in the small cluster from
the testing of the test application. S = 1800 because this is the time of model-
ing one shot on the small cluster. R = 0.35 because this is the time measured
in rebuilding the communicator with the SHRINK option. The graphs show
that as the probability of an occurring failure during running of the applica-
tion increases, the execution time increases approximately linearly from 0 to
about 0.6, and after this point the graphs become exponential and will never
converge. Time saved in running the failed shots in parallel decreases as the
probability increases.

Figure 5.6 shows the graphs of the functions when the amount of processors
in the cluster is 100, as in the testing of the large cluster. The graphs show that
with more processors available, the execution time decreases dramatically, as
expected. What is also expected is that the function 5.2 scales better than 5.1,
because shots that have not been processed are run in parallel in the end. When
the probability of an overall failure approaches 1, none of the graphs converge,
and that is the same as with the small cluster.

CHAPTER 5. RESULTS AND DISCUSSION 40

Figure 5.5: Graph of fault-tolerant model of test application, small cluster. The
graphs show the execution time when the probability of an occurring failure
of a process increases. Number of processors are 9.

CHAPTER 5. RESULTS AND DISCUSSION 41

Figure 5.6: Graph of fault-tolerant model of test application, large cluster. The
graphs show the execution time when the probability of an occurring failure
of a process increases. Number of processors are 100.

CHAPTER 5. RESULTS AND DISCUSSION 42

Chapter 6

Conclusion

This thesis has focused on developing and analysing fault-tolerant techniques
for MPI codes on computational clusters. Several MPI implementations are
described, like MPICH1, MPICH2, LAM/MPI and Open MPI. Fault-tolerant
MPI implementations and techniques were also described, such as FT-MPI,
FEMPI, MPICH-V including its five protocols, the fault-tolerant functionality
of Open MPI, and MPI Error handlers.

Our test application, a larger seismic simulation from Statoil Research Center
Rotvoll, had no degree of fault-tolerance implemented when it was assigned
to this thesis. If one process or one node crashed, the entire application also
crashed. Now, their application is fault-tolerant at the degree of surviving
a crash of n-2 nodes/processes, as process number 0 acts as an I/O server
and there must be at least one process left to compute data. This last process
and the I/O server must stay alive. Processes can also be restarted, if the test
application were modified to support this. This is discussed further in the next
section.

Three approaches to implement fault-tolerance on the test application were
described. These were called MPI_Reduce(), MPI_Barrier(), and the final and
current implementation MPI Loop. The first two are included to show the
methods used on the way to the current implementation. Tests of the MPI Loop
implementation are run on a small and a large cluster to show the fault-tolerant
behaviour. A fault-tolerant model of this implementation was described with
mathematical functions and graphs.

It is shown that the FT-MPI communication mode SHRINK scaled better than
the REBUILD mode. This was because the wall time of communicator rebuild
with SHRINK mode was constant and the REBUILD was linear.

Fault-tolerant techniques that were studied during this thesis work included
checkpointing, MPI Error handlers, extending MPI, replication, fault detec-
tion, atomic clocks and multiple simultaneous failures. FT-MPI and MPI Error
handlers were implemented in a fault-tolerant simulator which simulated the
behaviour of the test application. The simulator was developed because the

43

CHAPTER 6. CONCLUSION 44

test application was meant to run for a long time (e.g. several weeks), where
the simulator was designed to simulate similar failures, but in a shorter period,
and forcing processes to fail. Fault-tolerant techniques used in the simulator
could then be adapted to the test application.

6.1 Future work

The techniques in Open MPI, described in Section 2.5.4, can be used to do a dif-
ferent approach of implementing fault-tolerance on the test application. This
cannot be done until fault-tolerance is totally implemented in Open MPI. The
need of running FT-MPI in combination with the fault-tolerant test applica-
tion on the cluster will then vanish. This means that the ordinary "mpicc" and
"mpirun" commands can be run, instead of the FT-MPI functions "ftmpicc" and
"ftmpirun". To enable fault-tolerance with Open MPI in applications, variances
of the parameter to "mpirun" can be used: "–mca ft-enable".

When processes have failed and the test application is finished, there exist
shots that have not been processed which were in progress when the processes
failed. These shots have to be processed afterwards to complete the overall
computation. This could happen automatically, if this was integrated in the
application. The user will then not notice, or does not have to bother, if some
processes failed during the processing of the shots.

Processes could be restarted after a process crash, and these could run on the
alive nodes. With FT-MPI this is done with the communication mode RE-
BUILD. Then, processes which have failed will be restarted with the same rank
number. What must be altered on the test application is the startup methods
in the splfd2dmod program, so that the restarted process jumps gracefully to
the inner loop. States of important variables must be checkpointed, so the
restarted process can continue processing a new shot.

Bibliography

[1] University of Mannheim, University of Tennesse, and NERSC/LBNL.
TOP500 Supercomputing Sites, 2007. Available from World Wide Web:
http://www.top500.org/. This is a website. Date last visited: May
10, 2007.

[2] Argonne National Laboratory. Message passing interface, 2007. Available
from World Wide Web: http://www-unix.mcs.anl.gov/mpi/. This
is a website. Date last visited: January 23, 2007. Including links.

[3] Wikipedia. Message passing interface, 2007. Available from World
Wide Web: http://en.wikipedia.org/w/index.php?title=
Message_Passing_Interface&oldid=100474709. This is an elec-
tronic document. Date retrieved: January 23, 2007.

[4] Hubert Zimmermann. OSI reference model - the ISO model
of architecture for open systems interconnection. IEEE Transac-
tions on communications, COM-28(4), 1980. Available from World
Wide Web: http://www.comsoc.org/livepubs/50_journals/
pdf/RightsManagement_eid=136833.pdf.

[5] Wikipedia. Non-uniform memory access, 2007. Available from
World Wide Web: http://en.wikipedia.org/w/index.php?
title=Non-Uniform_Memory_Access&oldid=101909975. This is
an electronic document. Date retrieved: January 24, 2007.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface standard.
Parallel Computing, 22(6):789–828, September 1996.

[7] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Envi-
ronment for MPI. In Proceedings of Supercomputing Symposium, pages 379–
386, 1994. Available from World Wide Web: http://www.lam-mpi.
org/download/files/lam-papers.tar.gz.

[8] Indiana University. LAM/MPI parallel computing, 2007. Available from
World Wide Web: http://www.lam-mpi.org/. This is a website. Date
last visited: January 25, 2007.

45

http://www.top500.org/
http://www-unix.mcs.anl.gov/mpi/
http://en.wikipedia.org/w/index.php?title=Message_Passing_Interface&oldid=100474709
http://en.wikipedia.org/w/index.php?title=Message_Passing_Interface&oldid=100474709
http://www.comsoc.org/livepubs/50_journals/pdf/RightsManagement_eid=136833.pdf
http://www.comsoc.org/livepubs/50_journals/pdf/RightsManagement_eid=136833.pdf
http://en.wikipedia.org/w/index.php?title=Non-Uniform_Memory_Access&oldid=101909975
http://en.wikipedia.org/w/index.php?title=Non-Uniform_Memory_Access&oldid=101909975
http://www.lam-mpi.org/download/files/lam-papers.tar.gz
http://www.lam-mpi.org/download/files/lam-papers.tar.gz
http://www.lam-mpi.org/

BIBLIOGRAPHY 46

[9] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun,
Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan
Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain,
David J. Daniel, Richard L. Graham, and Timothy S. Woodall.
Open MPI: Goals, concept, and design of a next generation MPI
implementation. Proceedings, 11th European PVM/MPI Users’ Group
Meeting, September 2004. Available from World Wide Web: http:
//www.open-mpi.org/papers/euro-pvmmpi-2004-overview/
euro-pvmmpi-2004-overview.pdf.

[10] Graham E. Fagg and Jack Dongarra. FT-MPI: Fault tolerant MPI, sup-
porting dynamic applications in a dynamic world. Lecture Notes in
Computer Science: Proceedings of EuroPVM-MPI 2000, 1908(6):346–353,
2000. Available from World Wide Web: http://icl.cs.utk.edu/
publications/pub-papers/2000/ft-mpi.pdf.

[11] Jack Dongarra, Al Geist, James Arthur Kohl, Philip M. Papadopoulos, and
Vaidy Sunderam. HARNESS: Heterogeneous Adaptable Reconfigurable
NEtworked SystemS. March 3 1998. Available from World Wide Web:
http://www.csm.ornl.gov/harness/hpdc.ps.

[12] Rajagopal Subramaniyan, Vikas Aggarwal, Adam Jacobs, and Alan D.
George. FEMPI: A Lightweight Fault-tolerant MPI for Embedded Clus-
ter Systems. July 2006. Available from World Wide Web: http://www.
hcs.ufl.edu/pubs/ESA2006a.pdf.

[13] Aurélien Bouteiller, Thomas Herault, Géraud Krawezik, Pierre
Lemarinier, and Franck Cappello. MPICH-V: a multiprotocol
fault tolerant MPI. International Journal of High Performance Com-
puting and Applications, 2005. Available from World Wide Web:
http://mpich-v.lri.fr/papers/ijhpca_mpichv.pdf.

[14] Laboratoire de Recherche en Informatique. MPICH-V MPI implemen-
tation for volatile resources, 2007. Available from World Wide Web:
http://mpich-v.lri.fr/. This is a website. Date last visited: May
21, 2007.

[15] Wikipedia. Snapshot algorithm, 2006. Available from World
Wide Web: http://en.wikipedia.org/w/index.php?title=
Snapshot_algorithm&oldid=82477272. This is an electronic doc-
ument. Date retrieved: January 31, 2007.

[16] The Open MPI Project. OPEN MPI Open Source High Performance
Computing, 2007. Available from World Wide Web: http://www.
open-mpi.org/. This is a website. Date last visited: May 25, 2007. In-
cluding links.

[17] William Gropp and Ewing Lusk. Fault Tolerance in MPI Programs. Pro-
ceedings of the Cluster Computing and Grid Systems Conference, December
2002., 2002. Available from World Wide Web: http://www-unix.mcs.
anl.gov/~gropp/bib/papers/2002/mpi-fault.pdf.

http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf
http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf
http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf
http://icl.cs.utk.edu/publications/pub-papers/2000/ft-mpi.pdf
http://icl.cs.utk.edu/publications/pub-papers/2000/ft-mpi.pdf
http://www.csm.ornl.gov/harness/hpdc.ps
http://www.hcs.ufl.edu/pubs/ESA2006a.pdf
http://www.hcs.ufl.edu/pubs/ESA2006a.pdf
http://mpich-v.lri.fr/papers/ijhpca_mpichv.pdf
http://mpich-v.lri.fr/
http://en.wikipedia.org/w/index.php?title=Snapshot_algorithm&oldid=82477272
http://en.wikipedia.org/w/index.php?title=Snapshot_algorithm&oldid=82477272
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www-unix.mcs.anl.gov/~gropp/bib/papers/2002/mpi-fault.pdf
http://www-unix.mcs.anl.gov/~gropp/bib/papers/2002/mpi-fault.pdf

BIBLIOGRAPHY 47

[18] Anne C. Elster, M. Ümit Uyar, and Anthony P. Reeves. Fault-tolerant Ma-
trix Operations On Hypercube Multiprocessors. IEEE International Con-
ference on Parallel Processing, pp. 169-176, August 1989.

BIBLIOGRAPHY 48

Appendix A

Source Code of Simulator

A.1 Simulator Original

1 /∗
2 ∗ S i m u l a t o r f o r f a u l t −t o l e r a n c e
3 ∗ A number o f random p r o c e s s e s f a i l dur ing c o m p u t a t i o n
4 ∗ Thi s i s t h e o r i g i n a l v e r s i o n , s i m u l a t i n g t h e t e s t a p p l i c a t i o n
5 ∗ Author : Knut Imar Hagen
6 ∗ /
7
8 # include < s t d i o . h>
9 # include < s t d l i b . h>

10 # include <unistd . h>
11 # include < s t r i n g . h>
12 # include <time . h>
13 # include "mpi . h"
14
15 i n t t o t a l s i z e = 2000 ; / / t o t a l s i z e o f t h e s q u a r e matr ix , l e n g t h & width
16
17 i n t help (i n t rank) {
18 i f (rank == 0) {
19 p r i n t f (" usage : s imulator < p r o c f a i l > <numloops>\n") ;
20 p r i n t f (" p r o c f a i l − Number of randomly f a i l i n g ") ;
21 p r i n t f (" processes during the computation\n") ;
22 p r i n t f (" numloops − Number of loops of computation , ") ;
23 p r i n t f (" to a d j u s t computation time\n") ;
24 p r i n t f (" NOTE: p r o c f a i l must be l e s s or equal to numloops\n") ;
25 }
26 MPI_Finalize () ;
27 e x i t (0) ;
28 }
29
30 i n t main (i n t argc , char ∗∗argv) {
31 i n t rank , p , p r o c f a i l , numloop , ∗ f a i l i n g p r o c s ;
32 double ∗submat ;
33
34 MPI_Init (&argc , &argv) ;
35 MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;
36 MPI_Comm_size (MPI_COMM_WORLD, &p) ;
37

49

APPENDIX A. SOURCE CODE OF SIMULATOR 50

38 / / I f t h e r e a r e not 2 arguments , p r i n t h e l p and q u i t
39 i f (argc != 3)
40 help (rank) ;
41
42 p r o c f a i l = a t o i (argv [1]) ;
43 numloop = a t o i (argv [2]) ;
44
45 / / number o f f a i l i n g p r o c e s s e s must be l e s s o r e q u a l t o number o f l o o p s
46 i f (p r o c f a i l > numloop || p r o c f a i l < 0 || numloop < 0) {
47 help (rank) ;
48 }
49
50 /∗ I f t h e s i m u l a t o r s h a l l f a i l some p r o c e s s e s , l e t rank 0 make a random
51 ∗ l i s t o f t h e f a i l i n g p r o c e s s e s and send t h e l i s t t o e v e r y p r o c e s s
52 ∗ /
53 i f (p r o c f a i l > 0) {
54 f a i l i n g p r o c s = malloc (s i ze of (i n t) ∗ p r o c f a i l) ;
55 memset (f a i l i n g p r o c s ,−1 , s i ze of (i n t) ∗ p r o c f a i l) ;
56 i f (rank == 0) {
57 srand (time (NULL)) ;
58 i n t k ;
59 for (k =0;k< p r o c f a i l ; k++) {
60 i n t tmp = 0 ;
61 i n t ok = 1 ;
62 do {
63 ok = 1 ;
64 tmp = rand ()%p ;
65 i n t l ;
66 for (l =0 ; l <k ; l ++) {
67 i f (f a i l i n g p r o c s [l] == tmp)
68 ok = 0 ;
69 }
70 } while (! ok) ;
71 f a i l i n g p r o c s [k] = tmp ;
72 }
73 }
74 MPI_Bcast (f a i l i n g p r o c s , p r o c f a i l , MPI_INT , 0 ,MPI_COMM_WORLD) ;
75 }
76
77 / / A l l o c a t e t h e s u b m a t r i x
78 submat = malloc (s i ze of (double) ∗ t o t a l s i z e ∗ t o t a l s i z e / p) ;
79 memset (submat , 0 , s i ze of (double) ∗ t o t a l s i z e ∗ t o t a l s i z e / p) ;
80
81 /∗ I n i t i a l i z e t h e s u b m a t r i x
82 ∗ t h e f i r s t e l e m e n t w i l l a lways be rank number + 1
83 ∗ /
84 i n t i , j ;
85 for (i =0 ; i < t o t a l s i z e /p ; i ++) {
86 for (j =0 ; j < t o t a l s i z e ; j ++) {
87 submat [i ∗ t o t a l s i z e + j] = (rank +1)∗ (j + i + 1) ;
88 }
89 }
90
91 /∗ I f t h e number o f l o o p s i s s e t h i g h e r than 0 , t h e c o m p u t a t i o n w i l l run
92 ∗ t h e g i v e n number o f t imes , and t h e p r o c e s s e s l i s t e d t o be f a i l e d
93 ∗ w i l l f a i l in a s e q u e n t i a l l y o r d e r in a r e g u l a r manner
94 ∗ /
95 i f (numloop > 0) {

APPENDIX A. SOURCE CODE OF SIMULATOR 51

96 i n t c o u n t f a i l = 0 ;
97 i n t upcount fa i l = 0 ;
98 i f (p r o c f a i l == 0)
99 p r o c f a i l = 1 ;

100 e lse
101 upcount fa i l = numloop/ p r o c f a i l ;
102 for (i =0 ; i <numloop ; i ++) {
103 i f (numloop/ p r o c f a i l == upcount fa i l) {
104 i f (c o u n t f a i l < p r o c f a i l
105 && f a i l i n g p r o c s [c o u n t f a i l ++] == rank) {
106 p r i n t f (" I am process %d and I am f a i l i n g \n" , rank) ;
107 f f l u s h (stdout) ;
108 e x i t (0) ;
109 }
110 upcount fa i l = 0 ;
111 }
112 upcount fa i l ++;
113 for (j =0 ; j <(t o t a l s i z e ∗ t o t a l s i z e /p) / 2 ; j ++) {
114 double swp = submat [j] ;
115 submat [j] = submat [t o t a l s i z e ∗ t o t a l s i z e /p− j] ;
116 submat [t o t a l s i z e ∗ t o t a l s i z e /p− j] = swp ;
117 }
118 for (j =0 ; j <(t o t a l s i z e ∗ t o t a l s i z e /p) / 2 ; j ++) {
119 double swp = submat [t o t a l s i z e ∗ t o t a l s i z e /p− j] ;
120 submat [t o t a l s i z e ∗ t o t a l s i z e /p− j] = submat [j] ;
121 submat [j] = swp ;
122 }
123 }
124 }
125
126 / / P r o c e s s e s t h a t have not f a i l e d w i l l say t h a t t h e y a r e a l i v e
127 p r i n t f (" Process #%d of %d : submat[0]=% f \n" , rank , p , submat [0]) ;
128 f f l u s h (stdout) ;
129 double sum = 0 ;
130 / / The f i r s t e l e m e n t in t h e ma t r ix w i l l be r e d u c e d
131 MPI_Reduce (submat ,&sum, 1 ,MPI_DOUBLE, MPI_SUM, 0 ,MPI_COMM_WORLD) ;
132 i f (rank ==0) {
133 p r i n t f (" The r e s u l t from the MPI_Reduce () operat ion i s %f \n" ,sum) ;
134 f f l u s h (stdout) ;
135 }
136 MPI_Finalize () ;
137 }

APPENDIX A. SOURCE CODE OF SIMULATOR 52

A.2 Simulator with FT-MPI implementation

1 /∗
2 ∗ S i m u l a t o r f o r f a u l t −t o l e r a n c e
3 ∗ For use wi th Harness / FT−MPI
4 ∗ A number o f random p r o c e s s e s f a i l dur ing c o m p u t a t i o n
5 ∗ and t h e p r o c e s s e s a r e r e s t a r t e d
6 ∗ Thi s i s t h e FT−MPI v e r s i o n − f a u l t −t o l e r a n c e i s impl emented
7 ∗ Author : Knut Imar Hagen
8 ∗ /
9

10 # include < s t d i o . h>
11 # include < s t d l i b . h>
12 # include <unistd . h>
13 # include < s t r i n g . h>
14 # include <time . h>
15 # include "mpi . h"
16
17 i n t t o t a l s i z e = 2000 ; / / t o t a l s i z e o f t h e s q u a r e matr ix , l e n g t h & width
18 MPI_Comm comm;
19
20 void help (i n t rank) {
21 i f (rank == 0) {
22 p r i n t f (" usage : s imulator < p r o c f a i l > <numloops>\n") ;
23 p r i n t f (" p r o c f a i l − Number of randomly f a i l i n g ") ;
24 p r i n t f (" processes during the computation\n") ;
25 p r i n t f (" numloops − Number of loops of computation , ") ;
26 p r i n t f (" to a d j u s t computation time\n") ;
27 p r i n t f (" NOTE: p r o c f a i l must be l e s s or equal to numloops\n") ;
28 }
29 MPI_Finalize () ;
30 e x i t (0) ;
31 }
32
33 i n t main (i n t argc , char ∗∗argv) {
34 i n t rank , p , rc , rs , p r o c f a i l , numloop , ∗ f a i l i n g p r o c s ;
35 double ∗submat ;
36 comm = MPI_COMM_WORLD;
37
38 rc = MPI_Init (&argc , &argv) ;
39 i f (rc==MPI_INIT_RESTARTED_NODE) {
40 p r i n t f (" MPI_Init says I am a r e s t a r t e d process\n") ; f f l u s h (stdout) ;
41 r s = 1 ;
42 }
43 e lse {
44 p r i n t f (" MPI_Init [%d]\n" , rc) ; f f l u s h (stdout) ;
45 r s = 0 ;
46 }
47
48 rc = MPI_Comm_rank(comm, &rank) ;
49 rc = MPI_Comm_size (comm, &p) ;
50
51 / / I f t h e r e a r e not 2 arguments , p r i n t h e l p and q u i t
52 i f (argc != 3)
53 help (rank) ;
54
55 p r o c f a i l = a t o i (argv [1]) ;

APPENDIX A. SOURCE CODE OF SIMULATOR 53

56 numloop = a t o i (argv [2]) ;
57
58 / / number o f f a i l i n g p r o c e s s e s must be l e s s o r e q u a l t o number o f l o o p s
59 i f (p r o c f a i l > numloop || p r o c f a i l < 0 || numloop < 0) {
60 help (rank) ;
61 }
62
63 /∗ I f t h e s i m u l a t o r s h a l l f a i l some p r o c e s s e s , l e t rank 0 make a random
64 ∗ l i s t o f t h e f a i l i n g p r o c e s s e s and send t h e l i s t t o e v e r y p r o c e s s
65 ∗ /
66 i f (p r o c f a i l > 0 && r s == 0) {
67 f a i l i n g p r o c s = malloc (s i ze of (i n t) ∗ p r o c f a i l) ;
68 memset (f a i l i n g p r o c s ,−1 , s i ze of (i n t) ∗ p r o c f a i l) ;
69 i f (rank == 0 && r s == 0) {
70 srand (time (NULL)) ;
71 i n t k ;
72 for (k =0;k< p r o c f a i l ; k++) {
73 i n t tmp = 0 ;
74 i n t ok = 1 ;
75 do {
76 ok = 1 ;
77 tmp = rand ()%p ;
78 i n t l ;
79 for (l =0 ; l <k ; l ++) {
80 i f (f a i l i n g p r o c s [l] == tmp)
81 ok = 0 ;
82 }
83 } while (! ok) ;
84 f a i l i n g p r o c s [k] = tmp ;
85 }
86 }
87 MPI_Bcast (f a i l i n g p r o c s , p r o c f a i l , MPI_INT , 0 ,comm) ;
88 }
89
90 / / A l l o c a t e t h e s u b m a t r i x
91 submat = malloc (s i ze of (double) ∗ t o t a l s i z e ∗ t o t a l s i z e / p) ;
92 memset (submat , 0 , s i ze of (double) ∗ t o t a l s i z e ∗ t o t a l s i z e / p) ;
93
94 /∗ I n i t i a l i z e t h e s u b m a t r i x
95 ∗ t h e f i r s t e l e m e n t w i l l a lways be rank number + 1
96 ∗ /
97 i n t i , j ;
98 for (i =0 ; i < t o t a l s i z e /p ; i ++) {
99 for (j =0 ; j < t o t a l s i z e ; j ++) {

100 submat [i ∗ t o t a l s i z e + j] = (rank +1)∗ (j + i + 1) ;
101 }
102 }
103
104 /∗ I f t h e number o f l o o p s i s s e t h i g h e r than 0 , t h e c o m p u t a t i o n w i l l run
105 ∗ t h e g i v e n number o f t imes , and t h e p r o c e s s e s l i s t e d t o be f a i l e d
106 ∗ w i l l f a i l in a s e q u e n t i a l l y o r d e r in a r e g u l a r manner
107 ∗ /
108 i f (numloop > 0) {
109 i n t c o u n t f a i l = 0 ;
110 i n t upcount fa i l = 0 ;
111 i f (p r o c f a i l == 0)
112 p r o c f a i l = 1 ;
113 e lse

APPENDIX A. SOURCE CODE OF SIMULATOR 54

114 upcount fa i l = numloop/ p r o c f a i l ;
115 for (i =0 ; i <numloop ; i ++) {
116 i f (numloop/ p r o c f a i l == upcount fa i l && r s == 0) {
117 i f (c o u n t f a i l < p r o c f a i l
118 && f a i l i n g p r o c s [c o u n t f a i l ++] == rank) {
119 p r i n t f (" I am process %d and I am f a i l i n g \n" , rank) ;
120 f f l u s h (stdout) ;
121 e x i t (1 5) ;
122 }
123 upcount fa i l = 0 ;
124 }
125 upcount fa i l ++;
126 for (j =0 ; j <(t o t a l s i z e ∗ t o t a l s i z e /p) / 2 ; j ++) {
127 double swp = submat [j] ;
128 submat [j] = submat [t o t a l s i z e ∗ t o t a l s i z e /p− j] ;
129 submat [t o t a l s i z e ∗ t o t a l s i z e /p− j] = swp ;
130 }
131 for (j =0 ; j <(t o t a l s i z e ∗ t o t a l s i z e /p) / 2 ; j ++) {
132 double swp = submat [t o t a l s i z e ∗ t o t a l s i z e /p− j] ;
133 submat [t o t a l s i z e ∗ t o t a l s i z e /p− j] = submat [j] ;
134 submat [j] = swp ;
135 }
136 }
137 }
138
139 do {
140 rc = MPI_Barrier (comm) ;
141 i f (rc == MPI_ERR_OTHER) {
142 MPI_Comm newcomm;
143 newcomm = FT_MPI_CHECK_RECOVER ;
144 MPI_Comm_dup(comm,&newcomm) ;
145 MPI_Comm_free(&comm) ;
146 comm = newcomm;
147 }
148 } while (rc == MPI_ERR_OTHER) ;
149
150 / / P r o c e s s e s t h a t have not f a i l e d w i l l say t h a t t h e y a r e a l i v e
151 p r i n t f (" Process #%d of %d : submat[0]=% f \n" , rank , p , submat [0]) ;
152 f f l u s h (stdout) ;
153 double sum = 0 ;
154 / / The f i r s t e l e m e n t in t h e ma t r ix w i l l be r e d u c e d
155 rc = MPI_Reduce (submat ,&sum, 1 ,MPI_DOUBLE, MPI_SUM, 0 ,comm) ;
156 i f (rank ==0) {
157 p r i n t f (" The r e s u l t from the MPI_Reduce () operat ion i s %f \n" ,sum) ;
158 f f l u s h (stdout) ;
159 }
160 MPI_Finalize () ;
161 }

APPENDIX A. SOURCE CODE OF SIMULATOR 55

A.3 Simulator with implementation of error han-
dlers

A.3.1 Master program

1 /∗
2 ∗ S i m u l a t o r f o r f a u l t −t o l e r a n c e
3 ∗ A number o f random p r o c e s s e s f a i l dur ing c o m p u t a t i o n
4 ∗ Thi s i s t h e m as t e r / s l a v e−v e r s i o n with f a u l t −t o l e r a n c e
5 ∗ Author : Knut Imar Hagen
6 ∗ /
7
8 # include < s t d i o . h>
9 # include < s t d l i b . h>

10 # include <unistd . h>
11 # include < s t r i n g . h>
12 # include <time . h>
13 # include <errno . h>
14 # include "mpi . h"
15
16 # define IC_TAG 1
17
18 s t a t i c MPI_Comm ∗slave_comm ;
19 s t a t i c MPI_Request ∗ recvreques t ;
20 s t a t i c MPI_Status ∗ s t a t u s ;
21 s t a t i c i n t t o t a l s i z e = 2000 ; / / t o t a l s i z e o f t h e s q u a r e matr ix , l e n g t h & width
22
23 i n t help (i n t rank) {
24 i f (rank == 0) {
25 p r i n t f (" usage : s imulator < p r o c f a i l > <numloops>\n") ;
26 p r i n t f (" p r o c f a i l − Number of randomly f a i l i n g ") ;
27 p r i n t f (" processes during the computation\n") ;
28 p r i n t f (" numloops − Number of loops of computation , ") ;
29 p r i n t f (" to a d j u s t computation time\n") ;
30 p r i n t f (" NOTE: p r o c f a i l must be l e s s or equal to numloops\n") ;
31 }
32 MPI_Finalize () ;
33 e x i t (0) ;
34 }
35
36 i n t main (i n t argc , char ∗∗argv) {
37 i n t i , j , rank , icrank , i c s i z e , o r i g s i z e ;
38 i n t p r o c f a i l , numloop , ∗ f a i l i n g p r o c s , i e r r , f lag , universe ;
39 double ∗submat , ∗ recvval ;
40 void ∗∗ u n i v e r s e a t t r ;
41 char f i lename [1 0 0] ;
42 FILE ∗ fp ;
43 MPI_Info s i m u l a t o r i n f o ;
44
45 MPI_Init (&argc , &argv) ;
46 MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;
47 MPI_Comm_size (MPI_COMM_WORLD, &o r i g s i z e) ;
48
49 / / I f t h e r e a r e not 2 arguments , p r i n t h e l p and q u i t
50 i f (argc != 3)
51 help (rank) ;

APPENDIX A. SOURCE CODE OF SIMULATOR 56

52
53 p r o c f a i l = a t o i (argv [1]) ;
54 numloop = a t o i (argv [2]) ;
55
56 / / number o f f a i l i n g p r o c e s s e s must be l e s s o r e q u a l t o number o f l o o p s
57 i f (p r o c f a i l > numloop || p r o c f a i l < 0 || numloop < 0) {
58 help (rank) ;
59 }
60
61 /∗ I f t h e s i m u l a t o r s h a l l f a i l some p r o c e s s e s , l e t rank 0 make a random
62 ∗ l i s t o f t h e f a i l i n g p r o c e s s e s and send t h e l i s t t o e v e r y p r o c e s s .
63 ∗ Rank 0 w i l l no t f a i l , b e c a u s e t h i s w i l l be t h e manager p r o c e s s
64 ∗ /
65 i f (p r o c f a i l > 0) {
66 f a i l i n g p r o c s = malloc (s i ze of (i n t) ∗ p r o c f a i l) ;
67 memset (f a i l i n g p r o c s , 0 , s i ze of (i n t) ∗ p r o c f a i l) ;
68 i f (rank == 0) {
69 srand (time (NULL)) ;
70 i n t k ;
71 for (k =0;k< p r o c f a i l ; k++) {
72 i n t tmp = 0 ;
73 i n t ok = 1 ;
74 do {
75 ok = 1 ;
76 tmp = rand ()% o r i g s i z e ;
77 i n t l ;
78 for (l =0 ; l <k ; l ++) {
79 i f (f a i l i n g p r o c s [l] == tmp)
80 ok = 0 ;
81 }
82 i f (tmp == 0)
83 ok = 0 ;
84 } while (! ok) ;
85 f a i l i n g p r o c s [k] = tmp ;
86 }
87 }
88 / / MPI_Bcast (f a i l i n g p r o c s , p r o c f a i l , MPI_INT , 0 ,MPI_COMM_WORLD) ;
89 }
90
91 / / G e t t i n g t h e u n i v e r s e s i z e
92 MPI_Attr_get (MPI_COMM_WORLD, MPI_UNIVERSE_SIZE , &u n i v e r s e a t t r , &f l a g) ;
93 i f (f l a g ==1)
94 universe = (i n t) ∗ u n i v e r s e a t t r ;
95
96 / / I n i t i a l i z i n g communicators , r e q u e s t s and r e c e i v e v a l u e s
97 slave_comm = (MPI_Comm ∗) malloc ((unsigned) (universe ∗ s i ze of (MPI_Comm))) ;
98 recvreques t = (MPI_Request ∗) malloc ((unsigned) (universe ∗ s i ze of (MPI_Comm))) ;
99 recvval = (double ∗) malloc ((unsigned) (universe ∗ s i ze of (double))) ;

100 for (i =0 ; i <universe ;++ i) {
101 slave_comm [i] = MPI_COMM_NULL;
102 recvreques t [i] = MPI_REQUEST_NULL ;
103 }
104
105 / / Spawn t h e s l a v e s
106 s p r i n t f (f i lename , " ./ s imulator_faul t_schema ") ;
107 MPI_Info_create (& s i m u l a t o r i n f o) ;
108 MPI_Info_set (s imulator info , " f i l e " , f i lename) ;
109 for (i = 0 ; i < universe ; ++ i) {

APPENDIX A. SOURCE CODE OF SIMULATOR 57

110 / / C r e a t e a t emporary a p p l i c a t i o n schema f i l e
111 fp = fopen (fi lename , "w") ;
112 i f (fp == NULL) {
113 p r i n t f (" Could not open f i l e %s\n" , f i lename) ;
114 MPI_Abort (MPI_COMM_WORLD, −15) ;
115 }
116 f p r i n t f (fp , " c%d ./ s imula tor_er rhandler_s lave\n" , i) ;
117 f c l o s e (fp) ;
118
119 / / Spawn
120 MPI_Comm_spawn(0 , MPI_ARGV_NULL, 0 , s imulator info , 0 , MPI_COMM_SELF, &(slave_comm [i]) ,& i e r r) ;
121 i f (i e r r != MPI_SUCCESS) {
122 p r i n t f ("Spawn Error %d\n" , i e r r) ;
123 MPI_Abort (MPI_COMM_WORLD, −15);
124 }
125 }
126
127 MPI_Info_free (& s i m u l a t o r i n f o) ;
128 unlink (f i lename) ;
129
130 / / S e t e r r o r h a n d l e r s on e v e r y communicator
131 for (i = 0 ; i < universe ; ++ i)
132 MPI_Errhandler_set (slave_comm [i] , MPI_ERRORS_RETURN) ;
133 MPI_Errhandler_set (MPI_COMM_WORLD, MPI_ERRORS_RETURN) ;
134 MPI_Errhandler_set (MPI_COMM_SELF, MPI_ERRORS_RETURN) ;
135
136 / / Sending s l a v e i d and l i s t o f f a i l i n g p r o c e s s e s
137 for (i =0 ; i <universe ;++ i) {
138 MPI_Send(& i , 1 , MPI_INT , 0 , IC_TAG , slave_comm [i]) ;
139 MPI_Send(&numloop , 1 , MPI_INT , 0 , IC_TAG , slave_comm [i]) ;
140 MPI_Send(& p r o c f a i l , 1 , MPI_INT , 0 , IC_TAG , slave_comm [i]) ;
141 MPI_Send (f a i l i n g p r o c s , p r o c f a i l , MPI_INT , 0 , IC_TAG , slave_comm [i]) ;
142 }
143
144 / / Check ing f o r f a i l e d p r o c e s s e s and l e a v e s them out w h i l e g a t h e r i n g d a t a
145 double sum = 0 . 0 ;
146 i n t waitrank = 0 ;
147 for (i =0 ; i <universe ;++ i) {
148 MPI_Irecv (&(recvval [i]) , 1 ,MPI_DOUBLE, 0 , IC_TAG , slave_comm [i] ,&(recvreques t [i])) ;
149 }
150 for (i =0 ; i <universe ;++ i) {
151 i e r r = MPI_Waitany (universe , recvrequest ,& waitrank , s t a t u s) ;
152 i f (i e r r != MPI_SUCCESS && waitrank >=0) {
153 p r i n t f (" Not success in r e c e i v i n g from %d\n" , waitrank) ;
154 recvreques t [waitrank] = MPI_REQUEST_NULL ;
155 MPI_Comm_free(&(slave_comm [waitrank])) ;
156 } e lse {
157 sum+=recvval [i] ;
158 }
159 }
160
161 p r i n t f (" The r e s u l t from the sum operat ion i s %f \n" ,sum) ;
162 f f l u s h (stdout) ;
163
164 MPI_Finalize () ;
165 e x i t (0) ;
166 }

APPENDIX A. SOURCE CODE OF SIMULATOR 58

A.3.2 Slave program

1 /∗
2 ∗ S i m u l a t o r f o r f a u l t −t o l e r a n c e
3 ∗ A number o f random p r o c e s s e s f a i l dur ing c o m p u t a t i o n
4 ∗ Thi s i s t h e m as t e r / s l a v e−v e r s i o n with f a u l t −t o l e r a n c e
5 ∗ Author : Knut Imar Hagen
6 ∗ /
7
8 # include < s t d i o . h>
9 # include < s t d l i b . h>

10 # include <unistd . h>
11 # include < s t r i n g . h>
12 # include <time . h>
13 # include <errno . h>
14 # include "mpi . h"
15
16 # define IC_TAG 1
17
18 i n t t o t a l s i z e = 2000 ; / / t o t a l s i z e o f t h e s q u a r e matr ix , l e n g t h & width
19
20 i n t main (i n t argc , char ∗∗argv) {
21 i n t i , j , s laveid , o r i g s i z e , c u r r s i z e ;
22 i n t p r o c f a i l , numloop , ∗ f a i l i n g p r o c s , i e r r , f lag , universe ;
23 double ∗submat , val ;
24 void ∗∗ u n i v e r s e a t t r ;
25
26 MPI_Init (&argc , &argv) ;
27 MPI_Comm_size (MPI_COMM_WORLD, &o r i g s i z e) ;
28 c u r r s i z e = o r i g s i z e ;
29 MPI_Comm master_comm ;
30 MPI_Status ∗ s t a t u s ;
31 MPI_Comm_get_parent(&master_comm) ;
32 i f (master_comm == MPI_COMM_NULL)
33 p r i n t f ("NULL−COMMUNICATOR") ;
34 MPI_Recv(& slaveid , 1 , MPI_INT , 0 , IC_TAG , master_comm , MPI_STATUS_IGNORE) ;
35 MPI_Recv(&numloop , 1 , MPI_INT , 0 , IC_TAG , master_comm , MPI_STATUS_IGNORE) ;
36 MPI_Recv(& p r o c f a i l , 1 , MPI_INT , 0 , IC_TAG , master_comm , MPI_STATUS_IGNORE) ;
37 f a i l i n g p r o c s = malloc ((unsigned) s i ze of (i n t) ∗ p r o c f a i l) ;
38 memset (f a i l i n g p r o c s , 0 , s i ze of (i n t)∗ p r o c f a i l) ;
39 MPI_Recv (f a i l i n g p r o c s , p r o c f a i l , MPI_INT , 0 , IC_TAG , master_comm , MPI_STATUS_IGNORE) ;
40
41 / / A l l o c a t e t h e s u b m a t r i x
42 submat = malloc (s i ze of (double) ∗ t o t a l s i z e ∗ t o t a l s i z e / o r i g s i z e) ;
43 memset (submat , 0 , s i ze of (double) ∗ t o t a l s i z e ∗ t o t a l s i z e / o r i g s i z e) ;
44
45 /∗ I n i t i a l i z e t h e s u b m a t r i x
46 ∗ t h e f i r s t e l e m e n t w i l l a lways be rank number + 1
47 ∗ /
48 for (i =0 ; i < t o t a l s i z e / o r i g s i z e ; i ++) {
49 for (j =0 ; j < t o t a l s i z e ; j ++) {
50 submat [i ∗ t o t a l s i z e + j] = (s l a v e i d +1)∗ (j + i + 1) ;
51 }
52 }
53
54 /∗ I f t h e number o f l o o p s i s s e t h i g h e r than 0 , t h e c o m p u t a t i o n w i l l run
55 ∗ t h e g i v e n number o f t imes , and t h e p r o c e s s e s l i s t e d t o be f a i l e d
56 ∗ w i l l f a i l in a s e q u e n t i a l l y o r d e r in a r e g u l a r manner

APPENDIX A. SOURCE CODE OF SIMULATOR 59

57 ∗ /
58 i f (numloop > 0) {
59 i n t c o u n t f a i l = 0 ;
60 i n t upcount fa i l = 0 ;
61 i f (p r o c f a i l == 0)
62 p r o c f a i l = 1 ;
63 e lse
64 upcount fa i l = numloop/ p r o c f a i l ;
65 for (i =0 ; i <numloop ; i ++) {
66 i f (numloop/ p r o c f a i l == upcount fa i l) {
67 i f (c o u n t f a i l < p r o c f a i l
68 && f a i l i n g p r o c s [c o u n t f a i l ++] == s l a v e i d) {
69 p r i n t f (" I am slave %d and I am f a i l i n g \n" , s l a v e i d) ;
70 f f l u s h (stdout) ;
71 e x i t (1 0) ;
72 }
73 upcount fa i l = 0 ;
74 }
75 upcount fa i l ++;
76 for (j =0 ; j <(t o t a l s i z e ∗ t o t a l s i z e / o r i g s i z e) / 2 ; j ++) {
77 double swp = submat [j] ;
78 submat [j] = submat [t o t a l s i z e ∗ t o t a l s i z e / o r i g s i z e− j] ;
79 submat [t o t a l s i z e ∗ t o t a l s i z e / o r i g s i z e− j] = swp ;
80 }
81 for (j =0 ; j <(t o t a l s i z e ∗ t o t a l s i z e / o r i g s i z e) / 2 ; j ++) {
82 double swp = submat [t o t a l s i z e ∗ t o t a l s i z e / o r i g s i z e− j] ;
83 submat [t o t a l s i z e ∗ t o t a l s i z e / o r i g s i z e− j] = submat [j] ;
84 submat [j] = swp ;
85 }
86 }
87 }
88
89
90 / / P r o c e s s e s t h a t have not f a i l e d w i l l say t h a t t h e y a r e a l i v e
91 p r i n t f (" Slave #%d : submat[0]=% f \n" , s laveid , submat [0]) ;
92 f f l u s h (stdout) ;
93 MPI_Send (submat , 1 ,MPI_DOUBLE, 0 , IC_TAG , master_comm) ;
94 MPI_Finalize () ;
95 e x i t (0) ;
96 }

APPENDIX A. SOURCE CODE OF SIMULATOR 60

Appendix B

Code snippets from the Test
application

B.1 MPI_Reduce()

Described in Section 5.1.1. Added code to test application:
Line numbers 16-41,47,54,56,59,69-80,145-156

1 ! I /O s e r v e r running t h e PioFm () f u n c t i o n
2
3 in teger function PioFm ()
4 .
5 .
6 .
7
8 !−−
9 ! Main l o o p u n t i l a l l c l i e n t s a r e f i n i s h e d

10 !−−
11
12 c l i e n t s : do
13
14 i f (pcount >= np−1) e x i t
15
16 !−−− L i s t e n f o r a message from any o f t h e c l i e n t s
17 i f (reducing > 0) then
18 !−−− Has e n t e r e d r e d u c e r o u t i n e
19 f l a g = 0
20 waited = 0
21 f a u l t o c c u r = 0
22 numprobes = 0
23 do
24 !−−− Check ing i f a message has a r r i v e d with t h e f l a g
25 c a l l MPI_IPROBE (msgsrc , ntag ,MPI_COMM_WORLD, f lag , s ta tus , i e r r)
26 numprobes=numprobes+1
27 i f (f l a g ==1) e x i t
28 i f (numprobes >=1000000) then
29 !−−− Wait ing with FioWai t i f more than 1 m i l l i o n I p r o b e s
30 waitt ime=FioWait (waittime) ! Wait ing f o r # w a i t t i m e s e c o n d s

61

APPENDIX B. CODE SNIPPETS FROM THE TEST APPLICATION 62

31 waited=waited+1
32 endif
33 i f (waited >= 10) then
34 !−−− Has w a i t e d 10 t i m e s − communicator has f a i l e d
35 f a u l t o c c u r = 1
36 msg (1) = PIOSTACK
37 e x i t
38 endif
39 enddo
40 endif
41 i f (f a u l t o c c u r ==0) then
42 c a l l MPI_RECV(msg , 2 , MPI_INTEGER , msgsrc , ntag ,MPI_COMM_WORLD, s ta tus , i e r r)
43 who = s t a t u s (MPI_SOURCE) ! s e n d e r o f t h e message
44 lu = msg (2) ! Get f i l e d e s c r i p t o r
45 ! In some c a s e s t h i s i s not t h e f i l e d e s c r i p t o r ,
46 ! but in t h o s e c a s e s lu won ’ t be used .
47 endif
48
49 !−−−Decode message
50
51 s e l e c t case (msg (1))
52
53 case (PIOSTACK)
54 i f (f a u l t o c c u r ==0) then
55 c a l l MPI_RECV(msg , 2 , MPI_INTEGER , who, ntag ,MPI_COMM_WORLD, s ta tus , i e r r)
56 endif
57 reduce=reduce+1 ! Keep t r a c k o f no o f p r o c e s s o r s
58
59 i f (f a u l t o c c u r ==1 . or . reduce == np−1) then
60 i f (PioLus == −1)then
61 PioLus = lu
62 endif
63 ndata = msg (2)
64 a l l o c a t e (s tack (ndata))
65 a l l o c a t e (rdata (ndata))
66 s tack =0.0
67 rdata =0.0
68 c a l l MPI_REDUCE(rdata , stack , ndata , MPI_REAL, MPI_SUM, 0 ,MPI_COMM_WORLD, i e r r)
69 i f (i e r r . eq . MPI_ERR_OTHER) then
70 !−−− R e b u i l d t h e communicator
71 oldcomm = MPI_COMM_WORLD
72 newcomm = FT_MPI_CHECK_RECOVER
73 c a l l MPI_Comm_dup (oldcomm , newcomm, i e r r)
74 c a l l MPI_Comm_rank (MPI_COMM_WORLD, PioRank , i e r r)
75 c a l l MPI_Comm_size (MPI_COMM_WORLD, np , i e r r)
76 oldcomm = newcomm
77 np = PioNp
78 !−−− C a l l i n g MPI_REDUCE one more t ime
79 c a l l MPI_REDUCE(rdata , stack , ndata , MPI_REAL, MPI_SUM, 0 ,MPI_COMM_WORLD, i e r r)
80 endif
81 i s t a t = FioWrite (PioLus , stack , ndata)
82 do i =1 ,np−1
83 msg (1) = PIOSTACKA
84 msg (2) = i s t a t
85 who= i
86 c a l l MPI_SEND(msg , 2 , MPI_INTEGER , who, ntag ,MPI_COMM_WORLD, s ta tus , i e r r)
87 enddo
88 d e a l l o c a t e (s tack)

APPENDIX B. CODE SNIPPETS FROM THE TEST APPLICATION 63

89 d e a l l o c a t e (rdata)
90 reduce=0
91 f a u l t o c c u r =0
92 reducing=0
93 numprobes=0
94 endif
95 msgsrc=MPI_ANY_SOURCE
96
97 case (. . .
98 .
99 .

100 .
101 .
102 end s e l e c t
103 end do c l i e n t s
104 return
105 end function PioFm
106
107
108
109
110 ! C l i e n t s running t h e f o l l o w i n g f u n c t i o n P i o S t a c k ()
111
112 in teger function PioFstack (fd , data , n r ea l)
113 i m p l i c i t none
114 integer , i n t en t (in) : : fd ! F i l e d e s c r i p t o r
115 real , dimension (:) , i n t en t (in) : : data ! Array o f f l o a t s
116 integer , i n t en t (in) : : n re a l ! No o f f l o a t s t o w r i t e
117 !−−−
118 in teger : : who ! P r o c e s s i d
119 integer , dimension (2) : : msg ! Message
120 in teger : : ntag ! Tag
121 integer , dimension (MPI_STATUS_SIZE) : : s t a t u s ! Mpi s t a t u s
122 in teger : : i e r r ! Return f l a g
123 in teger : : nb ! No o f b y t e s t o w r i t e
124 real , dimension (:) , a l l o c a t a b l e : : dummy ! r e c e i v e b u f f e r
125
126 a l l o c a t e (dummy(n re a l))
127
128 !−Send a s t a c k r e q u e s t
129 msg (1) = PIOSTACK
130 msg (2) = fd
131 who = 0
132 ntag = 1
133 c a l l MPI_SEND(msg , 2 , MPI_INTEGER , who, ntag ,MPI_COMM_WORLD, s ta tus , i e r r)
134
135 !−−− Send t h e number o f r e a l s t o s t a c k
136 msg (1) = PIOSTACK
137 nb = nr ea l
138 msg (2) = nb
139 who = 0
140 ntag = 1
141 c a l l MPI_SEND(msg , 2 , MPI_INTEGER , who, ntag ,MPI_COMM_WORLD, s ta tus , i e r r)
142
143 !−Do t h e r e d u c e
144 c a l l MPI_REDUCE(data ,dummy, nreal , MPI_REAL, MPI_SUM, 0 ,MPI_COMM_WORLD, i e r r)
145 i f (i e r r . eq . MPI_ERR_OTHER) then
146 !−−−R e b u i l d t h e communicator

APPENDIX B. CODE SNIPPETS FROM THE TEST APPLICATION 64

147 oldcomm = MPI_COMM_WORLD
148 newcomm = FT_MPI_CHECK_RECOVER
149 c a l l MPI_Comm_dup (oldcomm , newcomm, i e r r)
150 c a l l MPI_Comm_rank (MPI_COMM_WORLD, PioRank , i e r r)
151 c a l l MPI_Comm_size (MPI_COMM_WORLD, np , i e r r)
152 oldcomm = newcomm
153 np = PioNp
154 !−−−C a l l i n g MPI_REDUCE one more t ime
155 c a l l MPI_REDUCE(data ,dummy, nreal , MPI_REAL, MPI_SUM, 0 ,MPI_COMM_WORLD, i e r r)
156 endif
157
158 !−Wait u n t i l o p e r a t i o n i s c o m p l e t e d
159 c a l l MPI_RECV(msg , 2 , MPI_INTEGER , who, ntag ,MPI_COMM_WORLD, s ta tus , i e r r)
160
161 !−−− Return s t a t u s
162 PioFstack = msg (2)
163 d e a l l o c a t e (dummy)
164 return
165 end function PioFstack

APPENDIX B. CODE SNIPPETS FROM THE TEST APPLICATION 65

B.2 MPI_Barrier()

Described in Section 5.1.2. Added code to test application:
Line numbers 16-41,53-73,90-123

1 ! I /O s e r v e r running t h e PioFm () f u n c t i o n
2
3 in teger function PioFm ()
4 .
5 .
6 .
7
8 !−−
9 ! Main l o o p u n t i l a l l c l i e n t s a r e f i n i s h e d

10 !−−
11
12 c l i e n t s : do
13
14 i f (pcount >= np−1) e x i t
15
16 !−−− L i s t e n f o r a message from any o f t h e c l i e n t s
17 i f (f a u l t t > 0) then
18 !−−− Has e n t e r e d f a u l t r o u t i n e
19 f l a g = 0
20 waited = 0
21 f a u l t o c c u r = 0
22 numprobes = 0
23 do
24 !−−− Check ing i f a message has a r r i v e d with t h e f l a g
25 c a l l MPI_IPROBE (msgsrc , ntag ,MPI_COMM_WORLD, f lag , s ta tus , i e r r)
26 numprobes=numprobes+1
27 i f (f l a g ==1) e x i t
28 i f (numprobes >=1000000) then
29 !−−− Wait ing with FioWai t i f more than 1 m i l l i o n I p r o b e s
30 waitt ime=FioWait (waittime) ! Wait ing f o r # w a i t t i m e s e c o n d s
31 waited=waited+1
32 endif
33 i f (waited >= 10) then
34 !−−− Has w a i t e d 10 t i m e s − communicator has f a i l e d
35 f a u l t o c c u r = 1
36 msg (1) = PIOSTACKFAULT
37 e x i t
38 endif
39 enddo
40 endif
41 i f (f a u l t o c c u r ==0) then
42 c a l l MPI_RECV(msg , 2 , MPI_INTEGER , msgsrc , ntag ,MPI_COMM_WORLD, s ta tus , i e r r)
43 who = s t a t u s (MPI_SOURCE) ! s e n d e r o f t h e message
44 lu = msg (2) ! Get f i l e d e s c r i p t o r
45 ! In some c a s e s t h i s i s not t h e f i l e d e s c r i p t o r ,
46 ! but in t h o s e c a s e s lu won ’ t be used .
47 endif
48
49 !−−−Decode message
50
51 s e l e c t case (msg (1))

APPENDIX B. CODE SNIPPETS FROM THE TEST APPLICATION 66

52
53 case (PIOSTACKFAULT)
54 f a u l t t = f a u l t t +1 ! Keep t r a c k o f no o f p r o c e s s o r s
55 !−−− I /O s e r v e r has r e c e i v e d a PIOSTACKFAULT message
56 i f (f a u l t o c c u r ==1 . or . f a u l t t == np−1) then
57 !−−− Every p r o c e s s has s e n t t h e message or a f a u l t has o c c u r e d
58 !−−− C a l l i n g MPI_BARRIER t o g e t a r e t u r n v a l u e and c h e c k f o r f a i l
59 c a l l MPI_BARRIER(MPI_COMM_WORLD, i e r r)
60 i f (i e r r . eq . MPI_ERR_OTHER) then
61 !−−− R e b u i l d t h e communicator
62 oldcomm = MPI_COMM_WORLD
63 newcomm = FT_MPI_CHECK_RECOVER
64 c a l l MPI_Comm_dup (oldcomm , newcomm, i e r r)
65 c a l l MPI_Comm_rank (MPI_COMM_WORLD, PioRank , i e r r)
66 c a l l MPI_Comm_size (MPI_COMM_WORLD, np , i e r r)
67 oldcomm = newcomm
68 np = PioNp
69 endif
70 f a u l t t =0
71 numprobes=0
72 endif
73 msgsrc=MPI_ANY_SOURCE
74
75 case (. . .
76 .
77 .
78 .
79 .
80 end s e l e c t
81 end do c l i e n t s
82 return
83 end function PioFm
84
85
86
87
88 ! C l i e n t s running t h e f o l l o w i n g f u n c t i o n P i o S t a c k F a u l t ()
89
90 in teger function PioF s tackFa ul t (rank , np)
91 i m p l i c i t none
92 integer , i n t en t (out) : : rank ! node no
93 integer , i n t en t (out) : : np ! t h e number o f nodes
94 !−−−
95 in teger : : who ! P r o c e s s i d
96 integer , dimension (2) : : msg ! Message
97 in teger : : ntag ! Tag
98 integer , dimension (MPI_STATUS_SIZE) : : s t a t u s ! Mpi s t a t u s
99 in teger : : i e r r ! Return f l a g

100 in teger : : nb ! No o f b y t e s t o w r i t e
101
102 !−Send a s t a c k f a u l t r e q u e s t
103 msg (1) = PIOSTACKFAULT
104 msg (2) = −1
105 who = 0
106 ntag = 1
107 c a l l MPI_SEND(msg , 2 , MPI_INTEGER , who, ntag ,MPI_COMM_WORLD, s ta tus , i e r r)
108
109 !−Check f o r f a i l e d p r o c e s s e s and r e b u i l d t h e communicator

APPENDIX B. CODE SNIPPETS FROM THE TEST APPLICATION 67

110 c a l l MPI_BARRIER(MPI_COMM_WORLD, i e r r)
111 i f (i e r r . eq . MPI_ERR_OTHER) then
112 oldcomm = MPI_COMM_WORLD
113 newcomm = FT_MPI_CHECK_RECOVER
114 c a l l MPI_Comm_dup (oldcomm , newcomm, i e r r)
115 c a l l MPI_Comm_rank (MPI_COMM_WORLD, rank , i e r r)
116 c a l l MPI_Comm_size (MPI_COMM_WORLD, np , i e r r)
117 oldcomm = newcomm
118 endif
119
120 !−−− Return s t a t u s
121 Pio Fs tackF aul t = msg (2)
122 return
123 end function PioF s tackFa ul t

APPENDIX B. CODE SNIPPETS FROM THE TEST APPLICATION 68

B.3 MPI Loop

Described in Section 5.1.3. Added code to test application:
Everything, except the actual MPI calls

1 ! Both t h e I /O s e r v e r and t h e c l i e n t s c a l l MPI f u n c t i o n s in a l o o p
2 ! and c h e c k s t h e r e t u r n v a l u e with t h e f u n c t i o n P i o F a u l t ()
3 ! which t e l l s i f t h e l o o p s h a l l c o n t i n u e
4
5 !−Loop f o r MPI_SEND
6 do
7 c a l l PioPresend ()
8 c a l l MPI_SEND(msg , 2 , MPI_INTEGER , who, ntag ,MPI_COMM_WORLD, s ta tus , i e r r)
9 mpierr = PioFaul t (i e r r)

10 i f (mpierr == 0) e x i t
11 enddo
12
13 !−Loop f o r MPI_RECV
14 do
15 c a l l MPI_RECV(msg , 2 , MPI_INTEGER , who, ntag ,MPI_COMM_WORLD, s ta tus , i e r r)
16 mpierr = PioFaul t (i e r r)
17 i f (mpierr == 0) e x i t
18 enddo
19
20 !−Loop f o r MPI_REDUCE
21 do
22 c a l l MPI_REDUCE(data ,dummy, nreal , MPI_REAL, MPI_SUM, 0 ,MPI_COMM_WORLD, i e r r)
23 mpierr = PioFaul t (i e r r)
24 i f (mpierr == 0) e x i t
25 enddo
26
27
28
29
30 ! Func t i on c h e c k s t h e r e t u r n v a l u e from a MPI f u n c t i o n and
31 ! r e b u i l d s t h e communicator i f t h e r e i s an e r r o r
32
33 in teger function PioFaul t (i e r r)
34 i m p l i c i t none
35 integer , i n t en t (in) : : i e r r ! mpi e r r o r
36 !−−−
37 in teger : : oldcomm ! o l d communicator
38 in teger : : newcomm ! new communicator
39 in teger : : l o c a l e r r ! e r r o r h a n d l e
40 in teger : : wai tsec ! w a i t i n g s e c o n d s
41 in teger : : wasfault ! was t h e r e a f a u l t ?
42 in teger : : debugfault ! ou tp ut debug i n f o ?
43
44 wasfault = 0
45 debugfault = 1
46
47 !−Check f o r f a i l e d p r o c e s s e s and f i x t h e communicator
48 i f (i e r r == MPI_ERR_OTHER) then
49 i f (debugfault >=1) then
50 print ∗ , " Process # " , PioRank , " i s rebui ld ing the communicator "
51 endif

APPENDIX B. CODE SNIPPETS FROM THE TEST APPLICATION 69

52 oldcomm = MPI_COMM_WORLD
53 newcomm = FT_MPI_CHECK_RECOVER
54 c a l l MPI_Comm_dup (oldcomm , newcomm, l o c a l e r r)
55 c a l l MPI_Comm_rank (MPI_COMM_WORLD, PioRank , l o c a l e r r)
56 c a l l MPI_Comm_size (MPI_COMM_WORLD, PioNp , l o c a l e r r)
57 oldcomm = newcomm
58 wasfault = 1
59 i f (debugfault >=1) then
60 print ∗ , " Process # " , PioRank , " has r e b u i l t the communicator "
61 endif
62 endif
63
64 PioFaul t = wasfault
65 return
66 end function PioFaul t

APPENDIX B. CODE SNIPPETS FROM THE TEST APPLICATION 70

B.4 PioSend()

Described in Section 5.1.3. Added code to test application:
Every line

1 ! The s u b r o u t i n e c a l l s MPI_IPROBE two t i m e s as a workaround f o r
2 ! e r r o n e o u s v a l u e s from MPI_SEND when t h e r e i s a f a i l e d communicator
3
4 subroutine PioPresend ()
5 i m p l i c i t none
6 in teger : : f l a g ! P r o c e s s i d
7 integer , dimension (MPI_STATUS_SIZE) : : s t a t u s ! Mpi s t a t u s
8 in teger : : i e r r ! Return f l a g
9

10 c a l l MPI_IPROBE (MPI_ANY_SOURCE,MPI_ANY_TAG,MPI_COMM_WORLD, f lag , s ta tus , i e r r)
11 mpierr = PioFaul t (i e r r)
12 c a l l MPI_IPROBE (MPI_ANY_SOURCE,MPI_ANY_TAG,MPI_COMM_WORLD, f lag , s ta tus , i e r r)
13 mpierr = PioFaul t (i e r r)
14 end subroutine PioPresend

Appendix C

Output from testing of test
application

C.1 Small cluster

∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :
0
−−− No of nodes : 9
∗ Server running !
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

1
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

2
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

3
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

5
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

6
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

7
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

8
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

4
f o r r t l : e r r o r (7 8) : process k i l l e d (SIGTERM)
[0] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 0 i s rebui ld ing the communicator
Process # 2 i s rebui ld ing the communicator

[2] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
Process # 5 i s rebui ld ing the communicator

[5] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
[3] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 3 i s rebui ld ing the communicator
Process # 7 i s rebui ld ing the communicator

[7] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
[6] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 6 i s rebui ld ing the communicator
[4] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

71

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 72

Process # 4 i s rebui ld ing the communicator
[8] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 8 i s rebui ld ing the communicator
Process # 3 has r e b u i l t the communicator
Process # 2 has r e b u i l t the communicator
Process # 7 has r e b u i l t the communicator
Process # 6 has r e b u i l t the communicator
Process # 5 has r e b u i l t the communicator
Process # 4 has r e b u i l t the communicator
Process # 1 has r e b u i l t the communicator
Process # 0 has r e b u i l t the communicator

Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Cal lback on CON ERROR chan 3 con 6 Sock = 0
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Cal lback on CON ERROR chan 3 con 4 Sock = 0
Callback on CON ERROR chan 4 con 6 Sock = 19
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Cal lback on CON ERROR chan 3 con 7 Sock = 0
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Error event s e t f o r channel 4
Error event s e t f o r channel 2
Error event s e t f o r channel 5
Error event s e t f o r channel 6

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 73

Error event s e t f o r channel 9
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Cal lback on CON ERROR chan 4 con 4 Sock = 18
Callback on CON ERROR chan 2 con 3 Sock = 0
Callback on CON ERROR chan 5 con 6 Sock = 23
Callback on CON ERROR chan 6 con 7 Sock = 19
Callback on CON ERROR chan 9 con 5 Sock = 22

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 74

C.2 Large cluster

∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :
12
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

13
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

23
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

14
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

15
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

17
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

24
.
<<<CUT>>>
.
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

0
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

1
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

2
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

3
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

4
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

5
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

6
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

7
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

8
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

9
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

10
∗∗ This i s splfd2dmod vers ion 1 . 0 multi processor mode node no :

11
−−− No of nodes : 100
∗ Server running !
f o r r t l : e r r o r (7 8) : process k i l l e d (SIGTERM)

Process # 0 i s rebui ld ing the communicator
[0] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
f o r r t l : e r r o r (7 8) : process k i l l e d (SIGTERM)
Error event s e t f o r channel 22
[1 5] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 15 i s rebui ld ing the communicator
Process # 17 i s rebui ld ing the communicator

[1 7] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
[2 1] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 21 i s rebui ld ing the communicator
[1 9] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 75

Process # 19 i s rebui ld ing the communicator
[1 4] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 14 i s rebui ld ing the communicator
.
<<<CUT>>>
.

[4] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
[3] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 3 i s rebui ld ing the communicator
[1 1] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 11 i s rebui ld ing the communicator
[2] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 2 i s rebui ld ing the communicator
Process # 5 i s rebui ld ing the communicator

[5] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
Process # 47 has r e b u i l t the communicator
Process # 49 has r e b u i l t the communicator
Process # 68 has r e b u i l t the communicator
Process # 50 has r e b u i l t the communicator
Process # 46 has r e b u i l t the communicator
Process # 48 has r e b u i l t the communicator
Process # 52 has r e b u i l t the communicator
Process # 45 has r e b u i l t the communicator
Process # 82 has r e b u i l t the communicator
Process # 69 has r e b u i l t the communicator
Process # 72 has r e b u i l t the communicator
Process # 51 has r e b u i l t the communicator
Process # 16 has r e b u i l t the communicator
Process # 71 has r e b u i l t the communicator
Process # 53 has r e b u i l t the communicator
.
<<<CUT>>>
.
Process # 56 has r e b u i l t the communicator
Process # 57 has r e b u i l t the communicator
Process # 60 has r e b u i l t the communicator
Process # 61 has r e b u i l t the communicator
Process # 62 has r e b u i l t the communicator
Process # 87 has r e b u i l t the communicator
Process # 64 has r e b u i l t the communicator
Process # 63 has r e b u i l t the communicator
Process # 21 has r e b u i l t the communicator
Process # 22 has r e b u i l t the communicator
Process # 55 has r e b u i l t the communicator
Process # 54 has r e b u i l t the communicator

f o r r t l : e r r o r (7 8) : process k i l l e d (SIGTERM)
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery

Process # 0 i s rebui ld ing the communicator
[0] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 76

f o r r t l : e r r o r (7 8) : process k i l l e d (SIGTERM)
Error event s e t f o r channel 40

Process # 11 i s rebui ld ing the communicator
[1 1] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
[4 1] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 41 i s rebui ld ing the communicator
[1 3] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 13 i s rebui ld ing the communicator
Process # 16 i s rebui ld ing the communicator

[1 6] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
[1 5] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 15 i s rebui ld ing the communicator
Process # 30 i s rebui ld ing the communicator

[3 0] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
Process # 19 i s rebui ld ing the communicator

[1 9] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
[1 8] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 18 i s rebui ld ing the communicator
Process # 17 i s rebui ld ing the communicator
.
<<<CUT>>>
.

[5] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
[7] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 7 i s rebui ld ing the communicator
[4] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 4 i s rebui ld ing the communicator
[2] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 2 i s rebui ld ing the communicator
Process # 9 i s rebui ld ing the communicator

[9] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t
[3] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 3 i s rebui ld ing the communicator
[1] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 1 i s rebui ld ing the communicator
[1 0] FTMPI Error with communicator 0 , e r r o r code −19 Known e r r o r not in l i s t

Process # 10 i s rebui ld ing the communicator
Process # 35 has r e b u i l t the communicator
Process # 13 has r e b u i l t the communicator
Process # 68 has r e b u i l t the communicator
Process # 57 has r e b u i l t the communicator
Process # 67 has r e b u i l t the communicator
Process # 66 has r e b u i l t the communicator
Process # 90 has r e b u i l t the communicator
Process # 44 has r e b u i l t the communicator
Process # 47 has r e b u i l t the communicator
Process # 70 has r e b u i l t the communicator
Process # 25 has r e b u i l t the communicator
Process # 72 has r e b u i l t the communicator
Process # 14 has r e b u i l t the communicator
.
<<<CUT>>>
.
Process # 86 has r e b u i l t the communicator
Process # 85 has r e b u i l t the communicator
Process # 52 has r e b u i l t the communicator
Process # 53 has r e b u i l t the communicator
Process # 61 has r e b u i l t the communicator

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 77

Process # 62 has r e b u i l t the communicator
Process # 74 has r e b u i l t the communicator
Process # 75 has r e b u i l t the communicator
Process # 76 has r e b u i l t the communicator
Process # 84 has r e b u i l t the communicator

Error event s e t f o r channel 3
Error event s e t f o r channel 4
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Checking f o r a f a i l u r e and doing a recovery i f found .
Error event s e t f o r channel 4
Error event s e t f o r channel 4
Error event s e t f o r channel 4
SHRINK
Error event s e t f o r channel 3
Error event s e t f o r channel 3
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
.
<<<CUT>>>
.

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 78

Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Cal lback on CON ERROR chan 3 con 20 Sock = 0
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Checking f o r a f a i l u r e and doing a recovery i f found .
Error event s e t f o r channel 3
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
SHRINK
SHRINK
Error event s e t f o r channel 4
SHRINK
SHRINK
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 79

Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Cal lback on CON ERROR chan 3 con 80 Sock = 0
Callback on CON ERROR chan 4 con 82 Sock = 0
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Error event s e t f o r channel 3
Checking f o r a f a i l u r e and doing a recovery i f found .
Error event s e t f o r channel 4
Error event s e t f o r channel 4
Checking f o r a f a i l u r e and doing a recovery i f found .
Error event s e t f o r channel 3
Checking f o r a f a i l u r e and doing a recovery i f found .
Error event s e t f o r channel 3
Error event s e t f o r channel 4
SHRINK
SHRINK
Error event s e t f o r channel 4
SHRINK
NOP/RESET
NOP/RESET
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Performed a recovery
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
SHRINK
NOP/RESET
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
.
<<<CUT>>>
.

DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 80

Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Error event s e t f o r channel 3
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
Error event s e t f o r channel 4
SHRINK
SHRINK
SHRINK
SHRINK
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 81

Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 82

Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Cal lback on CON ERROR chan 3 con 82 Sock = 0
Callback on CON ERROR chan 3 con 89 Sock = 0
Callback on CON ERROR chan 3 con 90 Sock = 0
Callback on CON ERROR chan 3 con 91 Sock = 0
Callback on CON ERROR chan 3 con 93 Sock = 0
Callback on CON ERROR chan 3 con 94 Sock = 0
Callback on CON ERROR chan 3 con 95 Sock = 0
Callback on CON ERROR chan 4 con 99 Sock = 0
Callback on CON ERROR chan 3 con 99 Sock = 0
Callback on CON ERROR chan 3 con 70 Sock = 0
Callback on CON ERROR chan 4 con 84 Sock = 0
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Cal lback on CON ERROR chan 4 con 93 Sock = 0
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Error event s e t f o r channel 3
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Cal lback on CON ERROR chan 3 con 71 Sock = 0
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
SHRINK
NOP/RESET
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Performed a recovery
.
<<<CUT>>>
.
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 83

Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
Checking f o r a f a i l u r e and doing a recovery i f found .
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
SHRINK
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
NOP/RESET
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
DONE Checking f o r a f a i l u r e and doing a recovery i f found .
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Performed a recovery
Cal lback on CON ERROR chan 3 con 34 Sock = 0
Callback on CON ERROR chan 4 con 38 Sock = 0
Callback on CON ERROR chan 4 con 42 Sock = 0
Callback on CON ERROR chan 3 con 42 Sock = 0
Callback on CON ERROR chan 4 con 46 Sock = 0
Error event s e t f o r channel 3
Error event s e t f o r channel 4
Error event s e t f o r channel 4
Error event s e t f o r channel 3
Error event s e t f o r channel 4

Sock = 44
Callback on CON ERROR chan 32 con 23 Sock = 48
Callback on CON ERROR chan 63 con 54 Sock = 78
Callback on CON ERROR chan 55 con 44 Sock = 70

APPENDIX C. OUTPUT FROM TESTING OF TEST APPLICATION 84

Callback on CON ERROR chan 48 con 41 Sock = 56
Callback on CON ERROR chan 49 con 52 Sock = 58
Callback on CON ERROR chan 52 con 51 Sock = 62
Callback on CON ERROR chan 54 con 53 Sock = 76
Callback on CON ERROR chan 38 con 38 Sock = 51
Callback on CON ERROR chan 51 con 45 Sock = 65
Callback on CON ERROR chan 46 con 43 Sock = 49
Callback on CON ERROR chan 50 con 57 Sock = 60
Callback on CON ERROR chan 57 con 55 Sock = 63
Callback on CON ERROR chan 59 con 56 Sock = 69

Appendix D

Description of bibliography
citations

[1]: The Top 500 list gave me the answer of how many processors there are on
the largest cluster in the world as of November 2006.

[2]: General information on MPI. Gave me information on the different ver-
sions of MPICH. It also provides the MPI Standard with the MPI Forum. Here
I also have a list of all the MPI functions available.

[3]: Provides a detailed description of MPI, and better explained than any other
sources I found. The article is continuously in development, and makes more
issues come clear, at least for me.

[4]: This article describes the OSI model, which I knew in detail from before, so
this article was not so important to me. It is cited because I wanted to explain
what the OSI model is, since I used the abbreviation in my thesis.

[5]: This article describes the Non-Uniform Memory Architecture (NUMA). I
used this abbreviation in my thesis, and wanted to show what this means, even
though it is not directly important to my thesis.

[6]: This article has a good description of the MPICH library. Even though I
knew something about this from before, I had to cite this, because it shows
what MPICH is. It also involves several topics as describing how it is a high-
performance portable implementation.

[7]: This article gives me a detailed description on what LAM/MPI really is,
and more than I needed to know, to give a description of it in my thesis.

[8]: This website gave me the useful information that LAM/MPI is not being
developed anymore, the team has migrated to the new project, Open MPI.

[9]: This article gave me general and detailed knowledge on Open MPI, which
I used to describe the project in my thesis. I only needed general knowledge,
so this was good and enough for my thesis.

85

APPENDIX D. DESCRIPTION OF BIBLIOGRAPHY CITATIONS 86

[10]: An excellent article describing FT-MPI. Actually, the entire article was
useful in letting me know how the system works, and how to write a fault-
tolerant program, using the FT-MPI system. This article is widely used when
describing FT-MPI in my thesis.

[11]: FT-MPI is built open Harness, so a description is provided by this citation.
The article is not so important for my thesis, because I do not use it explicitly.
Anyway, because Harness is on top of FT-MPI, it must be shown what it is.

[12]: My thesis describes FEMPI, and this article has been a good inspiration
for providing this description. I mostly used chapter 3, Design overview of
FEMPI, because it gave the most relevant information.

[13]: This article describes MPICH-V very detailed and gives a good insight
in what the system is capable of. For me, it was important to notice all the
different qualities of the different implementations they have developed.

[14]: The MPICH-V website mostly gave me a good and short description on
the different implementations of MPICH-V, which was inspiring for writing
about them in the description of MPICH-V in my thesis.

[15]: This is cited because I had to show what The Chandy Lamport algorithm
is, because I mentioned it in my thesis regarding the VCL implementation of
MPICH-V.

[16]: The Open MPI website has a Frequently Asked Questions page, where
I found that Fault-tolerance not yet is implemented in Open MPI. I described
what was being stated here. I also found some general information here to use
with my description of Open MPI.

[17]: This article describes how to make a non-transparent fault-tolerant MPI
application. I studied every aspect of this article to mainly understand what
they wanted to tell. It is also well described in my thesis, where I provide their
four approaches.

[18]: This article describes techniques used for fault-tolerant matrix operations
on hypercube multiprocessors. It gave me ideas for going deeper in the proces-
sor’s hardware and understand that there is more to the fault-tolerance topic
than only software implementations.

Appendix E

Electronic appendix

Included in this thesis, there is an electronic appendix as a zip file. Contents of
this file are the following:

• Source code of Simulator original: simulator_original.c

• Source code of Simulator FT-MPI: simulator_ftmpi.c

• Source code of Simulator Error handlers - master: simulator_errhandler_master.c

• Source code of Simulator Error handlers - slave: simulator_errhandler_slave.c

• Source code of Simulator used for measuring wall time of communicator
rebuilding: simulator_ftmpi_time.c

• Output listings from the test of test application, small cluster:
testappoutput_small.log

• Output listings from the test of test application, large cluster:
testappoutput_large.log

• Example screen shot from the test application:
example_output_shotgather_su.png

• Example zoom screen shot from the test application:
example_zoom_output_shotgather_su.png

87

