
June 2007
Alf Inge Wang, IDI
Carl Fredrik Sørensen, IDI
Børre Wessel, BEKK Consulting AS

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

FunFX
A Framework for Functional Testing of Flex Applications

Peter Nicolai Motzfeldt

Problem Description

Flex is used for creating Rich Internet Applications (RIA). The assignment is to create an open
source test framework for functional testing of Flex applications. Flex components expose an
automation API that are suitable for this purpose.

The tool must be able to drive a Flex application (button clicks, mouse gestures etc), pull values
out of it (text in table cells, button labels etc) and compare the values with actual ones.

The tool must not rely on recording of an already-existing application, as this would make the tool
unusable in a test driven development setting (TDD, tests are written prior to the software's
existence). It is desirable that tests can be written in a real programming language, preferably
"script" based such as ActionScript, Ruby or Phyton (with a similar API as Watir or Selenium-RC).

Assignment given: 20. January 2007
Supervisor: Alf Inge Wang, IDI

Abstract

This master thesis presents a new open source framework for functional testing of Flex
applications, FunFX. FunFX is a framework that encourages test-driven development.
The project was initiated by BEKK due to Flex’s lack of a proper tool for functional
testing.

This report will focus on testing, and will describe central concepts within the area of
software testing. Similar testing frameworks for other technologies will also be described
and compared to FunFX. It will try to document the usefulness of such an open source
tool, and try to discover what entry level this framework imposes on the user.

During development, test cases using the framework will be created to be able to document
both positive and negative aspects of the framework. A usage test was also arranged, to be
able to document the framework better. This test session resulted in valuable information
about the usability and the reliability of the created tests.

The design and implementation are thoroughly described together with each class created,
along with their roles in the framework. The issue of synchronization is handled as its
own part. To make the implementation decisions easier to understand, the different design
patterns used are elaborated.

The final result is a framework that has the ability to interact with a Flex application
programmatically. When used together with any test unit framework for Ruby, it is a
fully functional testing tool for test-driven development.

Source code, a deployable library file of the FunFX Flex adapter, and a gem of the FunFX
framework, together with a Flash movie showing the framework in use can be found on
the attached CD.

Keywords: Framework, Flex, Ruby, Open Source, Software testing, Functional testing,
Flash, Test-driven development.

i

ii

Preface

This report is the result of work performed on the master thesis by Peter Nicolai Motzfeldt
at the Institute for Computer and Information Science (IDI), Norwegian University of
Science and Technology (NTNU) during Spring 2007.

Acknowledgements

I would like to thank Carl Fredrik Sørensen for his valuable guidance during this project,
and Trond Arve Wasskog at BEKK for assigning me to this project, and Børre Wessel for
his guidance and help with Adobe products and licenses. I would also like to thank Matt
Chotin, Matt Horn and Sreenivas Ramaswamy at Adobe for helping me understand how
the automation package works.

The participants of the usage test also deserve a big thanks for their views and pointers
on the usability of this framework. Thank you, Erlend Oftedal and Christian Schwarz.

Trondheim, June 1, 2007

Peter Nicolai Motzfeldt

iii

iv

Contents

I Context 1

1 Introduction 3

1.1 Motivation . 3

1.2 Problem definition . 4

1.3 Project context . 4

1.4 Readers guide . 4

II Research questions and methods 7

2 Research questions and methods 9

2.1 Research questions . 9

2.2 Research method . 10

3 Development methods and tools 13

3.1 Development methods . 13

3.2 Development tools . 15

III Prestudy 17

4 Central concepts 19

4.1 Rich Internet Application - RIA . 19

4.2 Framework . 20

4.3 Software testing . 20

4.4 Component Object Model - COM . 23

5 Flex 25

5.1 MXML . 25

5.2 ActionScript . 26

v

5.3 Flex Builder 2 . 28

5.4 Flex Data Services 2 . 28

5.5 Flex Charting 2 . 29

5.6 Competitors to Flex . 29

5.7 Summary . 30

6 State of the art 31

6.1 Watir . 31

6.2 Selenium . 32

6.3 Mercury QuickTest Professional . 35

6.4 FitNesse . 37

6.5 TestComplete . 38

6.6 Summary . 39

7 Development Technology 41

7.1 Ruby . 41

IV The FunFX Framework 45

8 Introduction to FunFX 47

9 Requirement specifications for FunFX 49

9.1 Scenario . 49

9.2 Goals . 50

9.3 Functional requirements . 50

9.4 Non-functional requirements . 54

10 Design of FunFX 57

10.1 Design patterns . 57

10.2 Overall design . 58

10.3 The FunFX Flex adapter . 59

10.4 The FunFX framework . 60

11 Implementation of FunFX 63

11.1 FunFX Flex Adapter . 63

11.2 FunFX framework . 70

11.3 Creating tests . 80

vi

V Evaluation of FunFX 83

12 Testing of FunFX 85

12.1 Development . 85

12.2 Test of functional requirements . 86

12.3 Test of non-functional requirements . 88

12.4 Usage testing . 88

13 Implementation issues 91

13.1 Access a flash movie . 91

13.2 Synchronization . 91

13.3 Internet Explorer error . 92

14 Evaluation 95

14.1 Comparison to state of the art . 95

14.2 Answer to research questions . 96

15 Summary 99

15.1 Conclusion . 99

15.2 Further work . 100

VI Appendix 103

A Questionnaire 105

B User guide 107

B.1 What do you need? . 107

B.2 Install FunFX . 107

B.3 Include FunFX library . 108

B.4 Writing testable Flex applications . 108

B.5 Writing tests . 109

B.6 Automation environment . 113

C Contents of CD-Rom 123

D FunFX tests 125

Glossary 129

vii

viii

List of Tables

4.1 Keyword-Driven test written in Fitness 22

6.1 A Selenium test . 34

6.2 Keyword-Driven test written in Fitness 38

6.3 Summary of the state of the art functional testing tools 39

9.1 Functional requirements . 50

9.2 Use Case - Initialize FunFX . 51

9.3 Use Case - Write test . 52

9.4 Use Case - Create test suite . 52

9.5 Use Case - Create and run tests . 53

12.1 Functional requirements . 87

14.1 Comparison of FunFX with the state of the art tools 95

ix

x

List of Figures

3.1 Iterative development in UP . 14

5.1 Example hierarchy of an Flex application 26

5.2 Sample Flex application . 27

6.1 Selenium test runner . 33

6.2 QuickTest Professional environment . 36

6.3 QuickTest Professional test result window 37

10.1 Overall design . 59

10.2 Class diagram of the FunFX Flex adapter 61

10.3 Class diagram of the FunFX Framework 62

11.1 Breadth-first search algorithm . 66

11.2 Example hierarchy of an Flex application and the relation to the Funfx class 76

11.3 Test run with Test::Unit::TestRunner 82

13.1 Internet Explorer memory usage. The left hand side shows the memory
consumption during no sleep. 92

B.1 Include library file . 108

B.2 Example hierarchy of an Flex application 111

xi

xii

PART I

Context

1

CHAPTER 1

Introduction

1.1 Motivation

Computers are becoming a more and more important part of life. Our way of living is
relying on computers and computer software. Both the economy and health institutions
depend on computers. Due to this, faulty software can not only be expensive, but might
threaten human lives. To prevent this, testing the different parts of the software is of high
importance.

Even though computer software has been around for half a century, testing is still im-
mature in the industry. It is a fact that writing bug free software is regarded as almost
impossible. Testing delimits defects and should thus be an important part of every soft-
ware development cycle. In Norwegian technological colleges and universities, testing has
just recently become a part of the course material.

In the beginning, functional testing was the only way of testing software. It was performed
with users clicking around in the application. Since then, there have been other types
introduced and applied in software life cycles, as unit, integration, system, and acceptance
testing. Functional testing is still an important test form, but today functional tests
are automated, which reduces time and cost. The automation is important, because if
scheduling slips, it is often testing that suffers.

Test-driven development (see Section 3.1.2) is a rather new development model, where
the developer writes tests before writing the code, which the test evaluates. It is a way
to write small requirements for the software, and to support agile development1. When
adding new functionality, only tests for these new functions are needed, while the present
tests will act as a regression test suite (see Section 4.3.4).

Adobe Flex (see Section 5) is a framework developed by Macromedia in 2004, which
enables creation of Rich Internet Applications, (RIA), based on the Macromedia Flash
platform [35]. The Flash player was originally built upon an animation metaphor, which

1Agile development emphasize working software as the primary measure of progress, rather than writ-
ten documents[36]

3

4 CHAPTER 1. INTRODUCTION

traditional application programmers found challenging to adapt to. This challenge, to-
gether with the increased demand for Web applications with requirements of traditional
desktop applications, were the driving factors for developing Flex. It provides a work flow
and programming model, which is familiar to the developers. At this time, there exists
only one tool for functional testing of Flex applications, Mercury Quick Test Pro. This
tool is expensive, does not support TDD, and is also difficult to use because of licensing
models that limit the number of users.

Due to the lack of a framework for functional testing of Flex applications, software com-
panies do not dare to use it in production. The motivation is to build an open source
framework that can be a free alternative to the Mercury Quick Test Pro. The frame-
work will be based on test-driven development, which means that the framework needs to
support writing tests before any code is written.

1.2 Problem definition

Currently there is only one tool that is able to test the functionality of Flex applications
as described above. This tool is expensive and does not support test-driven development.
Because of this, Flex is a tool many software companies do not dare take in use. They do
not want to deploy applications that have not been properly tested2. If a free alternative is
launched, Flex might become a powerful alternative for creating Rich Internet Applications
(RIA).

The objective of this thesis is to build an open source framework for functional testing
of Flex applications. The framework will be based on the test-driven development model
(see Section 3.1.2), which will enable the developer to write tests before incrementally
adding code to verify these tests. Possible benefits using the tool will be documented
during development. To enhance usability, a test framework needs to support regression
testing, hence this will be an important factor when designing the framework.

1.3 Project context

FunFX is a project undertaken as a master project at the Norwegian University of Science
and Technology in cooperation with BEKK Consulting AS. The master project will try
to contribute to the field of open source, and hopefully be launched as an open source
project for other programmers to use and develop further.

1.4 Readers guide

This readers guide will help different readers with different interests to find what chapters
might be worth reading. The chapters will be listed in chronological order with a short
description of the content.

Readers interested in the problem domain should read Chapter 1.1 together with
Part III. Chapter 1.1 describes why this project was initiated, while Part III describes
central concepts and technologies.

2BEKK Consulting AS

1.4. READERS GUIDE 5

Readers interested in developing tests should read Chapter 5, Section 7.1, Section
11.3, Appendix B, and look at the tests in Appendix D. Chapter 5 and Section 7.1
will give the user an introduction to the technologies used. While Appendix B will
enable the user to add the library file and install the FunFX gem file. Section 11.3
will explain how to write the tests.

Readers interested in improving the framework should read Chapter 2, Part IV,
and Part V. These parts will give insights to the research questions, how they were
answered, how the framework was designed , and what the findings were.

Part I Context

Chapter 1 Introduction This chapter describes the motivation for this thesis,
the problem definition, and the project context. The chapter also includes a
short summary of each chapter in this thesis.

Part II Research questions and methods

Chapter 2 Research questions This chapter enumerates the research questions
this paper will try to answer. It also describes the evaluation methods used.

Chapter 3 Development methods and tools This chapter will describe the de-
velopment methods used during this project. It also describes the tools used.

Part III Prestudy

Chapter 4 Central concepts This chapter describes important concepts in the
field of software testing. It also describes some important concepts such as Rich
Internet Application and what a framework is. This chapter will improve the
understanding of the upcoming chapters.

Chapter 5 Flex This chapter describes in detail the Flex technology. Flex is the
technology this project wants to functionally test. It will describe the different
parts of the technology as well as some of the competitive technologies.

Chapter 6 State of the art This chapter gives an account of the functional test-
ing tools available for Web applications.

Chapter 7 Development technology This chapter describes the technologies used
during the development of FunFX.

Part IV The FunFX Framework

Chapter 8 Introduction to FunFX This chapter introduces the implementation
part, and describes some thoughts behind the framework.

Chapter 9 Requirement specifications for FunFX This chapter describes both
the functional and non-functional requirements. A scenario elaborates on how
the framework might be used.

Chapter 10 Design of FunFX This chapter describes the design of the applica-
tion, and the design patterns used.

Chapter 11 Implementation of FunFX This chapter thoroughly describes how
the framework is implemented. It provides some code samples to illustrate
important aspects of the framework.

6 CHAPTER 1. INTRODUCTION

Part V Evaluation of FunFX

Chapter 12 Testing of FunFX This chapter shows how the framework has been
tested, both the functional requirements and the non-functional requirements.

Chapter 13 Implementation issues This chapter describes in more detail some
problems encountered, and how they were solved.

Chapter 14 Evaluation This chapter will answer the research questions stated in
chapter 2.

Chapter 15 Summary This chapter will summarize the results and the further
work.

Part VI Appendix

Appendix A Questionnaire The questionnaire given to the test group.

Appendix B User guide This chapter will aid a potential user, with installing
and using the framework.

Appendix C Contents of CD-Rom This appendix lists the contents of the CD-
Rom.

Appendix D FunFX tests This appendix lists sample tests written with the FunFX
framework.

PART II

Research questions and
methods

7

CHAPTER 2

Research questions and methods

This chapter will describe the research questions this thesis tries to answer. If the questions
have some kind of requirements on how to be answered, they will be elicited beneath each
question. It will also describe the methods that will be used to answer the questions.

2.1 Research questions

This project will develop a framework for functional testing of Flex applications. Dur-
ing the development process, there will be developped small test applications. This will
discover weaknesses and strengths in the framework.

The research questions this thesis wants to answer are:

RQ1: What are the possible benefits of using the framework in development?

Evaluation approach: Manual functional testing and automated testing with help of
the framework will be compared.

RQ2: What kind of entry level does the framework impose on the user?

Evaluation approach: The framework will be tested on different kinds of potential users
to ensure the right level of usability. The test personnel will be asked to fill out a simple
questionnaire (see Section 2.1.1), to provide some data for this evaluation.

RQ3: How well does the framework support regression testing?

Evaluation approach: No evaluation approach.

RQ4: How does the framework inform the user where errors happen? And how well does
this information help the user to correct the error?

9

10 CHAPTER 2. RESEARCH QUESTIONS AND METHODS

Evaluation approach: The framework needs to inform the user of where the error
happened. This ability will be tested with a user test. This will be elaborated more in
section 2.1.1.

RQ5: What are the positive effects with open source software? Does the fact that FunFX
is supposed to be an open source framework, put any constraints on the implementation?

Evaluation approach: Constraints on the implementation due to open source, will be
documented during development.

RQ6: How well did the research methods (see Section 2.2) and the development methods
(see Section 3.1) help during this project?

Evaluation approach: The methods limitations and positive sides will be documented
and evaluated during the entire project.

2.1.1 Usage test

As a usability test, the framework will be deployed to a group of potential users to see how
well it performs, and to see what kind of entry level the framework requires. It will focus
not only on how to write tests, but also if there are something missing in the framework.

The group of users will be using the framework as they would if the framework was used
in real life, writing the test before implementing code until the test passes.

After the session, the users will be asked to answer a simple questionnaire (see Appendix
A). The questionnaire will seek to answer among others the usability, benefits, and possible
improvements of the framework.

2.2 Research method

The main objectives of this thesis, as mentioned in Section 1.2, is to develop an open
source framework to enable functional testing of Flex applications, and to see how the
framework will be in use. The following will describe the research method used in this
thesis.

Research in software engineering can be based on several different methods. Basili de-
scribes three common research methods that are relevant for software development[10].
The three methods described are:

Engineering method (scientific) In the engineering method the developers observe
existing solutions, propose a new and better solution, improve the solution, and
repeat until no further improvement is needed.

Empirical method (scientific) The empirical method proposes a model and develops
statistical methods to validate a given hypothesis.

Mathematical method (analytical) The mathematical method proposes a formal the-
ory and results derived from the theory, are compared with empirical observations.

This thesis will create a framework for functional testing of Flex applications. There
already exist solutions for functional testing of various applications. Because of this, the

2.2. RESEARCH METHOD 11

engineering method will mainly be used in this thesis. The existing solutions will be
studied and they will be a foundation to how the framework will be created.

2.2.1 Models for validating technology

In [44], Zelkowitz and Wallace describe a taxonomy that divides 12 different experimental
approaches into three broad categories:

Observational methods: An observational method collects relevant data as a project
develops, using the new technology being suited.

Historical methods: A historical method collects existing data from completed projects.

Controlled methods: A controlled method provides for statistical validity of the result,
if sufficient instances of an observation are available.

One historical method, literature search, and one observational method, case study will
be used during this project.

Literature search

A literature search analyses existing papers and documents to either confirm an existing
hypothesis or to enhance data collected in one project with similar data.

Functional testing is a well-known technique, and there have been written many papers
about it. There have also been written frameworks for functional testing of several other
types of technologies. Both the papers and the already developed frameworks will be
studied and make up the literature search. This search will be initiated early and form
the basis for the case study performed later in the project.

Case study

In a case study, the researchers monitor a project and collect data over time. The data
collection in a case study is derived from a specific goal for the project. Humans may
have influence on the development, and due to this, the case study is regarded as an
active method.

The main objective in this thesis is to create a framework for functional testing of Flex
applications. A case study will be performed during development to collect data to be
able to answer the research questions stated in Section 2.1.

12 CHAPTER 2. RESEARCH QUESTIONS AND METHODS

CHAPTER 3

Development methods and tools

This chapter will describe in more detail what development method and tools used during
the master project.

3.1 Development methods

There exists many different development methods to be used when creating an application.
What kind of method that is most suited for a project, depends on the application and
the domain knowledge.

3.1.1 Unified Process - UP

A well know method is UP, the Unified Process. UP is a more agile developing method
than the well known Waterfall method, but still relies on some documents. This is an
iterative development method, which involves early programming and testing of a partial
system in repeating cycles [22]. The development starts before all the specifications are
elicited. Feedback is used to clarify and improve the evolving specifications. This will
often be a time-saving feature in projects that work in domains where requirements might
change during implementation.

Iterative development is organized into a series of short, fixed length mini-projects which
are called iterations. Each iteration includes its own requirements analysis, design, im-
plementation and testing as visualized in Figure 3.1. The outcome is a tested, integrated
and executable partial system. The system grows incrementally after each iteration.

3.1.2 Test-driven development - TDD

A problem with software development is that it is too success oriented. Most software is
considered working until defects are found. It is not enough to have a good design before

13

14 CHAPTER 3. DEVELOPMENT METHODS AND TOOLS

System System

Time

Requirements Requirements

Design Design

Implementation
Test
Integration
More Design

Implementation
Test
Integration
More Design

Final Integration
System Test

Final Integration
System Test

Iteration N Iteration N+1

Figure 3.1: Iterative development in UP

implementing a software project because even though you have gone through requirements
analysis and created data models and all kinds of theoretical constructs, the time you start
coding, a lot of that gets thrown out the window. Thousands of decisions need to be made
and you cannot make all these decisions correctly before you start writing code [15].

Test-driven development (TDD) is a method, which is about using tests to create soft-
ware in a simple, incremental way. TDD relies on two main concepts: unit testing and
refactoring.

This means that a unit-test (see Section 4.3.2) for a method is written before implementing
the method. Code is created in small steps, to ensure that the test succeeds. The first
step is to create a small test which is certain to fail, then by incremental development,
code is created to make the test pass. These steps go in iterations with refactoring until
the method is acceptable and the test succeeds [21].

The benefits of using TDD are numerous: incremental development, simpler development
process, constant regression testing, and improved understanding of the required software
behavior. All code is being developed in small incremental steps, which enables the
developer to have working software almost immediately. The focus of the developers
is only to get the next test to pass, which makes the developer more productive. Because
all written code have corresponding tests, the tests act as regression suites for testing.

3.1.3 Summary

There do not exist other open source alternatives and the requirements are thus likely to
change. Because of this, a scaled down version of the UP method will be used in this
project, where each iterative cycle is one week. This is the best method by choice because
of unfamiliarity with developing frameworks.

Below is an explanation of the steps in each of the iterations in the scaled down version
of UP:

Requirements In each iteration, the (10%) most important functional requirements will
be fully specified in use cases.

3.2. DEVELOPMENT TOOLS 15

Design After the requirements are specified, the requirements will be analysed and the
architecture is specified.

Implementation and Testing During development, a method called test-driven devel-
opment (see Section 3.1.2) will be used. In short, this means that the test method
will be implemented before writing the real method. This ensures that the code is
always tested.

Integration At the end of the iteration, the iteration parts will be integrated with the
existing system.

Evaluation When the modules are integrated, the entire system is tested and evaluated
to see if the system needs any more iterations.

TDD will be used both as a tool during the development of the framework, and as one of
the drivers of the framework itself. The framework must be able to be used as a tool in
test-driven development.

3.2 Development tools

This section will describe in more detail the different tools that were used to complete
this thesis.

3.2.1 Eclipse

The most scalable, modifiable, and free developing environment at the moment is Eclipse.
It is an open source platform that is highly modifiable with use of different plug-ins.

Plug-ins

With use of plug-ins, a developer can modify Eclipse to behave a certain way. Plug-ins
will give Eclipse support for different kinds of programming languages and development
frameworks. The following list explains the plug-ins used during this project:

Ruby Development Tools - RDT Ruby Development tools is a complete Ruby IDE
for the Eclipse platform. It features syntax highlighting, on-the-fly syntax check,
graphical outline, support for unit testing, debugger, and Ruby application launching
[32].

Adobe Flex Builder 2 Flex Builder 2 is a development environment for Flex (see Chap-
ter 5) within Eclipse. It provides the developer with a way to quickly create rich
client-side logic that integrates with XML or Web services. To be able to easily
develop user interfaces with customized look and fell, the builder comes with design
and layout tools [3].

16 CHAPTER 3. DEVELOPMENT METHODS AND TOOLS

PART III

Prestudy

17

CHAPTER 4

Central concepts

This chapter will describe central concepts in the problem domain.

4.1 Rich Internet Application - RIA

Rich Internet Applications (RIA) are Web applications that have the features and func-
tionality of traditional desktop applications. RIA usually puts the processing work needed
for the user interface to the Web client, but keeps business logic and the program state at
a server. RIA was introduced by Macromedia in Macromedia Flash MX-A next-generation
rich client [7] in 2002.

Traditional Web applications are normally client-server architectures with thin clients.
With such systems, all the processing are done at the server, and the client is only display-
ing static content. Every action on the client must go through the server, thus requiring
some response time. By using some client-side processing, RIA circumvents this slower
loop.

Methods and techniques for RIA[40]:

JavaScript was the first major client side language, and is still widely used. It is a
scripting language and is based on prototype-based programming. JavaScript is an
important part of AJAX.

AJAX , short for Asynchronous JavaScript and XML, is a technique that combines
JavaScript and XML to build interactive Web applications.

Flash is another way to build RIAs. It is based on an animation metaphor that creates
a movie to be played on a Flash player.

Flex (see Chapter 5) is a framework for developing RIAs based on the Flash player. It
enables the developer to build Flash user interfaces by compiling MXML, a XML
based interface description language.

19

20 CHAPTER 4. CENTRAL CONCEPTS

Java Applet is an applet delivered in java byte code, and can be run in any browser
using a Java Virtual Machine.

4.2 Framework

In software development, a framework is a defined support structure in which a software
project can be organized and developed. It is an extendable set of objects for related
functions. A software framework is similar to class libraries. The main advantage of
development frameworks is the potential high level of reuse.

The signature quality of a framework is that it provides an implementation for the core
and unvarying functions, and includes a mechanism to allow a developer to plug-in varying
functions, or to extend functions [22].

Some well known frameworks are e.g., Ruby on Rails, Hibernate, .NET Framework, and
Spring Framework.

4.3 Software testing

It is regarded as nearly impossible to write defect-free software, but it is still important
to strive to limit the defects to a trifling number. To be able to do this, testing is an
essential activity. Software testing is a process or a series of processes, designed to make
sure computer code does what it was designed to do and that it does not do anything
unintended [27]. A more precise definition is:

Testing is the process of executing a program with the intent of find-
ing errors and to ensure that a program does perform as intended[27].

Testing needs to be performed at different levels in software, and there exist different
ways of testing software. The following sections will describe different methods used in
this thesis and their intentions and benefits.

4.3.1 Test case

A test case is a set of conditions or variables under which a tester will determine if a
requirement in an application is partially or fully satisfied [42]. To be sure that the
requirement is satisfied, the test must try to detect errors.

There must be at least one test case for each requirement. Multiple test cases are often
collected into test suites.

Since it is exhaustive and impossible to test for any possible value [27], it is a clue to
find the subset of all possible test cases that has the highest probability of detecting most
errors.

4.3.2 Unit testing

Unit testing is the procedure where individual modules or units of code are validated if
working properly. A unit is the smallest testable part of an application.

4.3. SOFTWARE TESTING 21

A unit test is a test for a specific unit, and each test case is independent of other tests.
Mock objects1 can be used to be able to test a module in isolation.

Unit testing is the backbone of test-driven development as described in Section 3.1.2.

Listing 4.1 displays a simple unit test class written in JUnit, which is Java’s version of
unit testing. There is a simple setup method where the developer can enter information
that will be used by multiple test cases. The test case testCreate is testing the creation
of a Student object (instance of the class Student).

Listing 4.1: Unit test
1 public c lass StudentTest extends TestCase

2 {

3 private String studentName;

4
5 public void setUp ()

6 {

7 studentName = "Jane Doe";

8 }

9
10 public void testCreate ()

11 {

12 Student student = new Student(studentName);

13 assertEquals(studentName , student.getName ());

14 }

15 }

Unit testing can act as regression testing, which will be described in Section 4.3.4.

4.3.3 Functional testing

Functional testing, also called acceptance testing or black box testing, is designed to verify
that an application works according to functional, non-functional, and other stakeholder
requirements. It differs from other testing methods like unit testing, as it tests the system
as a whole, not just a class or method.

Web applications

There exist two different methods to functionally test Web applications [14]:

• Tools that simulate browsers by implementing the HTTP request/response protocol
and parsing the resulting HTML. HttpUnit, WWW::mechanize and WebUnit are
examples of such tools.

• Tools that use COM calls to drive the Internet Explorer browser. Watir (see Section
6.1), Samie, and JSSh are example tools that drive the browser.

To avoid tests that break, it is important to consider how to perform actions on the
application. Many functional testing applications use the x and y position on a screen
to perform actions. This approach is weak if the positions of the graphical objects are

1Artificial objects that mimic the behavior of real objects in controlled ways

22 CHAPTER 4. CENTRAL CONCEPTS

changing. To be able to reach the actual objects, instead of using the positions on the
page, makes it much easier and safer to perform the actual testing.

Many new Web technologies use an XML based language to build the graphical user
interface (GUI). This puts the display objects in a hierarchical way. For tests to be
enduring, the framework should be able to reach objects in both an absolute path and a
relative path. If the GUI is changed with additional containers, a test must not break as
long as the functionality of the application is the same.

Acceptance testing

Acceptance tests are run by the customer or the end user to ensure that the system works
as anticipated. It generally involves running a suite of tests on the completed system.
Acceptance tests are done before deployment.

4.3.4 Regression testing

Regression testing is not a separate testing method, but more a result of other testing
methods. It means that the tests always check whether code is still working after changes
in the software. If the development process follows TDD (see Section 3.1.2), the unit tests
work as a regression test suite. High test coverage2 is a requirement for regression testing.

4.3.5 Keyword-driven testing

Keyword-driven testing is a relatively new way of writing tests. It has also been called
action words, test frameworks, or third-generation test automation.

A keyword-driven test tool consists of multiple keywords, which correspond to methods
in the tool. They perform the corresponding method with the supplied attributes. The
result of the action is compared to an expected value. The test passes if the values are
equal.

Table 4.1 shows an example of a keyword-driven test written in Fitness (see Section 6.4).

Table 4.1: Keyword-Driven test written in Fitness

Action Fixture
start fitness.fixtures.CountFixtures
check counter 0
press count
check counter 1
press count
check counter 2

2All code have a corresponding test

4.4. COMPONENT OBJECT MODEL - COM 23

4.4 Component Object Model - COM

Component Object Model (COM) is a Microsoft platform for software components in-
troduced by Microsoft in 1993. It is used to enable inter-process communication and
dynamic object creation in any programming language that supports the technology. The
term COM is often used in the software development world as an umbrella term that
encompasses the OLE, OLE Automation, ActiveX, COM+, and DCOM technologies [37].

The essence of COM is a language-neutral way of implementing objects so that they can
be used in environments different from the one they were created in. It provides high level
of reusability because the developer is forced to provide well-defined interfaces that are
separate from the implementation.

24 CHAPTER 4. CENTRAL CONCEPTS

CHAPTER 5

Flex

Flex is a framework developed by Adobe Systems Incorporated for developing RIA for the
Flash platform. It was a result of the increased demand for more desktop-like applications
for the Web.

Traditional application programmers found it challenging to adapt to the animation
metaphor upon which the Flash Platform was originally built. Flex seeks to minimize
this problem by providing a work flow and programming model that is familiar to appli-
cation developers [35].

Flex allows Web application developers to quickly and easily build RIAs. In a multi-tier
model, Flex applications serve as the presentation tier. It enables enterprises to create
personalized, multimedia-rich applications that dramatically enhance user experience [3].

Flex is currently in version 2.0, but the version 3.0 beta is available for download from the
Adobe site. Adobe has shipped Flex with a majority of its source code for a while, but
on the 25th of April 2007, Adobe announced that they will release Flex under a Mozilla
license. This will make Flex more popular within developing communities.

Flex lacks a proper open source testing tool for developers concerned with functional
testing that support TDD. This is therefore a motivation for this master project.

5.1 MXML

MXML is an XML language used to create layouts of user-interface components for Flex
applications. It is also used to declaratively define non visual aspects of an application,
such as access to server-side data sources and data bindings between user-interface com-
ponents and data sources [19]. All components are nested in a hierarchy of parents and
children as a regular XML file. This hierarchy is something that need to be taken into
account when developing a framework that must interact with these components. Figure
5.1 shows what the hierarchy of a simple application might look like.

Listing 5.1 shows a simple Flex application written in MXML.

25

26 CHAPTER 5. FLEX

Root

ApplicationAlertMenu

Panel

Box

ButtonTextArea

DividedBox

DataGrid TextArea

Figure 5.1: Example hierarchy of an Flex application

Listing 5.1: Sample MXML

1 <?xml version=”1.0” encoding=”utf−8”?>
2 <mx: Application xmlns:mx=”http ://www.adobe .com/2006/mxml”>
3 <mx:Array id=”sampleArray”>
4 <mx: String >Sample Label 1</mx: String >

5 <mx: String >Sample Label 2</mx: String >

6 </mx:Array>
7 <mx:Panel title=”Example Panel”>
8 <mx:ComboBox dataProvider=”{sampleArray}”></mx:ComboBox>
9 </mx:Panel>

10 </mx: Application >

Figure 5.2 shows how the application shown in Listing 5.1 looks like when built.

5.2 ActionScript

ActionScript is a scripting language based on ECMAScript, primarily used to develop soft-
ware for the Adobe Flash Player. Together with MXML capabilities with user interfaces
and binding to data sources, ActionScript can be used to write business logic.

ActionScript is a prototype-based language, which means that class definitions can be
changed at runtime. This makes it easy to modify and add functionality.

5.2. ACTIONSCRIPT 27

Figure 5.2: Sample Flex application

5.2.1 Mixin

ActionScript does not support multiple inheritance. However, it provides something called
mixin, which provides an easy way to dynamically add methods of an existing class to a
custom tailored class without using inheritance [4].

A mixin is an atomic unit in an object oriented language that adds functionality to another
class. The word mixin is attributed to a 1970’s MIT hangout, where the owner made his
own ice cream. He had basic flavors like vanilla and chocolate, and added extra ingredients
like nuts, cookies, or candies. These extra ingredients where called mixins. In this way,
the nuts are similar to mixins in ActionScript, you do not order just a bowl of nuts in an
ice cream-bar [4].

A mixin is a powerful tool, but it is necessary to be aware that the use of mixins generally
violates the principles of good object-oriented practices.

5.2.2 ExternalInterface API

ExternalInterface is an API, which enables developers to access ActionScript methods
within a Flash-movie. A developer can either use JavaScript within a browser or use an
ActiveX control to call the defined ActionScript methods.

The ActionScript methods need to be defined with an addCallback method in the re-
spective ActionScript file in the Flex application as shown in Listing 5.2. This method
makes it possible for JavaScript and an ActiveX control to access this method on the flash
object embedded in a HTML file.

Listing 5.2: Define a callable method with ExternalInterface
1 import flash.external.ExternalInterface;

2 ExternalInterface.addCallback(”callname”, methodname);

The ExternalInterface provides a two-way communication, and it has the ability to call
methods provided by JavaScript or an ActiveX control. Listing 5.3 shows how to call a
method called method.

28 CHAPTER 5. FLEX

Listing 5.3: Call a method with ExternalInterface
1 import flash.external.ExternalInterface;

2 ExternalInterface.call(”method”);

With the ExternalInterface, various data types (Boolean, number, String) can be passed
between ActionScript code and JavaScript or a ActiveX Control [17].

5.3 Flex Builder 2

Flex Builder 2 is an Eclipse-based IDE for developing RIA using the Flex framework.
There exist two versions, one standalone version and one plug-in for Eclipse. With this
tool, it is easy to design user interfaces and debug applications.

Flex Builder 2 is not freeware, but priced per license.

5.4 Flex Data Services 2

Flex Data Services 2 (FDS) is a server-side complement to the Flex 2 SDK and it is
deployed as a Java EE application. It enhances the client-side Flex framework by providing
high-performance connectivity with existing server-side data and business logic. Based
on a robust messaging architecture, it integrates with existing middleware, add support
for real-time data push and publish/subscribe messaging, and enables collaborative and
occasionally disconnected applications [2].

The simpler way to work with data in Flex is with the use of data providers. A data
provider is a collection of objects that contains data required by a component. Because
the data provider is separate from the component, it can be used by multiple components
and is in this sense a ”model” that can be used by many views[1]. Data providers often
require it’s information from Web services.

FDS2 for a single CPU is free of charge, but does not include the Flex Automation Package
(see Section 5.4.1). The full version is priced per CPU and includes the Flex Automation
Package.

5.4.1 Flex Automation Package

To drive a Flex application programmatically, Adobe has developed an automation pack-
age. This package is only available when buying Flex Data Services 2. They have no
relationship other than that it was practical for Adobe to do it this way. Adobe lets de-
velopers develop testable applications without the FDS and the automation package, but
to actually drive the applications through the automation API, requires a license. The
package contains two library files: automation.swc and automation agent.swc. These files
makes it possible to reach a class called AutomationManager that implements the IAu-
tomationManager interface, which is the central point in the automation environment, a
façade class1.

The package has methods for creating an AutomationID of a object, and methods for
easily resolve the object back from the AutomationID. This makes it easy to get back

1Façade is a design pattern (see Section 10.1.3)

5.5. FLEX CHARTING 2 29

to an object. It can also extract information from the display components, and report
if the current event is finished or not. These abilities will play an important role during
development of FunFX.

Automation Package is built for the purpose to support recording of events. This is
noticeable with the AutomationID. It is easy to create an id of an object found and to
get back to this object with the id. It is more difficult to find this object by other means
than clicking on it and recording the event. To support TDD, another way is needed to
locate the object that will be automated.

5.5 Flex Charting 2

Flex Charts is an additional package to the Flex 2 SDK, and provides a rich library
of interactive charts and graphs that enable rich data dashboards and interactive data
analysis.

5.6 Competitors to Flex

This section describes some of the competitors to Flex, and will try to document their
strengths and weaknesses compared to Flex.

5.6.1 Silverlight

Silverlight formerly known as Windows Presentation Foundation Everywhere, or short
WPF/E, is the Microsoft solution for delivering rich, cross-platform, interactive experi-
ences including animation, graphics, audio, and video for the Web [26]. This Microsoft
technology is a direct competitor to Adobe Flex, but has not yet been released as a fi-
nal version. Silverlight is based on the Windows Presentation Foundation technology,
which is the graphical subsystem feature of the .NET Framework 3.0. It uses XAML2 and
JavaScript.

Silverlight is preinstalled with Vista, and using Vista together with Internet Explorer does
not require any plug-ins. But using Silverlight in any other browsers on any other OS,
will require a lightweight browser plug-in freely available from Microsoft.

Since XAML is scriptable with JavaScript, Silverlight is supposed to work together with
AJAX.

Silverlight was unveiled by Microsoft in Las Vegas April 15th, 2007, but only as a Com-
munity Technology Preview (CTP) [25]. A beta version of Silverlight was released during
the Mix07 conference in Las Vegas April 30th, 2007.

Summary

Silverlight is Microsoft’s clone of Flex. They provide the same services to the developer
and end user, and the users will not be able to tell the difference. The fact that Flex
has been around for nearly three years now, must be an advantage for Adobe and Flex,

2eXtensible Application Markup Language

30 CHAPTER 5. FLEX

but Microsoft with its significant position within enterprise development may seize market
shares.

The beta of Flex 3.0 is now available, and it will be interesting to see how Silverlight will
be received when the final version is launched.

5.6.2 AJAX

AJAX, shorthand for Asynchronous JavaScript and XML, is a new way to use old tech-
nologies together. Google started using this technology and made it immensely popular
within Web development. AJAX is a way to make regular Web pages rich and interactive,
and makes Web applications as expressive as desktop applications.

AJAX is a composition of several technologies[13]:

• Presentation using XHTML and CSS

• Dynamic display and interaction using the Document Object Model (DOM)

• Data interchange and manipulation using XML and XSLT

• Asynchronous data retrieval using XMLHttpRequest

• Using Javascript to bind everything together

AJAX enables Web developers to update only parts of a page, and making the continuing
post backs obsolete.

Summary

AJAX is a great opponent to Flex. Since it is open source and uses already known Web
technologies, makes AJAX the preferred choice by many Web developers. The develop-
ment time of a Flex application is much faster than a full AJAX Website, and thus might
be a possible advantage for Flex.

5.7 Summary

Flex is an easy framework to use, and the entry level is low. With few minutes spent, an
application with drag and drop capabilities is created. The fact that Adobe will release it
as open source is positive. We hope the negative aspect that Flex Builder is not freeware,
will be solved with an open source version in the near future.

CHAPTER 6

State of the art

Acceptance-, and functional-testing is designed to put manual tasks through their paces[16].
Doing so manually is both time consuming and error prone. Automating these types of
tests achieves higher quality software and lowers the cost of development. There exists
several solutions for automating functional tests of a wide variety of applications, and this
section will describe the ones most frequently used.

6.1 Watir

Watir (Web Application Testing In Ruby) is an open source framework for performing
automated functional testing, automated acceptance testing, and large-scale system test-
ing of Web applications [20]. It uses Ruby as the language to write tests in, which is
an advantage since Ruby is an interpretable language and has built in OLE1 capabilities.
This enables Watir to drive Internet Explorer programmatically with OLE. OLE is im-
plemented above the Component Object Model (COM) architecture [43]. With the use of
Ruby, it also has the ability to check database states and retrieve text from HTML code
[29].

Listing 6.1 shows how to write a simple test to ensure the right functionality of a Web
page. The first line is needed for Ruby to import the Watir functionality. Watir creates
an instance of an Internet Explorer window with Watir::IE.new, which enables the tester
to perform tasks on the window programmatically.

Listing 6.1: Simple Watir example [43]
1 require ’watir ’

2 test_site = "http ://www.google.com"

3 ie = Watir::IE.new
4 ie.goto(test_site)

5 ie.text_field(:name, "q").set("pickaxe")

1Object Linking and Embedding - A protocol developed by Microsoft. OLE allows an editor to ”farm
out” part of a document to another editor and then re-import it (see Section 4.4).

31

32 CHAPTER 6. STATE OF THE ART

6 ie.button(:name, "btnG").click

7 i f ie.text.include ?("Programming Ruby")

8 puts "Test Passed. Found the test string: ’Programming Ruby ’."

9 else
10 puts "Test Failed! Could not find: ’Programming Ruby ’"

11 end

6.1.1 Summary

Currently Watir only supports testing of Web applications in Internet Explorer, and it
does not support testing of Flex applications, hence it is no competitor to FunFX. Due
to its implementation in Ruby, it drives IE with great precision, and it is a great tool for
testing traditional Web applications. In the engineering method (see Section 2.2) existing
solutions are studied before a new and better solution is proposed. Watir will be used as
one of the existing solutions.

6.2 Selenium

Selenium is another framework for functional testing of Web applications, and it is similar
to Watir (see Section 6.1). Selenium tests run directly in the browser and is supported in
Internet Explorer, Mozilla, and Firefox on Windows, Linux, and Macintosh [28].

The tests are written as a collection of commands like click, open, and type and asser-
tions such as verifyValue. These commands and assertions form a mini language called
Selense [14].

Selenium drives the browser via JavaScript to run testing scripts, which means that Se-
lenium has the ability to test client-side functionality implemented in JavaScript. The
JavaScript engine is called BrowserBot and it translates the tests written in Selense into
JavaScript, which it sends to the browser.

Selenium is deployed in three different versions, Selenium Core, Selenium IDE, and Sele-
nium Remote Control.

6.2.1 Selenium Core

Selenium Core, also known as Test Runner, is written in JavaScript/DHTML that enables
it to run in any browser which is JavaScript enabled.

The Selenium tests are written as HTML tables, similar to tests written in FitNesse (see
Section 6.4). Table 6.1 shows how a simple Selenium test is written in test runner mode.

Figure 6.1 shows how the Selenium Test Runner is running the test-script detailed in
Table 6.1. Whenever a mouse gesture is performed on any of the controls, the event is
written into the textbox. At the end, the test verifies that all the events have happened
as they should. If the test-steps (commands) pass, they get a light green color, and a light
red color if they fail. The assertion verifyValue gets the color green if passed and red if
failed.

6.2. SELENIUM 33

Figure 6.1: Selenium test runner

34 CHAPTER 6. STATE OF THE ART

Table 6.1: A Selenium test
Test Mouse Events
open test form events.html
mouseOver theTextbox
mouseOver theButton
controlKeyDown
mouseDown theTextbox
controlKeyUp
mouseDown theButton
verifyValue eventlog {mouseover(theTextbox)}

{mouseover(theButton)} {mouse-
down(theTextbox ctrlKeyDown)}
{mousedown(theButton)}

6.2.2 Selenium Remote Control

In the Selenium Remote Control, also known as Driven mode, tests are written in one
of the supported programming languages, Java, Ruby, or Python. The scripts run as a
separate process outside the browser. The driver executes the script and drive the browser
by communicating with the BrowserBot2, which runs inside the browser.

Driven scripts are more powerful and flexible than test runner scripts, and do easily
integrate with xUnit frameworks.

Listing 6.2 shows a part of a test written in Ruby. It is simplified to show how to drive
the browser with the open method, and then assert the task afterwards.

Listing 6.2: Selenium Driven mode ruby code [43]

1 puts selenium.open(’/logout.html ’)

2 puts selenium.verify_location (’/index.html ’)

6.2.3 Selenium IDE

Selenium IDE is an integrated development environment for Selenium testing implemented
as a Mozilla Firefox extension. It contains the Selenium Core (see Section 6.2.1), which
enables the user to record and play back tests in the actual environment that they will
run in. It is a complete IDE where the user can record, edit, and debug tests.

The only drawback of Selenium IDE is that it is currently only supported by Mozilla
Firefox, but the tests created/recorded are runnable in Selenium Core in Internet Explorer.

6.2.4 Summary

Selenium is one of the best functional testing tools for Web applications that are built
with regular HTML and JavaScript. Its ability to perform tests within multiple browsers
on multiple platforms makes it an excellent and versatile tool.

2A JavaScript engine translates the tests written in Selense into JavaScript

6.3. MERCURY QUICKTEST PROFESSIONAL 35

Unless the Selenium team decides to implement support for Flex applications3, Selenium
will not be a competitor to FunFX.

6.3 Mercury QuickTest Professional

Mercury QuickTest Professional (QTP) is an advanced testing solution for building func-
tional and regression test suites. It is an automated testing tool, and uses a keyword
driven approach (see Section 4.3.5), which simplifies test creation and maintenance. Mer-
cury QTP supports testing of .NET, Web services, Java, ERP/CRM, Flex, and Windows
applications [24].

With QTP, testers have the ability to create test cases by capturing flows directly from
the application screens. The tester can record actions, and afterward play the test. QTP
also provides the ability to create tests by simply declaring the steps using the script-free
Keyword View [23].

6.3.1 Functional testing of Flex application

Mercury QuickTest Professional uses a keyword driven approach. This approach has great
potential and makes writing tests easy. QTP performs functional tests using recording of
a set of actions and replaying these actions. The user has the ability to assert the results
of each action.

This record and replay method is an easy way for non-programmers to be able to use this
test tool for acceptance testing of functional requirements. But it does not help developers
during development of new applications, since QTP can only be used on already created
applications.

Figure 6.2 shows the QTP application during the recording of a test. Each time the user
initiates an event on an Internet Explorer window, the action is recorded into QTP. Listing
6.3 lists the test caught in Figure 6.2. Due to a lack of space, line number 1 is supposed
to be in front of each of the other lines. QTP writes the tests in VB script, and supports
both Internet Explorer and Mozilla Firefox. With Internet Explorer, QTP is able to reach
objects in the Flex application by name, but with Firefox it uses the WINOBJECT in
VB script to create events with a specific position on the page.

Listing 6.3: Recorded test case in QTP
1 Browser(”Browser”).FlexApplication(”AutomatinTest”).
2 FlexToggleButtonBar(” ToggleButtonBar1”).Change ”Home”
3 FlexToggleButtonBar(” ToggleButtonBar1”).Change ”Products”
4 FlexCanvas(”Products”).FlexSlider(”priceSlider ”).Change 190

5 FlexCanvas(”Products”).FlexSlider(”priceSlider ”).Change 200

6 FlexCanvas(”Products”).FlexCheckBox(”Camera”).Click
7 FlexCanvas(”Products”).FlexCanvas(”productList”).Check CheckPoint(

”l i s t ”)

When the recording of a test is finished, the user has the ability to replay the recorded
test. The application is programmatically driven by QTP, with the use of the Automation

3Flex applications are packed into one Flash movie, a swf file, and cannot be accessed with regular
HTTP requests and JavaScript

36 CHAPTER 6. STATE OF THE ART

Figure 6.2: QuickTest Professional environment

6.4. FITNESSE 37

Package (see Section 5.4.1), and the recorded events are performed. Figure 6.3 shows the
window that is shown after running the stated tests.

Figure 6.3: QuickTest Professional test result window

6.3.2 Summary

Mercury QuickTest Professional (QTP) is currently the only testing solution that supports
testing of Flex applications. QTP is not open source and is expensive in use. The positive
thing with QTP is that it is extremely easy to use for non-technical users to perform
acceptance tests. The two most negative aspects with QTP are that it is an expensive
non-open source tool and that it does not support test-driven development very well. This
means that it is not a developers tool, but more a tool for Quality Assurance (QA).

QTP is a direct competitor to FunFX, but if FunFX is deployed correctly into the open
source environment, it will have the potential to be the preferred tool. FunFX will support
TDD (see Section 3.1.2).

During the development of FunFX, QTP will be used as a model for how to access the
hierarchy of Flex components intuitively.

6.4 FitNesse

FitNesse is a software development collaboration tool. It enables customers, testers, and
programmers to learn what their software should do and automatically compare that to
what it actually does [12].

FitNesse is a testing tool, a wiki, and a Web server. It is a lightweight, open source
framework for developing and running acceptance tests for Web applications. It has a
keyword driven approach (see Section 4.3.5).

38 CHAPTER 6. STATE OF THE ART

In the test shown in Table 6.2, the lines with press are lines where some action is per-
formed and the lines with the keyword check are assertions where the tests pass or fail.

If such an assertion line fails, it turns red, and if it passes it turns green. The user thus
gets an immediate feedback on how the test performed.

Table 6.2: Keyword-Driven test written in Fitness

egActionFixture
start fitness.fixtures.CountFixtures
check counter 0
press count
check counter 1
press count
check counter 2

FitNesse is also a wiki, which means that every page can easily be edited with a simple
markup language. This means that it is very easy to create the test tables, and edit them
if needed.

6.4.1 Summary

FitNesse does not support testing of Flex applications, but it has a smart way of writing
tests, which might be interesting to consider when developing FunFX.

6.5 TestComplete

Another commercial automated testing tool is TestComplete from AutomatedQA. Test-
Complete is a full-featured environment for automated testing of Windows, .NET, Java,
WPF (XAML) applications, and Web pages and servers. It has been designed to free
developers and QA departments from the massive drain on time and energy required by
manual testing [8]. It also supports multiple languages.

When it comes to testing Flex applications, TestComplete is capable to record and replay
actions. This is done with coordinates4, and the tests recorded are not intuitive like
the tests recorded by QTP (see Section 6.3.1). It uses Microsoft’s Accessibility Interface
(MSAA) to identify and interact with controls inside a flex application. This makes it
possible to test Flex applications residing in Internet Explorer [9].

6.5.1 Summary

TestComplete is an application that enables testing of multiple type of applications. This
might be the reason why the testing of Flex applications is not done well. The focus is
on supporting multiple technologies, rather than providing quality testing functionality.
Because it uses coordinates when interacting with the Flex application, the tests written

4Tests that uses coordinates are more likely to break than tests that interacts with the display object
directly

6.6. SUMMARY 39

are not enduring and might break if a display object is moved slightly. It cannot be
regarded as a competitor to QTP and thus it will not be given any more attention.

6.6 Summary

This chapter has described some of the most popular and used functional testing tools for
Web applications. FitNesse was added as one of the tools even though it is not a functional
testing tool because it writes tests in a clever way. Table 6.3 shows a summary of the
tools. The comparison emphasize what kind of technology they support, if it supports
TDD, and if it interacts with the browser programmatically5.

Table 6.3: Summary of the state of the art functional testing tools

Tool HTML Flex TDD Programmatic Free OSS
support support support browser

interaction
Watir Yes No Yes Yes Yes Yes
Selenium Yes No Yes Yes Yes Yes
Mercury QTP Yes Yes No Yes No No
FitNesse No No Yes * Yes Yes
TestComplete Yes Yes No No No No

* Since FitNesse is not a functional testing tool it does not drive any browser.

During this comparison, Watir was found to be a very good testing tool, but it lacks
support for Flex applications. The use of Ruby as language will be a model for developing
FunFX. Selenium is also a quality tool, but was not found relevant as a model in the
case study. Mercury QTP is the only tool that has the ability to actually drive a Flex
application programmatically, but it lacks support for TDD. QTP will be a model during
development of FunFX, especially regarding how it writes the test lines. In the early phase
FitNesse’s way to write tests was thought to be the best way to write tests with FunFX.
During the prestudy it was decided to follow Watir and QTP instead. TestComplete is
a huge testing tool, that was not easy to manage. Together with no support for TDD
and no support to drive the Flex application programmatically, TestComplete came last
in the comparison. To summarize, Watir and QTP will be the models in our engineering
method (see Section 2.2).

5Programmatically interaction means that it interacts with the display objects, not using coordinates

40 CHAPTER 6. STATE OF THE ART

CHAPTER 7

Development Technology

This chapter describes in more detail the technology used in this project.

7.1 Ruby

Ruby is a object-oriented programming language initially created by a Japanese program-
mer, Yukihiro Matsumoto, in 1995 [33]. Ruby is a single-pass interpreted language, and
has become more and more popular among developers.

When Yukihiro developed Ruby, he wanted to create a language he himself enjoyed, which
emphasizes human rather than computer needs [33].

Everything manipulated in Ruby is an object, and the results of those manipulations are
themselves objects. Even primitives like integers are objects in Ruby.

Ruby does not support multiple inheritance, but classes can import modules as mixins. It
also features dynamic typing, which means that variables are not required to be explicitly
declared before they are used. The variable type is decided at runtime. Ruby relies less
on the type (or class) of an object and more on its capabilities. Hence, Duck Typing: This
means an object type is defined by what it can do, not by what it is [30]. Duck Typing
can be defined in a single sentence;

If it looks like a duck, swims like a duck and quacks like a duck,
then it is indeed a duck [38].

It is an extremely powerful language, which has combined the semantics of Smalltalk with
the syntax of Perl. This makes it compact, yet readable and maintainable. Ruby is a
general-purpose language, and can either be used to build small scripts, build middle-tier
server processes, write GUI applications, database interfaces, or generate dynamic content
[33].

Ruby is a clean and simple language, which makes it highly readable and maintainable.
There is no semicolon at the end of each line. One line is one statement of code. Ruby does

41

42 CHAPTER 7. DEVELOPMENT TECHNOLOGY

not use brackets as most other languages to denote the body of a compound statement,
but rather an end statement at the end.

A method in Ruby is defined as in Listing 7.1.

Listing 7.1: Ruby method
1 def sayGoodnight(name)

2 result = "Goodnight , " + name

3 return result

4 end

Listing 7.2 shows a simple Ruby class. Instance variables are like any other variables,
but are written: @nameofvariable. This class overrides the method to_s, which is the
method converting an object to String. The last two lines create a new Song object and
call the to_s method to display its content.

Listing 7.2: Ruby class[33]
1 c lass Song

2 def initialize(name , artist , duration)

3 @name = name

4 @artist = artist

5 @duration = duration

6 end
7
8 def to_s

9 "Song: #{@name}--#{@artist} (#{ @duration })"

10 end
11 end
12
13 aSong = Song.new("Bicylops", "Fleck", 260)

14 aSong.to_s >> "Song: Bicylops --Fleck (260)"

Even though Ruby is very intuitive, there are some aspects that need to be addressed:

Names with capital letters are regarded as constants. Local variables should be-
gin with a lower case letter, since Ruby will treat variables with capital letters as
constants.

Must denote floating point numbers, because numbers are susceptible to method
syntax, it is not possible to denote a floating point with a dot at the end (99.).
It must be denoted 99.0 or 99.to_f.

7.1.1 Method missing

Whenever a Ruby object receives a method it does not implement, it goes up the hierarchy
of parents to see if some of them implement this method. If no one does, it raises an error.
This is where the genius of the method_missing shows. In Ruby, the developer has the
ability to implement a method called method_missing, which makes the developer able
to support multiple methods dynamically. It is up to the developer to make use of the
arguments passed to the method.

Listing 7.3 shows a simple example of how to use the method_missing. This forces the
class that implements this method to return any object. This functionality will be used

7.1. RUBY 43

to enable return of any type of Flex display object, due to the parent-child model Flex
uses.

Listing 7.3: Use of the method_missing method in Ruby
1 def method_missing(object_name)

2 Flex.const_get(object_name).new
3 end

7.1.2 Ruby conventions

All programming languages have their own conventions and best practice, and Ruby is
no different. In Ruby only class names and constants start with an upper case letter. All
others should start with lower case letter. Method names are written in all lower case
letters with an underscore dividing multiple words. FunFX will follow these conventions.

7.1.3 Interaction - irb

Interactive Ruby (irb) is an interactive command-line interpreter, which can be used to
quickly test code. It is useful when discovering new functionality to test without creating
a new file.

Listing 7.4 shows a simple irb session, where the developer is using puts to write Hello
world! to the console.

Listing 7.4: Irb session
1 irb(main):001:0 > puts ‘‘Hello world!’’

2 Hello world!

3 => nil

4 irb(main):002:0 >

With irb it is also possible to create new objects and classes, which will be reachable
within the current session.

7.1.4 Win32OLE

Win32OLE is a library, which provides Ruby developers an interface to OLE automation.
With this library, it is easy to take control of any application that supports Microsoft’s
COM platform.

In this project, Win32OLE will be used to programmatically drive Internet Explorer, and
access the Flash movie that is embedded within the HTML file.

Listing 7.5 shows a simple example using Win32OLE to create a new Internet Explorer
window, and programmatically drive it. In the last line, a new Win32OLE object is created
with the embedded Flash file named “flexapplication”.

44 CHAPTER 7. DEVELOPMENT TECHNOLOGY

Listing 7.5: Using Win32OLE to drive IE
1 require ’win32ole ’

2
3 @ie = WIN32OLE.new("InternetExplorer.Application")

4 @ie.visible = true
5 @ie.navigate("http :// localhost/flex/testApplication.html")
6 embeddedObject = @ie.document.getElementsByName("flexapplication")

7.1.5 Test::Unit

Test::Unit is the standard unit testing framework for Ruby development. It is basically
three facilities wrapped into a neat package[34]:

1. It provides a way of expressing individual tests.

2. It provides a framework for structuring the tests.

3. It provides flexible ways of invoking the tests.

When using the framework, a Ruby class which extends Test::Unit::TestCase must be
created. Within such a test-case, multiple tests can be created. All the test methods
created need to be named with test as a prefix, for instance test_initialize. This
is important because Test::Unit uses reflection to find tests to run [34]. To be able to
check whether the tests are correct or not, Test::Unit uses methods called assertions.
These methods checks whether the assertion is true or not. Test-cases can be collected
into test-suites.

To be able to run the tests, Test::Unit comes with a test runner that invokes all the
tests.

Listing 7.6 shows a simple test case, which tests the creation of a class that converts
numbers to roman numbers.

Listing 7.6: Simple test-case written with Test::Unit

1 require ’test/unit ’

2 c lass TestRoman < Test::Unit:: TestCase

3 def test_simple

4 assert_equal("ix", Roman.new(9).to_s)

5 end
6 end

Since the objective in this project is to create a testing framework using Ruby,
Test::Unit::TestRunner will be reused to run the written tests.

PART IV

The FunFX Framework

45

CHAPTER 8

Introduction to FunFX

Flex applications lack the possibility to be functionally tested with an open source testing
framework. At the moment, the only way to functional test Flex applications is with the
expensive enterprise application Quick Test Professional (QTP) from Mercury (see Section
6.3). Not only is QTP expensive, but it does not support TDD (see Section 3.1.2).

This project will try to fill this gap with a new testing framework based on TDD. There
are several aspects to consider when developing tools for TDD, e.g., a developer writes
tests for code that has not yet been implemented, and therefore needs to inform the user
properly. The results of this project will address a different type of audience than QTP,
namely the developers.

The Automation Package will be utilized to the extent it is possible. The Automation
Package has not implemented support for test-driven development, but still there are
many aspect of this library the framework can use.

This part will elaborate on the requirements and implementation of the framework, called
FunFX. It will show how the framework is designed, how this design is implemented, and
how it works.

47

48 CHAPTER 8. INTRODUCTION TO FUNFX

CHAPTER 9

Requirement specifications for FunFX

There are several requirements for successful usage of a test automation tool. Primarily,
the tool should be widely available within the project. Developers and testers must be
able to create, execute, change, and debug tests at any time. Additionally, the tests should
be included in the continuous integration system, providing feedback from the automated
test executions.

This chapter will elaborate the requirements for the FunFX framework. Both functional
and non-functional requirements will be elicited. The following list explains in more detail
how this chapter is outlined.

• Section 9.1 portrays a scenario, which describes how the application is supposed to
work.

• Section 9.2 states different goals of the application.

• Section 9.3 describes what functions the application need to support.

• Section 9.3.1 shows how the functional requirements and users relate to each other,
with the use of use case tables.

• Section 9.4 describes the non functional requirements, like performance, modifiabil-
ity, usability, testability, availability, and security.

9.1 Scenario

The setting for this scenario is the development of a new Flex application.

The use of FunFX will follow the test-driven development approach (see Section 3.1.2).
Before the developer implements functional requirements, tests are written for the re-
quirements. This is done by the use of Ruby and the FunFX framework. The developer
implements code incrementally to make the tests pass.

49

50 CHAPTER 9. REQUIREMENT SPECIFICATIONS FOR FUNFX

The tests will be stored in separate Ruby files, and can be run every time there has been
a change in the code, hence they will act as regression tests as well. When the developer
creates the Flex project a library file must be included to enable the application to be
tested.

9.2 Goals

The FunFX framework will try to reach the following goals:

• The framework must support any Flex application compiled with the FunFX library
file.

• The framework must be able to drive a Flex application programmatically.

• The framework must be able to support test-driven development.

• The framework must support writing tests in Ruby.

• The framework must be able to run multiple test suites, and provide useful results
from the tests.

9.3 Functional requirements

Table 9.1 enumerates each of the functional requirements of the application. The func-
tional requirements describe what functionality the application needs to support.

Table 9.1: Functional requirements

F1 The framework must be able to interact with Internet Explorer
F2 The framework must be able to define and run tests
F3 The framework must provide useful results from the tests
F4 The framework must be able to perform actions on a Flex application
F5 The framework must provide the possibility of test suites
F6 The framework must be able to reach Flex objects by name, id, or label
F7 The framework must be able to make assertions on Flex objects
F8 The framework must be able to wait for slow data providers
F9 The framework must be able to both run the steps visually and not visually
F10 The framework must be able to have different speeds of interaction
F11 The framework must be able to set paths in the tests for better readability
F12 The framework must be able to take advantage of regular unit test runners

9.3.1 Use Cases

The functional requirements are verbalized and visualized as use cases, since UP is the
development method (described in Section 3.1). The use case diagram shows use case
relationships and how they relate to the user of the application.

The use cases described are of sub function level, which means they are small steps of the
entire application.

9.3. FUNCTIONAL REQUIREMENTS 51

Use Case - Initialize FunFX

Table 9.2 shows the use case for initializing the framework.

Table 9.2: Use Case - Initialize FunFX
Use Case: Initialize FunFX
Scope: FunFX()
Level: Sub function
Primary Actor: User
Stakeholders and Interests:

• User: Wants to initialize the framework to be able to use its capabilities to
test a Flex application.

Preconditions: None
Success Guarantee: The framework is initialized, and has created an instance

of Internet Explorer. The framework is ready to be used
by the user.

Main Success Scenario:

1. User initializes the framework

2. System creates all needed classes dynamically from a configuration file

3. System creates an instance of Internet Explorer

Extensions:

2a Configuration file not found

1. System will notify the user

Use Case - Write test

Table 9.3 shows the steps a developer needs to go through to write a simple test.

Use Case - Create test suite

Table 9.4 shows what a developer needs to do to create a test suite of multiple tests.

Use Case - Create and run tests

Table 9.5 shows the entire process for developing and running a test suite.

52 CHAPTER 9. REQUIREMENT SPECIFICATIONS FOR FUNFX

Table 9.3: Use Case - Write test
Use Case: Write test
Scope: FunFX()
Level: Sub function
Primary Actor: User
Stakeholders and Interests:

• User: Wants to build a test with an assertion

Preconditions: None
Success Guarantee: A test with steps and an assertion at the end is created
Main Success Scenario:

1. User creates a test

2. User enters wanted steps into the test

3. User enters an assertion into the test

Extensions:
No extensions

Table 9.4: Use Case - Create test suite
Use Case: Create test suite
Scope: FunFX()
Level: Sub function
Primary Actor: User
Stakeholders and Interests:

• User: Wants to build a suite of multiple tests.

Preconditions: The tests must be written
Success Guarantee: A suite with multiple tests are written
Main Success Scenario:

1. User creates a test suite class

2. User adds pre-existing tests to the suite

Extensions:
No extensions

9.3. FUNCTIONAL REQUIREMENTS 53

Table 9.5: Use Case - Create and run tests
Use Case: Create and run tests
Scope: FunFX()
Level: User goal
Primary Actor: User
Stakeholders and Interests:

• User: Wants to build and run the tests. The user wants useful information
back about the results of the tests if something went wrong.

Preconditions: None
Success Guarantee: A suite of tests have been written and run
Main Success Scenario:

1. User performs Initialize FunFX (see Table 9.2)

2. User performs Write test (see Table 9.3)

3. User performs Create test suite (see Table 9.4)

4. User runs the test suite

5. System performs the tests visually

6. System provides the results of the tests

Extensions:
No extensions

54 CHAPTER 9. REQUIREMENT SPECIFICATIONS FOR FUNFX

9.4 Non-functional requirements

Functional requirements are usually the focus when developing applications, but it is
important to remember the non-functional requirements [11]. Non-functional requirements
are requirements that are not directly attached to the functionality, but may have great
impact on the architecture. They are also called quality attributes and are normally defined
in the following sections: performance, availability, modifiability, security, testability, and
usability [11].

Since FunFX is a tool for testing applications, we do not find the security attribute very
relevant. Development projects often use development integration systems to build the
solutions and run the tests.

This section will describe the non-functional requirements of FunFX.

9.4.1 Usability

Usability is concerned with how easy it is for the user to use the application. It is also
concerned with what kind of user support the system delivers. To make the application as
usable as possible, the flow of the system will be designed from user-feedback (see Section
2.1.1).

Q1.1 - Give user informative response after test is finished
To inform the user what went wrong during a test run it is important to provide high

usability. The user must receive information concerning the test run immediately after
the test is complete.

Source User
Stimulus User run a test
Artifact FunFX
Environment Runtime
Response The user should get a response on what went wrong
Response measure When test suite is finished

9.4.2 Testability

The testability is concerned with how easy it is to test the application. To support this
quality attribute, test-driven development (see Section 3.1.2) will be used, which uses unit
testing to ensure that every method is working correctly.

Q2.1 - Test a new feature
When a developer has added a new feature, the application will be suited with tests for

the remaining code. The developer needs to write tests for the new code.

Source Developer
Stimulus Have added a new feature
Artifact FunFX
Environment Design time
Response Writes a test for the feature
Response measure 1 hour

9.4. NON-FUNCTIONAL REQUIREMENTS 55

9.4.3 Modifiability

The modifiability of a system is about how easy it is to change parts of the system. It
is important to keep a system modular so that modules can easily be changed, to ensure
modifiability at a high level.

Q3.1 - Add a new component
If a developer creates a new custom component in Flex, the only change should be in a

configuration file, which describes all Flex components with their events and properties.

Source Developer
Stimulus Adds a new custom component to Flex
Artifact Configuration file
Environment Design time
Response Need to add a node to the configuration file
Response measure 5 minutes

Q3.2 - Add support for other browsers
Currently the only browser supported is Internet Explorer, but additional browsers can

easily be added by creating a new browser class for the desired browser1. What a developer
needs to do, is to create a way to grab the flash object embedded in the HTML page.

Source Developer
Stimulus Want to implement support for a new browser
Artifact FunFX
Environment Design time
Response Need to implement a new browser class, which enables the

framework to grab the embedded flash object.
Response measure 5 hours

9.4.4 Availability

The availability is concerned with system failure and its associated consequences. A
system failure occurs when the system no longer delivers a service consistent with its
specifications [11].

Q4.1 - Unable to reach the Internet Explorer browser
Sometimes the Internet Explorer might be slow to be initialized. If this happens, the

framework must not fail, but try repeatedly to reach the browser until successful.

Source Internet Explorer
Stimulus Unable to reach the browser
Artifact FunFX
Environment Normal operation
Response Continue to try reach the browser
Response measure Seconds

1Flex is supposed to behave equally in all browsers, but the option is added for future purpose

56 CHAPTER 9. REQUIREMENT SPECIFICATIONS FOR FUNFX

CHAPTER 10

Design of FunFX

FunFX consists of several parts that collaborate to provide a functional testing framework.
This chapter will describe in more detail the different parts of the design.

10.1 Design patterns

It is important when developing software solutions to define a base design to get a reliable
and maintainable construction. Use of good working tactics and patterns where applicable,
will ensure working software that is easy to understand and to maintain.

This section will elaborate in more detail what tactics and patterns used during the
implementation of FunFX.

10.1.1 Adapter

Different applications are often used within software development, sometimes written in
different languages, or has different APIs or objects. To enable these applications to work
together an adapter needs to be built that works with both applications API, and to
mediate between them. The adapter object converts the original interface of a component
into another interface [22].

In this project, Flex applications will be tested with the use of Ruby, and thus it is needed
a way to reach and act upon the Flex objects. An adapter may solve this problem. This
will be explained in more detail in Section 11.1.

10.1.2 Factory

The factory pattern is a design pattern, which deals with the problem of creating objects
without specifying the exact class of object that will be created [39]. A class called the
factory is created to handle the creation of objects.

57

58 CHAPTER 10. DESIGN OF FUNFX

10.1.3 Façade

The façade pattern is a “front-end” object that is the single point of entry for a larger
group of code [22]. With the use of façade pattern, the software library is easier to use
and to understand.

This pattern is widely used during the development of frameworks. This is partly because
it eases the use, but also this makes the framework more modifiable. Façade patterns are
usually accessed via the Singleton pattern (see Section 10.1.4) [22].

10.1.4 Singleton

In software development it is often important to be able to have global visibility of a class,
and limit the number of instances of this class to only one. It is useful when exactly one
object is needed to coordinate actions across the system. This is easily implemented with
the pattern called Singleton [22]. As shown in Listing 10.1, the class is accessed by its
static method instance. If an instance has not yet been created, one is created, or else
the earlier created instance is returned.

Listing 10.1: A simple way to implement singleton (not thread safe)
1 def self.instance

2 return @@instance i f defined? @@instance
3 @@instance = new
4 end

Listing 10.2 shows the new thread safe way to implement singleton. This is the way this
pattern has been used in this project. This code includes the actual code in the singleton
file.

Listing 10.2: The thread safe way to implement singleton
1 require ’singleton ’

2 c lass SingletonClass

3 include Singleton

4
5 # Some other code

6 end

This approach can be useful when creating a testing framework, since all test classes will
be using the same instance of the framework FunFX.

10.2 Overall design

Figure 10.1 shows how the overall design of the framework looks and works. Whenever
a Flex application is compiled, a flash object is created, which is embedded in a HTML
page or similar to be displayed in a browser. The FunFX Flex adapter is compiled into
the flash object, enabling the FunFX framework to access the Flex objects via WIN32OLE
(see Section 7.1.4).

The FunFX framework is built dynamically with the help from a file called Automa-
tionGenericEnv.xml, which describes all the possible Flex objects and their events. This
makes the framework easily modifiable.

10.3. THE FUNFX FLEX ADAPTER 59

HTML Page

Flash object

FunFX Flex adapter

p

FunFX Framework

Test::Unit

q

AutomationEnv.xml

WIN32OLE
t

Figure 10.1: Overall design

With the use of Test::Unit (see Section 7.1.5), it is possible to create test cases and test
suites of FunFX objects and methods, and assert the actions.

All these parts of the design will be described in more detail in the following sections.

10.3 The FunFX Flex adapter

The FunFX Flex adapter is an ActionScript library file, which is compiled into the Flex
application. This makes it possible to access the Flex display objects within the appli-
cation. It consists of one adapter class file, which was developed in this project, and a
couple of files received from Adobe1.

FunFX This class extends flash.display::Sprite, which is a base class for a Flex
application. It is also built as a mixin (see Section 5.2.1) making it possible to
register the library for the application complete event2. When the application is
complete, the adapter will register all the ExternalInterface methods (see Section
5.2.2), so the FunFX framework is able to perform actions on the application. It
uses the custom files received from Adobe to set the automation environment.

Classes designed and implemented by Adobe

XMLParser A helper class for parsing the XML file describing the Flex display compo-
nents.

CustomAutomationEventDescriptor This class holds information about events, e.g.,
the event type and the event implementation.

1The files are under Adobe license, and are allowed to be used as long as it is stated that they were
developed by Adobe

2The application complete event of the Flex application ready for testing

60 CHAPTER 10. DESIGN OF FUNFX

CustomAutomationMethodDescriptor This class holds information about methods
of the display object.

CustomAutomationPropertyDescriptor This class holds information about proper-
ties for both events of the display object and the display object itself.

CustomAutomationClass This class holds information about one single display object
class, including its events, methods, and properties.

CustomAutomationEnvironment This class contains CustomAutomationClass ob-
jects of all possible display objects.

10.3.1 Class diagram

Figure 10.2 shows the class diagram of the FunFX Flex adapter. The FunFX class is the
adapter and it is used by the FunFX Framework built in Ruby (see Section 10.4) to invoke
actions on a Flex application. The adapter invokes the Automation Package (see Section
5.4.1) with the CustomAutomationEnvironment.

10.4 The FunFX framework

The FunFX framework contains the classes used for writing tests and programmatically
drive a browser. It also builds a class hierarchy of Ruby classes that are equivalent to the
display objects found in Flex. The following will explain the different files in more detail:

AutomationGenericEnv.xml: This file contains a description of all the different Flex
display objects. This file is used to dynamically build an entire class hierarchy every
time a test is run. This has been done due to modifiability, the file is the only thing
that needs to be changed when a new custom display component is introduced.

Flex: Flex is a Ruby module, which contains a Base class for all the Flex display objects.
It introduces a method to implement custom methods dynamically.

XmlParser: The XmlParser is a static Ruby class that parse the AutomationGeneri-
cEnv.xml and builds the class hierarchy based on the Base class in the Flex module.
It creates different methods for different types of Flex components.

FunFX: The FunFX class is the façade class the user gets to know. It implements the
singleton pattern (see Section 10.1.4) and creates a new browser window. It extends
Flex::Base and can be regarded as the root of the display hierarchy of the tested
Flex application.

Browser: Browser is a module created for the single purpose to possibly support different
browsers. The module will hold implementations for different browsers. Currently,
the only browser supported is Internet Explorer. The class InternetExplorer uses
WIN32OLE (see Section 7.1.4) to interact with Internet Explorer.

10.4. THE FUNFX FRAMEWORK 61

+FunFX()
+init()
+setTestingEnvironment()
+applicationReady()
+checkComponent()
+catchProperty()
+resolveObjFromID()
+findObject()
+checkName()
+catchEvent()
+setProperties()
+getTabularDataValues()
+getFirstVisibleRow()
+getLastVisibleRow()
+getNumRows()
+getNumColumns()
+getColumnNames()
+getHierarchy()
+beginRecording()
+endRecording()
+applicationRoot()
+automationManager()
+isSynchronized()
+getChildren()
+startPlayBack()
-applicationCompleteHandler()
-xmlLoaded()
-recordHandler()

-funFX
-myLoader
-_root

FunFX

+CustomAutomationClass()
+name()
+superClassName()
+addImplementationClassName()
+addPropertyDescriptors()
+getPropertyDescriptors()
+addMethod()
+addEvent()
+getDescriptorForEvent()
+getDescriptorForMethodByName()
+getDescriptorForEventByName()
+getClassName()
+getDefinitionFromObjectDomain()
+propertyNameMap()
+toString()
-getASTypeForMethodArgument()
-hash()

CustomAutomationClass

Flex
Application

«uses»

Automation
package

«uses»

+CustomEnvironment()
+getAutomationClassByInstance()
+getAutomationClassByName()
-fillObjects()
-findClosestAncestor()
-findAllAncestors()
-sortAncestors()

-className2automationClass
-automationClassName2automationClass

CustomEnvironment

+XMLParsing()
+parse()
-recurseAndMake()

-inputXML
-outputXML

XMLParsing

«uses»

«uses»

1
*

+CustomAutomationEventDescriptor()
+name()
+eventClassName()
+eventType()
+args()
+record()
+replay()
+getArgDescriptors()

CustomAutomationEventDescriptor

+CustomAutomationMethodDescriptor()
+name()
+returnType()
+record()
+replay()
+getArgDescriptors()

CustomAutomationMethodDescriptor

+CustomAutomationPropertyDescriptor()
+name()
+forDescription()
+forVerification()
+defaultValue()
+asType()

CustomAutomationPropertyDescriptor

1
*

1*

*

FunFX
Framework

(Ruby)

«uses»

Figure 10.2: Class diagram of the FunFX Flex adapter

62 CHAPTER 10. DESIGN OF FUNFX

10.4.1 Class diagram

Figure 10.3 shows the class diagram of the FunFX Framework. The central part is the
Funfx class and its super class Base. Funfx is a singleton class and contains a browser
implementation. The Funfx class also uses the XmlParser to build a class hierarchy of
the Flex display objects.

+method_missing()
+add_method()
+getChildren()
-isSync()
-checkComponent()
-flexObject()
-ready()
-funfx()

-id
-name

Base

+goto()
+flexObject()
+unload()
+visible()
-setFlexObject()
-busy()
-helpGetElement()
-helpSetFlexObject()
-navigate()

-ie
-flex

Browser

+parseFile()
+start()
+goto()
+visible()
+unload()
+getFlexObject()

-speed
-browser

Funfx

1*
+parse()
+parse_file()
-add_tabular_method()
-add_event()

XmlParser
«uses»

«uses»

FunFX Flex
Adapter

«uses»

Figure 10.3: Class diagram of the FunFX Framework

CHAPTER 11

Implementation of FunFX

This chapter will describe the implementation of FunFX. It will concentrate on the most
important parts of the application, and will show code snippets to be able to give an
understandable description of the application’s structure and how it works.

The parts the chapter will go into are the FunFX Flex adapter, which enables the Frame-
work to invoke events on the Flex application, the FunFX Framework, and how this Ruby
application uses WIN32OLE (see Section 7.1.4) to call methods in the adapter. It will also
describe how to use the already provided Test::Unit framework (see Section 7.1.5) to
create test cases and run these cases with the Test::Unit::TestRunner.

11.1 FunFX Flex Adapter

A Flex application is compiled to a Flash movie that is embedded into a HTML file or
similar. The Flex objects are thus not visible or reachable from the outside of this object.
To be able to reach these inner objects, an adapter was built, which can mediate between
the Flex application and the FunFX framework1.

11.1.1 Initialize adapter

The adapter is created as a Flex library file2, and is meant to be added as a library to a Flex
application. The desired functionality of the adapter was to be initialized automatically,
without any interaction from the user. This problem was solved with the use of the mixin
function (see Section 5.2.1).

Listing 11.1 shows the adapter’s constructor and functions used during the automatic
initialization. Because the class extends Sprite3, and contains a static init method,

1The adapter pattern was used, as mentioned in Section 10.1.1
2A Flex library file is a group of ActionScript files packed to a file with extension swc
3The Sprite class is a basic display list building block

63

64 CHAPTER 11. IMPLEMENTATION OF FUNFX

and is built as a mixin, the adapters init function is invoked automatically when com-
piled together with a Flex application. The init function invokes the constructor that
creates a new adapter object. The constructor also registers an event listener to the
Flex application, which makes the applicationCompleteHandler function fire when the
Flex application is loaded. This function removes the event listener and sets the testing
environment with a XML file called AutomationGenericEnv.xml4.

This part of the framework, i.e., setting the test environment, is done by classes pro-
vided by Adobe. Adobe was kind and provided this project with some classes under
development[6]. These classes are:

• CustomAutomationClass.as

• CustomAutomationEventDescriptor.as

• CustomAutomationMethodDescriptor.as

• CustomAutomationPropertyDescriptor.as

• CustomEnvironment.as

• XMLParsing.as

What they do, are to parse an XML file and set what kind of information the Flex display
objects hold.

Listing 11.1: Initialize adapter
1 [Mixin]

2 public c lass FunFX extends Sprite

3 {

4 private stat ic var funFX:FunFX;

5 private var myLoader:URLLoader;

6 private stat ic var _root:DisplayObject;

7
8 public function FunFX(root:DisplayObject)

9 {

10 super();
11 root.addEventListener(FlexEvent.APPLICATION_COMPLETE ,

12 applicationCompleteHandler);

13 _root = root;

14
15 // ExternalInterface actions

16 }

17
18 public stat ic function init(root:DisplayObject):void
19 {

20 i f (!funFX)
21 {

22 _root = root;

23 funFX = new FunFX(root);

24 }

25 }

26

4This file is the same as the FunFX framework uses when generating Ruby classes (see Section 11.2.1)

11.1. FUNFX FLEX ADAPTER 65

27 private function applicationCompleteHandler(event:FlexEvent):void
28 {

29 _root.removeEventListener(FlexEvent.APPLICATION_COMPLETE ,

30 applicationCompleteHandler);

31 funFX = this ;
32
33 //Load environment XML

34 var te:String = ”AutomationGenericEnv .xml”;
35 setTestingEnvironment(te);

36 }

37 }

11.1.2 ExternalInterface - Making methods reachable

With the use of the ExternalInterface API (see Section 5.2.2), ActionScript methods are
made externally available from either JavaScript or through an ActiveX component.

Listing 11.2 shows how the methods catchEvent, catchProperty, and checkComponent
are added as callback methods in the ExternalInterface. The first argument in the add-
Callback method is the call name the Framework uses to call the method. These methods
are added as callbacks in the constructor, and thus added during the automatic initializa-
tion (see Section 11.1.1).

Listing 11.2: Stating the methods made available through the ExternalInterface
1 i f (ExternalInterface.available)
2 {

3 ExternalInterface.addCallback(”addevent”, catchEvent);

4 ExternalInterface.addCallback(”checkProperty”, catchProperty);

5 ExternalInterface.addCallback(”checkComponent”, checkComponent);

6 .

7 .

8 }

9 else
10 trace(”Error : ExternalInterface not available ”);

11.1.3 Locating objects and replay events

The first contact the framework has with the adapter is to check whether the component
is present or not. This is done with the checkComponent method. Listing 11.3 show
this method. The method uses the findObject method to find a child with the name as
provided. The name might be the id, name, or label of the display object. If a display
object is found, an id is created5 and returned. If no object is located, the method returns
false.

Listing 11.3: The checkComponent method
1 public function checkComponent(parentID:String , name:String):*

2 {

3 var obj:IAutomationObject = findObject(parentID ,name);

5The id is created with a class called AutomationID provided with the automation package

66 CHAPTER 11. IMPLEMENTATION OF FUNFX

4 i f (obj == null) return fa l se ;
5 else return createID(obj);

6 }

The id returned from the checkComponent method can be used with the resolveObjFro-
mID method to easily find the corresponding object. Listing 11.4 shows this method. It
uses a method available in the automation package to find it.

Listing 11.4: The resolveObjFromID method
1 public function resolveObjFromID(objectID:String):UIComponent

2 {

3 var objArray:Array = resolveID(objectID);

4 return UIComponent(objArray [0]);

5 }

In Flex applications, the objects are stored as a hierarchy. When locating an object, the
adapter needs to know the parent of the wanted object. The framework provides the
adapter with this information in a String, which is created with the help from Automa-
tionID. Listing 11.5 shows the method findObject, which uses this String to find the
desired child object. The hierarchy of display objects might become a weak point when
writing tests. A GUI might be refactored a bit with an additional container holding some
of the display objects, without changing the functionality of the application. When such
a change is done, the tests should not break. Hence, a mix of relative and absolute paths
is supported in FunFX. The way this is done, is by the use of an breadth-first search
algorithm. It first searches all the children of the parent, and then continues down in
the hierarchy one level at the time. Figure 11.1 shows how the algorithm searches down
a hierarchy. When using a breadth-first search, the requirement of both absolute and
relative path is covered. The search is shown in Listing 11.6. The method startSearch
is a helper method when locating an object from the root.

Figure 11.1: Breadth-first search algorithm

11.1. FUNFX FLEX ADAPTER 67

Listing 11.5: Method that locates a certain Flex object
1 public function findObject(parentID:String , name:String):

IAutomationObject

2 {

3 i f (name == null) return null ;
4 i f (parentID == null)
5 return startSearch(name);

6 else
7 return performSearch(new Array(resolveObjFromID(parentID)),name)

;

8 }

Listing 11.6: Search method for locating the desired display object
1 protected function startSearch(name:String):UIComponent

2 {

3 var parent:DisplayObjectContainer = DisplayObjectContainer(

applicationRoot);

4 var openList:Array = new Array ();

5 for(var i:int =0; i<parent.numChildren; i++)

6 {

7 try
8 {

9 openList.push(UIComponent(parent.getChildAt(i)));

10 }

11 catch(e:Error)

12 {}

13 }

14 return performSearch(openList , name);

15 }

16
17 protected function performSearch(openList:Array , name:String):

UIComponent

18 {

19 var closedList:Array = new Array ();

20 while(openList.length != 0)

21 {

22 var child:UIComponent = UIComponent(openList.shift());

23 i f (checkName(child , name)) return child;

24
25 for(var i:int=0; i<child.numAutomationChildren; i++)

26 {

27 try
28 {

29 openList.push(UIComponent(child.getAutomationChildAt(i)));

30 }

31 catch(e:Error)

32 {}

33 }

34 closedList.push(child);

35 }

36 return null ;
37 }

68 CHAPTER 11. IMPLEMENTATION OF FUNFX

When a test case wants to play an event on the Flex application, it calls the catchEvent
method within the adapter. Listing 11.7 shows this method. It receives information about
an event and initiates a replay of the event. It means that it performs an action on the
Flex application. The arguments are:

Event type The event class, e.g., flash.events::MouseEvent.

Event type The event type, e.g., if the display object is a button, the event might be
click.

Object id The object presented as an id string created by a class from Adobe called
AutomationID. This id contains information about all the parents of the object.

Properties The properties argument, a XML string that describes the additional prop-
erties of the event, e.g., the text of an input-text event.

With the use of the method resolveObjFromID, which is shown in Listing 11.4, it finds
the IAutomationObject that the event is being played on. The method has been made
as generic as possible, and all types of events can be supplied as a string. It uses this
string and the method getDefinitionByName, to be able to create an event object from
the string supplied. This approach is using the factory pattern (see Section 10.1.2)

If the properties argument is set, it uses the method setProperties, which is shown in
Listing 11.9, to set the additional properties of the event.

At the end, the method uses the method startPlayback, which is shown in Listing 11.10.

Listing 11.7: The method that catches the events created in a test-case

1 public function catchEvent(eventType:String , eventClass:String ,

objectID:String , properties:Object=null):String
2 {

3 var object:UIComponent = resolveObjFromID(objectID);

4
5 i f (object == null) return ”No such object”;
6 else i f (! Automation.automationManager.isSynchronized(object))

return ”Not synchronized”;
7
8 try
9 {

10 var tempEvent:Class = getDefinitionByName(eventClass) as Class;

11 var replayEvent :* = new tempEvent(eventType);

12
13 i f (properties != null)
14 {

15 var error:String = setProperties(replayEvent , object ,

properties);

16 i f (error == null)
17 startPlayback(object , replayEvent);

18 else
19 return error;

20 }

21 else
22 startPlayback(object , replayEvent);

23 }

11.1. FUNFX FLEX ADAPTER 69

24 catch(eventError:Error)

25 {

26 return eventError.message;

27 }

28 return null ;
29 }

The method setProperties gets the event, the flex object, and the properties as argu-
ments. The properties are an XML object, and the method parses this object to set the
properties of the event. Listing 11.8 shows how a properties XML object might look
like.

Listing 11.8: A sample event properties XML
<Event Name=”Select ”>

<Implementation Class=”mx. automation . events : : ListItemSelectEvent”
Type=”select ”/>

<Property Name=”itemRenderer” >

<PropertyType Type=”String” />

</Property >

<Property Name=”triggerEvent” DefaultValue=”f lash . events : :
MouseEvent”>

<PropertyType Type=”Event” />

</Property >

</Event >

When selecting or changing the states of a display object, the event often requires a child
of the control supplied. The adapter then loops over the children and checks whether their
automation value equals the supplied argument. If no such object exists, an error string
is returned. The framework picks up this message and posts it to the user.

Listing 11.9: Part of the setProperties method
1 public function setProperties(replayEvent :*,

2 object:IAutomationObject ,

3 properties:Object):String

4 {

5 var xml:XML = new XML(properties);

6 for (var i:Object in xml.Property)

7 {

8 var propertyXML:XML = xml.Property[i];

9 i f (propertyXML.@DefaultValue != ”fa l se ”)
10 {

11 var type:String = propertyXML.PropertyType [0]. @Type;

12 var tempClass:Class;

13 .

14 .

15 var check:Boolean = f a l se ;
16 var count:Number;

17 tempClass = getDefinitionByName(type) as Class;

18 i f (propertyXML.@Name == ”itemRenderer”)
19 {

20 for (count = 0; count < object.numAutomationChildren; count

++)

21 {

70 CHAPTER 11. IMPLEMENTATION OF FUNFX

22 i f (object.getAutomationChildAt(count).automationValue ==

23 propertyXML.@DefaultValue)

24 {

25 replayEvent[propertyXML.@Name] =

26 IListItemRenderer(object.getAutomationChildAt(count));

27 check = true;
28 break;

29 }

30 }

31 i f (!check)
32 return ”No such itemRenderer <”
33 + propertyXML.@DefaultValue.toString ()

34 + ”> on the object <”
35 + object.automationName + ”>”;
36 }

37 .

38 .

39 }

40 return null ;
41 }

Listing 11.10 shows the method, which creates an AutomationReplayEvent object with
the Event and the IAutomationObject supplied from the catchEvent method. The object
is replayed with the use of the replayAutomatableEvent method in the AutomationMan-
ager class.

Listing 11.10: Method that starts to replay an event
1 private function startPlayback(obj:IAutomationObject , ev:Event):void
2 {

3 var run:AutomationReplayEvent = new AutomationReplayEvent(

4 ”replay”, fa lse , fa lse , obj , ev);

5 automationManager.replayAutomatableEvent(run);

6 }

11.2 FunFX framework

The FunFX framework is implemented using Ruby (see Section 7.1). This is due to its
DOM capabilities and that it is a scripting language. The “no need to compile” makes it
great for creating test cases.

This section is divided into three parts, one for the creation of the classes, one for the
façade class (Funfx), which is the entrance for the use of the framework, and one for the
handling of synchronization between the Flex application and the framework.

11.2.1 Creating Flex classes

The central element of the FunFX framework is an XML file with the name Automation-
GenericEnv.xml. This file is delivered from Adobe, and it describes all the Flex display
objects and their events and properties. This file is parsed, and with the information
provided from this file, all the Flex display objects are created as Ruby classes.

11.2. FUNFX FRAMEWORK 71

Listing 11.11 shows the class XmlParser with its static method parse. This method takes
the name of the XML file as an argument. An example of a part of the XML file is shown
in Listing 11.12. This file is parsed, and for each ClassInfo tag a new class is created
with the method generate_new_class in the module named Flex shown in Listing 11.15.
For each of the Event tags, a method is added with the name of the event to the newly
created class (see Section 11.2.1). This new method calls the method called addEvent in
the ExternalInterface of the FunFX Flex adapter (see Section 11.1) to perform the event.

Listing 11.11: The XML parser
1 c lass XmlParser

2 private_class_method :new
3
4 def self.parse_file(document)

5 file = File.new(document)

6 doc = REXML:: Document.new file

7 doc.elements.each("TypeInformation/ClassInfo") do |element|

8 class_name = element.attributes["Name"]

9
10 new_class = Flex.generate_new_class(class_name , element.

attributes["Extends"])

11
12 i f (element.attributes["SupportsTabularData"] == "true")

13 add_tabular_method(new_class)

14 end
15
16 events = REXML:: Document.new element.to_s

17 events.elements.each("ClassInfo/Events/Event") do |event|

18 add_event(new_class , event)

19 end
20 end
21 end
22 end

Listing 11.12 displays a part of the XML file used in the framework. Each ClassInfo tag
defines one Flex object. The Event tags is created as methods on the Ruby class so the
developer might write: object.change_focus.

Listing 11.12: Example part of XML file
<TypeInformation >

<ClassInfo Name="Object" Extends="DisplayObject">

<Implementation Class="mx.core:: UIComponent"/>

<Events >

<Event Name="ChangeFocus" >

<Implementation Class="flash.events :: FocusEvent"

Type="keyFocusChange"/>

<Property Name="shiftKey" DefaultValue="false">

<PropertyType Type="Boolean" />

</Property >

<Property Name="keyCode" DefaultValue="TAB">

<PropertyType Type="String" />

</Property >

</Event >

</Events >

72 CHAPTER 11. IMPLEMENTATION OF FUNFX

<Properties >

<Property Name="visible" ForVerification="true">

<PropertyType Type="Boolean"/></Property >

</Properties >

</ClassInfo >

</TypeInformation

Add event

Listing 11.13 shows the method add_event, which creates a method by the name of an
event type in Flex to the Ruby class that simulates the specific Flex control. The method
that is created is in charge of calling the FunFX adapter (see Section 11.1) and invoking
the event. It also handles the synchronization issues when a Flex application uses external
data sources (see Section 11.2.3). Section 11.2.3 will explain in more detail how it handles
the synchronization issue.

The properties added by the developer, called options, are merged together with the
default values stated by the AutomationGenericEnv.xml.

Listing 11.13: Method for adding a new event method

1 def self.add_event(class_name ,event)

2
3 event_class = event [1]. attributes["Class"]

4 event_type = event [1]. attributes["Type"]

5 method = event.attributes["Name"]

6
7 class_name.add_method(shift_case(method)) do
8 |*argv|

9 options = argv.shift || {}

10
11 properties = REXML:: Document.new event.to_s

12
13 options.each_pair do |key , value|

14 properties.elements.each("Event/Property") do |property|

15 i f (property.attributes["Name"] == shift_case(key.to_s ,

true))
16 property.attributes["DefaultValue"] = value

17 end
18 end
19 end
20
21 i f (options[:wait] != ni l)
22 count = options[:wait]

23
24 new_event = flex_object.addevent(event_type , event_class ,

@id, properties.to_s)

25 while((new_event != ni l || new_event == "Not synchronized")

&& count > 0)

26 sleep (1)

27 count = count - 1

28 new_event = flex_object.addevent(event_type , event_class ,

@id, properties.to_s)

11.2. FUNFX FRAMEWORK 73

29 end
30 else
31 new_event = flex_object.addevent(event_type , event_class ,

@id, properties.to_s)

32 i f (new_event == "Not synchronized")

33 count = $wait_sync

34 while(new_event == "Not synchronized" && count > 0)

35 sleep (1)

36 count = count -1

37 new_event = flex_object.addevent(event_type , event_class

, @id, properties.to_s)

38 end
39 end
40 end
41
42 raise new_event unless new_event == ni l
43
44 is_sync

45
46 sleep(funfx.speed) # To make the interaction slow enough so

people can watch

47 end
48 end

Tabular data

Many of the Flex display objects display information in a tabular way, e.g., DataGrid and
List. Testers often want to be able to assert this information. When the parser hits such
a control, it calls the method add_tabular_method that generates methods for extracting
such information. This method is shown in Listing 11.14. Methods for working with these
components are also added: firstVisibleRow, lastVisibleRow, numRows, numColumns,
and columnNames. This makes it possible to assert the right values displayed in the
component. The tabular_data method takes either zero, or two arguments. They are
numbers, and state the starting row and the end row. The returned value is a comma
separated list of the information displayed in the selected row.

Listing 11.14: Method for adding a new method for tabular values
1 def self.add_tabular_method(class_name)

2 class_name.add_method("tabular_data") do
3 |*argv|

4 options = argv.shift || {}

5
6 i f (options[:wait] != ni l)
7 count = options[:wait]

8
9 data = flex_object.getTabularData(@id, options[:start],

options[:end])

10 while(data != ni l && count > 0)

11 sleep (1)

12 count = count - 1

13 data = flex_object.getTabularData(@id, options[:start],

options[:end])

74 CHAPTER 11. IMPLEMENTATION OF FUNFX

14 end
15 else
16 data = flex_object.getTabularData(@id, options[:start],

options[:end])

17 end
18
19 return data

20 end
21
22 class_name.add_method("first_visible_row") do
23 flex_object.firstVisibleRow(@id)
24 end
25 .

26 .

27 end

Flex module

Listing 11.15 shows a part of the Flex module, and the method self.generate_new_class.
This method creates a class with the name as the provided name, and extends the parent
provided.

Listing 11.15: The Flex module
1 module Flex

2 def self.generate_new_class(name , parent)

3 i f (parent != ni l)
4 return const_set(name , Class.new(Flex.const_get(parent)))

5 else
6 return const_set(name , Class.new(Base))

7 end
8 end
9 end

Within the Flex module, there is created a class called Base that is the base class of all the
dynamically created Flex classes. Listing 11.16 shows what this class looks like. Before a
new Ruby object is created, the framework must check with the FunFX Flex adapter if
it exists. This is due to the test-driven approach (see Section 3.1.2), where the developer
needs to get information if the object does not exist. This is done with the help of the
check_component method. If the object exists, a new Ruby object is created and the
value returned becomes the object’s id. This id provides the adapter with information to
easily find the object.

With the method_missing (see Section 7.1.1), the class has the ability to return an ar-
bitrary other instance of a class, or call the checkProperty method in the FunFX Flex
adapter with an arbitrary property.

The is_sync method inquires the adapter if the Flex application is ready. The adapter
will let the framework know if the application is working on some event or not, more on
synchronization in Section 11.2.3.

11.2. FUNFX FRAMEWORK 75

Listing 11.16: The Base class which all the framework created Flex objects extends
1 c lass Base

2
3 def initialize(name , id)

4 raise ArgumentError i f name == ni l
5 raise ArgumentError i f id == ni l
6 @name = name

7 @id = id

8 end
9

10 def method_missing(method_name , name=ni l)
11 is_sync

12 i f (name != ni l)
13 value = check_component(name)

14 i f (value != f a l se)
15 Flex.const_get(shift_case(method_name.to_s)).new(name , value

)

16 else
17 ni l
18 end
19 else
20 property = flex_object.checkProperty(@id.dup , shift_case(

method_name.to_s ,true))
21 i f (property != ni l)
22 property

23 else raise "No such property or method <#{ method_name}> of

class: #{self.class}"

24 end
25 end
26 end
27
28 #Adds a new method dynamically

29 def self.add_method(name , &block)

30 raise ArgumentError i f name == ni l
31 define_method(name , &block)

32 end
33 end

To make the tests more reliable, it is possible to use both absolute and relative paths as
described in Section 11.1.3. Listing 11.17 shows how to write a test with absolute path,
and Listing 11.18 shows how to use relative path. There are no difference in how to write
the tests, other than that tests are shorter. A developer must be careful using extreme
versions of both versions. The negative factor with the absolute path version, is that if
the GUI is refactored without changing the functionality, the test will most likely break.
When using the relative path, the developer must consider if it is possible to hit another
object with the same name.

Listing 11.17: Using absolute path
1 @ie.application("app").panel("panel").button("bButton").click

Listing 11.18: Using relative path
1 @ie.button("bButton").click

76 CHAPTER 11. IMPLEMENTATION OF FUNFX

11.2.2 FunFX class

The framework contains a class named Funfx, which is the entrance to the framework.
This class acts as a façade class in front of the user (see Section 10.1.3). This is the
entry point of the Flex application and it contains the Flex object6, which the tests
are performed upon. This class can be regarded as a root object in the display object
hierarchy, and it extends the Base class in the Flex module. Figure 11.2 shows how the
Funfx class is regarded as the root of the display hierarchy.

Funfx

ApplicationAlertMenu

Panel

Box

ButtonTextArea

DividedBox

DataGrid TextArea

Figure 11.2: Example hierarchy of an Flex application and the relation to the Funfx class

It is also created as a factory class for the implementation for the desired browser. Cur-
rently, support is only implemented for Internet Explorer.

The FunFX class is implementing the singleton pattern, which makes it impossible to
create more than one instance (see Section 10.1.4), as shown in Listing 11.19.

Listing 11.19: The factory class implements the singleton pattern
1 require ’singleton ’

2 c lass Funfx

3 include Singleton

4
5 # More code

Listing 11.20 shows the Funfx class. It has the possibility to make the test visual and
to change the speed of the visual impression. Parsing of the XML file happens in the
initialize method. This way, the parsing time, a few seconds, only happens the first time.
It implements a helper method that provides the ability to parse additional XML files.

6The Flash movie embedded in the HTML page

11.2. FUNFX FRAMEWORK 77

The start method creates an instance of the wanted browser, the default (and currently
the only implemented) is Internet Explorer. The goto method, takes the address and the
name of the embedded flash object as arguments.

Listing 11.20: The factory class
1 c lass Funfx < Base

2 include Singleton

3
4 attr_accessor :speed

5
6 def initialize

7 XmlParser.parse

8 @speed = 0.8

9 end
10
11 def pars_file(document)

12 XmlParser.parse_file(document)

13 end
14
15 def start(browser_type = "InternetExplorer")

16 @browser = Browsers.const_get(browser_type).new
17 end
18
19 def goto(address , name)

20 @browser.goto(address , name)

21 end
22
23 def visible(visible)

24 @browser.visible(visible)
25 end
26
27 def unload

28 @browser.unload
29 end
30
31 def get_flex_object

32 @browser.flex_object
33 end
34 end

The module Browsers is thought of as the container of the different browser implemen-
tations7. Listing 11.21 shows this module and a concentration of the methods8, with the
class implementing Internet Explorer. When adding support for another browser, the class
has to implement the same methods. Due to the Duck Typing capabilities of Ruby, other
browser classes can easily be implemented as long as they provide the same methods.

Because of problems during creation of Internet Explorer windows, a help function for
reaching the flex object embedded into the HTML page was created. It will try to reach
the element for a defined amount of time. If the time runs out an error is raised.

7Currently the only supported browser is Internet Explorer.
8Due to space limitations the methods unload and navigate were left out

78 CHAPTER 11. IMPLEMENTATION OF FUNFX

Listing 11.21: The browser module

1 require ’win32ole ’

2 module Browsers

3 c lass InternetExplorer

4
5 def initialize

6 @ie = WIN32OLE.new(’InternetExplorer.Application ’)

7 @ie.visible = true
8 end
9

10 def goto(address , name)

11 while(busy)
12 sleep($sleep_busy)

13 end
14 navigate(address)

15 set_flex_object(name)

16
17 #-- Must sleep so IE is ready

18 sleep($sleep_wait)

19 end
20
21 def set_flex_object(name)

22 while(busy)
23 sleep($sleep_busy)

24 end
25
26 @flex = help_set_flex_object(name)

27 raise "No flash element by name #{name}" i f @flex.item == ni l
28 end
29
30 def help_set_flex_object(name , obj=ni l)
31 count = $count_set_flex

32 obj = help_get_element(name)

33 while(obj.item == ni l && count > 0)

34 sleep (1)

35 count = count - 1

36 obj = help_get_element(name)

37 end
38 return obj

39 end
40
41 # Helper method to extract the Flash/Flex object

42 def help_get_element(name)

43 begin
44 return @ie.Document.getElementsByName(name)
45 rescue
46 return n i l
47 end
48 end
49
50 def flex_object

51 @flex.item (0)
52 end
53

11.2. FUNFX FRAMEWORK 79

54 def busy

55 begin
56 @ie.Busy
57 rescue
58 return true
59 end
60 end
61 end
62 end

11.2.3 Handling synchronization

The richness of a Flex application often requires the framework to wait until an operation
finishes. To solve this synchronization problem, the method is_sync was created. This
method inquires the FunFX Flex adapter to check whether the application is ready or still
working on some operation. If the application is busy, it initiates a sleep command. The
amount of time is stated in a configuration file called conf.rb. Listing 11.22 shows this
method.

Listing 11.22: The is_sync method

1 def is_sync

2 while(! flex_object.isSynchronized(ni l))
3 sleep($wait_for_synch)

4 end
5 end

Several Flex controls take input from a data provider such as an array or a XML object
[18]. These XML objects are often retrieved from a Web service or another external source.
This may cause a certain latency before the controls are fully initialized with data. The
Flex framework and the automation package do not support any synchronization actions
for such a scenario, according to Matt Horn at Adobe [5]. It only makes the developer
aware if the control is initialized and visible, not if the information from the data provider
has arrived. After considering the present framework together with BEKK Consulting AS
(see Section 1.3), one important requirement of the framework is to support an ability
to wait for the control’s data to appear. Because Flex does not provide any method
or information, this had to be done with an asynchronous loop, to check whether the
information is reachable.

The framework is supposed to be used in TDD (see Section 3.1.2), the framework thus
cannot be implemented with this ability as default. If the framework would wait for each
control that has not been created, the tests would take too much time. Therefore a wait
tag was added. The tag states that the framework should wait for the control to be fully
initialized, but not more than the seconds stated in the tag.

Listing 11.23 shows a simple select command on a DataGrid, with a :wait argument for
10 seconds.

Listing 11.23: Enabling synchronization handling

1 @ie.data_grid("dgGrid").select(:item_ renderer => "item", :wait =>

10)

80 CHAPTER 11. IMPLEMENTATION OF FUNFX

Listing 11.24 displays the code part that makes the framework wait until the wanted event
is successful or that the wait time has run out. It first examines if the tag :wait is not
nil. Then the code will run the event until it is successful or until the time stated by
the developer in the wait tag is run out. If the time is run up and the event failed, an
exception is raised upon which the developer must act.

Listing 11.24: Handling synchronization
1 i f (options[:wait] != ni l)
2 count = options[:wait]

3
4 new_event = flex_object.addevent(event_type , event_class , @id,

properties.to_s)

5 while((new_event != ni l || new_event == "Not synchronized")&&

count > 0)

6 sleep (1)

7 count = count - 1

8 new_event = flex_object.addevent(event_type , event_class , @id,
properties.to_s)

9 end
10 else
11 new_event = flex_object.addevent(event_type , event_class , @id,

properties.to_s)

12 i f (new_event == "Not synchronized")

13 count = $wait_sync

14 while(new_event == "Not synchronized" && count > 0)

15 sleep (1)

16 count = count -1

17 new_event = flex_object.addevent(event_type , event_class , @id,
properties.to_s)

18 end
19 end
20 end
21
22 raise new_event unless new_event == ni l

11.3 Creating tests

The goal of this thesis and framework is to be able to write tests. To do this, and to reuse
as much functionality as possible, FunFXuses the Test::Unit (see Section 7.1.5) framework
to create and run tests.

Listing 11.25 shows a simple test-case with the setup and teardown method together
with one test. Since the Flex objects are parents to each other, the developer might go
through several objects before an action can be performed on the desired object, as seen
with the last action on line 32. But if the id of all objects has been used, it is possible to
use relative path. The developer must ensure that the test reaches the desired object and
not another object with the same name.

11.3. CREATING TESTS 81

Listing 11.25: A test-case using Test::Unit
1 require ’test/unit ’

2 require ’funfx ’

3
4 c lass ExampleTest < Test::Unit:: TestCase

5
6 def setup

7 @ie = Funfx.instance

8 @ie.start
9 @ie.goto("http :// localhost/Automation.html", "Automation")

10
11 @test text = "This is a test"

12 end
13
14 def teardown

15 @ie.unload
16 end
17
18 def test_divers

19 @ie.button("bPress").click
20 assert_equal("Press", @ie.label("lText").text)
21
22 @ie.combo_box("cbCombo").select(:item_ renderer => "Test3")

23 assert_equal("Test3", @ie.combo_box("cbCombo").text)
24
25 @ie.check_box("chBox").click
26 assert_equal("true", @ie.check_box("chBox").selected)
27
28 @ie.text_area("tText").input(:text => @test text)
29 assert_equal(@test text , @ie.text_area("tText").text)
30
31 @ie.panel("pPanel").button("bOk").click
32 assert_equal(@test text , @ie.label("lTextBoxText").text)
33 end
34 end

The tests can be run with either the regular console test runner or the graphical test
runner, which is provided in Eclipse among other IDEs. Figure 11.3 shows a simple test
when passed and failed. When the test passes the test runner does not give the developer
any more information other than a green bar, but when it fails it both turns red and
provides information about what went wrong.

82 CHAPTER 11. IMPLEMENTATION OF FUNFX

Figure 11.3: Test run with Test::Unit::TestRunner

PART V

Evaluation of FunFX

83

CHAPTER 12

Testing of FunFX

This chapter will elaborate on the testing done during and after development of the FunFX
framework. It will try to show how the testing was done, and what parts were covered by
the testing.

12.1 Development

TDD (see Section 3.1.2) was used during development. This means that the unit tests are
written before writing any code. This ensures that all code is covered by tests.

Listing 12.1 shows an abstract of the test-case for the parsing of the XML file and the
dynamic generation of classes.

Listing 12.1: An abstract of the Unit tests for creating Flex classes

1 c lass BaseTest < Test::Unit:: TestCase

2 include FlexMock :: TestCase

3
4 def setup

5 @parent name = "FlexObject"

6 @child name = "FlexButton"

7 end
8
9 def test_generate_class

10 assert_raise(NameError){

11 Flex:: TestClass

12 }

13 Flex.generate_new_class("TestClass")

14 assert_not_nil(Flex:: TestClass)

15
16 assert_raise(NameError){

17 Flex:: TestClassChild

18 }

85

86 CHAPTER 12. TESTING OF FUNFX

19 Flex.generate_new_class("TestClassChild", "TestClass")

20 assert_not_nil(Flex:: TestClassChild)

21 assert_equal(Flex:: TestClassChild.superclass , Flex:: TestClass)

22 end
23
24 def test_a_parse

25 assert_raise(NameError){

26 Flex:: FlexDisplayObject

27 }

28 XmlParser.parse("AutomationGenericEnv.xml")

29 assert_not_nil(Flex:: FlexDisplayObject)

30 end
31
32 .

33 .

34
35 end

12.2 Test of functional requirements

When the implementation was finished, the functional requirements of the framework were
tested. A simple Flex project was created, with some functionality implemented and some
functionality missing. The following list describes how the functional requirements listed
in Table 12.1 were tested.

F1 - The framework must be able to interact with Internet Explorer
This requirement was tested and reached with several of the following tests.

F2 - The framework must be able to define and run tests
A test was created with the existing Test::Unit framework and then ran. The test ran
successful.

F3 - The framework must provide results from the tests
The framework utilizes existing test runners, and does provide results if the test fails.
When errors happen on the Flex side, the adapter provides expressive messages that will
enable the developer to track down the error.

F4 - The framework must be able to perform actions on a Flex application
A test that stated a button click where created and run, and the result was that the
button was clicked.

F5 - The framework must provide the possibility of test suites
This requirement is covered by the Test::Unit, which is the test runner used during devel-
opment. It is also possible to use other Ruby unit frameworks.

F6 - The framework must be able to reach Flex objects by name, id, or label
The button click test was changed to use the button’s name, id, and label in turn. In all
cases the button was clicked.

F7 - The framework must be able to make assertions on Flex objects
The script was changed to make an assertion if the button was visible. Then an assertion
that a label’s text was turned into some text after clicking the button was added. First the
test failed, since this feature was not yet implemented. A label was added and a method

12.2. TEST OF FUNCTIONAL REQUIREMENTS 87

that made the label show a text when the button was clicked. When running the test
again it was successful.

F8 - The framework must be able to wait for slow data providers
For this, a Web service was created with the help of Ruby on Rails, and made it wait
for 10 seconds before it sent any information to the call. The test for selecting a row in
a datagrid was written, and after the test failed, a datagrid and a data provider talking
to the Web service was added. Without a wait command (see Section 11.2.3) in the test
phrase the test failed, but with a wait command the test waited as expected and passed.

F9 - The framework must be able to both run the steps visually and not
visually
When initializing the framework, one option is to set the visibility to false. The visibility
was set to false, and the button test was run again. The browser was not visible and the
test passed.

F10 - The framework must be able to have different speeds of interaction
A developer can at any time set the pace of the framework, this can be done at any time,
if some tests should go slower than others. With a faster speed, the button click test saved
2 seconds.

F11 - The framework must be able to set paths in the tests for better read-
ability
Due to the hierarchy of objects in Flex, the test phrases can be long and difficult to follow.
Since every thing in Ruby and also in this framework are objects, you can easily set a
variable to be an instance of an object and use this over and over again.

F12 - The framework must be able to take advantage of regular unit test
runners
The framework is built as a standalone framework, and can be used together with any
Ruby test runner.

Table 12.1: Functional requirements

ID Description Result
F1 The framework must be able to interact with Internet Explorer Pass
F2 The framework must be able to define and run tests Pass
F3 The framework must provide results from the tests Pass
F4 The framework must be able to perform actions on a Flex applica-

tion
Pass

F5 The framework must provide the possibility of test suites Pass
F6 The framework must be able to reach Flex objects by name, id, or

label
Pass

F7 The framework must be able to make assertions on Flex objects Pass
F8 The framework must be able to wait for slow data providers Pass
F9 The framework must be able to both run the steps visually and not

visually
Pass

F10 The framework must be able to have different speeds of interaction Pass
F11 The framework must be able to set paths in the tests for better

readability
Pass

F12 The framework must be able to take advantage of regular unit test
runners

Pass

88 CHAPTER 12. TESTING OF FUNFX

12.2.1 Summary

All functional requirements have been tested and reached through both unit testing and
functional testing.

12.3 Test of non-functional requirements

This section will describe how well the implementation concurs with the non-functional
requirements (see Section 9.4).

Usability

Q1.1 - Give user informative response after test is finished - Implemented
Whenever a test fails, the user gets useful information on what went wrong. This
feature is implemented with the reuse of Test::Unit together with informative
messages sent from the FunFX Flex Adapter.

Testability

Q2.1 - Test a new feature - Implemented All the existing code is tested, so a devel-
oper only needs to test the extra functionality he/she adds.

Modifiability

Q3.1 - Add a new component - Implemented A new custom component will only
be needed to be added to the AutomationGenericEnv.xml file.

Q3.2 - Add support for other browsers - Not implemented This has not been
implemented, but the framework has been designed so that such a change is easy to
do.

Availability

Q4.1 - Unable to reach the Internet Explorer browser -Implemented The In-
ternetExplorer class implements a wait function if the browser is busy or not yet
initialized.

12.3.1 Summary

Even though not all of the non-functional requirements have been implemented, the frame-
work has been implemented with the non-functional requirements in mind. Implementa-
tion of the non-functional requirements should be done without problems.

12.4 Usage testing

As an extra test of the implementation of FunFX and to point out the usability of this
framework, a usage test was arranged. This section will describe how this usage test was
performed and what the results were.

12.4. USAGE TESTING 89

The test group was composed of two potential users of the framework, Erlend Oftedal and
Christian Schwarz. The session started with a demonstration of how to use the framework.
After a bit of discussion, the session went on to look at how things were implemented.

After a quick view on the hierarchy of objects in the tests, Erlend pointed out that this
might be a show stopper if a button was moved into a box1. Options for using a relative
path or a find object method were requested. This request was met, and the current
implementation supports the use of relative path. They liked the way the framework used
an existing test runner.

One thing they mentioned as a positive factor was FunFX’s similarity to Watir (see Sec-
tion 6.1), but they felt it was a bit confusing with the capital letters of the event methods.
They would prefer to follow Ruby conventions and write @ie.button("button").click
rather than @ie.Button("button").Click. This requirement was met and the final im-
plementation of FunFX uses the Ruby conventions.

They felt its usability was high due to the similarity to Watir. There was a familiarity
when writing the tests.

They saw potential benefits with such a tool, and pointed out that the ability to test the
functionality of Flex applications is needed.

Concerning further work, they suggested writing an exporter to the CubicTest framework,
which is a tool for making testing of Web applications easier for non-technical personnel
[31].

12.4.1 Summary

The usage test discovered that the framework was on the right track, and it was not too
difficult to use. A lot of improvements were suggested, but they were more of nice to
have than must have. In a summary, the participants were impressed by the framework,
and were excited to see if it was possible to build a community around it. Some of the
improvements were implemented to make it a better product.

1Flex builds the GUI with different display objects, containing each other (see Section5.1)

90 CHAPTER 12. TESTING OF FUNFX

CHAPTER 13

Implementation issues

This chapter will outline some of the problems that were encountered during this master
project. It will try to describe how and why the problems did arise, and how they were
overcome.

13.1 Access a flash movie

A Flash file is a compiled file, which cannot be edited. The Flash player is in a proprietary
format, and this makes it difficult to interact with the display components compiled into
the movie1. There are not much information concerning how to access a display component
in a Flex application to perform actions directly on the component. The only way into
a Flash movie appeared to be with the ExternalInterface API (see Section 5.2.2). With
this API, it is possible to call ActionScript methods within a Flash movie.

The solution was to build a generic structure of reachable methods with the help from
the ExternalInterface within the adapter. These methods make it possible for the Ruby
tests written with the framework, to access and perform actions on the graphical objects
directly.

13.2 Synchronization

Whenever applications shall cooperate with other types of applications, there is always a
synchronization problem. This project was no exception. A special consideration had to
be made because the framework will be supporting TDD (see Section 3.1.2). This, because
the tests will be run without the real implementation available. It was not desirable that
tests waited forever for a service that were not yet implemented, but on the other side it
should wait for a slow implemented service. A timeout function was provided to be able
to support both worlds.

1A Flash file is often called a Flash movie

91

92 CHAPTER 13. IMPLEMENTATION ISSUES

The solution was to make the developer define a wait command that specifies the amount
of seconds the test should wait for a single event. This option keeps the control of the
testing in the hands of the developer.

13.3 Internet Explorer error

Problems with Internet Explorer were experienced during development. Whenever a test
suite contained more than 19 test cases, Internet Explorer raised an exception. This
problem is unacceptable considering that development projects are getting larger and
larger. An investigation of the problem was initiated, and it was soon linked to memory
issues. It seemed that the Ruby test suite created Internet Explorer windows too fast, and
that the memory consumption was huge. Figure 13.1 shows the memory consumption of
Internet Explorer. The window on the left was captured a few seconds before the error
was raised. After 18 test cases, the memory consumption was over 300MB. The problem
was that a new browser was created before the old one was destroyed and removed from
memory. This made the memory consumption increase for each window.

Figure 13.1: Internet Explorer memory usage. The left hand side shows the memory
consumption during no sleep.

The solution was to slow down the creation of browsers. A sleep command was added to
the initialize method that creates the Internet Explorer window. The amount of seconds
it waits is set with a global variable in the conf.rb file. The default value is set to two
seconds. The window to the right in Figure 13.1 shows the memory consumption after 22
test cases with the solution implemented. The negative aspect with this solution is that
the entire test suite will be more time consuming.

Listing 13.1 shows how this solution was implemented in the initialize method of the
class InternetExplorer. It uses the global variable named $sleep_between_tests in
the conf.rb configuration file.

13.3. INTERNET EXPLORER ERROR 93

Listing 13.1: Slow down Internet Explorers memory consumption
1 $sleep_between_tests = 2 # From the conf.rb file

2
3 def initialize(visible)

4 sleep($sleep_between_tests)

5 @ie = WIN32OLE.new(’InternetExplorer.Application ’)

6 @ie.visible = visible

7 end

13.3.1 Editing a single AutomationGenericEnv.xml

This project wanted to build FunFX in the way that only a library file needed to be added
to the Flex project. With Flash’s security sandox it is not possible to access the local file
system. This creates a problem when congiguring the AutomationGenericEnv.xml file.
With the current version of FunFX, it is required that the AutomationGenericEnv.xml
file is added to all projects utilizing the framework. It should be possible to only use one
file that is located a single place where multiple projects can reach it. Because of time
limitations, this project did not solve this problem.

94 CHAPTER 13. IMPLEMENTATION ISSUES

CHAPTER 14

Evaluation

This chapter will evaluate the results and answer the research questions.

14.1 Comparison to state of the art

The goal of this project was to create an open source framework that was able to function-
ally test Flex applications. In the prestudy and as a part of the engineering method (see
Section 2.2), the most popular testing tools available for Web applications were inspected.
Table 14.1 lists all tools including FunFX, and shows that the goal was reached. Watir and
QTP were used as the models in the engineering method, and the framework was created
after those tools. Watir and FunFX are especially similar. In a project using both HTML
and Flex, it would be easy to use Watir and FunFX side by side. Both tools use Ruby and
WIN32OLE to drive Internet Explorer, and the test commands are very much alike, there
are only small differences in the practice of adding arguments to the commands.

Table 14.1: Comparison of FunFX with the state of the art tools

Tool HTML Flex TDD Programmatic Free OSS
support support support browser

interaction
Watir Yes No Yes Yes Yes Yes
Selenium Yes No Yes Yes Yes Yes
Mercury QTP Yes Yes No Yes No No
FitNesse No No Yes * Yes Yes
TestComplete Yes Yes No No No No
FunFX No Yes Yes Yes Yes Yes

95

96 CHAPTER 14. EVALUATION

14.2 Answer to research questions

This section will answer the research questions presented in Section 2.1.

14.2.1 Research Question - RQ1

What are the possible benefits of using the framework in development?

There are several benefits of using FunFX in development. If the developers use this
tool consistently during development, and the tests are run with a continuous integration
system, the project will constantly be tested for functional errors. This will be a powerful
regression test suite.

Another option that functional testing tools are often used for, is to script a path into a
specific part of the application. This way, the developer does not need to click his way
through the application before he gets to the part he wants to take a closer look at. This
is a time saving ability that can be invaluable during development.

An automated test suite of 19 tests, takes about 3 minutes, depending on the content. If
these tests were done manually they would have taken much more time.

14.2.2 Research Question - RQ2

What kind of entry level does the framework impose on the user?

The objective of this project was to build a framework for functional testing of Flex
applications. Functional testing is often thought of as done by non-programmers and cus-
tomers, but it is equally important that the developers create these functional tests during
development. Because of this, and the popularity of test-driven development (TDD) (see
Section 3.1.2), it was decided to build a tool for namely the developers.

The tests are written as regular Unit tests (see Section 4.3.2), with any existing Unit
testing framework for Ruby. Due to this, the user should have a simple knowledge of
Ruby. The fact that Flex lays out its display components in a hierarchy is also one thing
the user has to have in mind when creating tests.

During the usage test, Erlend and Christian expressed that the framework seemed easy to
use. They also noticed the similarity to Watir1. FunFX will benefit from the popularity
of Watir as a functional testing tool of HTML Web applications.

14.2.3 Research Question - RQ3

How well does the framework support regression testing?

Regression testing (see Section 4.3.4) means that earlier created code is checked whether
it still works after changes in other parts of the software. With TDD, unit tests works
as a regression test suite for all low level code. The FunFX framework is meant to be
used with TDD, and thus the functional tests will act as a regression test suite for the
functionality of the application.

1Watir has been used as an existing solution in the engineering method

14.2. ANSWER TO RESEARCH QUESTIONS 97

14.2.4 Research Question - RQ4

How does the framework inform the user where errors happen? And how well
does this information help the user to correct the errors?

During testing in general, it is important to find out where an error happened. This
information should be easy to see and understand. The adapter provides the framework
with intuitive messages about what went wrong in the Flex application. With these
messages, the framework raises exceptions that are caught by the test runner. Listing
14.2 shows a result after the test shown in Listing 14.1 failed. In this example, the test
failed when trying to select an element that did not exist in the datagrid. The error
message points out on what line the error happened. In this example, it was line 2 in the
file sync_test (displayed in Listing 14.1) .

Listing 14.1: Test method selecting an element in a DataGrid
1 def test_control

2 @path.data_grid("dg").select(:item_ renderer => "nr3")

3 end

Listing 14.2: Error message posted by Test::Unit::TestRunner
Finished in 34.78 seconds.

1) Error:

test_control(SyncTest):

RuntimeError: No such itemRenderer <blognr3 > on the object <dgBlog >

C:/Ruby/lib/ruby/gems/FunFX -0.0.1/ lib/xml_parser.rb:143:in ‘Select ’

D:/ Eclipseworkspace/flex -object -test/sync_test.rb:2:in ‘test_control

’

1 tests , 1 assertions , 0 failures , 1 errors

The usage test pointed out that there were informative error messages, and it was easy to
find the error.

14.2.5 Research Question - RQ5

What are the positive effects with open source software? Does the fact that
FunFX is supposed to be an open source framework, put any constraints on
the implementation?

An open source tool provides many advantages over a commercial tool. Being free (as
in free beer), the tool is available to everybody in the project at any time, imposing
no restrictions with respect to acquirement and usage. A successful open source tool
also comes with a great community, providing free access to experience and knowledge
(community sites, mailing lists, forums, blogs). Additionally, due to the nature of open
source, a lot of the open source tools come with extensions, custom additions and plug-
ins. The best example are the various flavours, available tool support and integration
of test tools in the xUnit family, the current de facto industry standard for unit testing.
Similarly, open source test tools like Selenium (see Section 6.2) and Watir (see Section

98 CHAPTER 14. EVALUATION

6.1) enjoy the highest mind- and market-share in Web application testing. Finally, the
ultimate advantage is free access to the source code, being able to change and adjust the
test tool to suit particular requirements.

Adobe has announced that they will release Flex under a Mozilla license (see Section 5),
and thus it might be easier to release open source Flex projects. But the automation
package will not be released and the users of this framework will still need to buy an FDS
license from Adobe.

14.2.6 Research Question - RQ6

How well did the research methods (see Section 2.2) and the development
methods (see Section 3.1) help during this project?

The engineering method (see Section 2.2) was used during this project. Basili describes it
as: in the engineering method the developers observe existing solutions, propose a new and
better solution, improve the solution, and repeat until no further improvement is needed
[10]. After searching for functional testing tools for Web applications, Mercury Quick Test
Professional (QTP) (see Section 6.3) and Watir (see Section 6.1) were chosen as models,
and this research is based on them. Because QTP is not open source, it was not possible
to see how the tool was built, but valuable information was extracted about how it wrote
tests. Watir was chosen because it is an open source testing tool written in Ruby. This
gave valuable guidance on how to build the framework. The final framework became a
mix of QTP and Watir.

During development, test-driven development (TDD) (see Section 3.1.2) together with a
scaled down version of the Unified Process (UP) (see Section 3.1.1) were used. The TDD
worked really well during development, it helped keep code consistent while refactoring.
In spite of the intent to use a scaled down version of UP, the development method tended
to be more agile. This was due to the lack of experience with both the Flex automation
package (see Section 5.4.1) and the creation of frameworks. To predict how things worked
was difficult, and the use cases were to some extent valuable, but in reality the code was
created on the go.

Even though we were not able to follow the intended development method, we believe
that a more agile approach helped us during development. And the engineering method
made an important role in the whole process of this project.

CHAPTER 15

Summary

This chapter summarizes the results of this project, and proposes further work with
FunFX.

15.1 Conclusion

The goal of this master thesis was to develop an open source framework for functional
testing of Flex applications. When designing the framework, special attention was paid to
the ability to support test-driven development (TDD) (see Section 3.1.2). The objective
was to build a tool that could be used by the developer during implementation. Since
Adobe announced during the project period that they were going to release Flex under a
Mozilla license, this motivated the development of an open source project even more.

The problem at hand when commencing this project was how to reach the Flex applica-
tion within the Flash object that is embedded in a HTML page. The WIN32OLE library
of Ruby was used to access the Flash object containing the Flex application, and the
ExternalInterface API of Flash to act upon the Flex application’s display objects. An
adapter was made that handles these ExternalInterface methods, and work together with
the Automation Package to replay events on the Flex display objects. The adapter is
easily added as a library file to a Flex project enabling the Ruby implemented framework
to perform and assert actions. With the use of Ruby, the adapter, and Win32OLE, the
framework has the ability to interact with the display objects rather than coordinates.
This makes the tests more enduring, and will not break if a display object is moved to
another position in the application.

The usage test provided more intuitive and durable solutions, and at the same time some
valuable information about the usability. The use of Watir (see Section 6.1) as a model,
was a positive factor since it seemed familiar.

We feel Flex have been a great technology to work with, and will most likely continue
using Flex in the future. We believe that the use of Rich Internet Applications (RIA) (see
Section 4.1) like Flex will be even more used in the near future of software development.

99

100 CHAPTER 15. SUMMARY

If more crucial development projects are done with Flex, the need for a free solution for
functional testing will be inevitable. And if the work continues on FunFX, we believe that
it has the potential to become an important part of a Flex development cycle.

15.2 Further work

Although the FunFX framework works without any appearing problems, the framework
is still in an early phase. For it to be a mature version, there are still a lot of work to
be done. The current version might be thought of as an early beta, and will need more
thorough testing. The following explains in more detail what we believe are the most
important parts to consider for further work.

15.2.1 Editing a single AutomationGenericEnv.xml

Due to Flex is built upon Flash, and that Flash uses a security sandbox, it is not possible
to access the filesystem. There is one exception, and that is when uploading files. This
creates a problem when congiguring the AutomationGenericEnv.xml file. Because of time
limitations, this project did not solve this problem. With the current version of FunFX, it
is required that the AutomationGenericEnv.xml file is added to all projects utilizing the
framework. It should be possible to only use one file that is located a single place where
multiple projects can reach it. This is something that needs more work on the current
implementation.

15.2.2 Release it as open source project

For an open source project to survive, it is important to build a community around the
project. The community does not need to consist of many people, but they should be
dedicated. A release of an open source project might not only be a fast way to improve
software, but it is also by far the cheapest way. Letting people use it for free, will be a
fast way to figure out if the tool is worth to maintain.

FunFX is a project that should be made available to the public. After Adobe announced
that they will release Flex under a Mozilla license, the popularity of such applications
might grow. To begin with, the project should be released on a smaller site than Source-
Forge, maybe on OpenQA1 or BOSS2.

15.2.3 Recording tool

This project sets out to implement a functional testing tool that supports TDD (see Section
3.1.2). This makes FunFX a developer’s tool. In the recent years, many companies are
trying to push some of the work with writing tests toward the customer. This is because
it is the customer that needs to express what he/she expects, and to make sure that the
software does what it is supposed to do. The customers are rarely able to write tests,
and thus a recording tool might be a valuable addition to the framework. The adapter
implements a recording ability, and the only thing that is missing is a way to publish these

1http://www.openqa.org/
2BEKK Open Source Software, http://boss.bekk.no/

15.2. FURTHER WORK 101

recordings to a recording tool. The recording tool might be written in Flex and use FDS
to publish the recorded tests.

15.2.4 Make tests continue if one part fails

After considering the framework with several employees at BEKK Consulting AS, they
pointed out a weak point in every unit testing framework. This weak point is that the
test stops after the first error happens in the test method. In projects done by BEKK at
the moment, they often have to write their own try-catch sentences to avoid the test to
break. They want to be able to print a line when a test fails, and summarize all of these
errors when all tests are done.

This is more a problem of the test runner, and not of the FunFX framework. But it should
be possible to write a higher level test case class that implements such a functionality.

15.2.5 Exporter CubicTest

CubicTest is an open source Eclipse plug-in that tries to make testing Web applications
easier to design, understand and run for nontechnical as well as technical users. CubicTest
uses a graphical user interface to let users model tests instead of writing test scripts. The
tool focuses on enabling test-driven development of Web applications, but also supports
testing of existing Web applications. The goal is to make it possible to replace a detailed
requirement specification and manual test scripts with tests designed in CubicTest [31].
CubicTest supports testing of Web application with Watir (see Section 6.1), and exports
Watir test code from the graphical user interface. As a further work, it might be interesting
to build such an exporter for FunFX in CubicTest. This would make the already known
CubicTest better, and thus promote FunFX in a good way.

15.2.6 Client for editing configuration file

FunFX uses a configuration file called AutomationGenericEnv.xml to build the class hi-
erarchy of Flex display objects. If a new custom component is introduced this file is the
only thing that needs to be altered. To prevent wrong altering of the configuration file,
it might be handy to create a client that makes editing easy and safe3. This could be a
simple Flex application that requires some input about the component, and then updates
the configuration file accordingly.

3Nothing can go wrong other than an error message, or a test script that does not respond properly

102 CHAPTER 15. SUMMARY

PART VI

Appendix

103

APPENDIX A

Questionnaire

1. The degree of usability? (1 is not good, 5 is very good)

2. What do you think about the way to reach a specific object in the hierar-
chy? (@ie.apllication("app").panel("panel").button("button").click) Was it
difficult to understand how to reach objects?

3. What were the positive aspects with the framework?

4. What was missing? What kind of improvements are needed?

5. Do you think development of Flex application will benefit of such a tool (a
test-driven functional testing tool)?

6. Did you run into any problems? If yes, please describe the problems.

7. Is this an application you might use during development?

105

106 APPENDIX A. QUESTIONNAIRE

APPENDIX B

User guide

This chapter will act as a recipe on how to use the framework during development. It will
describe best practices, and try to show how a developer can utilize this tool.

B.1 What do you need?

First of all, you will need Flex Builder to build a Flex application. You will also need
Ruby to be able to run the tests. The other parts that are required for the framework to
operate are:

Automation package You must have the automation package installed, and include the
files: automation.swc, automation agent.swc, and automation agent rb.swc.

FunFX Flex adapter The FunFX adapter library file must also be included as a library.

AutomationGenEnvironment.xml The XML file describing the automation environ-
ment. This file must be added to the project.

FunFX framework To be able to write tests and interact with the FunFX adapter and
make the Flex application move, you need the framework implemented in Ruby.
How to install is described in more detail in Section B.2.

B.2 Install FunFX

The FunFX framework is distributed as a gem, and is installed by the command gem
install “name-of-gem”. To see if the framework has been installed properly, you can type
gem list –local. The list should hold a gem called FunFX.

107

108 APPENDIX B. USER GUIDE

B.3 Include FunFX library

The FunFX adapter is a Flex library file and must be compiled together with the Flex
application. To do this, the FunFXAdapter.swc file must be included as a library to the
Flex project. Listing B.1 shows how one can include a library using the flex-config.xml file
for this. This way makes every Flex project add this file to it’s library. The automation
files automation.swc and automation agent.swc must be included in the same way to
utilize the automation package (see Section 5.4.1).

The file automation agent rb.swc must be added to the folder named locale under the
Flex 2 SDK folder.

Listing B.1: How to include the library file
<include -libraries >

<library >/libs/automation_agent.swc </library >

<library >/libs/automation.swc </library >

<library >/libs/FunFXAdapter.swc </library >

</include -libraries >

If it should only apply for a single Flex project, the compiler option -include-libraries
“path-to-file” can be added in project properties in Eclipse or Flex Builder 2. Figure B.1
shows how to add a file with the -include-libraries tag.

Figure B.1: Include library file

B.4 Writing testable Flex applications

When developing Flex applications that will be tested with FunFX, there are a few aspects
to consider. Tests should be understandable and display objects in the Flex application

B.5. WRITING TESTS 109

must provide descriptive names and ids. Using the id on every object, makes it easier to
use relative path in the tests, which is a faster way to develop tests.

B.5 Writing tests

Tests are written in Ruby. The only requirement to be able to programmatically drive
a Flex application is the FunFX Framework (see Section B.2). But to be able to write
tests and assert the results of some functionality, a unit framework is needed. Any unit
framework for Ruby works, but this example will use Test::Unit.

B.5.1 Initializing and tear down of the framework

The FunFX framework is built as a singleton, and must be accessed by Funfx.instance.
The start method creates a new instance of Internet Explorer. As an argument to the
start method, it is possible to set if the browser should be visible. The default value is
false. The method goto navigates the browser to the provided address and will make
the framework ready for accessing the Flash/Flex object by the name provided embedded
on the HTML page. Listing B.2 shows how the framework is initialized in the setup
method of the test case. When using Test::Unit, this method will be run before all test
methods specified in the class. If the methods use different locations or different names
of the Flash/Flex object, the goto method might be moved down into the test method.

Listing B.2: Initializing the framework

1 require ’test/unit ’

2 require ’funfx ’

3
4 c lass ControlTest << Test::Unit:: TestCase

5
6 def setup

7 @ie = Funfx.instance

8 @ie.start
9 @ie.goto("localhost/flex/control.html", "name -of-object")

10 end
11
12 end

To avoid Internet Explorer to continue to be open, a method called unload is used to
destroy the instance. This method is used in the teardown method of the test case. This
ensures that the browser is shutdown after the test method is done. Listing B.3 shows
this method added to the test case.

Listing B.3: Destroy the Internet Explorer instance

1 require ’test/unit ’

2 require ’funfx ’

3
4 c lass ControlTest << Test::Unit:: TestCase

5
6 def setup

7 @ie = Funfx.instance

110 APPENDIX B. USER GUIDE

8 @ie.start
9 @ie.goto("localhost/flex/control.html", "name -of-object")

10 end
11
12 def teardown

13 @ie.unload
14 end
15 end

B.5.2 Test methods

When using Test::Unit, all test methods must begin with the word test because it uses
reflection to detect all available test methods. Listing B.4 shows an empty test method
called test_control. Within this method, actions and assertions are added. An action is
any command that performs an action on the Flex application, while an assertion checks
whether a value is correct or not.

Listing B.4: A test method defined

1 require ’test/unit ’

2 require ’funfx ’

3
4 c lass ControlTest << Test::Unit:: TestCase

5
6 def setup

7 @ie = Funfx.instance

8 @ie.start
9 @ie.goto("localhost/flex/control.html", "name -of-object")

10 end
11
12 def teardown

13 @ie.unload
14 end
15
16 def test_control

17
18 end
19
20 end

Figure B.2 shows an example hierarchy of a simple Flex application. The root node is
the instance of Funfx. When accessing the display objects, the instance of Funfx is the
starting point. The framework uses a breadth-first search, which enables a mix of absolute
and relative paths. Listing B.5 shows two ways of accessing the button named “name”.
With the first alternative, it is important to ensure that no other Button by the same
name exists. With the second option, the test might break if the GUI is modified without
changing the functionality.

Listing B.5: Two ways of accessing an object

1 @ie.button("name")
2 @ie.application("aname").box("bname").panel("pname").button("name")

B.5. WRITING TESTS 111

Funfx

ApplicationAlertMenu

Panel

Box

ButtonTextArea

DividedBox

DataGrid TextArea

Figure B.2: Example hierarchy of an Flex application

To perform actions on the display objects, like the button in the above example, the objects
provide methods corresponding to the events displayed in Section B.6. The events that
drive the Flex application might require some arguments, these are also listed together
with the events in Section B.6. Listing B.6 shows how to use the methods corresponding
to the Flex events. The click event has no arguments. When inputing text in a TextArea,
the text must be provided as an argument. The way to do this is with the use of a Ruby
symbol that is the name of the argument followed by the value. Notice that FunFX follows
Ruby conventions, and writes all names with lower case letters, and divides names with
an underscore.

Flex uses something called itemRenderers that display parts of some display objects like
DataGrids. When selecting a row in a DataGrid the itemRenderer must be provided.
The String value of the itemRenderer is the text in any of the columns, but it must be
unambiguous.

Listing B.6: Perform action on the display objects

1 @ie.button("name").click
2 @ie.text_area("somename").input(:text => "This is some text")

3 @ie.data_grid("grid").select(:item_ renderer => "value")

Listing B.7 shows a complete test. This test adds text into two TextAreas and chooses
an option in a ComboBox. Then it clicks a button, and selects the value corresponding
to the value entered in the TextArea to what is in the DataGrid. Then it asserts that
the information is correct. It checks that the information entered has appeared in the
DataGrid.

112 APPENDIX B. USER GUIDE

The next thing is to drag the newly entered item to another DataGrid. It does this with the
method drag_start with the argument dragged_item. The value of the dragged_item
is an unambiguous String from one of the columns stating what row to drag. Another
argument often used together with drag and drop is action. If using :action ⇒ "copy",
it will only copy the row, if using move, it will move the row from one DataGrid to another.
When dropping the element, the only thing necessary is to state a drag_drop on the target.
The last lines are there to ensure that the correct row has been dragged.

Listing B.7: The test complete

1 require ’test/unit ’

2 require ’funfx ’

3
4 c lass ControlTest << Test::Unit:: TestCase

5
6 def setup

7 @ie = Funfx.instance

8 @ie.start
9 @ie.goto("localhost/flex/control.html", "name -of-object")

10 end
11
12 def teardown

13 @ie.unload
14 end
15
16 def test_control

17 @fname = "James"

18 @lname = "Bond"

19 @location = "London"

20
21 @ie.text_area("tFirstName").input(:text => @fname)
22 @ie.text_area("tLastName").input(:text => @lname)
23 @ie.combo_box("cbLocation").select(:item_ renderer => @location)

24 @ie.button("bAddEmployee").click
25
26 @grid = @ie.data_grid("dgEmployees")
27 @grid.select(:item_ renderer => @lname)
28 row = @grid.selected_index
29 assert_equal("#@fname ,#@lname ,# @location", @grid.tabular_data(:

start => row , :end => row))

30
31 @grid.drag_start(:dragged_ item => @lname)
32 @drop grid = @ie.data_grid("dgEngineeringGroup")
33 @drop grid.drag_drop

34
35 @drop grid.select(:item_ renderer => @lname)
36 row = @drop grid.selected_index

37 assert_equal("#@fname ,#@lname ,# @location", @drop grid.

tabular_data(:start => row , :end => row))

38 end
39
40 end

B.6. AUTOMATION ENVIRONMENT 113

B.6 Automation environment

This section will show all display objects and their events.

Name Extends
DisplayObject
Events Event properties
MouseMove localX(int)

localY(int)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Click ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Name Extends
Object DisplayObject
Events Event properties
ChangeFocus shiftKey(Boolean)

keyCode(String)

Name Extends
Container Object
Events Event properties
MouseScroll delta(int)
Scroll position(int)

direction(String)
detail(String)

DragStart draggedItem(String)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

DragDrop action(String)
draggedItem(String)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

DragCancel ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Name Extends
Form Container
Events Event properties

Name Extends
Canvas Container
Events Event properties

114 APPENDIX B. USER GUIDE

Name Extends
Box Container
Events Event properties

Name Extends
ProgressBar Object
Events Event properties

Name Extends
Accordion Container
Events Event properties
Change relatedObject(String)
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Name Extends
Button Object
Events Event properties
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Name Extends
PopUpButton Button
Events Event properties
Open triggerEvent(Event)
Close triggerEvent(Event)

Name Extends
CheckBox Button
Events Event properties

Name Extends
RadioButton Button
Events Event properties

Name Extends
ScrollBase Object
Events Event properties
MouseScroll delta(int)

B.6. AUTOMATION ENVIRONMENT 115

Name Extends
ListBase ScrollBase
Events Event properties
MouseScroll delta(int)
DragStart draggedItem(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

DragDrop action(String)
draggedItem(String)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

DragCancel ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Select itemRenderer(String)
triggerEvent(Event)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

MultiSelect itemRenderer(String)
triggerEvent(Event)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Deselect itemRenderer(String)
triggerEvent(Event)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Scroll position(int)
direction(String)
detail(String)

Type keyCode(String)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

DoubleClick itemRenderer(String)

116 APPENDIX B. USER GUIDE

Name Extends
DataGrid ListBase
Events Event properties
HeaderClick columnIndex(int)
ColumnStretch columnIndex(int)

localX(int)
HeaderShift newIndex(int)

oldIndex(int)
triggerEvent(Event)

Edit itemRenderer(String)
rowIndex(int)
columnIndex(int)

Name Extends
List ListBase
Events Event properties
Edit itemRenderer(String)

rowIndex(int)
columnIndex(int)

Name Extends
Tree ListBase
Events Event properties
DragDrop action(String)

dropParent(String)
draggedItem(String)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Open itemRenderer(String)
triggerEvent(Event)

Close itemRenderer(String)
triggerEvent(Event)

Name Extends
Application Box
Events Event properties

Name Extends
ScrollBar Object
Events Event properties
Scroll position(int)

direction(String)
detail(String)

B.6. AUTOMATION ENVIRONMENT 117

Name Extends
NumericStepper Object
Events Event properties
Change value(Number)
Input text(String)
SelectText beginIndex(int)

endIndex(int)
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Name Extends
VideoDisplay Object
Events Event properties

Name Extends
Loader Object
Events Event properties

Name Extends
Image Loader
Events Event properties

Name Extends
Slider Object
Events Event properties
Change value(Number)

thumbIndex(int)
clickTarget(String)
triggerEvent(Event)
keyCode(String)

Name Extends
ComboBase Object
Events Event properties
Open triggerEvent(Event)
Close triggerEvent(Event)
Scroll position(int)

direction(String)
detail(String)

Input text(String)
SelectText beginIndex(int)

endIndex(int)
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

118 APPENDIX B. USER GUIDE

Name Extends
ComboBox ComboBase
Events Event properties
Select itemRenderer(String)

triggerEvent(String)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Type keyCode(String)
ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Input text(String)

Name Extends
DateField ComboBase
Events Event properties
Change newDate(Date)
Scroll detail(String)
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Name Extends
DateChooser Object
Events Event properties
Change newDate(Date)
Scroll detail(String)
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Name Extends
ColorPicker ComboBase
Events Event properties
Open triggerEvent(Event)
Close triggerEvent(Event)
Change color(String)

B.6. AUTOMATION ENVIRONMENT 119

Name Extends
TextArea ScrollBase
Events Event properties
Input text(String)
SelectText beginIndex(int)

endIndex(int)
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Scroll position(int)
direction(String)
detail(String)

Name Extends
Panel Container
Events Event properties

Name Extends
TitleWindow Panel
Events Event properties

Name Extends
Alert Panel
Events Event properties
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Name Extends
DividedBox Box
Events Event properties
Pressed dividerIndex(int)

delta(int)
Dragged dividerIndex(int)

delta(int)
Released dividerIndex(int)

delta(int)

Name Extends
Menu Object
Events Event properties
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Show itemRenderer(String)
Hide
Select itemRenderer(String)

120 APPENDIX B. USER GUIDE

Name Extends
MenuBar Object
Events Event properties
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Show itemRenderer(String)
Hide

Name Extends
Repeater
Events Event properties

Name Extends
Label Object
Events Event properties
Click ctrlKey(Boolean)

shiftKey(Boolean)
altKey(Boolean)

Name Extends
Rule Object
Events Event properties

Name Extends
FormItem Container
Events Event properties

Name Extends
ViewStack Container
Events Event properties
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

Name Extends
TabNavigator ViewStack
Events Event properties
Change relatedObject(String)

Name Extends
NavigationBar Box
Events Event properties
Change relatedObject(String)
Type keyCode(String)

ctrlKey(Boolean)
shiftKey(Boolean)
altKey(Boolean)

B.6. AUTOMATION ENVIRONMENT 121

Name Extends
LinkBar NavigationBar
Events Event properties

Name Extends
ButtonBar NavigationBar
Events Event properties

Name Extends
ToggleButtonBar ButtonBar
Events Event properties

Name Extends
Chart Object
Events Event properties

Name Extends
CartesianChart Chart
Events Event properties

Name Extends
AreaChart CartesianChart
Events Event properties

Name Extends
BarChart CartesianChart
Events Event properties

Name Extends
ColumnChart CartesianChart
Events Event properties

Name Extends
HLOCChart CartesianChart
Events Event properties

Name Extends
LineChart CartesianChart
Events Event properties

Name Extends
PieChart Chart
Events Event properties

Name Extends
ChartSeries Object
Events Event properties
Click hitSet(int)
DoubleClick hitSet(int)
ItemRollOver hitSet(int)

Name Extends
AreaSeries ChartSeries
Events Event properties

122 APPENDIX B. USER GUIDE

Name Extends
BarSeries ChartSeries
Events Event properties

Name Extends
BubbleSeries ChartSeries
Events Event properties

Name Extends
ColumnSeries ChartSeries
Events Event properties

Name Extends
LineSeries ChartSeries
Events Event properties

Name Extends
PieSeries ChartSeries
Events Event properties

Name Extends
PlotSeries ChartSeries
Events Event properties

Name Extends
AxisRenderer Object
Events Event properties

Name Extends
ChartLegend Object
Events Event properties
Click item(String)

Name Extends
ListLabel DisplayObject
Events Event properties

APPENDIX C

Contents of CD-Rom

Report

• The report in pdf format

FunFX Flex adapter

• Source code

• SWC library file

• Documentation

FunFX Ruby Framework

• Source code

• Gem file

• Documentation

User guide

• A Flash movie showing the framework in use

Tests

• Demo tests

123

124 APPENDIX C. CONTENTS OF CD-ROM

APPENDIX D

FunFX tests

This appendix contains some sample tests, and will provide the reader with information
to be able to write tests.

Listing D.1: A sample test for testing a DataGrid with drag and drop
1 require ’test/unit ’

2 require ’include ’

3
4 c lass DatagridTest < Test::Unit:: TestCase

5
6 def setup

7 @ie = Funfx.instance

8 @ie.start
9 @ie.goto("localhost/FlexObjectTest.html", "FlexObjectTest")

10 end
11
12 def teardown

13 @ie.unload
14 end
15
16 def go_to_page

17 test = @ie.link_bar("linkBar").change(:related_ object => "

DataGrid")

18 end
19
20 def test_control

21 go_to_page

22
23 @path = @ie.panel("dgPanel")
24
25 @path.data_grid("dg").select(:item_ renderer => "Joanne Wall")

26 pos = @path.data_grid("dg").selected_index
27 assert_equal("Joanne Wall ,555 -219 -2012 , jwall@fictitious.com",

@path.data_grid("dg").tabular_data(:start => pos , :end => pos

125

126 APPENDIX D. FUNFX TESTS

))

28
29 @path.data_grid("dg").drag_start(:dragged_ item => "

jwall@fictitious.com")

30 @path.data_grid("dgDrop").drag_drop
31
32 assert_equal("Joanne Wall ,555 -219 -2012 , jwall@fictitious.com",

@path.data_grid("dgDrop").tabular_data)
33 end
34
35 end

Listing D.2: A sample test for testing a slow data provider with a wait tag
1 require ’test/unit ’

2 require ’include ’

3
4 c lass SyncTest < Test::Unit:: TestCase

5
6 def setup

7 @ie = Funfx.instance

8 @ie.start
9 @ie.goto("localhost/FlexObjectTest.html", "FlexObjectTest")

10 end
11
12 def teardown

13 @ie.unload
14 end
15
16 def go_to_page

17 @ie.link_bar("linkBar").change(:related_ object => "SyncTest")

18 end
19
20 def test_control

21 go_to_page

22
23 @path = @ie.view_stack("vStack").box("SyncTest").panel("SyncTest

")

24
25 @path.data_grid("dg").select(:item_ renderer => "nr3", :wait =>

20)

26
27 pos = @path.data_grid("dg").selected_index
28 assert_equal("nr3", @path.data_grid("dg").tabular_data(:start =>

pos , :end => pos))

29 end
30
31 end

127

Listing D.3: A sample test for testing a menu bar
1 require ’test/unit ’

2 require ’include ’

3
4 c lass MenuBarTest < Test::Unit:: TestCase

5
6 def setup

7 @ie = Funfx.instance

8 @ie.start
9 @ie.goto("localhost/FlexObjectTest.html", "FlexObjectTest")

10 end
11
12 def teardown

13 @ie.unload
14 end
15
16 def go_to_page

17 @ie.link_bar("linkBar").change(:related_ object => "MenuBar")

18 end
19
20 def test_control

21 go_to_page

22
23 @path = @ie.view_stack("vStack").box("MenuBar").panel("MenuBar

Control")

24
25 assert_not_nil(@path.menu_bar("menuBar"))
26
27 menu = "Menu1"

28 item = "MenuItem 1-B"

29 item_data = "1B"

30
31 @path.menu_bar("menuBar").show(:item_ renderer => menu)

32 @ie.menu(menu).select(:item_ renderer => item)

33 assert_equal("Label: " + item + "\nData: " + item_data , @ie.
alert("Clicked menu item").text)

34
35 @ie.alert("Clicked menu item").button("OK").click

36 assert_nil(@ie.alert("Clicked menu item"))

37
38 menu = "Menu2"

39 item1 = "MenuItem 2-B"

40 item2 = "SubMenuItem 3-A"

41 item_data = "3A"

42
43 @path.menu_bar("menuBar").show(:item_ renderer => menu)

44 @ie.menu(menu).show(:item_ renderer => item1)

45 @ie.menu(item1).select(:item_ renderer => item2 , :wait => 2)

46 assert_equal("Label: " + item2 + "\nData: " + item_data , @ie.
alert("Clicked menu item").text)

47 end
48
49 end

128 APPENDIX D. FUNFX TESTS

Glossary

FunFX The framework developed during this project to
functional test Flex applications

ActiveX Control A Microsoft term that is used to denote reusable
software components that are based on Mi-
crosoft Component Object Model (COM)

Agile Method A suite of development methods with focus on
code and fast development

COM Component Object Model, a Microsoft platform
for software componentry. The essence of COM
is a language-neutral way of implementing ob-
jects such that they can be used in environments
different from the one they were created in.

CPU Central Processor Unit
CTP Community Technology Previews, a Microsoft

pre-release of software [41]

Flex A framework for developing RIAs based on the
Flash player (see Section 5)

GUI Graphical User Interface

IDE Integrated Development Environment
irb Interactive Ruby, an interactive command-line

interpreter

OLE Object Linking and Embedding (see Section4.4)
OSS Open Source Software

QA Quality Assurance
QTP QuickTest Professional, a testing tool from Mer-

cury

RIA Rich Internet Application (see Section 4.1)

TDD Test-Driven Development (see Section 3.1.2)

129

130 Glossary

UP Unified Process, a development method (see
Section 3.1.1)

Wiki Wiki is a piece of server software that allows
users to freely create and edit Web page con-
tent using any Web browser. Wiki supports hy-
perlinks and has a simple text syntax for creat-
ing new pages and cross links between internal
pages on the fly.

Bibliography

[1] Adobe. About working with data in Flex Builder. http://livedocs.adobe.com/
flex/201/html/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_
Book_Parts&file=data_046_2.html. Retrieved May 14th 2007.

[2] Adobe. Adobe Flex Data Services 2. http://www.adobe.com/products/flex/
dataservices/. Retrieved February 26th 2007.

[3] Adobe. Flex 2 - Product overview. http://www.adobe.com/products/flex/
productinfo/overview/. Retreived January 23th 2007.

[4] Adobe. Flex Documentation Introduction to mixins. http://www.adobe.
com/support/documentation/en/flex/1/mixin/mixin2.html#118542. Retrieved
February 27th 2007.

[5] Matt Horn (Adobe). Flex synchronization. E-mail. Retrieved April 25th 2007.

[6] Matt Horn (Adobe). License for using custom classes. E-mail. Retrieved May 4th
2007.

[7] Jeremy Allaire. Macromedia Flash MX-A Next-generation Rich Client. Technical
report, Macromedia, 2002.

[8] AutomatedQA. TestComplete 5. http://www.automatedqa.com/products/
testcomplete/index.asp. Retrieved May 7th 2007.

[9] AutomatedQA. TestComplete 5 FAQ. http://www.automatedqa.com/products/
testcomplete/faqs/tc_faq_web.asp. Retrieved May 7th 2007.

[10] Victor R. Basili. The Experimental Paradigm in Software Engineering. Technical
report, University of Maryland, 1992.

[11] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison Wesley, second edition, 2003.

[12] Fitnesse. What is Fitnesse? http://fitnesse.org/FitNesse.
OneMinuteDescription. Retrieved February 26th 2007.

[13] Jesse James Garret. Ajax: A New Approach to Web Applications. http://
www.adaptivepath.com/publications/essays/archives/000385.php. Retrieved
March 26th 2007.

[14] Grig Gheorghiu. A look at Selenium. Better Software, 2005.

131

http://livedocs.adobe.com/flex/201/html/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Book_Parts&file=data_046_2.html
http://livedocs.adobe.com/flex/201/html/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Book_Parts&file=data_046_2.html
http://livedocs.adobe.com/flex/201/html/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Book_Parts&file=data_046_2.html
http://www.adobe.com/products/flex/dataservices/
http://www.adobe.com/products/flex/dataservices/
http://www.adobe.com/products/flex/productinfo/overview/
http://www.adobe.com/products/flex/productinfo/overview/
http://www.adobe.com/support/documentation/en/flex/1/mixin/mixin2.html#118542
http://www.adobe.com/support/documentation/en/flex/1/mixin/mixin2.html#118542
http://www.automatedqa.com/products/testcomplete/index.asp
http://www.automatedqa.com/products/testcomplete/index.asp
http://www.automatedqa.com/products/testcomplete/faqs/tc_faq_web.asp
http://www.automatedqa.com/products/testcomplete/faqs/tc_faq_web.asp
http://fitnesse.org/FitNesse.OneMinuteDescription
http://fitnesse.org/FitNesse.OneMinuteDescription
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

132 BIBLIOGRAPHY

[15] Russell Gold, Thomas Hammell, and Tom Snyder. Test-Driven Development: A
J2EE Example. Apress, 2004.

[16] Christian Hellsten IT Specialist IBM. Automate acceptance tests with Selenium.
http://www-128.ibm.com/developerworks/java/library/wa-selenium-ajax/
index.html?ca=drs-. Retreived January 29th 2007.

[17] Adobe Systems Incorporated. ExternalInterface API. http://livedocs.adobe.com/
flash/9.0/ActionScriptLangRefV3/flash/external/ExternalInterface.html.
Retrieved Mars 29th 2007.

[18] Adobe Systems Incorporated. Adobe Flex 2 Developer’s Guide. http://livedocs.
macromedia.com/flex/2/docs/Part2_DevApps.html, 2006. Retreived January 30th
2007.

[19] Adobe Systems Incorporated. Coding with MXML and ActionScript. http://www.
adobe.com/devnet/flex/quickstart/coding_with_mxml_and_actionscript/,
2006. Retreived January 17th 2007.

[20] Jonathan Kohl and Paul Rogers. Watir works. Better Software, 2005.

[21] Jeff Langr. Agile Java Crafting Code with Test-Driven Development. Prentice Hall,
2005.

[22] Craig Larman. Applying UML and Patterns. Prentice Hall, 3. edition 2005.

[23] Mercury. Mercury Functional Testing: Mercury QuickTest Professional.
http://www.mercury.com/us/website/pdf-viewer/?url=/us/pdf/products/
datasheets/DS-0985-0306-qtp.pdf. Retreived January 25th 2007.

[24] Mercury. Mercury QuickTest Professional. http://www.mercury.com/us/products/
quality-center/functional-testing/quicktest-professional/. Retreived
January 25th 2007.

[25] Microsoft. Microsoft Unveils Silverlight. http://www.microsoft.com/presspass/
press/2007/apr07/04-15WPFEPR.mspx. Retrieved April 26th 2007.

[26] MSDN. Component Object Model. http://msdn2.microsoft.com/en-us/asp.net/
bb187358.aspx. Retrieved March 26th 2007.

[27] Glenford J. Myers, Tom Badgett, Todd M. Thomas, and Corey Sandler. The Art of
Software Testing. John Wiley and Sons Inc, 2. edition 2004.

[28] OpenQA. Selenium. http://www.openqa.org/selenium/. Retreived January 26th
2007.

[29] RubyForge. Watir - Web Application Testing in Ruby. http://wtr.rubyforge.org/.
Retreived January 19th 2007.

[30] rubylearning.com. Duck Typing. http://rubylearning.com/satishtalim/duck_
typing.html. Retrieved May 7th 2007.

[31] Christian Schwarz, Stein K̊are Skytteren, and Trond Marius Øvstetun. CubicTest.
http://boss.bekk.no/cubictest/. Retrieved May 9th 2007.

http://www-128.ibm.com/developerworks/java/library/wa-selenium-ajax/index.html?ca=drs-
http://www-128.ibm.com/developerworks/java/library/wa-selenium-ajax/index.html?ca=drs-
http://livedocs.adobe.com/flash/9.0/ActionScriptLangRefV3/flash/external/ExternalInterface.html
http://livedocs.adobe.com/flash/9.0/ActionScriptLangRefV3/flash/external/ExternalInterface.html
http://livedocs.macromedia.com/flex/2/docs/Part2_DevApps.html
http://livedocs.macromedia.com/flex/2/docs/Part2_DevApps.html
http://www.adobe.com/devnet/flex/quickstart/coding_with_mxml_and_actionscript/
http://www.adobe.com/devnet/flex/quickstart/coding_with_mxml_and_actionscript/
http://www.mercury.com/us/website/pdf-viewer/?url=/us/pdf/products/datasheets/DS-0985-0306-qtp.pdf
http://www.mercury.com/us/website/pdf-viewer/?url=/us/pdf/products/datasheets/DS-0985-0306-qtp.pdf
http://www.mercury.com/us/products/quality-center/functional-testing/quicktest-professional/
http://www.mercury.com/us/products/quality-center/functional-testing/quicktest-professional/
http://www.microsoft.com/presspass/press/2007/apr07/04-15WPFEPR.mspx
http://www.microsoft.com/presspass/press/2007/apr07/04-15WPFEPR.mspx
http://msdn2.microsoft.com/en-us/asp.net/bb187358.aspx
http://msdn2.microsoft.com/en-us/asp.net/bb187358.aspx
http://www.openqa.org/selenium/
http://wtr.rubyforge.org/
http://rubylearning.com/satishtalim/duck_typing.html
http://rubylearning.com/satishtalim/duck_typing.html
http://boss.bekk.no/cubictest/

BIBLIOGRAPHY 133

[32] RDT Development Team. Ruby Development Tool. http://rubyeclipse.
sourceforge.net/. Retreived January 23th 2007.

[33] David Thomas and Andrew Hunt. Programming Ruby - The Pragmatic Programmer’s
Guide. Addison-Wesley Professional, 2001.

[34] David Thomas, Andrew Hunt, and Chad Fowler. Programming Ruby - The Pragmatic
Programmer’s Guide. Addison-Wesley Professional, second edition, 2005.

[35] Wikipedia. Adobe Flex. http://en.wikipedia.org/wiki/Adobe_Flex. Retreived
January 22th 2007.

[36] Wikipedia. Agile software development. http://en.wikipedia.org/wiki/Agile_
software_development. Retrieved May 14th 2007.

[37] Wikipedia. Component Object Model. http://en.wikipedia.org/wiki/
Component_object_model. Retrieved March 1st 2007.

[38] Wikipedia. Duck Test. http://en.wikipedia.org/wiki/Duck_test. Retrieved May
7th 2007.

[39] Wikipedia. Factory pattern. http://en.wikipedia.org/wiki/Factory_method_
pattern. Retrieved April 13th 2007.

[40] Wikipedia. Rich Internet Application. http://en.wikipedia.org/wiki/Rich_
internet_application. Retrieved April 12th 2007.

[41] Wikipedia. Software release life cycle. http://en.wikipedia.org/wiki/Software_
release_life_cycle. Retrieved April 26th 2007.

[42] Wikipedia. Test case. http://en.wikipedia.org/wiki/Test_case. Retreived Jan-
uary 30th 2007.

[43] Wikipedia. Watir. http://en.wikipedia.org/wiki/Watir. Retreived January 24th
2007.

[44] Marvin V. Zelkowitz and Dolores R. Wallace. Experimental Models for Validating
Technology. IEEE Computer, May 1998.

http://rubyeclipse.sourceforge.net/
http://rubyeclipse.sourceforge.net/
http://en.wikipedia.org/wiki/Adobe_Flex
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Component_object_model
http://en.wikipedia.org/wiki/Component_object_model
http://en.wikipedia.org/wiki/Duck_test
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Rich_internet_application
http://en.wikipedia.org/wiki/Rich_internet_application
http://en.wikipedia.org/wiki/Software_release_life_cycle
http://en.wikipedia.org/wiki/Software_release_life_cycle
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Watir

