
June 2007
Monica Divitini, IDI
Babak Farshchian, Telenor

Master of Science in Informatics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

End User Service Composition
Presenting a composition tool for end users with modular
architecture and a graphical user interface

Espen Nersveen

Author:

Espen Nersveen
NTNU Trondheim

End User Service Composition
Presenting a composition tool for end users

with modular architecture and a graphical user interface

May 2007

Supervisor:
Monica Divitini
NTNU Trondheim

External Supervisor:
Babak Farshchian

Telenor R&I Trondheim

ii

Abstract

The report focuses on a possible problem to end users do to lack of control
in a rapidly growing environment of computation embedded devices, and col-
laborative linking of various services. Such environments are often referred
to as ubiquitous or pervasive computing environment. We have looked into
why this problem may occur and more importantly, how to reduce the effect
it may have on end users.

Our work involves the process of creating a framework that can enable
end users to compose services, by connecting them in a manner that al-
lows them to become better or more functional towards the end user then
it’s single components. We propose an architecture that can support rapid
composition, and a user interface that can perform rapid end user service
composition at any time.

From the time that a user finds the need to connect two or more services
together to the user having set up a complete composition should be a task
performed as quick as drawing a composition on a sheet of paper. We
therefor propose a Graphical User Interface to support the end user, and
we will in this report show how it is made and how it works. We will also
present the architecture needed to support such a user interface.

Keywords: service composition, end user, CoPE, graphical user inter-
face, direct manipulation, OSGi, ubiquitous computing

iii

iv

Preface

This is the final report for the course ”IT3900 - Masteroppgave i Infor-
matikk” (Master thesis in the course Information Technology). The struc-
ture of the course was as follows: First semester with 1 of 3 courses, intro-
duced and defined our task. Second semester with 3 of 4 courses where we
focused on problem definition and solution proposal. Final semester with 4
of 4 courses being the development, implementation and documentation.

The assignment was given by Babak Farshchian of Telenor R&I, in coop-
eration with Monica Divitini of NTNU.

The assignment description was given initially, but has evolved throughout
this project. See appendix A for original definition.

I wish to thank Babak Farshchian, who has been my guide in this project.
Relation to UbiCollab and Astra provided by Babak has been of great help
while setting this project in a wider perspective. He has also been very
helpful in the process of writing this report.

Also I want to thank to Frank Paaske, who has been a great help while
coding example services. Without his help the current demo would not be
as impressive.

v

vi

Acronyms

Table 1: Acronyms

CoPE Collaborative Pervasive Elements
DLNA Digital Living Network Alliance
GUI Graphical User Interface
JRE Java Runtime Environment
OSGi Open Services Gateway Initiative
SDP Service Delivery Platform
UI User Interface

UPnP Universal Plug and Play

vii

viii

Terminology

Table 2: Terminology

Composed Service A service and a relation.
Relation A connection between two services.
Service Any element that supports composition and/or access

through tools such as CoPE is a service.
Service Composition Any two or more services connected in any meaningful

way through tools such as CoPE is a service composition.
Service Interface Any user interface provided by the service proxy.
Service Proxy An OSGi bundle that provides an interface to a service.
User Device The physical device running CoPE.

ix

x

Contents

Abstract v

Preface vii

Acronyms ix

Terminology xi

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Contributions and Project Background 2

1.3.1 Daidalos . 3
1.3.2 UbiCollab . 3
1.3.3 ISIS . 3

1.4 Research Questions . 3
1.5 Research Method . 4
1.6 Report Outline . 5
1.7 Key Concepts and Scenario 6

1.7.1 Scenario . 7

2 Problem description 9
2.1 Services and Control . 9
2.2 Control vs Automation . 12
2.3 Rapid Context Change . 13

2.3.1 Learning to use CoPE 14

3 State of the art 15
3.1 Introduction . 15
3.2 Choosing the User Interface 15

xi

3.2.1 Textual . 17
3.2.2 Manipulative text . 17
3.2.3 Voice . 18
3.2.4 Tangible UI . 19
3.2.5 Graphical . 19

3.3 Summary of Scores . 20

4 Solution Proposal 21
4.1 Introduction . 21
4.2 Proposed User Interface . 21

4.2.1 Availability . 22
4.2.2 Direct Manipulation 22

4.3 Final Thoughts on Chosen User Interface 22
4.4 Mission statement . 23
4.5 Services . 24

5 Architecture 27
5.1 Introduction . 27
5.2 CoPE and Services . 28
5.3 Service Registry . 29
5.4 Modularity in relation to Ubicollab 29
5.5 Functionality and APIs in Services and Service Proxies 30
5.6 Handling a Service’s User Interface 31
5.7 Composition . 32

5.7.1 First Proposal - 3 level Composition Architecture . . . 33
5.7.2 Revised Composition Architecture 36

5.8 Ontology . 37
5.9 What we get from OSGi . 38
5.10 Storing Sessions . 39
5.11 Security in Service Proxies . 40

6 Graphical User Interface 41
6.1 Introduction . 41
6.2 Design Process . 41

6.2.1 Iteration 1 . 41
6.2.2 Iteration 2 . 42
6.2.3 Iteration 3 . 43
6.2.4 Iteration 4 . 43

6.3 Discovery, My Services and Favorites 43
6.3.1 Discovery . 43

xii

6.3.2 My Services . 44
6.3.3 Favorites . 44

6.4 Sandbox . 44
6.4.1 Services . 45
6.4.2 Relations . 45

6.5 Multiple User Interface Support 46

7 Implementation 49
7.1 Current implementation . 49

7.1.1 CoPE . 49
7.1.2 User Device . 49
7.1.3 License . 49

7.2 Example Services . 50
7.3 Working Relations . 53
7.4 Working Scenario . 53

8 Evaluation and conclusion 55
8.1 Evaluation . 55
8.2 Conclusion . 56

9 Future Work 59
9.1 Architecture . 59
9.2 Graphical User Interface . 59

A Original Assignment Description 61

B Graphical User Interface Iterations 63

Bibliography 72

xiii

xiv

List of Figures

1.1 Research Method . 5
1.2 Definitions . 7

2.1 Number of Services vs User Control 11
2.2 Problem with Conventional Service Development Process . . 11
2.3 User Control vs Automation 12

3.1 Scope Directions . 16
3.2 Scoreboard . 20

5.1 CoPE and it’s relations . 28
5.2 Data Flow after Relation is added 31
5.3 Composition Process - 1. Template, 2. Instance, 3. Session . 34
5.4 OSGi Framework . 39

6.1 UI Management . 46

7.1 User Interface of Weather Service 50
7.2 User Interface of Sound Service 51
7.3 User Interface of Alarm Service 52

B.1 GUI iteration 1a . 63
B.2 GUI iteration 1b . 64
B.3 GUI iteration 2a . 65
B.4 GUI iteration 2b . 66
B.5 GUI iteration 3 . 67
B.6 GUI iteration 4a . 68
B.7 GUI iteration 4b . 69

xv

xvi

List of Tables

1 Acronyms . vii
2 Terminology . ix

xvii

xviii

Chapter 1

Introduction

Chaos (noun). The confused, unorganized condition or mass of
matter before the creation of distinct and orderly forms.

– Dictionary: Chaos

1.1 Motivation

In the recent time the notion of a ubiquitous computing environment has
received a lot of attention. This is a rising trend which integrates computa-
tion into the environment, rather than having computers which are distinct
objects. By embedding computation into the environment users can interact
more naturally with a computerized world. [Abowd and Mynatt, 2000] for
instance, shows research on the growing network of connectable components
and how some aspiring technology starts to show potential. This notion is
growing faster in the recent days due to a rapid development of wireless
techonlogies. As embedded computation grows in the environment, the net-
work in which they communicate is also evolving at an extreme rate. The
table then turns to the user. Questions like ”how can a simple user under-
stand this vast environment?” and ”how can he adapt to what surrounds
him?” rise and give challenge to this new research area. This is some of
the questions raised in research of pervasive computing in [Satyanarayanan,
2001], ubiquitous computing in [Weiser, 1999] or everyday computing in
[Abowd and Mynatt, 2000]. An environment like this, where elements float
in and out without the possibility of explicit integration, can leave end users
with an overwhelmed sense of chaos.

1

1.2 Goals 1. Introduction

This ubiquitous computing environment is a source of inspiration as well
as frustration for anyone who wants to take advantage of it. [Newman et al.,
2002] advices allowing the end user to have the control of connecting com-
ponents in this environment. With this vast pool of components available to
the end user, combined with the number of available connection options on
each component, makes the creating of services that adopt each possible per-
mutation an impossible mission. [Newman et al., 2002] therefor advocates
the need for end users to be able to create or reconfigure these services on
demand. We agree with this assessment and want to empower the end user
in such environments, so that they have a better way of navigating, connect-
ing and utilizing the various devices and services he encounters. We want
to make the process from discovering to connecting to using these devices
as easy as possible for the end user.

1.2 Goals

We want the end user to be able to connect any and all elements that would
appear in a meaningful manner, speedy, efficiently and without having to
know anything other then the fact that two or more elements can in fact
interact. We want to give the end users a more central role while operating
in a pervasive computing environment.

Developers in this environment should not have to endure a plethora of
radical changes to adapt to our experimental manager.

1.3 Contributions and Project Background

Our project will hopefully be of great use to a number of projects. It is
therefor necessary to keep that in mind throughout the process of design
and development. We would like to see the final product as a prototype
that can be adapted easily to any of these projects. If not the entirety of
the prototype, then at least parts of it. We must develop highly modular
code structure so parts of the code can be used in other projects.

This is a project that may be implemented in Telenor’s existing SDP. This
will include links to 3rd party providers and enablers as well as the internal
components to handle charging, user management, content access, service
ontologies, etc.

2

1.4 Research Questions 1. Introduction

Contributions to these parts comes under the topic of ”End User Service
Composition”. We will develop a prototype system that will serve as both
a proof-of-concept as well as being a modular piece of software that can be
adapted and used by the projects Daidalos, Ubicollab and ISIS.

1.3.1 Daidalos

Our contribution to Daidalos is research into software package manage-
ment. Architecture needed to support end user management, as well as
policy enforcement options for Telenor and external service providers can
be used by Daidalos.

1.3.2 UbiCollab

Contributions here will be to show how an end user can become a central
tool to enable their own scenarios. The definition of a user interface that
efficiently interacts with the user, as well as a common link with their own
architecture will be provided in this report.

1.3.3 ISIS

From our project we have granted a developer from ISIS, Frank Paaske,
the opportunity to help shape our projects influence on ISIS. ISIS can use
our prototype as a complete compositional framework for their own proof-
of-concept.

1.4 Research Questions

• What is End User Service Composition and why do we need
it? We want to make clear what it is and why it’s needed in the
growing ubiquitous computing environment. What makes the end user
the right tool for the job?

• What is needed to facilitate End User Service Composition
in terms of

– Architecture? What architecture will best suit rapid composi-
tion by the end user? How can we build this architecture to to
best suit highly mobile and demanding end users?

3

1.5 Research Method 1. Introduction

– User Interface? What is the best way of presenting the user
interface? What does the user need in his user interface and what
do we need to design to facilitate it?

1.5 Research Method

This project started with the general motivation of enhancing the end
users ability to use and connect elements in a ubiquitous computing envi-
ronments.

Our research method is illustrated in figure 1.1. We started with a
deeper description of the problem to better see what was needed in the
longer run. From there we investigated state-of-the-art with relations to
our problem and developed a solution proposal. These three parts where
collated and sent to an international review board for the conference In-
teract 2007 http://tuim.inf.puc rio.br/interact2007/home.php. The review
from the board allowed us valuable insight to form the solution proposal
somewhat different.

From the revised solution proposal came the design and development
stage. This stage was divided into two parallel processes: Architecture,
which is the platform, and Graphical User Interface, for end users to use the
platform. Though the two processes were separate in nature they were de-
veloped synchronously. Ideas have been formed in the user interface, realized
in the architecture and then extracted and used back in the user interface.
The process have been iterative with regards to the development cycle of
both processes. To develop the graphical user interface we used low-fidelity
user testing to give us more iterations. The end result was a functional
prototype tool to enable end user service composition (CoPE)1 2.

1CoPE - (Collaborative Pervasive Elements)
2Cope (verb) - To face and deal with problems, or difficulties, esp. successfully or in

a calm or adequate manner

4

1.6 Report Outline 1. Introduction

Figure 1.1: Research Method

1.6 Report Outline

Chapter 2 contains the Problem Description. Here we will go deeper
into the reason and motivation for doing this project, why this project is
needed, and what we intend to look into and solve in later chapters.

Chapter 3 is the State of the art exploration, where we reference work
previously accomplished to show where in the line of research we are placing
this project. We will here introduce more the idea of empowering end users.

Chapter 4 presents our Solution Proposal. This is what we are basing
prototype development on. Key features needed and provided are presented
and discussed.

5

1.7 Key Concepts and Scenario 1. Introduction

Chapter 5 will introduce our implemented Architecture in greater de-
tail. This is the background system needed to present the user with a viable
tool for service composition. Relation between our prototype and the ubiq-
uitous computing environment is the main part of this chapter.

Chapter 6 gives an overview of the implemented Graphical User In-
terface. This is the end result of the process from selecting what type of
user interface we wanted to use, to the enrichment of end user experience.

Chapter 7 will summarize the Implementation from Chapter 5 and 6
into a briefer overview of what our prototype can do, how it relates to the
user and how it relates to the related environment.

Chapter 8 and 9 finally gives the overall Evaluation and Conclu-
sion followed by the Future Work needed to ensure the survivability and
viability of this project, as well as showing some future potential.

1.7 Key Concepts and Scenario

Before we delve into this report it’s important to establish what we aim
at when we are talking about service composition. In the first part of this
chapter we directed our focus on end users in a ubiquitous computing en-
vironment. We have chosen to call all elements within these environments:
services. We define a service as anything that is capable of supporting the
collaborative end user management of our approach. Any elements catego-
rized as being a part of the ubiquitous or pervasive computing genre are
services. Examples are devices which supports input or output, like a video
projector, a DVD player or a printer. Services can also be information
providers, like flight schedule, or an Electronic Program Guide (EPG).

Any network enabled element that supports composition and/or
access through tools such as CoPE is a service.

A service can be connected to other services. This is in the nature of the
service and we will call a service that is connected to other services a com-
posed service. A composed service consists of the service of origin and the
connection. The connection itself is called a relation.

6

1.7 Key Concepts and Scenario 1. Introduction

Figure 1.2: Definitions

When connecting a service to another service we call the connec-
tion a relation. A service with a relation is called a composed
service.

When one or more composed services are connected, we define the com-
pilation as a service composition. A service composition is a combination
of collaborating services and/or resources that together obtain higher func-
tionality than that of it’s parts. It can be seen as a composition by either
a user’s perspective or the system’s perspective. Such a composition can
also originate from other places, but in this article we will refer to service
compositions as only those compositions made by or can be reconfigured by
tools like CoPE.

A group of composed services is called a service composition.

1.7.1 Scenario

This scenario describes a day of our user, Bob. Bob has just acquired a
video projector and a brand new sound system to put in his living room.
As he is finished unpacking and wants to test it, he sits down in his couch
and pulls out his PDA which include our software. The first thing he does
is to discover his own DVD player. As he acquires the control of the DVD
player, it shows that it can connect to an audio and a video output device.
He locates the two new devices from a list that searches nearby devices and
connects them both to his DVD player using CoPE. He connects the sound
to the speakers and the video to his projector. Bob has now made a service

7

1.7 Key Concepts and Scenario 1. Introduction

composition comprised of three composed services. He chooses to save his
composition. Now anytime Bob wants to watch a movie in his living room
he can start this service composition and have it act just the way he wants.

Another day Bob is at his friends house. He and his friends get together
to watch their favorite soccer team play. Before the match starts, Bob is
playing with his composition from the other day and discovers that that
setup also works in his friends house, as he has a DVD player, a TV and a
couple of speakers. Bob asks his friend if he wants Bob’s setup to adapt to
his setup, and of course he answers ”yes”. Bob selects his saved setup and
chooses to share it. CoPE makes a shareable version of it and a list of PDAs
to share it with appears. He chooses his friends name, and he recives the
composition. As he opens it it shows the setup similar to what Bob had,
but every item is exchanged with a description of what is needed. He selects
each service in turn and links them with his own services which he finds in
the same manner as Bob did the other day. However, it goes a lot faster
because the search of the devices to fill in are narrowed considerably when
the connections are already made. Bob and his friends continue to watch
the match. Bob’s friend continues to use this setup after the evening soccer
match.

8

Chapter 2

Problem description

A problem clearly stated is a problem half solved.

– Dorothea Brande

2.1 Services and Control

In the last chapter we introduced the end user and the ubiquitous comput-
ing environment. We also defined services, as the components found within
the environment. A service could be composed or atomic. An atomic ser-
vice provides a set functionality to the end user and works as a standalone
service, but we want to focus on the composed service in this project. A
composed service provides means to reach out to other services and collab-
orate. It can therefor become more useful then what it was before it was
composed. By collaborating with other services the new service composition
can perform with greater accuracy, more functionality, with better quality
or in a more suited manner towards the end user.

We believe the end user to be the key to controlling ubiquitous comput-
ing environments. Our task is to enable the end user’s ability to compose
services, while still being able to interact with them in the same manner as
he would normally do.

The usability aspect of composing services is the main focus of our project.
This means the user’s level of control in a ubiquitous computing environ-
ment, both in taking advantage of service functionality as well as the con-

9

2.1 Services and Control 2. Problem description

nection abilities of one service towards other services. We define the end
user’s level of control related to services in five points:

• Discovering - The process of searching and installing controllers for
a service.

• Connecting - The process of composing services.

• Starting / Stopping - Allowing the user to turn on and off the
installed controllers for a service.

• Using - Providing the user with a user interface to each installed
controllers, from where the user can control the service’s properties.

• Sharing - Sharing compositions between devices running composition
tools like CoPE.

If all points on this list are supported in the user interface and considered
easy by a user, we say the user has a high level of control, but if the user has
a hard time any of this points, the entire overview that he may have had is
quickly lost. We will argue that if any of these points are presented to the
end user in such a way that he finds it hard to accomplish a task, the entire
feeling of control is lost.

As we mentioned earlier, the volume of services available to the end user is
rapidly increasing. In figure 2.1 we illustrate the rising number of services at
any given time available to the end user by the blue line. If the current trends
are kept at status quo, we will most likely see a corresponding decrease of the
user’s level of control, represented by the red graph in the same figure. This
will in turn render the intended multifunctional and highly interconnectable
services virtually useless when the user does not know how to properly take
advantage of them.

The design of services in these environments is quite challenging. There-
for, research into giving more control to end users have been a rising theme.
Normally developing new collaborating possibilities in software engineering
includes the stages illustrated in figure 2.2. First an expert identifies the
need for a service connecting to another service and defines what it should
do. Next a developer implements a service that corresponds to the ex-
pert’s demands, automating the collaborative process, with connections and
connection methods. Finally the end user have the completed new service

10

2.1 Services and Control 2. Problem description

Figure 2.1: Number of Services vs User Control

collaboration. The ubiquitous computing environment however needs an
alternate approach. [Crabtree et al., 2003] talk about anticipative design.
He urges developers to enable more communication possibilities then that
of which the developed service is intended for. By allowing this the user has
more freedom to create own relations that can perform in a different or new
manner. To reach our goal of enhancing end user control we need to make
them more central in the process of designing, implementing and using ser-
vices. Our research is focused on the tools available to the end user in such
an environment and will follow and supplement several other researchers.
[Davidoff et al., 2006] presents the need for end user involvement because
the user will feel in control over an otherwise uncontrollable environment.
[Dey et al., 2004] states that end users should be the ones that decide what
to create, and in which circumstances, because they are in fact the ones with
the most knowledge about what they usually do in the course of a day. The
notion is also supported by [Gajos, 2001].

Figure 2.2: Problem with Conventional Service Development Process

11

2.2 Control vs Automation 2. Problem description

2.2 Control vs Automation

To increase the level of control we must give more options of control to
the user, which is not as straight forward as one might be inclined to think.
It is important to notice the possible issues of increasing the control. If
one is to choose a degree by the question of wether or not we want full
control or automation, we are faced with having to sacrifice the one side
we don’t want (fig 2.3). The choice of Linux or Mac OS X, is a good
example (although Linux is becoming more and more user friendly and OS
X has the controllable UNIX at it’s base). Linux offers it’s users complete
control with it’s open source software, while OS X offers the efficient and
easy to use graphical user interface. However, Linux command prompt is
definitively not easy to use for a user who is not intimately familiar with it’s
commands, and with OS X it’s virtually impossible to change options that
are not directly implemented in the user interface.

Figure 2.3: User Control vs Automation

Both ends of the line have positive and negative aspects to it. A high
degree of automation does a lot of work on behalf of the user. It will also
make the inherently technical processes transparent to enable the user to
focus on the task at hand rather then how the task needs to be performed.
The increased automation and transparency can however cause a general
concern for misfit of services. Services that demand rapid adaptation to
various changes have to manage most of this on it’s own, which will leave
the user clueless if he did not expect the service to behave in a certain
manner. Additionally the service might even behave wrongly.

On the other hand, one can go for high level of control. This will reduce
the problem of misfit in changing services, as the user has total control over
the actions of each service. This will increase the service’s potential as the

12

2.3 Rapid Context Change 2. Problem description

possibilities become more or less endless. But ”with great power comes
great responsibility”. The user has the options at his hand. As the options
increase, so does the complexity of the tasks. Faced with insurmountable
permutations of possibilities, the user has to have a steady mind whenever
he wants to do something. This is a strain on any person.

As both ends of the scale presents good as well as bad qualities, we are
faced with the decision of which way to go. We want the user to have more
control in a rapidly changing environment, but we don’t want to impose
strenuous management options. We must attempt to find the ”best of both
worlds” so to say. We are aiming for the center of the arrow, but we also want
to find a way to achieve a higher level of control as well as a not excluding
automation. That means (from figure 2.3) dragging the arrow pointing
downward towards the right end, and the arrow pointing upward towards
the left end. Other articles on the theme of user control vs technology control
are [Davidoff et al., 2006], [Lee et al., 2006].

2.3 Rapid Context Change

In these times, end users rely more and more on technology to cope with
rapid context change. That is; the services adapting to changes caused by
the user’s context or to changes in the service itself. In a highly mobile user,
context change comes often, and adapting the context change to software
decisions becomes more challenging. Research into context adaptation in
ubiquitous environments have been conducted by, amongst others, [Abowd
et al., 1997], [Gajos et al., 2002], [Salber et al., 1999] and [Wang et al., 2004].
When the environment changes from each setting a user accesses it, context
adaptive management is needed. We believe giving the end user more control
will be the best method for making the environment considerably easier to
use.

The main cause of context change comes from increasing mobility of the
user. More devices are made to be handled on-the-go. We will have to decide
which way is the most effective way of handling the increased mobility of
the user. For instance, [Abowd et al., 1997], [Helal et al., 2005], [Holmquist
et al., 2001] uses positioning and proximity to enable context adaptive service
access and composition. We want the user to take control over his own
mobility. Proximity and location could be one of the guiding options. We

13

2.3 Rapid Context Change 2. Problem description

should in the end provide mobility support by reuse and adaptation of service
compositions.

Automation must be an option in the prototype which can further be
developed with reasoning and decision making tools, and even artificial in-
telligence. The user should have options on what he wants to do at any
time, but he must also have an easy way of automating certain options he
uses often. So in the event of his choosing, a certain flow of information
dictates an event on a selected service. The prototype has to support this
in a way that makes the creating and managing of automated fall naturally
to the end user.

2.3.1 Learning to use CoPE

Because of the insurmountable obstacles that may eventually appear if the
environment outgrows the ability to keep control of it, the notion of serendip-
ity is presented [Newman et al., 2002], [Humble et al., 2003]. Serendipity in
the field of end user service composition means the end user performing a
certain task, and while performing discovers possibilities he was not familiar
with before. Playing around with compositions should be made so that the
user can ”learn while doing”, and not ”learn before doing”.

14

Chapter 3

State of the art

If I have seen further it is by standing on ye shoulders of Giants.

– Sir Isaac Newton

3.1 Introduction

This document will present some variations of user interfaces that exist,
or are being developed, that could support the notion of end user service
composition. We will evaluate the different variations from our project’s
perspective.

3.2 Choosing the User Interface

Following is a brief description of various methods of user interaction,
along with some work that has been done on each point. We have defined
some key points that we need in our project. The points are illustrated in
figure 3.1.

15

3.2 Choosing the User Interface 3. State of the art

Figure 3.1: Scope Directions

• Mobility - How easy does this method work with a mobile user.

• Availability - How well can this method hold grounds in todays mar-
ket.

• Preciseness - How precise can the user control this method, and how
well does the method respond to the user’s input.

• Ease of use - How easy and efficient is this method in end user service
composition.

• Semantical Richness - How versatile is the interaction with the end
user.

16

3.2 Choosing the User Interface 3. State of the art

We give points ranging from 0 to 4 on each, with 4 being the highest
and 2 representing neutral. A neutral score means it does not excel nor fall
behind, and is not a reason for choosing or dismissing it. We will go with
the one which yields the overall highest score. The score table is shown in
figure 3.2. We will look into input and output in the following variations of
user interfaces:

• Textual - Pure text.

• Manipulative text - Same as textual, but with more abilities, like
drop-down menus or auto-completion.

• Vocal - End users speak commands to the system. The system re-
sponds by speech.

• Tangible - Physical objects representing actions on a service.

• Graphical - Virtual approximation of tangible interfaces, using icons
and drawing in a 2d environment.

3.2.1 Textual

Textual input using a keyboard, is the basis of UNIX systems and gives
high control to skilled users. This is an easy method of relaying commands
to a system, and a good point to start. Command lines can be sequenced in
scripts, that form a line of connections to enable the system to do a specific
task. This method has a low fault rate, because the commands has to be
exact to work. An incomplete command does nothing, or performs wrongly.
This however draws heavy on the users working memory as well as long term
memory as the user must remember each connection command, as well as
each element he wants to connect. We also feel that feedback from this user
interface is not understood fast enough for an end user. Notably this scores
highest on preciseness and semantical richness, but looses out on ease of
use.

3.2.2 Manipulative text

Newman et al. [2002] proposed this method, through a PDA and a web
browser. The concept is simple, and the functionality is clear. They also
performed some low-fidelity tests with direct manipulation, but rejected this
due to real estate cost and complexity towards the end user. The availability
of this method is very high in this list, as every computer has a web browser,

17

3.2 Choosing the User Interface 3. State of the art

and more and more PDAs and mobile phones are shipping with browsers
integrated. There is no need for extra software to make this method work.
All you need is the web browser. It scores high on mobility because it can
almost always be used in any situation. To use it you only need one hand
free, and it can be implemented on static devices as well, so this method
gets the highest score on availability.

3.2.3 Voice

Voice commands can be compared to scripting. Instead of written com-
mands you can speak the commands. Work on this method of interaction is
performed by, amongst others, Gajos et al. [2002], in the article End User
Empowerment in Human Centered Pervasive Computing. They introduce
their agent Alfred, which acts on behalf of the system as a parser and con-
veyer of the spoken commands. The user will talk to the system as if it were
a person, and ask it to perform tasks. By implementing the agent to respond
and ask like a human would, the user can feel more at ease with the system.
The system was made to record macros. The macros would perform tasks
in a manner defined by the user. The macros can be compared to service
composition.

The most positive aspect of voice is the fact that it has a high value of
availability. With exception of mutes, every body has their voice with them
at all times. Another great effect from voice interfaces is that the user does
not need to use his hands, nor even eyes, at any time. A user is free to
perform other tasks and still not impair the systems functionality.

A general drawback of this is the fact that voice recognition is difficult
to implement successfully. Most people speak in different ways, and the
system needs to learn each persons voice characteristics. This does not
seem to be a problem in Gajos et al. [2002], due to their background agents
ReBa and Rascal as well as the extensive vocal feedback provided. Some of
the features they present is at the very core of our problem also. It would
not be an unlikely mode of interaction in our project, but we choose not to
implement it because we want the user to have the ability to use our systems
composition service in places such as meetings and other public places where
loud speaking is kept to a minimum. As for comparing with scripting, this
also has the drawback of users having to remember commands. This gets
the highest score on mobility, but looses out on ease of use and preciseness.

18

3.2 Choosing the User Interface 3. State of the art

With a good artificial intelligence reasoner to analyze input and output,
semantical richness can also rate good.

3.2.4 Tangible UI

Connection between artifacts in a ubiquitous computing environment is
proposed in Holmquist et al. [2001], as a very physical interaction. A user
would move artifacts in close proximity and physically shake them to have
them connect to each other. While our system also supports proximity as a
context variable, it is not feasible for our system to use the shaking method
as a means to connect two artifacts.

The connection between elements that are not in the immediate vicinity
is also a necessity, so if this was to be implemented it would have to be
alongside some other method. However such research as put out by Svanaes
and Verplank [2000] is highly interesting as to how users relate to tangible
interfaces. For instance, the iButton shows some good points as to how
the user relates to context and migration of data. Availability and mobility
rates lowest in this method. A tangible UI can be excellent on stationary
services, but not really viable as a UI for mobile use. Most places will not
have the same tangible computation UI available. Semantical richness and
ease of use however can rate high because the user is able to ”feel” what he
is doing. And depending on the implementation, the feedback can be very
intuitive.

3.2.5 Graphical

This is the version where the user will have a pen and a touchscreen.
The objective of this is direct manipulation of graphical objects that rep-
resent the user’s environment. Humble et al. [2003] presents a graphical
user interface that uses jigsaw puzzles as a metaphor for connections. The
composition is represented by a ”solved” puzzle. This is a great method for
serendipitous service composition, as the user does not need to remember
each object in his environment, thus he is able to keep his mind focused
on the composition itself. This method rates highest on ease of use be-
cause it is, in our minds, the quickest form of interaction. Mobility rates
high, because it could potentially run on every new user device. Preciseness
also rates high because the user can get all types of feedback from the UI
efficiently.

19

3.3 Summary of Scores 3. State of the art

3.3 Summary of Scores

Here follows an overview of how we rated each method of interaction.
Green squares are the highest rated, which we think has the best options
for what it is rated on. Red squares are the ones we feel lack something in
what it is rated on.

Figure 3.2: Scoreboard

20

Chapter 4

Solution Proposal

The best way to escape from a problem is to solve it.

– Alan Saporta

4.1 Introduction

This chapter will introduce our solution proposal for a software prototype
called CoPE. We will first choose the user interface that we feel suits our
project best, and provide some reasons for choosing it. Then we will discuss
what is needed from our architecture to support the user interface, as well as
present some central concepts that needs to be in place for the architecture
to work.

4.2 Proposed User Interface

Newman et al. [2002] used a PDA with a touchscreen and a pen, but
rejected the idea of direct manipulation, claiming it would take too much
real-estate from the screen on a mobile device. It is true that directly ma-
nipulative objects in a graphical user interface requires a lot of ”unused”
graphical space to not overflow the user with information. Humble et al.
[2003] however showed that this does not have to be true. With the screen
sizes and resolutions of todays mobile smart phones and PDAs, the available
space on a smaller screen should suite our project rather well. Our proto-
type will use directly manipulative objects, that are dragged and dropped.
This can also be used with a stylus on a touchscreen.

21

4.3 Final Thoughts on Chosen User Interface 4. Solution Proposal

4.2.1 Availability

One of the main reasons for selecting the touchscreen over other meth-
ods is it’s availability. The trend has mostly been that more high ranking
businessmen and enthusiasts have been the key consumer of devices with
touchscreen, but that trend is changing. More and more smartphones and
PDAs are becoming affordable, and with more people using such devices, as
well as the consumer having a wider range of devices to choose from, we feel
that it could be a viable method for this project.

4.2.2 Direct Manipulation

The touchscreen will provide the necessary tool for enabling direct ma-
nipulation. This will enhance the ability of usage from novice users, as they
do not require to learn complex syntax to understand the system. Through
use of metaphors we hope to make it even easier. The use of metaphors
in the design of directly manipulative interfaces is very important as it is
easily recognized by the user and does not put unnecessary strain on his
working memory. Madsen [1994], Marx [1994]. Feedback from a graphical
user interface also have a better way of communicating with the end user,
as it is not restricted to text only. Illustrations can be used to optimize the
feedback for better understanding.

4.3 Final Thoughts on Chosen User Interface

We will not profess the superiority of the graphical user interfaces, and
direct manipulation over the other alternatives presented. We have seen,
from the articles referenced, that they all bring something to the table, so
to speak. We will however state that we feel comfortable with the choice,
and believe it will fulfill the needs of our project as best we can see at this
point in time. Most importantly we believe that this method will provide
us with the necessary tool to facilitate serendipitous service composition by
the end user.

We propose a set of low-fidelity user testing in an iterative user inter-
face design process. Since only one are going to be developing, we will use
low-fidelity tests, such as Wizard-of-Oz testing ([Dahlback et al., 1993]), to
increase the number of iterations. This will give us a broader perspective
and better secure the way for future versions.

22

4.4 Mission statement 4. Solution Proposal

• We will design a graphical user interface.

– Using low-fidelity user tests.

– Using iterative design and development phases.

4.4 Mission statement

The ”Original Assignment Description” (Appendix A) page 61 is the as-
signment in raw form from what we described before the start of the project.
This still applies, although some modifications has been made through the
course of the project. We will define these on the following paragraphs.

A generic and common framework is needed for user interface
”pieces” to be defined, combined, used etc.

A generic tool is needed to set up and configure user interface
pieces for the current applications.

It is important to know that we are not talking about combining two
service interfaces into one, and thereby generating a new interface. We are
talking about designing the background system and a user interface that
will allow the services to efficiently give the end user the ability to connect
services as well as configuring them to his preferences.

In the end the user must not be micromanaged. We can not make a wiz-
ard like program for connecting and managing services, as this method is
not versatile enough to accommodate all the services we have considered
that it should be able to support. It certainly can not handle all the ser-
vices we might encounter in the future. The prototype must give the user
the full freedom he would expect from such a tool, while still giving him
guidance without it being a nuisance. A Graphical User Interface that uses
direct manipulation on objects representing services should give the neces-
sary freedom.

The direct manipulation gives the user freedom to shape his surroundings.
To guide we need a central matchmaking system that will quickly display
hints or guides to a user when he is performing on services. The hints must
come in the form of feedback to the user on what he is allowed and not
allowed to do. This matchmaking process must be highly tuned for rapid
response, and will be explained better in 5.8 Ontology.

23

4.5 Services 4. Solution Proposal

Ubicollab follows a Service Oriented Architecture (SOA). We propose
building our structure in a strict Model View Controller (MVC) architecture
to cut down development time and still maintain an easy way of converting
to SOA in future work. We also propose to use technology from OSGi (Open
Source Gateway Initiative) in our implementation.

OSGi technology is the dynamic module system for Java
OSGi technology provides a service-oriented, component-based
environment for developers and offers standardized ways to man-
age the software lifecycle. These capabilities greatly increase the
value of a wide range of computers and devices that use the Java
platform.

OSGi gives us a plug-and-play platform designed for service management.
We will from this build a control point for end users. Services are are OSGi
”bundles”. The bundles are wrappers around pieces of code which makes
possible our collaboration methods.

• We will produce a generic and common framework for defining, com-
bining and using Services.

– Use and adapt existing theorems and structure from UbiCollab.

– Implement prototype on OSGi platform.

– The prototype must show how it can adapt to the changing en-
vironment of ubiquitous computing.

• We will produce a generic tool available to the end user to set up and
configure Services.

– Define ideal way of presenting the user interface.

– Give the user guidance without micromanagement through simple
matchmaking.

– Implement prototype with functional example services.

4.5 Services

The most ideal way to test and implement prototype services would be to
take advantage of existing services. Unfortunately the services we can utilize
today are not built to take advantage of anything else then a fixed number
of other services. This is a piece of the puzzle of ubiquitous computing that

24

4.5 Services 4. Solution Proposal

still needs fitting. We must not expect services to change and therefor design
the structure of ”service handling” to enable existing services to be adapted
without changing the services themselves, rather then proposing redesigns
to the services in question.

Work has also been done by projects like UbiCollab on this subject. Our
prototype must use the same concepts in order to be applicable in future
implementations. We will have to adapt the existing theorems so that we
clearly show what is needed to cooperate with the related projects. Most
central part of the theories is the concept of a Service Proxy. A service proxy
is an adapter for services that incorporates methods for services that enables
them to work with Ubicollab and CoPE. It is a piece of software that exists
between the actual service and our software. The services themselves are
stationary, and the service proxy is handed out by the service (or a service
repository) with means of communicating with the service. This will allow
our project to ”handle” service proxies which in turn handles it’s parent
service. We propose implementing service proxies, and adapting them to
suit the user’s compositional needs.

• We will design for existing services.

– Define the process of adapting existing services.

– Implement example services.

– Refine the process for future work.

– Define what is handled by CoPE and what is handled by Services.

25

4.5 Services 4. Solution Proposal

26

Chapter 5

Architecture

Design is not just what it looks like and feels like. Design is how
it works.

– Steve Jobs

5.1 Introduction

This chapter will go deeper into the software parts of the prototype. We
present the theories we have used and how they are implemented. CoPE
and it’s relation to services are the key elements here. The main parts of
the architecture are illustrated in figure 5.1, where 2 services are installed, 1
composition has been made, and we have connected to an external discov-
ery and ontology. Our prototype exists within the OSGi environment and
consists of these main parts:

• DiscoveryManager - Handles discovery and installationof services
through external discovery.

• OntologyManager - Handles matchmaking between services through
external ontology.

• ServiceRegistry - Internal registry for the installed services with
methods for managment (start/stop/uninstall).

• CompositionManager - Handles creating, storing and activation of
service composition of installed services.

• CoPE - The interface to CoPE from a User Interface.

27

5.2 CoPE and Services 5. Architecture

Figure 5.1: CoPE and it’s relations

5.2 CoPE and Services

As mentioned, the architecture needs to fully support plug-and-play ser-
vices. CoPE needs to know what services are installed as well as how to
use them. This is not a big problem when using the OSGi framework, as it
comes with several needed functions that supports necessary management
of the installed services. The problem, however comes when you are in need
of adding support beyond that of simple management. Services that are
natively designed to run on it’s own should not be hindered in running as it
would outside CoPE, but with added management options the services can
become more then what they were initially designed for.

The simple solution would be to make CoPE tell any installed service to
start, and have that service pop up any interface it chooses to run. This
would work straight out of the box with OSGi, but it lacks the ability to
communicate with other OSGi bundles because it is as capsulated as any
other physical bundle in its environment. It would have to be built with
static methods to communicate with other bundles, as well as with CoPE.

28

5.3 Service Registry 5. Architecture

This could in turn be solved by simply allowing CoPE to be a mitigator
between bundles, and have it give bundles the ability to locate other bundles.
This however, causes more problems then it solves. Every service now has
to know every function of every bundle in order for a system of meaningful
communication to work. This can become infinitely complex when more
and more services are added to CoPE, and even more services are added to
CoPE’s ability to discover them. In order to allow the services to perform
whatever task they need to complete and still let CoPE be a manager of
services rather then a mitigator, a new way of thinking is required.

The solution to the problem is given partly by the related project Ubi-
Collab (1.3.2). The idea was to separate core functionality and service func-
tionality. We have designed CoPE to handle proxy services instead of entire
services. The plan is that all functionality related to CoPE and managing of
services are embedded in the proxy service, and any actual running of service
functionality is handled by the proxy service and does not need communica-
tion with CoPE. This allows CoPE (and thereby the user) to have complete
control over how the service is handled, while not putting restraints on the
functionality of the service itself. A service runs as it would, both inside
and outside CoPE.

5.3 Service Registry

The central part of CoPE is built around a service registry. The service
registry is the core of CoPE’s communication opportunities. All service
proxies are listed in detail, containing the methods for using the services.
An illustration of how the services relate to CoPE, via service proxies is
shown in figure 5.1, where the service registry contains three installed service
proxies. The service proxies in turn communicate with and manages their
parent service.

5.4 Modularity in relation to Ubicollab

Because of the fact that the prototype should be implemented in other
projects it is important to keep it modular. The most modular structure
related to UbiCollab is SOA (Service Oriented Architecture), and the im-
plementation should support this structure. We will develop the prototype
with a great emphasis on a strict Model-View-Controller architecture. This
will allow the code to be easily translated into SOA when the time comes.

29

5.5 Functionality and APIs in Services and Service Proxies5. Architecture

The reason for not developing for SOA at once is that it is much easier to
do testing locally than distributed. This will yield better result in our pro-
totype as we get more time on our hands. The structure of communication
in the developed SOA environment of Ubicollab (and the other projects) are
also not entirely completed, so we wanted to have the code running locally
before adapting it to other projects.

The main part of the prototype must be the part related to composition.
Both the framework for enabling composition structure as well as the basis
for adapting the framework for other projects has to by fulfilled. The solu-
tion will have to show how UbiCollab can utilize this project. What parts
are in focus, and what interfaces are available for them. The main part as-
sociated with Ubicollab is sharing of compositions. When a user has made
a composition he should be able to quickly share it with friends. We will
develop a subscriber/subscription solution, where a user can subscribe to a
composition. This will be developed in MVC rather then SOA, to improve
production time, but still retain SOA abilities.

5.5 Functionality and APIs in Services and Ser-
vice Proxies

The proxy services need to support all functionality necessary for the
end user to complete his task of managing service compositions. The user
has a sense of interacting with the services even though everything CoPE
interacts with is the proxy service. For CoPE, very little knowledge of the
actual service is needed. The bare essential however is that we know the
actual address of the service. This must be conveyed through it’s proxy
service. The reason being that the method of connecting devices needs the
service addresses. If we were to use the service proxy’s address, then all
communication would have to go through the device running CoPE. This
will put a bottleneck on the communication, as well as forcing every proxy
service to handle both Ontology searches as well as discovery. We chose to
eliminate it by saying a proxy service has to announce the address of it’s
service (fig 5.2).

As the figure shows the simplicity of the latter illustration is quite a com-
pelling argument for announcing the original service address. We can then
tell the proxy service to tell the service to connect to a given address. We

30

5.6 Handling a Service’s User Interface 5. Architecture

Figure 5.2: Data Flow after Relation is added

will then be able to reduce the proxy service’s complexity requirements dras-
tically. By applying ontology to our local service registry and composition
manager, we can be sure of what we are telling the services to connect to
will actually work, and the services can perform the connection task without
having to worry about whether or not the services are compatible. The ser-
vice connections are stored locally within CoPE’s composition manager. In
the initial figure 5.1 we have a composition manager with one composition
and a service registry with two service proxies. This is what the internal
representation would be if one is to make a composition. The composition
contains two composed services that is linked with the service proxy, and a
relation that is linked with both composed services.

5.6 Handling a Service’s User Interface

One of the main problems of running services from within CoPE, and
thereby within the JRE, is that the functionality the proxy service provides
are not easily transferred into CoPE without CoPE knowing their structure
in advance. Implementations of specific classes that provide standardized
methods for a proxy service to use is a must, and this in turn will put

31

5.7 Composition 5. Architecture

restraints on any service developer. This problem appeared clear as we were
designing the methods for sharing the user interface of the services with
CoPE.

The first proposal to solve this was to have the service deliver a Java
class that CoPE could open in it’s own environment. We found this to be
unreasonably hard, as well as restraining service developers too much, and
therefor opted to go in a different direction. The original proposal was to
have CoPE ask for the service’s interface, the service serializing it’s interface
class and sending it to CoPE, and then having CoPE opening the service
class in it’s own environment. We decided to walk away from this option as
every method that the service wants to use (which originates from the service
interface), CoPE needs prior knowledge about, unless we decide to build a
communication module that a service proxy can use. This will again restrain
possible communication between the service interface and the service proxy.

Earlier research in our project suggested moving a service’s user inter-
face by means of a descriptive file that could be parsed and converted
to a functional GUI on a receiving end. We used the technology Thinlet
http://www.thinlet.com/ to achieve this, but found that we could not use
this method on the grounds that we would then have to force service proxies
to use this method.

We have from this arrived at the decision to give CoPE the ability to ask
services to initiate their interface, instead of asking them to give it away. The
service specific interfaces would then open as a standalone interface with no
knowledge of CoPE. Having the service interface open outside CoPE does
not mean that CoPE has less control over the service. It’s only difference is
that the service interface is run parallel to CoPE, and not within. The same
amount of control and communication to and from CoPE is still applicable
to the service proxy, but by using this solution we have eliminated a possible
bottleneck of communication from service interface to service proxy. The
service proxy is also free to open it’s service interface by other means then
CoPE’s implemented Java SWING approach.

5.7 Composition

The main part of discussions have been around the topic of the actual com-
position of services. In a first solution proposal we described a three-level

32

5.7 Composition 5. Architecture

composition architecture that we felt, at the time, gave us the needed func-
tionality to facilitate proper end user service composition. As we continued
the development of the prototype we discovered that the intended three-
level composition was not the optimal solution. The structure was sound
and would probably work well in a more controlled, but we are developing
mainly for the average Joe end user. We therefor needed to revise our ap-
proach. We will present the original three-level architecture and the revised
architecture in the following subsections. Both the original and the revised
architecture reflects on to the scenario described in 1.7.1.

5.7.1 First Proposal - 3 level Composition Architecture

Composition Template First stage of a composition. A composition
template is the most generic description of a composed service. In this
stage a user will define the characteristics of every element that is to be a
part of the composed service. It will also contain information of relations
between elements and data management descriptions. Various inputs and
outputs can also be connected at this stage as the template contains enough
information about each object. Templates is the only shareable version
of a programmed service and can be copied and passed along to different
clients. The template is stored as an XML file with knowledge specific to the
selected generic service description. When a template has been completed,
a user may choose to distribute it to other users so that they can share
the same setup. E.g. in a distributed meeting, with people attending from
another location, they can download the predefined composition and set the
empty service descriptions to be his or her own service. For instance, in
a template one can define a video output device, and in the meeting each
of the attending can set the display to be his own PDA. If a user decides
to start from this stage he will start from scratch. He will have a greater
sense of the structure of the composition, but loose some speed compared to
starting from other stages. This also gives the user the ability to pre-define
a service composition when he has the time. He does not need any intimate
knowledge of any of the services he is planning on using, only how he wants
to use them.

In the scenario from chapter ?? the composition template comes into play
when Bob wants to share his composition with his friend. He could not share
his entire setup from where he left of because that setup had instantiated
elements, meaning it was fitted to his house. When Bob chose to share
it, CoPE located the underlying structure of each element into ”a device

33

5.7 Composition 5. Architecture

Figure 5.3: Composition Process - 1. Template, 2. Instance, 3. Session

capable of video and audio output, connected to a device capable of video
input and a device capable of audio input”. This description suited both
Bob’s house as well as his friend’s.

Composition Instance A composition can be instantiated from a tem-
plate, where a resource is allocated to each service. In this stage the elements
contained in the template will be instantiated by locating and addressing
a specific physical element that corresponds with the criteria of the tem-
plate element. An instance is typically stored as a copy of the Composition
Template file, with additional information about which specific element each
element corresponds to. There can be many instances of the same Composi-
tion Template that is adapted to different environments and specific elements
(see fig5.3). In the first scenario, Bob made a composition instance for his
house starting from this stage, and when he shared it with his friend, his
friend made an instance of his own. They both had the same underlying
template that supported both houses.

A user can also create a composed service starting at this stage. He could
locate objects around himself without creating a template first by simply
searching for them and dragging them onto his workspace. An instance can
also be decomposed into a more generic service template if the user decides
to make the service from this stage. No processing is required as every object
in a service composition has a template file.

34

5.7 Composition 5. Architecture

The quality of available connection is included here, but only if the user
expressively says so. E.g. a user may have a preference to what quality an
audio connection has to have. He might find a DVD player which supports
surround, but no audio output device that does. In this case the user should
be able to get this information before he initiates a session. If the user does
not state filters for the connection, two objects should always use the best
possible connection unless a specific is identified by the user. This will be
handled on a layer below ours, and will be implemented in future releases.

Composition Session Third stage of a composition. This is the final
stage before having made a Composed Service. In this stage information
about each element is shared and collected through the network made by
the composition. Handshakes and authentication through Discovery and
Security Services are processed. A composition session corresponds one-to-
one with a composition instance, but can be adapted to another instance if
the user decomposes it to a template and then makes another instance. We
decided to support this in a final layer of composition to reduce the need for
sharing sensitive information over any network before it is actually needed.
Sessions could later support such technologies as web browser cookies so
that it remembers most information needed for the handshaking process.

The user can, as all other stages, choose to start composition here. He
may want to activate a single service, only to discover later that it will
work better with other services connected. We did not want the user to
have to rebuild an already working service or service composition. Our
theory is that a user will be inspired to test connections and service creation
without making a session, and that this will provide great efficiency as well
as increasing the confidence of the user while composing services. This will
be tested once a functional prototype is completed. We do not yet know
which stage will be preferred to users, but we believe each stage is necessary
to give the user enough freedom. As Newman et.al. discovered, the users had
several different preferences that their team did not foresee. Some preferred
semi-completed templates and others wanted something more like making
the service from scratch. Some located elements nearby, as others searched
by room number. We therefor want the user to be able to choose which
stage he wants to start from, so that no users are left behind.

35

5.7 Composition 5. Architecture

5.7.2 Revised Composition Architecture

The original three level architecture provides some necessary functionality,
but we have in the process of implementing our prototype found better ways
of achieving the same thing.

While the three level architecture gave users an optional starting point
at the Template, we found through low fidelity user testing that none chose
to start from this level. When asked they stated that it was much easier
to start at the bottom. We therefor decided to rely more on instant service
discovery. We state that the user will use discovery more actively then we
originally anticipated. The user also expects an easy to use discovery to
perform much more to their liking then if they were to use Templates. We
will still enable distribution of compositions, and the system will respond
and act in the same way. By allowing service discovery to discover remote
services, the user can still make service compositions without being in the
same room as the needed services reside.

Most functionality related to describing capabilities of a service has been
moved to an ontology manager and distributed along with the service prox-
ies. Basically it means that both the process of discovering and installing,
as well as connecting services makes decisions based on matchmaking pro-
cesses of a distributed matchmaking system. The ontology of our service
matchmaking is described more thoroughly in 5.8 Ontology.

The other reason for having a Composition Template was for sharing pur-
poses. The template is intended to provide us with sharing a generic descrip-
tion of a service composition to other devices, and then have them search
for matches to the generic descriptions contained. The generic description
is now accompanied with every service proxy. When a user wants to share
a composition, CoPE will generate an XML file with the descriptions from
the service proxies in the composition and the links between them. The
template is therefor no longer an option for the end user, but a tool CoPE
can use to provide sharing of compositions.

We have also given the prototype the ability to share compositions in
another way. We now give a description of the composition with addresses
to the service proxies. This makes the sharing process much simpler for
the receiving device as well as the transmitting. The transmitting device
already has the addresses in it’s service registry, and the installation of

36

5.8 Ontology 5. Architecture

a service proxy (the OSGi bundle) is natively supported within the OSGi
environment. This way the receiving device gets a description containing the
installation paths of the service proxies, with the corresponding relations.
When they are processed they become composed services on the receiving
end. The received composition is then identical to the the original. This
should allow for more rapid sharing of local compositions, such as when a
person wants to share a composition he has made for a specific location.

5.8 Ontology

The ontology part of our project is perhaps the most abstract part. We
have enabled CoPE to handle ontology searches and ontology bases from a
distributed perspective. The problems arise when the user wants to match
services against each other. We need this to give the user feedback without
micromanaging his decisions. The way of doing this is to match services in
real time whenever the user starts to create a connection. Each time he does
so, and for each service he has in his composition, we must give accurate
feedback on wether the services match or not.

An entire ontology and methods to search within it is not possible to
have running on any type of portable device today. It will simply take
to long time for a match query to give efficient feedback to the end user.
We therefor had to distribute the processing power to a number of levels.
Mainly this includes three locations: A service proxy repository running on
a fixed server, the CoPE running on the end user’s device, and distributed
matchmaking services running in the user’s available network.

To increase effectivity in searches we can for example process matchmak-
ing already before we know what services the user wants to use. By doing
hashing on this level we can utilize clusters and other ”supercomputers” to
do the matchmaking for us. This will leave us with a repository that knows
all matches and mismatches, and can tell this to the user when he requests a
service proxy. We must then rely on a central database for matches between
services. The user also needs to give information about what services he
currently is running with the request for the new service. The repository
can then get the matches for the requested service and send that with the
response. In this way the user gets the matches with his new service proxy.

37

5.9 What we get from OSGi 5. Architecture

When the service proxy containing the matching information has arrived
at the user device, the second level of matching takes place. The matches
and mismatches is stored in CoPE for every service proxy that is installed.
Matches are collected from whatever form we chose to implement an ontol-
ogy in. This is the highest level of hashing that is possible. CoPE stores only
the simplest values and matching queries so that the process of matching is
exceptionally quick, and appears instantaneous to the end user.

If the first and second level of matchmaking is possible to achieve then
the third location is not expressively needed. The third location is a backup
solution if the previous solution does not work. If we choose to implement
this, then we would want to have a central database for matchmaking, but
we do not need a central repository. We would also need the description
following service proxies to contain a unique identifier for itself that can
be mapped one-to-one with a service in the matchmaking database. The
request sent by the user device will then travel to the matchmaker and return
quickly with the matches and mismatches. This values are then stored when
the user installs a service proxy.

By implementing the ontology manager in the proposed manner we will
only see an increase in the time it takes to install a service proxy. The
user will have instant feedback when it comes to the actual composition.
The thing that is implemented is CoPE’s local storage of matches and mis-
matches, which will enable future work on ontologies to be quickly imple-
mented. The rest of the process is related to future work and therefor not
implemented and tested.

5.9 What we get from OSGi

OSGi provides some highly needed management functions for plug and
play services. We have chosen OSGi for exactly this reason. As described
in State of the art, OSGi bundles Java classes into manageable plugins for
the OSGi platform. Every service proxy is bundled like this, and we use
the standard methods provided to install, uninstall, start and stop service
proxies. They can be installed from a URL and updated with the click of a
button. This management can also be done remotely, if the user gives the
access for it. We have the ability to control what a remote session is and
isn’t allowed to do. The OSGi framework basically provides a usable service
registry, with life cycle model view of each service (see figure 5.4).

38

5.10 Storing Sessions 5. Architecture

Figure 5.4: OSGi Framework

OSGi is built as a software container, meaning that software installed
(in our case service proxies) has some functionality integrated that allows
for efficient transmitting of service definitions and possible connections. We
have opened the option of having service proxies deliver such content to both
discovery and ontology managers. By doing this we facilitate distribution of
the matchmaking process, as described previously in 5.8 Ontology.

5.10 Storing Sessions

As we mentioned in the solution proposal, we wanted to be able to store a
session, as it was surly needed if the user would be able to turn off his device
and continue using his services without reinstalling them. This presented us
with a number of synchronization issues. We decided to put some controls
into the service proxies, so that they could register themselves after an even-
tual crash, or after reinstalling them from outside CoPE. This also allowed
CoPE to stop without saving it’s registry. All services now implement a
listener, that listens for CoPE registering in OSGi. When CoPE is loaded,
restarted or reinstalled it will tell OSGi that it is ready for action and OSGi
will from here tell all service proxies that they can reregister with CoPE.

The reregistering process is a very light weight process, so the services (nor
CoPE) uses any more time then they would if they were to store and load
the service registry from a file. Almost every part of the original registering
process has already been performed, and works as well after the reregistering.
The simple process of retrieving the name from the service proxies is the only

39

5.11 Security in Service Proxies 5. Architecture

thing needed for CoPE to have the same operating functionality as before
the restart.

5.11 Security in Service Proxies

Each service proxy gets a subfolder in CoPE’s execution folder. This can
be used by the service proxy to store variables of it’s service, or any other
variable it sees fit to store. Any items the proxy wants to store should be
stored and accessed in this folder. Currently there are no restrictions imple-
mented, so this is a measure to be dealt with in the further development.
The design of the system is currently that a service proxy has a subfolder
with the same name as the server in ”CoPE/services/[name of service]”,
which it can use. CoPE can access this at any time, so nothing can be
hidden from the user. It should be an easy task to add security features to
this folder.

In future work this should be implemented more securely in some form of
a ”preferences manager”, on which the user stores variables that the service
proxy can read from. Only the user should be allowed to write to the disk.
Service Proxy should only be allowed to read.

40

Chapter 6

Graphical User Interface

Everything should be made as simple as possible, but not simpler.

– Albert Einstein

6.1 Introduction

In this chapter we will give an overview of the current edition of our graphical
user interface. We have delved into the process of designing the selected
Graphical user interface. Through this chapter we will not refer to parent
and proxy services, but to services in total. This is because the user should
have the illusion of handling services rather then representations of them.
Related allusion is the TV and the TV remote. If asked what users do
when changing a channel, they will most likely reply that they ”change the
channel on the TV”, they do not ”act on the remote”.

6.2 Design Process

We needed to user to be comfortable with the GUI, and we therefor used
an iterative design process with a couple of low-fidelity user testing. The
process contains 4 major revisions described in the following section. Illus-
trations and screenshots of the iterations are listed in Appendix B.

6.2.1 Iteration 1

In the first iteration we had initially thought that CoPE should be a
quickly accessible tool within a web portal environment, resembling more

41

6.2 Design Process 6. Graphical User Interface

the solution of [?]. The web portal solution was short lived, and we therefor
had to extract the tool into a standalone environment. The next image,
iteration 1b, contains the same tool taken out of it’s portal environment.
We knew at this point that more functionality had to be formed within the
composition tool.

We also proposed having a ”master service” as the main point in any
composition. The master service would always dictate how related services
should behave. If there were more then one ”source” service then that service
would have to be a master service in another ”set” which in our current
terminology is a composition. If they were to be connected they would
connect between the two sets. The communication between sets proved to
difficult to implement. Also we found that the user might be flooded with
sets if he were to actively use this version.

6.2.2 Iteration 2

Iteration 2 proposed the first devision of actions. Discovery for finding and
installing services, Favorites for storing compositions, Sandbox for making
and managing a composition and Device to manage the currently selected
service’s interface. The Device section was meant to contain the interface
of a selected service. In the architecture chapter we discussed how CoPE
relates to service interfaces, and here is the reason for no using the Device
section. We are opening the interface outside CoPE’s boundaries to enable
the interface to also work without CoPE.

We also proposed that the user could select how many parts he wanted
to show at any given time. For instance, in iteration 2a, sandbox, discovery
and favorites is shown, and in 2b sandbox and discovery are shown. At
this stage we applied user testing to see if they thought the devision and
management of the GUI parts were good enough. The response was clear:
The users found the screen to contain more information then needed at any
time. They were not able to manage what parts were open as efficiently
as we hoped. Instead they ended up having all windows open at all time
thereby giving them more unnecessary then necessary information.

The Sandbox was also designed for free manipulation of services. A service
could be selected and deselected. When it was selected a button would
appear below it that when pushed activated the creation of a relation with
the source being the selected service. The user testing showed us that this

42

6.3 Discovery, My Services and Favorites 6. Graphical User Interface

was not the ideal way to go. Users had trouble finding our what to do in
the first place, as well as the fact that we noticed way to much time were
spent clicking on services.

6.2.3 Iteration 3

This iteration, illustrated in iteration 3, was concentrated on the Sandbox.
We wanted to first of all remove the connection button from the service. By
removing the button we could also reduce the clicking frequency of the user.
We wanted to make the user drag connections in the same way that he would
move the service itself. It would be the next iteration that would solve this
problem.

6.2.4 Iteration 4

The following sections will deal with what we have created in the final
prototype. The iteration 4a and 4b are screenshots taken from currently
working scenarios. The scenarios are described in chapter 7 under Working
Scenarios 7.3.

6.3 Discovery, My Services and Favorites

We have structured the user interface in such a manner that the user
himself can decide the level of simultaneous interaction with services, by
separating actions the user can perform into four main parts. ”Sandbox”,
”Discovery”, ”Favorites” and ”My Services”. This was a thought from it-
eration number 2 B after we decided to go for a separation of portal and
CoPE and refined when we wanted to open service interfaces outside CoPE.

Our focus on this project is contained mostly within the Sandbox. This
is the part where service compositions and usage occur. Following is a brief
description of Discovery, My Services, and Favorites. After describing what
is needed and preferred from these parts we can begin a deeper description
of our Sandbox.

6.3.1 Discovery

Discovery will focus on all things related to discovering and installing
services. This will have the entirety of the process from a service being
available to the system, to the point when it’s available to the end user.

43

6.4 Sandbox 6. Graphical User Interface

From an architectural point of view, this means finding the a service the
end user searches for, getting it’s description and installing the proxy service.
For the end user this will look like installing a driver for the desired service.
After installation, the service will appear in My Services.

6.3.2 My Services

My Services provides administrative options to the user. If a service
should be stopped, started, or uninstalled, this is where it is done. Currently
this is only a simple list, but should in future feature a rich environment for
navigating installed services. From this point a user can add a service to
the Sandbox. He can also open a service interface without any connections
being made. Some services accessed and used by CoPE do not necessarily
have to connect to other services.

6.3.3 Favorites

After a composition has been made it is stored in favorites. In the next
section we will describe our Sandbox, where the actual service composition
takes place. We wanted to have a separate storage room for compositions.
Automation of composition loading as described earlier can be implemented
here. The sorting and navigating of stored compositions should also support
location based filtering, for automation purposes. A user should be able to
have the active composition change when a context change occurs.

6.4 Sandbox

We want the user to become familiar with his surroundings, and if he
hesitates and does not know exactly what he needs he should be encouraged
to try things without having to ”call someone to ask for help”. We therefor
use theses metaphors to help us in the development: ”Touch your sur-
roundings”. A user can physically touch objects on the screen. ”Feel the
connections”. The system will let you know if a connection is possible or
not. Through the use of ontology descriptions, CoPE disables connection
options that are not possible. With drag-drop functionality, the user can
make a connection like he would drag a physical cable from a service to an-
other. ”Play with compositions”. The most essential metaphor. Learn
by trying, play to get better.

44

6.4 Sandbox 6. Graphical User Interface

The sandbox contains two important elements: Services and Relations.
In iteration 3 we defined what we wanted the final Sandbox to look like in
a minimalist form. The final product screenshots of iteration 4 is in figure
B.6 and B.7.

6.4.1 Services

A service is shown as an icon, which tags along the service proxy when
the user installs a service, and the name of the service directly below. The
user is free to move the service around as he wants within the Sandbox. An
imagined use of the free positioning of services is that a user can organize
services within the Sandbox as they would appear physically in the real
world. For instance, a TV service and a DVD player service could be located
north (in front of the user) and room lighting service can be located relative
to the location of a lamp in the room. This way a user can activate ”room
compositions” that looks like the current setup of the physical room.

6.4.2 Relations

Different services can of course have different methods of implementing
the actual connection towards other services, and we do not intend the
services to change any of those methods, such as communication protocols
and physical links. We do however want this to be semi transparent to the
end user. We have implemented a GUI option that can turn off showing any
difference at all between different connection types. With the option used,
the connection is a connection as far as the user is concerned. Default is to
show what connection type a given relation is comprised of, but it should be
up to the user to decide on what advanced functions are shown at any time.
We should also implement an alternative that does not show relations, so
that when the user is finished composing he can start using without relations
cluttering his view.

Relations are handled by the user in the same manner as a service: Drag
and drop. To eliminate the need of an extra button below the service to en-
able connecting (like we had in iteration 2) we decided to go with a ”socket”
on each service in the Sandbox. If the user starts a dragging motion within
this socket, the service itself stays stationary and a line appears that can
be dragged to the desired destination. Each time a user starts a relation
creating process, we match all services in the Sandbox to the originating
service. This is illustrated in figure B.6. When a user drags a line from an

45

6.5 Multiple User Interface Support 6. Graphical User Interface

example service ”Weather Service”, it is matched with the other services
and as we can see; that service can only connect to ”Sound Service”.

The user is also able to choose when he wants the composition to activate.
He might want to play around with connections while another composition
containing the same services are active. By disabling ”Automatically Initi-
ate” the user can play with virtual relations rather then real relations. When
this option is deactivated the services are not told that a relation has been
made. It is only when the user chooses it that the services are connected
in the real world. This way the user can play with the system, even if the
composition in some way are not able to initiate.

6.5 Multiple User Interface Support

One of the great features of designing the system by an MVC-pattern is
that the system and the GUI can run independently. The GUI uses the
underlying architecture as a model, and performs task on and listens to
changes in the model. This ensures that a single line of code is all that is
needed to add a GUI to the system. That line of code initiates the GUI and
passes the respective models along with it.

Figure 6.1: UI Management

The GUI can from this handle the model in whatever way it wants. This
has allowed some additional features for further development. Though the
GUI is currently a Java Swing implementation there is no limitations in the
code that does not allow for other types of UIs to work just as well. For

46

6.5 Multiple User Interface Support 6. Graphical User Interface

instance, an implementation of a voice activated user interface would work
just as well. It can even complement the already existing Swing interface, as
they both will work on the underlying MVC architecture. When a change
is made by one interface, the change is made on the model, and thereby
automatically updated in all interfaces, depending on each implementation.
This will allow a user to have a freedom to choose how and where he wants
the interface.

Any services can also be built to support this feature. By implementing
a handler for a connection of type ”interface”, it can set it’s own supported
variables for displaying or announcing vocally the interface on other devices
then the user’s device. We will allow the services to choose this by themselves
rather then enforcing the option upon them. The underlying model also
gives the interfaces methods of gathering the capabilities of the user device,
so that it can tailor it’s interface to fit.

Another interesting thing to notice is that one can also perform such
feats as delivering the various interfaces to remote services. For example,
a GUI can be shown on another device then the device running CoPE. By
simply adding a new line of code invoking an adapter to a remote interface,
changes to the models can be done from other physical locations. The user
will by this gain freedom to move between rooms, and have the desired
interface shown on any number of other physical input/output devices with
an implementation of the same adapter. This can in turn be linked with
other context data to provide the user with seamless interface roaming when
entering rooms that supports better devices to show interfaces then that of
his own device.

47

6.5 Multiple User Interface Support 6. Graphical User Interface

48

Chapter 7

Implementation

An acre of performance is worth a whole world of promise.

– William Dean Howells

7.1 Current implementation

7.1.1 CoPE

CoPE is implemented in Java 6.0, but is tested and compatible as far back
as Java 1.4.7. The OSGi framework is version R4, with bundle versions 2.0,
but CoPE can also run on versions as far back as RC3. Both the CoPE
platform and GUI are running stable.

7.1.2 User Device

CoPE has been tested on laptops and stationary personal computers only.
It has been tested with a variety of Java and OSGi versions, so it can be
implemented once a mobile device with those versions are obtained. The
current operating systems used are Linux and Windows. Both stable.

7.1.3 License

The entire code structure of CoPE is licensed under Apache License
[Apache].

49

7.2 Example Services 7. Implementation

7.2 Example Services

We have created some example services in this project that support con-
nections in various ways. The following services and connection abilities
(with service proxies) have been created:

Weather Service

• Two outputs

– Alarm

– Weather data

•

Figure 7.1: User Interface of Weather Service

Weather Service is a service connected to a remote database which contains
various weather data. The data is pulled from the database and into our
service. From here it sends weather data to any services supporting weather
data input.

Sound Service

50

7.2 Example Services 7. Implementation

• Many inputs

– One note
– Three notes
– Three notes as a chord
– A music pattern string
– Weather data

•

Figure 7.2: User Interface of Sound Service

Sound Service is a listening service. It is designed to take a broad specter of
inputs and convert them to notes or chords. Depending on what the input
is, the resulting ”music” can be quite fun and weird.

Color Service

• Two inputs

– RGB
– Weather data

Color Service is also a listening service, designed as the music service. It
takes a broad input range and converts any input to a color which it can
show on any service proxy belonging to itself.

51

7.2 Example Services 7. Implementation

Alarm Service

• One input

– Alarm

• Two outputs

– SMS

– Email

•

Figure 7.3: User Interface of Alarm Service

Alarm Service is meant to be a future generic service that takes critical
input from any device that wants to support an alarm function, and relays
the alarm to any other output device that can feature an alarm function.
More on this function follows.

SMS Service

• One input

– SMS

SMS Service is a simple service in terms of what the user gets to play with.
It is designed take short text as input and send it as an SMS. The interface
of the proxy contains the option of which number the user wants to send
the message to. All input is handled by CoPE’s drag and drop.

Voice Service

• One input

– Text

Voice Service takes a simple text input and converts it to speech.

52

7.3 Working Relations 7. Implementation

7.3 Working Relations

Our ontology manager matches each service the user installs to each ser-
vice he already has installed, and the user can therefor be guided at any
point of the creation of a composition. The descriptions of connection abili-
ties is gathered from the service proxy and stored in the local matching lists
for quick access. Possible relations so far are the following:

The weather service may send data to the alarm service, sound service
and color service. The weather service is our primary source of data in our
scenarios. This has the raw weather data at it’s core, but also supports
tailoring to other services. It is not designed specifically for color and sound
services, but the color and sound takes such a wide range of inputs that it
works any way.

The weather service also has a specific alarm output. This is meant to be
a generic output / input description for future versions. The alarm service is
the only service that supports the alarm input, but it supports most known
output services and relays alarms to these if it is connected to them. In
the illustration, the alarm service is connected to two output unit; the SMS
service, and the Voice Service. So when an alarm event occurs the alarm is
spoken in words through the user’s device as well as an SMS being sent to
a mobile phone.

7.4 Working Scenario

A user can install any service proxy related to any service we have listed
in the ”Discovery” section of CoPE. These are updated automatically from
their respective services. The services can connect in the manner described
in ”Working Relations”, and the user will only be allowed to connect them
as such.

The user can install, uninstall, start and stop a service in the ”My Ser-
vices” section of CoPE.

In the ”Sandbox” section, the user can move services freely as well as
create and remove relations. He can create any relation described above in
”Working Relations”.

53

7.4 Working Scenario 7. Implementation

When opening the interface of Weather Service a user can see all data
coming from the weather station. When opening Sound Service he can
select which musical instrument he wants the output to perform in. When
opening the SMS Service ha can choose what number he wants to send SMS
to.

54

Chapter 8

Evaluation and conclusion

Wisdom is found only in truth.

– Johann Wolfgang Von Goethe

8.1 Evaluation

Evaluation has been provided in a number of ways, and we will list them
as follows:

Daidalos has given valuable input on the task of service proxy manage-
ment. With the Daidalos project came the need to handle bundles in an
OSGi environment. The solution of this was given as a management tool
for end users that would support access rights on a login function. The tool
developed here has been adapted to our project and is used in the same
manner as proposed to Daidalos.

ISIS has given the most input on the art of service composition from an
end user perspective. All example services are derived from some part of
ISIS scenarios. ISIS is still in the process of starting up, so the example
services are completely made from scratch, to support migration to the ISIS
project. Evaluation in relation to this project has been very good. The
method of direct manipulation in a graphical user environment has been
well recieved, and CoPE will most likely be used in some form in the ISIS
project.

55

8.2 Conclusion 8. Evaluation and conclusion

Interact 2007 gave us good feedback on our proposed architecture and
graphical user interface. We found that the structure was indeed sound, but
needed some fine tuning. We have addressed these issues in our report and
intend on writing an updated article after the end of the course.

UbiCollab is the closest related project. From Ubicollab we found some
architectural properties that we had to build upon. The Service Proxy
proposal and service registry both link directly to this project. We have also
seen that the structure and proposed architecture of the Service Discovery
relates to CoPE in the manner we intended at the very start of our project.

8.2 Conclusion

Our problem described a possible lack of user control in a future ubiq-
uitous computing environment. We proposed giving the user more control
in the form of leaving more decisions in the hands of the end user, by the
means of end user service composition. By implementing in Java and OSGi
we have shown that the software can handle multiple services simultane-
ously, in a plug and play manner, on any platform. The user has control of
each service as he would have normally. In addition, our solution gives each
service a standardized way of presenting the end user with a meaningful way
of creating relations between them. Making service proxies for each service
has shown that we can give the user control without impairing the services
functions. In fact, the service might even improve relations to other services.

Handing composition over to the end user meant that we had to put
matchmaking processes in the user’s software, removing all things related to
service discovery and matching from the services. This presented new prob-
lems to how we were to handle matching processes. To solve this problem
we have shown that an internal list of matches, that can be populated in
a number of ways through ontology services, gives the necessary feedback
to the end user when he is composing. Rapid matchmaking gives the user
instant insight into what is and isn’t possible.

Finally we have shown the entire concept come to life through our Graph-
ical User Interface. We have shown that though the area of available space
on a mobile device has a limited amount of pixels, our solution of direct
manipulation is still a valid method of presenting composition to the end
user. We have also shown how direct manipulation of service objects can

56

8.2 Conclusion 8. Evaluation and conclusion

give the user a virtual environment that reflects the user’s own allusions to
how services are positioned and how they act on each other. By allowing
the end user to store different compositions for different settings, he himself
can decide when and where he wants them to activate.

We stated from the start, and still believe, that giving end users the ability
to perform service composition is the way to go in the future. Having end
users perform services composition will give a better controllable structure
of collaboration between services, and in the end may even increase the
mobility and collaboration abilities of the services themselves.

57

8.2 Conclusion 8. Evaluation and conclusion

58

Chapter 9

Future Work

The best way to predict the future is to create it.

– Peter F. Drucker

9.1 Architecture

Firstly we must convert the code structure from MVC to SOA. This will
make the software better suited to be used in multiple projects, both at Te-
lenor and NTNU. When complete it will be used as a resource for handling
composition of generic Java Objects that in turn can be comprised of what-
ever the project requires. We will implement a subscription based structure
that will allow multiple sources to manage a single composition.

Parallel to making SOA architecture is a different task: To make the
matchmaking process a reality we require a functional ontology and search
functions within that ontology. The ontology has to implement our Java
Interface for ontology managers, but otherwise can be built freely.

We also want to exchange our discovery manager with UbiCollab’s dis-
covery project. This should work very well with CoPE as they both work
on the same principles on service registry and service proxies.

9.2 Graphical User Interface

We presented the idea of making the Sandbox in our program implement
drawing functionality. We want to make this a reality for future versions,

59

9.2 Graphical User Interface 9. Future Work

giving the user the ability to draw physical objects that can better illustrate
and show how compositions relate to the real world. In the further away
future, we may even see the implementation of 3d mapping of the physical
world within CoPE.

With drawing in Sandbox, we can also implement other methods of nav-
igating the ubiquitous computing environments. We want to see an imple-
mentation of zooming and physical navigation from location to location. For
instance, when a user is in the living room, the living room composition is
active. If the user wants to activate a service located in the neighboring
room he could zoom from a ”room-view” to a ”floor-view” and back into
a ”room-view” of the kitchen. The physical location of services can give
a more intuitive way of navigation. Again, in the further away future, we
may also here see the implementation of 3d mapping, to better illustrate the
environment.

60

Appendix A

Original Assignment
Description

This task will be done in the context of two European project called Daida-
los and ASTRA. User interfaces to computing environments are changing
rapidly with the advent of mobile and ubiquitous computing. Some of the
technical challenges to be handled are.

• A generic and common framework is needed for user interface ”pieces”
to be defined, combined, used etc.

• A generic tool is needed to set up and configure user interface pieces
for the current applications.

• A framework and API for service providers to be able to discover,
recognize and deploy pieces of user interface that are available to the
user of the services.

• The user interface in a ubiquitous environment might be speech-based,
physical, haptic and so on. This task will investigate the above issues,
and will explore further issues not foreseen in the task definition. The
scope of the task is the following:

– Provide a set of benchmark scenarios for user interfaces to per-
vasive and ubiquitous interfaces.

– Provide a state-of-the-art survey of user interfaces to pervasive
and ubiquitous computing.

– Develop architecture and design for a service-oriented framework
for specifying, developing and deploying ubiquitous interfaces to
network services, and develop a prototype of this.

61

A. Original Assignment Description

62

Appendix B

Graphical User Interface
Iterations

Following is illustrations and screenshots of the GUI design process. Each
iteration is described in detail in 6.2.

Figure B.1: GUI iteration 1a

63

B. Graphical User Interface Iterations

Figure B.2: GUI iteration 1b

64

B. Graphical User Interface Iterations

Figure B.3: GUI iteration 2a

65

B. Graphical User Interface Iterations

Figure B.4: GUI iteration 2b

66

B. Graphical User Interface Iterations

Figure B.5: GUI iteration 3

67

B. Graphical User Interface Iterations

Figure B.6: GUI iteration 4a

68

B. Graphical User Interface Iterations

Figure B.7: GUI iteration 4b

69

Bibliography

Gregory D. Abowd and Elizabeth D. Mynatt. Charting past, present, and
future research in ubiquitous computing. ACM Trans. Comput.-Hum.
Interact., 7(1):29–58, 2000. ISSN 1073-0516. doi: http://doi.acm.org/10.
1145/344949.344988.

Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob
Kooper, and Mike Pinkerton. Cyberguide: a mobile context-aware tour
guide. Wirel. Netw., 3(5):421–433, 1997. ISSN 1022-0038. doi: http:
//dx.doi.org/10.1023/A:1019194325861.

Apache. Apache license 2.0. URL http://www.apache.org/licenses/
LICENSE-2.0.

A. Crabtree, T. Rodden, T. Hemmings, and S. Benford. Finding a place for
ubicomp in the home. Proceedings of the 5th International Conference on
Ubiquitous Computing, pages 208–226, 2003.

N. Dahlback, A. Jonsson, and L. Ahrenberg. Wizard of oz-studies – why
and how. 1993. URL citeseer.ist.psu.edu/45570.html.

Scott Davidoff, Min Kyung Lee, Charles Yiu, John Zimmerman, and
Anind K. Dey. Principles of smart home control. UbiComp 2006, pages
19–34, 2006.

Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. a
cappella: programming by demonstration of context-aware applications.
In CHI ’04: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 33–40, New York, NY, USA, 2004. ACM Press.
ISBN 1-58113-702-8. doi: http://doi.acm.org/10.1145/985692.985697.

K. Gajos. Rascal-a resource manager for multi agent systems in smart
spaces. Proceedings of the Second International Workshop of Central and

70

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
citeseer.ist.psu.edu/45570.html

BIBLIOGRAPHY BIBLIOGRAPHY

Eastern Europe on Multi-Agent Systems (CEEMAS 2001), pages 111–120,
2001.

Krzysztof Gajos, Harold Fox, and Howard Shrobe. End user empowerment
in human centered pervasive computing. Proceedings of Pervasive, 2002.

S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen.
The gator tech smart house: A programmable pervasive space. Computer,
38(3):50–60, 2005.

Lars Erik Holmquist, Friedmann Mattern, Bernt Schiele, Petteri Alahuhta,
Michael Beigl, and Hans-W Gellersen. Smart-its friends: A technique for
users to easily establish connections between smart artefacts. In Ubicomp
2001: Ubiquitous Computing: Third International Conference Atlanta,
Georgia, USA, September 30 - October 2, 2001, Proceedings, page 116.
Springer Berlin and Heidelberg, September-October 2001.

http://tuim.inf.puc rio.br/interact2007/home.php. Interact 2007, confer-
ence. URL http://tuim.inf.puc-rio.br/interact2007/home.php.

http://www.thinlet.com/. Thinlet. URL http://www.thinlet.com/.

J. Humble, A. Crabtree, T. Hemmings, K.P. Åkesson, B. Koleva, T. Rodden,
and P. Hansson. Playing with the bits-user-configuration of ubiquitous
domestic environments. Proceedings of the Fifth Annual Conference on
Ubiquitous Computing, UbiComp2003, Seattle, Washington, USA, pages
12–15, 2003.

Min Kyung Lee, Scott Davidoff, John Zimmerman, and Anind Dey. Smart
homes, families, and control. Proceedings of Design and Emotion, 2006.

Kim Halskov Madsen. A guide to metaphorical design. Commun. ACM,
37(12):57–62, 1994. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
198366.198381.

Adam Marx. Using metaphor effectively in user interface design. In CHI ’94:
Conference companion on Human factors in computing systems, pages
379–380, New York, NY, USA, 1994. ACM Press. ISBN 0-89791-651-4.
doi: http://doi.acm.org/10.1145/259963.260514.

Mark W. Newman, Jana Z. Sedivy, Christine M. Neuwirth, W. Keith Ed-
wards, Jason I. Hong, Shahram Izadi, Karen Marcelo, Trevor F. Smith,
Jana Sedivy, and Mark Newman. Designing for serendipity: support-
ing end-user configuration of ubiquitous computing environments. In DIS

71

http://tuim.inf.puc-rio.br/interact2007/home.php
http://www.thinlet.com/

BIBLIOGRAPHY BIBLIOGRAPHY

’02: Proceedings of the conference on Designing interactive systems, pages
147–156, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-515-7.
doi: http://doi.acm.org/10.1145/778712.778736.

Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit:
aiding the development of context-enabled applications. In CHI ’99: Pro-
ceedings of the SIGCHI conference on Human factors in computing sys-
tems, pages 434–441, New York, NY, USA, 1999. ACM Press. ISBN
0-201-48559-1. doi: http://doi.acm.org/10.1145/302979.303126.

M. Satyanarayanan. Pervasive computing: vision and challenges. Personal
Communications, IEEE [see also IEEE Wireless Communications], 8(4):
10–17, 2001.

Dag Svanaes and William Verplank. In search of metaphors for tangible
user intefaces. In DARE ’00: Proceedings of DARE 2000 on Designing
augmented reality environments, pages 121–129, New York, NY, USA,
2000. ACM Press. doi: http://doi.acm.org/10.1145/354666.354679.

X. Wang, J.S. Dong, C.Y. Chin, S.R. Hettiarachchi, and D. Zhang. Semantic
space: An infrastructure for smart spaces. IEEE Pervasive Computing, 3
(3):32–39, 2004.

Mark Weiser. Some computer science issues in ubiquitous computing. SIG-
MOBILE Mob. Comput. Commun. Rev., 3(3):12, 1999. ISSN 1559-1662.
doi: http://doi.acm.org/10.1145/329124.329127.

72

