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Abstract

The current increase in instrumentation of oil production facilities leads to a higher availability of
real-time sensor data. This is an enabler for better control and optimisation of the production,
but current computer systems do not necessarily provide enough operator support for handling

and utilising this information. It is believed that agent technology may be of use in this scenario,
and the goal of this Master’s thesis is to implement a proof-of-concept which demonstrates the

suitability of such solutions in this domain. The agent system is developed using the Prometheus
methodology for the design and the JACK Intelligent Agents framework for the implementation.

A regular Java program which simulates the running of a very simplified oil field is also
developed. The simulator provides the environment in which the agent system is put to the test.

The agents’ objective is to maximise the oil production while keeping the system within its
envelope. Their performance is compared with results obtained by a human operator working

with the same goal in the same environment. The metrics we use are the number of critical
situations which occur, their duration, and the total amount of oil produced. The results indicate
that the agents react faster to changes in the environment and therefore manage to reduce the

amount and duration of critical situations, as well as producing more oil. This suggests a
possibility of introducing an agent system to deal with some aspects of the production system

control. This may contribute to a reduction of the information load on the operator, giving
him/her more time to concentrate on situations which the agents are not able (or not allowed) to

handle on their own.



ii



PREFACE

This Master’s thesis has been written as a continuance of a project which we performed in cooper-
ation with Statoil during the autumn semester of 2006. The goal of the project was to investigate
ways in which intelligent software agents could be used to reduce the information flow from in-
strumented production facilities. The characteristics of agents make them a tempting approach to
address challenges related to the increased availability of real-time data, and we suggested four
scenarios in which agents seem especially well-suited. During our work with this Master’s thesis
we have brought our findings from the project into more practical use. First, a specific problem
area was chosen in cooperation with domain experts from Statoil. We continued our work with the
design of an agent solution meant to meet the stated challenges, and implemented this solution as
a proof-of-concept. The agent system was tested in a simulated environment and its performance
compared to the results obtained by a human operator working in the same environment.

We would like to thank Tor Gunnar Aksland at Statoil for helpful explanations of the oil production
processes, our friends at Ugle for always sharing their coffee with us, and our supervisors Harald
Rønneberg, Jørn Ølmheim and Einar Landre at Statoil for all help and support during our work
with this thesis. Their enthusiasm for the topic and interest in our suggested solutions have been
very motivating.

Trondheim, 30 May 2007

Lise Engmo Lene Hallen
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CHAPTER 1

INTRODUCTION

The main objective with this chapter is to set the scene for the rest of the thesis. We begin in
Section 1.1 by explaining the motivation behind the choice of topic. The challenges mentioned
here are further explained in the problem definition of Section 1.2. This section also contains the
project goal which represents the essence of what we aim for. The project context in Section 1.3
gives a very brief introduction to Statoil as a company and their interest in the results of this work.
Section 1.4 contains an outline of the rest of the report.

1.1 Motivation

The agent paradigm is a fascinating, promising, and relatively new way of conceptualising, de-
signing and implementing software systems. Our interest in this subject was invoked in the fourth
grade course Distributed Artificial Intelligence and Intelligent Agents, and the project work we per-
formed for Statoil during the autumn semester of 2006 increased our enthusiasm for the topic
even more. While the introductory course provided the theoretical foundations for understand-
ing the benefits and challenges of agent technology, the project work gave us the opportunity to
investigate its possible practical use in the context of oil production systems.

The challenges addressed in our project work were all related to the current increase in instru-
mentation of Statoil’s production assets. A higher degree of instrumentation is believed to reduce
operating and maintenance costs, but our hypothesis was (and is) that higher availability of real-
time sensor data might also lead to information overload for the human operators and current
control systems. The goal of our project was to investigate ways in which multiagent systems
could be used to alleviate potential problems related to information overload, and our project
report [10] summarises our findings. For our Master’s thesis we will continue the same line of
thought, based on the problem definition stated in the next section.

1.2 Problem definition

The following problem definition has been formulated in cooperation with our teaching supervi-
sors at Statoil:

The students should investigate the applicability of agent technology in oil production.
This should be done through a proof-of-concept demonstrating how software agents can
solve problems which are difficult to handle using traditional approaches. The focus should
be on challenges found within control and optimisation of production wells.

Based on this problem definition and further discussion with our teaching supervisors and domain
experts at Statoil, the following goal was defined:

1
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Design and implement a proof-of-concept which demonstrates how a multiagent system
may contribute in the control and optimisation of production wells in order to reduce the
information load on human operators.

1.3 Project context

This Master’s thesis has been written in collaboration with Statoil, a Norwegian-based oil and gas
company with more than 25,000 employees in 33 countries worldwide. In a press release dated
15. December 2005, it was announced that Statoil is developing software to support oil trading and
operations management, using the JACK Intelligent Agent development toolkit from Agent Oriented
Software (AOS) [9]. Agent technology is still fairly new at Statoil and the IT Department is eager
to learn more about how the use of agents may contribute positively in their systems.

We are expected to use the JACK Intelligent Agent development toolkit in our work with this
thesis, and this has had implications for our choice of methodology and design tools.

1.4 Report outline

We start with short introductions to agent technology, our choice of methodology and tools, and
the application area. Our agent system is developed using the Prometheus methodology and the
design and implementation are documented in Chapter 7 and 8. The final part of our report
contains our results and conclusions.

Chapter 2, Software agents Agent-oriented software engineering is a paradigm which provides
a framework for effective communication and reasoning about complex software systems
on the basis of mental attitudes. The approach seems especially suitable for building com-
plex distributed systems. In this chapter, we give a short introduction to the main concepts
involved.

Chapter 3, Methodology and tools The development of multiagent systems is different from the
development of conventional software systems. For that reason, a methodology especially
suited for this type of software engineering should be used, and we have chosen to base
our work on the Prometheus approach. In this chapter we also present the tools we use for
designing and implementing our agent system.

Chapter 4, Application area In order to design an agent solution, it is important to understand
the domain and its challenges. The goal of this chapter is to give a very brief introduction to
the main steps involved in oil production. It also includes a section which explains why we
believe that agents are suitable in this particular scenario, and what assumptions underlay
our approach.

Chapter 5, Experiment approach Our agent system must be tested in order for us to draw any
conclusions on whether or not it works as intended. The most important content of this
chapter includes the experiment process and definition, formulations of our hypotheses, and
an evaluation of validity threats.

Chapter 6, Simulated environment We develop a test framework which simulates the running
of a simplified oil field. In this chapter we describe the main features of this simulator, with
emphasis on how we define environmental influence and generate the sensor values.

Chapter 7, System specification The objective in this initial phase of Prometheus is to identify
the goals and basic functionalities of the agent system. We start with a high-level description
of the system to be designed and present the goals of the system as a decomposition of the
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main goal. Scenarios are used as a tool to ensure that all functionality is covered. The
chapter also includes the definition of roles; groupings of functionalities with related inputs
and outputs.

Chapter 8, System development The artefacts produced during the system specification are used
as a basis for the architectural design; a high-level design of the agent system. The overall
system structure presented in this chapter is probably the most important and useful artefact
resulting from the initial two phases of the Prometheus methodology. The chapter ends with
a short description of the detailed design and some implementation remarks.

Chapter 9, Results Our agent system is tested in a simulated environment and its performance
compared to the performance of a human operator in the same environment. The results
from each of the testruns are presented in tables and graphs, and the chapter ends with a
discussion leading to the rejection or acceptance of the stated hypotheses.

Chapter 10, Summary The background and motivation, our suggested solution and the results
of our experiment are here briefly summarised.

Chapter 11, Conclusion Based in our original problem definition, we here consider the further
implications of our results.

Chapter 12, Further work We here present some possible approaches for further work.
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CHAPTER 2

SOFTWARE AGENTS

We begin this chapter with Section 2.1 which lists some typical characteristics of complex software
systems. The agent concept is then defined in Section 2.2 and Section 2.3 gives an introduction to
the Belief-desire-intention (BDI) architecture, one of the most influential approaches to the study
of agent-oriented systems. Multiagent systems consist of a number of software agents, each one
capable of interacting with the others. The main characteristics of such systems are presented in
Section 2.4. The chapter is concluded with a summary of some known benefits and challenges
associated with the agent-oriented approach.

2.1 The nature of complex software systems

Complexity is an innate property of the types of task for which software is used. A wide range
of software engineering paradigms have been devised in order to reduce this complexity to a
manageable level, and agent-oriented software engineering is one such paradigm.

Complex systems exhibit a number of important regularities [12];

• Complexity often takes the form of a hierarchy, i.e. the system is composed of inter-related
subsystems, each of which is itself a hierarchy. These organisational relationships are not
static and their precise nature varies between subsystems.

• The choice of which components in the system are primitive is relatively arbitrary and is
defined very much by the observer’s aim and objectives.

• A complex system will evolve from a simple system more quickly if there are stable interme-
diate forms, than if there are not.

• It is possible to distinguish between the interactions among subsystems and the interactions
within subsystems. Complex systems are seen as nearly decomposable; subsystems can be
treated almost as if they are independent of one another, but not quite since interactions
exist. Although many of these interactions can be predicated at design time, some cannot.

Software engineers have developed a number of powerful tools in order to manage complexity,
the main mechanisms are decomposition, abstraction, and organisation. Agents represent a nat-
ural abstraction mechanism with which to decompose and organise complex systems. Adopting
an agent-oriented approach means to decompose the given problem into multiple, interacting,
autonomous agents that have particular objectives to achieve. The key abstraction models are
agents, interactions, and organisations [12].

2.2 Agent characteristics

The following definition of the agent concept has been proposed by Wooldridge in [25]:

7
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An agent is a computer system that is situated in some environment, and that is capable
of autonomous action in this environment in order to meet its design objectives.

To better understand what an agent is and how it can be used, we need to identify its characteris-
tics. The definition above states an agent’s main features; it is situated in an environment and it is
autonomous. These two properties alone do not imply intelligence. An intelligent agent has one or
more goals that it attempts to achieve through performing actions. It has some sort of perception
of its environment and takes these observations into account when it decides which action(s) to
perform. An intelligent agent might also communicate with other agents if it needs help to achieve
a goal or it recognises that another agent has conflicting goals. A more thorough explanation of
agents, including comparisons with passive objects and expert systems, can be found in [10].

Table 2.1 gives a summary of the properties characterising intelligent agents [25].

Situatedness Agents sense the environment and their actions affect it.

Autonomous Agents have some sort of free will and are independent. They decide for them-
selves what to do and with whom to cooperate. Internal states and goals form
the autonomy.

Proactive Agents have a goal which they take actions to pursue.

Reactive Because agents have perception, they can react to changes in the environment
when they find it necessary.

Social Agents communicate with other agents, this includes negotiation and collabo-
ration.

Flexible Agents have several ways to achieve a goal. If they try to achieve their goal in
one way and fail, they will try another way.

Robust Agents can recover from failure. This characteristic is closely related to flexi-
bility.

Table 2.1: Characteristics of intelligent agents

In addition to these characteristics, learning and intelligence are often seen as intimately related to
each other. It is usually agreed that a system capable of learning deserves to be called intelligent,
and conversely, that a system being considered as intelligent is expected to be able to learn [18].

The ability to learn enables agents to improve their performance over time. When designing an
agent system it is very difficult to foresee all possible situations the agents might encounter and
how they should act correspondingly. This especially applies to multiagent systems where global
behaviour in many cases emerges rather than being pre-defined [1].

2.3 The Belief-desire-intention architecture

The behaviour of an agent is defined by its architecture. The architecture describes the internals of
the agent entity; its data structures, the operations that may be performed on these data structures
and the control flow between them. There are two main types of agent architectures; reactive and
deliberative. A third category is the hybrid architecture which attempts to achieve the best from
the two worlds [25].
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BDI is an architecture belonging in the deliberative category. A BDI agent is an agent with three
mental attitudes, stemming from theory on human practical reasoning. These mental attitudes
determine the system’s behaviour and are critical for achieving the required performance when
deliberation is subject to resource bounds [16].

Beliefs Facts and assumptions about the world that the agent believes to be true. The beliefs may
be incomplete or incorrect.

Desires The agent’s goals; situations or objectives that it wishes to accomplish. They are what
motivate it to act.

Intentions Represent the desires that the agent has committed to achieving, i.e. its deliberative
state. Typically, the agent will continue to try to achieve an intention until it either believes
that it is satisfied or believes that the intention is no longer achievable.

The agent has a symbolic representation of the world that is loosely coupled to these mental
attitudes [25]. This is illustrated in Figure 2.1. The agent can maintain and manipulate this
representation. In addition to the three mental attitudes, the agent has a structure which contains
a set of plans. The plans specify the courses of actions which may be followed in order to achieve
the agent’s intentions. An interpreter is responsible for updating beliefs from observations made
of the world, generating new desires on basis of new beliefs, and selecting intentions from the
set of currently active desires. It also selects the actions to perform based on the agent’s current
intentions and procedural knowledge [5].

Figure 2.1: A BDI agent architecture

2.4 Multiagent systems

As explained in Section 2.2, an intelligent agent is an entity with its own set of goals and an ability
to figure out for itself what it needs to do in order to achieve them. We have also stated that agents
have the capability of social behaviour, i.e. agents can communicate with other agents.

A multiagent system consists of a number of such agents, each one capable of interacting with the
others. In general, these agents act on behalf of owners with very different goals and motivations.
They therefore require the ability to cooperate, coordinate, and negotiate with each other [25].

According to [20], the characteristics of multiagent systems are that:

1. each agent has incomplete information or capabilities for solving the problem,

2. there is no global system control,
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3. data is decentralised,

4. computation is asynchronous

2.5 Benefits

The human-like characteristics of agents provide a high abstraction level which may simplify the
modelling and implementation of systems for complex domains. Agents can be trusted to pur-
sue their goals and take initiative to interact only when needed; this independence reduces the
need for communication. Their autonomy leads to encapsulation of functionality, and coupling
is reduced because agents do not provide any control point to external entities. The following
list highlights some of the main dimensions along which agent systems are believed to enhance
performance, these aspects are further elaborated on in [20]:

Computational efficiency because concurrency of computation is exploited. This requires that
the communication is kept minimal, e.g. by transmitting high-level information and results
rather than low-level data.

Reliability Components that fail can be gracefully recovered. Agents with redundant capabilities
or appropriate inter-agent coordination are found dynamically and can take up responsibili-
ties of agents that fail.

Maintainability A system composed of multiple components is easier to maintain because of its
modularity.

Responsiveness The modularity of a multiagent system leads to the possibility of handling anoma-
lies locally without propagating them to the whole system.

Flexibility Agents with different abilities can adaptively organise to solve a given problem. An
agent can also have a number of plans for reaching its goal and adapt its strategy to changes
in the environment.

In [13], the authors argue that for certain classes of problem, adopting a multiagent approach to
system development affords software engineers a number of significant advantages over contemporary
methods. If a problem domain is particularly complex, large or unpredictable, it might be that
the only way it can be reasonably addressed is to develop a set of modular components that are
specialised at solving a particular aspect of it. The characteristics of multiagent systems make
them especially suited for meeting the challenges of such domains.

2.6 Challenges

The situatedness of agents makes it difficult to design software which is capable of maintaining a
balance between proactive and reactive behaviour. Striking the balance implies context-sensitive
decision-making which in turn means that there can be a significant degree of unpredictability
in the system. Agents are autonomous, which means that the patterns and effects of their inter-
actions are uncertain. Unpredictability in agent systems also relates to the notion of emergent
behaviour; with a collection of processes acting side-by-side and interacting, behaviour which
cannot be generally understood solely in terms of the individual components may emerge.

The notion of autonomous software components is not very comfortable for most users, and an
agent system must be designed with this in mind. The balance must be struck between need-
lessly distracting the user and the agent exceeding its authority. It is also important to remember
that agents may make globally sub-optimal decisions since complete global knowledge is not a
possibility in most realistic agent systems.



CHAPTER 3

METHODOLOGY AND TOOLS

The design of multiagent systems differs from the design of conventional software systems, and
the methodology used should reflect these differences. We have chosen to use the Prometheus
methodology for the design of our agent system, and Section 3.1 gives an overview of its three
phases. Prometheus Design Tool (PDT) is a tool which is especially designed for supporting soft-
ware development following the Prometheus methodology. We will use this tool in the design of
our system, and Section 3.2 presents its main features. JACK Intelligent Agents is an environment
for building, running and integrating multiagent systems. JACK is presented in Section 3.3 where
we also give a an introduction to the main agent-oriented concepts supported by this system. We
use the Eclipse Software Development Kit (SDK) for the implementation of our system, and this
development environment is presented in section 3.4.

3.1 Prometheus methodology

The Prometheus methodology has been developed with the goal of defining a process with asso-
ciated deliverables for developing intelligent agent systems. Prometheus has been used internally
at the company behind JACK and in numerous industry workshops and university courses. The
methodology consists of three phases; system specification, architectural design, and detailed de-
sign. An overview of the phases are shown in Figure 3.1 [11]. It is important to realise that the
methodology is intended to be interpreted as a set of guidelines, and that it must not necessarily
be followed strictly. Iterative development is also a keyword here. The remainder of this section
is based on [15] and is devoted to an introduction to each of the three Prometheus phases.

Figure 3.1: The phases of the Prometheus methodology

11
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3.1.1 System specification

The focus in this phase is to identify system goals, develop use case scenarios illustrating the
system’s operation, identify the basic functionalities and specify the interface between the system
and its environment in terms of actions and percepts.

System goals Goals are important because they state the reasons for building the system and
because they are central to the functioning of the intelligent software agents that are going
to realise the system. The starting point for building the initial list of system goals is the
implicit indications provided in the system description. The initial goals are then refined
into subgoals, and rearranged so that similar goals are grouped together.

Functionalities or roles Functionalities are chunks of behaviour, including a set of related goals,
percepts, actions and data relevant to the behaviour. A functionality should be described
adequately in one or two sentences. In addition to the natural language description and
information about the goals and actions that are included, the functionality descriptor should
also include triggers: information about events or situation that will initiate activity within
this functionality. The Prometheus Design Tool uses the term role for functionality, and we
will follow this convention.

Scenario development Scenarios show the sequences of steps that take place within the system
and they are primarily used to illustrate the normal running of the system. As scenarios are
developed, it becomes evident where there is a need for information from the environment
and where actions are required. Additional goals are also often identified in this process.

Interface description How the agent system is going to interact with its environment is a question
which has to be answered early. This implies identifying what environment input will be
available to the agent system while it is running (percepts) and what the agent will do to
interact with and affect the environment (actions). For percepts, it is important to take
into account how the data is obtained, as well as the exact nature of the data and to what
extent it can be processed to provide information of interest. Actions are also complex, often
including monitoring for failure or continual feedback loops.

3.1.2 Architectural design

The artefacts resulting from the system specification phase are used as a basis for developing the
high-level design of the agent system. This phase results in a definition of what agents are to be
part of the system and how these agents interact in order to meet the required functionality of the
system. The three steps followed are outlined below;

Agent types Defining the agent types involved in the system is done by considering the function-
alities and scenarios, developing possible groupings of functionalities into agents, and eval-
uating these agents according to the criteria of coupling and cohesion. Each agent should
be cohesive, and the agent system should be as loosely coupled as possible. Reasons for
deciding to group certain functionalities could be that the functionalities seem related and
that they require a lot of the same information.

Interactions The interaction between agents capture the dynamic aspects of the system. The
specification of this interaction is done through three steps; developing interaction diagrams
from use case scenarios, generalising these diagrams to interaction protocols, and developing
protocol and message descriptors. The protocols define all interaction sequences which are
valid within the system.
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System structure First, the boundaries of the agent system and the interactions with other sub-
systems are defined. Then, the percepts and actions are described, as well as the relation-
ships between these and the relevant agents. All shared data must also be defined, both ex-
ternal persistent data and internal shared data within the system. Finally, a system overview
diagram is developed and checked for consistency.

3.1.3 Detailed design

The main goal of this phase is to flesh out the capabilities needed for each individual agent in order
for it to fulfil its responsibilities as outlined in the functionalities it contains. Process specifications
may also be developed in order to indicate the internal processing taking place within each agent.
The refinement of agents in terms of capabilities gives the agent overview diagram and capability
descriptors. These are analogous to the system overview diagram and the agent descriptors, but
now the focus is on a single agent. In the same way, process specifications here provide a detailed
view of an individual agent’s part in a particular process. In the final stages of this phase, the
capability descriptors are further developed to specify the individual plans, beliefs and events
needed.

3.2 Prometheus Design Tool

The Prometheus Design Tool has been developed to support design and development of multia-
gent systems using the Prometheus methodology. Similar to most modern software engineering
methodologies, Prometheus is intended to be applied in an iterative manner. This leads to a need
for consistency checking in order to ensure that the design remains consistent when changes are
made. Manual consistency checking is tedious and error prone, and tool support is therefore
highly desirable [21].

The user interface of the PDT is shown in Figure 3.2. The program is written in Java and its
main features include structured textual descriptors, information propagation from one part of
the design to another, consistency checking, hierarchical views and report generation. The output
diagrams of the detailed design phase can be readily transformed into JACK agent code.

Some aspects of the Prometheus methodology are still not supported by this tool. Future devel-
opment work includes better support for protocol specification, support for process specification
within agents, and integration of separate debugging tools [21].

3.3 JACK Intelligent Agents

JACK Intelligent Agents is a framework for building, running and integrating multiagent systems,
which is based on the BDI model. It is a commercial product developed by The Agent Oriented
Software Group. The development team consist of agent experts who have worked on two pre-
vious generations of agents systems, Procedural Reasoning System (PRS) and The distributed
Multi-Agent Reasoning System (dMARS). PRS is a well known agent architecture rooted in the
BDI model and dMARS is an implementation of that architecture [8]. The JACK Development
Environment (JDE) is implemented in Java and offers its own language, the JACK Agent Language,
which extends Java with agent-oriented concepts such as agents, plans, events and capabilities.
The JDE offers three graphic tools [9]; the design tool, the plan editing tool and the plan tracer.
The JACK compiler compiles the JACK code into regular Java source code before execution [8].

The Prometheus design concepts of agents, capabilities and plans map directly to JACK concepts,
while internal and external messages in Prometheus map to different types of events in JACK. We
here give a brief introduction to the entities available in JACK. The content of this section is based
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Figure 3.2: The Prometheus Design Tool user interface

on the JACK Agent Manual [6] and Agent Practicals [7], and more detailed explanations can be
found there.

3.3.1 Agent

A JACK agent is a software component that can exhibit reasoning behaviour under both proactive
and reactive stimuli. The following list shows the main content of a JACK agent together with the
relevant code templates;

• Beliefs about the world
#(private|agent|global) data <Beliefset> beliefset_instance()

• Capabilities that are groupings of plans
#has capability <Capability> capability_instance

• Plans used to handle events
#uses plan <Plan>

• Events that it will respond to
#handles event <Event>

• Events that it may post to itself
#posts event <Event> event_instance

• Events that it may send to other agents
#sends event <Event> event_instance
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3.3.2 Beliefset

Beliefset are used to maintain an agents beliefs about the world. A ClosedWorld beliefset only
contains beliefs that the agent assumes to be true. All other statements about the world are
assumed by the agent to be false. In the case of an OpenWorld beliefset, the set can contain
beliefs that the agent assumes to be true and beliefs that the agent assumes to be false. All other
statements are then defined by the agent as unknown. The list below contains the main elements
of a JACK beliefset together with their respective code templates;

• Key fields that identify the beliefs in the set
#key field <FieldType> field_name

• Value fields that represent information about this object that the agent needs to know
#value field <FieldType> field_name

• Events that it may post to the parent agent
#posts event <Event> event_instance

• Declarations of queries that the agent can perform
#indexed query queryName(parameters)
#linear query queryName(parameters)
#complex query queryName(parameters) {method body}
#function query <ReturnType> queryName(parameters) {method body}

3.3.3 Capability

A capability is a well-defined collection of plans, using particular beliefs or data, which address a
specific set of goals for the agent. The following list shows the main content of a JACK capability;

• Internal events that it will respond to
#handles event <Event>

• External events (messages from other agents) that it will respond to
#handles external (event) <Event>

• Events that it may post internally within the capability
#posts event <Event> event_instance

• Events that it may post outside the capability
#posts external event <Event> event_instance

• Beliefsets or other data it uses
#(private|agent|global|exports|imports) data <DataType> data_name(arguments)

• Plans
#uses plan <Plan>

• Inner capabilities
#has capability <Capability> capability_instance



16 CHAPTER 3. METHODOLOGY AND TOOLS

3.3.4 Plan

A plan is triggered by an event; either an internal event or a message from another agent. When
an event occurs, a context method can be used to determine if the plan is applicable for the
situation. If so, the relevant method is used to determine if the plan is relevant for that specific
event. The body is the main method of the plan. The code written here defines the steps of the
plan. Each step is evaluated to true or false depending on whether the agents succeeds to actuate
the step or not. If a step fails (is evaluated to false), the entire plan fails and the subsequent steps
are not actuated. The following list contains the main elements of a JACK plan.

• Events that it will respond to
#handles event <Event> event_instance

• Events that it may post to itself
#posts event <Event> event_instance

• Events that it may send to other agents
#sends event <Event> event_instance

• Beliefsets or other data the plan uses
#(uses|reads|modifies) data <DataType> dataname

• A reasoning method
#reasoning method methodName(parameters) {method body}

• Post-processing and clean-up steps when the plan has succeeded
#reasoning method pass() {method body}

• Post-processing and clean-up steps when the plan has failed
#reasoning method fail() {method body}

• Code that determines if the plan is relevant for the event instance
static boolean relevant(<EventType> event_instance) {method body}

• A logical condition to determine if the plan is applicable
context() {method body}

• The actual steps the plan performs
body() {method body}

3.3.5 Event

JACK defines several types of events and the ones most relevant for our work are briefly described
here. Event is the base class for all normal events, and it can only be posted internally within an
agent. A MessageEvent is an event that can be sent between agents. BDIFactEvents are internal
events that allow for meta-level reasoning. They do not allow reconsideration of alternative plans
if a plan fails. A BDIMessageEvent is equal to the BDIFactEvent, but can be sent between agents.
BDIGoalEvents represent goals that an agent wishes to achieve. Meta-level reasoning and recon-
sideration of alternative plans if a plan fails is available. The following list contains the elements
which are common for all JACK events.

• Beliefsets or other data the event uses
#uses data <DataType> dataname

• Conditions (e.g. state of a belief) that should cause the event to be automatically posted
#posted when (condition)

• How the event is posted
#posted as methodName(parameters) {method body}
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3.4 Eclipse

Eclipse is meant to be a universal tool platform - an open extensible Integrated development environment
(IDE) for anything and nothing in particular [4]. Eclipse’s Java development environment is what
most people associate with the platform, and due to its plug-in architecture you may also use
add-ons which enable development in several other languages. The standard version of Eclipse is
composed of more than 80 plug-ins [2] and provides a number of useful features for programmers.
A screenshot showing Eclipse’s Java perspective is shown in Figure 3.3.

As mentioned in the previous section, JACK comes with a development environment especially
intended for developing multiagent systems using the JACK agent language. The JDE provides
good support for iteration between design and code, but we design our system in PDT and are
therefore less dependent on this feature. JACKs development environment also lacks many of
the features which we have grown accustomed to through using Eclipse in earlier projects, e.g.
incremental code compilation, interfaces to standard source control systems, and code refactoring.
The fact that we develop the simulator (which is a regular Java program) in parallel with the agent
system, is another good reason for using Eclipse instead of JDE.

Figure 3.3: The Eclipse user interface
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CHAPTER 4

APPLICATION AREA

The production of oil is an extremely complex undertaking, and the scope of this project does
not allow us to delve deeply into the petroleum technical details. This chapter is therefore only
meant as an overview of the most important steps in the processes involved in the production and
processing of oil. We begin in Section 4.1 with a brief explanation of the main concepts involved
in a typical oil production scenario. We continue in Section 4.2 with the motivation for choosing
an agent-oriented approach to this specific application area. The chapter is concluded in Section
4.3 where we define our scope of work and the assumptions underlying our approach.

4.1 Oil production

Petroleum or crude oil is a liquid consisting of a complex mixture of hydrocarbons, and it occurs
naturally beneath the earth’s surface. This is illustrated in Figure 4.1. The petroleum can bubble
to the surface in so-called "oil seeps", but can also be found several miles below the surface.
Oil reservoirs typically extend over large distances, and full exploitation entails multiple wells
scattered across the area [22]. Oil fields can be categorised by whether they are situated onshore
or offshore. The principles are basically the same, but onshore wells are normally drilled vertically
while offshore fields often have multiple directional wells drilled from a single well platform [3].
Some fields are extended with new fields to prolong the lifetime. These so-called satellite fields
is an example of a characteristic which adds to the complexity of oil and gas developments. The
well-fluid from all the fields must be gathered and transported to the processing facilities.

Figure 4.1: The occurrence of petroleum
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4.1.1 Oil wells

Oil wells are perforations through the earth’s surface designed to find and release petroleum
hydrocarbons. A well is created by iteratively drilling a hole with an oil rig. For each iteration, a
steel pipe slightly smaller than the hole is placed in the hole and secured with cement. This pipe
is called a casing. With the casing in place, the formation so far is protected and one can continue
drilling a new hole inside the first. Most modern wells have 2-5 sets of subsequently smaller holes
drilled inside one another, each cemented with casing [3]. Figure 4.2 shows a sketch of a well
with two casings.

When the hole is complete, the well must be perforated to let the oil in. Small holes are made
in the casing that passes through the production zone 1. How freely the oil flows into the well
depends on the permeability of the surrounding formation. Often the well needs stimulation to
provide the reservoir fluids with better access to the wellbore [3].

Figure 4.2: Sketch of a well, from [22]

A packer on the bottom of the tubing seals off between the tubing and the casing, and on top
of the wellhead is a collection of valves that control the production flow. This valve manifold is
called the Christmas tree and Figure 4.3 illustrates the valves it typically contains. The valves help
regulate pressures, control flows, and allow access to the wellbore in case further completion work
needs to be performed. The choke is an orifice that is used to control the well’s flow rate. From
the Christmas Tree, the flow can be connected to a distribution network of pipelines and tanks to
supply the product to refineries, natural gas compressor stations, or oil export terminals.

4.1.2 Processing plants

The fluid which is pumped up from a well typically contains several waste products which must be
removed before the crude oil can be further refined. The separation of oil from waste products is
performed in production separators which are long horizontal cylinders, typically three metres in
diameter and up to 25 metres in length, with a weir positioned close to one end. The well produc-
tion enters as a mixture of oil, water, gas, and sand. As the fluid flow along the cylinder, gravity
helps it separate into its constituent parts. The goal is to have within-specification oil flowing over
the weir and uncontaminated water at the water outlet, but this is difficult to achieve because
there are often no distinct interfaces between the various parts. Figure 4.4 illustrate the interfaces
as they may appear between the various components of the well fluid [14]. After separation, the
crude oil can be refined into more useful petroleum products. The refining processes are outside
the scope of our work, and will therefore not be further explained.

1The production zone is the term used for the area in the earth stratum where the oil is located [3]
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Figure 4.3: Christmas tree from [17]

Sand and water as unwanted constituents of a well’s production are important elements of the
environment in which our agent system will work. We therefore give a more thorough explanation
of how they end up in the production and what problems they may cause.

Figure 4.4: Profile based on different densities

Sand The amount of sand that enters the wellbore depends on the weakness of the rock in the
production zone and how hard the well is produced. An example of a way to measure the
sand content of the oil is mounting an acoustical gauge on the top of the well. The noise
caused by the grains of sand hitting the gauge is measured and therefrom the total amount
of sand can be estimated. The main problem with sand produced with high-velocity oil and
gas streams is that it erodes any steel that it impinges on. Sand erosion is particularly severe
where the flow stream changes direction. If an elbow cuts out, it can cause a blowout 2. [3].

Water When oil is formed, it migrates into reservoir rocks and displace the water that occupies
the porosity. This is a slow process and water will therefore always occupy some of the
porosity, reducing the volume available for the oil. The oil saturation is vital for the pos-
sibility of extracting oil from the reservoir. If the oil saturation is too low, only water will
flow into the well. For a well to produce oil only, the oil saturation must be at least about
80%. Consequently, many reservoirs produce both oil and water. The ratio between the two
substances must be controlled during production, because the processing plant often has an
upper limit on how much water it can handle [3].

2A blowout is when reservoir fluids blow up a hole and out onto the rig floor. The force of the fluids can smash tools
together, causing a spark that could ignite the fluids and burn up everything in the vicinity [3]
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4.1.3 Control and optimisation

In a typical oil production scenario, the processes and equipment of the wells and processing plant
are monitored, controlled and optimised from a centrally located control room. In traditional
systems, real-time data is difficult or impossible to obtain and the degree of automation is fairly
low. Optimisation of the oil production is usually based on the use of mathematical models and
is not performed very often, typically once a month. Future systems are likely to have a higher
availability of real-time data, but operators and current computer systems are not necessarily able
to take full advantage of this.

4.1.4 Example - Gullfaks

In order to give an impression of the size and complexity of a real oil field, we here present Gullfaks
as an example. Gullfaks is one of Statoil’s oil fields in the North Sea. It has three platforms (A, B
and C) which receive crude oil from a total of eleven fields. In addition, platform A and B receive
crude from three satellite fields [19]. The production is controlled for each platform and Table 4.1
shows the distribution of production wells and injection wells3.

Platform A Platform B Platform C
Main field production wells 27 30 35
Satellite field production wells 21 9
Injection wells 19 12 12

Table 4.1: Wells at Gullfaks

In total, there are 92 production wells at the main fields and 30 extra due to the satellite fields.
All of these wells are mainly controlled manually. As the number of wells grows, this becomes
an extremely difficult task. In shore-based heavy oil fields in Canada there may in fact be up to
thousands of wells.

4.2 Motivation for an agent solution

For the control and optimisation of oil production, it is desired to automate more of the analy-
sis and decision-making support. The operator should receive concrete advice rather than large
amounts of raw data. In order to reduce the amount of data transmitted on communication links,
we would like to distribute the analysis so that reasoning is performed closer to the data sources.
Rather than sending a continuous stream of sensor data to a central repository, "intelligent" entities
situated near the sensors should analyse the data and only send a notification when an anomaly
occurs or when it is asked to do so.

Given the inaccessible location of oil wells, the distributed system must be robust and modular. It
must be able to gracefully deal with module malfunction or breakdown, and software maintenance
should be possible to perform remotely. The dynamic nature of the environment implies that the
use of a static rule-based system is not adequate. It is impossible to create a set of rules which
covers every possible situation that may occur. This calls for a system which is capable of flexible
and autonomous behaviour. It should also have the ability to learn from what it experiences in
order to adjust its behaviour accordingly.

There are several restrictions that must be met by the system. Local restrictions that differ between
the wells must be dealt with individually, while at the same time ensuring that global restrictions

3An injection well is a well in which fluids, mainly gas or water, are injected rather than produced. The primary
objective of such wells is typically to maintain reservoir pressure.
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are met. In order to deal with the complexity of this situation, the responsibility for compliance
with these restrictions should be distributed among different modules. Some kind of hierarchy
must be implemented so that the most important restrictions are given higher priority than the
others. The modules must be able to communicate to avoid conflicting actions being actuated.

In Chapter 2 we described intelligent software agents as being autonomous, proactive, reactive,
social, flexible and robust, as well as situated in an environment which they can sense and act
upon. These characteristics fit perfectly with the requirements we have just stated. Multiagent
systems provide the modularity that we want and the agents’ social ability makes them capable of
meeting different restrictions and goals through negotiation and collaboration.

4.3 Scope of work

We will design and implement a proof-of-concept which shows that a multiagent system may be
an advantageous approach to the challenges we have presented in this chapter. To be able to
test our agent system, we need to simulate an oil production environment. Given the complexity
of the domain and the scope of our work, it is necessary to place some limitations on this envi-
ronment in which our agent system should operate. With the help of a domain expert, we have
decided to concentrate on the challenges related to controlling the amount of sand and water in
the production. We make the following assumptions with regards to the agents’ environment:

• The production of the wells contains oil, water and sand, and no other substances.

• The wells will only have one valve each; a choke.

• The choke position of each well can be controlled by the operator from the control room.

• Permeability is an unpredictable environment variable and individual for each well’s produc-
tion zone.

• The total production rate of a well will only be influenced by the position of the choke and
the permeability.

• Each well has a maximum limit of how much sand it can safely produce.

• The plant has a maximum amount of water that it can handle.

• Each well is equipped with sensors that measure sand, water and total production rate.

• The processing plant is equipped with sensors that measure water and total production rate.

Figure 4.5 illustrates our simplified environment containing three wells, a processing plant and a
control room.
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Figure 4.5: Our simulated oil field



Part II

Own contribution
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CHAPTER 5

EXPERIMENT APPROACH

This chapter explains our experiment approach. We use the experiment process given in Section
5.1 for defining, planning, and performing the experiment. The experiment definition is presented
in Section 5.2 and the more detailed plan is presented in Section 5.3. In this section we also define
the hypotheses and discuss the possible validity threats.

Refer to Appendix A for our definitions of concepts related to oil production.

5.1 Experiment process

Experiments are used when we want control over the situation and manipulate behaviour directly,
precisely and systematically [24]. Proving that our agent system actually works would have to be
done by deploying it in a real oil production system. This is of course not an option, and we will
therefore put our agents to the test in a simulated oil production field. We are going to investigate
a situation in which random selection and assignment are not possible, our experiment is therefore
a quasi experiment.

An experiment process provides support in setting up and conducting an experiment. We will use
the process suggested by [24], which consists of the following steps;

• Experiment definition
Define the experiment in terms of problem, objective and goal.

• Experiment planning
Determine context, state hypothesis, design experiment, and evaluate possible threats.

• Experiment operation
Prepare the subjects and material needed, execute the experiment and collect the data.

• Analysis and interpretation
Analyse and interpret the collected data.

The two first steps are documented in Section 5.2 and Section 5.3, respectively. The results of the
experiment operation are presented in Chapter 9 and the analysis and interpretation of results can
also be found there.

5.2 Experiment definition

Formulating the goal of an experiment is necessary in order to ensure that important aspects of the
experiment are defined before the planning and execution take place. We use the Goal/Question/Metrics
(GQM) template suggested by [24] to define our goal;
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Analyse <Object(s) of study>
for the purpose of <Purpose>

with respect to their <Quality focus>
from the point of view of the <Perspective>

in the context of <Context>

The objects of study are the entities that are studied in the experiment. In our case, the agent
system is the main object of study. It will be tested in a simulated environment and the results will
be compared with the performance of a human operator in the same environment.

The purpose defines the intention of the experiment. We would like to evaluate the agent system’s
ability to control the production of an oil field.

The quality focus is the primary effect under study in the experiment. We will study the perfor-
mance of the agent system with regards to how it deals with critical situations and the amount of
oil produced under its control.

The perspective presents the viewpoint from which the experiment results are interpreted. We
have chosen the perspective of a IT system researcher.

The context is the environment in which the experiment is run. It defines the personnel (subjects)
and software artefacts (objects) involved in the experiment. In our system, a human operator
(played by us) is the subject. The objects are our simulator and the JACK Intelligent Agents
framework, both running on the Java Virtual Machine (JVM).

Our definition of the experiment goal can then be summarized as follows:

Analyse the agent system
for the purpose of evaluation
with respect to performance

from the point of view of IT system researchers
in the context of a simulated oil field

5.3 Experiment planning

The planning of an experiment prepares for how the experiment is conducted. We here present our
context, the formal definition of our hypotheses, and our selection of variables. The experiment
design is chosen based on the hypotheses and variables selected.

5.3.1 Context selection

The context of an experiment can be characterised according to four dimensions [24]. These
dimensions are listed below together with an explanation of the characteristics of our experiment.

• Offline vs. online
Our experiment is performed offline, i.e. the agent system is not deployed in a real oil field,
but in a simulated oil production system.

• Student vs. professional
The agent system’s performance is compared with the performance of students acting as
operators in a graphical user interface representing a very simplified control room.

• Toy vs. real problems
The simulator does not aim on reproducing the complexity of a real system, but the main
cause-effect relationships of the challenges we address are maintained.
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• Specific vs. general
The experiment deals specifically with control of oil production, but positive results may
indicate software agents’ applicability in similar domains.

5.3.2 Hypotheses formulation

A hypothesis is stated formally, and the data collected during the course of the experiment is used
to, if possible, reject the hypothesis. Two hypotheses have to be formulated. The null hypothesis
states that there are no real underlying trends or patterns in the experiment setting; the only
reasons for differences in our observations are coincidental. The alternative hypothesis is the
hypothesis in favor of which the null hypothesis is rejected [24]. We have formulated hypotheses
for three aspects of the agent system’s performance compared to the performance of a human
operator.

The number of critical situations

H1.0 The introduction of the agent system will not lead to any changes in the number of critical
situations encountered.

H1.1 The agent system will lead to a reduction in the number of critical situations.

The duration of critical situations

H2.0 The introduction of the agent system will not lead to any changes in the duration of critical
situations.

H2.1 The agent system will lead to a reduction in the duration of critical situations.

The quantity of oil produced

H3.0 The introduction of the agent system will not lead to any changes in the amount of oil
produced in normal situation.

H3.1 The agent system will lead to an increase in the amount of oil produced.

5.3.3 Variable selection

All variables that are manipulated and controlled are called independent variables. The variables
that we want to study are called dependent variables. In our experiment, we want to study the
effect of changing the system which controls the production of the simulated oil field. More
precisely, we want to compare the performance of the agent system with the performance of a
human operator. The control system is therefore a factor, i.e. an independent variable which
is changed in order to see its effect. The agent system and human operator are treatments to
the factor, i.e. particular values of the factor. The dependent variable is the performance of
each control system with regards to increasing the oil production and avoiding/escaping critical
situations.
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5.3.4 Validity evaluation

It is important to consider the question of validity already in the planning phase in order to plan for
adequate validity of the experiment results. The results should be valid for the population from
which the sample is drawn and it may also be of interest to generalise the results to a broader
population. The results are said to have adequate validity if they are valid for the population to
which we would like to generalise [24]. We have identified the following validity threats:

• We will perform the testruns with only one dataset. For higher statistical power we should
probably have run the tests several times with different datasets. For our purposes we believe
that this is not necessary. We will therefore accept this threat and take the lack of statistical
power into account when evaluating our results.

• The comparison of agent control versus manual control requires that the environmental
influence on the production is identical for the two testruns. We will address this threat by
generating values for the environmental variables in advance, and use the same dataset for
both runs.

• We know the agent system’s characteristics, and this might influence the way we construct
the environment. We will address this threat by using a script that generates random values
for the environment variables, rather than setting the values manually.

• The simulated oil production system and the user interface of the simulator are both very
simple compared to real oil fields and real control rooms. Our results must be evaluated
with this in mind and the operator testrun should only be used as a standard of reference
for the evaluation of the agent testrun.

• The reliability of our results depend on the correct functioning of the simulator and whether
or not we use objective measures. We will address these threats by focusing on testing during
the development of the simulator and limit the use of metrics that involve human judgment.

5.3.5 Experiment design

An experiment design consists of a series of tests of the treatments [24]. Our experiment design
consists of one factor (the control system) and two treatments (agent system and human operator)
and we want to compare the two treatments. The simulator will also be run with no control
system in order show the "natural" variation of the production, as well as demonstrating that the
introduction of a control system will in fact improve the situation.

5.4 Experiment construction

The main goal of the agent system is to reduce the information load on the human operator. The
desired result from achieving this is improved decision-making, leading to more optimised pro-
duction with regards to the field’s production targets. We have decided to measure the reduction
of situations which in reality would require human interference, since this can be viewed as an
indication of reduced load. Avoiding critical situations is important, but this should not lead to re-
duced oil production. The agents’ ability to maximise the oil content of the production is therefore
also an aspect we would like to measure.

Our agents are given a high degree of autonomy and they can perform their work without human
interference. They are required to notify the operator when critical situations occur, and the
operator may oversteer the agents if desired. However, for the purpose of separating the agents’
performance from the operator’s performance, the operator will not interfere with the agents’
work when we run the tests.
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We perform the following testruns:

• No control system
The field runs without external control.

• Operator control
The operator controls the production of the field.

• Agent control
The agents control the production of the field.

The metrics we will use are the following:

• Critical sand situations

– number of free-standing critical situations

– duration of the longest-lasting critical situation

– average amount of time spent in critical situations for each well

• Critical water situations

– number of free-standing critical situations

– duration of the longest-lasting critical situation

– total amount of time spent in critical situations for the plant

• Oil production

– amount of oil produced by the field in normal situation



32 CHAPTER 5. EXPERIMENT APPROACH



CHAPTER 6

SIMULATED ENVIRONMENT

Our multiagent system has been designed for working in an oil field. In order to make sure that
the agents work as intended, we develop a Java program which simulates the running of a simple
field. This chapter presents the main features of the simulator, starting with a brief overview
of its functionality in Section 6.1. Sections 6.2 and 6.3 describe how we define and calculate
environmental variables and sensor values. A detailed description of how to run the simulator can
be found in Appendix G.

6.1 Simulator overview

The simulator provides features which simplify the testing of the agent system, e.g. logging, agent
output panels and report generation. The user interface of the simulator running in agent mode
is shown in Figure G.3.

Figure 6.1: Simulator in agent mode

The simulated field consists of a processing plant and a limited number of wells. Each well produce
a mixture of oil, sand and water, and the processing plant receives the production from all the
wells. The production of a well can be controlled by adjusting its choke. The valid choke positions
range from 0 (open choke) to 100 (closed choke).

The methods used for defining the environmental influence on the production and calculating new
sensor values are quite simple. They do not take into account all the dependencies found in a real
system. The main point to make is that agents are in fact able to react dynamically to changes
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in the environment. To prove this, we only need values that vary in an unpredictable way, they
do not necessarily have to be realistic. Adjusting the models in order to make them as realistic as
possible has not been a priority.

Note that the values and ranges of our variables do not necessarily reflect reality. What we are
primarily interested in is the relationship between them and their development over time. This
also goes for the calculated sensor values.

6.2 Environment variables

The simulator generates time series for the values of environmental variables for each well. This
can be done for every testrun, but it is also possible to use previously generated datasets. This
enables us to run the system several times with the same dataset, e.g. for comparing the perfor-
mance of the agent system with the performance of the operator in manual mode. An example of
a dataset for a well is shown below;

#maxProduction
100
#timeticks
100
#permeability
57;57;55;55;55;56;57;56;57;56;57;56;57;56;...
#water ratio
0.128;0.119;0.113;0.100;0.113;0.100;0.100;...
#sand ratio
0.03198;0.02906;0.03206;0.02717;0.02432;...

maxProduction is the maximum possible production of the well, i.e. the production which may be
obtained if the choke is fully open and the permeability is optimal. timeticks defines the duration
of the testcase, and for each timetick, a permeability, water ratio and sand ratio are given.

Permeability, sand and water are defined as environment variables that differ for each well and
vary over time. Permeability affects how freely the oil flows into the well. Low permeability means
that the choke must be opened/closed more for the same effect to be achieved as the case would
be with a higher value. Water ratio and sand ratio are variables that define the amount of water
and sand in the production. The variation of these variables are defined in the following manner:

Permeability Each well is given a default permeability between 1 and 100, usually around 60.
For each timetick, the permeability varies around its default value, usually within a bound
of +/- 10. There is also a small probability for a sudden drop or jump in permeability, which
may lead to values +/- 20 from the default.

Water ratio Each well is given a default water ratio between 0 and 1, usually around 0.3. For
each timetick, the water ratio of a well typically changes with +/- 0.05 from the previous
value. It might also be subject to sudden jumps or drops which may lead to values +/- 0.25
from the previous. There will always be at least ten percent water in the production of a
well, but it will never exceed ninety percent.

Sand ratio Each well is given a default sand ratio between 0 and 1, usually around 0.025. The
sand ratio varies over time and may change with +/-0.007 compared to the previous ratio.
It might also be subject to sudden jumps or drops which may lead to values +/- 0.027 from
the previous. There will always be some sand in the well, i.e. the sand ratio will never be
zero, but the amount will never exceed ten percent of the production.
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6.3 Sensor values

The sensor values for the wells are based on the environmental variables defined in the previous
section. They are updated every timetick and calculated as follows:

Production The production rate of a well is calculated based on the well’s maximum production
rate and current permeability, as well as the current choke position.

Water The water sensor value denotes the current amount of water in the production. The water
content is determined from the current water ratio and production rate.

Sand The sand sensor value denotes the current amount of sand in the production. The sand
content is determined from the current sand ratio and production rate.

The sensor values of the plant are simply calculated as the sum of the corresponding sensor values
of each well.
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CHAPTER 7

SYSTEM SPECIFICATION

The system specification is the initial phase of the Prometheus methodology. We start in Section 7.1
with a brief description of what our proposed system should be able to do. Section 7.2 describes
the assumptions we make with regards to the availability of data and infrastructure. Section 7.3
contains the system goals. Based on them, a set of scenarios is developed and presented in Section
7.4. In Section 7.5 we describe the interface of the system, and the necessary roles are given in
Section 7.6.

Refer to Appendix A for our definitions of concepts related to oil production.

7.1 System description

Figure 7.1: The agent system’s environment

We would like to develop a distributed multiagent system which can perform analysis of sensor
data and take actions based on its findings in order to optimise the production of a (simulated and
simplified) oil field. The agents should be capable of adjusting the production of each individual
well, taking into account local environment information. They should also be able to supervise a
set of wells and take actions in order to maximise the production while at the same time ensuring
that global restrictions are met. The agents control the production of an oil well by adjusting
its choke (see Section 4.1.1). Optimisation is performed by maximising the total oil production
while keeping its water content within a given limit. For each well it must also be assured that its
production does not violate a given sand content limit. In addition to automatically regulating the
oil production, the agent system should be able to communicate with the human operator of the
control room. The operator should be notified when critical situations occur and the agent system
should react and respond correctly to instructions from the operator.

The agent system’s environment is illustrated by Figure 7.1.
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7.2 Assumptions

Our proposed agent system is developed based on the simplified view of an oil production field
which was described in Section 4.3. We make the following assumptions with regards to the agent
system;

• The sensor data is cleansed and filtered by an external system before being made available
for the software agents.

• The sand content limit for each well is known to the agent system.

• The water content limit for the processing plant is known to the agent system.

• The agent system has the necessary access for adjusting the chokes.

• The field is equipped with the necessary infrastructure for the software agents to be deployed
distributedly.

7.3 System goals

The main goals of the agent system are briefly presented below, and their further decomposition
is depicted in Figure 7.2.

[G1] Optimise oil production of field

The maximum allowed water content of the production is given by the amount of water that the
processing plant is capable of handling. An evaluation of the current situation is done through
analysis of sensor data. When optimisation is needed, the wells of the field are ranked according
to how much water they produce, and optimal production rates for each well is calculated. From
this, optimal choke positions for the individual wells are calculated and actuated.

[G2] Control sand content in well

In order to control the sand content of an individual well’s oil production, the current sand content
and the maximum limit must be known. Getting an overview of the current conditions in the oil
well is done through analysis of sensor data. When the amount of sand indicates a need for
production rate change, a new choke position is calculated and the choke is adjusted accordingly.

[G3] Perform operator’s choke adjustment

The operator of the central control room should be able to oversteer the agent system if the need
arises. The operator may request choke adjustments and the operator’s request should always
have priority.

[G4] Handle critical situation

The agent system should be able to detect and handle critical situations, i.e. situations which
require human intervention. The agent system’s main responsibility in such cases is to generate
an appropriate alarm and notify the operator of the central control room.
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Figure 7.2: System goals
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7.4 Scenarios

Here we describe the scenarios that take place in the system together with their appurtenant steps.
The scenarios illustrate the normal running of the system. "OR" denotes situations where there are
two alternative sequences. Figure 7.3 illustrate the scenarios and the connections between them.

[S1] Optimise oil production of field

Trigger: Change in water content of total production in the plant

The water content of the production is continuously monitored. When it changes, action is taken to
optimise the production. In order to decide which chokes to adjust, the wells are ranked according
to how much water they produce. During this process, critical situations should also be detected.

1. PERCEPT: Plant sensor values
2. GOAL: Record plant sensor values
3. GOAL: Detect water content change
4. GOAL: Detect critical situation
5. SCENARIO: S5
OR
5. GOAL: Rank wells according to water content
6. SCENARIO: S2

[S2] Optimise the oil production of each well

Trigger: Optimisation operation requested

When the optimisation process is initiated, the optimal production rates and choke positions for
each of the required wells must be calculated.

1. GOAL: Calculate optimal oil production
2. GOAL: Calculate optimal choke position
3. SCENARIO: S4

[S3] Control sand content in well

Trigger: Change in sand content of production in the well

The sand content of the oil in each well is continuously monitored. When sand is detected, the
choke position must be calculated and adjusted accordingly. Critical situations must also be de-
tected.

1. PERCEPT: Well sensor values
2. GOAL: Record well sensor values
3. GOAL: Detect sand in oil production
4. GOAL: Detect critical situation
5. SCENARIO: S5
OR
5. GOAL: Calculate choke position
6. SCENARIO: S4
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[S4] Adjust choke position

Trigger: New choke position requested or calculated.

When the system has recalculated the choke position or a request for a new choke position has
been received, the change must be actuated.

1. ACTION: Change choke position

[S5] Handle critical situation

Trigger: Critical situation has occurred.

When a situation occurs that the system cannot handle without human intervention, an appropri-
ate alarm must be created and sent to the central control room.

1. GOAL: Produce alarm
2. ACTION: Display alarm
3. GOAL: Notify operator

[S6] Respond to instruction from operator

Trigger: Choke adjustment received from the operator.

When the operator instructs the system to change a choke position, the system must perform the
requested adjustments.

1. PERCEPT: Operator’s choke adjustment
2. GOAL: Accept instruction
3. SCENARIO: S4

Figure 7.3: System scenarios

7.5 Interface

Through the definition of the scenarios we found the necessary percepts and actions.
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The percepts are:

Well sensor values Sensor data is provided to the system at regular intervals. The data is saved
as numerical values and analysed by the system. Analysis may involve comparison with
earlier values in the database to determine how e.g. sand content is developing over time.

Plant sensor values This percept is analogous to the previous. Sensor data is stored as numerical
values in a database and analysed by the system.

Operator’s choke adjustment Choke adjustment instructions will be given by the operator to
the system through a user interface. The instruction consists of a reference to a well and a
numerical value denoting the new position of the choke.

The actions are:

Change choke position The system must be able to control the chokes of the wells. When a
change in choke position is required, the new position must be given as input to the me-
chanics of the choke.

Display alarm An alarm containing relevant information must be displayed for the operator when
a critical situation occurs. The information must include the affected component (one of the
wells or the processing plant) and the sensor values that lead to the alarm being created.

7.6 Roles

The functionality of the system is described through roles. Each role can have goals, percepts
and/or actions connected to them. The roles of the system are visualised in Figure 7.4.

[R1] Well monitoring

Trigger: New sensor values from well sensors

Description: Responsible for monitoring the production of a well in order to detect sand.

Goals: Record well sensor values, Detect sand content

Percepts: Well sensor values

[R2] Plant monitoring

Trigger: New sensor values from plant sensors

Description: Responsible for monitoring the production received in the production plant in order
to detect changes in the water content.

Goals: Record plant sensor values, Detect water content change

Percepts: Plant sensor values
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[R3] Choke position calculation

Trigger: Sand detected or automatic optimisation of well required

Description: Responsible for calculating new choke position when required. If new choke position
is required due to sand in the well, a simple calculation following a few rules is performed. If
new choke position is required in order to optimise the total production, a more sophisticated
calculation is performed to find the optimal choke position.

Goals: Calculate new choke position, Calculate optimal choke position

[R4] Choke adjustment

Trigger: New choke position determined

Description: Responsible for adjusting the choke position when required.

Goals: Adjust choke position

Actions: Change choke position

[R5] Field optimisation

Trigger: Automatic optimisation required due to change in water content of the production in the
processing plant

Description: Responsible for gathering water content information from all the wells and compare
them to decide which wells should take measures to reduce or increase the production. Also
responsible for calculating new production rate of the wells that should be adjusted.

Goals: Rank wells according to water content, Calculate optimal oil production

[R6] Critical situation detection

Trigger: Critical situation has occurred

Description: Responsible for detecting critical situations.

Goals: Detect critical situation.

[R7] Alarm creation

Trigger: Critical situation discovered

Description: Responsible for creating an alarm based on the available information about the
critical situation.

Goals: Produce alarm

[R8] Alarm presentation

Trigger: New alarm created

Description: Responsible for notifying the central control room of critical situations that need
attention.

Goals: Notify operator

Actions: Display alarm
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[R9] Instruction acceptance

Trigger: Choke adjustment input from the operator

Description: Responsible for accepting instructions given by the operator.

Goals: Accept instructions

Percepts: Operator’s choke adjustment

Figure 7.4: System roles



CHAPTER 8

SYSTEM DEVELOPMENT

The goal with this chapter is to define what agents are to be a part of the system, how they perform
their tasks and how they interact with each other to meet the overall required functionality. The
artefacts produced during the system specification are used as a basis for developing the high-level
design of the agent system. Section 8.1 presents the architecture of our agent system. It starts
with an illustration of how our agents are distributed in the simulated environment and continues
with a detailed description of the agent types and the overall interaction between them. Section
8.2 takes a look at the details of the interaction and defines required messages and protocols. It
also presents an example of the detailed design of an agent. Section 8.3 describes briefly how the
design maps to JACK entities and Section 8.4 presents the agents’ interaction with the simulated
environment. The agent system’s design is briefly evaluated in Section 8.5.

Refer to Appendix A for our definitions of concepts related to oil production.

8.1 System architecture

Figure 8.1: The agents in our simulated environment

In Section 4.3, we described our simulated oil production environment. Figure 8.1 illustrates how
our agents fit into this environment.

45
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Each well is equipped with an agent pair consisting of one WellMonitor and one WellController.
Together, they monitor the well through analysing sensor values, and control the production of
the well through adjusting the choke position. The plant is equipped with a PlantMonitor and a
ProductionOptimiser. They monitor and analyse sensor values from the plant, and initiate an
optimisation process when needed. The FieldController represents the whole field and its main
responsibility is to work as a channel for the communication between the components of the field
and the operator of the control room. The operator is represented by the OperatorAssistant,
which is responsible for presenting output from the system to the operator and accepting input
from the operator.

In the following sections, each agent type is described in more detail together with the overall
interaction between them.

8.1.1 Agent types

The agent types of a system are defined by considering the roles and scenarios of the system
specification. The agents should be evaluated against the criteria of coupling and cohesion, and
determining the data needed by the different roles is of key importance here.

The nine roles which must be fulfilled by our system were given in Section 7.6 and are repeated
for convenience here.

R1 Well monitoring

R2 Plant monitoring

R3 Choke position calculation

R4 Choke adjustment

R5 Field optimisation

R6 Critical situation detection

R7 Alarm creation

R8 Alarm presentation

R9 Instruction acceptance

The [R1] Well monitoring and [R2] Plant monitoring roles are responsible for updating the sensor
value databases of the system. These databases contain data from all relevant sensors and the
data is used by several roles; [R3] Choke position calculation is dependent on knowing the wells’
production rates, [R6] Critical situation detection must have access to water and sand sensor
values, and [R5] Field optimisation needs to know the water content of the individual wells and
the processing plant. Role [R3] is also dependent on access to the Choke position database which
is continuously updated by the [R4] Choke adjustment role. The roles [R7] Alarm creation, [R8]
Alarm presentation, and [R9] Instruction acceptance are not directly dependent on any of the
databases. Figure 8.2 illustrates the roles’ use of the data stores just described.

We ended up with the following six agent types which fulfil the roles as illustrated by Figure 8.3.
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Figure 8.2: The data used by the roles

[T1] WellMonitor

Cardinality: One agent for each well

Lifetime: Lives as long as the well is in operation

Roles: [R1] Well monitoring

Description: The WellMonitor is responsible for continuously recording and analysing sensor
data from the well. The goal of the analysis is to determine whether there is sand present in the
production, and if so, notify the WellController of the situation.

Initialisation: The agent must be given information about the sensors it is supposed to monitor,
as well as the name of the WellController with which it should communicate.

[T2] PlantMonitor

Cardinality: One agent for the processing plant

Lifetime: Lives as long as the processing plant is in operation

Roles: [R2] Plant monitoring

Description: The PlantMonitor is responsible for continuously recording and analysing sensor
data from the processing plant. The goal of the analysis is to determine if the water content of
the production is changing. Whenever the water content (change) passes a given limit, the agent
notifies the ProductionOptimiser.

Initialisation: The agent must be given information about the sensors it is supposed to monitor,
as well as the name of the ProductionOptimiser with which it should communicate.

[T3] WellController

Cardinality: One agent for each well

Lifetime: Lives as long as the well is in operation

Roles: [R3] Choke position calculation, [R4] Choke adjustment, [R6] Critical situation detection
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Description: The WellController’s main responsibility is to control the choke of its well. In order
to do this, it must first calculate the new choke position based on the desired change of the produc-
tion. This calculation is performed when the WellMonitor reports of sand in the production, or
when the ProductionOptimiser requests an adjustment of the well’s production. The choke may
also need to be adjusted if directly requested by the operator. The WellController is also respon-
sible for detecting and reporting critical situations; here defined as dangerously high levels of sand
in the production. In cases like these, the WellController must notify the FieldCoordinator.

Initialisation: The agent must be set in control of a well’s choke. It also needs to know the name
of the WellMonitor it should communicate with, the maximum production and the critical sand
limit for the well it controls.

[T4] ProductionOptimiser

Cardinality: One agent for the processing plant.

Lifetime: Lives as long as the processing plant is in operation.

Roles: [R5] Field optimisation, [R6] Critical situation detection

Description: The ProductionOptimiser’s main responsibility is to initiate optimisation of the
oil field when the PlantMonitor indicates that this is necessary. When this happens, the current
water content values of all wells are collected and compared in order to determine which wells
are in need of some readjustments. The agent is also responsible for detecting critical situations
in the processing plant as well as reporting them to the FieldCoordinator. A critical situation is
here defined as dangerously high levels of water in the production.

Initialisation: The agent needs the names of all the WellControllers it should communicate with
during the optimisation process. It also needs to know the critical water limit for the processing
plant.

[T5] FieldCoordinator

Cardinality: One agent that represents the oil field as a whole

Lifetime: Lives as long as the system is in operation

Roles: [R7] Alarm creation

Description: Responsible for creating alarms and passing them on to the OperatorAssistant
whenever a WellController or ProductionOptimiser reports of a critical situation. On a lower
level, this agent will also be responsible for forwarding messages between agents of the control
room and the agents situated in the field.

Initialisation: The agent needs to know the names of the OperatorAssistant and all the field’s
WellControllers.

[T6] OperatorAssistant

Cardinality: One agent that represents and assists the operator

Lifetime: Lives as long as the system is in operation

Roles: [R8] Alarm presentation, [R9] Instruction acceptance

Description: The OperatorAssistant is responsible for accepting instructions from the operator
and communicating them to the rest of the system. It is also responsible for presenting alarms
generated because of a critical situation.

Initialisation: The agent needs to know the name of the FieldCoordinator and have access
information to the operator’s input device and the alarm display.
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Figure 8.3: The agent types and the roles they fill

8.1.2 Agent interaction

The interaction between agents capture the dynamic aspects of the system. Figure 8.4 shows an
acquaintance diagram that illustrates how the agents are connected. The WellMonitor sends mes-
sages to the WellController of the same well. The PlantMonitor communicates in the same way
with the ProductionOptimiser. The ProductionOptimiser and the WellControllers communi-
cate between themselves and the FieldCoordinator. The FieldCoordinator also communicates
with the OperatorAssistant.

Figure 8.4: Agent acquaintance diagram

A more detailed description of the interaction is presented in Section 8.2.1.

8.2 Detailed design

In the beginning of this chapter we introduced Figure 8.1 which illustrated how the agents of
our system fit into our environment. We have now described the roles and tasks of these agents,
and the overall interaction between them. Figure 8.5 provides an overview of the architecture
with the main entities involved. We will now take a closer look at the interaction, defining the
necessary messages and protocols. We will also describe briefly how the internal design of an
agent is defined.
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Figure 8.5: System overview
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8.2.1 Interaction sequences

To illustrate the interaction taking place between the agents we set up interaction diagrams for
the relevant scenarios from Section 7.4. Please note that arrows which starts or end in "nothing"
indicates interaction with the agents’ environment. The notation is borrowed from object-oriented
design and is explained in Appendix B.3.

Scenario S1, S2 and S4

Figure 8.6: Interaction diagram for scenario S1, S2 and S4

Scenarios S1, S2 and S4 regard the steps taken by the system in order to optimise the oil produc-
tion of the field. The PlantMonitor monitors the water content of the production in the processing
plant continuously. When the water content (change) is above a given limit, an optimisation claim
is sent to the ProductionOptimiser. The ProductionOptimiser decides whether the situation
is critical, in which case it immediately sends a report to the FieldCoordinator, or requires
production optimisation. The optimisation is performed by collecting the current water content
values of each individual well, ranking the wells according to how much water they produce, and
calculating the optimal production rate of each well. If this production differs from the current
production, the WellController is asked to make the necessary adjustments of the choke. The
WellController calculates the choke position required and changes the choke position accord-
ingly. This interaction is depicted in Figure 8.6.

Scenario S3 and S4

Scenario S3 and S4 concern the way the system controls the sand content of each individual
well, and the interaction is depicted in Figure 8.7. The WellMonitor continuously monitors the
sand content of the production. When sand is detected, a report is sent to the WellController
of the well. If the situation is critical, the WellController immediately sends a report to the
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Figure 8.7: Interaction diagram for scenario S3 and S4

FieldCoordinator. If not, a new choke position is calculated and the choke is adjusted accord-
ingly.

Scenario S5

Figure 8.8: Interaction diagram for scenario S5

The interaction diagram for scenario S5 is shown in Figure 8.8. When a critical sand or water
situation has been discovered elsewhere in the system, the FieldCoordinator is notified. Based
on the available information, an alarm is created and passed on to the OperatorAssistant which
is responsible for presenting it to the operator.

Scenario S4 and S6

Figure 8.9: Interaction diagram for scenario S4 and S6

Scenario S4 and S6 concern the way in which the system deals with requests for choke adjustments
from the operator of the control room. The OperatorAssistant is responsible for accepting the
instruction and constructing an appropriate message for the FieldCoordinator. The request is
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then forwarded from the FieldCoordinator to the WellController which in turn makes sure the
choke position is adjusted. This interaction is depicted in Figure 8.9.

8.2.2 Protocols

Interaction diagrams are meant to show a representative set of the valid sequences of interaction
in the system. In order to have complete and precisely defined interactions, we have developed
message descriptors and a protocol for the optimisation negotiation between the agents of the
system. It is presented with descriptors and diagrams following the Agent UML protocol notation
which is explained in Appendix B.2.

[P1] Optimisation negotiation

Description: The protocol for the negotiation between the ProductionOptimiser, WellControllers
and WellMonitors during a production optimisation process. The ProductionOptimiser first
collects the water content values from all WellMonitors (via the WellControllers) to rank the
wells. From the ranking it decides which wells must adjust their production, calculates the opti-
mal production rates, and instructs the corresponding WellControllers to perform the necessary
adjustments. Figure 8.10 illustrates the protocol.

Agents: ProductionOptimiser, WellController, WellMonitor

Messages: WaterContentRequest (Table 8.1), WaterContentReply (Table 8.2) and ProductionAd-
justmentRequest (Table 8.3)

Figure 8.10: Negotiation protocol

[P1M1] WaterContentRequest
Description: A simple message which instructs the receiving agent to return the

latest recorded water sensor value of the well. This is done whenever
a need for optimisation of the field’s oil production has arisen.

Sender: ProductionOptimiser, WellController
Receiver: WellController, WellMonitor
Information: None

Table 8.1: [P1M1] WaterContentRequest
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[P1M2] WaterContentReply
Description: The message sent as a reply to P1M1. The information contained in

this message should enable the ProductionOPtimiser to calculate
how the current production rate of each individual well should be
regulated.

Sender: WellMonitor, WellController
Receiver: WellController, ProductionOptimiser
Information: The current water content and production of the well.

Table 8.2: [P1M2] WaterContentReply

[P1M3] ProductionAdjustmentRequest
Description: This message is transmitted to the WellControllers of the wells

which must regulate their production rate as part of the optimisa-
tion process. It contains the desired production rate for this specific
well, as calculated based on the water content values of all the wells
in the field.

Sender: ProductionOptimiser
Receiver: WellController
Information: The new optimal production rate for this well together with the old

(current) production and the reason for the request.

Table 8.3: [P1M3] ProductionAdjustmentRequest

8.2.3 Messages

Table 8.4 gives a list of the rest of the messages sent between the agents. The detailed descriptor
tables referred to, can be found in Appendix E.

8.2.4 Internal agent design

The specification of functionality that we developed for the agents in Section 8.1.1 are combined
to form capabilities and plans. Each agent is given a set of plans to achieve its required function,
and some of the plans are grouped into capabilities. A plan is triggered either by an external
message, a percept or an internal event. An internal event is usually a message sent by another
plan within the same agent. An example of the internal design of an agent is given in Figure 8.11
which shows the internals of WellController.

WellController contains one capability and three plans, which together fulfils the agent’s tasks;
analysing the sand content situation, notifying the FieldCoordinator when the situation is criti-
cal, calculating and actuating new choke positions. The Figure illustrates how one plan can trigger
another through the posting of an internal message. The blue-greyish messages are the external
messages handled by the agent as defined in Sections 8.2.2 and 8.2.3.

Appendix C contains agent overview diagrams for the internals of all the agents in our system. It
also contains a detailed description on how the agents perform their tasks through actuating their
plans and sending and receiving the messages.

8.3 Implementation

Most of the design entities produced in the three main phases of the Prometheus methodology
are carried through to the implementation of the system. JACK provides some entities which
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Message Agents involved Descriptor
[M1] OperatorChokeAdjustmentRequest From OperatorAssistant

To FieldCoordinator
Table E.1

[M2] ChokeAdjustmentRequest From FieldCoordinator
To WellController

Table E.2

[M3] OptimisationClaim From PlantMonitor
To ProductionOptimiser

Table E.3

[M4] SandDetectedReport From WellMonitor
To WellController

Table E.4

[M5] CriticalSandReport From WellController
To FieldCoordinator

Table E.5

[M6] CriticalWaterReport From ProductionOptimiser
To FieldCoordinator

Table E.6

[M7] Alarm From FieldCoordinator
To OperatorAssistant

Table E.7

Table 8.4: External messages

Figure 8.11: WellController overview
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map directly to the corresponding Prometheus concepts (agents, capabilities, plans, beliefsets
and events), and has mechanisms for representing concepts which are not directly implemented
(percepts, actions and goals). Actions are, for instance, implemented as method calls or statements
actuated inside the body of a plan.

Appendix D describes the implementation of our agent system. It includes an overview of the
modifications made compared to the original design, and a more detailed explanation of our use
of specific JACK entities in order to improve the design. Appendix F gives an overview of all JACK
entities of our system. It also illustrates the changes made from design to implementation.

8.4 Agent/simulator interface

The interface between the agent system and the simulator is briefly explained below in terms of
the agents’ percepts and actions.

Agents’ percepts The agents should be able to receive new sensor values from the wells and
plant, and they must also be notified whenever the operator requests a choke adjustment.
This is achieved through letting the Sensors class of the simulator extend the abstract Java
class Observable and making the WellMonitor and PlantMonitor observers of sensor value
changes. The same tactic is followed for the OperatorAssistant to be made aware of choke
adjustment requests from the operator.

Agents’ actions The agents need to control the choke of all wells and they must have the possibil-
ity of notifying the operator of critical situations in the field. Each WellController is there-
fore equipped with a reference to the Choke of their respective simulated well, and may ad-
just its position through calling the changeChokePosition method. The OperatorAssistant
is responsible for displaying alarms from the agent system, and achieves this through a ref-
erence to the AgentOutputPanel of the simulator.

8.5 Evaluation

The benefits listed in Section 2.5 are exemplified in our agent system in the following manner.
Agents are autonomous and can be trusted to pursue their goals. The WellController may therefore
safely assume that all sensor values are recorded by the WellMonitor, and that it will be notified
when the current sand content is too high. The ProductionOptimiser has a number of plans for
dealing with high levels of water in the production. Its autonomy enables it to decide for itself
which of the plans should be executed. This characteristic makes the agent system flexible, robust,
and capable of adjusting to unpredictable conditions. The agents are situated in an environment
which is affected by their choke adjustments, and which affects the agents through sensor values.
The agents’ social abilities enable them to cooperate in order to achieve a common goal. A good
example of this is the optimisation process initiated when the water content suggests that this is
needed.
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Results and conclusions
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CHAPTER 9

RESULTS

This chapter presents the results achieved through three testruns of the simulator. One in which
there are no choke adjustments, another in which the operator controls the system, and a third
where the agents are in charge. The first run is performed in order to provide basis of comparison
for the other two testruns. The results are presented in Section 9.1 and Section 9.2 contains an
analysis of the results with regards to the hypotheses defined in Chapter 5. The validity of the
results is evaluated in Section 9.3.

9.1 Experiment operation

Experiment operation is the third step of the experiment process defined in Chapter 5. We now
prepare and execute the experiment before we evaluate the results with regards to our hypotheses.
We will focus on three main aspects, as defined by the hypotheses stated in Section 5.3.2:

The number of critical situations

The duration of critical situations

The quantity of oil produced

In Section 6.2, we explained how the dataset containing values for environment variables is gen-
erated and how sensor values are calculated based on these. We use identical datasets as input for
the following three testruns;

Simulator run with no control system The agents are disabled and there is no operator input.
The chokes are therefore never adjusted.

Operator testrun The agents are disabled and one of us acts as the operator. The operator ad-
justs the choke during the run with the goal of avoiding/escaping critical situations and
maximising the amount of oil produced.

Agent testrun The agents control the chokes of the wells and adjust them to avoid/escape critical
situations and maximise the oil production.

The duration of a testrun is 100 timeticks, each timetick lasts for one second. The field contains
three oil wells and one processing plant. The default choke position is 50 and the maximum
production of each well is 100. The critical water content limit of the plant is set to 70 and the
critical sand content limit of each well is set to 3.

In the following section we present graphs which illustrate the sensor values’ development over
time for the plant and well 3, and tables which summarise the most important figures (rounded to
one decimal place). The well graphs also include the choke position adjustments. The complete
set of graphs for all three testruns can be found in Appendix H.
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9.1.1 Simulator run with no control system

This run is without agents and without operator input. The graphs will therefore mainly illustrate
how the sensor values vary "naturally" over time.

Figures 9.1 and 9.2 illustrate how the composition of the production changes over time for the
processing plant and well 3. The graphs also show the critical limits for water in the processing
plant and for sand in a well. Whenever the sand content of a well or the water content of the plant
exceeds these limits, the situation is considered critical. We see that the natural variation in sand
and water content leads to this several times. When critical situations occur, they remain critical
until environmental changes normalise the situation.

Figure 9.1: Simulator run with no control system - plant

9.1.1.1 Critical situations

Table 9.1 gives an overview of the critical situations that occur when the production is not con-
trolled in any way. The number of free-standing critical situations refers to instants where the
amount of water (for the plant) or sand (for the wells) exceeds the critical limit. There is only a
limited number of free-standing critical situations in this run, but they last for quite some time.
This results in the plant being in critical situation almost half of the running time.

Well 1 Well 2 Well 3 Plant
Number of free-standing critical situations 1 2 5 4
Duration of longest-lasting critical situation 8 5 17 32
Total amount of time in critical situations 8 7 30 44
Largest amount of sand 3.6 3.5 4.2 -
Largest amount of water - - - 110.8

Table 9.1: Simulator run with no control system - critical situations
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Figure 9.2: Simulator run with no control system - well 3

9.1.1.2 Production composition

Table 9.2 shows the amounts of oil, water and sand produced when the processing plant’s water
content is below the critical limit. It is worth noting that well 1 and well 3 contribute more than
well 2 to the total production received in the plant. Well 2 appears to be producing a lot of water
compared to the other two. The total quantity of oil produced is 5438.0.

Well 1 Well 2 Well 3 Plant
Oil 2005.6 1185.3 2247.1 5438.0
Water 1011.2 1405.9 744.5 3161.6
Sand 107.7 94.8 134.4 336.9
Production 3124.5 2686.0 3126.0 8936.5

Table 9.2: Simulator run with no control system - production

9.1.2 Operator testrun

The simulator is run in manual mode with the agent system deactivated. The operator adjusts the
chokes of the wells to avoid or escape critical situations and maximise the oil production.

Figures 9.3 and 9.4 illustrate how the composition of the production changes over time for the
processing plant and well 3. Critical water situations are marked in the graph of the processing
plant, and critical sand situations are marked in the graph of the well. The well’s graph also
includes the choke position as it is adjusted by the operator.
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Figure 9.3: Operator testrun - plant

Figure 9.4: Operator testrun - well 3
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9.1.2.1 Critical situations

As Table 9.3 shows, a total of ten critical situations occur in the wells and the processing plant
during the testrun. The duration of the longest-lasting critical situation (13) indicates that it takes
time for the operator to recognise critical situations and execute appropriate actions to stabilise
the production. The operator’s slow reaction is part of the reason why the largest observed amount
of water is as high as 92.7 (22.7 above the critical limit).

Well 1 Well 2 Well 3 Plant
Number of free-standing critical situations 1 2 1 6
Duration of longest-lasting critical situation 1 4 13 10
Total amount of time in critical situations 1 7 13 25
Largest amount of sand 3.1 4.0 4.3 -
Largest amount of water - - - 92.7

Table 9.3: Operator testrun - critical situations

9.1.2.2 Production composition

Table 9.4 shows the amounts of oil, water and sand produced when the processing plant’s water
content is below the critical limit. The operator achieves an oil production of 6217.11.

Well 1 Well 2 Well 3 Plant
Oil 2500.3 1370.5 2346.4 6217.1
Water 1230.4 1850.3 1043.8 4124.5
Sand 119.8 115.8 139.3 374.9
Production 3850.5 3336.6 3529.5 10716.5

Table 9.4: Operator testrun - production

9.1.3 Agent testrun

The simulator is run in agent mode. The agents continuously monitor the field’s sensors, and adjust
the chokes of the wells to avoid or escape critical situations while maximising the oil production.

Figures 9.5 and 9.6 illustrate how the composition of the production changes over time for the
processing plant and well 3. Critical water situations and alarms are marked in the graph of the
processing plant. No critical situations or alarms occur in well 3 during the agent testrun. The
well’s graph displays the choke position as it is adjusted by the agents, and we see that adjustments
are made a lot more frequently than during the operator testrun.

9.1.3.1 Critical situations

As shown in Table 9.5, a total of eight critical situations occur in the wells and the processing plant
during the testrun. The critical situations are all recognised immediately by the agents which
notify the operator through alarms. The duration of the longest-lasting critical situation is two
timeticks, indicating that the agents react quickly and are effective in stabilising the production.

9.1.3.2 Production composition

Table 9.6 shows the amounts of oil, water and sand produced when the processing plant’s water
content is below the critical limit. The agents achieves an oil production of 7334.98.
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Figure 9.5: Agent testrun - plant

Figure 9.6: Agent testrun - well 3
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Well 1 Well 2 Well 3 Plant
Number of free-standing critical situations 2 0 0 6
Duration of longest-lasting critical situation 1 0 0 2
Total amount of time in critical situations 2 0 0 7
Number of alarms 2 0 0 6
Largest amount of sand 3.9 2.8 2.9 -
Largest amount of water - - - 84.9

Table 9.5: Agent testrun - critical situations

Well 1 Well 2 Well 3 Plant
Oil 2933.3 1452.7 2948.9 7335.0
Water 1646.1 1992.4 1437.9 5076.4
Sand 137.6 115.9 166.6 420.1
Production 4717.0 3561.0 4553.4 12831.5

Table 9.6: Agent testrun - production

9.2 Analysis and interpretation

This is the last step of the experiment process given in Chapter 5. Table 9.7 summarise the results
of the different runs with regards to the metrics presented in Section 5.4.

No
input

Operator
testrun

Agent
testrun

Critical sand situations
number of free-standing critical situations 8 4 2
duration of the longest-lasting critical situation 17 13 1
average amount of time spent in critical situations for each well 15 7 0,67
Critical water situations
number of free-standing critical situations 4 6 6
duration of the longest-lasting critical situation 32 10 2
total amount of time spent in critical situations for the plant 44 25 7
Oil production
amount of oil produced by the field in normal situation 5438.0 6217.1 7335.0

Table 9.7: Result summary

The results are now evaluated with regards to the hypotheses stated in Section 5.3.2.

9.2.1 The number of critical situations

The following hypotheses with regards to the performance of the agent system compared to the
operator were formulated:

H1.0 The introduction of the agent system will not lead to any changes in the number of critical
situations encountered.

H1.1 The agent system will lead to a reduction in the number of critical situations.

Table 9.7 shows that the total number of critical situations is reduced by both operator and agents.
They both perform best with the critical sand situations, and do in fact increase the number of
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critical water situations. In total the operator reduces the number of critical situations with 16%
and the agents reduce it with 33%. We therefore reject H1.0 and choose H1.1.

9.2.2 The duration of critical situations

The following hypotheses with regards to the performance of the agent system compared to the
operator were formulated:

H2.0 The introduction of the agent system will not lead to any changes in the duration of critical
situations.

H2.1 The agent system will lead to a reduction in the duration of critical situations.

The duration of the critical situations is reduced a lot. All metrics we have for this hypothesis
show that the agents have a big effect on the amount of time the production is in critical state.
The duration of the longest-lasting critical water situation is reduced with 69% by the operator
and with as much as 94% by the agents. The duration of the longest-lasting critical sand situation
is reduced with only 24% by the operator while the agents manage to reduce also this with 94%.
The total amount of time in critical situation for the plant is reduced with 43% by the operator
and with 84% by the agents. The average amount of time spent in critical situation for each well
is reduced with 44% by the operator and is almost completely eliminated by the agents which
reduce it with 96%. We therefore reject H2.0 and choose H2.1.

9.2.3 The quantity of oil produced

The following hypotheses with regards to the performance of the agent system compared to the
operator were formulated:

H3.0 The introduction of the agent system will not lead to any changes in the amount of oil
produced in normal situation.

H3.1 The agent system will lead to an increase in the amount of oil produced.

The quantity of oil produced when the operator is in charge is 14% higher than without a control
system. The agents manage to increase the oil quantity with 35%. We reject H3.0 and choose
H3.1.

9.2.4 Discussion

The graphical user interface of our simulated environment represents a very simplified version of
a control room. In spite of its relative simplicity, it proved difficult to keep up with the production’s
development and handle critical situations during the operator testrun. Often, the wrong choke
was adjusted or the adjustment was not adequate. The result was that several choke adjustments
had to be made to stabilise the situation. The agents managed to keep the water content of the
production more stable and closer to the critical limit, thereby achieving a higher oil production
than the operator. They also made the right decisions on how to deal with critical situations and
therefore stabilised the production immediately. Although the agent system did not achieve a big
reduction in the number of critical situations, its reaction was correct and quick when they did
occur. The amount of time spent in critical situations was therefore significantly reduced by the
agents, also when compared to the operator’s performance.

In a real production system, the number of wells that must be controlled is a lot higher than
in our simulated environment. There are usually closer to a hundred wells, in some cases even
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thousands. Section 4.1.4 presented the Gullfaks field as an example. We also explained in Section
4.1.3 that optimisation today is often performed as rarely as on a monthly basis, weekly in the best
cases. When we perform our testruns new sensor values are recorded every second. This does not
happen in current systems, but real-time data is becoming more available and the desire for more
frequent optimisation is there. The testruns show that an agent system is capable of working
in a very unpredictable environment. Even though our simulator is far from a real production
system, the results indicate that agents can perform better than humans when it comes to handling
situations that demands quick reasoning and reaction. The agents perform their tasks distributedly
and concurrently. Increasing the number of wells to control and restrictions to obey is therefore
likely to affect the operator more than an agent system.

We believe our results suggest that an agent system could be introduced in a production system
to deal with some aspects of the system control, thereby reducing the information load on the
operator.

9.3 Evaluation

Validity is the strength of our conclusions, inferences and propositions. We here evaluate our
results with regards to the validity threats identified in Section 5.3.4.

• We have accepted the threat of low statistical power. Our main goal has been to create
a proof-of-concept and we believe that the testruns we have performed are adequate for
demonstrating that agent systems may be suitable in this domain.

• A fair comparison of the testruns requires identical environmental influence on the produc-
tion. The same dataset is used for all three testruns, thereby ensuring that this requirement
is met.

• The environmental variables which influence the oil production are assigned random values
generated by the simulator. This has been done in an attempt to avoid creating a dataset
which is biased by our knowledge of how the agent system works.

• We have not drawn any conclusions with regards to a real operator’s performance from
the operator testrun. The operator’s results are only used for the purpose of comparing
a general manual solution with the performance of the agent system. Even though the
simulator provides a restricted and simplified view of reality, we have tried to maintain the
most important cause-effect relationships found in a real oil production system. We therefore
believe that our results give indications of what can be achieved in a real-world scenario.

• The reliability of our results depends on the correct functioning of the simulator. We have
addressed this threat by thoroughly testing that the values generated by the simulator agree
with our manual calculations. The metrics we have used are objective and not dependent
on human judgment.
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CHAPTER 10

SUMMARY

Compared with other process industries, the oil and gas sector has historically been characterised
by a fairly low level of automation. Recent years have seen an increase in the instrumentation of
production facilities. The use of advanced sensor technology leads to a higher availability of real-
time information about the state of the components and the processes taking place within them.
The sensor data enables better control and optimisation of the oil production processes, but this
requires that computer systems and control room operators are capable of quickly transforming
raw data into knowledge and actions. Current technology is generally not able to perform the
necessary intelligent reasoning without a great deal of human intervention.

Agent-oriented software engineering is a relatively new approach for designing, constructing and
implementing computer systems. Adopting such an approach means decomposing the problem
into multiple, autonomous components that can act and interact in flexible ways to achieve their
objectives. Agents provide suitable abstractions for the creation of complex computer systems
consisting of geographically dispersed components that exchange considerable amounts of data.
These are the characteristics of a typical oil production scenario, where the wells are spread over
a large area and the distances between the different installations

In a typical oil production scenario, the processes and equipment of the wells and processing plant
are monitored, controlled and optimised from a centrally located control room. Optimisation of
the oil production is usually performed manually and therefore not very often. A higher degree of
automation is desired in the analysis of the production processes. In order to reduce the amount
of data transmitted on the communication links, it is desirable to distribute this analysis so that
reasoning is performed closer to the data sources. Rather than sending a continuous stream of
sensor data to a central repository, entities situated near the sensors should analyse the data and
only send reports which summarise their findings and actions. The human operator should only
have to intervene when critical situations occur which cannot be dealt with automatically.

Figure 10.1: The agents in our simulated environment
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We suggest a multiagent system for the control and optimisation of oil production as illustrated
by Figure 10.1. In order to keep the complexity at a manageable level, a number of simplifying
assumptions were made. We concentrated on the challenges related to limiting the content of wa-
ter and sand in the production while maximising the amount of oil produced. We have considered
sand a local restriction for the production of each well and water a global restriction for the pro-
duction of the field as a whole. Our agents are distributed in the production system. Some of them
are located at the wells, monitoring and analysing the wells’ sensor values. Others are located at
the processing plant, performing equivalent tasks there. These agents maintain an overview of
the production content at all times. They know the critical limits of the wells and the plant and
are therefore able to detect critical situations. Through adjusting the chokes of the wells, they
try to maximise the oil production while keeping the system within its envelope. The system also
includes two other agent types; one which represents the operator of the control room, another
which represents all the agents of the field.

In order to test that the agent system works as intended, we developed an application simulating
a simple oil field consisting of a limited number of wells and a processing plant. Controlling
the production of a well can be done by adjusting its choke. The production is also affected
by three relatively random variables; permeability, water ratio and sand ratio. The values of
these variables were generated in advance, and this dataset was used for three testruns. Keeping
the environmental influence on the production over time identical, our goal was to compare the
effect of two different control systems: a human operator and our agent system. We also ran the
simulator without a control system in order to obtain a standard of comparison.

Compared to the run without a control system, the operator and agent system both managed to
reduce the amount of time spent in critical situations and increase the amount of oil produced.
The achieved reduction in critical situations is higher for the agents than for the operator, and
they also produce more oil. The results suggest that an agent system may be trusted to handle
some of the tasks currently performed by human operators. The introduction of such a system
may contribute to a reduction of the information load on the operator, presenting him/her with
more time to concentrate on situations which the agents are not able (or not allowed) to handle
on their own.



CHAPTER 11

CONCLUSION

The goal of this Master’s thesis was to demonstrate the suitability of multiagent systems for control
and optimisation of oil production. In order to achieve this, we implemented two systems. A
multiagent system specifically designed for controlling the production of a set of oil wells, and a
simulator providing an environment in which to test the agent system. Three hypotheses regarding
the agent system’s performance were formulated; we wanted to show that agents may be able to
reduce the number of critical situations, reduce the duration of critical situations, and increase the
amount of oil produced.

In spite of the comparative simplicity of the environment provided by the simulator, the main
concepts of a real oil production system are in place. A set of wells produce a mixture of oil,
water and sand which is delivered to a processing plant. The production of a well depends on
varying environment variables and the current choke position. The water/oil and sand/oil ratios
change constantly and in unpredictable ways. Controlling the production involves maximising the
amount of oil, while at the same time making sure that a set of local and global restrictions are
met. This might be performed manually, but quickly turns out complicated due to the amount of
information available and the frequency with which it is updated.

The agent system is capable of continuously monitoring the wells and plant in our simulated
environment. The agents base their actions on the analysis of real-time sensor data, thereby
achieving an increase in the amount of oil produced while at the same time minimising the time
spent in critical situations. The results of our testruns show that agents are able to work in
an unpredictable environment, and perform similar tasks to those that are currently being done
manually. The agents’ performance matches or surpasses the performance of the operator in the
simulated environment, indicating that an agent system could successfully be introduced in a
control system to automate some of the operator tasks. This could result in a reduction of the
information and work load on the operator and hopefully improve his/her decision-making.

Although our agent system performs very well in the given scenario, it is important to remember
that agents are not the instant solution to all types of problems. Domains which are geographically
distributed, complex, open and unpredictable are good candidates for the application of agent
technology. Developing agent systems requires the same care which is exerted in traditional system
development. An agent which is granted a high degree of autonomy must be thoroughly tested
before deployment. Achieving the desired agent behaviour is not easy and may require a lot of
tuning. In our opinion, the main advantage during system development is that the agent paradigm
provides a very convenient level of abstraction. When deployed, a well-designed agent system
provides very important features like flexibility, robustness, and maintainability - characteristics
which fit perfectly with open and complex environments like oil production systems.

Our results led to the acceptance of all three hypotheses. We therefore believe that we have
fulfilled our goal of demonstrating the suitability of agent technology in control and optimisation
of oil production.
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CHAPTER 12

FURTHER WORK

The problem area chosen as a basis for this thesis is interesting and very well suited for the
application of agent technology. Our enthusiasm for the task at hand led to an initial system
specification which was a lot more extensive than the design and implementation we ended up
with. The main reasons for our simplifications were our virtually non-existent knowledge of the
intricate details of the application domain, the time we had available and our limited experience
with the design and implementation of agent systems. Although we were not able to follow all our
ideas all the way through, we still believe that they are worth mentioning. This section contains
some suggestions for the extension and improvement of the agent system we have designed.

12.1 Agent/operator cooperation

In our system, the software agents are mainly meant to alleviate the operator’s work by assisting
with the routine running of the system. Critical situations are dealt with by notifying the operator
of the control room (and, for our testruns, choking the well which is believed to be causing
the problem). One way of utilising the agents’ capabilities even better would be to provide the
operator with a suggested solution for the problem at hand. The alarm could consist of a sequence
of steps meant for solving the critical situation. The operator could then choose to follow these
steps or opt for an alternative solution to the problem. Whether or not the agents should in fact
try to solve the problems on their own is a question of how much authority the operator is willing
to surrender to an autonomous computer system. Achieving the right power balance is important
for the successful adoption of such systems.

Our agent system is also capable of receiving input from the operator. There is currently only
support for choke adjustment request, but it is easy to imagine other possibilities. The operator
might want the agent system to provide an explanation of the reasoning leading to a certain
decision. In critical situations there might be a need for an overview of the development of sensor
values in a given well for a given time period. The agent system could quite easily be extended
to support such features. The operator assistant agent is currently only responsible for accepting
input and providing output. This agent could be given capabilities enabling it to handle other and
more complex tasks, e.g. organising the user interface in order to emphasise the most important
information at any given time.

12.2 Learning

Learning in agent systems is a very interesting topic which we would have loved to have the time to
investigate further. This capability could be introduced at various places in our design and would,
at least in theory, lead to a more dynamic agent system with the ability to adjust automatically to
a changing environment.

We have identified the following areas in which learning could be successfully applied;
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Environment monitoring The agents that are monitoring the development of environmental
variables could be set to automatically learn what can be considered normal in their en-
vironment and what signifies a situation in need of attention.

Operator guidance In a system which provides the human operator with suggested solutions to
problems that arises, learning would be of great use. Through analysis of the operator’s
response to the suggested solution, the system could learn which solutions are considered
good and which are considered bad. This knowledge could then be applied when suggesting
solutions for similar problems in the future.

Critical situation prediction If the agents could remember the sequence of events that happened
previous to a critical situation, they could learn to recognise risky combinations of actions
and environmental changes. This might give them the capability of predicting new critical
situations, thereby being able to warn the operator in advance. This would enable the
operator to take proactive measures to avoid such incidents, rather than reacting when they
actually occur. For this to work as intended, it is important that the agents (to the extent
possible) avoid giving such warnings for situations which do not turn out critical.

Choke adjustments Whenever the production of a well is adjusted through regulating its choke
position, the actual effect on the environment should be observed and analysed. The findings
from this analysis should be used to improve the reasoning methods of the agents so that
the calculation of the optimal choke position is made more accurate over time..

12.3 "Real-world" testing

In order to test our agents, we made an application which simulates the running of a very simple
oil field. We concentrated on a small number of variables in order to keep the complexity at a
manageable level. We also used very simple models for how these variables develops over time.
An obvious improvement of our system would be to use real-world data and more realistic models
for the simulation of the oil production. One could also make a different selection of environment
variables and include more than we have done. It would be interesting to modify the simulator
in order to enable testruns with a much larger number of wells than the current maximum of
four. Investigating the scalability would be of great importance since real oil fields may consists of
hundreds of wells.
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APPENDIX A

TERMINOLOGY

Control system The person or system that is controlling the chokes of the wells. This is either the
operator or the agent system. The goal of the control system is to maximise the production
of oil while avoiding critical water situations in the plant and critical sand situations in the
wells.

Critical sand situation A critical situation in a well is defined as a situation where the production
of the well contains too much sand. High sand content levels have long-term negative effects
(erosion on production assets), but no immediate effect on the production.

Critical water situation A critical situation in the plant is defined as a situation where the total
production received contains too much water. High water content levels affect the produc-
tion immediately (shut-down and loss of production).

Normal situation As long as the production is not in a critical water situation, it is defined as
being in normal situation.

Oil field We refer to the collection of oil production components as the oil field. This includes the
processing plant and the set of wells.

Oil well An oil well is viewed as a component which is capable of producing a mixture of fluids
collectively referred to as production. The well has a maximum limit for how much sand it
can safely produce. It contains sensors which may be read by external entities at any time.

Processing plant A processing plant is viewed as a component which is capable of receiving pro-
duction. In our simulator, the processing plant does not actually process (transform) what it
receives since this aspect is outside the scope of our work. The plant has a maximum limit
for how much water it can handle. It contains sensors which may be read by external entities
at any time.

Production The mixture of oil, water and sand which is produced by the oil wells.
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APPENDIX B

NOTATION

The notation used in the various design phases of the development of our multiagent system are
explained in the following sections.

B.1 Prometheus Design Tool

An overview of the notation used for the diagrams in the Prometheus Design Tool is shown in
Table B.1

Action
An action is what the agent does that effects the
environment.

Agent
An agent receives percepts, sends and receives messages,
reads and writes data and performs actions to obtain
goals.

Capability
A capability is different roles of an agent grouped. It can
be considered as a part of an agent.

Message
A message is data or request for data, and is sent by one
agent to another.

Data
A data store is used to store beliefs of an agent.
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Role
The needed functionality of the system is grouped into
roles that the agents inhabit.

Goal
A goal is something the agent should try to achieve.

Percept
A percept is the input coming from the environment to the
agent.

Plan
A plan is a set of actions that an agent can perform to
obtain a goal.

Protocol
A protocol is a specification of allowable agent interaction
sequences, within a given conversation.

Scenario
A scenario is an abstract description of a particular
sequence of steps within the system.

Actor
An actor is an entity (human or software/hardware)
external to the system.

Edge
An edge is used to connect entities.

Table B.1: Prometheus diagram notation
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B.2 Agent UML protocol

An overview of the notation used for the diagrams that describe the agent communication proto-
cols can be found in Table B.2. The explanations are based on [23] and it is worth noting that the
entities presented here is only a subset of the entities available for these types of diagrams.

Protocol
The interaction protocol is enclosed in a box which
is labelled with the protocol name.

Agent with lifeline
A protocol consists of a number of lifelines, each
labelled with an agent name in a box at the top of
the lifeline.

Message
Messages are depicted by labelled arrows between
lifelines, and time increases down the page.

Option box
Option boxes may contain messages and other
boxes, and denotes that the content may or may not
occur.

Table B.2: Agent UML protocol notation

B.3 Interaction diagrams

Agent interaction diagrams are very similar to the sequence diagrams used in object-oriented
design. An overview of the notation used for the interaction diagrams is shown in Table B.3

Agent with lifeline
An agent is shown as a box at the top of a dashed
vertical line which represents the agent’s life during
the interaction.
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Percept
Input from the environment is shown as a
horizontal arrow which starts in "nothing" and
points towards the lifeline of an agent.

Action
Output to the environment is shown as a horizontal
arrow which starts at the lifeline of an agent and
ends in "nothing".

Message
Messages are shown as horizontal arrows which
starts and ends in agents’ lifelines.

OR
Alternative sequences are marked with OR

Table B.3: Interaction diagram notation



APPENDIX C

DETAILED DESIGN

In the following sections we present the internal design of our agents. The percepts and the
internal messages are denoted Events and numbered E<number>. As the data used by the plans
correspond to the agent’s beliefs, they are from now on referred to as beliefsets.

C.1 PlantMonitor

The PlantMonitor’s tasks is to record sensor values from the plant, analyse the water sensor
values and notify the ProductionOptimiser when there is a change in water content. These tasks
are fulfilled through the following plans:

P1 Record sensor values from plant

handles [E1] PlantSensorValues

sends [E2] NewWaterSensorValueNotification

P2 Analyse water sensor values

handles [E2] NewWaterSensorValueNotification

sends [M4] OptimisationClaim

P1 receives new sensor values through the event PlantSensorValues at regular time intervals, and
adds them to the agent’s set of beliefs. It then sends this in the internal message NewWaterSensorValueNotification
to P2 for analysis. P2 compares the two water values to determine if there has been a change. If a
change is discovered it creates an OptimisationClaim which is sent to the ProductionOptimiser.

Figure C.1 shows the internal design of the PlantMonitor.

Figure C.1: PlantMonitor overview
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C.2 WellMonitor

The WellMonitor’s tasks is to record sensor values from the well, analyse the sand sensor values
and notify the WellController when sand is detected. This is fulfilled by the following plans:

P3 Record sensor values from well

handles [E1] WellSensorValues

sends [E2] NewSandSensorValueNotification

P4 Analyse sand sensor values

handles [E2] NewSandSensorValueNotification

sends [M4] SandDetectedReport

P5 Look up water content

handles [P1M1] WaterContentRequest

sends [P1M2] WaterContentReply

P3 receives new sensor values through the event WellSensorValues at regular time intervals, and
adds them to the agent’s beliefsets. It then sends a NewSandSensorValueNotification, contain-
ing the new sand sensor values, to P4 for analysis. P4 first checks if the new value is above a given
limit, and if so, compares it with the previous in the database. If there has been a change in sand
content a SandDetectedReport is sent to the WellController.

The WellMonitor’s plan P5 is initiated by a WaterContentRequest from the WellController.
When such a request is received, P5 fetches the newest values from the well’s water sensor and
production rate beliefset. It wraps these values into a WaterContentReply which it sends back to
the WellController.

Figure C.2 shows the internal design of the WellMonitor.

Figure C.2: WellMonitor overview

C.3 WellController

The WellController is responsible for analysing the situation when sand has been detected and
notify the FieldCoordinator when the situation is critical. It is also responsible for calculating
and actuating new choke positions whenever an adjustment is needed or requested. It fulfils its
responsibilities through the following plans:
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P6 Analyse sand content situation

handles [M4] SandDetectedReport

sends [M5] CriticalSandReport

sends [P1M3] ProductionAdjustmentRequest

P7 Calculate choke position

handles [P1M3] ProductionAdjustmentRequest

sends [M2] ChokeAdjustmentRequest

P8 Actuate choke position change

handles [M2] ChokeAdjustmentRequest

It also has the following capability:

C1 Handling water content request which contains the plans:

P9 Forward water content request

handles and sends [P1M1] WaterContentRequest

P10 Forward water content reply

handles and sends [P1M2] WaterContentReply

Plan P6 is initiated when a SandDetectedReport is received from the WellMonitor. The content is
analysed by comparing the sand sensor value with various limits, taking into account if the well is
currently in a critical state or not. If the value exceeds the critical limit, a CriticalSandReport is
sent to the FieldCoordinator. If the value is below the critical limit, but above the limit for where
action should be taken to avoid a critical situation, a ProductionAdjustmentRequest is sent to
P7. The ProductionAdjustmentRequest contains a desired production rate which is calculated
by P6 with consideration to whether the sand sensor value has increased or decreased.

Plan P7 can also be initiated by the same message sent by the ProductionOptimiser. P7 calculates
the new choke position based on the production rate in the message. It sends the new position
together with the reason for the adjustment to P8 in a ChokeAdjustmentRequest. P8 can also
receive a ChokeAdjustmentRequest from the operator via the FieldCoordinator. If P8 receives
requests from several agents at the same time, it knows which to prioritise. After determining if a
requested change should be actuated, it stores the new choke position value in its choke position
Beliefset and performs the change.

Figure C.3 shows the internal design of the WellController.

The C1 capability is a simple forwarding function. When the ProductionOptimiser needs to
know the water content of the well, P9 receives the WaterContentRequest and forwards it to the
WellMonitor. When the WellMonitor replies with a WaterContentReply, P10 forwards this to the
ProductionOptimiser. Figure C.4 shows the internal design of HandlingWaterContentRequest.

C.4 ProductionOptimiser

The ProductionOptimiser’s tasks is to discover critical situations in the plant and to initiate
optimisation when needed. It has the following plans:

P11 Analyse water situation

handles [M3] OptimisationClaim
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Figure C.3: WellController overview

Figure C.4: WellController Capability [C1] Handling water content request
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sends [M6] CriticalWaterReport

sends [E6] FieldOptimisationRequest

P12 Calculate optimal production rates

handles [E7] RankedWellList

sends [P1M3] ProductionAdjustmentRequest

It also has the following capability:

C2 Ranking wells which contains the plans:

P13 Send water content request

handles [E6] FieldOptimisationRequest
sends [P1M1] WaterContentRequest

P14 Receive water content reply

handles [P1M2] WaterContentReply
sends [E8] UnrankedWellList

P15 Rank wells

handles [E8] UnrankedWellList
sends [E7] RankedWellList

P11 is initiated by an OptimisationClaim. It analyses the water content by comparing the
value with various limits and with the previous value. If the value is above the critical limit,
a CriticialWaterReport is sent to the FieldCoordinator. If it is below the critical limit but
there has been a change since the last value was recorded, a FieldOptimisationRequest con-
taining the current water content value and the latest change is sent to C2. In C2, P13 handles
the message. It initiates the task of collecting the current water content values of all wells by
sending a WaterContentRequest to all WellControllers. P14 receives the replies and, when
all replies have been gathered, initiates P15 by sending a UnrankedWellList containing the
WellControllers’ replies. P15 ranks the wells according to their water content and sends the
rated list in a RankedWellList to P12. Depending on the situation, whether the water content is
far from critical or approaching critical limit, P15 decides which of the wells to adjust and how
much. It calculates the desired production rates and sends this to the relevant WellControllers
in a ProductionAdjustmentRequest.

Figure C.5 show the internal design of the ProductionOptimiser agent, and Figure C.6 shows the
internal design of the Ranking wells capability.

C.5 FieldCoordinator

The FieldCoordinator is the communication link between the field components and the control
room. In this case it means that all messages between the OperatorAssistant and the other
agents goes through the FieldCoordinator. It is also responsible for creating alarms when it is
notified of critical situations. It has the following plans:

P16 Forward choke adjustment request

handles [M1] OperatorChokeAdjustmentRequest

sends [M2] ChokeAdjustmentRequest
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Figure C.5: ProductionOptimiser overview

Figure C.6: ProductionOptimiser Capability [C2] Ranking wells
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It also has the following capability:

C3 Producing alarm which contains the plans:

P17 Create sand alarm

handles [M5] CriticalSandReport
sends [M7] Alarm

P18 Create water alarm

handles [M6] CriticalWaterReport
sends [M7] Alarm

P16 receives OperatorChokeAdjustmentRequest from the OperatorAssistant and sends the rel-
evant content in a ChokeAdjustmentRequest to the correct WellController.

C3 is responsible for producing alarms when a critical situation is discovered in the plant or in
a well. The WellControllers send CriticalSandReports which P17 receives. P17 generates
an Alarm from the information received, and sends it to the OperatorAssistant. Similarly, P18
receives CriticalWaterReports from the ProductionOptimiser, creates an alarm, and sends it
to the OperatorAssistant.

Figure C.7 shows the internal design of the FieldCoordinator agent and Figure C.8 shows the
internal design of the Producing alarm capability.

Figure C.7: FieldCoordinator overview

Figure C.8: FieldCoordinator Capability [C3] Producing alarm

C.6 OperatorAssistant

The OperatorAssistant is the link between the control room operators and the agents of the
field. Its tasks includes accepting input from the operators and displaying system output (alarms).
It has the following plans:

P19 Accept operator’s request

handles [E9] OperatorsChokeAdjustment



90 APPENDIX C. DETAILED DESIGN

sends [M1] OperatorChokeAdjustmentRequest

P20 Present alarm

handles [M7] Alarm

P19 accepts requests for choke position changes from the operator (received through the event
OperatorsChokeAdjustment) and sends the request in an OperatorChokeAdjustmentRequest to
the FieldCoordinator. P20 is responsible for notifying the operator of critical situations by dis-
playing the Alarms sent by the FieldCoordinator.

Figure C.9 show the internal design of the OperatorAssistant.

Figure C.9: OperatorAssistant overview



APPENDIX D

IMPLEMENTATION

In this appendix we explain the actual implementation of the agent system. To make the most out
of the possibilities offered by JACK, some changes were made to the design during implementation.
Most of these changes involve splitting up existing plans, and grouping these into capabilities.
Section D.1 gives an overview of the modifications made. Our use of special JACK concepts like
BDIGoalEvent and Semaphore is explained in Sections D.2 and D.3.

D.1 Design modifications

In the detailed design phase, one plan was made for each desired functionality of an agent, and
capabilities were created only when it was very obvious that a functionality could have two distinct
inputs (which called for two distinct plans, performing the same task but with different inputs) or
when a collection of plans seemed to be especially connected. During implementation we found
that some of our plans were unnecessarily complex, with several possible subtasks to perform. The
selection of subtask was based on the outcome of a small analysis of the input values. We therefore
decided to improve the design by dividing these plans into several plans, using the context method
defined in Jack.

The context method specifies a logical condition that must be satisfied if the plan is to be applicable
for handling a given event in the current situation [6]. This way, the analysis of input values is done
in the context rather than in the body of the plan, thereby deciding which plan to perform instead
of which subtask. Thus the plans become more consistent and clear.

Plans were modified in the WellController, ProductionOptimiser and FieldCoordinator. This
section summarises the modifications made for each of these agents.

D.1.1 WellController

The plan AnalyseSandContentSituation was split into two new plans which were given a parent-
ing capability Analysing sand content situation. The two new plans are AnalyseSandContentCriticalSituation
and AnalyseSandContentNormalSituation. The original plan evaluated current situation and
performed different subtasks depending on whether the situation was critical or not. The two new
plans each handles one of those situations.

Listing D.1 shows how the context method of AnalyseSandContentCriticalSituation checks
whether the current sand content is above the critical limit of the well (the limit is known by the
agent).� �
public plan Ana ly seSandConten tCr i t i c a lS i tua t i on extends Plan {

#uses in ter face Wel lCon t ro l l e r s e l f ;
#handles event SandDetectedReport sanddetec tedrepor t0 ;
#sends event Cr i t i ca lSandRepor t c r i t i c a l s a n d r e p o r t 1 ;
s t a t i c boolean r e l e van t ( agents . f i e l d . wel l . SandDetectedReport ev ) {

return ev . currentSand!=nul l ;
}
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contex t () {
sanddetec tedrepor t0 . currentSand . compareTo ( s e l f . c r i t i c a l S a n d L i m i t ) == 1;

}
#reasoning method
( . . . )

}� �
Listing D.1: AnalyseSandContentCriticalSituation

ActuateChokePositionChange had to consider the possibility of receiving several choke adjust-
ment requests at the same time (due to control of sand/water or operator’s request), and therefore
contained logic enabling the selection of which request to perform. This included some evalua-
tion, so we made a capability called Actuating choke position change and two new plans replacing
the original:

• OverrideChokePositionChange
If the choke has already been adjusted at the current timetick, this plan decides whether the
new request has priority to override the first.

• NewChokePositonChange
If the received request is the first one this timetick, or the request is given by the operator
(which has the highest priority) the adjustment can be made with no further evaluation.

To be able to run these plans in a BDI fashion, we also created the plan SendInternalChokeAdjustmentCommand
which handles ChokeAdjustmentRequests and actuates a ChokeAdjustmentInternalRequest which
is a BDIGoalEvent. Section D.2 describes the use of BDIGoalEvent in more detail.

Figure D.1: ActuatingChokePositionChange in WellController

D.1.2 ProductionOptimiser

The plan AnalyseWaterSituation was split into two new plans which were given a parenting
capability Analysing water situation. The two new plans are AnalyseWaterCriticalSituation
and AnalyseWaterNormalSituation. The original plan evaluated current situation and performed
different subtasks according to whether the situation was critical or not. Now the two new plans
each handles one of those situations.

The plan CalculateOptimalProductionRates was a complex plan performing many evaluations
before deciding on what to do. This plan was therefore made into a capability called Calculating
optimal production rates which contains the following plans:

• WaterCritical
Handles critical situations by asking the well producing the most water to close the choke. In
the original design, critical situations were simply handled by notifying the operator. During
implementation we modified the plan so that the agent also closes the well, thereby solving
the situation as soon as possible.
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• WaterApproachingCritical
Handles the situation of the water being not yet critical but still very high. It chokes several
of the wells in order to reduce total water content.

• WaterHigh
Handles the situation where the water is high. Listing D.2 illustrates how the context method
of WaterHigh checks the amount of water to determine if it should actuate its reasoning
method or not. If the context evaluates to true, it should find the well producing the most
water and ask this to close the choke a bit. Since the situation is not yet critical, it can also
ask one of the other wells to open the choke to maintain the total production rate. The
reasoning method in Listing D.2 shows how WaterHigh performs this task.

• WaterLow
Handles situations where the water content is so low that it does not have to be taken into
consideration. In this situation it may ask all the wells to open the choke a bit to optimise
the production.� �

public plan WaterHigh extends Plan {
#uses in ter face Product ionOpt imiser s e l f ;
#uses data aos . j a ck . u t i l . thread . Semaphore opt imise ;
#handles event RankedWellList r a n k e d w e l l l i s t 0 ;
#sends event Product ionAdjustmentRequest product ionadjus tmentrequest1 ;
s t a t i c boolean r e l e van t ( agents . f i e l d . p lan t . RankedWellList ev ) {

return ev . r a n k e d l i s t !=nul l ;
}
contex t () {// water a b i t high

r a n k e d w e l l l i s t 0 . t o t a lwa te r . compareTo (new BigDecimal ( s e l f . wa te rop t im i se l im i t ) )==1;
}
#reasoning method
body () {

( . . . )
// The w e l l with the l a r g e s t amount o f water in the produc t i on
S t r ing worstwel l = r a n k e d w e l l l i s t 0 . r a n k e d l i s t [ 0 ] . getWellName () ;
BigDecimal worstprod = r a n k e d w e l l l i s t 0 . r a n k e d l i s t [ 0 ] . getProduct ion () ;
@send( worstwel l , product ionadjus tmentrequest1 . ad ju s t ( worstprod . mul t ip l y (

adjustmentFactorWorst ) , worstprod , " water " ) ) ;

// The w e l l with the s m a l l e s t amount o f water in the produc t i on
S t r ing bes twe l l = r a n k e d w e l l l i s t 0 . r a n k e d l i s t [ wellCount−1].getWellName () ;
BigDecimal bestprod = r a n k e d w e l l l i s t 0 . r a n k e d l i s t [ wellCount−1]. getProduct ion () ;
@send( bes twel l , product ionadjus tmentrequest1 . ad ju s t ( bestprod . mul t ip l y (

ad jus tmentFactorBes t ) , bestprod , " water " ) ) ;
( . . . )

}
}� �

Listing D.2: WaterHigh

D.1.3 FieldCoordinator

Within the capability Producing alarm two new plans were added RemoveSandAlarm and RemoveWaterAlarm.
The plans for removing alarms are needed for letting the operator know when the situation has
stabilised and is no longer in need of human attention.

D.2 BDIGoalEvent

A regular event can always be handled by several plans, but either all the plans are actuated or
the context method must be used to choose the right one. An intelligent agent should according to
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Figure D.2: Producing alarm

Section 2.2 be flexible and robust. This means that it should be able to choose one plan to actuate
in order to handle an event. If that plan fails it should be able to actuate others until either one of
its plans succeeds or it has no more plans left to try out. This is not possible with regular events,
but JACK has an event called BDIGoalEvent that may be used to achieve this kind of behaviour.

The behaviour described is closely related to the behaviour of a BDI agent, as described in Section
2.3. When an agent receives a BDIGoalEvent, the event becomes a part of the agent’s �desires.
When it decides to try to achieve the desire represented by the event, it becomes the agent’s
intention. The agent now enters the loop of choosing a plan, actuating it, and, in case of failure,
choose another one until success is achieved.

In JACK, the plans will be actuated in the same order as they are listed in the agent or capability
in which they are defined.

D.2.1 Example 1: CalculatingOptimalProductionRates

In Section D.1.2 we described the new capability in WellController, Calculating optimal pro-
duction rates. The event triggering these plans, RankedWellList, is a BDIGoalEvent. Listing D.3
show how RankedWellList is defined.� �
public event RankedWellList extends BDIGoalEvent {

protected WaterWellRelat ion [] r a n k e d l i s t ;
protected BigDecimal t o t a lwa te r ;

#posted as
( . . . )

}� �
Listing D.3: The BDIGoalEvent RankedWellList

When a RankedWellList is received, the first plan, WaterCritical is actuated. If that plan fails,
Water approaching critical sets in. The plans are triggered in the order they are listed in
Calculating optimal production rates, as seen in Listing D.4.� �
public c a p a b i l i t y Ca lcu la t ingOpt imalProduct ionRates extends C a p a b i l i t y {

#handles ex t e rna l event RankedWellList

#uses plan W a t e r C r i t i c a l ;
#uses plan WaterApproach ingCr i t i ca l ;
#uses plan WaterHigh ;
#uses plan WaterLow ;

#imports data Semaphore opt imise () ;
#sends event Product ionAdjustmentRequest product ionadjus tmentrequest1 ;

}� �
Listing D.4: The capability Calculating optimal production rates
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D.2.2 Example 2: ActuatingChokePositionChange

A BDIGoalEvent can only be actuated and posted internally within an agent. If an external message
is to be handled the same way, the message must first be handled by a plan which creates a
BDIGoalEvent, giving it the same content as the external message. The BDIGoalEvent will then
represent the original message when processed internally, so the plans that actually handles the
contents of the original message will use the BDIGoalEvent instead. Figure D.3 is a section of the
WellController’s internal design, which illustrates this. Instead of the ChokeAdjustmentRequest
(which is an external message that may be sent by another agent) being handled by Actuating
choke position change directly, it is first handled by Send internal choke adjustment command
which creates a ChokeAdjustmentInternalRequest. The ChokeAdjustmentInternalRequest is
a BDIGoalEvent which can then be handled by the plans in Actuating choke position change.

Figure D.3: Use of BDIGoalEvent in WellController

As shown in Listing D.5, Actuating choke position change has two plans, OverrideChokePositionChange
and NewChokePositionChange. They perform the tasks explained in Section D.1.1. If there exists
an already saved change, OverrideChokePositionChange will find this and therefore succeed,
being able to decide whether to carry out the change request or not. NewChokePositionChange
will in those cases not be actuated since the goal ChokeAdjusmtentInternalRequest has been
fulfilled. OverrideChokePositionChange fails if there is no change saved at the current time
already, and in that case, NewChokePositionChange is actuated to fulfil the goal.� �
public c a p a b i l i t y Actuat ingChokePosit ionChange extends C a p a b i l i t y {

#handles ex t e rna l event ChokeAdjustmentInternalRequest ;
#uses plan OverrideChokePosit ionChange ;
#uses plan ActuateNewChokePositionChange ;
#imports data ChokePosi t ion chokepos i t ion0 () ;

}� �
Listing D.5: The capability Actuating choke position change

D.3 Semaphore

A semaphore is a synchronisation resource which is used to establish mutual exclusion regions of
processing in JACK plans and thread [6]. A plan or a thread may wait for a semaphore before it
can actuate its task, and signal on it when it has completed. We use this JACK feature when the
agents try to optimise the production with regards to the water content situation.

The optimisation process is composed of several plans contained in three different agents; ProductionOptimiser,
WellController and WellMonitor. The ProductionOptimiser sends water content requests to
all the wells, and it must be able to recognise when it has received replies from all of them. Because
of this interaction we found it necessary to make sure only one such process is in progress at any
time. The ProductionOptimiser has a semaphore called optimise. The SendWaterContentRequest
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waits for this semaphore to be released, and then grabs it as shown in Listing D.6. The following
plans can then be actuated. When the last plan involved in the process finishes, the semaphore is
signalled and thereby released. If SendWaterContentRequest is triggered while an earlier optimi-
sation process is still ongoing, it must wait until the semaphore is released before it can continue.
Listing D.7 shows how the plan WaterHigh within Calculating optimal production rates signals the
semaphore to release it.� �
public plan SendWaterRatioRequest extends Plan {

#uses in ter face Product ionOpt imiser s e l f ;
#uses data Semaphore opt imise ;
#handles event F ie ldOpt imisa t ionReques t f i e l d o p t i m i s a t i o n r e q u e s t 0 ;
#sends event WaterRatioRequest wa te r ra t i o reques t2 ;
( . . . )

#reasoning method
body () {

@wait_for ( opt imise . planWait () ) ;
t ry {

for ( in t i =0; i<s e l f . w e l l C o n t r o l l e r s . length ; i++){
S t r i ng r e c e i v e r = s e l f . w e l l C o n t r o l l e r s [ i ] . getName () ;

@send( rece i ve r , wa te r ra t i o reques t2 . reques t () ) ;
}

}
}� �

Listing D.6: SendWaterContentRequest waiting for the semaphore optimise� �
public plan WaterHigh extends Plan {

( . . . )
#reasoning method
body () {

( . . . )
@send( worstwel l , product ionadjus tmentrequest1 . ad ju s t ( worstprod . mul t ip l y (

adjustmentFactorWorst ) , worstprod , " water " ) ) ;
( . . . )
@send( bes twel l , product ionadjus tmentrequest1 . ad ju s t ( bestprod . mul t ip l y (

ad jus tmentFactorBes t ) , bestprod , " water " ) ) ;

// L e t t i n g go o f the semaphore
t ry {

opt imise . s i g n a l () ;
}

}
}� �

Listing D.7: WaterHigh releasing the semaphore optimise
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MESSAGE DESCRIPTORS

[M1] OperatorChokeAdjustmentRequest
Description: This message is assembled and sent by the OperatorAssistant

when the operator has requested an adjustment of the choke of a
given well.

Sender: OperatorAssistant
Receiver: FieldCoordinator
Information: A name identifying the well in question, a number denoting the

new choke position and the time the request was sent.

Table E.1: [M1] OperatorChokeAdjustmentRequest

[M2] ChokeAdjustmentRequest
Description: When the FieldCoordinator receives an OperatorChokeAdjust-

mentRequest, it determines which WellController is responsible
for the well in question, and sends a ChokeAdjustmentRequest to
it.

Sender: FieldCoordinator
Receiver: WellController
Information: The time of the original request from the operator, a number de-

noting the new choke position and who sent the request (the op-
erator).

Table E.2: [M2] ChokeAdjustmentRequest

[M3] OptimisationClaim
Description: When the PlantMonitor discovers a change in the water content,

it sends this message to the ProductionOptimiser requesting an
optimisation of the production.

Sender: PlantMonitor
Receiver: ProductionOptimiser
Information: The time when the claim is sent, the current water content of the

production, as well as a number denoting the change since the
previous recorded water content.

Table E.3: [M3] OptimisationClaim
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[M4] SandDetectedReport
Description: This message is sent by the WellMonitor to its corresponding

WellController when it detects sand in the well.
Sender: WellMonitor
Receiver: WellController
Information: The time when the sand was detected, the current production, the

current sand content and the previous sand content.

Table E.4: [M4] SandDetectedReport

[M5] CriticalSandReport
Description: When the sand content of a well’s production is above a crit-

ical limit, the WellController will send this message to the
FieldCoordinator in order to alarm the operator of the control
room.

Sender: WellController
Receiver: FieldCoordinator
Information: The time when the critical situation was discovered and the cur-

rent sand content.

Table E.5: [M5] CriticalSandReport

[M6] CriticalWaterReport
Description: When the water content in the processing plant is above a given

limit, the ProductionOptimiser will send this message to the
FieldCoordinator to alarm the operator of the control room.

Sender: ProductionOptimiser
Receiver: FieldCoordinator
Information: The time when the critical situation was discovered, the current

water content and the latest change in content.

Table E.6: [M6] CriticalWaterReport

[M7] Alarm
Description: When the FieldCoordinator receives either a CriticalSandReport

or CriticalWaterReport it will assemble the information into an
appropriate alarm and send this to the OperatorAssistant.

Sender: FieldCoordinator
Receiver: OperatorAssistant
Information: Information about the critical situation; this may include the wa-

ter content of the plant or sand content of a well.

Table E.7: [M7] Alarm
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JACK ENTITY OVERVIEW

The items in blue are the ones added during implementation. The items in red are the ones
removed during implementation. ">" means messages and internal events handled by the plan,
"<" denotes messages sent or internal events initiated by the plan.

T1 WellMonitor

P3 RecordSensorValuesFromWell

>E1 WellSensorValues
<E2 NewSandSensorValueNotification

P4 AnalyseSandSensorValues

>E2 NewSandSensorValueNotification
<M4 SandDetectedReport

P5 LookUpWaterContent

>P1M1 WaterContentRequest
<P1M2 WaterContentReply

T2 PlantMonitor

P1 RecordSensorValuesFromPlant

>E3 PlantSensorValues
<E4 NewWaterSensorValueNotification

P2 AnalyseWaterSensorValues

>E4 NewWaterSensorValueNotifiaction
<M3 OptimisationClaim

T3 WellController

P6 AnalyseSandContentSituation

>M4 SandDetectedReport
<M5 CriticalSandReport
<P1M3 ProductionAdjustmentRequest

C4 AnalysingSandContentSituation

P6A AnalyseSandContentCriticalSituation
>M4 SandDetectedReport
<M5 CriticalSandReport

P6B AnalyseSandContentNormalSituation
>M4 SandDetectedReport
<M5 CriticalSandReport
<P1M3 ProductionAdjustmentRequest
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P7 CalculateChokePosition

>P1M3 ProductionAdjustmentRequest
<M2 ChokeAdjustmentRequest

P8A SendInternalChokeAdjustmentCommand

>M2 ChokeAdjustmentRequest
<E5 ChokeAdjustmentInternalRequest

P8 ActuateChokePositionChange

>M2 ChokeAdjustmentRequest

C5 ActuatingChokePositionChange

P8B OverrideChokePositionChange
>E5 ChokeAdjustmentInternalRequest

P8C ActuateNewChokePositionChange
>E5 ChokeAdjustmentInternalRequest

C1 HandlingWaterContentRequest

P9 ForwardWaterContentRequest
<>P1M1 WaterContentRequest

P10 ForwardWaterContentReply
<>P1M2 WaterContentReply

T4 ProductionOptimiser

P11 AnalyseWaterSituation

>M3 OptimisationClaim
<M6 CriticalWaterReport
<E6 FieldOptimisationRequest

C6 AnalysingWaterSituation

P11A AnalyseWaterCriticalSituation
>M3 OptimisationClaim
<M6 CriticalWaterReport

P11B AnalyseWaterNormalSituation
>M3 OptimisationClaim
<M6 CriticalWaterReport
<E6 FieldOptimisationRequest

P12 CalculateOptimalProductionRates

>E7 RankedWellList
<P1M3 ProductionAdjustmentRequest

C7 CalculatingOptimalProductionRates

P12A WaterCritical
>E7 RankedWellList
<P1M3 ProductionAdjustmentRequest

P12B WaterApproachingCritical
>E7 RankedWellList
<P1M3 ProductionAdjustmentRequest

P12C WaterHigh
>E7 RankedWellList
<P1M3 ProductionAdjustmentRequest
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P12D WaterLow
>E7 RankedWellList
<P1M3 ProductionAdjustmentRequest

C2 RankingWells

P13 SendWaterContentRequest
>E6 FieldOptimisationRequest
<P1M1 WaterContentRequest

P14 ReceiveWaterContentReply
>P1M2 WaterContentReply
<E8 UnrankedWellList

P14A ReceiveDuplicateWaterContentReply
>P1M2 WaterContentReply

P15 RankWells
>E8 UnrankedWellList
<E7 RankedWellList

T5 FieldCoordinator

P16 ForwardChokeAdjustmentRequest

>M1 OperatorChokeAdjustmentRequest
<M2 ChokeAdjustmentRequest

C3 ProducingAlarm

P17 CreateSandAlarm
>M5 CriticalSandReport
<M7 Alarm

P17A RemoveSandAlarm
>M5 CriticalSandReport
<M7 Alarm

P18 CreateWaterAlarm
>M6 CriticalWaterReport
<M7 Alarm

P18A RemoveWaterAlarm
>M6 CriticalWaterReport
<M7 Alarm

T6 OperatorAssistant

P19 AcceptOperatorsRequest

>E9 OperatorsChokeAdjustment
<M1 OperatorChokeAdjustmentRequest

P20 PresentAlarm

>M7 Alarm
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APPENDIX G

USER MANUAL

The simulator is a Java program which simulates the oil production of a very simplified oil field.
It was developed in order to provide an environment in which to test our agent system and is
therefore equipped with features which enables logging of all events and actions.

G.1 Getting started

The simulator and agent system are both included in the executable simulator.jar file. In order
to run this file, Java 6 must be installed on your computer and you need access to a MySQL
database with the tables found in the included zip-file under sql/liselene_master.sql. The
simulator has only been tested on the operating system Windows XP. When running, the simulator
will create two folders, config and report, in the same location as the jar-file itself. For each run,
new folders will be created inside these folders.

G.2 Configuration

Figure G.1: Configuring the simulator

The first screen of the application is shown in Figure G.1 and enables configuration of the testcase
to be run. The upper section is for configuring the connection details for the database. You then
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choose whether the system should run in manual or agent mode. In manual mode, all adjustments
of the oil wells must be performed by the user. In agent mode, the agent system will do what it
can in order to maximise the oil production of the field. The lower section is for setting the
configurable details of the testcase. The simulator can handle up to four wells in the field. The
time limit denotes how long the testcase should run and must be an integer between 10 and 500.
The timetick interval is the amount of milliseconds between each timetick and should be set to
an integer larger than 1000. At the bottom of the screen is a text area for comments related
to the current testcase. The first option in the testcase section enables the selection of earlier
configurations. The names relates to the names of the respective configuration folders and are
given on the following format <testcaseId>#<wellCount>#<timelimit>.

G.3 Manual mode

A screenshot of the simulator running in manual mode is shown in Figure G.2. The following
paragraphs describe each of the components of the user interface.

Figure G.2: Simulator in manual mode

Current testcase Displays the configuration details of the current testcase. The time will run until
it reaches the timelimit, but may be paused using the button labeled Pause. The Stop button
will finalize the testcase and does not allow it to be restarted. The Report button can be used
at any time and will lead to the generation of reports in the reports/testcase<testcaseID>
folder. One report for each component (wells and plant) of the field is generated and the files
are saved with names on the format <testcaseID>#<componentName>#<currentTime>.csv.

Operator input The operator controls the choke of each of the wells. In order to adjust a choke,
the respective well must be selected (explained in the next section) and the slider represent-
ing the choke must be moved to the desired position. A choke position of 0 means that it is
completely open, 100 means that it is completely closed.

Oil field This frame displays the current state of each of the components of the field. A field con-
sists of a processing plant and a set of wells. For each timetick, all the wells produce variable
amounts of oil, water and sand. The production from all wells are received for processing by
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the processing plant. The components are all displayed with relevant information concern-
ing their current production and a bar shows the relative amounts of oil, water and sand
produced or received by each component. Dangerous levels of sand or water in the produc-
tion are marked in red. The component (and the field itself) may be selected by clicking on
it with the left mouse button.

System output This tabbed pane enables the user to view the development of each field compo-
nent over time. Selecting a component through clicking on a tab will also select it in the
oil field pane, and vice versa. One line in the output shows the code of the component in
question, the time of sensor reading, and the values for total production, oil, water, and
sand.

G.4 Agent mode

A screenshot of the simulator running in agent mode is shown in Figure G.3. The user interface
is the same as the manual mode user interface, with the addition of text panes for agent output.
The upper pane is used for general output from the agents. The lower pane is used for display-
ing alarms from the agents to the operator of the control room. The operator may still use the
slider which represents the choke in the user interface. The difference from manual mode choke
adjustments is that moving the slider results in a request being sent to the agents, rather than the
operator being able to control the choke directly.

Figure G.3: Simulator in agent mode

G.5 Further development

We have developed the simulator and agent system in Eclipse SDK version 3.3.0. Compiling and
running the agent system has been done using the JACK Intelligent Agents Compiler, Runtime
Environment and BDI Agent Model.

The Eclipse project can be found in the included zip-file and its content is briefly described below;

source/agents
Various Java classes used by the agent system
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source/agents.*
Java classes generated by the JACK compiler

source/simulator.*
The source code of the simulator

config
Generated datasets for environment variables

jack
JACK agent code

lib
Required libraries (JACK and MySQL)

report
Generated testrun reports

sql
Definitions of the required database tables



APPENDIX H

TESTRUNS

The graphs showing the development of the production over time for all field components are
displayed here. Figure H.1 to H.4 shows the graphs for the testrun without input. Figure H.5 to
H.8 shows the graphs for the operator testrun. Figure H.9 to H.12 shows the graphs for the agent
testrun.

Figure H.1: Testrun with no input - plant

Figure H.2: Testrun with no input - well 1
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Figure H.3: Testrun with no input - well 2

Figure H.4: Testrun with no input - well 3

Figure H.5: Operator testrun - plant
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Figure H.6: Operator testrun - well 1

Figure H.7: Operator testrun - well 2

Figure H.8: Operator testrun - well 3
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Figure H.9: Agent testrun - plant

Figure H.10: Agent testrun - well 1

Figure H.11: Agent testrun - well 2
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Figure H.12: Agent testrun - well 3
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APPENDIX I

ACRONYMS

AOS Agent Oriented Software

AUML Agent UML

BDI Belief-desire-intention

CBR Case-based reasoning

CVS Concurrent versions system

dMARS The distributed Multi-Agent Reasoning System

GUI Graphical user interface

GQM Goal/Question/Metrics

IDE Integrated development environment

IDI Department of Computer and Information Science

IFM Integrated Field Management

JDE JACK Development Environment

JVM Java Virtual Machine

NTNU Norwegian University of Science and Technology

PDT Prometheus Design Tool

PRS Procedural Reasoning System

POC proof-of-concept

SDK Software Development Kit
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