
May 2007
Herindrasana Ramampiaro, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Optimal Information Retrieval Model for
Molecular Biology Information

Jon Rune Paulsen

Table Of Contents

Abstract .. i

Problem description ... ii

Acknowledgments ... iii

1 Introduction .. 1
 1.1 Motivation .. 1
 1.2 Problem statement .. 2
 1.3 Related works .. 2
 1.4 Structure of the thesis ... 3

2 Background .. 5
 2.1 Molecular biology ... 5
 2.1.1 The cell and molecules of life ... 7
 2.1.2 Genes .. 9
 2.2 Mendelian Inheritance ... 10
 2.2.1 The law of segregation .. 11
 2.2.2 The law of independent assortment .. 12
 2.2.3 The spectrum of dominance .. 13
 2.2.4 Mendelian patterns in human traits ... 13
 2.3 Bioinformatics ... 15
 2.4 Basic concepts of information retrieval .. 16
 2.5 Latent Semantic Indexing .. 20

3 Research framework .. 25
 3.1 Online Mendelian Inheritance in Man .. 25
 3.2 Approach and limitations ... 26

4 Theoretical solution ... 27
 4.1 Alternative indexing solutions ... 27
 4.1.1 Probabilistic Latent Semantic Indexing .. 27

 4.1.2 Variable Latent Semantic Indexing .. 28
 4.2 Clustering methods ... 29
 4.2.1 Standard k-means .. 29
 4.2.2 Two step k-means ... 30
 4.3 Chosen solution ... 31

5 Implementation .. 33
 5.1 Technical information .. 33
 5.1.1 Lucene ... 33
 5.1.2 JAMA .. 35
 5.2 Architectural design ... 36
 5.3 Indexing process .. 37
 5.4 Clustering process ... 38
 5.5 Searching process .. 39
 5.6 Application logic and functionalities ... 40
 5.7 User interface .. 44

6 Evaluation of results .. 47
 6.1 System validation .. 47
 6.2 Test cases ... 48
 6.2.1 Case I .. 49
 6.2.2 Case II ... 50
 6.2.3 Case III .. 51
 6.4 Evaluation of test results .. 52
 6.4.1 Speed and latency ... 52
 6.4.2 Precision .. 52
 6.4.3 Capacity and extensibility ... 53
 6.5 Evaluation of acceptance test results .. 54

7 Conclusion .. 57
 7.1 Future work ... 57

References ... 59

Appendices .. 62
 Appendix A: List of Stopwords .. 62

 Appendix B: JAMA: Java Matrix Package ... 65
 Appendix C: List of tested OMIM records ... 67
 Appendix D: Document distributions .. 70
 Appendix E: Acceptance test results .. 78

Abstract

i

Abstract
Search engines for biological information are not a new technology. Since the 1960s computers
have emerged as an important tool for biologists. Online Mendelian Inheritance in Man (OMIM)
is a comprehensive catalogue containing approximately 14 000 records with information about
human genes and genetic disorders.

An approach called Latent Semantic Indexing (LSI) was introduced in 1990 that is based on
Singular Value Decomposition (SVD). This approach improved the information retrieval and
reduced the storage requirements. This thesis applies LSI on the collection of OMIM records. To
further improve the retrieval effectiveness and efficiency, the author propose a clustering method
based on the standard k-means algorithm, called Two step k-means.

Both the standard k-means and the Two step k-means algorithms are tested and compared with
each other.

Problem description

ii

Problem description
Optimal IR model for molecular biological information

In this task the student shall explain and develop a suitable information retrieval model for storing
molecular biological information. This also include to find an optimal way to index the
information and ease the retrieval later.

Assignement given 16. November 2005
Supervisor: Herindrasana Ramampiaro

Acknowledgments

iii

Acknowledgments
Hereby, I would like to thank my teaching supervisor Herindrasana Ramampiaro, associate
professor by Norwegian University of Science and Technology, for finding this thesis topic and
supervising it.

I would also like to thank my family and friends for inspire me to working steady on this project.

1 Introduction

1

1 Introduction
“Biology has traditionally been an observational rather than a deductive science. Although recent
developments have not altered this basic orientation, the nature of the data has radically
changed” [29]. The field of biology produces a significant amount of information and the need to
store and retrieve it in a reasonable matter is of great interest. The Online Mendelian Inheritance
in Man (OMIM) [40] is an online catalogue of human genes and genetic disorders that is covering
the heritable variations that follows the Mendelian Inheritance patterns.

Genetics is a scientific discipline that focuses on genes, heredity, and the variation of organisms.
The scientific field of genetics seeks to understand the mechanisms of inheritance by implicitly
utilize the inheritance phenomenon in breeding of organisms and selection for desired traits.

The chemical structure of DNA molecules contains the genetic information of organisms.
Regions in the DNA sequence are called genes and corresponds to individually inherited traits.
When synthesizing proteins the genes encode the necessary information. The DNA sequence is
then transcribed into an intermediate molecule called mRNA. The mRNA sequence is then
translated by ribosomes to form a chain of amino acids to form a protein. This process is known as
the central dogma of molecular biology [7] [39].

Genetics is not the only aspect in the determination of the appearance and behavior of organisms.
The ultimate outcome is determined by the interaction of the genetics with the environment. The
outcome follows some inheritance patterns and makes it possible to forecast. Examples of
heritable variations in humanse are eye and hair color, genetic disorders, and etc.. The inheritance
pattern is called Mendelian Inheritance and was first introduced by Gregor Mendel. Mendelian
Inheritance is a study of heritable variations that can be observed among individuals in a
population. The study is based on a set of primary principles relating to the transmission of
hereditary characteristics from the parent organisms to their children.

This thesis will concentrate on the development of a suitable information retrieval model for the
OMIM collection. The selected model will facilitate the indexing and retrieval process of the
information in the collection.

1.1 Motivation
Search engines are mostly developed and associated with the retrieval of web pages on the
internet, but areas such as biology has seen the usefulness of search engines and has adapted them
to their use. The biology field develops a lot of information and the amount is still growing, so the
need for tools to require and process the information is of great interest. Since the 1960s
computers have been an important tool in biology for storing and retrieval of biological
information [20]. Just like standard search engines the amount of data gives rise to problems for
the developers and the users such as:

• How to store the data?
• How to reach the required information?
• How to retrieve information in a quick and accurate way?

1 Introduction

2

• Are the retrieved data relevant to the user’s requirements?
• Are the users satisfied with the search result?

NCBI’s OMIM seach engine let the users search the collection with a basic Boolean retrieval
model. This thesis will look at how Latent Semantic Indexing (LSI) and two clustering methods
affects the retrieval results when applied on the OMIM collection. LSI and have been applied to
regular text documents earlier with good retrieval results [10].

1.2 Problem statement
In the introduction part the importance of storage and retrieval of information are stated.
Retrieving information from huge collections is not always an easy task, so the main idea of this
project is to explain and develop a suitable information retrieval model for storage of molecular
biological information, specifically the OMIM collection. This also includes to find an optimal
way to index the information and ease the retrieval later.

The main problems are:

• What is relevant to search for? Whether only biological information or some common data is
retrievable. For instance, words such as “father”, “stretchable”, etc. are common, but are they
relevant to search for? The choice here influences the retrieval and the precision of a search.

• What can be indexed? Whether to omit data types such as numbers, dates, etc..
• How to index? What underlying structure to use, Boolean retrieval model, vector space

model, etc..
• How to search? Which similarity measure to use, cosine coefficient, Okapi BM25, etc..

In this project the author propose to investigate the retrieval effectiveness and precision of a self-
made clustering method, called Two step k-means, compared with the standard k-means
clustering method. The underlying structure is based on the LSI method. The goal of the proposed
clustering method is to be not so greedy as the standard version and have a more rational
document distribution.

1.3 Related works
Gleich and Zhukov [17] evaluate the application of the singular value decomposition to a search
term suggestion system. They investigated the effect of SVD subspace projections for term
suggestion ranking and clustering. They demonstrates the clustering behavior that occurs with
LSI, but not with the exact cosine similarity. The steep of the clusters decline of the LSI curve
corresponds to the end of related terms. The behavior does not occur for all terms in the dataset,
where the terms do not display any clear clustering behavior.

A spherical k-means method was introduced for clustering documents, and the cluster centroids
are identified as concept vectors and are compared to LSI index vectors. The subspace spanned by
the concept vectors are close to the LSI subspace. This method has been further developed into
concept indexing [12].

1 Introduction

3

Jing et al. presents a text clustering system developed on a k-means type subspace clustering
algorithm to cluster, high dimensional and sparse text data. They add a new step in the k-means
clustering process to automatically calculate the feature weights for each cluster so that the
important features to form a cluster subspace can be identified by the weight values This
extension enables the k-means clustering algorithm to cluster high dimensional text data in
subspaces of the keyword features, so that sparsity of text data can be effectively handled. The
additional step does not increase the number of iterationes, and the performance of the k-means
clustering process is preserved [25].

1.4 Structure of the thesis
The content of this thesis contain elements from both computer science and biology, so in order to
understand and benefit from reading this thesis, basics from both subjects is provided. Some parts
of this thesis may seem obvious and uninteresting for some readers, but this is done in order to
give the readers the same foundation.

• Chapter 1 - Introduction of the master thesis and its topic. Motivation and problem statement
are explained to give the reader some insight in the subject of this thesis, before related works,
which describe some projects similar to the subject of this thesis, are listed.

• Chapter 2 - Necessary theoretical background and techniques used in this project are
described in this chapter. First there is a short introduction of molecular biology before the
basics of Mendelian Inheritance are described. Bioinformatics will also be described before
some of the basic concepts of information retrieval, and finally Latent Semantic Indexing are
described.

• Chapter 3 - Will give an overview of the Online Mendelian Inheritance in Man database, and
specify research approach and its limitations for this project.

• Chapter 4 - Will apply the knowledge represented in Chapter 2 to describe how the solution
got worked out. First a more indepth problem analysis is performed, listing of alternative
solutions (LSI/PLSI), and finally the chosen solution.

• Chapter 5 - Technical details of the Lucene and the JAMA packages are described first, Then
an overview of the architectural design is described before going into detail of each of the
modules (Lucene modules - indexing process, clustering process, searching process, analyzer,
application logic and functionalities, user interface). Three test cases is also provided in order
to explain how it works.

• Chapter 6 - Will describe the validation of the system by performing different kind of tests:
subsystem tests, system tests, usability tests and acceptance tests. Finally, the test results are
evaluated.

• Chapter 7 - conclusion (future work). Analyze of test results represented in chapter 6 and
evaluate the system. At the end of this chapter a summary of the results of the work performed
in this project and suggested future research and improvement for the system.

1 Introduction

4

2 Background

5

2 Background
Although it is not a requirement, the reader should have insight in both computer science and
biology to best understand the content of this thesis. This chapter will give a brief description of
each field to support readers with little or no insight in any of the areas. First, the biology field
will be described, more precisely an introduction to molecular biology, and then go a little in
depth on the subject Mendelian Inheritance. After the biology part has been described, some
definitions of bioinformatics will be explained before basic information retrieval (IR) techniques
and finally LSI is described.

2.1 Molecular biology
In molecular biology the organisms is studied at a molecular level, i.e. the smallest particle of a
pure substance that still retains its composition and chemical properties. By studying the
organisms at a molecular level, molecular biologists can study the interaction between the various
systems of a cell. This includes the interrelationship of DNA, RNA and protein synthesis and how
these interactions are regulated. Molecular biology overlaps with other areas of biology and
chemistry, especially genetics and biochemistry [7].

Techniques, such as polymerase chain reaction, gel electrophoresis, southern blotting, and arrays,
is used by researchers in molecular biology to characterize, isolate, and manipulate the molecular
components of cells and organisms. The boundaries between the disciplines molecular biology,
genetics and biochemistry is not as hard-lined as they once was, mainly because the disciplines
interchange techniques more increasingly. Figure 2.1 illustrates one possible view of the
relationship between the disciplines [7]:

• Biochemistry is the study of the
chemical processes and
transformations occuring in living
organisms. It deals with the structure
and function of cellular components,
such as proteins, carbohydrates, lipids,
nucleic acids, and other biomolecules.

• Genetics is the study of genes,
heredity, and the effect of genetic
differences on organisms. The
scientific field of genetics seeks to
understand the mechanisms of
inheritance. Variation of organisms
can be inferred by the absence of a
normal component, e.g. a gene. In a
natural population the normal
phenotype for a character is called the
wild type phenotype, and alternative
traits to the wild type are called

Figure 2.1: Relationship between the biology
 disciplines

2 Background

6

mutant phenotypes. Mutant phenotypes have originated from changes or mutations in the wild
type allele.

• Molecular biology is the study of molecular underpinnings of the process of replication,
transcription and translation of the genetic material. The central dogma of molecular biology
is a framework for understanding the transfer of sequence information between sequential
information-carrying biopolymers1 [39]. There are three major classes of such biopolymers:
DNA and RNA (both nucleic acids), and protein. The general transfers describe the normal
flow of biological information: DNA can be copied to DNA (DNA replication), DNA
information can be copied to mRNA (transcription), and proteins can be synthesized using the
information in messenger RNA (mRNA) as a template (translation) [7]. Although the figure
2.2 is an oversimplified picture of the central dogma of molecular biology, it still provides a
good starting point for understanding the field.2

1. A special class of polymers produced by living organisms.
2. Picture is taken from http://users.ugent.be/~avierstr/principles/centraldogma.html

Figure 2.2: The Central Dogma of Molecular Biology

2 Background

7

2.1.1 The cell and molecules of life
Every living organism is made of cells - a human being consists of approximately 1013 cells [1].
There are two types of cells; prokaryotic and eukaryotic cells. Only organisms of the domains
bacteria and archaea consists of prokaryotic cells, while animals, plants, fungi, and protists
consists of eukaryotic cells. Prokaryotic cells are smaller than eukaryotic cells, which can be so
big one may spot it with the human eye, and have simpler structure. To some extent is a cell self-
contained and self-maintaining, meaning it can take in nutrients, convert the nutrients into energy,
carry out specialized functions, and reproduce as necessary. The instructions needed to carry out
the mentioned vital functions are stored in each cell. In eukaryotic cells the genetic instructions
are stored in the nucleus and carried out by the ribosomes, see figure 2.3 for an illustration of a
generalized animal cell [7].

Common for cells are reproduction by
cell division, use of enzymes and other
proteins, metabolism, response to
external and internal stimuli (e.g.
changes in temperature, pH or nutrient
levels), and the cell content is
encapsulated with a cell surface
membrane. Cell division, called cell
cycle, is the cell’s fashion to reproduce
itself, this is done by binary fission,
mitosis or meiosis. Multicellular
organisms typically begin life as a
single cell, usually a result of fusion of
a male and a female sex cell. The sex
cells are called gametes.

Metabolism is a set of chemical
reactions that occurs in living cells.
These processes are the basis of life
that takes in raw materials, builds cell
components, converts energy,
molecules and release by-products.
Metabolic pathways derive energy
from chemical energy stored in organic molecules.

To produce tissues and organs a single cell has to grow, divide and differentiate into different cell
types. If this cell division and differentiation is not controlled then cancerous cells can grow to
form tumors.

The difference between prokaryotic and eukaryotic cells is on the basis of nuclear organization,
specifically the prokaryotic cells' lack of a nuclear membrane. Cells of this type also lack most of
the intercellular organelles and structural characteristics of eukaryotic cells (except the ribosomes,
which are present in both prokaryotic and eukaryotic cells). The prokaryotic plasma membrane

Figure 2.3: Model of a generalized animal cell (picture
 taken from [7].

2 Background

8

takes over most of the functions of organelles, such as mitochondria, chloroplasts and the Golgi
apparatus. Architecturally prokaryotic cells have three regions [7]:

• proteins attached to the cell surface (appendages called flagella and pili)
• a cell envelope consisting of a capsule, a cell wall and a plasma membrane;
• a cytoplasmic region containing the cell genome (DNA) and ribosomes and various sorts of

inclusions

Some other differences [7]:

• the plasma membrane (a phospholipid bilayer) separates the interior of the cell from its
environment and serves as a filter and communications beacon.

• most prokaryotes have a cell wall (some exceptions are Mycoplasma (a bacteria) and
Thermoplasma (an archaeon)). It consists of peptidoglycan in bacteria and acts as an
additional barrier against exterior forces. It also prevents the cell from "exploding" (cytolysis)
from osmotic pressure against hypotonic environment. A cell wall is also present in some
eukaryotes like plants (cellulose) and fungi, but has a different chemical composition.

• a prokaryotic chromosome is usually a circular molecule (an exception is that of the bacterium
Borrelia burgdorferi, which causes Lyme disease). Even without a real nucleus, the DNA is
condensed in a nucleoid. Prokaryotes can carry extrachromosomal DNA elements called
plasmids, which are usually circular. Plasmids can carry additional functions, such as
antibiotic resistance.

Eukaryotic cells are about 10 times the size of a typical prokaryote and can be as much as 1000
times greater in volume, and they contain membrane-bound compartments in which specific
metabolic activities take place. The presence of a cell nucleus, a membrane-delineated
compartment that houses the eukaryotic cell's DNA, is the most important among these
compartments. This nucleus gives the eukaryote its name, which mean "true nucleus". Other
differences are [7]:

• the plasma membrane resembles that of prokaryotes in function, with minor differences in the
setup. Cell walls may or may not be present.

• the eukaryotic DNA is organized in one or more linear molecules, called chromosomes, which
are separated from the cytoplasm by a membrane. Some eukaryotic organelles also contain
some DNA.

• eukaryotes can move using cilia or flagella. The flagella are more complex than those of
prokaryotes.

All cells have a membrane that envelopes the cell. This membrane separates its interior from its
environment, regulates what moves in and out (selectively permeable), and maintains the electric
potential of the cell. A salty cytoplasm inside the membrane takes up most of the cell volume.
Cells possess the hereditary material of genes (DNA), and RNA which contains the information
necessary to build various proteins such as enzymes, the cell's primary machinery. Also other
kinds of biomolecules are present in cells.

2 Background

9

Two different kinds of genetic material exist: deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA). Some viruses (e.g. retroviruses) have RNA as their genetic material, but most organisms
use DNA for their long-term information storage. The biological information contained in an
organism is encoded in its DNA or RNA sequence. RNA is also used for information transport
(e.g. mRNA) and enzymatic functions (e.g. ribosomal RNA) in organisms that use DNA for the
genetic code itself.

Prokaryotic genetic material is organized in a simple circular DNA molecule (the bacterial
chromosome) in the nucleoid region of the cytoplasm. Eukaryotic genetic material is divided into
different, linear molecules called chromosomes inside a discrete nucleus, usually with additional
genetic material in some organelles like mitochondria and chloroplasts.

A human cell has genetic material in the nucleus (the nuclear genome) and in the mitochondria
(the mitochondrial genome). In humans the nuclear genome is divided into 46 linear DNA
molecules called chromosomes. The mitochondrial genome is a circular DNA molecule separate
from the nuclear DNA. Although the mitochondrial genome is very small, it codes for some
important proteins.

It is also possible to artificially introduce foreign genetic material (most commonly DNA) into the
cell by a process called transfection. This can be transient, if the DNA is not inserted into the cell's
genome, or stable, if it is.

The simplest collection of matter that can live is the cell. Complex organisms, for example plants
and animals, are multicellular. Their bodies are cooperatives of many kinds of specialized cells
that could not survive long on their own, because even they are arranged into higher levels of
organization, such as tissues and organs. The organism's basic unit of structure and function is
certainly the cell.

2.1.2 Genes
Within the cells you can see structures called chromosomes, partly made of a substance called
deoxyribonucleic acid (DNA). The DNA is in turn the substance of genes, the units of inheritance
that transmit information from parents to offspring [7].

With hundreds or thousands of genes arranged along its length, each chromosome has one very
long DNA molecule. Replication of the chromosomes' DNA is accomplished when a cell prepares
to divide. A complete set of genes is then inherited by each of the two cellular offspring [7].

2 Background

10

DNA's molecular structure accounts for its
information-rich nature. Two long chains arranged
into what is called a double helix make up each
DNA molecule, see figure 2.43. Each of the links
in a chain is one of four kinds of chemical building
blocks called nucleotides [7].

The work in molecular biology is often
quantitative. A lot of work has been done at the
interface of molecular biology and computer
science in bioinformatics and computational
biology recently. The study of gene structure and
function, molecular genetics, has been amongst
the most prominent sub-field of molecular biology
since the early 2000s.

Many other fields of biology focus on molecules.
The focus is either directly, i.e. studying their interactions in their own right such as in cell
biology and development biology, or indirectly where the techniques of molecular biology are
used to deduce historical attributes of populations or species, as in population genetics and
phylogenetics (fields in evolutionary biology) [7].

2.2 Mendelian Inheritance
This thesis only covers a part of molecular biology known as Mendelian inheritance. In order to
give the reader some background of Mendel and his work, this chapter is written with the non-
biologist in mind.

Gregor Mendel was a monk in the 19th century and experimented with cross-pollinated two
contrasting, true-breeding pea varieties in his monastery’s experimental garden. Mendel’s
experiments brought forth two generalizations which later became known as Mendel’s Laws of
Inheritance. Mendel’s Laws of Inheritance contains two laws; the law of segregation and the law
of independent assortment. Mendel used, as mentioned, peas in his experiments and peas are
available in many varieties. Available varities of peas are flower color, which is a heritable
feature, shape, etc.. In this thesis flower color will be used to exemplify Mendel’s discoverings
unless other specified. One variety of peas is with purple flowers and another one with white
flowers. In experiments Mendel crossed for example these two varieties to see the effect on the
offspring. The crossing of two true-breeding varieties is called hybridization. The parents, in a
true-breeding, are referred to as the P generation (parental generation), the offspring of the P
generation are the F1 generation (first filial4 generation). The F1 hybrids self-pollinates and

3. Picture taken from http://www.coe.drexel.edu/ret/personalsites/2005/dayal/curriculum1.html
4. Pertaining to the sequence of generations following the parental generation, each generation being

designated by an F followed by a subscript number indicating its place in the sequence (ref.:
dictionary.com “filial”).

Figure 2.4: Double Helix

2 Background

11

produces an F2 generation (second filial generation) [7]. In the following subchapters the law of
segregation, the law of independent assortment and the spectrum of dominance will be described.

2.2.1 The law of segregation
In Mendel’s terminology there is a dominant trait and a recessive trait. In this thesis the purple
flower color is the dominant and the white flower color is the recessive. Mendel’s experiments
produced a 3:1 (purple : white) inheritance pattern ratio for the F2 generation, where the purple
flower color is a dominant trait and the white flower color is a recessive trait. To explain the 3:1
ratio in his pea experiments Mendel developed four related concepts [7]:
• Alternative versions of genes

account for variations in inherited
characters. This is the concept of
alleles. An allele is any of the
possible forms in which a gene for a
specific trait can occur. In other
words alleles are different versions
of genes that impart the same
characteristic. For instance the gene
for flower color exists in two
versions; purple and white.

• For each character, an organism
inherits two alleles, one from each
parent. This means that when
somatic cells are produced from two
gametes, one allele comes from the
mother, one from the father. These
alleles may be the same (true-
breeding organisms, e.g. ww and
PP), or hybrids (e.g. Pw) in figure
2.5.

• If the two alleles at a locus differ, then one, the dominant allele, determines the organism’s
appearance; the other, the recessive allele, has no noticeable effect on the organism’s
appearance. In other words, the dominant allele is expressed in the phenotype of the
organism; however this does not always hold true. There is incomplete dominance and
codominance on a molecular level, e.g. people with sickle cell anemia, when normal and
sickle-shaped red blood cells mix and prevent malaria.

• The two alleles for a heritable character separate (segregate) during gamete formation and
end up in different gametes. This is the last part of Mendel’s generalization and known as the
law of segregation. The two alleles of the organism are separated into different gametes,
ensuring variation.

Figure 2.5: Dominant and recessive phenotypes

2 Background

12

Because of the different effects of
dominant and recessive alleles, an
organism’s traits do not always reveal its
genetic composition. Therefore, one
distinguish between an organism’s traits,
called its phenotype, and its genetic
makeup, its genotype (see figure 2.6)5 [7]
[11].

When the paired alleles are of same
genotype, it is called to be homozygous
for the gene controlling that character...

When the paired alleles (one on each of
two paired chromosomes) are the same
they are called homozygous for the gene
controlling that character, if they are
different they are called heterozygous (see
figure 2.6). In heterozygous pairings, one
allele is usually dominant, and the other
recessive. The dominant allele decides the
phenotype of the flower, in figure 2.6 the purple flower color is the dominant one. Simple traits
such as eye color may be caused by just one pair of alleles, while complex traits such as height are
usually caused by interactions of numerous pairs of alleles. Heterozygous genotypes are not true-
breeding because they produce gametes with different alleles [7] [11].

2.2.2 The law of independent assortment
By following only a single character, such as flower color, in his breeding experiments Mendel
derived the law of segregation. In Mendel’s crosses of true-breeding parents all the F1 progeny
were monohybrids, i.e. heterozygous for one character. Expanding the previous experiment and
crossing two true-breeding pea varieties, which differs in both color and shape, for instance a
plant with yellow-round seeds and a plant with green-wrinkled seeds, the F1 plants will be
dihybrids, meaning that they are heterozygous for both characters.

Mendel’s findings from the dihybrid experiments are the basis for what is now called the law of
independent assortment. The law of independent assortment states that each pair of alleles
segregates independently of other pairs of alleles during gamete formation. This law applies only
to genes (allele pairs) located on different chromosomes, that is, on chromosomes that are not
homologous. Genes located near each other on the same chromosome tend to be inherited
together and have more complex inheritance patterns than predicted by the law of independent
assortment.

5. P - dominant phenotype
p - recessive phenotype

Figure 2.6: Phenotype and genotype

2 Background

13

2.2.3 The spectrum of dominance
In relation to each other the alleles can show different degrees of dominance and recessiveness.
This is refered to as the spectrum of dominance. The F1 offspring of Mendel’s classic pea crosses
is one extreme on this spectrum. The complete dominance of one allele over another caused the F1
plants to always look like one of the two parental varieties. In this situation, the phenotypes of the
heterozygote and the dominant homozygote are indistinguishable.

In crosses where both of the alleles inherited from the parents can affect the phenotype in separate
and distinguishable ways, is called codominance. For example, the human MN blood group is
determined by codominant alleles for two specific molecules located on the surface of red blood
cells, the M and N molecules. A single gene locus, at which two allelic variations are possible,
determines the phenotype of this blood group. Individuals homozygous for the M allele (MM)
have red blood cells with only M molecules; individuals homozygous for the N allele (NN) have
red blood cells with only N molecules. But both M and N molecules are present on the red blood
cells of individuals heterozygous for the M and N alleles (MN). Note that the MN phenotype is
not intermediate between the M and N phenotypes. Rather, both the M and N phenotypes are
exhibited by heterozygotes, since both molecules are present [7].

For some characters the alleles fall in
the middle of the spectrum of
dominance. The F1 hybrids in this
case, have a phenotype somewhere in
between the phenotypes of the two
parental varieties, and is called the
incomplete dominance. This
phenomena can be seen when crossing
red snapdragons with white
snapdragons: All of the F1 hybrids
have pink flowers (see figure 2.7) [7].
Unlike the situation in Mendel’s pea
plants experiments, where the Pp
heterozygotes make enough pigment
for the flower to be a purple color
indistinguishable from thos of PP
plants, these flowers have less red
pigment than the red homozygotes.

2.2.4 Mendelian patterns in human
traits
Unlike peas, humans are not convenient subjects for genetic research. Some reasons for this is
that humans produce relatively few offspring and that one human generation span is about 20
years. Experiments like those Mendel performed on peas are unethical and not acceptable with
humans. Since the geneticists can not manipulate the mating patterns of people, they must analyze

Figure 2.7: Dominant and recessive phenotypes
 (snapdragon)

2 Background

14

the results of matings that have already occurred. This involves collecting information about a
family’s history for a particular trait and assembling this information into a family tree describing
the interrelationships of parents and children across the generations. Traits such as attached or
free earlobe, widow’s peak or no widow’s peak, eye color, and etc., can be that particular trait.

Pedigree analysis can be used to deduce the possible genotype of individuals and make
predictions about future offspring. As one work oneself through the pedigree, one can apply the
rules from the pea experiments to fill in the genotypes for most individuals. Although the pedigree
analysis may predict the future, the predictions are not certainties but usually statistical
probabilities. Causes of genetic disorders are:

• Recessively inherited disorders - Genetic disorders are caused by alleles that codes either for
a malfunctional protein or for no protein at all. In the case of disorders classified as recessive,
heterozygotes are normal in phenotype because one copy of the normal allele produces a
sufficient amount of the specific protein. Although the individual’s phenotype is normal with
regard to the disorder, heterozygotes may transmit the recessive allele to their offspring. In
these cases the individual is a carrier of the disorder. For a recessively inherited disorder to
show the individual must be homozygous, whom has inherited one recessive allele from each
parent. Examples of recessively inherited disorders are Taysachs disease, cystic fibrosis,
sickle-cell disease, and many other.

• Dominantly inherited disorders - Lethal diseases are much less commonly caused by
dominant alleles than recessive alleles. Changes to the DNA in a sperm or an egg arises such
lethal alleles. A lethal dominant allele will not be passed on to future generations if the allele
causes the death of the offspring before they mature and can reproduce. In contrast,
heterozygous carriers of a lethal recessive allele can reproduce and pass on the allele from
generation to generation. The lethal disease will only appear at homozygous recessive
offsprings. If the lethal dominant allele causes death only at a relatively advanced age, it can
escape elimination because the individual may have already transmitted the lethal allele to his
og her children by the time the symptoms become evident. Examples of dominantly inherited
disorders are achondroplasia and Huntington’s disease.

• Multifactorial disorders - Both the recessively and dominantly inherited disorders are
described as simple Mendelian disorders due to the result of abnormality of one or both alleles
at a single genetic locus. Multifactorial disorders have both genetic and environmental
components. Regular exercise, a healthful diet, and etc. reduce the risk of heart disease and
cancer. Multifactorial disorders do not follow simple Mendelian inheritance patterns.
Examples of multifactorial disorders are heart disease, diabetes, cancer, alcoholism, and
certain mental illnesses.

Many families wants to determine what the odds are that their children will have any genetic
disorders before conceiving their first child. By using family histories and genetic counselors a
couple can determine the risk of having a child with a disorder. If a child is conceived
amniocentesis and chorionic villus sampling can help determine whether a genetic disorder is
present. After the child is born further genetic tests can be performed.

2 Background

15

2.3 Bioinformatics
Already in the early 1960s computers emerged as an
important tool in molecular biology, which laid
important conceptual and technical foundations for
what is known as bioinformatics today [20].
Although computers emerged as an important tool in
molecular biology in the 1960s, it was not until the
early 1990s that bioinformatics got acknowledged as
a discipline, which included informatics,
mathematics, medicine, physics and biology [2] [4].
Computational biology is occasionally used
synonymously with bioinformatics, although of all
computational and information science approaches
computational biology tends to be more inclusive
than bioinformatics. Bioinformatics is currently focused on computational molecular biology [2].

There are various definitions of what bioinformatics is and Luscombe [32] defines bioinformatics
as “the application of computational techniques to understand and organise the information
associated with biological macromolecules”. The European Bioinformatics Institute [14] have a
slightly different definition of bioinformatics: “the application of computer technology to the
management and analysis of biological data”. The term bioinformatics can be used in a broad or a
narrow way. A broad usage of the term bioinformatics includes all applications of computers and
information sciences to problems in biology, while a narrow usage is refered to the creation and
management of biological databases of genomic sequences [2].

The goals of bioinformatics can be divided into three parts: (1) the simplest goal of bioinformatics
is to organize the data in such manner that the researchers get easy access to existing information
and can submit new entries gradually as they are produced, or edit old entries. Until the
information in these databases is analyzed they are useless. (2) the next goal is to develop tools
and resources to aid the analysis of the data stored in the databases. For instance when one have a
sequence for a protein and wants to compare it with previously characterized sequences. Tools
developed for this comparison makes it easier and saves times. (3) the final goal is to use the tools
to analyze the data and interpret the results in a meaningful manner [32].

Unlike traditional analyses one can now conduct global analyses of all the available data. Where
traditional studies examined individual systems in detail and then compared it with a few that are
related, one can with a global analysis unveil common principles that can be applied across many
systems and extract novel features. In bioinformatics most of the analysis are focused on three
primary data sources: (1) DNA or protein sequences, (2) macromolecule structures, and (3) the
results of functional genomics experiments [32].

The challenges in bioinformatics in latter time is to get an intelligent and efficient storage of
biological data. It also requires easy and reliable access to the data for the users.
This project will focus on the development of information retrieval tools for biological
information on genetic dissorders. The tool make use of Latent Semantic Indexing which will be
described in chapter 4.

Figure 2.8: Overview of bioinformatics
 (picture taken from [4])

2 Background

16

2.4 Basic concepts of information retrieval
Traditional information retrieval (IR) systems make use of index terms to index and retrieve
documents. This project will use this method to retrieve information from the various dissorders.
An index term is a regular word extracted from the documents. The document’s main theme is
aided by the word’s semantics and characterizes the content of the document. In IR, there are
three fundamental models; Boolean model, vector space model, and probabilistic model. The
models describe the fundamentals of indexing, searching, weighting, ranking, providing queries
and document evaluations. The models are important to fully understand the steps regarding the
indexing and searching functions. In addition to the three fundamental IR models a cluster-based
model is often used to increase retrieval effectiveness and efficiency, grouping similar documents
into clusters, etc. [30]. All of the models will be described later, but the vector space model and
the cluster model is utilized in this project and the focus will be on them.

Before getting into the basic IR models there are som steps that has to be described. In IR there
are two classical parameters to determine the quality of the provided service; recall and precision.
The recall is the number of retrieved documents divided by the number of relevant documents,
while the precision is the number of retrieved relevant documents divided by the number of
relevant documents. The trade-off of these values is that when the recall increases the precision
decreases, and vice versa.

The recall and precision values are important to evaluate the quality of the search engine
according to user preferences. For instance, if the precision value increases then the user gets
more relevant documents.

Prior to the actual indexing it is often an advantage to do some preprocessing. Some of the words
in the text are not suitable as index terms and should therefore be removed. A proposed view of
the preprocessing is illustrated in figure 2.9.

Recall Retrieved documents
Relevant documents
--=

Precision Retrieved relevant documents
Retrieved documents

--=

2 Background

17

The text preprocessing can be divided into three operations:

• Lexical analysis: in lexical analysis the stream of characters is converted to a stream of words.
Digits and dates, hyphens and punctuation marks are removed from the stream. In addition all
of the characters can be set to lowercase or uppercase to ease the identification of index terms,
this is done in standard Lucene implementations.

• Elimination of stopwords: stopwords are words that are filtered out as potential index terms.
These words occurs too frequently to be good discriminators. Natural candidates for a list of
stopwords are articles, prepositions, conjunctions, adverbs, and adjectives. In addition some
application specific words with low discrimination value should be added to the list of
stopwords.

• Stemming: stemming is a process where words in their syntactic variations (plurals, gerund
forms, past tense suffix, etc.) gets reduced to their root form, e.g. the words “fishing”,
“fishes”, “fish”, and “fisher” gets stemmed to their root form “fish”. By reducing words to
their root form the size of the index structure is also reduced. One popular stemming
algorithm, and used in this project, is the Porter stemmer [30] [41].

Because of the varying usefulness of the index terms to describe the document content, it might be
rational to normalize the term weights. The normalization of the index term weights is done so
large documents with many keywords will not overwhelm similar documents in the result set.
One weighting scheme, the best known weighting scheme, is the tf-idf. This weighting scheme
will be used in this project and will therefore be described in detail in the subsequent subchapter.

tf-idf
Index term weighting is often used in IR and text mining. Tf-idf is a weighting method built upon
statistics to evaluate how important the words are for the documents in the collection. The number
of times a term in a given document is called the term frequency. In this project the weighting is
normalized to prevent a bias towards longer documents, to give a measure of the importance of
the term ti within the particular document.

Figure 2.9: Preprocessing phases (picture taken from [3])

2 Background

18

In a collection of N number of total documents and the term ti appears in ni number of documents,
the normalized frequency fi,j of term ti with the raw term frequency freqi,j is given by the
following formula:

The maximum frequency is computed over all terms mentioned in the document dj. The formula
to compute the inverted document frequency idfi is:

The normalized index term weighting is then given by the formula:

Basic Boolean retrieval model
The Boolean IR model is a classical IR model and most of the commercial systems today can be
classified as Boolean IR system or text-pattern search systems [30]. The model is based on set
theory and Boolean operators, so the documents to be searched and the query are treated as a set
of terms. During retrieval the documents containing the query terms are returned to the user - the
retrieval strategy is binary, either the document contain the term or not (cf. relevant or not). There
are in other words no grading of relevance. The query terms can also be joined by logical
operators that supplies relationships between the terms in the query, three common used operators
are; AND, OR, and NOT. However, the retrieval results are very sensitive to the query
formulations.

Basic vector space retrieval model
The vector space model is an alternative retrieval model to
the Boolean model, and it represents the documents and the
query as vectors. Each dimension in the vector is the weight
of the term t in the document i or term t in query j. For
instance a document Di and a query Qj with N total number
of terms are represented as (figure 2.10 illustrates a document
vector, query vector and the angle between them):

 Di = [Ti1, Ti2, ..., Tik, ..., TiN]
 Qj = [Qj1, Qj2, ..., Qjk, ..., QjN]

The weight of the terms can be binary, based on the tf-idf or
weighted by some other index term weighting scheme.

fi j,
freqi j,

maxfreqi j,
--------------------------=

idfi
N
ni
----log=

wi j, fi j, idfi×=

Figure 2.10: Vector space model

2 Background

19

During retrieval a similiarity score is calculated. There are several similarity measures but the
cosine coefficient is the most popular. The cosine coefficient calculates the similarity between the
document i and the query j by the following formula:

The similarity generated by the formula above is the cosine of the angle between the two vectors.
Unlike the Boolean retrieval model the vector space retrieval model ranks documents according
to similarity rather than attempting to predict relevance between the query and the documents.
The documents retrieved with the vector space model may only be partial match with the query.
The result set can also be sorted in descending order.

Although the vector space model have its advantages, compared to other IR models by improving
the retrieval performances with term weighting, its main limitation is that it treats terms as
unrelated and it only works well with short documents and queries [30]. The Latent Semantic
Indexing model is based on the vector space model and will be described in chapter 2.5.

Probabilistic retrieval model
Within a probabilistic framework the probabilistic retrieval model considers term dependencies
and relationships. The model is based on these parameters [30]:
 P(rel): the probability of relevance of a document
 P(nonrel): the probability of nonrelevance of a document
 a1: the cost associated with the retrieval of a nonrelevant document
 a2: the cost associated with the nonretrieval of a relevant document

P(rel) and P(nonrel) has to be estimated and this is the main issue of the probabilistic retrieval
model. Normally, a certain term occurrence distribution in documents is assumed to estimate
those parameters [30]. The probabilistic retrieval model has not improved retrieval effectiveness
greatly, mainly because there are some difficulties of obtaining P(rel) and P(nonrel). Relevant and
nonrelevant documents need to be initial separated. One of the most popular probabilistic retrieval
models are the Okapi BM25 ranking function [43].

Cluster-based retrieval model
Information retrieval models discussed so far might not put similar documents in close proximity
in the file system. It is difficult to implement browsing capability in such a file organization. Low
retrieval effectiveness and efficiency occur because not all relevant items may be retrieved and
whole document space has to be searched. Document clustering, the grouping of similar
documents into clusters, was introduced to overcome these disadvantages [30].

Two approaches to cluster generation are present today; hierarchial clustering and flat clusters
[45] [30]. The first one is based on all pairwise document similarities and assembles similar items

Sim Di Qj,() Di Qj

Di Qj

Tik Qjk⋅

k 1=

N

∑

Tik
2

k 1=

N

∑ Qjk
2

k 1=

N

∑⋅

---= =

2 Background

20

into common clusters. The second uses heuristic methods that do not require pairwise document
similarities to be computed.

In the pairwise similarities approach, each document is represented as a document vector in the
vector space model. The similarity between each pair of documents is then calculated. Each
document is initially placed into a class by itself during the clustering process. Then the two most
similar documents based on the pairwise similarities are combined into a cluster. The similarities
between the newly formed cluster and other documents are calculated, and the most similar
documents (including the cluster) are combined into a new cluster. This combining process
continues until all documents are grouped into a super-cluster. This process is called a
hierarchical, agglomerative clustering process.

The hierarchical clustering methods, based on all pairwise similarities between documents, are
relatively expensive to perform, but produce a unique set of well formed clusters for each set of
documents. Hierarchical clustering methods are reported to be far too limited to capture the rich
semantics of most document sets and do not permit cross classifications [10], are therefore not
utilized in this project.

The other approach, the heuristic clustering methods, produces rough cluster arrangements
rapidly at relatively little expense. The one-pass procedure, the simplest heuristic process, takes
the documents to be clustered one at a time in arbitrary order. The first document is placed in a
cluster of its own, and then each subsequent document is compared with all existing clusters, and
is placed into an existing cluster if it is sufficiently similar to that cluster. If it is not similar
enough the document is placed in a new cluster of its own. The process continues until all
documents are clustered. The cluster structure generated depends on the order in which
documents are processed and is uneven. To produce usable clusters some control mechanisms are
required.

Document search and retrieval is effective and efficient after the clusters are formed. Each cluster
has a representative vector, normally its centroid. The centroid is typically calculated as the
average vector of all documents of the cluster (i.e. the weight of centroid term i is defined as the
average of the weights of the ith terms of all documents).

During document retrieval the query vector is compared with the clusters' centroids. After
identifying the cluster with the highest similarity to the query vector there are two alternatives.
Alternative 1; all documents in the cluster are retrieved. Normally this is done when clusters are
small. Alternative 2; compare the query vector with each document vector in the cluster and
retrieve only the most similar documents [30].

2.5 Latent Semantic Indexing
Latent Semantic Indexing (LSI) is an approach to automatic indexing and retrieval that is
designed to overcome fundamental problems that exists in some retrieval techniques. As
foundation LSI make use of the vector space model.

2 Background

21

Users want to retrieve documents based on the conceptual content, and individual words provide
unreliable evidence about the conceptual topic or meaning of a document. LSI was designed to
overcome such problems that exact matching (boolean) techniques have. A given concept can be
expressed in many ways (synonymy), so in exact matching the literal terms in the user’s query
may not match those of a relevant document. Depending on the user’s contexts, needs,
knowledge, linguistic habits the same information can be described with different terms. On the
other hand, words can have multiple meanings (polysemy). Polysemy causes low retrieval
precision since the terms in the user’s query will literally match terms in documents that are of no
interest to the user [10].

Unlike exact matching techniques, LSI is based on concept matching rather than index term
matching. Matching based on concept allows retrieval of documents even if they are not indexed
by query index terms. For this to be possible an underlying latent semantic structur in the data
must be present. By treating the unreliability of observed term-document association data as a
statistical problem it tries to overcome the deficiencies of term-matching retrieval. To estimate the
latent structure and get rid of the obscuring “noise” statistical techniques, for instance in this
project the method known as Singular Value Decomposition (SVD), is used. From a large matrix
of term-document association data a semantic space is constructed. The original matrix is
replaced with a low rank approximation by using the SVD - the SVD creates three minor
matrices, respectivelly a left and a right singular vector matrix, and a diagonal matrix of singular
values [22]. In the semantic space the terms and documents that are closely associated are placed
near each other [10] [30]. The semantic space contain a term-concept space and a document-
concept space, respectivelly the left and right singular vector matrices.

The semantic space is arranged to reflect the major associative patterns in the data, and ignore the
smaller and less important influences. This results in occurrences where terms that did not
actually appear in the document may still end up close to the document. These problems can be
traced to three factors; (1) index terms are incompletely identified, (2) no automatic method for
dealing with polysemy, and (3) each word type is treated as independent of any other.

The first factor is that the terms used to describe or index a document contain usually only a
fraction of the terms that the users will try to look it up under, which induce that the index terms
are incompletely identified. Reasons for this is that the documents themselves do not contain all
of the terms that the users most probably will apply in order to retrieve the desired documents. An
another reason is that the term selection procedures omit many of the terms intentionally, e.g.
stopwords removal.

A common approach for dealing with the second factor is to use controlled vocabularies and
human intermediaries to act as translators. However, this solution is reported to be extremely
expensive and not always necessarily effective [10].

The third factor treats each word type independent of any other, and result in redundancy causing
distorted results to. This problem makes it difficult for a user to use compound-term queries
effectively to expand or limit a search [10].

2 Background

22

Singular Value Decomposition
In order to construct the semantic space mentioned earlier, the latent semantic structure analysis
starst with a matrix of terms by documents. The term-document matrix is then analyzed by
Singular Value Decomposition (SVD). This analysis derive the latent semantic structure model.

The analysis begins with an arbitrary rectangular matrix with different entities on the rows and
columns - in this thesis the entities are terms and documents. Next step is to decompose the matrix
into three minor matrices by the SVD process. The newly created matrices contain singular
vectors and singular values. Many of the components in the matrices are very small and may be
ignored, leading to an approximation model that reduce the number of dimensions. The matrix are
now approximated by values on a smaller number of dimensions for all of the matrices.

In relation with information retrieval, SVD can be viewed as a technique for deriving a set of
uncorrelated indexing variables or factors. The terms and the documents are represented by
vectors of factor values. During the dimension reduction there are possibilities for that the
documents with a little different profiles of term usage is mapped into the same vector of factor
values. This is all that is needed in order to accomplish the improvement mentioned earlier. It is
said that by replacing individual terms with derived orthogonal factor values may help to solve all
three of the problems described [10].

Algebraic representation of SVD
SVD was first introduced in 1965 by Golub and Kahan [18] as a decomposition technique for
calculating the singular values, pseudo-inverse and rank of a matrix. The conventional way of
doing this was to convert a matrix to a row-echolon form. The rank of a matrix is then given by
the number of nonzero rows or columns of the echolon form, whichever of these two numbers is
smaller. The approach of SVD is entirely different, the SVD technique decomposes a matrix A
into three new matrices by the equation:

where [5]:
• U is a matrix whose columns are the eigenvectors of the AAT matrix. These are termed the left

eigenvectors.
• S is a matrix whose diagonal elements are the singular values of A. This is a diagonal matrix,

so its nondiagonal elements are zero by definition.
• V is a matrix whose columns are the eigenvectors of the ATA matrix. These are termed the

right eigenvectors.

VT is the transpose of V - the transpose is to interchange rows and columns of a matrix [11].

A USV T=

2 Background

23

To reduce the number of dimensions the first k singular values are kept. The singular values are
ordered in decreasing order along the diagonal of S and this ordering is preserved when
constructing U and VT. Reducing the matrices are done by keeping the first k rows and columns of
S, the first k rows of VT, and the first k columns of U. The equation is now modified to the
following:

The dimension reduction that yields the
matrix Ak is referred to as the rank-k
approximation of A or the reduced SVD
of A. The top k singular values are
selected as a mean for developing a
“latent semantics” representation of A
that is free from noisy dimensions. In
low dimensional space the latent
semantics representation is a specific
data structure where documents, terms
and queries are embedded and
compared. The latent data structure is
masked by the noisy dimensions and
beomes evident after the decomposition.
SVD belongs to a class of dimensionality reduction techniques that deal with the uncovering of
latent data structures, and the dimension reduction can be viewed as a noise reduction process.

In order to perform a search in the semantic space the query needs to be converted to a
representative vector in the document-concept space, creating a pseudo-document vector:

where Aq
T is the transpose of the original query vector before the coversion is performed. The

search is performed in the document-concept space, which is significantly less than the term-
document space represented by the Ak.

Ak

U
S
V

= Best rank-k approximation of A

= Term vectors
= Singular values
= Document vectors

m
n
k
r

= Number of terms
= Number of documents
= Number of factors
= Rank of A

SVD components within LSI:

Ak Uk Sk V k
T=

Figure 2.11: SVD matrices with rank k (picture taken

Ak = Uk Sk Vt
k

=

m x n m x r r x r r x n

 from Berry [5]

Vq Aq
TUk Sk

1–=

2 Background

24

3 Research framework

25

3 Research framework
In this project the main objective is to explain and develop a suitable model for storage and
retrieval of molecular biological information. The proposed model in this thesis applies Latent
Semantic Indexing, described briefly in the previous chapter, on the tf-idf index created during
the indexing process of the collection. This chapter will present an overview of the database
Online Mendelian Inheritance in Man, which is the searchable collection in this project, and its
structure. Then the research framework’s approach and limitations will be described.

3.1 Online Mendelian Inheritance in Man

Online Mendelian Inheritance in Man (OMIM)6 is a free and comprehensive database, which is
updated daily, of human genes and genetic disorders authored by Dr. Victor A. McKusick and his
colleagues at John Hopkins University. The database is developed for the World Wide Web by
the National Center for Biotechnology Information (NCBI), and contains information on disease
phenotypes and genes, including extensive descriptions, gene names, inheritance patterns, map
locations, gene polymorphisms and detailed bibliographies. OMIM is integrated with the Entrez7
suite of databases and contains approximately 17 000 entries, including data on > 11 000
established gene loci and phenotypic descriptions. Such resources as locus-specific databases and
GenTests are linked to from OMIM records [44]. Each entry in the OMIM database has a full-text
summary of a genetically determined phenotype and/or gene and has numerous links to other
genetic databases such as DNA and protein sequence, PubMed references, general and locus-
specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support
groups and many others. OMIM is an easy and straightforward portal to the burgeoining
information in human genetics [21] [37] [44].

Some technical data on OMIM
Each entry in the OMIM collection is assigned a unique six-digit number whose first digit
indicates the inheritance type. The available inheritance types are autosomal, X-linked, Y-linked
or mitochondrial. The digits 1 and 2 are assigned to autosomal loci or phenotypes for entries that
are created before May 15, 1994. The digit 3 is assigned to X-linked loci or phenotypes, and 4 is
assigned to Y-linked loci or phenotypes. 5 is assigned to mitochondrial loci or phenotypes, and
the digit 6 is assigned to autosomal loci or phenotypes for entries created after May 15, 1994 [21].

Whether the entries contain information on genes, phenotypes or both, the Mendelian Inheritance
in Man (MIM) entries are categorized by using a symbol that precedes the MIM number. There
are five basic symbols used to categorize the MIM entries, they are; an asterisk (*), a number
symbol (#), a plus sign (+), a percentage sign (%), and a caret symbol (^). The asterisk is used
before an entry number to indicate that the gene is of a known sequence. A number symbol is used
before an entry number to indicate that it is a descriptive entry, usually of a phenotype, and does
not represent a unique locus. In the first paragraph of the entry a reason for the use of the number
symbol is given. Plus signs are used to indicate that the entries contain description of gene of
known sequence and phenotype. To indicate that the entry describes a confirmed Mendelian

6. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
7. http://www.ncbi.nlm.nih.gov/Entrez/

3 Research framework

26

phenotype or phenotypic locus for which the underlying molecular basis is not known, a
percentage sign is used before the entry number. Entries with no symbol before the entry number
generally indicates a description of a phenotype for which the Mendelian basis, although
suspected, has not been clearly established ord that the distinctness of ths phenotype form that in
another entry is unclear. Caret symbols are used before the entry number to indicate that the entry
was removed from the database or moved to another entry as indicated [21].

An entry number consist of a six-digit number, allelic variants are given a 10-digit number, and
are maintained within the relevant gene entry. The 10-digit number given to the allelic variants,
the six first digits are the parent entry followed by a decimal point and a unique four-digit variant
number (e.g. entry 253200 MUCOPOLYSACCHARIDOSIS TYPE VI with the allelic variants
.0001 INTERMEDIATE, ARSB, GLY137VAL, and .0002 SEVERE, ARSB, CYS117ARG,
etc.). Selected mutations are included as specified subentries, and criterias for inclusion are: first
severeal mutations, unusual pathogenetic mechanism and distinctive inheritance (e.g. dominant
with some mutations, recessive with other mutations in the same gene). Most of the allelic
variants represents disease-producing mutations. A few polymorphisms are included, mainly
those that show statistical association with particular common disorders [21].

Each entry in the OMIM collection may contain of 10 various fields, the fields are; NO (entry ID),
TI (title), TX (text/body), AV (allelic variants), SA (see also), RF (references), CN (contributors),
CD (creation date), ED (edit history), and CS (common symptoms) [40].

3.2 Approach and limitations
In order to achieve the goal given in this project one must analyze how to treat the data in the
OMIM collection. The OMIM collection is one big text file that needs some preprocessing before
it is indexed. First the collection get splitted into documents based on the *RECORD* fields, so
each record is transformed to a corresponding text documents. This is done in order to have more
control of the records and it is more manageable during testing. Each document in the collection is
treated as a whole in order to get a superior foundation of the content. One limitation of treating a
document as a whole is that the various field’s importance will not arise, but rather suppressed.

The search engine implemented in this project is made from scratch, but utilizes some of the
indexing features of the Apache Lucene package. Java is used to implement the search engine,
this is done because Lucene and mainly JAMA is primarily implemented in Java. The search
interface is implemented in HTML with snippets of JavaScript to handle the dynamic content.
JavaScript may cause some problems, due to the user’s preferences in the web browser. In newer
web browsers the user can disable JavaScripts and this search engine requires that JavaScript is
enabled.

4 Theoretical solution

27

4 Theoretical solution
In this chapter alternative indexing solutions and clustering algorithms will be discussed. The
different solution alternatives will be compared. Finally, the chosen solution will be described and
substantiated.

4.1 Alternative indexing solutions
In addition to the standard LSI approach new approaches has emerged the last decade. Two
approaches that have emerged are the Probabilistic Latent Semantic Indexing and Variable Latent
Semantic Indexing. In this section both of the different LSI solutions will be discussed according
to their advantages and drawbacks.

4.1.1 Probabilistic Latent Semantic Indexing
Being based on a statistical latent class model for factor analysis of count data, the Probabilistic
Latent Semantic Indexing (PLSI, introduced in 1999 by Thomas Hofmann [23]) is a novel
approach to automated document indexing. PLSI concerns non-negative matrix factorization.

The utilized model, fitted from a training corpus of text documents by a generalization of the
Expectation Maximization algorithm, is able to deal with domain-specific synonymy as well as
with polysemous words. Having a solid statistical foundation, the probabilistic variant defines a
proper generative data model, in contrast to standard Latent Semantic Indexing (LSI) by Singular
Value Decomposition. Substantial performance gains over direct term matching methods, as well
as over LSI, was indicated during retrieval experiments on a number of test collections.
Especially the combination of models with different dimensionalities proved to be advantageous
[23].

A statistical model called aspect model is the core of PLSI. The aspect model is a latent variable
model for general co-occurrence data which associates an unobserved class variable with each
observation [12] [23]. A latent class model (LCM) in statistics relates a set of observed discrete
multivariate variables to a set of latent variables [26]. It is a type of latent variable model, being
called a latent class model because the latent variable is discrete. A class is defined by a pattern of
conditional probabilities that indicate the chance of variables taking on certain values.

The observed variables are statistically independent within each latent class. This is an important
aspect. Observed variables are usually statistically dependent. Independence is restored by
introducing the latent variable, thus, within classes variables are independent (local
independence). The association between the observed variables can be said to be explained by the
classes of the latent variables [35].

Standard LSI stems from linear algebra and downsizes the occurrence tables (usually via SVD),
while PLSI is based on a mixture decomposition derived from a latent class model. This gives a
more principled approach with a solid foundation in statistics.

Due to a very large number of mixing distributions, the aspect model used in the PLSI is reported
to have severe overfitting problems [28]. The number of parameters grows linearly with the

4 Theoretical solution

28

number of documents. A generative model is not allowed to have parameterizations. PLSI is not a
generative model, hence, not providing a generative procedure for documents. A common way to
turn it into a proper generative model is by marginalizing the model by summing over all strings
in the training set [28].

Other deficiencies; (1) the aspect model in PLSI does not perform very well in supervised
settings, (2) latent models are frequently not identifiable, i.e. their optimal parameters are not
unique. Using the aspect model in experiments with supervised classification showed that its
performance was rather poor [27]. PLSI does neither provide a way of assigning likelihoods to
instances of the observed variables that do not occur in the training corpus [6].

4.1.2 Variable Latent Semantic Indexing
Variable Latent Semantic Indexing (VLSI) [9] is a new query-dependent low-rank approximation
that minimizes approximation error for any specified query distribution. It is possible to tailor the
LSI technique to particular settings with this tool, which in turn often results in vastly improved
approximations at much lower dimensionality. A series of experiments on classical corpora
validates this method. With an order of magnitude fewer dimensions, VLSI typically has similar
performance to LSI. From the experiments a form of query-dependent or variable LSI is derived
by characterizing the queries likely to arise through a probability distribution. The fact is,
Dasgupta et al. [9] use a general model based on where there is a co-occurrence matrix on pairs of
query terms. When the co-occurrence matrix is the scaled identity matrix, this approximation
reduces to the standard LSI approximation for the special case.

Experiments show, that VLSI dramatically outperforms LSI on retrieval effectiveness for any
given number of dimensions in the low-dimensional approximation. An alternative way of
viewing these results: for any quantitative level of retrieval effectiveness, the number of
dimensions in the low-rank approximation is dramatically lower for VLSI than for LSI. As an
example, whereas LSI on text corpora appears to require hundreds of dimensions in the
approximation, a few tens of dimensions often suffice for VLSI.

The lexicon used in this method is built as follows. To begin with, the text is extracted from the
files in which the collection is delivered. Then, by splitting at whitespace boundaries the tokens
are extracted. Tokens are then Porter-stemmed and case-folded, punctuation is removed, and a
standard 416-word stopword list is employed to remove any stopwords. This results in a
dictionary of terms.

Based on this dictionary, the corpus is scanned. This produces a term-document matrix of counts,
for which is the number of occurrences of term i in document j. Two other matrices in which the
experiments are performed are derived from this matrix. The first matrix is the Boolean matrix,
which is produced by setting the cell to 1 of the corresponding cell in the matrix of counts is non-
zero, and to zero otherwise.

The second matrix is the weighting matrix based on the Okapi weighting. This matrix is a
weighted version of the term-document matrix. Then, a SVD is performed on the Boolean and
Okapi matrices as a baseline. With a family of query distributions, VLSI is applied to each of
these matrices [9].

4 Theoretical solution

29

4.2 Clustering methods
Because not all relevant items may be retrieved and the whole document space has to be search,
the retrieval effectiveness and efficiency are low. By grouping similar documents into cluster
these disadvantages can be overcomed [30]. In the following two cluster methods will be
described. Both of the methods are based on all pairwise document similarities and assembles
similar items into common clusters. In the approach based on pairwise similarities, each
document is represented as a document vector as in the vector space model. Then the similarity
between each pair of documents is calculated.

4.2.1 Standard k-means
The k-means clustering algorithm was developed by MacQueen [33], and is one of the simplest
and the best known unsupervised learning algorithms that solve the well-known clustering
problem. The procedure follows a simple and easy way to classify a given set of data through a
certain number of clusters fixed a priori, where each cluster is defined by a centroid. In order to
best make use of the k-means method is to place the centroids as far away from each other as
possible [15].

Next step is to add points, in this case document vectors, to the clusters. For each document vector
a similarity between the document and each of the clusters’ centroids. The document is added to
the cluster which the centroid is the most similar to. When all of the document vectors have been
added to a cluster the first step is completed. The centroids are then recalculated, meaning a mean
vector is created for each of the clusters, based on the document distribution from the previous
step. With the new centroids, a new binding has to be done between them and the same data set,
creating a loop. The loop is repeated until the centroids do not changes location any more,
meaning the centroids no longer moves.

The k-means algorithm is composed of the following steps [34]:

1. Place k points into the space represented by the objects that
 are being clustered. These points represent initial group
 centroids.
2. Assign each object to the group that has the closes centroid.
3. When all objects have been assigned, recalculate the positions
 of the k centroids.
4. Repeat steps 2 and 3 until the centroids no longer move. This
 produces a separation of the objects into groups from which the
 metric to be minimized can be calculated.

The procedure will always, or mostly, terminate, but the algorithm does not necessarily find the
most optimal configuration, for that the algorithm is too sensitive to the initial centroid selection.
To reduce this effect the algorithm can be run multiple times.

4 Theoretical solution

30

K-means is a greedy algorithm that partitioning n samples into k clusters so as to minimize the
sum of squared distances to the cluster centers. The algorithm does have some weaknesses [34]:

• The initialization of the means is not specified. One popular way to start is to randomly
choose k of the samples.

• The initial values for the means affects the result and suboptimal partitions are frequently
found. A standard approach is to try a number of different starting points.

• It can happen that the set of samples closest to a particular cluster is empty, so that the cluster
cannot be updated.

• The results depend on the metric used to measure the similarity between the samples and the
clusters. A popular solution is to normalize each variable by its standard deviation, though this
is not always desirable.

• The results depend on the value of k.

The latter problem is especially troublesome, mainly because there are no easy way of knowing
how many clusters exist, and whether a k value of 3 is a better choice than 2, and etc.. To
determine the optimal number of clusters for any given data set is a difficult task. One approach is
to compare results of multiple runs with different number of clusters and choose the one that give
the best result according to a given criterion, although by increasing the k value may increase the
risk of overfitting [34]. However, Fraley and Raftery [16] have proposed an analysis to determine
the best choice of number of clusters and which clustering method.

There are some variants of the k-means algorithm, Jing et al. [25] added a new step in the
clustering process to automatically calculate the weights of keywords in each cluster so that the
important words of a cluster can be identified by the weight values. This extension enables the k-
means clustering algorithm to cluster high dimensional text data in subspaces of the keyword
features, so that sparsity of text data can be effectively handled. The performance of the k-means
clustering process is preserved because it does not increase the number of iterations.

The k-means clustering algorithm is known to be efficient in clustering large data sets. The recent
development of the new k-means type algorithms with variable weighting ability enables the
efficient k-means clustering process to discover clusters from subspaces that are identified by the
weights of variables.

4.2.2 Two step k-means
Two step k-means is a proposed modification of the standard k-means by the author. This version
of the well-known clustering method has a goal of beeing less greedy than the standard version
concerning the distribution of the documents. Unlike the standard version, the Two step k-means
consists of two modes, a local and a global mode. In the local mode “local” centroids are
calculated based on the distributed documents that fulfil a requirement that the similarity exceeds
a marginal value, for instance the marginal value can be 0.9. An another requirement is that a
document cannot be added to a cluster if it exceeds the marginal value compared with more than
one cluster - if the document does not exceed the marginal value it will not be added to any of the
clusters. This is done in order to force the centroids away from each other and by that give the
clustering algorithm, hopefully, a better foundation for clustering the documents.

4 Theoretical solution

31

The two step k-means is composed of the following steps:

1. Place k points into the space represented by the objects that
 are being clustered. These points represent initial group
 centroids.
2. If the similarity exceeds a given ratio and is only suitable for one
 group, assign the object to the cluster. Objects that are suitable
 for more than one group will not be assigned to a cluster.
3. When all objects have been tried assigned, recalculate the
 positions of the k “local” centroids.
4. Repeat steps 2 and 3 until the centroids no longer move. This
 will force the centroids away from each other and the clusters
 to be not so greedy.
5. Repeat steps 2 and 3 without the ratio and the constraint on
 number of suitable groups until the “global” centroids no longer
 move.

The Two step k-means algorithm is not significantly more complex than the standard k-means,
but the number of steps have increased by one and therefore causing the algorithm to increase the
runtime. The runtime is approximately doubled compared with standard k-means.

Deficiencies with the method:

• Too low ratio may cause clusters without objects, this can be caused by initial centroids that
are too close to each other. This is unfortunate because these clusters will not “get back in the
game” again. The initial selection of the centroids is also here crucial.

• When the local centroids have been found, the algorithm start being greedy again.

4.3 Chosen solution
The chosen solution is the standard LSI method. Standard LSI have a longer time of service than
for instance PLSI and VLSI. An another reason why standard LSI was chosen instead of PLSI, is
that there are some contradictory reports of its performance. VLSI is a novel approach and there
are not many reports about it, which also led to the choice of standard LSI. The author wanted to
test the clustering performance on a known and well-reputated foundation, therefore the standard
LSI method was selected.

Flat clustering is selected in this project since hierarchical clustering approaches are far too
limited to capture the rich semantics of most document sets [10]. The k-means clustering method
is a simple flat clustering approach and suits well in this project.

4 Theoretical solution

32

5 Implementation

33

5 Implementation
In this chapter the implementation will be described. The necessary classes from the Apache
Lucene package and the Java Matrix package will be explained in detail in chapter 5.1. The
overall structure of the application is shown in figure 5.2 and described in chapter 5.2, prior to the
indexing, clustering and searching process.

The following subchapters describe the technical information and usage of the various Lucene
and JAMA classes in this project. In chapter 5.6 the application logic and functionalities is
explained. The final subchapter describes and demonstrates how querying is executed, details of
the user interface, and how it works in practice.

5.1 Technical information
The full-featured search engine library Apache Lucene [31] and the Java matrix package JAMA
[24] has been imported and used in this project. This subchapter will give a brief description on
how these two Application Programming Interfaces (APIs) work and how they are used in this
project.

5.1.1 Lucene
The Apache Lucene is a high performance, scalable open-source search engine package written in
Java. Lucene is not a ready-to-use appliction, but is a software library that provides core API for
full-text indexing and searching functionalities to be used in the developer’s applications. The
Lucene API contains functions for indexing and searching, converters of various types of data,
etc.. It is up to the developer to decide how to manage the indexing, searching, deal with user
queries, and representing them and the results to the users of the application [19].

In every search engine the main concept is the concept of indexing, where the original data is
processed into a searchable cross-reference lookup in order to achieve searching at great speed.
The processing of the original data is done by analyzers. Analyzers converts documents into a list
of words that are suitable as index terms. This is done by removing unusable words like
stopwords and performing stemming on the remaining words. The analysis process will be
described in more detail later. Document class instances defines the documents when they are
added to the Lucene index, and Fields consists of name and value pairs.

The structure of the Lucene index is called an inverted index. This means the content of the
documents that has been analyzed and the words suitable as index terms, are indexed as field
name and value pairs. The Fields contains many terms that points to corresponding documents. A
general structure of an inverted index is [19] [30] [31]:

 Term i: Record no., Paragraph no., Sentence no., Word no.

When searching an inverted index the documents are retrieved by searching the fields and their
values.

5 Implementation

34

In order to perform indexing with the Lucene API, the basic Lucene classes needed to perform it
are:

• IndexWriter
• Analyzer
• Directory
• Document
• Field

The main component of the indexing process is the IndexWriter. IndexWriter creates a new index
to a desired path and adds documents to the index. The developer can decide which path to save
the index, what sort of analyzer to be used, and whether to create a new index from scratch or
append documents to an existing one.

The location of the index is represented by the Directory class. This class have originally two
subclasses; FSDirectory and RAMDirectory. The FSDirectory stores the Lucene index on disk,
while the RAMDirectory stores it in memory. Both of the subclasses have identical interface, but
RAMDirectory is more useful for small indices and FSDirectory for large indicese due to their
sizes and the the amount of storage space available.

The Analyzer class provides some preprocessing of the text before it is indexed. Words that are
not fitted to be regarded as suitable index terms are eliminated from the collection, the rest is
added to the index, e.g. stopwords removal. How the analyzer in this project is implemented will
be described later.

In the index the fields are represented by the Document class. The Document class consists of one
or more named fields that represent the document or meta-data (e.g. author, title, subject, etc.)
associated with the document. Metadata is stored separately as fields of the current document as
name and value pairs, e.g.:

 field name: “author”
 field value: “William Shakespear”

The named fields in the index is embodied in a class called Field. What type of field one should
use depends on the usage of the field. When a user search for documents a request are queried
against the fields in the index to retrieve documents.

The summary of the indexing steps in this project is shown in figure 5.1. The individual steps in
this project will be described in more detail in the following subchapters.

5 Implementation

35

Lucene comes with classes for searching - this project make only use of Lucene in the indexing
part, but applies Lucene’s QueryParser class on the query terms given by the user. The
QueryParser class requires an analyzer as parameter, the analyzer break pieces of the query into
terms. The analyzer stems and remove possible stopwords from the query.

Information about how Lucene is implemented in this project will be described in chapter 5.3
about the indexing process.

5.1.2 JAMA
The JAMA package is an API for performing basic linear algebra tasks developed for Java.
JAMA provides classes and functions for creating and manipulating real, dence matrices. The
main class of JAMA is the Matrix class. On the Matrix class fundamental operations of numerical
linear algebra, and various get and set operations are provided. In addition are basic arithmetic
operations, such as addition and multiplication, provided.

The package provides the following five fundamental matrix decompositions:
• Cholesky Decomposition of symmetric, positive definite matrices
• LU Decomposition (Gaussian elimination) of rectangular matrices
• QR Decomposition of rectangular matrices
• Eigenvalue Decomposition of both symmetric and nonsymmetric square matrices
• Singular Value Decomposition of rectangular matrices

The five decompositions produce pairs or triples of matrices, permutation vectors, and the like.
The decompositions are accessed by the Matrix class, and provides operations to compute
solutions of simultaneous linear equations, determinants, inverses and other matrix operations8.

In this project the only decomposition needed is the Singular Value Decomposition. The use of
JAMA’s Matrix and SVD classes will be described respectively in chapter 5.3 and 5.5.

8. For capabilities of JAMA, see appendix B

Figure 5.1: The indexing process

OMIM
record Parser Analyzer

--------- -----
--------- -----
--------- -----
--------- -----
--------- -----
--------- -----
--------- -----

index

text - stemming
- stopwords
- lowercase

5 Implementation

36

5.2 Architectural design
The overall system structure are shown in figure 5.2. The structure consists of two main sections:
preprocessing of documents and the main application, which is further divided into two
subsections; Lucene indexing and OMIM indexing and.

The first main section preprocesses the OMIM database. The OMIM database is a 100 MB text
file containing approximately 14 000 records. By splitting the database into small text files, one
file per record, where the record number becomes the document’s name, it is more manageable
and controllable by doing it this way. The data in each record are unaffected from the splitting
process.

In the second main section, the first subsection make use of Lucene to index the collection of
OMIM files. It lowercases the text, remove stopwords and stems the remaining words. This
subsection may be viewed as an intermediate section, since it in one fashion does some
preprocessing and the other a part of the main application.

The second subsection is the information retrieval application itself. All of the necessary
information from the Lucene index is retrieved and reconstructet with the purpose to apply SVD.
When the clustering processes are finished new indices are created - one for each clustering

Splitter OMIM
database

Collection
of docs User interface

Indexing ------ ----
------ ----
------ ----
------ ----

Lucene
index

tf-idf
normalization

K-means
clustering

Two step
clustering

K-means
index

Two step
index

Searching

Enter
query

Chosen
clustering
method

Search
result

Parse
query

Singular value
decomposition

Figure 5.2: Architectural overview of the system

Preprocessing

Application

Lucene
indexing

OMIM
indexing
and
searching

5 Implementation

37

method. The searching process make use of the indices created during the clustering process and
ranks the result, showing the most relevant documents.

A more detailed description of the indexing, clustering and searching processes follows in the
next subchapters.

5.3 Indexing process
The indexing process may be divided into two parts: a Lucene part and a LSI with clustering part.
The Lucene part is used as a preprocess to LSI. The reason why the Lucene and the LSI
implementation is splittet from each other is because to implement LSI in Lucene some extensive
transformations has to be made. To implement an LSI friendly structure from scratch rather than
modify the structure of the Lucene index is easier and less time-consuming. The trade-offs here
are speed and latency, storage requirements and extensibility. The trade-offs and their results will
be discussed in chapter 6.4.

The indexing process begins by creating an FSDirectory to store the index created by Lucene, for
each document an analyzer is applied to remove stopwords and stem the words, and an
IndexWriter to write the index to file.

The source code snippet above instantiates the Lucene indexing process. The
FSDirectory.getDirectory have two parameters; strIndexDirectory is the desired path to store the
index, and a boolean to create or erase existing contents if true. OMIMAnalyzer is a custom-made
analyzer that have a stopwords table as parameter. The IndexWriter takes three parameters; the
desired path to store the index, analyzer to analyze the stream of text, and a boolean variable to
determine whether to create a new index or modify an existing one.

For each document in the collection a Document instance is added to the index with the code:

The content in each document is treated as a whole, alternatively one may divide it in sections,
e.g. one section for title, authors, etc.. Treating the content in a document as a whole is done in
order to get a best possible overall similarity foundation of the documents in the collection. This
will be discussed later.

As mentioned above an analyzer is applied to the stream of words from the documents. The
custom-made analyzer used in this project, the OMIMAnalyzer, is built up in the following
manner:

this._directory = FSDirectory.getDirectory(strIndexDirectory, true);
this._analyzer = new OMIMAnalyzer(StopWords.stopTable);
this._writer = new IndexWriter(this._directory, this._analyzer, true);

this._writer.addDocument(FileDocument).Document(contents[i]));

return new PorterStemFilter(new OMIMStopfilter(new
 LowerCaseTokenizer(reader), stopWords));

5 Implementation

38

First, the analyzer lowercases the words, this is done in order to make the system case
“insensitive”. Second, stopwords are removed - the OMIM collection provides a set of stopwords
that have been used in this project, see appendix A for a list of the stopwords. Third, and finally, a
Porter stemmer is applied to reduce the suitable index terms to their roots.

When there are no more documents in the collection to index the Lucene index is optimized,
meaning merge all segments together into a single segment. After the optimization the term
frequencies are transfered to a newly created Matrix object - the term frequencies are normalized
before they are added to the matrix, the formula for normalization is described in chapter 2.4. The
matrix consists of m number of index terms and n number of documents (an m x n matrix), and
may become very large and therefore require a great deal of memory storage. During the transfer
of the term frequencies a document and a term overview is written to file in order to keep controll
of the term and document frequencies. When the transfer from the Lucene index to the matrix is
done, JAMA’s SVD operations are applied:

The snippet above splits the matrix into three minor matrices, respectively a left (this._U) and
right (this_V) singular vector matrix and a diagonal matrix of singular values (this._S) [10] -
this._X is the original matrix created when the term frequencies are transferred from the Lucene
index.

To reduce the matrices further rank k is applied to the SVD matrices, this result in a left singular
vector matrix with the dimension m x k, a right singular vector matrix with k x n, and a diagonal
matrix with k x k - the diagonal matrix is after the reduction inversed. The choice of k will be
discussed later. The left and the inversed diagonal matrices are used during the search process,
and after the reduction the SVD matrices are stored to file. Now that the index fulfil the LSI
model described by Deerwester the clustering process will be described next.

5.4 Clustering process
As mentioned earlier this thesis applies two clustering methods to the LSI index created in the
previous subchapter. The applied clustering methods are the standard k-means and a modified
version of it called two step k-means.

The standard k-means algorithm is very basic and easy to implement, but it is a greedy algorithm.
It is also very dependent of the location of the initial centroid vectors. Two step k-means is a
proposed initiative to make the k-means algorithm less greedy and not so dependent of the initial
centroid vectors, but keeping the simplicity of the algorithm intact. The following paragraphs will
describe the implementation of the two clustering methods used in this project.

SingularValueDecomposition SVD = new SingularValueDecomposition(this._X);
this._U = SVD.getU();
this._S = SVD.getS();
this._V = SVD.getV();

5 Implementation

39

K-means implementation
First, the KMeans class reads the index statistics data, such as number of documents, number of
index terms and the value of k, from file. Based on these data the reduced right singular value
matrix is reconstructed, which is, according to Deerwester, the documet-concept space [10].

Second, to determine the initial centroid vectors each centroid receive the vector of a document.
The allocation of the centroid vectors are made by guessing - the documents were evaluated by
their size, on the basis of a large document contains more index terms than the small ones (cf. the
documet’s vector).

After the clusters have been created the population of the clusters begins. For each document
vector a similarity between the document and the centroid vectors is calculated. The document is
added to the cluster with most similarity. This is repeated until the centroid vectors no longer
moves. Finally the clusters are written to files with a corresponding cluster list. The cluster list
contains information about the clusters and their centroid vectors.

Two step k-means implementation
The TwoStepKMeans class extends the KMeans class, meaning it works in the same fashion. The
method differs from the standard method by the introduction of a local and a global centroid
vector. A restriction is also introduced in this method, the restriction applies on the allocation of
documents to clusters. To be added to a cluster in “local mode” a document can not be suitable for
more than one cluster and exceed a marginal value set by the developer.

In local mode the clustering method sorts out documents that have lower similarity than the given
marginal value. Combined with the requirement of that a document can only be suitable for just
one cluster, the intended outcome is to drive the clusters away from each other, cf. Faraoun and
Boukelif [15].

When the centroids no longer move in local mode, it switch to global mode. Global mode works
just like standard k-means but the initial centroid vectors are different because the centroids have
been driven away from each other.

5.5 Searching process
The searching process make use of Lucene’s Query and QueryParser classes. Each query written
by the user have to utilize the same analyzer as the one in the indexing process, the
OMIMAnalyzer. A user query is parsed with a QueryParser instance:

The query parser remove stopwords and stem the words provided in the query to their roots, cf.
the indexing process. Stemming is important here because the query must be in accordance with
the index terms, meaning the query and the index terms must have the same basis when
performing a match between them.

this._analyzer = new OMIMAnalyzer(StopWords.stopTable);
this._parser = new QueryParser("query", this._analyzer);
this._query = this._parser.parse(userQuery);

5 Implementation

40

When the query is parsed, the query vector is created. The query vector is created by traversing
the index term overview and the positions of matching terms are stored. Matching terms are found
by matching the user query terms as a substring to the index terms, e.g. the user query “charac”
matches all the words containing “charac”. Without the possibility to match a query as a substring
of an index term, it requires that the user knows how the word are written or what sort of words
the index contains (cf. exact match), or utilize an another matching algorithm.

To perform a search the query vector must be converted to the document-concept space described
earlier. This is done by multiplying the query vector with the left singular vector matrix and the
inversed diagonal matrix, which is reconstructed from file:

This formula converts the query vector to a representative vector in the document-concept space,
and corresponds to Deerwester’s representation for pseudo-documents9:

Where T respectively is the left singular vector matrix, S-1 the inversed diagional matrix, D is the
right singular vector matrix, and Xq

t the query vector. When the query have been converted the
similarity between the query and the clusters are calculated - the similarity measure is the cosine
coefficient described earlier. This determines which cluster is most similar to the query.

For each document in the cluster, similarity is calculated. Only documents that exceeds a marginal
value of similarity are added to the result set, e.g. 0.80. The intended use of the marginal value is
to omit documents that are not so relevant according to the user’s query (cf. Lu [30]).

Since there are two clustering methods available, the user have to check off which clustering
method to be used during searching. Based on which clustering method is checked off the
application retrieve the index for that method.

5.6 Application logic and functionalities
The main functionalities that the search engine provides are indexing biological data provided by
OMIM and searching them. The original OMIM records are stored in a repository. The
application logic, indexing and clustering the documents, and the searching process according to a
given query, is explained in following paragraphs using sequence diagrams.

The first sequence diagram is for the indexer application and shown in figure 5.3. Firstly, the
indexer class is instantiated. The indexer instance triggers the Lucene indexer implementation.

9. The formula provided by Deerwester, another representation of the same formula is provided in chapter
2.5.

conQuery = queryT.times(uk.times(skinv));

Dq Xq
tTS 1–=

5 Implementation

41

The Lucene indexer has the main logical methods for retrieving data from the OMIM collection
and indexing them.

The content of each document is parsed and analyzed, the words suitable as index terms are
extracted. The FileDocument class creates a Document instance, that contains the terms which are
generated by the FileDocument, for each document in the collection. After the document have
been parsed, all of the Document objects are sent to the IndexWriter object. The IndexWriter
object performs the indexing operation.

The indexing operation is performed by writing all of the Document instances into the index. The
index is created by the program in a file system. This operation is repeated until all of the
Document instances are added to the physical index file on disk or memory. When the indexing is
finished, the index is optimized, closed and returned to the Indexer application.

The second sequence diagram, see figure 5.4, illustrates the transformation from a Lucene index
to a LSI index. A JAMA Matrix object is instantiated and the term frequencies located in the
Lucene index are transferred to the matrix. Before the frequencies are added to the matrix
physically, they are normalized as described earlier in chapter 2.4.

When all of the term frequencies have been transferred and normalized, a Singular Value
Decomposition object is created. The Singular Value Decomposition object create the left and
right singular value matrices, and the diagonal matrix. Each of the newly created matrices are
reduced by performing rank k. The diagonal matrix is inversed before the matrices are written to
file, one regular text file per matrix, and returned to the Indexer.

Figure 5.3: Sequence diagram of the indexing process

Indexer Document IndexIndexWriterFileDocument

* for each
document

* for each
document

write index

5 Implementation

42

The third sequence is a general sequence diagram of the clustering process, see figure 5.5. A
clustering class requests SVD data from files, and creates a Matrix object to keep the SVD data -
the only SVD data needed is the data of the right singular value matrix.

Indexer Singular Value
Decomposit ionMatrix

performSVD

write SVD

transferToSVDMatrix

LSI index

performRankK

Regular text
file on disk

Figure 5.4: Sequence diagram of the LSI indexing process

Clustering
LSI index

 retrieve SVD
data

 SVD matrices

clusters

write clusters

 populateClusters

Figure 5.5: Sequence diagram of the clustering process

5 Implementation

43

The clustering object populates the clusters until the centroid vectors no longer moves - in the
Two Step K-Means clustering method the population is bisected, cf. local and global mode. The
sequence is therefore repeated once for each mode.

When the centroids no longer moves each cluster and a superior cluster list is written to file,
before it is returned to the clustering application.

The fourth, and final, diagram is the sequence diagram of the searching process, see figure 5.6.
The searching process starts with a user that types in a query. This query is sent to a QueryParser
object that applies the OMIMAnalyzer on the user query. An array of parsed query terms are
returned to the Searcher.

Figure 5.6: Sequence diagram of the searching process

 * compute document
 similarity

 * compute cluster
 similarity

Searcher SimilarityMatrixQueryParser
LSI indexUser

userQuery

parse query

 parse(userQuery)

array of
query terms

createQueryVector retrieve SVD
 data

SVD data

similarity
results

clusters

 convertQuery

retrieve cluster
list data

cluster list data

similarity

similarity

queryResult

retrieve cluster
data

cluster data

5 Implementation

44

Matrix objects are created to keep the query vector and the SVD data retrieved from file. To
compute similarity between the user query and the centroid vectors and the document vectors, the
query is converted to suit the document-concept - formula described in chapter 5.5. After the
query has been converted cluster list data is retrieved from repository. For each centroid vector
the similarity between it and the query vector is calculated. Based on the similarity, the cluster
with most similarity is retrieved from the repository. For each document in the cluster similarity is
calculated. The documents which are more similar to the query than a marginal value is returned
to the Searcher application that presents the result for the user.

5.7 User interface
In this project the user interface is kept simple, see figure 5.7. The interface contain classical
funtions like (1) a text box for entering user queries, (2) selection of clustering method, and (3) a
search button - the clustering method selection is provided in this project to easily change
clustering method.

If the user wants to use the Two step k-means method the user must select it before executing the
search. The standard k-means algorithm is selected by default when doing search.

Figure 5.8 illustrates an executed search using the clusters created by the standard k-means
algorithm with the (1) user query “aarskog syndrome”. For each search request number of hits (2)
and which cluster the documents are retrieved from (3) is presented to the user.

The result list presents the retrieved documents by an identificator (ID), similarity (score) and an
Uniform Resource Locator (URL) to the physical document on disk (4). The documents are sorted
decreasingly based on the similarity score. Although the similarity score is redundant, since the
result set only contain documents with similarity above a given marginal value, it is represented to
give the user a hint of how relevant the document is to the user’s query.

Figure 5.7: Search box

1

2

3

5 Implementation

45

To view one of the documents in the result set, the user must click on the “Click here to view...”
URL. The user is then presented a download window, see figure 5.9 - the user may select “Open”,
“Save”, or “Cancel”.

The user interface is kept on a simple level and it is very intuitive to use, cf. Jakob Nielsen’s
guidelines for web development [38].

Figure 5.8: Search result

1

2 3

4

Figure 5.9: View document content

5 Implementation

46

6 Evaluation of results

47

6 Evaluation of results
The developed search engine application provides indexing and searching operations for
biological information stored in the OMIM collection. The implemented application facilitates the
retrieval of information about genetic disorders. This chapter deals with the evaluation of the
system’s capacity, limitations, etc., by performing various tests. The goal of this evaluation is to
uncover defects and weaknesses of the implemented methods, and that the system behaves as
intended by its designer.

6.1 System validation
A software testing stategy may be viewed as the spiral illustrated in figure 6.1 provided by Roger
Pressman [42]. First, the role of software is defined by the system engineering, which leads to
software requirements analysis. In the software requirements analysis the information domain,
behavior, performance, constraints, and validation criteria for software are established. In order to
develop computer software, one move inward along the spiral towards coding and decreases the
level of abstraction on each turn.

Just like the strategy for software development a strategy for software testing may also be viewed
as in the context of the spiral, however it begins at the center and move outward. Unit testing is
the initial step and concentrates on each unit (e.g. component) of the software as implemented in
source code.

As the testing progresses outward along the spiral, integration testing is the next testing phase.
Integration testing focuses on desing and the construction of the software architecture. The third
turn outward on the spiral lets one encounter the validation testing. In validation testing the
software that has been constructed is validated against the requirements established as part of
software requirements analysis.

The last turn on the spiral one arrive at system testing. System testing tests the software and other
system elements as a whole. In contrary to the development of a system, the testing move along

Figure 6.1: Software testing strategy (picture taken from [42])

6 Evaluation of results

48

the streamline that broaden the scope of testing for each turn. Each turn in the testing phase will
now be described a little more in detail.

Unit testing focuses on each component individually, hence the name, ensuring that it functions
properly as a unit. It tries to verify the smallest units of the software design - a unit is a software
component or a module. Within the boundary of the module, important control paths are tested to
uncover errors on the component-level design description.

Integration testing is a turn consisting of two subgoals; constructing the program structure, and
conduct tests to uncover errors associated with interfacing. The unit tested components is the
building blocks of the program structure dictated by the design.

Validation testing begins when the software is completely assembled as a package, where
interfacing errors have been uncovered and corrected. A simple definition of validation is that
validation succeeds when software functions in a manner that can be reasonably expected by the
customer [42]. Through a series of tests that demonstrates conformity with requirements, the
software is validated.

The final step is system testing. Ultimately, software is incorporated with other system elements
(e.g. hardware, people, information), and a series of system integration and validation tests are
conducted [42]. These tests fall outside the scope of this thesis and are not described any further in
detail.

This thesis will base its tests on a subset of possible test cases. As test data 537 OMIM records
have been randomly but evenly selected - meaning that the selected records are distributed over
all of the six different categories and is proportionately with the full OMIM collection. For an
overview of the selected records, see Appendix C. If the full OMIM collection was to be indexed
a matrix with the approximately 14 000 x 120 000 records has to be created. To keep a 14 000 x
120 000 matrix object requires a significant amount of memory, and because of this the test data
contains only 537 records.

In this project black-box testing or behavioral testing will be applied, explained and executed in
the following subchapter. The tests validates the system as a whole without considering the
software’s internal structure. The software’s behavior is determined by studying its inputs and the
related outputs [42].

6.2 Test cases
In this project there are implemented two clustering methods, both of them applied to the same
LSI index producing two different cluster indices. Test cases are performed to understand the
impacts by induce clusters in the index. In this chapter tests will be performed to validate the
system as a whole - the units and the integration works properly and it is the totality of the system
that are of interest. The results from each of these tests will be compared with results from NCBI’s
search engine in this chapter, and evaluated in chapter 6.4. All tests of the implemented
application are executed with a marginal value of 0.80 for the similarity, this value must be

6 Evaluation of results

49

exceeded in order for a document to be added to the result set. The following subchapters
illustrates three cases. For an overview of all test queries see appendix E.

6.2.1 Case I
In this test case the user has typed in the query “proteinase inhibitors serpin”, and executed using
both of the clustering methods, see figure 6.2 for illustration - the user query is stemmed to
“proteinas inhibitor serpin”.

The application returns the same cluster number and the exact same result set using the two
clustering methods, meaning that in this case the result sets coincides. One reason why the two
clustering methods yields the exact same result set is that the centroid vectors of the two clusters
may be very similar - the user query produce the same pseudo-document vector in both cases.
Another reason might be that the distribution of the documents is approximately the same in both
cases.

As mentioned in chapter 2 LSI matches concepts and not utilizing exact matching. Concept
matching may result in occurrences of records that do not contain terms from the user query are
conceptually more similar than records that actually contain terms from the user query. In this test
the record ranked on top (606313) is, according to LSI, more conceptually similar than the rest of
records in the result set. The record 606313 do not contain any of the terms from the user query in
contrast to the record 602058 that contains all of the terms. The rest of the records that are shown
in figure 6.2 contains variations of the words “inhibitor” and “protein”. Proteinase and protein
belong together conceptually since proteinase begins the hydrolytic breakdown of proteins
usually by splitting them into polypeptide chains [7].

Figure 6.2: Standard k-means vs. Two step k-means (proteinase inhibitors serpin)

6 Evaluation of results

50

When executing a search with the same user query on NCBI’s search engine, it produces a result
where the record 602058 is the only record that exist in the test data for this project. NCBI’s
search engine utilize, as mentioned earlier, a boolean model or exact matching.

6.2.2 Case II
In test case I the two clustering methods yields the exact same result set and the same cluster
number. In test case II the user has typed in the query “abetalipoproteinemia”. The results from
the two clustering methods differs in cluster number and some records have been replaced, see
figure 6.3. The term is at its word root and is therefore not stemmed to a shorter word.

The biggest difference in this case is the change of cluster number. During the clustering process
the Two step clustering method indicates some considerable changes in the document distribution
in proportion to the standard k-means, mainly in cluster number 2 and 3, see appendix D - cluster
number 1 is almost unaffected. The majority of documents in cluster 3 in the Two step method are
documents from cluster 2 and some from cluster 1 in the standard k-means. The distribution is
more uniform in the Two step method than in the standard k-means method.

Because of the difference in document distribution the Two step method retrieve a new record
(601253) and omit another (300500, not shown in figure 6.3). The new record possess a higher
similarity than the omitted one, meaning it is conceptually more similar to the user query.

When executing the same search in the NCBI’s search engine the only record that contain the user
query and is a part of the test data is the record 314850.

Figure 6.3: Standard k-means vs. Two step k-means (abetalipoproteinemia)

6 Evaluation of results

51

6.2.3 Case III
In the third, and final, test case the user has typed in the query “gastric sneezing stomach reflex”,
which is stemmed to “gastric sneez stomach reflex”, see figure 6.4 for illustration of results.

The standard k-means method retrieved two documents more than the Two step method, although
both of the methods utilizes cluster 3. The two documents (192400 and 602195) have respectively
been transferred to cluster 1 and 2 during the Two step clustering process. It is only the record
137130 that contain the terms in the user query, and terms from that record is used as foundation.
The application utilizes the wrong cluster number, the record 137130 is located, in both of the
clustering methods, in cluster 2, and can therefore not retrieve the correct document.

The documents with the highest conceptually similarity contains variations of the word reflex.
One reason why the application retrieves the wrong cluster and therefore can not retrieve the
desired record, may be the use of substring matching during search - e.g. the term reflex retrieve
the index positions for index terms like; areflexia, hyperreflexia, hyporeflexia, and reflex. When
performing the query conversion of the query vector to the document-concept space the three first
index term positions may affect the retrieval by introducing noise to the search space - meaning
retrieving index positions for index terms that the user in reality do not want to retrieve.

Another reason why the application utilizes the wrong cluster may be because the record 137130
is located in the border area of cluster 2 and 3 - meaning the document vector for the record
137130 is similar to the query vector, but the centroid vector for the cluster is less similar to the
query vector than the centroid vector of cluster 3 and is therefore not selected by the application.

Figure 6.4: Standard k-means vs. Two step k-means (gastric sneezing stomach reflex)

6 Evaluation of results

52

The NCBI’s search engine retrieves the record 137130, which is the only record in the test data
collection containing the query terms, when executing the same search.

6.4 Evaluation of test results
Each of the test cases produce different result, this chapter will evaluate these results and take a
closer look at speed and latency, precision, capacity, and extensibility of the application.

6.4.1 Speed and latency
Indexing process
The Lucene indexing module utilize the compound file index structure. Multifile index creates
multiple files to store separate segments of the index, in contrast to compound index that consists
of three files; deletetable, segments, and a file containing the indexed documents and their field
values. The multifile index structure is indexing the documents in less time than the compound.
Reason for this is that the compound index structure merges all of the files into one single file.

To make use of the Lucene index in different stages the index is stored in a file system. The
RAMDirectory provides faster indexing process than the FSDirectory, because RAMDirectory
keep the index in the memory while the FSDirectory store it on disk. The reason why the
FSDirectory is chosen instead of the RAMDirectory is to provide possibilities to do the indexing
process in several independent steps. The trade-off is that it decreases the indexing speed
significantly, and the Lucene indexing process takes about 0,5-1 hour10 to index 537 documents.

Clustering process
The clustering processes differs a little in runtime. The standard k-means clustering method runs
for about 0,5-1,5 minutes depending on the initial centroid vectors, while the Two step k-means
clustering method runs for about 1-2,5 minutes. The reason why the Two step clustering method
increases the clustering time is because the method runs in a local and a global mode.

Searching process
The speed of this application is not significantly high because the indices and the main searching
operation are not optimized for speed, the indices consist of regular text to make debugging
easier. The runtime of a search performed on the test data collection is approximately 5 seconds.
This thesis does not emphasize the importance of speed during information retrieval, mainly
because this is not the main scope of this project. An average retrieval runtime of 5 seconds may,
however, be concluded as satisfiable in this projects.

6.4.2 Precision
Since the LSI method matches concepts instead of exact matching the precision of the application
may be difficult to verify, because it requires good knowledge of the molecular biology field,
especially when dealing with biology specific terms. This chapter will evaluate the precision of
the application.

10.All of the runtimes are executed and tested on a 2 GHz computer with 512 MB RAM.

6 Evaluation of results

53

When performing a search the precision fluctuates, this may have its origin in the distribution of
the documents and by the following factors; (1) treating a document as a whole during the
indexing and clustering processes without any consideration of the various fields (TI, TX, CD,
etc.), (2) the rank k value is too high or low and therefore fails to remove the neccessary noise, (3)
the clustering methods creates constant boundaries between the clusters and therefore split up, for
instance two documents that are conceptually similar into two different clusters, or (4) the use of
substring matches during search generates a query vector with noise.

An another way of treating the documents, than by treating the document as a whole without any
consideration of the various fields (1), is to make use of the more important fields, such as NO,
TI, TX, AV and CS, and omit less important fields, such as ED, RF, SA, CN and CD. Fields such
as ED exists in each record and consist generally of the same contributors and is a major
associative pattern in the data, and may therefore be considered redundant. This may give a poor
retrieval precision due to the less important fields, but the meaning is to give them a more superior
foundation when comparing the documents with each other and with the queries.

The value of the rank k (2) influences the latent structure and the removal of noise significantly.
The original term frequency matrix is 537 (number of documents) x 23 897 (number of index
terms), and the rank k is set to 10. The value of k is estimated based on the the number of
documents and index terms. For hundred thousands of documents a rank k value of 100 is said to
give the best performance [5] [10] [13], so in this project a rank k value of 10 appears to be a
rational value. However the value of k could be further experimented.

A third possible factor for the flactuating precision may be that the clusters are constant (3) and,
e.g. a document that is similar to two different cluster is added to the second cluster, then the
document will not be retrieved if the application utilizes the first cluster, c.f. test case III. This is a
drawback of the cluster methods and should optimally be fixed so the documents are retrievable
independent of the cluster distribution.

With substring matches (4) the query may obtain noise when creating the query vector. The
application creates a query vector with maybe unwanted index term positions, c.f. test case III,
and therefore the precision of a search decreases. There are various ways of dealing with term
matching when creating a query vector, e.g. calculate the similarity between the index terms and
the query terms to retrieve index term positions. Examples of semantic similarity measures can be
found on the Cog Works website [8]. The substring matching is easier to implement and were
therefore chosen in this project.

6.4.3 Capacity and extensibility
With a 537 x 23 897 matrix there are capacity limitations in memory. Each cell in a JAMA Matrix
object keep a 64 bit float value, so to keep the entire term frequency matrix in RAM requires a
significant great amount of memory - the Java Virtual Machine11 also seems to struggle to handle
memory requirements above 2 GB of RAM due to the heap size. Since the JAMA package does
not provide storage to disk operations, this application was tested with a test data collection of 537
records - the number of documents (537) was a random selection, optimally it should be exactly

11.http://java.sun.com/

6 Evaluation of results

54

500 documents, but with 537 the ratio between the different inheritance types is kept on a
tolerable level.

The application is to some extent extensible but it requires work to overcome minor obstacles
such as hard-coded file paths and etc.. The hard-coded file paths are mainly associated with the
writing and reading procedures for the indexing, clustering and searching methods. A possible
extensibility is to implement the application so it does not treat the document as a whole, but
instead select the important fields (TI, TX, etc.) as foundation to cluster the documents. By
omitting the less important fields, the document distribution may and probably will be different
than the distribution this thesis is based on.

6.5 Evaluation of acceptance test results
In the acceptance test 15 various user queries were executed, see appendix E for the complete list
of test queries. This testing reveals any defects and limitations of the system, it will also
determine whether the system is ready to be used or not by biologists.

As mentioned in the beginning of this thesis, the biology field produce a significant amount of
information and the need to store and retrieve it in a reasonable matter is of great interest. The
proposed methods do have their limitations, mainly due to the clustering methods.

The LSI method works per se satisfactory since the documents one search for turns up high on the
result lists, when retrieved. If the documents were not clustered, the results would most probably
be different and with an improved degree of retrieval although decreased speed. Limitations in
this system is mainly concerned around the clustering methods. When utilizing the two clustering
methods implemented in this project, two conceptual similar documents may end up in two
different clusters. With that only one of the documents may be retrieved when performing a
search. If the application would perform a search without utilizing the clustering methods, it
would most probability retrieve both of the documents and return it to the user, however the speed
would decrease significantly. One example of this scenario is the test query “syndrome” that
returns 19 conceptually similar documents when performing search on the standard k-means
clusters, while with Two step k-means clusters 12 documents are returned. This implies that 7
conceptually similar documents are not a part of the result set returned by the Two step k-means
clustering search, because they are located in an another cluster. This is a deficiency by the
clustering methods and may produce unwanted results.

In the test where the application is supposed to retrieve documents with the term “gastric”, two
different results are returned based on the chosen clustering method; standard k-means retrieves
only the record 602613 from cluster 3, while Two step k-means do not retrieve any records that
matches the query term. The record 602613 contains the term “gastrointestinal” which is fairly
conceptually similar to the query - the term “gastric” is at its word root and the document is
therefore not retrieved by exact matching. Optimally the record 137130 would be retrieved but it
is not located in cluster 3. In both cases the record 137130 is located in cluster 2, and in Two step
k-means the record 602613 is also located in cluster 2. The fact that one could not retrieve the
record 602613, in this case, indicates that the application utilized the wrong cluster and that it is
not an error in calculation when calculating the similarity.

6 Evaluation of results

55

For each cluster the Two step k-means should optimally yield a more fairly distribution of the
documents and discover a more optimal centroid vector, when based on the same initial basis,
than the standard k-means do.

Which one of the two clustering methods performs best depends on which trade-offs one
emphasizes, whether speed is more important than precision, and etc.. Although the system has its
limitations the runtime of a search, performed on an clustered LSI index, is reduced to
approximately a third of the time compared with a non-clustered index. This reduction in runtime
comes from the reduction in search space - i.e. the number of dimensions is reduced considerably.
The clusters created by the Two step method does also have a more uniform distribution than the
clusters created by the standard k-means. This arise from the fact that the centroid vectors are
forced towards the extreme points. As Faraoun and Boukelif [15] mentions in their article, to
utilize the k-means method the best way is to place the initial centroid vectors as far away from
each other as possible. In light of this the Two step k-means method may be viewed as an semi-
automatic method for forcing the centroid vectors as far as possible away from each other. The
goal of being less greedy is not met, since the method is still greedy when it switches to global
mode.

There are no extensive use of error handling and may yield unsatisfactory results. For instance if
one cluster do not contain any documents the cluster have to retain the old centroid vector in order
not to be empty when the clustering process is finished, etc.. By doing it that way the method will
most probably be more automatic and safe from any possible errors.

By utilizing conceptual search one may retrieve documents that does not contain the search
queries. This has its advantages when queries like “proteinase inhibitors serpin” retrieve several
documents containing the word protein, although “proteinase” is stemmed to “proteinas”. In
exact matching on one would not be able to retrieve documents containing the word protein when
the query is stemmed to proteinas, the reason why these documents are retrieved in this
application is because proteinase and protein is conceptual similar according to the structure
created by the SVD reduction. Searches done on the Two step clusters in some cases the result
sets are more concentrated than the standard k-means, while in other cases the results are not
satisfactory.

Based on the test results it may be concluded that despite the drawbacks and the limitations, the
system may be ready to be used, although it is recommended that the system should be polished
before eventually launched.

6 Evaluation of results

56

7 Conclusion

57

7 Conclusion
As mentioned in the beginning of this thesis the NCBI’s OMIM search engine is based on a
Boolean retrieval model. Clusters based on an index created by the LSI model would have
different result sets than on NCBI’s search engine. This arise from the fact that search engines
based on LSI retrieve documents that are conceptually similar to the query, in contrast to boolean
models that performs exact matching. The LSI model manage problems with synonymy and to
some extent polysemy. As shown in the test cases documents that do not contain the search
queries are also retrieved.

The tests have shown that in some cases the Two step method performs better than the standard k-
means, and vice versa. The main advantage of the Two step method is that it force the centroid
vector towards the extremities and in that way the method is provided a completely different
starting point than the case is for the standard k-means method. Although the method is provided
with a completely different starting point, the location of the initial centroid vectors affects,
however not in the same extent as the case in standard k-means, the final result. An another
disadvantage is that if the cluster does not receive any documents, it will remain empty when the
clustering process is finished. This is a deficiency by the system at this moment, if such situation
should arise, however it is not a demanding task to correct it, so if a cluster does not receive any
documents the cluster retain the old centroid vector.

The limitations that has been done regarding the tests affects their execution of them, for instance,
to limit the test data to 537 documents, the marginal value was set to 0.80 in local mode in order
to avoid empty clusters. This value determines how far the centroids are pushed away from each
other.

Although the Two step method modifies the location of the initial centroid vectors in local mode,
it is still sensitive to the location of them. By retaining the old centroid vector if no documents are
added to the cluster, it will be less sensitive to it.

Regardless of the system deficiencies, it can be used to retrieve relevant records from the set of
test data. It performs well in most of the cases, but also fails miserably some times. The main goal
of developing this search engine was to find an optimal way to index and ease the retrieval of the
information later, it may be concluded that the main objective of this project was nearly achieved.

7.1 Future work
In this part suggestions of further work and what features of information retrieval application can
be improved are explained. First, the implemented search engine only deals with documents
which are stored as plain text. The textual data are produced by extracting terms from the record
information. If it is desirable to manage and search documents of other file types, PDF, HTML,
MS Word, etc., the application requires a specific document parser for the individual types.

Secondly the structure of the individual documents may be extended to be able to index other
types than OMIM records, for instance MEDLINE [36] abstracts. In order to achieve this the
document parser have to be updated to be able to treat the data in the correct fashion.

7 Conclusion

58

The most interesting future work is probably not to treat each document as a whole, but rather just
index the documents based on the more important fields as mentioned in chapter 6.4.2. This
requires some modifications in the analyzer, but would most probably affect the retrieval
precision noticeably.

Although the Two step method performs better than the standard k-means, and vice versa, in
some cases the omission caused by the clustering methods are problematic. In worst case
scenarios, such as the test with the query “gastric” where the Two step method could not retrieve
any documents due to the document distribution, the application does not succeed in retrieving the
correct documents. This occurs mainly when the documents the user desires lies near the border
area of the clusters. An improvement on that area and the application would most probably
improve the document retrieval and overcome the deficiencies caused by these clustering
methods.

Finally, the retrieval speed ought to be improved along with the problems with the capacity when
performing the SVD reduction. The index data in this project is stored as plain text and have to be
preprocessed when performing a search, which results in an unnecessary latency. An
improvement here would decrease the runtime significantly.

References

59

References
[1] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. 2002. Molecular Biology
of The Cell 4th edition. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=%22all+cells%22+AND+m
boc4%5Bbook%5D+AND+372023%5Buid%5D&rid=mboc4.section.4#23 (last visited
xx.xx.xxxx).

[2] Altman, R. Bioinformatics in Support of Molecular Medicine. AMIA. 53-61.

[3] Baeza-Yates, R., Riberio-Neto, B. 1999. Modern Information Retrieval. Addison-Wesley.
Boston, MA.

[4] Bayat, A. 2002. Bioinformatics. BMJ. 324:1018-1022.

[5] Berry, M. W., Dumais, S. T., O’Brien, G. W. 1995. Using Linear Algebra for Intelligent
Information Retrieval. SIAM. 37(4):573-595.

[6] Brants, T. 2005. Test Data Likelihood for PLSA Models. Information Retrieval. 8(2):181-196.

[7] Campbell, N. A., Reece, J. B. 2005. Biology 7th Edition. Benjamin Cummings. San Francisco,
CA.

[8] Cog Works. Measures of Semantic Relatedness (MSR). Retrieved from http://cwl-
projects.cogsci.rpi.edu/msr/ (last visited xx.xx.xxxx).

[9] Dasgupta, A., Kumar, R., Raghavan, P., Tomkins, A. 2005. Variable Latent Semantic
Indexing. ACM SIGKDD.

[10] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., Harshman, R. 1990. Indexing
by Latent Semantic Analysis. JASIS. 41(6):391-407.

[11] Dictionary.com. Retrieved from http://dictionary.reference.com/ (last visited xx.xx.xxxx).

[12] Ding, C. H. Q. 2005. A Probabilistic Model for Latent Semantic Indexing. JASIS. 56(6):597-
608.

[13] Efron, M. 2005. Eigenvalue-Based Model Selection During Latent Semantic Indexing.
JASIST. 56(9):969-988.

[14] European Bioinformatics Institute. Retrieved from http://www.ebi.ac.uk/2can/
bioinformatics/ (last visited xx.xx.xxxx).

[15] Faraoun, K. M., Boukelif, A. 2006. Neural Networks Learning Improvement using the K-
Means Clustering Algorithm to Detect Neural Intrusions. IJCI. 3(2):161-168.

References

60

[16] Fraley, C., Raftery, A. E. 1998. How Many Clusters? Which Clustering Method? Answers
Via Model-Based Cluster Analysis. Computer Journal. 41(8):578-588.

[17] Gleich, D., Zhukov, L. 2004. SVD Subspace Projections for Term Suggestion Ranking and
Clustering. ACM SIGIR’04.

[18] Golub, G. H., Kahan, W. 1965. Calculating the Singular Values and Pseudoinverse of a
Matrix. SIAM Journal of Numerical Analysis. 2:205-224.

[19] Gospodnetic, O., Hatcher, E. 2005. Lucene In Action. Manning Publications. Greenwich, CT.

[20] Hagen, J. B. 2000. The Origin of Bioinformatics. Nature Reviews: Genetics. 1:231-236.

[21] Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., McKusick, V. A. 2005. Online
Mendelian Inheritance in Man (OMIM), a Knowledgebase of Human Genes and Genetic
Disorders. Nucleic Acids Research. 33:514-517.

[22] Hendrickson, B.2006. Latent Semantic Analysis and Fiedler Embeddings. Proceedings of
SIAM Workshop on Text Mining. April 2006.

[23] Hofmann, T. 1999. Probabilistic Latent Semantic Indexing. ACM SIGIR. 50-57.

[24] JAMA. Java Matrix Package. Retrieved from http://math.nist.gov/javanumerics/jama/ (last
visited xx.xx.xxxx).

[25] Jing, L., Ng, M. K., Yang, X., Huang, J. Z. 2006. A Text Clustering System based on k-
means Type Subspace Clustering and Ontology. International Journal of Intelligent Technology.
1(2):91-103.

[26] Karciauskas, G. 2005. Learning with Hidden Variables: A Parameter Reusing Approach for
Tree-Structured Bayesian Networks. Master thesis.

[27] Krishnan, V. 2005. Shortcomings of Latent Models in Supervised Settings. ACM SIGIR’05.
625-626.

[28] Lavrenko, V. P. Generative Density Allocation. Dissertation chapter. Retrieved from http://
ciir.cs.umass.edu/~lavrenko/ (last visited xx.xx.xxxx).

[29] Lesk, A., M. 2002. Introduction to Bioinformatics. Oxford University Press. Oxford, UK.

[30] Lu, G. 1999. Multimedia Database Management Systems. Artech House. Norwood, MA.

[31] Lucene. Retrieved from http://lucene.apache.org/ (last visited xx.xx.xxxx).

[32] Luscombe, N. M., Greenbaum, D., Gerstein, M. 2001. What is Bioinformatics? A Proposed
Definition and Overview of the Field. Methods of Information in Medicine. 40(4):346-358.

References

61

[33] MacQueen, J. B. 1967. Some Methods for Classification and Analysis of Multivariate
Observations. Proceedings of 5th Berkley Symposium on Mathematical Statistical and
Probability. Berkley, University of California Press. 1:281-297.

[34] Matteucci, M. A Tutorial on Clustering Algorithms. Retrieved from http://
www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/kmeans.html (last visited
xx.xx.xxxx)

[35] McCutcheon, A. L. 1987. Latent Class Analysis. Quantitative Applications in the Social
Sciences Series No. 64. Sage Publications. Thousand Oaks, CA.

[36] MEDLINE. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed
(last visited xx.xx.xxxx).

[37] National Center for Biotechnology Information. Retrieved from http://
www.ncbi.nlm.nih.gov/Entrez/ (last visited xx.xx.xxxx).

[38] Nielsen, J. 2000. Designing Web Usability: The Practice of Simplicity. New Riders
Publishing. Thousand Oaks, CA.

[39] Online Biology Book. Retrieved from http://www.emc.maricopa.edu/faculty/farabee/
BIOBK/BioBookTOC.html (last visited xx.xx.xxxx).

[40] Online Mendelian Inheritance in Man. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=OMIM (last visited xx.xx.xxxx).

[41] Porter, M. The Porter Stemming Algorithm. Retrieved from http://www.tartarus.org/~martin/
PorterStemmer/index.html (last visited xx.xx.xxxx).

[42] Pressman, R. S. 2001. Software Engineering: A Practitioner’s Approach 5th Edition.
McGraw-Hill. New York, NY.

[43] Robertson, S. E., Walker, S., Beaulieu, M. 1998. Okapi at TREC-7: Automatic Ad Hoc,
Filtering, VLC and Interactive Track. Proceedings of the Seventh Text REtrieval Conference.
Gaithensburg, MD.

[44] Wheeler, D. L., et al.. 2006. Database Resources of the National Center for Biotechnology
Information. Nucleic Acids Research. 35:5-12.

[45] Zhukov, L. 2004. Technical Report Spectral Clustering of Large Advertiser Datasets Part I.
Overture R&D.

Appendices

62

Appendices

Appendix A: List of Stopwords

A are cd et her itself
a arise cm etc here
about around cn ever hereafter J
above as come every hereby just
abs assume compare everyone herein
accordingly at could everything hereupon K
across av cs everywhere hers keep
after except herself kept
afterwards B D him kg
again be de F himself km
against became dealing field his
all because department find how L
almost become depend for however last
alone becomes did found hr latter
along becoming discover from latterly
already been dl further I lb
also before do i ld
although beforehand does G ie letter
always being done gave if like
am below due get ii ltd
among beside during give iii
amongst besides go immediately M
an between E gone importance made
analyze beyond each got important mainly
and both ec gov in make
another but ed inc many
any by effected H incl may
anyhow eg had indeed me
anyone C either has into meanwhile
anything came else have investigate mg
anywhere can elsewhere having is might
applicable cannot enough he it ml
apply cc especially hence its mm

Appendices

63

mo of Q since there use
more off quickly slightly thereafter used
moreover often quite so thereby usefully
mostly on some therefore usefulness
most only R somehow therein using
mr onto rather someone thereupon usually
much or readily something these
mug other really sometime they V
must others recently sometimes this various
my otherwise refs somewhat thorough very
myself ought regarding somewhere those via

our relate soon though
N ours rf specifically through W
namely ourselves still throughout was
nearly out S strongly thru we
necessarily over sa studied thus were
neither overall said sub ti what
never owing same substantially to whatever
nevertheless own seem such together when
next oz seemed sufficiently too whence
no seeming toward whenever
nobody P seems T towards where
noone particularly seen take try whereafter
nor per seriously tell tx whereas
normally perhaps several th type whereby
nos pm sh0wn than wherein
not precede shall that U whereupon
noted predominantly she the ug wherever
nothing present should their under whether
now presently show theirs unless which
nowhere previously showed them until while

primarily shown themselves up whither
O promptly shows then upon who
obtained pt significantly thence us whoever

Appendices

64

whom
whose
why
will
with
within
without
wk
would
wt

Y
yet
you
your
yours
yourself
yourselves
yr

Appendices

65

Appendix B: JAMA: Java Matrix Package

JAMA is a basic linear algebra package for Java, it provides user-level classes for constructing
and manipulating real, dense matrices. It is meant to provide sufficient functionality for routine
problems, packaged in a way that is natural and understandable to non-experts [24].

The JAMA package comprise six different Java classes: Matrix, CholeskyDecomposition,
LUDecomposition, QRDecomposition, SingularValueDecomposition and
EigenvalueDecomposition.

Fundamental operations of numerical linear algebra are provided by the Matrix class. In order to
access the submatrices and matrix elements a set of various gets and sets are provided. Basic
arithmetic operations are provided; matrix addition and multiplication, matrix norms and selected
element-by-element array operations.

The five fundamental matrix decompositions consists of pairs of triples of matrices, permutation
vectors, and the like, produce results in five decomposition classes. They also compute solutions
of simultaneous linear equations, determinants, inverses and other matrix functions:

• Cholesky Decomposition of symmetric, positive definite matrices
• LU Decomposition (Gaussian elimination) of rectangular matrices
• QR Decomposition of rectangular matrices
• Eigenvalue Decomposition of both symmetric and nonsymmetric square matrices
• Singular Value Decomposition of rectangular matrices

The current version of the JAMA package deals only with real matrices and represents a
compromise between the need for pure and elegant object-oriented design and the need to enable
high performance implementations.

A summary of JAMA’s capabilities are presented in table C1.

Appendices

66

Table C1: JAMA capabilities [24]

The JAMA package is planned to become the primary linear algebra package for Java.

Object manipulation constructors
set elements
get elements
copy
clone

Elementary operations addition
subtraction
multiplication
scalar multiplication
element-wise
multiplication
element-wise division
unary minus
transpose
norm

Decompositions Cholesky
LU
QR
SVD
symmetric eigenvalue
nonsymmetric eigenvalue

Equation solution nonsingular systems
least squares

Derived quantities condition number
determinant
rank
inverse
pseudoinverse

Appendices

67

Appendix C: List of tested OMIM records

OMIM ID:

100050
100100
100500
100640
100670
100678
101200
102800
102940
103400
104160
104210
104701
105120
107266
107273
107480
107601
107950
108720
108730
108745
109530
109770
110000
111680
111750
112263
112265
113950
114100
114120
114160
114210
114230
115080
116100
116600
116948
117900
118190
118503

118920
118945
119550
120050
120180
122100
122780
122920
123670
123841
123856
123880
124070
125635
125650
126180
126390
126410
126950
128800
128992
131230
131600
131850
132800
133020
133250
133535
133600
134520
134830
134934
136140
136590
137130
137150
137164
138150
138297
138322
138680
139100

139111
139250
139400
139630
142310
142600
142625
142810
142959
142964
145250
145900
146350
146530
146661
146691
146810
147080
147130
147330
147390
147563
147568
147679
148200
148370
150200
150340
150370
151250
152424
152445
153380
153432
153550
154050
154250
155120
156530
156560
157151
157600

158170
158310
159950
160200
160990
161000
162091
162662
162830
163980
164180
164220
164760
165020
165280
165340
166300
167220
167405
168300
169720
170950
170998
171750
172250
173120
173325
176270
176888
176930
176944
177075
178500
178630
179600
179800
179837
180231
180630
180660
180740
180990

182099
182128
182135
182269
182410
182451
182960
183100
184253
184700
184754
185510
186860
186921
187330
189889
189904
189971
190220
190310
190950
191000
191161
191170
191306
192400
193100
193230
194320
194535
194540
194545
202400
203800
206900
207780
208400
208600
209920
210700
211770
211920

212540
215550
215850
217600
219000
219095
221600
221750
221995
223340
223400
225060
229000
229050
229800
230400
232400
233650
233800
235600
236700
236800
240500
241540
241800
243080
246470
246555
248190
248310
250950
251000
252350
253230
254000
254130
255500
256100
258150
258360
259600
260530

Appendices

68

260600
263610
264270
264700
264810
265600
267010
267450
268315
271150
271250
272370
272650
274000
274205
276400
277350
277440
277480
300030
300060
300065
300095
300145
300165
300167
300170
300185
300210
300215
300280
300297
300300
300320
300350
300355
300430
300455
300465
300470
300500
300540
300545
300550

300580
301790
301815
301830
301845
302900
304350
304700
305660
306995
307200
309555
310300
310350
311810
312600
313850
314850
314998
400023
400028
400033
402500
450000
516040
555000
590015
590020
590105
600013
600023
600025
600053
600083
600113
600118
600148
600173
600175
600190
600218
600223
600288
600308

600313
600315
600333
600398
600403
600423
600438
600453
600473
600478
600503
600513
600578
600583
600623
600688
600693
600723
600788
600793
600823
600853
600858
600888
600905
600908
600910
600913
600973
601038
601043
601048
601078
601108
601113
601130
601148
601188
601193
601223
601253
601255
601270
601293

601298
601363
601418
601420
601423
601443
601473
601478
601508
601583
601588
601608
601623
601653
601658
601663
601668
601698
601725
601728
601808
601838
601843
601883
601913
601918
601948
601998
602000
602023
602053
602058
602073
602083
602098
602163
602168
602173
602190
602195
602213
602218
602283
602313

602318
602348
602378
602383
602423
602453
602458
602488
602588
602593
602600
602605
602613
602638
602643
602673
602738
602743
602773
602803
602808
602863
602873
602883
602913
602918
602948
603013
603018
603045
603088
603093
603123
603153
603158
603218
603233
603235
603238
603338
603348
603373
603378
603433

603443
603448
603463
603465
603493
603558
603563
603593
603658
603663
603693
603758
603763
603793
603823
603828
603863
603873
603908
603913
604013
604078
604163
604183
604248
604393
604413
604463
604563
604588
604643
604668
604698
604718
604818
604883
604958
605023
605043
605163
605168
605193
605273
605308

Appendices

69

605353
605418
605483
605583
605623
605633
605658
605723
605823
605868
605913
605928
606008
606073
606173
606238
606278
606288
606313
606393
606445

Appendices

70

Appendix D: Document distributions

Standard k-means:

Cluster 1:

100640
100670
100678
104160
104210
104701
107266
107273
108730
108745
109530
109770
111680
111750
112263
112265
114160
114210
114230
116948
118190
118503
118920
118945
123670
123841
123856
124070
125650
126390
126410
128992
131230
133250
133535
134830
134934
137150
137164
138150

138297
138322
138680
139111
139250
142310
142600
142810
142964
146661
146691
146810
147080
147130
147390
147563
147568
147679
150200
150340
150370
151250
152424
152445
153380
153432
154050
154250
155120
156560
162091
162662
163980
164760
165020
165280
165340
167405
170998
172250

173120
173325
176888
176930
177075
178630
179837
180231
180630
180660
180740
180990
182099
182128
182135
182269
182451
184700
185510
186860
186921
187330
189889
189904
189971
190220
190950
191161
191170
191306
194535
194540
194545
209920
232400
248310
263610
272370
300060
300065

300145
300165
300167
300185
300280
300297
300300
300320
300350
300470
300540
300545
305660
314998
400023
400028
400033
402500
450000
516040
590015
590020
590105
600013
600023
600025
600053
600148
600173
600190
600288
600308
600315
600398
600403
600423
600438
600453
600473
600478

600503
600578
600583
600623
600688
600693
600723
600788
600793
600823
600853
600858
600888
600910
600913
600973
601038
601043
601048
601078
601108
601113
601130
601148
601188
601193
601253
601255
601270
601293
601363
601418
601423
601443
601473
601508
601583
601588
601623
601658

601663
601698
601725
601728
601838
601843
601883
601913
601918
601948
601998
602000
602053
602058
602073
602098
602163
602168
602173
602190
602213
602283
602313
602318
602348
602383
602423
602453
602458
602488
602593
602600
602638
602643
602673
602738
602743
602773
602803
602808

Appendices

71

602863
602873
602883
602913
602918
602948
603013
603018
603045
603088
603093
603123
603153
603158
603233
603235
603238
603338
603348
603373
603378
603433
603443
603448
603463
603465
603493
603558
603593
603658
603693
603758
603763
603823
603863
603873
603908
603913
604013
604078
604163
604248
604463
604588
604643

604668
604698
604718
604818
604883
604958
605023
605043
605163
605168
605193
605273
605308
605353
605418
605483
605623
605633
605658
605723
605823
605868
605928
606008
606073
606173
606238
606278
606288
606313
606393

Appendices

72

Cluster 2:

100050
100100
100500
101200
102800
102940
103400
105120
107480
107601
107950
110000
113950
114100
115080
116100
116600
117900
119550
120050
120180
122100
122780
122920
125635
126180
128800
131600
131850
132800
133020
133600
134520
136140
136590
137130
139100
139400
139630
142625
142959
145250
146350
146530

147330
148200
148370
153550
158170
158310
160200
160990
161000
162830
164180
164220
166300
168300
169720
170950
171750
176270
176944
178500
179600
179800
182410
184754
190310
191000
193100
194320
202400
203800
206900
208400
208600
210700
211770
211920
212540
215850
217600
219000
219095
221600
221750
221995

223340
223400
225060
229000
229050
229800
230400
233650
233800
235600
236700
236800
240500
241540
241800
243080
246470
246555
248190
250950
251000
252350
253230
254000
254130
256100
258150
258360
260530
260600
264700
264810
265600
267010
267450
268315
272650
274000
274205
276400
277350
277440
277480
300030

300095
300170
300210
300215
300355
300430
300455
300465
300500
300550
300580
301815
301845
304350
304700
306995
307200
309555
310300
310350
311810
312600
313850
314850
555000
600083
600113
600118
600218
600313
600513
600905
600908
601298
601420
601478
601608
601653
601808
602023
602083
602218
602588
602605

603663
603793
604183
604393
604413
605583
605913
606445

Appendices

73

Cluster 3:

108720
114120
123880
126950
145900
156530
157151
157600
159950
167220
182960
183100
184253
192400
193230
207780
215550
255500
259600
264270
271150
271250
301790
301830
302900
600175
600223
600333
601223
601668
602195
602378
602613
603218
603563
603828
604563

Appendices

74

Two step k-means:

Cluster 1:

100640
100670
100678
104160
104210
104701
107266
107273
108730
108745
109530
109770
111680
111750
112263
112265
114160
114210
114230
116948
118190
118503
118920
118945
123670
123841
123856
124070
125650
126390
126410
128992
131230
133250
133535
134830
134934
137164
138150
138297
138322
138680

139111
139250
142310
142600
142810
142964
146661
146691
146810
147080
147130
147390
147563
147568
147679
150200
150340
150370
151250
152424
152445
153380
153432
153550
154050
154250
155120
156560
162091
162662
163980
164760
165020
165280
165340
167405
170998
172250
173120
173325
176888
176930

177075
178630
179837
180231
180630
180660
180740
180990
182099
182128
182135
182269
182451
185510
186860
186921
187330
189889
189904
189971
190220
190950
191161
191170
191306
194535
194540
194545
208400
209920
229000
232400
240500
248310
272370
300060
300065
300145
300165
300167
300170
300185

300280
300297
300300
300320
300350
300470
300500
300540
300545
305660
314998
400023
400028
400033
402500
450000
516040
590015
590020
600013
600023
600025
600053
600148
600173
600190
600288
600308
600315
600398
600403
600423
600438
600453
600473
600478
600503
600578
600583
600623
600688
600693

600723
600788
600793
600823
600853
600858
600888
600910
600913
600973
601038
601043
601048
601108
601113
601130
601148
601188
601193
601255
601270
601293
601363
601418
601423
601443
601473
601508
601583
601588
601623
601658
601663
601698
601725
601728
601838
601843
601883
601913
601918
601948

601998
602000
602053
602058
602073
602098
602163
602168
602173
602190
602195
602213
602218
602283
602313
602318
602348
602383
602423
602453
602458
602488
602593
602600
602638
602643
602673
602738
602743
602773
602803
602808
602863
602873
602883
602913
602918
602948
603013
603018
603045
603088

Appendices

75

603093
603123
603153
603158
603233
603235
603238
603338
603348
603378
603433
603443
603448
603465
603493
603558
603593
603658
603693
603758
603763
603823
603863
603873
603908
603913
604013
604078
604163
604248
604463
604588
604643
604668
604698
604718
604818
604883
604958
605023
605043
605163
605168
605193
605273
605308

605353
605418
605483
605623
605633
605658
605723
605823
605868
605928
606008
606073
606173
606238
606278
606288
606313
606393
606445

Appendices

76

Cluster 2:

100050
100100
100500
101200
102800
102940
103400
107480
107601
108720
110000
113950
114120
117900
119550
120050
120180
122100
122780
122920
123880
125635
126180
126950
128800
131600
131850
132800
133600
136140
136590
137130
139100
139400
139630
142625
145250
146350
146530
147330
148200
148370
156530
157151

157600
158170
158310
161000
162830
164180
164220
166300
167220
169720
170950
171750
176944
178500
179600
182410
184253
184754
191000
192400
193100
193230
194320
207780
208600
210700
211920
215550
215850
217600
219000
219095
223340
225060
233650
233800
236700
241800
246470
253230
255500
258150
258360
259600

260530
264270
264810
265600
267010
267450
274000
276400
277480
300430
300465
301815
301845
310350
311810
555000
600083
600113
600218
600313
600905
600908
601078
601223
601298
601420
601668
602605
602613
603793
603828
604413

Appendices

77

Cluster 3:

105120
107950
114100
115080
116100
116600
133020
134520
137150
142959
145900
159950
160200
160990
168300
176270
179800
182960
183100
184700
190310
202400
203800
206900
211770
212540
221600
221750
221995
223400
229050
229800
230400
235600
236800
241540
243080
246555
248190
250950
251000
252350
254000
254130

256100
260600
263610
264700
268315
271150
271250
272650
274205
277350
277440
300030
300095
300210
300215
300355
300455
300550
300580
301790
301830
302900
304350
304700
306995
307200
309555
310300
312600
313850
314850
590105
600118
600175
600223
600333
600513
601253
601478
601608
601653
601808
602023
602083

602378
602588
603218
603373
603463
603563
603663
604183
604393
604563
605583
605913

Appendices

78

Appendix E: Acceptance test results

Standard k-means:

Terms / stemmed terms Documents Cluster Relevance/precision
aarskog
(aarskog)

100050 2 yes (1/1)

aarskog syndrome
(aarskog syndrom)

100050 101200
128800 164180
119550 191000
100100 122920

2 yes (1/8) (5/8)

syndrome
(syndrom)

100100 158170
128800 600118
236700 309555
101200 274000
219000 119550
107480 601608
223340 602588
212540 223400
604183 122780
164180

2 yes (17/19)

wolff parkinson
(wolff parkinson)

602743 604588
600858 600438
601048 601418
180990 400033
601443 601838
600148 172250
232400 600583
601253 150340
108730 600853
114230

1 yes, the records on top. the
rest are not so relevant (3/19)
(2/19)

gastric sneeze stomach
reflex
(gastric sneez stomach
reflex)

600333 192400
145900 600175
183100 271250
604563 271150
602378 603218
600223 603563
182960 302900
159950 602195

3 yes, if only the term reflex is
considered, not so relevant if
all is considered. (0/16) (0/16)
(0/16) (9/16)

Appendices

79

sneeze
(sneez)

133600 162830
102800 107601
148370 120050
148200 105120
125635 161000
131850 277480
122100 158310
182410 217600
310350 233650
194320 103400
233800 246470
126180 171750
131600 267450
137130 252350

2 yes, if one considers the
retrieval of the record 137130
as essential. the rest of the
retrieved documents are not
relevant. (1/28)

gastric
(gastric)

602613 3 yes, although the term
retrieved are gastrointestinal it
is relevant, however it is not
the desired record. (1/1)

mental retardation seizures
(mental retard seizur)

300210 300095
300355 277350
229050 268315
179800 212540
246555 202400
309555 601608
211770 114100
253230 221995
304700 251000
223400 243080

2 yes, the application retrieves
many records containing the
query terms. (13/20) (14/20)
(3/20)

persistent polyclonal
lymphocytosis
(persist polyclon
lymphocytosi)

171750 606445
146350 102800
166300 148370
162830 300550
158310 246470
193100 131850

2 yes, however the desired
record, 606445, is listed too
low. (2/12) (1/12) (3/12)

Appendices

80

embryonic ciliary ganglia
(embryon ciliari ganglia)

600053 100640
605483 601623
600308 104701
109770 601270
603013 605868
142310 152424
300167 606288
118945 601363
603593 190220
601130 138680
248310 601255
163980 516040
124070 134830
300145 114230
154050 146661
601583 107273
108745 170998
173325 191306
604588 606313
151250 601883
601728 164760
108730 185510
600173 600025
111680 142600
602883 300165
109530 153432
107266 177075
147390 600148

1 yes, the record 118945 was
the desired record. some of
the other retrieved records are
relevant to the query. (17/56)
(4/56) (4/56)

muscular dystrophy
(muscular dystrophi)

310300 2 yes, the desired record was
retrieved. (1/1)

mitochondrial myopathy
(mitochondri myopathi)

601443 602743
601048 590015
600858 600438
601253

1 yes, the desired record was
590015. most of the records
are relevant (2/7) (5/7)

demyelinating
(demyelin)

604563 600333
600223 159950
145900 600175
302900 602378
183100 271150
271250 182960

3 yes, the desired record was
145900. (2/12)

Appendices

81

abetalipoproteinemia
(abetalipoproteinemia)

314850 603663
168300 602023
604393 300500
105120 252350
605913 133020
312600 306995

2 yes, the desired record was
314850 which is listed on top.
some of the other retrieved
records contain the word
protein and can be viewed as
relevant. (1/12)

proteinase inhibitors serpin
(proteinas inhibitor serpin)

606313 603018
602058 604013
605723 600583
107273 602423
139111 602913
604818 189971
605193 114210
601883 104160
182099 152424
602453 300540
191161 164760
604698 600888
606008 605928
600403 190220
107266 601293
604463 167405
165340 606278
123841 603823
603348 604958
606288 124070
131230 600315
603093 601838
600623 603378
605658 602458
602213 118920
604643 165020
600823 602488
605163 173325
300545 601423
602098 603448
600023
300185
601188
601193
602673

1 yes, of the top 65 retrieved
records they are conceptually
relevant to the query. (55/65)
(27/65) (1/65)

Appendices

82

Two step k-means:

Terms / stemmed terms Documents Cluster Relevance/precision
aarskog
(aarskog)

100050 2 yes, the desired record whas
retrieved. (1/1)

aarskog syndrome
(aarskog syndrom)

100050 101200
128800 164180
119550 191000
100100 122920

2 yes, the desired record,
100050, was retrieved. most
of the records are relevant. (1/
8) (5/8)

syndrome
(syndrom)

100100 223340
128800 164180
236700 158170
101200 274000
219000 119550
107480 122780

2 yes (11/12)

wolff parkinson
(wolff parkinson)

602743 604588
600858 600438
601048 601418
180990 400033
601443 601838
600148 172250
232400 600583
108730 150340
114230 600853

1 yes, the records on top. the
rest of the records are not so
relevant. (3/18) (2/18)

gastric sneeze stomach
reflex
(gastric sneez stomach
reflex)

600333 159950
145900 600175
183100 271250
604563 271150
602378 603218
600223 603563
182960 302900

3 yes, if only the term reflex is
considered, not so relevant if
all is considered. (0/14) (0/14)
(0/14) (9/14)

Appendices

83

sneeze
(sneez)

133600 137130
102800 162830
148370 107601
148200 120050
125635 161000
131850 277480
122100 158310
182410 217600
310350 233650
194320 103400
233800 246470
126180 171750
131600 267450

2 yes, if one considers the
retrieval of the record 137130
as essential. the rest of the
retrieved documents are not
relevant. (1/26)

gastric
(gastric)

- - no, cannot retrieve any
records.

mental retardation seizures
(mental retard seizur)

300210 277350
300355 268315
229050 212540
179800 202400
246555 601608
309555 114100
211770 221995
304700 251000
223400 243080
300095

3 yes, the application retrieves
many records containing the
query terms. (12/19) (13/19)
(3/19)

persistent polyclonal
lymphocytosis
(persist polyclon
lymphocytosi)

171750 193100
146350 102800
123880 148370
166300 246470
162830 131850
158310

2 yes and no, the record 606445
was the desired record which
the application fails to
retrieve. (2/11) (1/11) (2/11)

Appendices

84

embryonic ciliary ganglia
(embryon ciliari ganglia)

600053 100640
605483 601623
600308 104701
109770 601270
603013 605868
142310 152424
300167 606288
118945 601363
603593 190220
601130 138680
248310 601255
163980 516040
124070 134830
300145 114230
154050 146661
601583 107273
108745 170998
173325 191306
604588 606313
151250 601883
601728 164760
108730 185510
600173 600025
111680 142600
602883 300165
109530 153432
107266 177075
147390 600148

1 yes, the record 118945 was
the desired record. some of
the other retrieved records are
relevant to the query. (17/56)
(4/56) (4/56)

muscular dystrophy
(muscular dystrophi)

310300 3 yes, the desired record was
retrieved. (1/1)

mitochondrial myopathy
(mitochondri myopathi)

601443 602743
601048 590015
600858 600438

1 yes, the desired record,
590015, was retrieved. (2/6)
(4/6)

demyelinating
(demyelin)

604563 600333
600223 159950
145900 600175
302900 602378
183100 271150
271250 182960

3 yes, the desired record,
145900, was retrieved. (2/12)

Appendices

85

abetalipoproteinemia
(abetalipoproteinemia)

314850 312600
168300 603663
604393 602023
105120 252350
605913 133020
601253 306995

3 yes, the desired record was
314850 which is listed on top.
some of the other retrieved
records contain the word
protein and can be viewed as
relevant. (1/12)

proteinase inhibitors serpin
(proteinas inhibitor serpin)

606313 603018
602058 604013
605723 600583
107273 602423
139111 602913
604818 189971
605193 114210
601883 104160
182099 152424
602453 300540
191161 164760
604698 600888
606008 605928
600403 190220
107266 601293
604463 167405
165340 606278
123841 603823
603348 604958
606288 124070
131230 600315
603093 601838
600623 603378
605658 602458
602213 118920
604643 165020
600823 602488
605163 173325
300545 601423
602098 603448
600023
300185
601188
601193
602673

1 yes, of the top 65 retrieved
records they are conceptually
relevant to the query. (55/65)
(27/65) (1/65)

