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Problem statement

Assess the current status of the Baldwin effect by a literature review. Inves-
tigate the trade-off between learning and evolution in fitness landscapes of
different complexity, and with different costs of learning.
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Abstract

The Baldwin effect is the notion that life time adaptation can speed up evo-
lution by 1) identifying good traits and 2) by genetic assimilation inscribing
the traits in the population genetically. This thesis investigates the Baldwin
effect by giving an introduction to its history, its current status in evolution-
ary biology and by reviewing some important experiments on the Baldwin
effect in artificial life. It is shown that the Baldwin effect is perceived differ-
ently in the two fields; in evolutionary biology the phenomenon is surrounded
by controversy, while the approach in artificial life seems to be more straight
forward. Numerous computer simulations of the Baldwin effect have been
conducted, and most report positive findings. I argue that the Baldwin effect
has been interpreted differently in the literature, and that a more well-defined
approach is needed.

An experiment is performed where the effect of learning on evolution
is observed in fitness landscapes of different complexity and with different
learning costs. It is shown that the choice of operators and parameter settings
are important when assessing the Baldwin effect in computer simulations. In
particular I find that mutation has an important impact on the Baldwin
effect.

I argue that today’s computer simulations are too abstract to serve as
empirical evidence for the Baldwin effect, but that they nevertheless can be
valuable indications of the phenomenon in nature. To assure the soundness of
experiments on the Baldwin effect, the assumptions and choices made in the
implementations need to be clarified and critically discussed. One important
aspect is to compare the different experiments and their interpretations in
an attempt to assess the coherence between the different simulations.
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1 Introduction

The Baldwin effect suggests that lifetime plasticity can enhance evolution.
Since Hinton and Nowlan’s seminal paper (Hinton and Nowlan, 1987), a
lot of experiments have been conducted confirming the effect in computer
simulations. However, in evolutionary biology the Baldwin effect is still con-
troversial, and there is scant evidence for the effect in biological populations.
There is also confusion about what the Baldwin effect actually is. This
project aims to clarify what the Baldwin effect is and is not, and experi-
ments on how evolution is affected by learning will be performed in adaptive
landscapes of different complexity. Lastly, the validity of artificial life (ALife)
models for evolutionary biology will be discussed.

1.1 Motivation

The relationship between evolution and lifetime learning has been much ex-
plored in ALife research, and most experiments have supported the Baldwin
effect. A variety of models have been utilized, ranging from abstract models
with closely correlated genotype-phenotype mappings to situated simulations
using robots controlled by neural networks.

Usually the experiments have focused on the the synergy between learning
and evolution. The cost of learning, which is a prerequisite for the Baldwin
effect to occur, has often been downplayed (Turney, 1996). Furthermore, it
need not be only learning that contributes to the Baldwin effect, but pheno-
typic plasticity (ontogeny) in general, where development plays a significant
part (Downing, 2004).

There is a trade-off between lifetime plasticity and instinct, and general-
purpose learning is not the ultimate goal of natural evolution. Under some
circumstances, given a high degree of learning in the population combined
with a low cost, learning can inhibit selective pressure and reduce the in-
nate fitness in a population, and generally it would be advantageous for a
population that the learned behaviour eventually be performed by instinct.
Learning might make it possible for a mechanism to arise in incremental steps
and is often advantageous in the former steps of evolving a mechanism; in
later stages learning might inhibit innate fitness.

Thus, there are several trade-offs between learning and evolution; the
right balance depends on several factors, such as selective pressure and the
rate of change in the environment. Evolution also guides learning, by de-
termining what the animal will be able to learn (what stimuli will trigger
learning) (Bryson and Hauser, 2002).

The general tendency seems to have been an overemphasis on learning in
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ALife experiments. For instance Parisi et al. (1992) claimed to show that
learning could speed up evolution also when the learning task was not corre-
lated to the evolutionary task. While this claim is largely refuted (Harvey,
1997), it is still a belief held by some, and even reiterated in introductory
texts (McLeaod et al., 1998).

The enthusiasm about the Baldwin effect in ALife is markedly different
from the way it is perceived in evolutionary biology, where there is still de-
bate about how to define it, what is needed for it to occur, and whether or
not it occurs at all. Compared to the disputes in evolutionary biology, it is
striking with which ease the Baldwin effect is discussed in ALife literature.
While ALife researchers are not necessarily claiming to perform experiments
that can inform biology, they are at least utilizing a theoretical construct
borrowed from evolutionary biology. To that extent there are important fac-
tors in the interplay between evolution and learning that should be discussed,
including the importance of the complexity of the adaptive landscape, the
degree and cost of learning, the selective pressure, the rate of mutation, the
mapping from genotypic to phenotypic space, the complexity of the genome,
development, and a variety of environmental factors affecting selection.

1.2 Objective

I will argue that plasticity in general have been overemphasised as a means
to boost evolution in artificial life experiments. A number of factors need
to be included in a discussion of the Baldwin effect. I will put forward my
argument in two steps:

• By assesing the status of the Baldwin effect in current ALife and evo-
lutionary biology research. This involves an attempt at clarifying just
what we are (and are not) talking about when we talk about the Bald-
win effect. The underlying assumptions made in the computer simula-
tions will be studied.

• Perform computer simulations that study the Baldwin effect where:

– The fitness landscape is of different complexity

– Evolutionary and learning parameters are varied.

1.3 Structure

This thesis’s goal can be divided into three subtasks:
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1. Review literature on the Baldwin effect to gain an understanding of
the status of the phenomenon. The review will include both texts in
evolutionary biology and computer science. Important questions which
will be a starting point for this investigation is:

• What is the scientific status of the Baldwin effect in evolution-
ary biology? Is it one agreed upon theory? Is it an empirically
observable phenomenon? What are its historical roots?

• How is the Baldwin effect perceived in computer science? Trace
the different approaches to exploring the Baldwin effect in com-
puter simulations. Are computer scientists and biologists talking
about the same thing when they talk about the Baldwin effect?

• Show that there has been a development from emphasizing the
benefits of learning, to a stronger focus on the cost of learning
and the trade-off between evolution and learning. Show that dif-
ferent researchers have perceived the Baldwin effect quite differ-
ently. Also, experimental results hav been interpreted differently.

2. Perform experiments using genetic algorithms in fitness landscapes of
tunable complexity to assess the validity of some of the findings on the
Baldwin effect in previous experiments. This includes observing how
the Baldwin effect is affected by:

• The complexity of the fitness landscape.

• Different learning rules.

• Different costs of learning. Different evolutionary parameters.

• The genotype-phenotype mapping.

3. Discuss the results and the validity of the models. Put forward sugges-
tions on how the soundness of computer simulations on the Baldwin
effect can be improved.

1.4 Conclusions

The Baldwin effect is not an empirically observable phenomenon, and the
term means different things to scientists from different backgrounds. In evo-
lutionary biology there is considerable debate as to what the phenomenon is,
whether it exists at all, and how it relates to other important evolutionary
factors. This is in contrast to the more relaxed acceptance of the phenomenon
in the ALife community, who has reported positive findings of the Baldwin
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effect in a number of computer simulations over the years. However, some
of the research seem to have overemphasized the positive role of learning in
the Baldwin effect, and many experiments lack a clarification of what they
actually mean by the Baldwin effect. To a varying degree the simulations
have been ascribed biological relevance, but the underlying assumptions and
the simplifications made in the experiments often lack a critical discussion.

In a series of experiments it is shown that the effect and relevance of
learning on evolution depends on several factors, including the complexity of
the fitness landscape, the initial rate of learning, the learning rule, the cost
of learning, the selective pressure and the mutation rate. Learning proved
advantageous in more complex fitness landscapes and a higher fitness was
reached in fewer generations, but there was persistent plasticity in the popu-
lation. This was interpreted as a consequence of a lack of genetic variability
in the population, probably related to a small population size. I found that
higher rates of mutation counteracted this tendency and contributed to a
more pronounced Baldwin effect.

Computer simulations represent one source of information about the Bald-
win effect, but the level of abstraction compared to natural occurring phe-
nomena is very high, and so they should be interpreted with great care and
not taken as empirical evidence. One way of improving the soundness of com-
puter simulations of the Baldwin effect in ALife is to focus on the reliability
of the simulations and of the coherence between the interpretations.
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2 Background

In this section I will give a short introduction to the historical development of
the theory behind the Baldwin effect. Current controversies in evolutionary
biology regarding the Baldwin effect will be introduced, and lastly I will
review important literature on computer simulations of the Baldwin effect.
Assoiciated important terms will be introduced and explained as needed.

2.1 Two perspectives on the Baldwin effect

Because of its counterintuitive nature the Baldwin effect can be difficult to
grasp. On first encounter it can also easily be confused with Lamarckism,
the idea that an organism’s acquired traits can be directly inscribed in its
genes – but the similarities are only superficial. In an attempt to make things
clearer, I will provide two definitions, one intuitive and one computational.

2.1.1 Intuitive definition

In short, the Baldwin effect states that individual lifetime changes (by learn-
ing or other means) can affect evolution. But how can this happen without
the acquired characteristics being inscribed in the individual’s genome?

If the change an individual undergoes during its lifetime is adaptive, this
(generally speaking) gives the individual a better chance of reproducing.
While the individual undergoes a change, to successfully aquire a trait it
will also often need some innate tendency towards the trait, and will adapt
the trait by a combination of nature and nurture. If the trait is beneficial
the individual will have a higher chance of mating, which means that its
innate tendency towards the trait is reproduced. Life time adaptation thus
potentially plays a role in picking up on traits that are advantageous.

2.1.2 Computational definition

In computational terms the Baldwin effect is often explained as a ’smoothing’
of the fitness landscape. The concept of a fitness landscape, or adaptive
landscape, is often used when describing genetic algorithms, and I will give
a more detailed introduction in the part describing the implementation (see
section 3.2). Still, evolutionary computation is just one machine learning
method among others, and ’fitness landscape’ means nothing more nor less
than the more traditional AI concept of a search space.

When a learning rule is applied in combination with an evolutionary
algorithm, in computational terms one is using a local search inside a global
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search. This means the search is more fine-grained and have the potential of
picking up subtler solutions which the global search might overlook. But, the
solutions are not retained by the local search; indeed, they literally die with
it during the selection process. What the local search does though, is give
a lookahead into the search space of a particular candidate solution. If the
surrounding search space yields a good solution, and the individual moves in
that direction during its lifetime, it is more likely to be selected. And because
it is the individual’s genome in accordance with the learning rule that has
moved the individual in that direction, there is a fair chance the genome, by
genetic operators such as recombination and mutation, is changed slightly to
transform the individual’s offspring into a slightly better candidate solution
from birth.

This way the learning rule implicitly informs the evolutionary algorithm’s
global search about areas in the search space which the evolutionary search
might otherwise have overlooked.

2.2 A short history of learning and evolution

2.2.1 The ambiguity of the Baldwin Effect

Since Hinton and Nowlan’s seminal experiment in 1987 (Hinton and Nowlan,
1987), numerous artificial life experiments investigating the Baldwin effect
have been performed, most of which report positive findings. It is often
unclear whether the experiments are seen as relevant for evolutionary biology,
or if they are simply investigating a way of boosting evolutionary search.
Usually though, some references are made to biology.

Hinton and Nowlan’s original experiment was backed up by the evolu-
tionary biology authority John Maynard Smith in an article in Nature (May-
nard Smith, 1987; Depew, 2003). The philosopher Daniel Dennet (2003) also
sees this early experiment as a sort of empirical evidence that the Baldwin
effect is a natural occurring phenomenon.

In the following, though, we shall see that the Baldwin effect is by and
large not well established nor well understood in evolutionary biology. Ac-
cording to (Downes, 2003) the various defenses and versions of the Baldwin
effect can generally be seen as attempts to expand the explanatory repertoire
in evolutionary biology. There also seems to be confusion as to whether the
Baldwin effect is a natural occurring phenomenon or an explanatory mech-
anism. This is in accordance with Depew’s (2003) claim that the Baldwin
effect is neither a theory-neutral empirical phenomenon, nor a unified or
agreed upon theoretical concept.

According to Downes (2003) there is a lack of empirical evidence for the
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Baldwin effect, and though he admits the concept might be entirely theoreti-
cally grounded, he criticizes some authors for assuming the Baldwin effect to
be an explanatory mechanism without pointing out what phenomena calls for
such an explanation. While some authors in evolutionary biology recognize
computer simulations as potentially interesting indications of possibilities
in biology, computer simulations are generally disregarded as empirical ev-
idence for the Baldwin effect. Since the concept was introduced, it seems
to have gone through a Promethean development, changing shape under the
interpretation of different scientists.

2.2.2 The Baldwin effect, according to Baldwin

Baldwin introduced his idea about the relationship between learning and
evolution, or rather intelligence and instinct, at a time where Lamarck’s
notion of the heredity of acquired traits had strong hold. Darwin himself was
ambiguous towards Lamarckism, but Baldwin rejected the idea; and in this
sense his theory was more Darwinian than Darwin’s own in this particular
respect. While Baldwin’s main interest was human behaviour and evolution,
he aimed at a theory that was general enough to describe evolution for all
species (Downes, 2003).

Similar ideas was presented at the same time by Lloyd Morgan and Os-
born, and there is some controversy about the relative contribution of each
author (Godfrey-Smith, 2003). Still, for simplicity I will refer solely to the
Baldwin effect in the following.

Baldwin’s original argument has the following steps (Depew, 2003; Bald-
win, 1896):

1. There exists ’ontogenetic adaptations,’ that is adaptations through an
organism’s lifetime. These are ways of exploring the environment. The
adaptations are produced by physical, neurological or more intelligent
forces such as imitation, pain/pleasure reinforcement or even means-
end-reasoning.

2. Ontogenetic adaptations adapt the instincts that permit them to chang-
ing and stochastic environments.

3. Through ontogenetic adaptations the individual increases its chances of
survival. Through the ability to adapt through lifetime the individual
can withstand environmental challenges (including, but not exclusively,
environmental change).

4. Ontogenetic adaptiveness increases an organism’s chances of reproduc-
ing.
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5. In certain species ontogenetic adaptability is enhanced through ’social
heritability’. Cultural knowledge is transferred to new generations.

6. Adaptations through social heritability can be maintained indefinitely,
but might turn into instincts if germinal1 elements coincide with their
influence.

7. Newly evolved congenital2 instincts forms the base for further ontolog-
ical adaptation.

After Baldwin’s original proposal the theory has been presented, inter-
preted and elaborated on in a number of ways. Godfrey-Smith (Godfrey-
Smith, 2003) summarizes the Baldwin effect succinctly by dividing it into
three main stages:

1. A new environmental condition arises.

2. Natural selection favours plasticity for the population to be able to
adapt to the new environment.

3. Through mutation, recombination and selection the genotypes that can
produce the best behaviour without plasticity will proliferate in the
population.

In the following I will use Godfrey-Smith’s three stages as a reference
point.

2.2.3 Baldwin and the modern evolutionary synthesis

Baldwin’s original theory of evolution relied on a view of natural selection
as a relentless life-and-death struggle. The ’modern synthesis’ integrates
Darwin’s classic theory with Mendel’s theory of genetics and mathemati-
cal population genetics. It diverts from the classical view of evolution in a
number of ways (Depew, 2003):

• Physiological and behavioural adaptiveness is not adaptation, but an
instantiation of genetically based inherited adaptations.

• Natural selection is based on mean reproduction rates, and only indi-
rectly based on the life and death of individuals.

1Germinal: relating to the origin of the animal, i.e. fetus.
2Congenital: present at birth.
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• The alleles code for phenotypes on the organismic level3, not the ger-
minal.

• Evolution by natural selection is not inherently directional.

From the perspective of the modern synthesis, the Baldwin effect cannot
be understood the way it was initially proposed. According to the mod-
ern synthesis there is unlikely to be any selective pressure for traits that
are effectively transferred over generations by social inheritance. If learned
behaviours do become genetically underwritten, in the view of the modern
synthesis this would mean that a population would be swapping short term
plastic behaviour for rigid long term adaptations – thus subverting the very
point of the Baldwin effect (Depew, 2003).

The modern synthesis views culture as much more autonomous than did
Baldwin in his original proposal (and many of his proponents today). Culture
is seen as natural selection’s greatest achievement, but this also implies there
is no patch back from culture to instinct (Depew, 2003). To elaborate on this
we now turn to the second part of the Baldwin effect, i.e. how development
of new traits by ontogenetic plasticity relates to genetic assimilation.

2.2.4 The Baldwin effect and genetic assimilation

Waddington (Waddington, 1953; Stearns and Hoekstra, 2000) demonstrated
that for some traits organic plasticity (due to in uterus environmental stim-
uli) would produce phenotypes that eventually, over generations, would be
genetically encoded in the population. Waddington saw genetic assimilation
as nothing more than a combination of traditional Darwinism and embryol-
ogy that can give results that look like inheritance of acquired characteristics;
he did not consider genetic assimilation ’a new factor in evolution’. Wadding-
ton did not experiment with learning, but manipulated the developmental
process of individuals, thus influencing the development of certain traits.

In his original experiment Waddington (1953) showed that fruit flies
(Drosophila) embryos exposed to ether at a particular stage would develop
wing-like halters. These were then (artificially) selected for reproduction, and
after twenty generations the wing-like halter phenotype had been genetically
encoded in the population, so there was no longer a need for exposure to
ether for the trait to develop. Phenotypes that through lifetime adaptation
mimic a genetically produced phenotype are called phenocopies. Wadding-
ton’s observations have been confirmed in experiments demonstrating that

3The organismic level relates to the grown up animal.
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environmental stimuli such as heat or cold can develop phenotypes of butter-
flies with particular wing patterns (Waddington, 1953; Stearns and Hoekstra,
2000).

Genetic assimilation can be divided into three steps:

1. Some factor in the environment (usually embryonic factors) change the
phenotype in a certain way.

2. The changed phenotypes are selected for (either by artificial or natural
selection).

3. Over generations the trait is encoded in the genome (it becomes in-
stinctive), and the environmental stimuli is no longer needed for the
trait to develop.

The last step is known as genetic canalisation. An essential prerequisite
for genetic assimilation to take place is a correlation between the pheno-
typic and genotypic space. Waddington’s genetic assimilation describes how
phenotypic adaptation can canalise a trait genetically – but it is not the
plasticity itself that facilitate the canalisation. While it is true that learn-
ing can be seen as a local search in the phenotypic space, this does not
imply that the phenotypic variety discovered by learning has corresponding
genotypes nearby the genotype of the individual. Mayley (1996b) coins the
needed correlation between genotypic and phenotypic space ’neighbourhood
correlation’, and defines it as the correlation between the distance travelled
in phenotypic space to a new learned phenotype and the distance moved
in genotypic space for the same phenotype to be generated without learning
(Mayley, 1996a). So, while Waddington showed that genetic canalisation can
happen, this does not imply it will happen in all situations.

We shall see that in many of the computer simulations of the Baldwin
effect, this correlation is not accounted for, and even that the lack of it is
interpreted as a special case of the Baldwin effect (see section 2.3.4). In many
of the simulations there is no established correlation between the plasticity
itself and the trait(s) the plasticity enables the phenotype to attain. Also,
several authors have referred to genetic assimilation and the Baldwin effect
as the same phenomenon, which they are not (Downes, 2003). In short,
there is no obvious reason why plasticity – in itself – would indicate that
an individual’s genotype is closer to the ’ideal’ genotype that codes more
directly for the trait. If phenotypic fitness is to inform the evolutionary
search, there must be a certian degree of correlation between the genotype
and the phenotype.
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2.3 Computer simulations of the Baldwin effect

2.3.1 Artificial life

The term artificial life was coined in 1987 by Chris Langton, and originated
primarily as a means to simulate biological systems. ALife has its root in
cybernetics (the theory of control and communication in the animal and the
machine), and according to Risan (1997) also traditional AI (GOFAI) was
born from the cybernetic movement, of which it ’rejected the holism of the
systemic perspective and emphasized the formal and logical aspects of human
cognition’ (Risan, 1997, p. 9). In that respect, today’s ALife can be seen
as a realignment with the early cybernetic movement, since it emphasizes
bottom-up modelling and decentralized and interconnected systems. ALife
is an interdisciplinary field, including sciences such as biology, psychology,
philosophy, ethology and computer science (Risan, 1997).

In addition one might talk about three main directions within ALife: 1)
engineering focused methods that borrows biological principles, but where
the focus is on improving system efficiency; 2) a scientific modelling tra-
dition, which is concerned with simulating naturally occurring phenomena;
and 3) a direction more concerned with what constitutes life in general, often
promoting the idea that life does not necessarily need to be biological.

The works to be discussed in the following are mainly in the second
category. The focus is, whether explicitly stated or not, mainly on modelling
evolution in biology, and the efficiency of the implementations are seldom
discussed.

2.3.2 Hinton and Nowlan – the needle in the haystack

Hinton and Nowlan’s (1987) paper is regarded as the first demonstration of
the Baldwin effect in computer simulation. Probably, much of the paper’s
impact outside artificial life circles can be attributed to the evolutionary
biologist John Maynard Smith’s presentation of the paper in Nature (May-
nard Smith, 1987; Depew, 2003).

The set-up of the experiment is as follows. A genome represents 20 con-
nections in a feedforward neural net. The alleles consists of 0, 1, ?, where 0
means there is no connection; 1 means there is a connection; and ? means
the connection value is undecided and will be set through life time learning.
See figure 1 (Hinton and Nowlan, 1987).

There exists only one net configuration with optimal fitness (a net con-
sisting of all 1s) – all other configurations have equally low fitness. Since
each net has 20 connections, if only the final alleles, 0 and 1, are considered,
there are 220 possible genotypes, which yields a relatively large search space
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Figure 1: Hinton and Nowlan’s experiment (Hinton and Nowlan, 1987).

with over one million possible combinations. We are indeed dealing with a
needle in a haystack search, for there is only one single spike in the fitness
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landscape.
Two experiments were performed, one with and one without learning.

The population size was 1000, and for each generation 1000 matings (crossover)
were performed (i.e. the whole of the current generation was replaced by the
new one). No mutation was used. See figure 1 for further details.

In the experiment without learning the population never reached a higher
fitness than its starting point, but when learning was introduced, the solution
was reached in about 15 generations. The explanation lies in the set-up, with
its particular landscape and fitness function. Fitness is determined by the
following function, F = 1 + 19 * n / 1000, where n is the number of learning
trials remaining after the goal string is encountered. When the function
is applied to an ordinary evolutionary search without learning, the search
becomes purely hit-and-miss, no better than a random search; since only
the single right solution is ascribed a higher than usual fitness there is no
selection pressure.

The situation changes when learning is introduced. Initially 50% of the
alleles are plastic, and during each generation an individual is allowed 1000
learning trials. Learning is conducted by randomly setting the plastic alleles
in the phenotype to either 0 or 1 and then testing it for fitness. Learning is
stopped once the correct goal string is encountered.

Firstly, the high amount of learning introduced gives learning a fair chance
to find the target string by random search; secondly, because the fitness
function rewards phenotypes with fewer learning trials higher, this gives an
indirect approximation of the genotype’s fitness, since phenotypes which are
initially closer to the goal string will tend to use fewer trials.

In this perspective, it is not surprising that the algorithm is able to find
the optimum using learning, because at the instant an individual gets a higher
fitness score than another, the evolutionary algorithm is guided, and selective
pressure is introduced. Thus, learning’s main function in this experiment is
to introduce diversity in the fitness scores in the population, thereby enabling
selective pressure which will guide the evolutionary search.

From a purely computational viewpoint, a simple random search would
be much more effective for this fitness landscape. What Hinton and Nowlan’s
experiment illustrates though, is that learning can help identify good evo-
lutionary solutions and inform the evolutionary search. In that resepct the
experiment is no doubt elegantly set up to illustrate a point – but in a senese
the extreme set-up makes the already blind watchmaker even blinder. There-
fore its relevance for evolutionary biology is probably limited. In particular
what makes the model unrealistic is that a phenotype cannot be found by
incremental improvement. As (Sterelny, 2004) points out few developments
in nature tend to be genuine spikes. In his words, Hinton and Nowlan’s
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model is ’not just oversimplified, it is positively misleading’ (Sterelny, 2004,
p. 297). The unimodal 4 quality of the landscape is also an implausible model
of evolution in nature.

To summarize, because of the structure of the landscape in Hinton and
Nowlan’s (1987) model, learning plays two different roles:

• In the first phase, the genetic algorithm has no information to guide
its search. In effect, the genetic algorithm is performing a pure random
search. Since for each generation 1000 learning trials are performed for
an average of 50% of the phenotype, learning is much more likely than
evolution to stumble upon ’the good trick’.

• Once learning has found the good trick (usually after about 15 gen-
erations in this set-up), the genetic algorithm performs an informed
search, and the average fitness in the population rises. With genotypes
increasingly closer to the goal string, they will be selected for since a
cost is associated with learning.

While Hinton and Nowlan’s (1987) intention was probably to illustrate a
point, which they elegantly do with their set-up, it is probably misleading to
see their experiment as a realisitc representation of evolution in nature.

2.3.3 When the learning task and the evolutionary task are not
correlated

Parisi et al. (1992) suggested that an instance of the Baldwin effect also
occurs when the learning task and the evolutionary task are not correlated.
In Hinton and Nowlan’s (1987) model there was a close resemblance between
genotypic and phenotypic space; in fact the genotype and the phenotype had
identical representations. Several models have been suggested where there
is a larger gap between genotypic and phenotypic space, and often neural
networks models have been used, where the genotype have coded for the set
of weights in the networks.

This is also the approach taken by Parisi et al. (1992). They simulated a
foraging environment with evolved agents situated in a 2-D grid world. The
agents receive sensory information from food items randomly placed in the
grid. For each time step an agent can either turn or move forward from its
current position. Any time an agent reaches a square with a food item, its
fitness is increased and the item removed. The agents are controlled by a
feed forward neural network with initial weights set randomly.

4See section 3.2.
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Only one agent operates in the grid world at a time, so for each generation
the foraging has to be repeated for each agent. In other words there is
no co-evolution. There are 100 individuals in each generation, and the 20
best individuals are selected for reproduction. This is done by copying an
individual’s genome and applying a mutation operator. There is no crossover
of genomes between individuals. The genome is the set of weight values for
the connections in the neural network. The results showed that the agents’
fitness increased steadily over generations (Parisi et al., 1992).

In a second experiment a learning task was introduced: to predict how an
agent’s sensory information about a food element will change after the agent
has executed its action. This is implemented by adding two prediction units
to the network’s output layer. Given the current input and the network’s
current output (i.e. its planned action), the prediction units are trained by
backpropagation to predict the sensory input in the next time step (Parisi
et al., 1992)

Parisi et al. (1992) found that the agents in the second simulation got
better at finding food, even though the learning task and the evolutionary
task were not the same. While there was an increase in both lifetime fit-
ness and inherent fitness, the increase in inherent fitness cannot be wholly
attributed to the effect of learning.

To explain the effect Parisi et al. (1992) ask us to imagine a fitness
landscape with two different individuals at different points in the landscape,
but with the same fitness. When an individual is selected for reproduction
its genome is mutated, thereby moving it to a slightly different point on the
fitness landscape. Until the next generation is selected evolution has no way
of knowing whether this point is better or worse than the current point. But
as learning changes the connection weights of the individual this is a way of
exploring the surrounding fitness landscape of that individual. This means
that if the individual is situated nearby an even higher fitness peak, this ’good
location’ will be identified, and mutation will have a higher probability of
placing the offspring of that individual in a location with higher fitness, thus
leading to progressively higher innate fitness. In other words they claimed
that a smoothing of the fitness landscape occurred also when the correlation
between the learning task and the evolutionary task was weak.

The authors go on to show that even learning which is a random search
(i.e. where the learning might render the individual’s fitness worse than
before learning) will boost evolution, though not as much as with informed
learning. Again, Parisi et al. (1992) claim this would inform evolution about
which individuals are at the better locations in the fitness landscape when
the surrounding landscape is also taken into consideration. They hypothesise
that informed learning is better because it operates in a weight space which
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share some characteristics with the the evolutionary space, thereby giving a
slight guidance also to the evolutionary search.

To test this hypothesis the XOR problem was introduced as the life time
task to learn. The expectation was that this would not affect the learning
ability of successive generations, but also this learning task turned out to
improve innate fitness. This was explained by the notion that two arbitrary
tasks, one evolutionary and one learning task, could be accidentally corre-
lated on some sub-regions of the weight space, thereby causing this effect.

Thus, Parisi et al. (1992) claim to simulate the Baldwin effect both on
tasks that are correlated to the evolutionary task and tasks that are not so.
However, Harvey (1996) claims that this is not an example of the Baldwin
effect, but something else – in his terms ’Another new factor (ANF)’. Using a
geometric analysis, Harvey shows that the effect has to do with how weights
in a neural network are perturbed by mutation and then restored through
relearning. The conditions needed for this to occur are very restricted, and so
the experiment of Parisi et al. (1992) should not be generalized to imply that
the Baldwin effect will occur for learning tasks that are totally unrelated to
the evolutionary task. Rather, the finding is a side effect to the peculiarities
of artificial neural networks (Harvey, 1997). Other experiments have also
shown that learning does not speed up evolution if the learning task is not
related to the evolutionary task (Menczer and Belew, 1994).

The model also lacks an important aspect of the Hinton and Nowlan
(1987) model, namely the evolution of plasticity itself. In Parisi et al.’s
(1992) model, learning is intrinsic to the model; it is not evolved. The agents
will always learn, whether learning is ”called for” by evolution or not.

To summarize:

• The fact that tasks uncorrelated to the evolutionary task seem to fas-
cilitate evolution, is probably not an instance of the Baldwin effect, but
can be explained by the peculiarities of ANNs.

• While uncorrelated learning might boos evolution, this is highly depen-
dent on the particular landscape to be searched.

• The model does not account for the evolution of plasticity.

2.3.4 Learning and evolution in a simulated ecological system

Ackley and Littman (1992) implemented a more advanced ecological grid-
world with carnivores, plants, trees and walls. Agents living in the world are
governed by two ANNs, one action network and one evaluation network. The
action network controls the agent’s behaviour, while the evaluation network
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represents the agent’s goals, and so also applies the feedback for the train-
ing of the action network. An important property of the model is that the
action network is only modifiable during the agent’s lifetime (by reinforce-
ment learning), while the evaluation network can only be modified genetically
through evolution. Thus, unlike in the model of Parisi et al. (1992) learning
and evolution operates on two different representations.

Each agent has a fitness component which is increased by eating plants or
dead carnivores in the environment, and a health component that is decreased
for instance by hitting a wall, and which increase spontaneously with time.
When an agent has a high enough fitness it is selected for mating with another
agent nearby. Thus, the fitness is endogenous to each agent. Reproduction is
done by recombination and a low degree of mutation (Ackley and Littman,
1992).

Ackley and Littman (1992) found that the agents achieved the highest
fitness when both learning and evolution was used. Though evolution and
learning combined only proved better after 100 000 time steps. When taking
the most successful agent and letting it run for more than the one million
time steps, which was the ordinary limit, they found that genes that were
important for survival tended not to mutate as much. They also observed
the Baldwin effect in that evolved characteristics tended to mimic learned
ones, but it was not a very pronounced effect (Ackley and Littman, 1992).
Probably, this is related to the different representations used for the genotypic
and the phenotypic space, and therefore the lack of correlation between the
two spaces.

2.4 Trade-offs between learning and evolution

There has probably been a tendency to overestimate the importance of learn-
ing in the early experiments on learning and evolution. Later experiments
and theories indicate that there are many trade-offs between learning and
evolution that need to be considered. Also, in some situations evolution can
guide learning just as much as learning can guide evolution. In the following
I will review some important papers on the trade-off between learning and
evolution.

2.4.1 The cost of learning

Turney (1996) points out that the Baldwin effect is surrounded by many
myths in the ALife community. In most experiments the benefits of the syn-
ergy between learning and evolution has been emphasized, but learning also
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has costs. There also exists several misunderstandings about the relationship
– or lack thereof – between the Baldwin effect and Lamarckian inheritance.

An important notion is also that learning has come to be identified with
the Baldwin effect, while the effect really is related to phenotypic plasticity in
general. Learning is an instance of phenotypic plasticity, but there are many
other ways an organism’s phenotype can change during its lifetime that do
not involve behavioural changes; one example would be the human ability to
tan in sunny environments. It is important to remember that the Baldwin
effect is a theory of the way any phenotypic change can influence evolution,
not just learning (Turney, 1996).

When the Baldwin effect has been explored in evolutionary computation
the focus has usually been how learning can benefit evolution. This is done
by the smoothing of the fitness landscape that constitute the Baldwin effect
as interpreted in computational terms.

However, there are situations where phenotypic plasticity could also in-
hibit the evolutionary search. Phenotypic plasticity can be timely and costly
(because of metabolism). For instance, in a sunny environment it would
be better to be born with dark skin than to have to develop it through
tanning. Furthermore the experimentation involved in learning could poten-
tionally be very costly; being instinctively afraid of snakes is advantageous for
most species. This is in accordance with Bryson et al.’s (2002) observation
that even highly adaptable species, such as primates, show persistent failures
to learn. Such failures of learning might actually be an adaptive strategy;
the animal’s behaviour might reflect a local optimum, an ”adaptive island”
surrounded by ineffective or even dangerous behaviour strategies (Bryson
and Hauser, 2002). Thus, the animal’s failure to learn functions as a safety
mechanism, securing that the animal stay put on it’s island of behaviours –
a mechanism Bryson et al. (2002) coin ’safe learning’.

According to Bryson et al. (2002), many AI researchers have a naive,
pre-Darwinian conception of learning: it is seen as general, ideal, without
limits, and evolution’s ultimate goal. Instead, Bryson et al. (2002) suggest
that learning in nature is generally restricted and specialized to particular
tasks. An animal cannot learn to associate any stimuli with any behaviour;
on the contrary, which behaviour can be paired with which other behaviour
is species specific. For instance, pigeons cannot be trained to peck to avoid
shock or to flap their wings to get food; but they can be trained to flap
their wings to avoid shock and peck to get food. The animal’s learning is
biased towards information likely to be relevant. Neurophysiologic findings
also support this; for instance, poison avoidance in rats is tied to a specific
learning mechanism in the olfactory section of their amygdala (Bryson and
Hauser, 2002).
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In this perspective, learning is evolution’s last resort, there is selective
pressure for genetic coding to replace individual learning. According to
Bryson et al. (2002) the only reason for learning to persist is when the an-
imal is required to adapt to changes on a less than evolutionary time scale,
i.e. during the animal’s lifetime.

Still, the fact remains that quite a few animals, such as dolphins or hu-
mans, rely heavily on learning. In such cases the animals have come to inhibit
a niche in which a greater capacity for learning was advantageous. Often,
animals with complex social structures, such as primates, require learning
(though in the insect world there are many examples of social structures
that do not require learning). Also, some genetic characteristics are selected
for primarily to enhance the animal’s sexual attractiveness, and might be
counter-adaptive in all other areas, even contributing to the extinction of
species(!).

I will now try and identify factors that contribute to the trade-off between
learning and evolution, starting with the benefits of learning:

• Temporal adaptability. If there are significant environmental changes
during the time-scale of a generation, individuals that are able to adapt
during their lifetime will have an selective advantage and increase the
fitness of the population (Mayley, 1996b; Turney, 1996; Bryson and
Hauser, 2002).

• Organic selection. This is the Baldwin effect in the classic interpreta-
tion. Lifetime adaptability helps evolution identify the fitter individu-
als.

• Less complex genotype. If the environment is relatively predictable,
information can be ’stored’ in the environment and accessed through
learning instead of being stored in the genotype (Todd, P. and Miller;
Mayley, 1996a).

• Preserves genetic variation. Because individuals with different geno-
types through lifetime adaptation can attain the same fitness, the se-
lective pressure is relaxed, resulting in a higher genetic diversity in the
population (Mayley, 1996b).

• In an extension of the above, if a trait cannot be represented genetically,
it might still be possible for the population to achieve the trait through
lifetime adaptation (Mayley, 1996b).

Mayley (1996b) also identifies several different costs of learning:
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• An individual born with a trait will reach higher fitness faster than an
individual who has to spend time learning the trait.

• Delay of reproductive ability. Typically, in a species individuals will
not be able to reproduce until after development/important learning
periods.

• Energy spent. Learning requires more energy because of the associated
behavioural and metabolic costs. Also, there might be increased onto-
genetic costs, as a more complex organisms are needed for learning to
take place.

• Like Bryson (2002), Mayley (1996b) comments on the dangers of learn-
ing. Firstly, learning is more stochastic than evolution. For instance,
learning can be prevented if an important stimuli in the environment
is lacking, thereby preventing the individual from acquiering an im-
portant trait; or the individual might simply learn to do the wrong
thing. In highly plastic species, such as humans or chimpanzees, psy-
chopathology might be explained by ’learning gone awry’.

• Dangerous behaviour. When an individual encounters a situation for
which it has not yet learnt the right response, it might behave danger-
ously. Examples would include eating poisonous food or closing in on
a snake ’to see what happens’.

• Population costs. Costs that affect not only the individual but also the
population as a whole include time and energy spent by parents or other
members of the population to teach younger or more inexperienced
members of the population, and the increased genome length that might
be needed to represent the learning ability. Note that this is in contrast
to the suggestion by Todd and Miller (1991) that learning can decrease
the genome length, so there is a trade-off between these two effects.

Turney (1996) identifies several factors that contribute to the trade-off
between learning and evolution:

• Time scale of environmental change. Some environments change too
fast for evolution to adapt; if so, learning will be beneficial.

• Variance and reliability. Learning requires the right kind of experience,
which might not be available; therefore learning is more stochastic than
instinct.
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• Energy consumption. Because learning requires acquisition of data, an
organism or agent must expend energy in order to learn.

• Length of learning period. An organism is more vulnerable before it
has fully learned a behaviour. Therefore, all other factors being equal,
evolution will select for shorter learning periods.

• Global vs. local search. Evolution can be seen as a form of global
search, while learning can be seen as a local search. The right combi-
nation depends on the properties of the fitness landscape.

• Fitness landscape. Learning can smooth the fitness landscape (the
Baldwin effect), but this smoothing might not be necessary.

• Reinforcement vs. supervised learning. Evolution can be seen as a
form of reinforcement learning; while lifetime learning can be seen as
supervised (because of relatively immediate feedback from the environ-
ment).

• Bias direction. A certain bias of learning, a direction, is a prerequisite
for learning. An instinct-based agent will have a stronger bias than
a more learning-based agent (the learner-agent will consider more hy-
potheses than the instinct-agent). If the bias is correct, the agent will
benefit from an instinctive approach, otherwise learning is better.

• Global vs. local goals. The immediate goals of learning might not be in
accordance with the goal of evolution (i.e. maximize fitness). The goals
at the learning level must be simplified to more immediate sub-goals.

The role of learning will vary with different sequences in the evolutionary
process. In ’times of evolutionary fitness’ individuals who has the ability for
lifetime adaptation might be able to reach fitness levels others cannot and
be selected for (Mayley, 1996b). But, this is not straightforward, as a high
degree of learning might decrease genetic variation, which would make it
harder for a population to adapt to a changing environment, as noted above.
In a relatively stable environment selective pressure will inhibit learning and
select for genotypes with higher fitness.

To summarize: Many ALife experiments claiming to investigate the Bald-
win effect have focused on the benefits of learning combined with evolution.
But the Baldwin effect is more than the synergy between learning and evolu-
tion. The costs of learning and genetic assimilation also need to be taken into
consideration. While there is evidence that learned behaviours can facilitate
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the evolution of physical structures, learning can be expensive, and evolu-
tion will select for the best balance between learning and instinct. Under
certain circumstances learning will not boost evolution, but slow it down. If
a species so to speak can get away with instinct, plasticity will not be selected
for. There are many examples in nature species that relies little on learning.
Snakes and crocodiles are examples of highly successful species that do not
need high degrees of learning to succeed in their ecological niches.

2.4.2 Cost of learning and genetic assimilation

Mayley (1996b) puts forward much the same argument as Turner (1996) when
he points out that most of the research on the Baldwin effect has focused too
narrowly on the benefits of learning. In a two-step conception of the Baldwin
effect5, learning corresponds to the first step, while the costs of learning is a
prerequisite for the second step, genetic assimilation, to take place.

As we have seen in the previous section, under certain conditions learn-
ing can slow evolution down, and there will always be a trade-off between
the costs and the benefits of learning. For instance, given a situation where
individuals can adapt well through learning and the costs of learning are
minimal, there will be less selective pressure for evolution to favour the in-
dividuals who would have a innately high fitness. Mayley (1997) coins this
antipode of the Baldwin effect ”the Hiding effect”, and shows in computer
simulations that when both cost of learning and epistasis is low6, the Hiding
effect will dominate; while if the cost of learning and epistasis is high, the
Baldwin effect will be more pronounced (Mayley, 1997).

Mayley (1996b) lists two prerequisites for the Baldwin effect to take place:

• Learning (or plasticity in general) must have a cost. If there is no such
cost, there will not be any selective pressure for the learned trait to
become innate (genetic assimilation).

• There must be a neighbourhood correlation between genotypic and
phenotypic space.

The conception of learning as a local search in phenotypic space which
can guide evolution is the most common explanation of the Baldwin effect
in computational terms. This is not always the case though; learning might
take place in a search space quite different from the genotypic space. For

5As we have seen in section 2.2.2 there might be more than two steps. Suzuki (2004)
performs experiments where they observe a three step Baldwin effect; this will be described
later.

6I.e. the fitness landscape has low complexity.
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instance, in Ackley and Littman’s experiment (1992), described in section
2.3.4, the evolutionary and the lifetime search takes place in quite different
search spaces.

Mayley (1996b) introduces the concept of neighbourhood correlation as a
way of formally describing the overlap between the search distance travelled
in pehnotypic space versus the distance travelled in genotypic space. Intu-
itively, neighbourhood correlation is a measure of how closely the genotype
to phenotype mapping during lifetime is related to the genotype to genotype
mapping over generations. Basically this implies that individuals that are
close in genotype space are also close in phenotype space. More formally the
concept is defined thus: Given an original phenotype pi, a trained phenotype
pj and a learning rule L, the distance in phenotypic space is defined as the
probability that L(pi) = pj, multiplied by the number of times the learning
rule has to be applied to change pi into pj. In the same way, in genotypic
space the distance between two genotypes is defined as the number of genetic
operations it takes to transform gi into gj. The more the distance in pheno-
typic space is correlated with the distance in genotypic space, the higher the
neighbourhood correlation (Mayley, 1996b).

By using a version of the NK fitness landscape (see section 3.3) Mayley
(1996b) vary the complexity of the adaptive landscape in different experi-
ments. This is done by setting the degree of epistasis 7 in the landscape.
The degree of neighbourhood correlation is defined by a parameter L, which
designates the number of loci in the phenotype which are plastic. These loci
are distinct and chosen at random. The size of L is negatively correlated
with the degree of neighbourhood correlation. At the start of each program
run, a lookup table the size of the genome is generated, which indexes each
hold L distinct random phenotypic loci.

The learning mechanism is a steepest ascent hill-climb in the landscape.
Initially an individual’s phenotype is identical to its genotype. A learning
operation consists of flipping the L bits and testing the phenotypes fitness;
if it is higher the transformed phenotype becomes the current. Learning
continues with the next L bits in the lookup table until no higher fitness
is gained. The distance travelled in phenotypic space thus is a Hamming
distance of size L. The larger L is, the farther away from the original genotype
the learning will move the phenotype (Mayley, 1996b).

Learning is also ascribed a cost by subtracting a constant representing
the cost of learning multiplied by the number of learning trials from the phe-
notype. Experiments were performed with genotypes/phenotypes of length
20 and with a population size of 50. The initial generation was constructed

7The interaction between alleles in a genome.
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by copying a randomly set genotype to all the individuals in the population.
All the individuals were then mutated with a probability of 0.05. This was
done to simulate a converged population, with the same starting point in
genotypic space. The successive generations were generated using standard
genetic algorithm techniques. Selection was done by simple linear ranking,
crossover probability was 0.7 and mutation was done with an average rate of
0.1 bits per genotype (1.0/genome size per bit). The experiments were run
for 150 generations (Mayley, 1996b).

Experiments were run with varying degrees of learning costs, neighbour-
hood correlation and landscape complexity (epistasis). Mayley (1996b) found
that when there was no cost of learning no genetic assimilation occurred, as
there was no selective pressure for it to happen. With high degrees of epista-
sis, learning and evolution together was much more effective than evolution
alone in populations with no or low learning costs. When learning costs are
set high, learning is penalized, and the population converges faster because
of genetic assimilation and selective pressure against learning.

Mayley’s (1996b) notion of neighbourhood correlation is in direct conflict
with Parisi et al.’s (1992) claim that the Baldwin effect can occur also when
the learning task is uncorrelated with the evolutionary task (see section 2.3.4)
8.

In an experiment also utilizing a version of the NK fitness landscape,
Suzuki and Arita (2004) observe a three step Baldwin effect. They claim
that learning has three distinct roles in different stages of the Baldwin effect.

As in Mayley (1996b) Suzuki and Arita (2004) use the NK fitness land-
scape, but they modify the genome so that each allele represent a quantita-
tive trait in the range [0.0, 1.0], not the usual binary representation. They
also measure the degree of phenotypic variation, which is the absolute dif-
ference between an individual’s phenotype at birth and its phenotype after
the learning trials are completed. A simple gradient descent learning rule is
used, which gradually adjust the plastic genes towards fitter genotypes. This
is possible since the traits are quantitative, and not binary. It is also worth
noticing that learning is not penalized by any explicit cost. Suzuki and Arita
(2004) point out that with epistasis there will still be implicit costs associ-
ated with learning. This is so because the learning rule is designed so that
each plastic trait is assessed independently, and then all the plasticity genes
are updated at the same time. As the learning rule adjusts each trait at a
time it loses the overall picture and the effect of epistasis. This is an impor-
tant difference from Mayley’s (1996b) experiment where the cost of learning

8The misconception seems to have taken hold and has also been repeated in textbooks
(McLeaod et al., 1998).
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was set explicitly. Also, unlike in Mayley’s (1996b) experiment, where the
degree of learning was set explicitly before every program run, the degree of
plasticity is evolved using a plasticity genome that code for which alleles in
the phenotype will be plastic.

In the first experiment, with no epistasis, Suzuki and Arita (2004) ob-
served that after the genetic assimilation had taken place, phenotypic plas-
ticity increased and stayed high, even though this did not increase the indi-
vidual’s phenotypic fitness. In other words some other role of learning must
occur after the Baldwin effect (Suzuki and Arita, 2004).

In their second experiment, with epistasis (N=15, K=4), they found that
phenotypic plasticity decreased faster. In this case the adjustment of each
plastic trait during learning is done independently from its influence on other
plastic traits (i.e. one could say learning in this case is blind to the epistasis);
we therefore have an implicit cost of learning because of the epistasis between
loci. This implicit cost of learning was confirmed by maximising the degree
of plasticity – the individuals then achieved a lower lifetime fitness than if
they behaved on instinct alone. (Suzuki and Arita, 2004).

Suzuki and Arita (2004) suggest that learning has the following roles:

• First, learning acts as a local search that can aid the more global evo-
lutionary search.

• The search performed by learning eventually become more guided;
the phenotypic plasticity decreases while the phenotypic variation in-
creases. The implicit cost of learning due to epistasis has narrowed the
area where the search is performed.

• When the phenotypic fitness approaches its optima, genetic assimila-
tion occurs, as evolution will be guided towards this optima because of
the costs of learning.

• Suzuki and Arita (2004) find that even when the genotypes has reached
optimum learning still persists. They suggest that learning now acts
as a way of preventing random mutation of disrupting the population
from its optimum.

In later experiments, Suzuki and Arita elaborates on the three steps of
the Baldwin effect (Suzuki and Arita, 2007a) and on repeated occurrences
of the Baldwin effect through an evolutionary process (Suzuki and Arita,
2007b).

There are some interesting differences to be observed between Suzuki and
Arita’s (2004) and Mayley’s (1996b) experiments. While there are differences
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in the set-ups, the experiments share many of the same characteristics. The
main difference is that Suzuki and Arita (2004) use quantitative traits (i.e.
real numbers) in the genotype/phenotype encoding, while Mayley (1996b)
uses the standard binary encoding of the NK fitness landscape. Also, Suzuki
and Arita (2004) use a plasticity genome, so that also the degree of learning
is evolved, while Mayley (1996b) sets the degree of learning explicitly before
each program run. As opposed to Mayley (1996b), Suzuki and Arita (2004)
do not include any explicit costs of learning.

One interesting difference between the experiments is the observations
and interpretations of cost-free learning. Mayley (1996b) found that when
learning was cost-free no genetic assimilation took place. This was attributed
to the fact that there would be no selective pressure against learning. May-
ley also observed that with high degree of plasticity, individuals tended to
rely on learning, and the innate fitness decreased. In contrast, Suzuki and
Arita (2004) found that even when there was no epistasis (K=0), and thus
no cost of learning, genetic assimilation took place, which is explained as
an effect of genetic drift9. After the genetic assimilation had taken place,
as mentioned, Suzuki and Arita (2004) observed persistent plasticity in the
population, which they explain as a mechanism against genetic vounerability
caused by mutation; but it is also possible to explain this as another effect
of genetic drift, especially given the small population size (20 individuals).
In my experiment I observed the same persistance of plasticity, and in sec-
tion 5.1.5 I will present an explanation that differs from Suzuki and Aritas
(2004); I will suggest that countrary to Suzuki and Aritas (2004) explana-
tion, higher rates of mutation will actually make the deselection of plasticty
more pronounced.

2.5 What is the status of the Baldwin effect?

In this part I have given a short introduction to the controversies surrounding
the Baldwin effect in evolutionary biology, as well as a review of important
experiments on the Baldwin effect in the ALife literature. I fear though,
that we are not so much closer to a set definition of the Baldwin effect, and
neither can we be, as the phenomenon is still so controversial. Indeed, one of
the fundamental research questions regarding the Baldwin effect is probably
how to define it.

I have shown that the Baldwin effect is perceived quite differently in
evolutionary biology and in ALife. The Baldwin effect is often perceived as
more unproblematic in ALife, but that might be because the different areas

9Random fluctuations in the genome not due to selection pressure.
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of research are not talking about quite the same thing. In the next section I
will describe the basis for computer simulations of the Baldwin effect, as well
as present my own model. The work of (Mayley, 1996b; Suzuki and Arita,
2004; Puentedura, 2003) are all important inspirations for my model.

With my implementation I hope to shed some light on the interaction
between learning and evolution in fitness landscapes of different complexity,
as well as the importance of the genetic operators used and parameter set-
ting. My model is in no way intended as a solution to unsolved problems
regarding modelling of the Baldwin effect; on the contrary I think it will
serve to illustrate the complexity of the task, the arbitray and abstract level
of modeling, and the long way ahead before a computer model can, if ever,
shed light on the Baldwin effect as natural phenomenon.
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3 Model

In this section I will describe the basis for the implementation of my model,
namely genetic algorithms and the NK fitness landscape, as well as the model
itself.

3.1 Genetic algorithms

The idea that principles borrowed from biological evolution could be used as
an optimization tool for engineering problems was investigated already in the
1950s. By the end of the 1960s, Rechenberg introduced his evolution strate-
gies; but it was Holland (1992) who first described genetic algorithms as we
know them today. Holland saw genetic algorithms as an abstraction of bio-
logical evolution, and he introduced the theoretical framework for adaptation
using genetic algorithms (Mitchell and Forrest, 1994; Holland, 1992).

Today, genetic algorithms have been applied in a number of fields, in-
cluding optimization, automatic programming, machine and robot learning,
economic models, immune system models, ecological models, population ge-
netic models, models of social systems, and interactions between evolution
and learning. What unites these diverse areas of research is the inspiration
from biological evolution and Hollands original GA. (Mitchell and Forrest,
1994).

Problems for which genetic algorithms are typically applied can be divided
into three main areas (Eiben and Smith, 2003):

• Optimization. Here the goal is to minimize the costs associated with
some task. The traveling salesman problem would be a typical example.

• Modeling. Here input and output sets are known and the goal is to
find a function that maps from the input to the correct output. Such
systems can be used for prediction tasks.

• Simulation. Here the system model and at least some of the input is
known, and we want the system to produce output.

The model in this thesis fall into the last category, as it will be an abstract
representation of evolutionary processes in nature. It is important to keep in
mind that GA simulations of natural phenomena are highly idealized.

3.1.1 Representation

The choice of representation of the genome in a genetic algorithm is highly
dependent on the problem to be solved. Also, one should take into account
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the mapping from genotype to phenotype. A representation consists of a
string (usually of fixed length, although it does not have to be), and an
alphabet which constitutes the string. Common alphabets are binary values
and sets of integers and real values, but also letters or other characters might
be used. Obviously, the size of the search space of the genetic algorithm
increases with the size of the genome and the size of the alphabet set.

Scheduling problems, like the traveling salesman problem, represent spe-
cial cases where the most natural representation is a permutation of a set of
integers. In such problems a member of the alphabet can only occur once
in the genome, and special considerations have to be taken in the choice of
crossover and mutation operators (Eiben and Smith, 2003).

In our implementation, though, we use a simple binary encoding, with an
alphabet of 0, 1, as this is the standard encoding in the NK fitness landscape.
(Though also quantitative encodings has been used with the NK fitness land-
scape, see (Suzuki and Arita, 2004)).

3.1.2 Recombination

Recombination is the method used to combine the genomes of two (or more)
individuals to form a new individual. This corresponds to mating in nature,
and recombination is considered the most important genetic operator (Eiben
and Smith, 2003).

There are numerous ways of recombining parent individuals to form off-
spring. One method is to probabilistically vary whether the parents will
reproduce by crossover, i.e. a combination of each parent’s genes, or asexu-
ally by copying the parent’s genes unmodified to the offspring (Eiben and
Smith, 2003). The choice of recombination method should be considered
with the population’s selection method in mind. With asexual reproduction
there will be less genetic variation and good solutions are better perserved in
the population; but this could also be achieved by certain selection methods.

Figure 2: One point crossover. (Eiben and Smith, 2003).

As is the case with genome representation, the choice of recombination
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method is highly dependent on the problem at hand. In particular, spe-
cial methods need to be used if the genome represents a permutation prob-
lem. A very simple crossover method for binary representations is one-point
crossover, where an integer between 0 and the length of the genome minus 1
is used to divide the parent genomes into two parts which are then spliced
together to form the offspring (Eiben and Smith, 2003). This for instance
was the crossover method used in Hinton and Nowlan’s (1987) experiment.

For my implementation though, I have used uniform crossover for the
binary representation. Uniform crossover works by generating an offspring
by randomly choosing the next gene in the genome. A distribution over [0,
1] is used to choose the parent from which to get the next gene. If the value
is below 0.5 the gene is taken form the first parent, else it is taken from the
second parent (Eiben and Smith, 2003).

Because uniform crossover does not split each parent genome into parts
that it transfers to the offspring, the method is not prone to so called posi-
tional bias, which is the tendency to keep together clusters of genes from one
parent. Whether or not this is better depends on the problem. (Eiben and
Smith, 2003).

Figure 3: Uniform crossover (Eiben and Smith, 2003).

3.1.3 Mutation

Because mutation is a chance process it contributes to genetic divergence
between populations and genetic variations in a population. In nature most
mutations arise from errors during DNA replication, and they come in sev-
eral forms. Point mutations is a DNA base pair change that usually has
little effect on fitness, and deletion or insertion mutations removes or adds
chromosomal segments. A third type of mutations, that changes the amount
of DNA or the number of genes, usually has large effects on fitness (Stearns
and Hoekstra, 2000).

In organisms mutations occur at much higher rates in some parts of the
genome than others, and they can also be triggered by signals; but there
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is no correlation between their effect on the phenotype and a higher fitness
(Stearns and Hoekstra, 2000). (Had that been the case mutations would
have been a Lamarckian mechanism.) Mutations are random, and that is
the reason the promote genetic variation.

Mutation in computer systems is usually very idealized representations
of mutations in living organisms. For instance, the length of the genome
can seldom be affected by mutation. In my system I use a simple form of
bitwise mutation. Given a genome consisting of binary values, each bit is
flipped with a small probability. Usually the rate is somewhere between one
mutation per generation and one mutation per offspring (Eiben and Smith,
2003).

Figure 4: Bitwise mutation. (Eiben and Smith, 2003).

3.1.4 Selection and replacement

The selection process in genetic algorithms is an idealized representation of
natural sexual selection. Though there are examples of agent based genetic
algorithms that model sexual selection (Todd and Miller, 1993; J. Sanchez-
Velazco and J. A. Bullinaria, 2003), usually the process of two individual’s
seeking each other out for mating is abstracted away.

The most common method of selection in artificial systems is to rank the
individuals based on fitness and selecting individuals for reproduction prob-
abilistically based on their ranking. There are numerous selection methods,
each with different strengths and weaknesses.

Replacement is the process of exchanging old individuals in the population
with new individuals. Again there are numerous methods. The choice of both
the selection method and the replacement method, and the parameters used
for each method (for instance how many new individuals to generate and how
many old individuals to replace in each generation), will obviously affect the
selection pressure and thereby the genetic variation in the population (Eiben
and Smith, 2003).
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3.2 Adpative landscapes

The notion of an adaptive landscape originated in evolutionary biology, and
is much used also to describe the search space of the genetic algorithm.
(Jones, 1995) points out that even though genetic algorithms are based on
principles borrowed from biology, they can still be analysed as heuristic state
space search algorithms, and they are fully understandable as computational
phenomena.

Formally, an adaptive landscape is constituted by 1) a representation
space <, 2) a genetic operator, 3) a function (f) : M(<) → F for some set F,
and 5) a partial order >F over F. The adaptive landscape is the graph that
arises from this five tuple10 (Jones, 1995).

The height dimension stands for fitness while the other dimensions rep-
resent biological traits. See figure 5 for a generic adaptive landscape.

Figure 5: A generic adaptive landscape. (Eiben and Smith, 2003).

The attributes of an adaptive landscape requires the notion of a neigh-

10For further details and a formal definition of adaptive landscapes, see (Jones, 1995).
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bourhood. For instance, a peak is defined as a point which neighbours are of
less fitness. Other important attributes of landscapes include (Jones, 1995):

• Global optimum. A vertex which is at least as fit as any other possible
vertex.

• Local optimum. A vertex which is not a global maximum, but which
is fitter than all its neighbours.

• Plateau. A set of minimum two neighbour vertexes with the same
fitness.

• Mesa. A pleateu where no point on the plateau has a neighbour with
higher fitness.

When a landscape has several local optima it represents a multimodal
problem, whereas if it has only one point which is fitter than all its neighbours
it is known as a unimodal problem (Eiben and Smith, 2003). As we can see,
the ”ruggedness” of a landscape (the number of local optima) gives us an
intuitive notion of the complexity of the search space the genetic algorithm
operates in. Next, we turn to ways of specifically tune the ruggedness of an
adaptive landscape.

3.3 Kauffman’s NK fitness landscape

Kauffman’s NK landscape provides a way of defining a test landscape for
genetic algorithms where the complexity, or ”ruggedness”, of the search space
can be explicitly set. In the NK landscape each genome is a binary string
of length N. In addition a parameter K defines how many genes interact
with how many other genes (epistasis). Every possible combination of gene
interaction is assigned a random fitness value uniformly in the range [0.0,
1.0]. The values are stored in a lookup table with 2K+1 indexes. This is done
for every locus in the genome, and thus the number of fitness values equals
2K+1N (Back et al., 1997).

Fitness is computed by averaging the N fitness components Fi from each
locus. The value of each Fi is determined by its own allele xi and K other
alleles. Thus the overall fitness of a genome is:∑N

k=1 Fi(xi; xi1 , ..., xiK )

N

Kauffman investigated two strategies for choosing the genes a particular
gene interacts with: adjacant neighbourhoods and random neighbourhoods.
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Using the adjacant neighbourhoods the K bits next to the one in question
will contribute to a genes fitness; using random neighbourhoods the K bits
are chosen from the genome at random (Eiben and Smith, 2003).

Figure 6 shows the genome and the lookup table for the first locus in the
genome. Adjacent neighbourhoods is used. N = 5 (size of genome) and K
= 1 (number of other genes with which a gene interact). For this particular
genome, the fitness for the gene in the first locus is 0.45, since its neighbour
gene is 1, which leads us to the index {1,1} in the lookup table

Figure 6: The genome and the lookup table for an NK fitness landscape with
N = 5, K = 1

Since the NK fitness landscape is much used and fairly well understood (Eiben
and Smith, 2003), and since it offers a convenient way to tune the complexity
of a GA’s search space, I chose this model for my experiments.

3.4 Model

In this section I will describe the system I implemented to perform the ex-
periments.

I chose Python as the implementation language, due to its high level
characteristics. All classes are written from scratch, with two exceptions –
a support class that made it possible to implement singletons11 in Python,
and a library PyX which I use to generate graphs displaying the results.

In addition to a traditional genetic algorithm the system has the following
characteristics:

• An extra plasticity genome that codes for what alleles can be modified
by learning and not.

• A learning rule.

11A singleton is a class that can only be instantiated once.
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• A measure of the cost of learning.

• An expanded version of the NK fitness landscape where the global
optimum can be explicitly set.

3.4.1 Classes

The implementation consists of four main classes, depicted in figure 7.

Figure 7: Class diagram.

• GA is the main class, and it utilizes most of the other classes. By
instantiation this class sets parameters for genome size, number of in-
dividuals in the population, number of generations, and whether or not
learning will take place.
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• Population initializes all of the individuals in the population by instan-
tiating objects of the Individual class and assigning each Individual-
instance genomes of random values (both for the plasticity genome and
the main genome).

• Individual keeps track of its current fitness and its genotype and phe-
notype values. It also implements the learning rule.

• NK fitness landscape. In addition to implementing the original fitness
landscape with tunable epistasis, this class also have a method for
altering the landscape by defining a global optimum.

3.4.2 Representation

The representation for the model used in this thesis is binary; each allele will
have a value of 1 or 0. An individual’s phenotype is represented by a genome
which length can be set arbitrary, but for the experiments here I will use
the length 20. An individual’s genotype is represented by two genomes, one
’main genotype’ which will also be the individual’s initial phenotype, and
one ’plasticity genome’ which determines which alleles in the phenotype are
plastic. See figure 8.

Figure 8: Ordinary genome and plasticity genome.

Here, the first and the third alleles of the phenotype can be flipped during
learning, while the remaining alleles will be unchanged through the individ-
ual’s lifetime. This solution is inspired by works by (Puentedura, 2003;
Suzuki and Arita, 2004).

3.4.3 Crossover

Both one-point crossover and uniform crossover was implemented and tested.
There seemed to be little difference between them, so I ended up using uni-
form crossover. See 3.1.2 for details.
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3.4.4 Mutation

Simple random mutation was used. In an individual chosen for mutation,
20% of its bits were flipped (i.e. an allele with the value 0 would change to
a value of 1). This was applied to both the main genome and the plasticity
genome. The alleles that were flipped were chosen at random.

I experimented with two rates of mutation in the population, 0.05 and
0.25 (meaning that 5% or 25% of the population was chosen for mutation,
respectively). The results of this will be described later.

3.4.5 The learning rules and costs of learning

The learning rule is implemented as a simple random search in the NK fitness
landscape. Each learning trial consists of resetting all the plastic alleles in the
phenotype at once, and then evaluate the phenotype’s fitness. The default
maximum number of trials is 100.

The pseudo code is as follows:

currentPhenotype := genotype
bestPhenotype := currentPhenotype
trials := 0
WHILE i < maxNumberOfTrials DO

Reset all alleles in currentPhenotype at random
trials := trials + 1
IF fitness(currentPhenotype) > fitness(bestPhenotype) THEN

bestPhenotype = currentPhenotype
lastChange := trials

ENDIF
ENDWHILE

Two different schemes were used to compute the cost of learning: 1) ex-
plicit cost; and 2) continual assessment, where the cost of learning is implicit
(Mayley, 1996b).

The explicit cost of learning was calculated as follows:

originalFitness + ((currentFitness originalFitness) * (remainingTrials / maxNum-
berOfTrials)) - (learningCost * numberOfPlasticityGenomes / totalNumberOfGenomes)

In other words, an individual’s fitness is penalized proportionally to the
number of learning trials used and its degree of plasticity. For instance, if
an individual uses half of the available trials, half of the gain in fitness is
added. From this calculation is subtracted the proportion of plasticity alleles
in the phenotype, multiplied by a constant cost of learning. In sum, both
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the number of learning trials used and the degree of plasticity affects the
individual’s final fitness negatively.

The continual assessment scheme is taken from (Mayley, 1996b), and is
the average of the fitness scores achieved searching for best fitness, added to
the average of the fitness scores achieved after maximum fitness is found, for
100 (maximum) number of trials. If for instance an individual achieves the
highest fitness on the 10th trial, its fitness becomes the average fitness up to
the 10th trial added to the maximum acheivable fitness for the remaining 100
- 10 trials. In other words, the sooner an individual achieves its maximum
fitness, the better its final fitness becomes (Mayley, 1996b).

3.4.6 Selection and replacement

Tournament selection was used to select members of the population for mat-
ing. In each selection round, 30% of the population was sampeled randomly,
and the best member was chosen as a parent; this was repeated for each par-
ent selection. Replacement was done by simply replacing the worst 80% in-
dividuals in the population with the new individual’s created with crossover.

3.5 The modified NK landscape

A standard NK landscape where the N and K values could be set by pa-
rameters was created, with an adjacant neighbourhoods implementation of
epistasis (see section 3.3). In addition a method to insert a goal string in the
landscape was added. The goal string was assigned a fitness value of 1.0 if
reached.

There were two motivations for doing this: 1) With such a goal string
I could create the same ’needle in a haystack’-scenario as in Hinton and
Nowlan’s (1987) original experiment, while being able to explicitly set the
complexity of the landscape; and 2) defining such a goal string of maximal
fitness made it easy to assess how near a population was to reaching the
global optimum. Also, for the continual assessment learning rule, the global
optimum needed to be known; the only other method of getting this informa-
tion in a randomly created NK landscape would be to perform a exhaustive
search.

Also, a method to save and load the NK landscape to disk was imple-
mented. This way, the same landscape could be used for all the experiments
performed, assuring that random differences between the generated land-
scapes would not obscure the results.
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4 Experiments

4.1 Overview

I will here outline the experiments and shortly reiterate some of the main
points of the preceding sections as motivation for the set-ups.

Evolutionary simulations with and without learning will be run and the
results compared. A number of parameters will be measured. For experi-
ments without learning the following will be measured: fitness of best indi-
vidual in the population, average fitness in the population and fitness of the
worst individual in the population. Experiments with learning will measure:
phenotypic fitness of best individual (i.e. the fitness achieved after learning),
phenotypic fitness of worst individual, average phenotypic fitness, innate fit-
ness of best individual (i.e. the genotypic fitness, before learning), and best
innate fitness. In addition the degree of plasticity is measured; this is simply
the number of plastic alleles divided by the number of alleles in the genotype,
averaged for the whole population. To minimize random fluctuations, each
simulation is averaged over 10 runs. The Baldwin effect will be investigated
with relation to degree of learning, cost of learning, mutation rate, and the
complexity of the fitness landscape.

4.2 Simulations

4.2.1 Motivation

Hinton and Nowlan’s (1987) experiment does demonstrate that given a cer-
tain set-up, computational evolution can be expedited by adding a learning
rule. As I have shown, the experiment is designed in a way that initially
makes the learning rule much more efficient than the evolutionary search
(which in their set-up is initially uninformed and therefore in effect a ran-
dom search). It is still an open question whether the Baldwin effect occurs
in biology, and if so to what extent; and while Hinton and Nowlan do not
claim their model to be a valid representation of evolution in nature, others,
like Dennet (2003) and Maynard Smith (1987), have used the experiment to
support such a claim.

In any case, the experiment is doubtless very important as a first com-
puter simulation of the Baldwin effect. While it has been much discussed
and referred to, Puentedura (2003) points out that several possible critiques
of Hinton and Nowlan’s model have been little mentioned in the literature.
Puentedura (2003) expands the original model in several respects and demon-
strates that the model withstands the modifications. However, Puentedura
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(2003) points out that his model still operates on a one-dimensional fitness
landscape, and that it would be interesting to see how it would fare in a more
complex landscape.

In the next section I will describe an expansion of the original model that
incorporates this element. I have also incorporated Puentendura’s (2003)
expansion of an extra plasticity genome to deal with the so called coupled
genome problem. In Hinton and Nowlan’s (1987) model the allele that codes
for plasticity replaces the allele that codes for a fixed location, so that one
necessarily replaces the other. This can be remedied by using an extra plas-
ticity genome in addition to the ’main genome’.

Also of interest is the fact that Hinton and Nowlan do not use mutation
in their original experiment, only recombination. Furthermore it would be
interesting to see how the model would fare with different parameter settings
in a fitness landscape of tunable complexity.

4.2.2 Set-up

The fitness landscape – or if one wishes, simply the search space – of Hinton
and Nowlan’s (1987) model was indeed designed as a ’needle in the haystack’
space, a hit-or-miss search. My model is designed to obtain that characteris-
tic, but in a landscape with tunable complexity. This is done by constructing
a standard NK fitness landscape, which is then modified by inserting a ran-
dom goal string. The string is inserted in the landscape by modifying each of
the values in the lookup tables representing the fitness landscape, assigning
the index which corresponds to the goal string a fitness value of 1.0.

Firstly, this lets us see how the original model fares in a much more
complex landscape, with many local optima; secondly, this lets us tune to
what degree the goal string is hidden, how sharp of a spike the global optima
will be in the landscape. The latter is a function of the degree of epistasis (the
K value in the NK landscape). With lower values of K the global optima will
be more easily identified, which will lead the search towards it faster; with
higher values of K the search attains more of a hit-or-miss characteristic, and
it is possible for a phenotype to be quite close to the goal string, as measured
by Hamming distance, without this being reflected in its fitness.

A number of experiments were run on fitness landscape with the following
K values: 0, 4, 9, 14 and 19. For each landscape configuration the cost and
degree of learning were varied.

The following parameters were used for the genetic algorithm:

• Generations: 100

• Population size: 50
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• Crossover rate: 80%

• Mutation rate: Two set-ups were tested, 5% and 25% of the population
mutated, with 20% of mutated indivuals’ genomes changed.

Tournament selection was used, and for each generation the population
was sorted according to fitness and the worst 80% replaced with the new
individuals. The fixed cost of learning was set to either no cost (0.0), low
(0.05), medium (0.15), or high (0.3). Two different cost computations were
also used: explicitly set cost or implicit cost by continual assessment (see
section 3.4.5 for details).

4.3 Results

I here present selected graphs that illustrate the most important observations
from the runs. All the graphs from the runs and the data files are contained
in the attached file Results.rar.

4.3.1 No epistasis

With epistasis set to 0 the fitness landscape is unimodal, and while the search
space is not small (there are more than a million possible combinations of a
bit string of length 20), the search is informed. As can been seen in figure 9,
the genetic algorithm reaches the global optima in less than 10 generations.

None of the runs using learning faired better than the run without learn-
ing, and except for the run with cost-free learning, plasticity soon decreased
in the population. Neither did any of the runs with learning with associated
cost reach maximum fitness. To do this they would have had to produce
a phenotype which was identical to the genotype without utilizing learning.
For a representative graph of a learning run, see figure 10.

It is not surprising that learning was not advantageous in this fitness
landscape, since there is a strong correlation between fitness scores and the
overall closeness of phenotypes in this landscape. Since learning is performing
a local search, the benefits do not outweigh the costs. Still, plasticity per-
sisted in the population to some degree and was never extinguished. Later
this will be discussed in relation to genetic drift and mutation rates.

4.3.2 Medium epistasis

With epistasis set to 4 (K = 4 in the NK landscape), the run without learning
reaches peak fitness at about the 60th generation, with a score of 0.986, i.e.
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Figure 9: No learning, mutation 0.05, no epistasis.
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Figure 10: Learning with medium cost, mutation 0.05, no epistasis.

almost the global optimum (see figure 11). Learning without cost reaches op-
timum by the 40th generation, and also reaches a high fitness quicker than the
genetic algorithm without learning, so learning clearly enhances the search
when there are epistatic interactions among genes. Not surprisingly, when
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learning has no cost the innate fitness steadily decreases, while the degree of
plasticity increases; so the population rely more and more on learning (figure
12).
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Figure 11: Evolution without learning, mutation 0.05, K = 4.

Learning = 0.2, Learning cost = 0.0, K = 40
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Figure 12: Evolution with cost-free learning, mutation 0.05, K = 4.

When learning with low cost (0.05) was introduced, again a high fitness is
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reached sooner than with no learning. Here I also varied the mutation rate,
and found that it had a notable impact on both how fast a high fitness was
reached and on the degree of plasticity. With high mutation rates (0.25),
the phenotypes achieved higher fitness sooner. In addition, there was a more
noticeble selection in favour of plasticity early on in the evolutionary process,
which then again decreased before it again increased slowly. In this case the
plasticity curve was in accordance with what is expected in regards to the
Baldwin effect. With lower mutation rates (0.05) this tendency was not as
marked. See figures 13 and 14.

Learning = 0.2, Learning cost = 0.05, K = 4, Mutation = 0.050
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Figure 13: Evolution with low cost learning, mutation 0.05, K = 4.

With medium learning cost (0.15) there was also a noticable difference
in the rate of plasticity given different mutation rates. With a low mutation
rate of 0.05 learning was selected against early, and with this higher learning
cost this yielded a higher fitness initially than with a mutation rate of 0.25,
where learning was initially selected for, and then decreasing. See figure 15
and 16.

When the learning cost was set to 0.3, learning was deselected from the
outset, but did not diminish completely, and the overall fitness was, not sur-
prisingly, less than in the other runs. Learning with continual assessment
showed that learning was utilized early in the evolutionary prosess, but de-
creased after a while; overall fitness was not very high compared to the other
runs (see figure 17).

In a next series of experiments the epistasis was set to 9. This had a
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Learning = 0.2, Learning cost = 0.05, K = 4, Mutation = 0.250
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Figure 14: Evolution with low cost learning, mutation 0.25, K = 4.

Learning = 0.2, Learning cost = 0.15, K = 40
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Figure 15: Evolution with medium learning, mutation 0.05, K = 4.

noticeable effect on the run with evolution without learning, which reached
a maximum fitness of 0.724 compared to the score of 0.986 in the run with
epistasis 4. The best result was again not surprisingly achieved by the com-
bination of evolution and cost free learning, which peaked at a fitness score of

51



Learning = 0.2, Learning cost = 0.15, K = 4, Mutation = 0.250
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Figure 16: Evolution with medium cost learning, mutation 0.25, K = 4.

Learning = 0.2, Learning cost = Continual assessment, K = 40
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Figure 17: Evolution with learning and continual assessment, mutation 0.05,
K = 4.

0.929. Also, the fitness increased stepwise continously over 100 generations,
so had the experiment been run for further generations global optimum prob-
ably would have been achieved. See figure 18 and 19.

Learning with a cost of 0.05 also outperformed evolution without learn-
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Learning = 0.0, K = 90
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Figure 18: Evolution without learning, mutation 0.05, K = 9.

Learning = 0.2, Learning cost = 0.0, K = 90
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Figure 19: Evolution with no-cost learning, mutation 0.05, K = 9.

ing, and at least for the 100 generations the experiment was run, learning
continued to stay high. When the learning cost was increased to 0.15, with a
low mutation rate of 0.05, the combination of learning and evolution barely
outperformed evolution alone (with a final fitness of 0.731 and 0.725 respec-
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tively), though when learning was used a high fitness was achieved slightly
faster (see figure 20). However, when the the mutation rate was changed to
high (0.25), learning with cost 0.15 clearly outperformed evolution without
learning (see figure 21). Also, with the high mutation rate, an increase in
plasticity in the earlier generations, and an corresponding increase in phe-
notypic fitness, was marked; this was not the case with the lower mutation
rate.

As can be seen in figure 22, evolution with continual assessment learning
performed worst of all.

Learning = 0.2, Learning cost = 0.15, K = 90
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Figure 20: Evolution with medium cost learning, mutation 0.05, K = 9.

4.3.3 High epistasis

Runs with high degrees of epistasis includes K settings of 14 and 19. With
a K setting of 14 and low mutation rate (0.05) the no-learning run achieved
a max fitness score of 0.729. Not surprisingly, the cost-free learning run
achieved the highest result (0.788). Of all the learning runs with cost, the
low-cost learning was the only one to beat the no-learning search, with a
score of 0.762 (though learning algorithms with higher costs did increase
their fitness earlier). Learning with continual assessment as usual performed
worst.

When the mutation rate was increased to 0.25, though, the medium-cost
learning search beat the no-learning search, with a score of 0.739 (see figure 23
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Learning = 0.2, Learning cost = 0.15, K = 9, Mutation = 0.250
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Figure 21: Evolution with medium cost learning, mutation 0.25, K = 9.

Learning = 0.5, Learning cost = Continual assessment, K = 90

0.2

0.4

0.6

0.8

1

F
it

n
e
ss

F
it

n
e
ss

0 20 40 60 80 100 120

# Generations# Generations

Best fitness

Average fitness

Worst fitness

Plasticity

Average innate fitness

Best innate fitness

Figure 22: Evolution with continual assessment learning, mutation 0.05, K
= 9.

and 24); while when high mutation was utilized on low-cost learning search,
it performed slightly worse than with the lower rate of mutation. Here the
plasticity increased in the population and stayed relatively high for all the
100 generations. Higher mutation rates was also tested for the non-learning
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Learning = 0.2, Learning cost = 0.15, K = 140
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Figure 23: Evolution with medium cost learning, mutation 0.05, K = 14.

Learning = 0.2, Learning cost = 0.15, K = 140

0.2

0.4

0.6

0.8

1

F
it

n
e
ss

F
it

n
e
ss

0 20 40 60 80 100 120

# Generations# Generations

Best fitness

Average fitness

Worst fitness

Plasticity

Average innate fitness

Best innate fitness

Figure 24: Evolution with medium cost learning, mutation 0.25, K = 14.

search, and this yielded a slightly worse result (0.713 vs. 0.729).
With epistasis set to 19 each allele interacts with all other alleles in the

genome. Here evolution with no learning reached a maximum fitness of 0.698.
In comparison, cost-free learning did significantly better with a final score of
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0.781. Also low-cost learning (final fitness 0.721) and medium-cost learning
did better than evolution alone. With a mutation rate of 0.05, medium cost
learning scored 0.705; while it acheived 0.715 with a mutation rate of 0.25.
As usual high-cost learning and continual assessment perfomed worst.

4.3.4 The effect of mutation

As we have seen above, the effect of mutation turned out to be of importance
both for the overall fitness and for the ’rise and fall’ of plasticity in the
population. Also, learning tended to persist in the population to some degree.
(Suzuki and Arita, 2004) make the same observations, which they interpret
as an instance of learning protecting against ’genetic vulnerability’ caused
by mutation.

To further observe the effect of mutation, two lasts last experiments with
no mutation was run in landscapes with epistasis of K = 4 and K = 14. The
results are shown in figure 25 and 26.

Learning = 0.2, Learning cost = 0.15, K = 4, Mutation = 0.00
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Figure 25: Evolution with medium cost learning, no mutation, K = 4.

Comparing with the runs with mutation, we see that the lack of mutation
leads both to a decrease in overall fitness and more remaining plasticity. The
decrease in plasticity is markedly less for the runs without mutation.

With K = 4 the final plasticity degree in the population is 0.16 for the
run with no mutation. With a mutation rate of 0.05 the plasticity degree is
0.09; while with a higher mutation rate of 0.25 the plasticity degree is 0.11.
See figure 15 and 16 for a comparison.
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Learning = 0.2, Learning cost = 0.15, K = 14, Mutation = 0.00
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Figure 26: Evolution with medium cost learning, no mutation, K = 14.

The same holds true for the runs with K = 14. Here, the final plasticity
in the population is 0.17 without mutation. With a mutation rate of 0.05
the remaining degree of plasticity is 0.14; with a mutation rate of 0.25 the
final plasticity degree is 0.11. See figure 23 and 16.

While both high and low rates of mutation lead to less remaining plasticity
than without mutation, for smaller values of K low mutation rates leads to
less remining plasticity than higher mutation rates – while the opposite is
true for high values of K. (This is confirmed be also looking at the results
for the other runs. In the case of K = 9 a low mutation rate leads to a
lower plasticity in the population (0.12 for low mutation versus 0.16 for high
mutation); while in the case of K = 19 the situation is the opposite (0.12 for
low mutation versus 0.11 for high mutation).

Suzuki and Arita (2004) suggest that learning persists to protect against
genetic vulnerability caused by mutation, but as we can see, in complex
fitness landscapes mutation leads to a lower degree of remeining plasticity,
so this cannot be the full explanation. This will be discussed in more detail
in section 5.1.5.

4.4 Observations

The following is a short summary of the observations, and will be elaborated
on in the next section:
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• Learning is more important with higher epistasis.

• Higher mutation rates significantly affects overall fitness and plasticity
rates. It also yields the typical ’rise and fall’ of the plasticity graph.

• Regardless of high mutation rates, some plasticity persists.

• Continual assessment did not work out well, as it seems to yield too
high a cost of learning.

• The specific paramter tuning and the choice of genetic operators seem
to play an important part regarding how learning affects evolution.
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5 Discussion

5.1 Analysis

The experiments performed does show that learning can have a positive effect
on evolution, i.e. that the Baldwin effect occurred. This was as expected,
and in accordance with several earlier works (Hinton and Nowlan, 1987;
Nolfi et al., 1994; Ackley and Littman, 1992; Mayley, 1996a; Puentedura,
2003; Suzuki and Arita, 2004). However, several factors contributed to the
effect of learning.

Firstly, learning did not speed up evolution in unimodal fitness landscapes
(K = 0). The reason is that in such ’smooth’ landscapes the genetic algorithm
has enough information to perform an efficient search without the help of
learning, which would achieve worse fitness because of the associated costs.
In fact, when cost-free learning was introduced it reached optimum only
one generation before the no-learning run (59 versus 60 generations), so the
benefit was marginal.

When epistasis was increased though, learning did have a positive impact
on evolution, but only for relatively small costs of learning. For example, in
the case of epistasis = 9 learning with low cost (0.05) outperformed evolution
alone, while learning with a medium cost (0.15) did not outperform evolution
with the standard mutation rate. However, when higher mutation rates
were used, it did outperform evolution alone, and the tendency to an initial
increase and a later decrease in learning, associated with the Baldwin effect,
was more marked. Learning became more important as the complexity of
the landscape increased (higher K-values).

5.1.1 The degree of plasticity

As shown in the section describing the results, the classical ’rise-and-fall’
associated with the Baldwin effect was observed to a certain extent, but in
many cases the change in plasticity was rather subtle. All in all, the rise in
plasticity initially and the decrease caused by genetic assimilation was lower
than expected.

Probably, this is related to genetic drift and ’hitch-hiking’ because of the
small population size (50 individuals) (Harvey, 1993). However the change
in plasticity over generations was more marked in runs with higher mutation
rates, which is elaborated in section 5.1.5.
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5.1.2 Innate fitness

As a consequence of the relativley low genetic assimilation, in runs with
learning the population tended to rely on learning, and the innate fitness was
overall lower in these runs than in the runs without learning. This indicates
that while genetic assimilation did uccur to some extent, it did not result in
an optimal balance between plasticity and instinct. Again, this is probably
connected to a lack of genetic variation caused by the low population size.

5.1.3 Learning and its costs

In my series of runs, learning turned out to benefit evolution only with low or
medium learning costs. Obviously, the choise of learning costs is somewhat
arbitrary and made to illustrate a point; there is no way of estimating to what
degree these costs, or the way of computing them, corresponds to the costs
of learning in nature, which of course are vastly more varied and complex.

Regarding the computation of the learning costs, two measures were used
to penalize learning: 1) he number of learning trials used; and 2) the number
of plastic alleles. In fact 1) would implicitly also measure 2), because the
more plastic alleles, the more learning trials an individual would be likely to
use before improvement siezed. Maybe a smaller penalty of learning would
have lead to a more marked increase of plasticity early in the evolutionary
run.

The continual assessment scheme turned out to be too costly in this
model, and lead to decrease in plasticity early in the evolutionary run.

5.1.4 Neighbourhood correlation

As explained in section 2.4.2, for learning to have an effect on evolution
there need to be a neighbourhood correlation between the phenotype and
the genotype. In this experiment the phenotype and genotype had the same
representation, bit strings.

The neighbourhood correlation therefore is the Hamming distance be-
tween a phenotype changed by its moves in the phenotypic space versus a
genotype moving in genotypic space. Initially a couple of test runs with an
initial learning rate of 50% was tested (i.e. 50% of the phenotype was plas-
tic) as opposed to the 20% plasticity I ended up using, but even with the
lowest learning cost, plasticity very soon decreased in this scenario. This is
probably because the neighbourhood correlation became too weak, i.e. the
phenotype could change so much that it to very little extent could inform
the evolutionary search.
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5.1.5 The importance of mutation

In these experiments, two different mutation rates were tested, 0.05 and 0.25
(meaning that 5% or 25% the population was mutated). When an individual
is selected for mutation, 20% of the bits in the genome (both the ordinary
genome and the platicty genome) are flipped. Also, for medium cost learning
with K = 4 and K = 14, runs with no mutation were conducted; these
simulations showed that the lack of mutation lead to lower changes in the
degree of plasticity, and also to worse fitness in the population.

To summarize the results with regards to mutation rates:

• For low and medium cost learning high mutation rates tends to increase
fitness.

• Higher fitness is reached in fewer generations when high mutation rates
are used.

• Higher mutation rates leads to a more marked tendency to the ’rise-
and-fall’-curve of plasticity associated with the Baldwin effect.

The above indicates that the higher fitness achieved with higher muta-
tion rates is connected to the degree of learning. To test this, high versus
low mutation rates were tested for evolution without learning on a fitness
landscape of K = 14, and as mentioned in section 4.3.3, in this case the run
with a high mutation rate performed slighlty lower than the run with a low
mutation rate (0.729 for low mutation; 0.713 for high mutation).

Higher mutation rates made the most difference in landscapes with a K
value of 9 and a medium learning cost. Here, the maximum fitness of the
high-mutation run was 0.845 versus 0.731 for the low-mutation run.

There is much discussion about the role of mutation in genetic algorithms,
not to say of the role of mutation in nature (where its actual rate and im-
pact is often hard to estimate). An evolutionary search needs to maintain
a balance between on the one hand retaining good solutions, and on the
other coming up with novel solutions. Mutation can enhance the latter by
increasing the genetic variation in the population (Seymour, 1994).

In evolution with small population sizes genetic drift, random fluctua-
tions, and hitch-hiking are common problems. Hitch-hiking is the tendency
of one or a few individuals initially receiving high fitness scores to dominate
the population for a number of generations. The 1s and 0s in the fittest
individual’s plasticity genomes will have a tendency to dominate the gene
pool when the selection preassure is high: their genes so to spek hitch-hike
into later generations. Later, if the selection preassure decreases (because
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of full or partial convergence on a local optimum), this decreases the ge-
netic variation the population (Harvey, 1993). Mutation can counteract this
tendency.

As shown in section 4.3.4, high mutation rates tended to yield less plas-
ticity in the end of runs for high values of K than did low mutation rates,
and overall higher mutation lead to both higher phenotypic fitness and innate
plasticity. One explanation could be that in fitness landscapes with a higher
degree of epistatic interaction random learning would take more trials to find
a better phenotype, thus yielding a higher learning cost. Also, because of the
epistasis there is a greater distance between phenotypic and gentoypic space,
so that a good solution found by learning is less likely to have smoothed the
fitness landscape. Higher mutation rates might aid evolution in discovering
these factors as a result of more genetic variation in the population.

In summary, it seems that with higher mutation rates the evolutionary
search was better able to identify the effect of learning, as higher mutation
rates could counteract the lack of genetic variation in the population.

5.1.6 Evaluation

In fitness landscapes with epistasis, learning turned out to benefit evolution
to some degree: higher fitness was reached earlier and best fitness at the
end of the run tended to outperform the result of evolution alone. However,
the average innate fitness in the learning-runs were usually lower than in the
runs without learning.

This indicates that while the first step of the Baldwin effect, an enhance-
ment of the evolutionary search took place, the population tended to rely on
learning, and the degree of genetic assimilation was low. The persistence of
plasticity in the evolution was a symptom of this.

In a comparable experiment Suzuki and Arita (2004) observed the same
persistence of plasticity, but they propose a different explanation, that learn-
ing functions as a barrier against genetic vulnerability in the population
caused by mutation. I suggest a different explanation: That the persistence
of learning is caused by a lack of genetic variability in the population, prob-
ably to a large extent due to the small population size (50 in my experiment
and 20 in Suzuki and Aritas (2004) experiment). As I have outlined in the
previous section, mutation can mitigate this effect by introducing greater
genetic variation in the population.
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5.1.7 The layers of abstraction

I want to stress that this simulation of the interaction of learning and evo-
lution is highly abstract on several levels. Perhaps it is not so much an
improvement on other models as it is an illustration of the arbitrariness
with regards to the choice of genotypic/phenotypic representation, opera-
tors, learning rules and parameter setting. In particular the genotype to
phenotype mapping is very simple, and far from the complexities of nature.
Also, the fitness measure is abstract and not endogenous to the individuals.

In my view the model is not grounded enough in biology to serve as
any form of empirical evidence – or even suggestion – regarding the Bald-
win effect in nature. I do believe though, that the model does illustrate
some points with regards to the relationship between learning and evolu-
tion in search landscapes of different complexity (i.e. different degrees of
epistatic interaction), and it sheds some light of the importance of mutation
in learning-evolution models.

5.2 Choise of operators and parameter tuning

There are considerable differences between the implementations I have dis-
cussed in this thesis. The choice of genome representation, and recombina-
tion and mutation operators varies. In some experiments, like Hinton and
Nowlan’s (1987), recombination is the only genetic operator used; while in
others, like Parisi et al.’s (1992), only mutation is used12.

The parameter settings for the evolutionary algorithm and the learning
rule also vary considerably. Hinton and Nowlan (1987) use a population size
of 1000 and a maximum number of learning trials of 1000, and observe an
increase of innate fitness after about 15 generations; while for instance Suzuki
(2004) use a population size as small as 20, a maximum number of learning
trials of 5, and observe an increase in innate fitness only after approaching
10,000 generations. Likevise the complexity of the landscape varies.

Of particular importance is the balance between the search of the genetic
algorithm and the learning rule. Given a learning rule that is more pow-
erfull than the genetic search (relative to a certain time periode), learning
is obviously more likely to be selected for and a pronounced Baldwin effect
more likely to occur. This was the situation in Hinton and Nowlan’s (1987)
experiment. Also, the topology of the search landscape might be such that
the local search of learning will be more of a fine tuning of an approximate
optimum which the more gross evolutionary search is not able to adjust to.

12In (Nolfi and Floreano, 2004) the autors recommend using only mutation when evolv-
ing ANNs because they find it to be the most efficient.
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When evaluating an experiment it is important to take into consideration
the different parameter settings used. As Mayley (1996b) has pointed out, it
is of particular importance to consider the correlation between genotypic and
phenotypic space. Also of importance is considering the relative powerfullness
of learning versus genetic operators.

In my series of experiments, the degree of mutation turned out to be an
important factor with regards to the effect of learning on evolution; but this
still might be related to other implementation factors such as population size,
selective preassure, recombination method, etc. Distinguishing the effect of
the different operators and parameters is difficult because of their interaction.

There is a possibility that the Baldwin effect can be observed after exten-
sive parameter-tuning, and there is seldom much reference to the similarities
with natural evolution in nature (often because too little is known, for in-
stance about the role of mutation). Therefore there is a danger of the models
being fine-tuned to demonstrate the effect, while other configurations might
have proven less convincing results regarding the Baldwin effect.

5.3 Models, simulations and the scientific method

5.3.1 Modelling nature

As I have argued in section 2, it is often unclear whether simulations of the
Baldwin effect are intended to illustrate general search properties, or whether
they are intended as empirical claims about evolution and ontogeny13 in
nature. References to biological phenomena are common, but the mapping
between nature and the model is seldom discussed in detail.

In an assessment of the scientific status of artificial life, (Noble, 1997)
argue for a distinction between an analytic and a synthetic approach in ALife.
The analytic approach is the method of using computer programs to prove
the logical implications of a set of assumptions; the synthetic approach claims
that the assumptions in the system have empirical relevance. Noble (1997)
argues that an important methodological problem in ALife is the confusion
between analytic and synthetic approaches.

Since ALife simulations are computer programs, and since computer pro-
grams are conjunctions of mathematical and logical statements, the result
of ALife simulations has a primarily analytic quality. Computer programs
are by definition deterministic, and the fact that we cannot predict their
result without actually running them does not preclude this (Noble, 1997).
Among certain AI/ALife enthusiasts there exists a tendency to assume that

13The developmental history of an individual.
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using biologically inspired methods, such as artificial neural networks or ge-
netic algorithms, makes computer systems more biological, or even life-like,
in a qualitative way. This of course is not the case. In his refutation of the
various attempts at smouldering his Chinese Room, Searle clearly demon-
strates the absurdity of such an idea (Searle, 1992, 1997).

Noble (1997) argues that while ALife simulations can be used to post
empirical hypothesises, they cannot at the same time be used as proving
ground for these claims – they must refer back to the world. Also, ALife
experiments can be used to assess the logical coherence of pre-existing em-
pirical theories. Good empirical ALife depends upon the generation of good
hypothesis; the researcher must be able to identify the similarities between
real-world phenomena and the result of a simulation. Knowledge of the real
world domain is important also in selecting the analytical assumptions; AL
hypothesis must be relevant with regards to the real-world domain (Noble,
1997).

The problem with simulating the Baldwin effect is that there is no real-
world empirical data to use as validation, as the Baldwin effect is still a
theoretical hypothesis in evolutionary biology. Of course, the lack of real-
world empirical data, and the difficulty of obtaining it, is in many ways
the very reason for using computer models. But had empirical data been
available, a computer model could have been validated against the real world
observations, and then elaborated on to make set up experiments one were
not able to observe in the real world. In the lack of such verification, the best
one can do using computer models is to account for the resemblance between
the model and the real world phenomenon; but to quantify that resemblance
is often hard. Genetic algorithms, though biologically inspired, necessarily
strip away a lot of biophysical phenomena (transcription, protein synthesis,
meiosis etc.) (Mitchell and Forrest, 1994). The challenge is to identify where
the AL model is general enough to tell us something about certain conditions
and the emergence of certain behaviours or other qualitative properties.

On a more philosophical level, ALife is of course prone to all the usual
criticisms of computationalism. The emergent phenomena observed in com-
puter simulations are dependent on our interpretations of them; they do not
exist on an independent basis. Even more so, they exist because we cre-
ated them. Risan (1997) points at an important paradox in ALife: When
interpreting the experiments the researchers assumes the scientific objective
position, while ’the nature they study [is] so obviously constructed’ (Risan,
1997, p. 11).
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5.3.2 Validity and reliability

Two well agreed upon measures of the soundness of science is validity and
reliability. As I have shown, it is hard to validate the results of computer
simulations of the Baldwin effect, as there is scant empirical evidence of the
phenomenon in nature.

However, it is possible to measure the degree of reliability between dif-
ferent simulations, though an important prerequisite is that the details of
the set-up and the implementation and parameter settings are clearly stated.
The degree of consistency between simulations, or the lack thereof, is an
important indicator of the soundness of the research conducted.

Likewise, it is essential to discuss the consistency between the interpreta-
tion of results. At the time being, there seems to be quite a bit of disagree-
ment between different researchers as to how to interpret the results. The
different interpretations of the relationship between the learning task and the
evolutionary task, described in section 2.3.4, serves as an example.

In my interpretation of the experiments implemented in this thesis, I ob-
served much the same results regarding the persistence of learning as (Suzuki
and Arita, 2004), but my interpretation and explanation of the results differ
from theirs. To achieve sound research I think it is important to highlight
such differences when they occur. This way, they can be critically discussed
and compared, which I think is an important part of staking out a way for a
more unified research paradigm on the Baldwin effect.
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6 Conclusion

In this thesis I have given an account of the Baldwin effect as it is perceived in
both evolutionary biology and in computer science/ALife. I have shown that
there is a difference in the perception of the phenomenon: In evolutionary
biology there is much discussion about what the Baldwin effect actually is, or
whether it exists at all; while in ALife research the Baldwin effect tends to be
perceived as less problematic, which is supported by numerous experiments
confirming the positive effect of learning on evolution.

However, as my literature survey has shown, there is confusion as to
how to define the Baldwin effect and what elements constitutes it. Early
experiments tended to focus on the benefits of learning. The set-ups in
the experiments are varied, with quite different choices regarding genetic
operators, learning rules and evolutionary parameters. These are all factors
which affect the outcome of the experiments and should be clearly accounted
for and critically discussed.

The level of abstraction in the computer simulations is obviously very
high. This makes it hard to measure the explanatory value of the models
for the Baldwin effect in nature, though investigating the Baldwin effect as a
computational search problem in itself is also of interest. Still, the intention
of the experiments should be clearly stated, in particular with regards to
whether the approach is intended to be analytical or empirical.

The results of the computer simulations are often interpreted differently
or even contradictory, which is one of the symptoms of the confusion sur-
rounding the Baldwin effect also in ALife; but this problem area is often
under-communicated in the literature. It would probably be healthy for the
field if a stronger focus was placed on the differing interpretations and un-
derstandings, which should be critically discussed.

A simulation of the effect of learning on evolution was implemented in a
fitness landscape of tunable complexity. An extra plasticity genome was used
for the evolution of plasticity itself. The experiment was run with several
different parameter settings. In some areas the results were in accordance
with earlier observations; in particular, learning proved advantageous in more
complex fitness landscapes and a higher fitness was reached in fewer genera-
tions. While genetic assimilation, which is an important second step in the
Baldwin effect, was observed, its effect was not strong. The simulations us-
ing learning tended to outperform no-learning trials if the learning costs were
set relatively low, but the average innate fitness of the population was often
worse than was the case for the non-learning trials.

This was interpreted as a consequence of the population continuing to rely
on learning because of a lack of genetic variability, probably caused by a low
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population size resulting in genetic drift and hitch-hiking. I found that higher
rates of mutation counteracted this tendency and contributed to a more
pronounced Baldwin effect, with the classical rise-and-fall of the plasticity in
the population. This interpretation differs from Suzuki and Aritas (2004),
who also observed persistence of learning, but interpreted it as a mechanism
against genetic vulnerability caused by mutation. I suggest that the problem
is not so much genetic vulnerability as a lack of genetic variation caused by
a small population size. This is in accordance with my observation that the
persistence of plasticity was less pronounced when mutation rates were high.

The confusion surrounding the Baldwin effect notwithstanding, it is an
important and indeed interesting theory in evolutionary biology. As it is
hard to validate the theory in nature, computer simulations represents one
source of information, but they should be interpreted with great care. The
level of abstraction is very high on several levels, and the models are often
implemented quite differently. One way of trying to improve the soundness
of the research on the Baldwin effect in ALife is to focus on the reliabilty of
the simulations and of the coherence of the interpretations.
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7 Appendix

7.1 Source code

from random import *

from Individual import Individual

from NKLandscape import *

class Population(object):

def __init__(self, genomeSize, populationSize, learningRate, learningCost):

self.size = populationSize

self.genomeSize = genomeSize

self.population = []

self.alleles = [1,0]

self.learningCost = learningCost

i = 0

j = 0

self.plasticityAlleles = []

while i < self.genomeSize:

while j < learningRate:

self.plasticityAlleles.append(1)

i += 1

j += 1

self.plasticityAlleles.append(0)

i += 1

def initialize(self):

"""

Makes a population of self.size individuals. Two genomes are constructed,

one genotype and one plasticity genome. The value of alleles are chosen randomly.

"""

i = 0

j = 0

for i in range(self.size):

genome = []

plasticity = []

for j in range(self.genomeSize):

genome.append(choice(self.alleles))

plasticity.append(choice(self.plasticityAlleles))

self.population.append(Individual(genome, plasticity, self.learningCost))

return self.population

from NKLandscape import *

from random import *

from Numeric import *

import copy

class Individual:

def __init__(self, genome, plasticity, learningCost):

self.genotype = genome

self.phenotype = copy.deepcopy(genome)

self.plasticity = plasticity

self.trials = 0

self.maxFitness = 1.0

self.learningCost = learningCost

self.fitness = gLandscape.fitness(genome)
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self.maxTrials = 100

def setPlasticityGenome(self, plasticity):

self.plasticity = plasticity

def setGenotype(self, genotype):

self.genotype = genotype

def getPlasticityGenome(self):

return self.plasticity

def getGenotype(self):

return self.genotype

def getPhenotype(self):

return self.phenotype

def getGoal(self):

return self.goal

def getFitness(self):

return self.fitness

def getPlasticity(self):

return self.plasticity.count(1)

def plasticityIndex(self):

index = []

for i in range(len(self.plasticity)):

if self.plasticity[i] == 1: # is the genome plastic?

index.append(i) # then add it to the index

return index

def computeFitness(self, trials):

originalFitness = gLandscape.fitness(self.genotype)

currentFitness = gLandscape.fitness(self.phenotype)

nPlasticityGenomes = self.getPlasticity()

genomeSize = len(self.genotype)

return originalFitness + ((currentFitness - originalFitness)

* ((self.maxTrials - trials) / float(self.maxTrials))) - (self.learningCost *

(nPlasticityGenomes / float(genomeSize)))

def learn(self): # learnRandom

"""

Performs a random search in the space of the plastic alleles. A cost

based on number of learning trials is extracted from the final fitness.

"""

# First we have to see if the pehnotype is plastic at all.

if self.getPlasticity() < 1:

self.fitness = gLandscape.fitness(self.genotype)

else:

index = self.plasticityIndex()

max = gLandscape.fitness(self.phenotype)

lastChange = 0

trials = 0

best = copy.deepcopy(self.phenotype)

test = copy.deepcopy(self.phenotype)

while trials < self.maxTrials:

for j in index:

test[j] = choice([0,1])

#self.phenotype[j] = choice([0,1])

f = gLandscape.fitness(test)
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#f = gLandscape.fitness(self.phenotype)

trials += 1

if f > max:

max = f

lastChange = trials

best = copy.deepcopy(test)

self.phenotype = copy.deepcopy(best)

self.fitness = self.computeFitness(lastChange)

return self.fitness

def learnC(self): #learnContinualAssessment

"""

Continual

"""

# First we have to see if the pehnotype is plastic at all.

if self.getPlasticity() < 1:

self.fitness = gLandscape.fitness(self.genotype)

else:

self.fitness = gLandscape.fitness(self.genotype)

# first find index of every plastic allele in genome

index = self.plasticityIndex()

max = gLandscape.fitness(self.phenotype)

lastChange = 0

fitnessScores = []

trials = 0

best = copy.deepcopy(self.phenotype)

test = copy.deepcopy(self.phenotype)

while trials < self.maxTrials:

for j in index:

test[j] = choice([0,1])

f = gLandscape.fitness(test)

fitnessScores.append(f)

trials += 1

if f > max:

max = f

lastChange = trials

best = copy.deepcopy(test)

self.phenotype = best

searchFitness = 0

count = 0

for i in range(lastChange):

searchFitness += fitnessScores[i]

searchFitness = searchFitness / self.maxTrials

optimalFitness = 0

for i in range(lastChange, self.maxTrials):

optimalFitness += fitnessScores[i]

optimalFitness = optimalFitness / self.maxTrials

self.fitness = optimalFitness + searchFitness

return self.fitness

from random import *

from Numeric import *

from __future__ import division

import Singleton

class NKLandscape(Singleton.Singleton):

"""
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Kaufman’s NK fitness landscape.

"""

def __init__(self, n, k):

"""

n (int) => length of genome

k (int) => degree of epistasis

"""

self.n = n

self.k = k

self.fitnessTable = []

self.previousNeedle = []

self.globalOptima = False

def makeLandscape(self):

self.__makeTable()

def setGlobalOptima(self, g):

self.globalOptima = g

def setN(self, n):

self.n = n

def setK(self, k):

self.k = k

def __epistasisTable(self):

"""

Creates table of allele interaction of length 2^(K+1).

Each possible alelle permutation is assigned a uniform random number

in [0.0,1.0].

<= (dict) epistasis

"""

length = pow(2, (self.k + 1))

epistasis = {}

for i in range(length):

epistasis[i] = uniform(0.0,1.0)

return epistasis

def __makeTable(self):

"""

Creates a table of length N which points to the table of epistasis for

each allele.

"""

table = []

for i in range(self.n):

table.append(self.__epistasisTable())

self.fitnessTable = table

def makeIndex(self, individual):

"""

Takes a genome and constructs the index of alleles for the genome.

=> genome (list) binary bitstring

<= index (list) index for the alleles of the genome

"""

length = len(individual)

index = []

for i in range(length):

# combine i with its k neighbours

string = str(individual[i])

for j in range(self.k):
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pos = i + j + 1

if pos < length:

string += str(individual[pos])

else: # we need to wrap around the string

pos = pos - length - 1

string += str(individual[pos])

index.append(string)

return index

def fitness(self, individual):

"""

Returns the fitness of an individual. We use ajacant neighborhoods.

individual (array) => array of 1 and 0

<= fitness (real)

"""

# First we need to construct index of ajacant alleles

index = self.makeIndex(individual)

# Traverse index and get fitness

sum = 0

for i in range(len(index)):

dec = int(index[i],2) # convert the bit string to decimal

epistasis = self.fitnessTable[i]

sum += epistasis[dec]

if individual == self.globalOptima: # FIXME: Ugly hack to hide the needle

return 1.0

else:

return sum / len(index) #self.n

def hideNeedle(self, needle):

"""

Changes the NK lanscape so that genomes corresponding to needle

will be rewarded with optimal fitness (1.0).

=> needle (list) bitstring of {1,0}

<= void

"""

# Is there already a needle in the landscape? Then romove it.

if self.previousNeedle != []:

self.removeNeedle(self.previousNeedle)

self.previousNeedle = needle

# Get the epistasis index for each gene in the genome

index = self.makeIndex(needle)

# for each table replace index with max fitness 1.0

for i in range(len(index)):

dec = int(index[i],2) # convert the bit string to decimal

self.fitnessTable[i][dec] = 1.0

def removeNeedle(self, needle):

index = self.makeIndex(needle)

# for each table replace index with max fitness 1.0

for i in range(len(index)):

dec = int(index[i],2) # convert the bit string to decimal

self.fitnessTable[i][dec] = uniform(0.0,1.0)

def saveLandscape(self):

""" Saves the current landscape to file. """

file = open(’landscape.txt’,’w’)

metadata = "# N = " + str(self.n) + " K = " + str(self.k) + ’\n’

file.write(metadata)

for epistasis in self.fitnessTable:

line = ""
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for j in range(len(epistasis)):

value = str(epistasis[j])

line += value + ","

file.write(line + ’\n’)

file.close()

def loadLandscape(self):

"""

Loads the current landscape from file. If a landscape is already

initialized, it will be replaced by the landscape from file.

"""

file = open(’landscape.txt’,’r’)

file.readline().strip() # disregard first line because its metadata

newFitnessTable = []

for line in file.readlines():

values = line.split(’,’)

values.pop() # remove last element because it’s a newline sign

epistasis = {}

j = 0

for v in values:

v = float(v.strip())

epistasis[j] = v

j += 1

newFitnessTable.append(epistasis)

file.close()

self.fitnessTable = newFitnessTable

class GA:

"""

The genetic algoritm. Initializes a population, creates the fitness landscape

and evolves.

"""

def __init__(self, n=20):

self.results = ’’#[]

self.population = []

self.genomeSize = n

self.learningCost = False

self.tournamentSize = 0.10

self.learning = int(self.genomeSize * 0.5)

def setLearningRate(self, rate):

self.learning = int(self.genomeSize * rate)

def setTournamentSize(self, size):

self.tournamentSize = size

def setLearningCost(self, cost):

self.learningCost = cost

def setGenerations(self, nGenerations):

self.generations = nGenerations

def setPopulation(self, nPopulation):

self.populationSize = nPopulation

def setMutationRate(self, mRate):

self.mutationRate = int(round(self.populationSize * mRate))

79



def setCrossoverRate(self, cRate):

self.crossoverRate = cRate

def setGenomeSize(self, gSize):

self.genomeSize = gSize

def initialize(self):

"""

Generates populationSize number of individuals. Creates an NK

fitness lanscape.

"""

p = Population(self.genomeSize, self.populationSize, self.learning, self.learningCost)

self.population = p.initialize()

def randomMutation(self, string):

"""

0.2 of the bitstring is flipped.

"""

def flip(bit):

if bit == 1:

return 0

else:

return 1

length = len(string)

nFlips = int(round(length * 0.2))

index = range(length)

shuffle(index)

for i in range(nFlips):

#newValue = choice([0, 1])

#string[index[i]] = newValue

string[index[i]] = flip(string[index[i]])

return string

def onePointCrossover(self, p1, p2):

"""

Creates two children.

=> p1, p2 individuals

"""

def combine(g1, g2, point):

g1 = g1[:point]

g2 = g2[point:]

return g1 + g2

# choose two random corssoverpoints

genotypeLength = len(p1.getGenotype())

gPoint = choice(range(genotypeLength -1))

pPoint = choice(range(genotypeLength -1))

genotype1 = combine(p1.getGenotype(), p2.getGenotype(), gPoint)

genotype2 = combine(p2.getGenotype(), p1.getGenotype(), gPoint)

plasticity1 = combine(p1.getPlasticityGenome(), p2.getPlasticityGenome(), pPoint)

plasticity2 = combine(p2.getPlasticityGenome(), p1.getPlasticityGenome(), pPoint)

learningCost = p1.learningCost

child1 = Individual(genotype1, plasticity1, learningCost)

child2 = Individual(genotype2, plasticity2, learningCost)

children = []

children.append(child1)

children.append(child2)

return children

def uniformCrossover(self, p1, p2):
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"""

Each allele in child is randolmly choosen from one of the parents.

=> p1, p2 individuals

<= child indivudal

"""

def combine(s1, s2):

""" Returns s1 and s2 combined randomly """

comb = []

for i in range(len(s1)):

if choice([0,1]) == 0:

comb.append(s1[i])

else:

comb.append(s2[i])

return comb

genotypeLength = len(p1.getGenotype())

genotype1 = p1.getGenotype()

genotype2 = p2.getGenotype()

plasticity1 = p1.getPlasticityGenome()

plasticity2 = p2.getPlasticityGenome()

childPlasticity = combine(plasticity1, plasticity2)

childGenotype = combine(genotype1, genotype2)

learningCost = p1.learningCost

child1 = Individual(childGenotype, childPlasticity, learningCost)

childPlasticity = combine(plasticity2, plasticity1)

childGenotype = combine(genotype2, genotype1)

child2 = Individual(childGenotype, childPlasticity, learningCost)

children = []

children.append(child1)

children.append(child2)

return children

def tournamentSelection(self, tournamentSize):

"""

Chooses one parent for crossover.

Returns the index of the parent.

"""

index = False

def winner(disorder):

"""

Returns index to the best individual.

"""

max = 0

best = False

for i in disorder:

#fitness = gLandscape.fitness(self.population[i].getPhenotype())

fitness = self.population[i].fitness

if fitness >= max:

max = fitness

best = i

return best

# pick k individuals randomly

disorder = range(self.populationSize)

shuffle(disorder)

disorder = disorder[:tournamentSize]

# pick the best individual

return winner(disorder)
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def sortPopulation(self):

"""

Sorts the population, individuals with highest fitness first.

"""

def numericCompare(x, y):

""" Help-function for sorting."""

if x>y:

return 1

elif x==y:

return 0

else:

return -1

self.population.sort(lambda x, y: numericCompare(y.fitness, x.fitness))

def test(self):

"""

Tests the current generation’s fitness.

"""

bestInnate = 0.0

best = 0.0

sum = 0.0

innateSum = 0.0

worst = 1.0

plasticity = 0.0

for i in self.population:

fitness = i.fitness

if fitness > best: best = fitness

if fitness < worst: worst = fitness

innateSum += gLandscape.fitness(i.getGenotype())

innateFitness = gLandscape.fitness(i.getGenotype())

if innateFitness > bestInnate: bestInnate = innateFitness

sum += fitness

plasticity += i.getPlasticity()

average = sum / self.populationSize

innateAverage = innateSum / self.populationSize

averagePlasticity = (plasticity / float(self.populationSize)) / float(self.genomeSize)

if self.learning:

self.results += str(best) + ’ ’ + str(average) + ’ ’ + str(worst) + ’ ’ + str(averagePlasticity) + ’ ’ + str(innateAverage) + ’ ’ + str(bestInnate) + ’\n’

else:

self.results += str(best) + ’ ’ + str(average) + ’ ’ + str(worst) + ’\n’

return best

def learn(self):

"""

Makes every individual in the population perform learning.

"""

for ind in self.population:

ind.learn()

def nextGeneration(self):

"""

Makes self.crossoverRate number of children.

"""

children = []

self.sortPopulation()

for i in range(int(self.crossoverRate / 2)): # Denne slik mens vi tester ut

# choose two parents

tSize = int(self.populationSize * self.tournamentSize)

#self.population = self.operators.linearRank(self.population)

index1 = self.tournamentSelection(tSize)
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index2 = self.tournamentSelection(tSize)

p1 = self.population[index1]

p2 = self.population[index2]

# mate them

#child = self.onePointCrossover(p1, p2)

child = self.uniformCrossover(p1, p2)

children.append(child[0])

children.append(child[1])

self.population[(self.populationSize - self.crossoverRate):] = children # population is sorted lowest first, replace fist individuals

self.sortPopulation()

# mutate

disorder = range(self.populationSize)

shuffle(disorder)

disorder = disorder[:self.mutationRate]

for i in disorder:

self.population[i].setGenotype(self.randomMutation(self.population[i].getGenotype()))

if self.learning:

self.population[i].setPlasticityGenome(self.randomMutation(self.population[i].getPlasticityGenome()))

def replaceWorst(self, children):

"""

Replaces

"""

True

def evolve(self):

"""

Runs the GA for generations generations.

Returns string of results.

"""

i = 0

while i <= self.generations:

if self.learning:

self.learn()

self.nextGeneration()

best = self.test()

i += 1

print best

return self.results

def writeResults(results):

file = open(’result.txt’,’w’)

file.write("#Best,Average,Worst,Plasticity,InnateAverage\n")

for line in results:

file.write(line)

file.close()
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