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Problem statement

Assess the current status of the Baldwin effect by a literature review. Inves-
tigate the trade-off between learning and evolution in fitness landscapes of
different complexity, and with different costs of learning.



Abstract

The Baldwin effect is the notion that life time adaptation can speed up evo-
lution by 1) identifying good traits and 2) by genetic assimilation inscribing
the traits in the population genetically. This thesis investigates the Baldwin
effect by giving an introduction to its history, its current status in evolution-
ary biology and by reviewing some important experiments on the Baldwin
effect in artificial life. It is shown that the Baldwin effect is perceived differ-
ently in the two fields; in evolutionary biology the phenomenon is surrounded
by controversy, while the approach in artificial life seems to be more straight
forward. Numerous computer simulations of the Baldwin effect have been
conducted, and most report positive findings. I argue that the Baldwin effect
has been interpreted differently in the literature, and that a more well-defined
approach is needed.

An experiment is performed where the effect of learning on evolution
is observed in fitness landscapes of different complexity and with different
learning costs. It is shown that the choice of operators and parameter settings
are important when assessing the Baldwin effect in computer simulations. In
particular I find that mutation has an important impact on the Baldwin
effect.

I argue that today’s computer simulations are too abstract to serve as
empirical evidence for the Baldwin effect, but that they nevertheless can be
valuable indications of the phenomenon in nature. To assure the soundness of
experiments on the Baldwin effect, the assumptions and choices made in the
implementations need to be clarified and critically discussed. One important
aspect is to compare the different experiments and their interpretations in
an attempt to assess the coherence between the different simulations.
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1 Introduction

The Baldwin effect suggests that lifetime plasticity can enhance evolution.
Since Hinton and Nowlan’s seminal paper (Hinton and Nowlan, 1987), a
lot of experiments have been conducted confirming the effect in computer
simulations. However, in evolutionary biology the Baldwin effect is still con-
troversial, and there is scant evidence for the effect in biological populations.
There is also confusion about what the Baldwin effect actually is. This
project aims to clarify what the Baldwin effect is and is not, and experi-
ments on how evolution is affected by learning will be performed in adaptive
landscapes of different complexity. Lastly, the validity of artificial life (ALife)
models for evolutionary biology will be discussed.

1.1 Motivation

The relationship between evolution and lifetime learning has been much ex-
plored in ALife research, and most experiments have supported the Baldwin
effect. A variety of models have been utilized, ranging from abstract models
with closely correlated genotype-phenotype mappings to situated simulations
using robots controlled by neural networks.

Usually the experiments have focused on the the synergy between learning
and evolution. The cost of learning, which is a prerequisite for the Baldwin
effect to occur, has often been downplayed (Turney, 1996). Furthermore, it
need not be only learning that contributes to the Baldwin effect, but pheno-
typic plasticity (ontogeny) in general, where development plays a significant
part (Downing, 2004).

There is a trade-off between lifetime plasticity and instinct, and general-
purpose learning is not the ultimate goal of natural evolution. Under some
circumstances, given a high degree of learning in the population combined
with a low cost, learning can inhibit selective pressure and reduce the in-
nate fitness in a population, and generally it would be advantageous for a
population that the learned behaviour eventually be performed by instinct.
Learning might make it possible for a mechanism to arise in incremental steps
and is often advantageous in the former steps of evolving a mechanism; in
later stages learning might inhibit innate fitness.

Thus, there are several trade-offs between learning and evolution; the
right balance depends on several factors, such as selective pressure and the
rate of change in the environment. Evolution also guides learning, by de-
termining what the animal will be able to learn (what stimuli will trigger
learning) (Bryson and Hauser, 2002).

The general tendency seems to have been an overemphasis on learning in



AlLife experiments. For instance Parisi et al. (1992) claimed to show that
learning could speed up evolution also when the learning task was not corre-
lated to the evolutionary task. While this claim is largely refuted (Harvey,
1997), it is still a belief held by some, and even reiterated in introductory
texts (McLeaod et al., 1998).

The enthusiasm about the Baldwin effect in ALife is markedly different
from the way it is perceived in evolutionary biology, where there is still de-
bate about how to define it, what is needed for it to occur, and whether or
not it occurs at all. Compared to the disputes in evolutionary biology, it is
striking with which ease the Baldwin effect is discussed in AlLife literature.
While ALife researchers are not necessarily claiming to perform experiments
that can inform biology, they are at least utilizing a theoretical construct
borrowed from evolutionary biology. To that extent there are important fac-
tors in the interplay between evolution and learning that should be discussed,
including the importance of the complexity of the adaptive landscape, the
degree and cost of learning, the selective pressure, the rate of mutation, the
mapping from genotypic to phenotypic space, the complexity of the genome,
development, and a variety of environmental factors affecting selection.

1.2 Objective

I will argue that plasticity in general have been overemphasised as a means
to boost evolution in artificial life experiments. A number of factors need
to be included in a discussion of the Baldwin effect. I will put forward my
argument in two steps:

e By assesing the status of the Baldwin effect in current ALife and evo-
lutionary biology research. This involves an attempt at clarifying just
what we are (and are not) talking about when we talk about the Bald-
win effect. The underlying assumptions made in the computer simula-
tions will be studied.

e Perform computer simulations that study the Baldwin effect where:

— The fitness landscape is of different complexity

— Evolutionary and learning parameters are varied.

1.3 Structure

This thesis’s goal can be divided into three subtasks:



1. Review literature on the Baldwin effect to gain an understanding of
the status of the phenomenon. The review will include both texts in
evolutionary biology and computer science. Important questions which
will be a starting point for this investigation is:

e What is the scientific status of the Baldwin effect in evolution-
ary biology? Is it one agreed upon theory? Is it an empirically
observable phenomenon? What are its historical roots?

e How is the Baldwin effect perceived in computer science? Trace
the different approaches to exploring the Baldwin effect in com-
puter simulations. Are computer scientists and biologists talking
about the same thing when they talk about the Baldwin effect?

e Show that there has been a development from emphasizing the
benefits of learning, to a stronger focus on the cost of learning
and the trade-off between evolution and learning. Show that dif-
ferent researchers have perceived the Baldwin effect quite differ-
ently. Also, experimental results hav been interpreted differently.

2. Perform experiments using genetic algorithms in fitness landscapes of
tunable complexity to assess the validity of some of the findings on the
Baldwin effect in previous experiments. This includes observing how
the Baldwin effect is affected by:

e The complexity of the fitness landscape.
e Different learning rules.
e Different costs of learning. Different evolutionary parameters.
e The genotype-phenotype mapping.
3. Discuss the results and the validity of the models. Put forward sugges-

tions on how the soundness of computer simulations on the Baldwin
effect can be improved.

1.4 Conclusions

The Baldwin effect is not an empirically observable phenomenon, and the
term means different things to scientists from different backgrounds. In evo-
lutionary biology there is considerable debate as to what the phenomenon is,
whether it exists at all, and how it relates to other important evolutionary
factors. This is in contrast to the more relaxed acceptance of the phenomenon
in the ALife community, who has reported positive findings of the Baldwin



effect in a number of computer simulations over the years. However, some
of the research seem to have overemphasized the positive role of learning in
the Baldwin effect, and many experiments lack a clarification of what they
actually mean by the Baldwin effect. To a varying degree the simulations
have been ascribed biological relevance, but the underlying assumptions and
the simplifications made in the experiments often lack a critical discussion.

In a series of experiments it is shown that the effect and relevance of
learning on evolution depends on several factors, including the complexity of
the fitness landscape, the initial rate of learning, the learning rule, the cost
of learning, the selective pressure and the mutation rate. Learning proved
advantageous in more complex fitness landscapes and a higher fitness was
reached in fewer generations, but there was persistent plasticity in the popu-
lation. This was interpreted as a consequence of a lack of genetic variability
in the population, probably related to a small population size. I found that
higher rates of mutation counteracted this tendency and contributed to a
more pronounced Baldwin effect.

Computer simulations represent one source of information about the Bald-
win effect, but the level of abstraction compared to natural occurring phe-
nomena is very high, and so they should be interpreted with great care and
not taken as empirical evidence. One way of improving the soundness of com-
puter simulations of the Baldwin effect in ALife is to focus on the reliability
of the simulations and of the coherence between the interpretations.
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2 Background

In this section I will give a short introduction to the historical development of
the theory behind the Baldwin effect. Current controversies in evolutionary
biology regarding the Baldwin effect will be introduced, and lastly I will
review important literature on computer simulations of the Baldwin effect.
Assoiciated important terms will be introduced and explained as needed.

2.1 Two perspectives on the Baldwin effect

Because of its counterintuitive nature the Baldwin effect can be difficult to
grasp. On first encounter it can also easily be confused with Lamarckism,
the idea that an organism’s acquired traits can be directly inscribed in its
genes — but the similarities are only superficial. In an attempt to make things
clearer, I will provide two definitions, one intuitive and one computational.

2.1.1 Intuitive definition

In short, the Baldwin effect states that individual lifetime changes (by learn-
ing or other means) can affect evolution. But how can this happen without
the acquired characteristics being inscribed in the individual’s genome?

If the change an individual undergoes during its lifetime is adaptive, this
(generally speaking) gives the individual a better chance of reproducing.
While the individual undergoes a change, to successfully aquire a trait it
will also often need some innate tendency towards the trait, and will adapt
the trait by a combination of nature and nurture. If the trait is beneficial
the individual will have a higher chance of mating, which means that its
innate tendency towards the trait is reproduced. Life time adaptation thus
potentially plays a role in picking up on traits that are advantageous.

2.1.2 Computational definition

In computational terms the Baldwin effect is often explained as a 'smoothing’
of the fitness landscape. The concept of a fitness landscape, or adaptive
landscape, is often used when describing genetic algorithms, and I will give
a more detailed introduction in the part describing the implementation (see
section 3.2). Still, evolutionary computation is just one machine learning
method among others, and ’fitness landscape’ means nothing more nor less
than the more traditional Al concept of a search space.

When a learning rule is applied in combination with an evolutionary
algorithm, in computational terms one is using a local search inside a global
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search. This means the search is more fine-grained and have the potential of
picking up subtler solutions which the global search might overlook. But, the
solutions are not retained by the local search; indeed, they literally die with
it during the selection process. What the local search does though, is give
a lookahead into the search space of a particular candidate solution. If the
surrounding search space yields a good solution, and the individual moves in
that direction during its lifetime, it is more likely to be selected. And because
it is the individual’s genome in accordance with the learning rule that has
moved the individual in that direction, there is a fair chance the genome, by
genetic operators such as recombination and mutation, is changed slightly to
transform the individual’s offspring into a slightly better candidate solution
from birth.

This way the learning rule implicitly informs the evolutionary algorithm’s
global search about areas in the search space which the evolutionary search
might otherwise have overlooked.

2.2 A short history of learning and evolution

2.2.1 The ambiguity of the Baldwin Effect

Since Hinton and Nowlan’s seminal experiment in 1987 (Hinton and Nowlan,
1987), numerous artificial life experiments investigating the Baldwin effect
have been performed, most of which report positive findings. It is often
unclear whether the experiments are seen as relevant for evolutionary biology,
or if they are simply investigating a way of boosting evolutionary search.
Usually though, some references are made to biology.

Hinton and Nowlan’s original experiment was backed up by the evolu-
tionary biology authority John Maynard Smith in an article in Nature (May-
nard Smith, 1987; Depew, 2003). The philosopher Daniel Dennet (2003) also
sees this early experiment as a sort of empirical evidence that the Baldwin
effect is a natural occurring phenomenon.

In the following, though, we shall see that the Baldwin effect is by and
large not well established nor well understood in evolutionary biology. Ac-
cording to (Downes, 2003) the various defenses and versions of the Baldwin
effect can generally be seen as attempts to expand the explanatory repertoire
in evolutionary biology. There also seems to be confusion as to whether the
Baldwin effect is a natural occurring phenomenon or an explanatory mech-
anism. This is in accordance with Depew’s (2003) claim that the Baldwin
effect is neither a theory-neutral empirical phenomenon, nor a unified or
agreed upon theoretical concept.

According to Downes (2003) there is a lack of empirical evidence for the
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Baldwin effect, and though he admits the concept might be entirely theoreti-
cally grounded, he criticizes some authors for assuming the Baldwin effect to
be an explanatory mechanism without pointing out what phenomena calls for
such an explanation. While some authors in evolutionary biology recognize
computer simulations as potentially interesting indications of possibilities
in biology, computer simulations are generally disregarded as empirical ev-
idence for the Baldwin effect. Since the concept was introduced, it seems
to have gone through a Promethean development, changing shape under the
interpretation of different scientists.

2.2.2 The Baldwin effect, according to Baldwin

Baldwin introduced his idea about the relationship between learning and
evolution, or rather intelligence and instinct, at a time where Lamarck’s
notion of the heredity of acquired traits had strong hold. Darwin himself was
ambiguous towards Lamarckism, but Baldwin rejected the idea; and in this
sense his theory was more Darwinian than Darwin’s own in this particular
respect. While Baldwin’s main interest was human behaviour and evolution,
he aimed at a theory that was general enough to describe evolution for all
species (Downes, 2003).

Similar ideas was presented at the same time by Lloyd Morgan and Os-
born, and there is some controversy about the relative contribution of each
author (Godfrey-Smith, 2003). Still, for simplicity I will refer solely to the
Baldwin effect in the following.

Baldwin’s original argument has the following steps (Depew, 2003; Bald-
win, 1896):

1. There exists ’ontogenetic adaptations,” that is adaptations through an
organism’s lifetime. These are ways of exploring the environment. The
adaptations are produced by physical, neurological or more intelligent
forces such as imitation, pain/pleasure reinforcement or even means-
end-reasoning.

2. Ontogenetic adaptations adapt the instincts that permit them to chang-
ing and stochastic environments.

3. Through ontogenetic adaptations the individual increases its chances of
survival. Through the ability to adapt through lifetime the individual
can withstand environmental challenges (including, but not exclusively,
environmental change).

4. Ontogenetic adaptiveness increases an organism’s chances of reproduc-
ing.

13



5. In certain species ontogenetic adaptability is enhanced through ’social
heritability’. Cultural knowledge is transferred to new generations.

6. Adaptations through social heritability can be maintained indefinitely,
but might turn into instincts if germinal' elements coincide with their
influence.

7. Newly evolved congenital? instincts forms the base for further ontolog-
ical adaptation.

After Baldwin’s original proposal the theory has been presented, inter-
preted and elaborated on in a number of ways. Godfrey-Smith (Godfrey-
Smith, 2003) summarizes the Baldwin effect succinctly by dividing it into
three main stages:

1. A new environmental condition arises.

2. Natural selection favours plasticity for the population to be able to
adapt to the new environment.

3. Through mutation, recombination and selection the genotypes that can
produce the best behaviour without plasticity will proliferate in the
population.

In the following I will use Godfrey-Smith’s three stages as a reference
point.

2.2.3 Baldwin and the modern evolutionary synthesis

Baldwin’s original theory of evolution relied on a view of natural selection
as a relentless life-and-death struggle. The 'modern synthesis’ integrates
Darwin’s classic theory with Mendel’s theory of genetics and mathemati-
cal population genetics. It diverts from the classical view of evolution in a
number of ways (Depew, 2003):

e Physiological and behavioural adaptiveness is not adaptation, but an
instantiation of genetically based inherited adaptations.

e Natural selection is based on mean reproduction rates, and only indi-
rectly based on the life and death of individuals.

!Germinal: relating to the origin of the animal, i.e. fetus.
2Congenital: present at birth.
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e The alleles code for phenotypes on the organismic level®, not the ger-
minal.

e Evolution by natural selection is not inherently directional.

From the perspective of the modern synthesis, the Baldwin effect cannot
be understood the way it was initially proposed. According to the mod-
ern synthesis there is unlikely to be any selective pressure for traits that
are effectively transferred over generations by social inheritance. If learned
behaviours do become genetically underwritten, in the view of the modern
synthesis this would mean that a population would be swapping short term
plastic behaviour for rigid long term adaptations — thus subverting the very
point of the Baldwin effect (Depew, 2003).

The modern synthesis views culture as much more autonomous than did
Baldwin in his original proposal (and many of his proponents today). Culture
is seen as natural selection’s greatest achievement, but this also implies there
is no patch back from culture to instinct (Depew, 2003). To elaborate on this
we now turn to the second part of the Baldwin effect, i.e. how development
of new traits by ontogenetic plasticity relates to genetic assimilation.

2.2.4 The Baldwin effect and genetic assimilation

Waddington (Waddington, 1953; Stearns and Hoekstra, 2000) demonstrated
that for some traits organic plasticity (due to in uterus environmental stim-
uli) would produce phenotypes that eventually, over generations, would be
genetically encoded in the population. Waddington saw genetic assimilation
as nothing more than a combination of traditional Darwinism and embryol-
ogy that can give results that look like inheritance of acquired characteristics;
he did not consider genetic assimilation "a new factor in evolution’. Wadding-
ton did not experiment with learning, but manipulated the developmental
process of individuals, thus influencing the development of certain traits.

In his original experiment Waddington (1953) showed that fruit flies
(Drosophila) embryos exposed to ether at a particular stage would develop
wing-like halters. These were then (artificially) selected for reproduction, and
after twenty generations the wing-like halter phenotype had been genetically
encoded in the population, so there was no longer a need for exposure to
ether for the trait to develop. Phenotypes that through lifetime adaptation
mimic a genetically produced phenotype are called phenocopies. Wadding-
ton’s observations have been confirmed in experiments demonstrating that

3The organismic level relates to the grown up animal.
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environmental stimuli such as heat or cold can develop phenotypes of butter-
flies with particular wing patterns (Waddington, 1953; Stearns and Hoekstra,
2000).

Genetic assimilation can be divided into three steps:

1. Some factor in the environment (usually embryonic factors) change the
phenotype in a certain way.

2. The changed phenotypes are selected for (either by artificial or natural
selection).

3. Over generations the trait is encoded in the genome (it becomes in-
stinctive), and the environmental stimuli is no longer needed for the
trait to develop.

The last step is known as genetic canalisation. An essential prerequisite
for genetic assimilation to take place is a correlation between the pheno-
typic and genotypic space. Waddington’s genetic assimilation describes how
phenotypic adaptation can canalise a trait genetically — but it is not the
plasticity itself that facilitate the canalisation. While it is true that learn-
ing can be seen as a local search in the phenotypic space, this does not
imply that the phenotypic variety discovered by learning has corresponding
genotypes nearby the genotype of the individual. Mayley (1996b) coins the
needed correlation between genotypic and phenotypic space 'neighbourhood
correlation’, and defines it as the correlation between the distance travelled
in phenotypic space to a new learned phenotype and the distance moved
in genotypic space for the same phenotype to be generated without learning
(Mayley, 1996a). So, while Waddington showed that genetic canalisation can
happen, this does not imply it will happen in all situations.

We shall see that in many of the computer simulations of the Baldwin
effect, this correlation is not accounted for, and even that the lack of it is
interpreted as a special case of the Baldwin effect (see section 2.3.4). In many
of the simulations there is no established correlation between the plasticity
itself and the trait(s) the plasticity enables the phenotype to attain. Also,
several authors have referred to genetic assimilation and the Baldwin effect
as the same phenomenon, which they are not (Downes, 2003). In short,
there is no obvious reason why plasticity — in itself — would indicate that
an individual’s genotype is closer to the ’ideal’ genotype that codes more
directly for the trait. If phenotypic fitness is to inform the evolutionary
search, there must be a certian degree of correlation between the genotype
and the phenotype.

16



2.3 Computer simulations of the Baldwin effect
2.3.1 Artificial life

The term artificial life was coined in 1987 by Chris Langton, and originated
primarily as a means to simulate biological systems. AlLife has its root in
cybernetics (the theory of control and communication in the animal and the
machine), and according to Risan (1997) also traditional Al (GOFAI) was
born from the cybernetic movement, of which it 'rejected the holism of the
systemic perspective and emphasized the formal and logical aspects of human
cognition’ (Risan, 1997, p. 9). In that respect, today’s ALife can be seen
as a realignment with the early cybernetic movement, since it emphasizes
bottom-up modelling and decentralized and interconnected systems. AlLife
is an interdisciplinary field, including sciences such as biology, psychology,
philosophy, ethology and computer science (Risan, 1997).

In addition one might talk about three main directions within ALife: 1)
engineering focused methods that borrows biological principles, but where
the focus is on improving system efficiency; 2) a scientific modelling tra-
dition, which is concerned with simulating naturally occurring phenomena;
and 3) a direction more concerned with what constitutes life in general, often
promoting the idea that life does not necessarily need to be biological.

The works to be discussed in the following are mainly in the second
category. The focus is, whether explicitly stated or not, mainly on modelling
evolution in biology, and the efficiency of the implementations are seldom
discussed.

2.3.2 Hinton and Nowlan — the needle in the haystack

Hinton and Nowlan’s (1987) paper is regarded as the first demonstration of
the Baldwin effect in computer simulation. Probably, much of the paper’s
impact outside artificial life circles can be attributed to the evolutionary
biologist John Maynard Smith’s presentation of the paper in Nature (May-
nard Smith, 1987; Depew, 2003).

The set-up of the experiment is as follows. A genome represents 20 con-
nections in a feedforward neural net. The alleles consists of 0, 1, 7, where 0
means there is no connection; 1 means there is a connection; and ? means
the connection value is undecided and will be set through life time learning.
See figure 1 (Hinton and Nowlan, 1987).

There exists only one net configuration with optimal fitness (a net con-
sisting of all 1s) — all other configurations have equally low fitness. Since
each net has 20 connections, if only the final alleles, 0 and 1, are considered,
there are 22° possible genotypes, which yields a relatively large search space
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FIGURE 2 The evolution of the relative frequencies of the three possible types of
allele. There are 1000 organisms in each generation, and each organism performs 1000
learning trials during its lifetime. The initial 1000 genotypes are generated by selecting
each allele at random with a probability of 0.5 for the ? allele and 0.25 for each of the
remaining two alleles. A typical genotype, therefore, has about ten decisions genetically
specified and about ten left to learning. Since we run about 2!° learning trials for

each organism, there is a reasonable chance that an organism which has the correct
genetic specification of ten potential connections will learn the correct specification of
the remaining ten. To generate the next generation from the current one, we perform
1000 matings. The two parents of a mating are different individuals which are chosen
at random from the current generation. Any organism in the current generation that
learned the good net has a much higher probability of being selected as a parent. The
probability is proportional to 1 + 19n/1000, where n is the number of learning trials
that remain after the organism has learned the correct net. So organisms which learn
immediately are 20 times as likely to be chosen as parents than organisms which never
learn. The single offspring of each mating is generated by randomly choosing a cross-
over point and copying all alleles from the first parent up to the cross-over point, and
from the second parent beyond the cross-over point.

Figure 1: Hinton and Nowlan’s experiment (Hinton and Nowlan, 1987).

with over one million possible combinations. We are indeed dealing with a
needle in a haystack search, for there is only one single spike in the fitness
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landscape.

Two experiments were performed, one with and one without learning.
The population size was 1000, and for each generation 1000 matings (crossover)
were performed (i.e. the whole of the current generation was replaced by the
new one). No mutation was used. See figure 1 for further details.

In the experiment without learning the population never reached a higher
fitness than its starting point, but when learning was introduced, the solution
was reached in about 15 generations. The explanation lies in the set-up, with
its particular landscape and fitness function. Fitness is determined by the
following function, F =1 + 19 * n / 1000, where n is the number of learning
trials remaining after the goal string is encountered. When the function
is applied to an ordinary evolutionary search without learning, the search
becomes purely hit-and-miss, no better than a random search; since only
the single right solution is ascribed a higher than usual fitness there is no
selection pressure.

The situation changes when learning is introduced. Initially 50% of the
alleles are plastic, and during each generation an individual is allowed 1000
learning trials. Learning is conducted by randomly setting the plastic alleles
in the phenotype to either 0 or 1 and then testing it for fitness. Learning is
stopped once the correct goal string is encountered.

Firstly, the high amount of learning introduced gives learning a fair chance
to find the target string by random search; secondly, because the fitness
function rewards phenotypes with fewer learning trials higher, this gives an
indirect approximation of the genotype’s fitness, since phenotypes which are
initially closer to the goal string will tend to use fewer trials.

In this perspective, it is not surprising that the algorithm is able to find
the optimum using learning, because at the instant an individual gets a higher
fitness score than another, the evolutionary algorithm is guided, and selective
pressure is introduced. Thus, learning’s main function in this experiment is
to introduce diversity in the fitness scores in the population, thereby enabling
selective pressure which will guide the evolutionary search.

From a purely computational viewpoint, a simple random search would
be much more effective for this fitness landscape. What Hinton and Nowlan’s
experiment illustrates though, is that learning can help identify good evo-
lutionary solutions and inform the evolutionary search. In that resepct the
experiment is no doubt elegantly set up to illustrate a point — but in a senese
the extreme set-up makes the already blind watchmaker even blinder. There-
fore its relevance for evolutionary biology is probably limited. In particular
what makes the model unrealistic is that a phenotype cannot be found by
incremental improvement. As (Sterelny, 2004) points out few developments
in nature tend to be genuine spikes. In his words, Hinton and Nowlan’s
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model is 'not just oversimplified, it is positively misleading’ (Sterelny, 2004,
p. 297). The unimodal * quality of the landscape is also an implausible model
of evolution in nature.

To summarize, because of the structure of the landscape in Hinton and
Nowlan’s (1987) model, learning plays two different roles:

e In the first phase, the genetic algorithm has no information to guide
its search. In effect, the genetic algorithm is performing a pure random
search. Since for each generation 1000 learning trials are performed for
an average of 50% of the phenotype, learning is much more likely than
evolution to stumble upon ’the good trick’.

e Once learning has found the good trick (usually after about 15 gen-
erations in this set-up), the genetic algorithm performs an informed
search, and the average fitness in the population rises. With genotypes
increasingly closer to the goal string, they will be selected for since a
cost is associated with learning.

While Hinton and Nowlan’s (1987) intention was probably to illustrate a
point, which they elegantly do with their set-up, it is probably misleading to
see their experiment as a realisitc representation of evolution in nature.

2.3.3 When the learning task and the evolutionary task are not
correlated

Parisi et al. (1992) suggested that an instance of the Baldwin effect also
occurs when the learning task and the evolutionary task are not correlated.
In Hinton and Nowlan’s (1987) model there was a close resemblance between
genotypic and phenotypic space; in fact the genotype and the phenotype had
identical representations. Several models have been suggested where there
is a larger gap between genotypic and phenotypic space, and often neural
networks models have been used, where the genotype have coded for the set
of weights in the networks.

This is also the approach taken by Parisi et al. (1992). They simulated a
foraging environment with evolved agents situated in a 2-D grid world. The
agents receive sensory information from food items randomly placed in the
grid. For each time step an agent can either turn or move forward from its
current position. Any time an agent reaches a square with a food item, its
fitness is increased and the item removed. The agents are controlled by a
feed forward neural network with initial weights set randomly.

4See section 3.2.
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Only one agent operates in the grid world at a time, so for each generation
the foraging has to be repeated for each agent. In other words there is
no co-evolution. There are 100 individuals in each generation, and the 20
best individuals are selected for reproduction. This is done by copying an
individual’s genome and applying a mutation operator. There is no crossover
of genomes between individuals. The genome is the set of weight values for
the connections in the neural network. The results showed that the agents’
fitness increased steadily over generations (Parisi et al., 1992).

In a second experiment a learning task was introduced: to predict how an
agent’s sensory information about a food element will change after the agent
has executed its action. This is implemented by adding two prediction units
to the network’s output layer. Given the current input and the network’s
current output (i.e. its planned action), the prediction units are trained by
backpropagation to predict the sensory input in the next time step (Parisi
et al., 1992)

Parisi et al. (1992) found that the agents in the second simulation got
better at finding food, even though the learning task and the evolutionary
task were not the same. While there was an increase in both lifetime fit-
ness and inherent fitness, the increase in inherent fitness cannot be wholly
attributed to the effect of learning.

To explain the effect Parisi et al. (1992) ask us to imagine a fitness
landscape with two different individuals at different points in the landscape,
but with the same fitness. When an individual is selected for reproduction
its genome is mutated, thereby moving it to a slightly different point on the
fitness landscape. Until the next generation is selected evolution has no way
of knowing whether this point is better or worse than the current point. But
as learning changes the connection weights of the individual this is a way of
exploring the surrounding fitness landscape of that individual. This means
that if the individual is situated nearby an even higher fitness peak, this 'good
location” will be identified, and mutation will have a higher probability of
placing the offspring of that individual in a location with higher fitness, thus
leading to progressively higher innate fitness. In other words they claimed
that a smoothing of the fitness landscape occurred also when the correlation
between the learning task and the evolutionary task was weak.

The authors go on to show that even learning which is a random search
(i.e. where the learning might render the individual’s fitness worse than
before learning) will boost evolution, though not as much as with informed
learning. Again, Parisi et al. (1992) claim this would inform evolution about
which individuals are at the better locations in the fitness landscape when
the surrounding landscape is also taken into consideration. They hypothesise
that informed learning is better because it operates in a weight space which
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share some characteristics with the the evolutionary space, thereby giving a
slight guidance also to the evolutionary search.

To test this hypothesis the XOR problem was introduced as the life time
task to learn. The expectation was that this would not affect the learning
ability of successive generations, but also this learning task turned out to
improve innate fitness. This was explained by the notion that two arbitrary
tasks, one evolutionary and one learning task, could be accidentally corre-
lated on some sub-regions of the weight space, thereby causing this effect.

Thus, Parisi et al. (1992) claim to simulate the Baldwin effect both on
tasks that are correlated to the evolutionary task and tasks that are not so.
However, Harvey (1996) claims that this is not an example of the Baldwin
effect, but something else — in his terms ’Another new factor (ANF)’. Using a
geometric analysis, Harvey shows that the effect has to do with how weights
in a neural network are perturbed by mutation and then restored through
relearning. The conditions needed for this to occur are very restricted, and so
the experiment of Parisi et al. (1992) should not be generalized to imply that
the Baldwin effect will occur for learning tasks that are totally unrelated to
the evolutionary task. Rather, the finding is a side effect to the peculiarities
of artificial neural networks (Harvey, 1997). Other experiments have also
shown that learning does not speed up evolution if the learning task is not
related to the evolutionary task (Menczer and Belew, 1994).

The model also lacks an important aspect of the Hinton and Nowlan
(1987) model, namely the evolution of plasticity itself. In Parisi et al.’s
(1992) model, learning is intrinsic to the model; it is not evolved. The agents
will always learn, whether learning is ”called for” by evolution or not.

To summarize:

e The fact that tasks uncorrelated to the evolutionary task seem to fas-
cilitate evolution, is probably not an instance of the Baldwin effect, but
can be explained by the peculiarities of ANNs.

e While uncorrelated learning might boos evolution, this is highly depen-
dent on the particular landscape to be searched.

e The model does not account for the evolution of plasticity.

2.3.4 Learning and evolution in a simulated ecological system

Ackley and Littman (1992) implemented a more advanced ecological grid-
world with carnivores, plants, trees and walls. Agents living in the world are
governed by two ANNSs, one action network and one evaluation network. The
action network controls the agent’s behaviour, while the evaluation network
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represents the agent’s goals, and so also applies the feedback for the train-
ing of the action network. An important property of the model is that the
action network is only modifiable during the agent’s lifetime (by reinforce-
ment learning), while the evaluation network can only be modified genetically
through evolution. Thus, unlike in the model of Parisi et al. (1992) learning
and evolution operates on two different representations.

Each agent has a fitness component which is increased by eating plants or
dead carnivores in the environment, and a health component that is decreased
for instance by hitting a wall, and which increase spontaneously with time.
When an agent has a high enough fitness it is selected for mating with another
agent nearby. Thus, the fitness is endogenous to each agent. Reproduction is
done by recombination and a low degree of mutation (Ackley and Littman,
1992).

Ackley and Littman (1992) found that the agents achieved the highest
fitness when both learning and evolution was used. Though evolution and
learning combined only proved better after 100 000 time steps. When taking
the most successful agent and letting it run for more than the one million
time steps, which was the ordinary limit, they found that genes that were
important for survival tended not to mutate as much. They also observed
the Baldwin effect in that evolved characteristics tended to mimic learned
ones, but it was not a very pronounced effect (Ackley and Littman, 1992).
Probably, this is related to the different representations used for the genotypic
and the phenotypic space, and therefore the lack of correlation between the
two spaces.

2.4 Trade-offs between learning and evolution

There has probably been a tendency to overestimate the importance of learn-
ing in the early experiments on learning and evolution. Later experiments
and theories indicate that there are many trade-offs between learning and
evolution that need to be considered. Also, in some situations evolution can
guide learning just as much as learning can guide evolution. In the following
I will review some important papers on the trade-off between learning and
evolution.

2.4.1 The cost of learning

Turney (1996) points out that the Baldwin effect is surrounded by many
myths in the ALife community. In most experiments the benefits of the syn-
ergy between learning and evolution has been emphasized, but learning also
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has costs. There also exists several misunderstandings about the relationship
— or lack thereof — between the Baldwin effect and Lamarckian inheritance.

An important notion is also that learning has come to be identified with
the Baldwin effect, while the effect really is related to phenotypic plasticity in
general. Learning is an instance of phenotypic plasticity, but there are many
other ways an organism’s phenotype can change during its lifetime that do
not involve behavioural changes; one example would be the human ability to
tan in sunny environments. It is important to remember that the Baldwin
effect is a theory of the way any phenotypic change can influence evolution,
not just learning (Turney, 1996).

When the Baldwin effect has been explored in evolutionary computation
the focus has usually been how learning can benefit evolution. This is done
by the smoothing of the fitness landscape that constitute the Baldwin effect
as interpreted in computational terms.

However, there are situations where phenotypic plasticity could also in-
hibit the evolutionary search. Phenotypic plasticity can be timely and costly
(because of metabolism). For instance, in a sunny environment it would
be better to be born with dark skin than to have to develop it through
tanning. Furthermore the experimentation involved in learning could poten-
tionally be very costly; being instinctively afraid of snakes is advantageous for
most species. This is in accordance with Bryson et al.’s (2002) observation
that even highly adaptable species, such as primates, show persistent failures
to learn. Such failures of learning might actually be an adaptive strategy;
the animal’s behaviour might reflect a local optimum, an ”adaptive island”
surrounded by ineffective or even dangerous behaviour strategies (Bryson
and Hauser, 2002). Thus, the animal’s failure to learn functions as a safety
mechanism, securing that the animal stay put on it’s island of behaviours —
a mechanism Bryson et al. (2002) coin ’safe learning’.

According to Bryson et al. (2002), many Al researchers have a naive,
pre-Darwinian conception of learning: it is seen as general, ideal, without
limits, and evolution’s ultimate goal. Instead, Bryson et al. (2002) suggest
that learning in nature is generally restricted and specialized to particular
tasks. An animal cannot learn to associate any stimuli with any behaviour;
on the contrary, which behaviour can be paired with which other behaviour
is species specific. For instance, pigeons cannot be trained to peck to avoid
shock or to flap their wings to get food; but they can be trained to flap
their wings to avoid shock and peck to get food. The animal’s learning is
biased towards information likely to be relevant. Neurophysiologic findings
also support this; for instance, poison avoidance in rats is tied to a specific
learning mechanism in the olfactory section of their amygdala (Bryson and
Hauser, 2002).
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In this perspective, learning is evolution’s last resort, there is selective
pressure for genetic coding to replace individual learning. According to
Bryson et al. (2002) the only reason for learning to persist is when the an-
imal is required to adapt to changes on a less than evolutionary time scale,
i.e. during the animal’s lifetime.

Still, the fact remains that quite a few animals, such as dolphins or hu-
mans, rely heavily on learning. In such cases the animals have come to inhibit
a niche in which a greater capacity for learning was advantageous. Often,
animals with complex social structures, such as primates, require learning
(though in the insect world there are many examples of social structures
that do not require learning). Also, some genetic characteristics are selected
for primarily to enhance the animal’s sexual attractiveness, and might be
counter-adaptive in all other areas, even contributing to the extinction of
species(!).

I will now try and identify factors that contribute to the trade-off between
learning and evolution, starting with the benefits of learning:

e Temporal adaptability. If there are significant environmental changes
during the time-scale of a generation, individuals that are able to adapt
during their lifetime will have an selective advantage and increase the
fitness of the population (Mayley, 1996b; Turney, 1996; Bryson and
Hauser, 2002).

e Organic selection. This is the Baldwin effect in the classic interpreta-
tion. Lifetime adaptability helps evolution identify the fitter individu-
als.

e Less complex genotype. If the environment is relatively predictable,
information can be ’stored’ in the environment and accessed through
learning instead of being stored in the genotype (Todd, P. and Miller;
Mayley, 1996a).

e Preserves genetic variation. Because individuals with different geno-
types through lifetime adaptation can attain the same fitness, the se-
lective pressure is relaxed, resulting in a higher genetic diversity in the
population (Mayley, 1996b).

e In an extension of the above, if a trait cannot be represented genetically,
it might still be possible for the population to achieve the trait through
lifetime adaptation (Mayley, 1996b).

Mayley (1996b) also identifies several different costs of learning:
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e An individual born with a trait will reach higher fitness faster than an
individual who has to spend time learning the trait.

e Delay of reproductive ability. Typically, in a species individuals will
not be able to reproduce until after development/important learning
periods.

e Energy spent. Learning requires more energy because of the associated
behavioural and metabolic costs. Also, there might be increased onto-
genetic costs, as a more complex organisms are needed for learning to
take place.

e Like Bryson (2002), Mayley (1996b) comments on the dangers of learn-
ing. Firstly, learning is more stochastic than evolution. For instance,
learning can be prevented if an important stimuli in the environment
is lacking, thereby preventing the individual from acquiering an im-
portant trait; or the individual might simply learn to do the wrong
thing. In highly plastic species, such as humans or chimpanzees, psy-
chopathology might be explained by ’learning gone awry’.

e Dangerous behaviour. When an individual encounters a situation for
which it has not yet learnt the right response, it might behave danger-
ously. Examples would include eating poisonous food or closing in on
a snake 'to see what happens’.

e Population costs. Costs that affect not only the individual but also the
population as a whole include time and energy spent by parents or other
members of the population to teach younger or more inexperienced
members of the population, and the increased genome length that might
be needed to represent the learning ability. Note that this is in contrast
to the suggestion by Todd and Miller (1991) that learning can decrease
the genome length, so there is a trade-off between these two effects.

Turney (1996) identifies several factors that contribute to the trade-off
between learning and evolution:

e Time scale of environmental change. Some environments change too
fast for evolution to adapt; if so, learning will be beneficial.

e Variance and reliability. Learning requires the right kind of experience,
which might not be available; therefore learning is more stochastic than
instinct.
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e Energy consumption. Because learning requires acquisition of data, an
organism or agent must expend energy in order to learn.

e Length of learning period. An organism is more vulnerable before it
has fully learned a behaviour. Therefore, all other factors being equal,
evolution will select for shorter learning periods.

e Global vs. local search. Evolution can be seen as a form of global
search, while learning can be seen as a local search. The right combi-
nation depends on the properties of the fitness landscape.

e Fitness landscape. Learning can smooth the fitness landscape (the
Baldwin effect), but this smoothing might not be necessary.

e Reinforcement vs. supervised learning. Evolution can be seen as a
form of reinforcement learning; while lifetime learning can be seen as
supervised (because of relatively immediate feedback from the environ-
ment).

e Bias direction. A certain bias of learning, a direction, is a prerequisite
for learning. An instinct-based agent will have a stronger bias than
a more learning-based agent (the learner-agent will consider more hy-
potheses than the instinct-agent). If the bias is correct, the agent will
benefit from an instinctive approach, otherwise learning is better.

e Global vs. local goals. The immediate goals of learning might not be in
accordance with the goal of evolution (i.e. maximize fitness). The goals
at the learning level must be simplified to more immediate sub-goals.

The role of learning will vary with different sequences in the evolutionary
process. In 'times of evolutionary fitness’ individuals who has the ability for
lifetime adaptation might be able to reach fitness levels others cannot and
be selected for (Mayley, 1996b). But, this is not straightforward, as a high
degree of learning might decrease genetic variation, which would make it
harder for a population to adapt to a changing environment, as noted above.
In a relatively stable environment selective pressure will inhibit learning and
select for genotypes with higher fitness.

To summarize: Many ALife experiments claiming to investigate the Bald-
win effect have focused on the benefits of learning combined with evolution.
But the Baldwin effect is more than the synergy between learning and evolu-
tion. The costs of learning and genetic assimilation also need to be taken into
consideration. While there is evidence that learned behaviours can facilitate
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the evolution of physical structures, learning can be expensive, and evolu-
tion will select for the best balance between learning and instinct. Under
certain circumstances learning will not boost evolution, but slow it down. If
a species so to speak can get away with instinct, plasticity will not be selected
for. There are many examples in nature species that relies little on learning.
Snakes and crocodiles are examples of highly successful species that do not
need high degrees of learning to succeed in their ecological niches.

2.4.2 Cost of learning and genetic assimilation

Mayley (1996b) puts forward much the same argument as Turner (1996) when
he points out that most of the research on the Baldwin effect has focused too
narrowly on the benefits of learning. In a two-step conception of the Baldwin
effect®, learning corresponds to the first step, while the costs of learning is a
prerequisite for the second step, genetic assimilation, to take place.

As we have seen in the previous section, under certain conditions learn-
ing can slow evolution down, and there will always be a trade-off between
the costs and the benefits of learning. For instance, given a situation where
individuals can adapt well through learning and the costs of learning are
minimal, there will be less selective pressure for evolution to favour the in-
dividuals who would have a innately high fitness. Mayley (1997) coins this
antipode of the Baldwin effect "the Hiding effect”, and shows in computer
simulations that when both cost of learning and epistasis is low®, the Hiding
effect will dominate; while if the cost of learning and epistasis is high, the
Baldwin effect will be more pronounced (Mayley, 1997).

Mayley (1996b) lists two prerequisites for the Baldwin effect to take place:

e Learning (or plasticity in general) must have a cost. If there is no such
cost, there will not be any selective pressure for the learned trait to
become innate (genetic assimilation).

e There must be a neighbourhood correlation between genotypic and
phenotypic space.

The conception of learning as a local search in phenotypic space which
can guide evolution is the most common explanation of the Baldwin effect
in computational terms. This is not always the case though; learning might
take place in a search space quite different from the genotypic space. For

®As we have seen in section 2.2.2 there might be more than two steps. Suzuki (2004)
performs experiments where they observe a three step Baldwin effect; this will be described
later.

61.e. the fitness landscape has low complexity.
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instance, in Ackley and Littman’s experiment (1992), described in section
2.3.4, the evolutionary and the lifetime search takes place in quite different
search spaces.

Mayley (1996b) introduces the concept of neighbourhood correlation as a
way of formally describing the overlap between the search distance travelled
in pehnotypic space versus the distance travelled in genotypic space. Intu-
itively, neighbourhood correlation is a measure of how closely the genotype
to phenotype mapping during lifetime is related to the genotype to genotype
mapping over generations. Basically this implies that individuals that are
close in genotype space are also close in phenotype space. More formally the
concept is defined thus: Given an original phenotype p;, a trained phenotype
p; and a learning rule L, the distance in phenotypic space is defined as the
probability that L(p;) = p;, multiplied by the number of times the learning
rule has to be applied to change p; into p;. In the same way, in genotypic
space the distance between two genotypes is defined as the number of genetic
operations it takes to transform g; into g;. The more the distance in pheno-
typic space is correlated with the distance in genotypic space, the higher the
neighbourhood correlation (Mayley, 1996b).

By using a version of the NK fitness landscape (see section 3.3) Mayley
(1996b) vary the complexity of the adaptive landscape in different experi-
ments. This is done by setting the degree of epistasis 7 in the landscape.
The degree of neighbourhood correlation is defined by a parameter L, which
designates the number of loci in the phenotype which are plastic. These loci
are distinct and chosen at random. The size of L is negatively correlated
with the degree of neighbourhood correlation. At the start of each program
run, a lookup table the size of the genome is generated, which indexes each
hold L distinct random phenotypic loci.

The learning mechanism is a steepest ascent hill-climb in the landscape.
Initially an individual’s phenotype is identical to its genotype. A learning
operation consists of flipping the L bits and testing the phenotypes fitness;
if it is higher the transformed phenotype becomes the current. Learning
continues with the next L bits in the lookup table until no higher fitness
is gained. The distance travelled in phenotypic space thus is a Hamming
distance of size L. The larger L is, the farther away from the original genotype
the learning will move the phenotype (Mayley, 1996b).

Learning is also ascribed a cost by subtracting a constant representing
the cost of learning multiplied by the number of learning trials from the phe-
notype. Experiments were performed with genotypes/phenotypes of length
20 and with a population size of 50. The initial generation was constructed

"The interaction between alleles in a genome.
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by copying a randomly set genotype to all the individuals in the population.
All the individuals were then mutated with a probability of 0.05. This was
done to simulate a converged population, with the same starting point in
genotypic space. The successive generations were generated using standard
genetic algorithm techniques. Selection was done by simple linear ranking,
crossover probability was 0.7 and mutation was done with an average rate of
0.1 bits per genotype (1.0/genome size per bit). The experiments were run
for 150 generations (Mayley, 1996b).

Experiments were run with varying degrees of learning costs, neighbour-
hood correlation and landscape complexity (epistasis). Mayley (1996b) found
that when there was no cost of learning no genetic assimilation occurred, as
there was no selective pressure for it to happen. With high degrees of epista-
sis, learning and evolution together was much more effective than evolution
alone in populations with no or low learning costs. When learning costs are
set high, learning is penalized, and the population converges faster because
of genetic assimilation and selective pressure against learning.

Mayley’s (1996b) notion of neighbourhood correlation is in direct conflict
with Parisi et al.’s (1992) claim that the Baldwin effect can occur also when
the learning task is uncorrelated with the evolutionary task (see section 2.3.4)
8

In an experiment also utilizing a version of the NK fitness landscape,
Suzuki and Arita (2004) observe a three step Baldwin effect. They claim
that learning has three distinct roles in different stages of the Baldwin effect.

As in Mayley (1996b) Suzuki and Arita (2004) use the NK fitness land-
scape, but they modify the genome so that each allele represent a quantita-
tive trait in the range [0.0, 1.0], not the usual binary representation. They
also measure the degree of phenotypic variation, which is the absolute dif-
ference between an individual’s phenotype at birth and its phenotype after
the learning trials are completed. A simple gradient descent learning rule is
used, which gradually adjust the plastic genes towards fitter genotypes. This
is possible since the traits are quantitative, and not binary. It is also worth
noticing that learning is not penalized by any explicit cost. Suzuki and Arita
(2004) point out that with epistasis there will still be implicit costs associ-
ated with learning. This is so because the learning rule is designed so that
each plastic trait is assessed independently, and then all the plasticity genes
are updated at the same time. As the learning rule adjusts each trait at a
time it loses the overall picture and the effect of epistasis. This is an impor-
tant difference from Mayley’s (1996b) experiment where the cost of learning

8The misconception seems to have taken hold and has also been repeated in textbooks
(McLeaod et al., 1998).
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was set explicitly. Also, unlike in Mayley’s (1996b) experiment, where the
degree of learning was set explicitly before every program run, the degree of
plasticity is evolved using a plasticity genome that code for which alleles in
the phenotype will be plastic.

In the first experiment, with no epistasis, Suzuki and Arita (2004) ob-
served that after the genetic assimilation had taken place, phenotypic plas-
ticity increased and stayed high, even though this did not increase the indi-
vidual’s phenotypic fitness. In other words some other role of learning must
occur after the Baldwin effect (Suzuki and Arita, 2004).

In their second experiment, with epistasis (N=15, K=4), they found that
phenotypic plasticity decreased faster. In this case the adjustment of each
plastic trait during learning is done independently from its influence on other
plastic traits (i.e. one could say learning in this case is blind to the epistasis);
we therefore have an implicit cost of learning because of the epistasis between
loci. This implicit cost of learning was confirmed by maximising the degree
of plasticity — the individuals then achieved a lower lifetime fitness than if
they behaved on instinct alone. (Suzuki and Arita, 2004).

Suzuki and Arita (2004) suggest that learning has the following roles:

e First, learning acts as a local search that can aid the more global evo-
lutionary search.

e The search performed by learning eventually become more guided;
the phenotypic plasticity decreases while the phenotypic variation in-
creases. The implicit cost of learning due to epistasis has narrowed the
area where the search is performed.

e When the phenotypic fitness approaches its optima, genetic assimila-
tion occurs, as evolution will be guided towards this optima because of
the costs of learning.

e Suzuki and Arita (2004) find that even when the genotypes has reached
optimum learning still persists. They sugg