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The spontaneous transformations associated with symmetry-breaking phase transitions generate domain
structures and defects that may be topological in nature. The formation of these defects can be described
according to the Kibble-Zurek mechanism, which provides a generic relation that applies from
cosmological to interatomic length scales. Its verification is challenging, however, in particular at the
cosmological scale where experiments are impractical. While it has been demonstrated for selected
condensed-matter systems, major questions remain regarding, e.g., its degree of universality. Here, we
develop a global Kibble-Zurek picture from the condensed-matter level. We show theoretically that a
transition between two fluctuation regimes (Ginzburg and mean field) can lead to an intermediate region
with reversed scaling, and we verify experimentally this behavior for the structural transition in the series of
multiferroic hexagonal manganites. Trends across the series allow us to identify additional intrinsic features
of the defect formation beyond the original Kibble-Zurek paradigm.
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I. INTRODUCTION

Topological defects are ubiquitous in nature, emerging in
various forms in a large variety of physical systems from
atomic to cosmic length scales. In the context of cosmol-
ogy, Kibble first inspected the link between the possible
topology of the corresponding defects and gauge symmetry
breaking [1]. Subsequently, Zurek derived a scaling law
relating the density of defects and the speed at which the
transition point is crossed [2]. Their combined theory is
known as the Kibble-Zurek mechanism. Under the appro-
priate conditions, this mechanism is expected to describe
the formation of topological defects in a system that is
driven through a continuous phase transition at a finite
cooling rate. Since Kibble-Zurek scaling is determined by
the critical behavior and should be the same for all systems

in the same universality class, Zurek proposed the study of
condensed-matter analogues to cosmic systems for its
verification.
A variety of condensed-matter systems have been inves-

tigated to date in an effort to verify the Kibble-Zurek
mechanism. Early attempts were carried out on liquid
crystals [3,4], superfluid 4He and 3He [5–8], and super-
conducting rings [9,10]. More recent studies have been
conducted on multiferroics [11–13], Bose-Einstein con-
densates [14,15], ionic crystals [16,17], Landau-Zener
setups [18], and colloidal monolayers [19]; for a review,
see Ref. [20]. The case of multiferroics is particularly
interesting, as they have provided the first experimental
setting clearly compatible with a Kibble-Zurek scaling
beyond mean field [11]. On the other hand, for the same
system, a drastic reversal of this scaling (termed “anti-
Kibble-Zurek scaling” [11]) has been reported for fast
quenches, although its origin is not understood and its
existence has been questioned [13].
In this work, we combine first-principles calculations

and the theory of critical phenomena to provide a global
picture of the Kibble-Zurek mechanism in which, by
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increasing the cooling rate, defect formation evolves
from the fluctuation-dominated Ginzburg region to the
mean-field regime, with the Ginzburg temperature as the
energy scale for this crossover. This picture naturally
encompasses features of anti-Kibble-Zurek behavior,
which can emerge from the crossover between these two
distinct regimes.
The possibility that a system can evolve from mean field

to a borderline regime beyond mean-field behavior was
already recognized in connection to inhomogeneous cool-
ings [21]. Even earlier, the role of the Ginzburg temperature
in providing a special energy scale was grasped by Kibble,
even though he rather related it to the energy scale
determining the formation of topological defects [1,22].
[The defect formation is actually determined by the
(critical) dynamics.] Finally, continuation of defect for-
mation after reaching the Ginzburg regime has also been
demonstrated [11,13,23].
Despite all these spotlights on the difference of fluc-

tuation regimes in relation to Kibble-Zurek physics, an
overarching model interrelating these fluctuation regimes
and describing the transfer in between them within the
Kibble-Zurek formalism has not been developed. Here, we
accomplish this, employing the series of hexagonal multi-
ferroic manganites, RMnO3, here with R ¼ Y, Dy, Er, and
Tm, as a model system for this investigation.
In our scanning probe measurements, both the Kibble-

Zurek scaling and the anti-Kibble-Zurek behavior are
demonstrated unequivocally as a general feature in hex-
agonal manganites. In addition, trends that we uncover by
studying the RMnO3 series as a whole reveal additional
quantitative features suggesting that the topological defect
formation is affected by supplementary ingredients beyond
the original Kibble-Zurek theory. We discuss the emer-
gence of additional time scales and length scales as likely
candidates for these extra features, which can appear
naturally from the propagation of the phase-transition front,
the vortex-growth process, or directly from the eventual
discrete nature of the corresponding symmetry breaking.

II. RESULTS

A. Preliminaries

We prepare single crystals of YMnO3, DyMnO3, and
ErMnO3 using the floating-zone (FZ) technique as
described in Appendixes A and B. To complete our
analysis, we also consider data for TmMnO3 reported in
Ref. [13]. These RMnO3 compounds undergo a high-
temperature lattice-distortive unit-cell-trimerizing transi-
tion at TY

c ≃ 1259 K, TDy
c ≃ 1223 K, TEr

c ≃ 1429 K, and
TTm
c ≃ 1514 K [12,24]. By driving the systems through

this structural transition, topological defects are created in
the peculiar form of discrete vortices, as sketched in Fig. 1
[11–13,24–27]. These vortices correspond to particular
solutions of the Landau free energy [27],

F ¼ a
2
Q2 þ b

4
Q4 þ 1

6
ðcþ c0 cos 6ΦÞQ6

þ s
2
½ð∇QÞ2 þQ2ð∇ΦÞ2�; ð1Þ

where Q ¼ ðQ cosΦ; Q sinΦÞ is the primary order param-
eter associated with the condensation of a zone-boundary
K3 phonon. This condensation induces the spontaneous
polarization P ∼Q3 cos 3Φ (Φ ¼ nπ=3, with n ¼ 0;
1;…; 5). The polarization alternation of the resulting six
trimerization-polarization domain states around the vortices

(a)

(b)

(c)

FIG. 1. Formation of topological defects in the hexagonal
manganites. (a) Side and top views of the unit cell showing
the arrangement of the tilted MnO5 bipyramids. At the ordering
temperature Tc, sets of three bipyramids tilt towards or (in this
case) away from a common center. This trimerizes the unit cell
and induces a spontaneous polarization �P. The order parameter
of the trimerization polarization is ðQ cosΦ; Q sinΦÞ with Q and
Φ as sketched. (b) Topological defects are lines (points on the
sample surface) around which Φ changes monotonically in a
clockwise or counterclockwise fashion. Close to Tc, this change
is gradual due to the “dangerously irrelevant” character of the Z6

anisotropy. At lower temperature, the Z6 anisotropy becomes
fully relevant and six domain states with discrete values
Φ ¼ n × 60°, n ¼ 0; 1;…; 5, emerge. (c) Possible arrangement
of the six domain states around the vortex-like topological defect.
For each domain state the bipyramidal tilt pattern is indicated
with arrows representing Q and Φ.
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[see Fig. 1(c)] enables their real space imaging by piezo-
response force microscopy (PFM). The parameters of
Eq. (1) for the series of hexagonal manganites calculated
in this work using density functional theory (DFT) (see
Appendix C) are given in Table I.

B. Quenching experiments

As detailed in Appendix B, suitable sets of samples are
prepared by preannealing a larger set of samples above the
respective transition temperature and selecting only those
samples that reveal, for every compound separately and
within statistical error, the same density of vortices under
identical annealing conditions. In addition, we verify in
YMnO3 samples that they lose any memory of the
ferroelectric preannealing domain state after exceeding
Tc by at least 20 K. For a cooling rate of 5 K=min, we
explicitly verify that the initial temperature of the cooling
produces no significant change in the domain-vortex
density if the cooling starts above said value of
Tc þ 20 K. Only the cooling rate itself matters in that
case. Additionally, we find that, at least up to 20 K below
Tc, postannealing runs produce no essential change in the
ferroelectric domain structure (see also Ref. [24]).
Taking all these precharacterization results into account,

the subsequent cooling-rate-dependent experiments are
performed by heating samples to between 40 and 210 K
above Tc and subjecting them to cooling rates ranging from
10−2 to ≈105 K=min down to between 50 and 460 K below
Tc (details in Appendix B). To exclude surface-related
effects, samples are then thinned by about 100 μm before
polishing them and resolving the ferroelectric domain
structure by PFM at room temperature. The resulting
images are shown for DyMnO3 and ErMnO3 in Fig. 2;
the behavior of YMnO3 is similar. Both compounds exhibit
the characteristic domain pattern in which meeting points

TABLE I. Parameters of the Landau free energy Eq. (1)
obtained from DFT calculations (see Appendix C). Here, a0
denotes the zero-temperature value of the parameter a [in the
simplest case, a ¼ −a0Tcε, where ε ¼ ðT − TcÞ=Tc is the
reduced temperature]. The parameter s in Eq. (1) corresponds
to the averaged stiffness s ¼ ðs2xszÞ1=3. The zero-temperature
correlation length ξ0, renormalized zero-temperature correlation
length ~ξ0, and Ginzburg number Gi are derived from these values.

YMnO3 DyMnO3 ErMnO3 TmMnO3

a0 (eV=A2) −3.2 −3.6 −3.8 −3.9
b (eV=A2) 5.6 5.8 6.1 5.6
sx ¼ sy (eV) 4.57 4.47 4.73 4.52
sz (eV) 17.2 18.7 18.9 20.18

ξ0 (Å) 1.48 1.50 1.41 1.40
~ξ0 (Å) 2.00 2.00 1.90 1.89
Giðs̄ ¼ sÞ 0.27 0.24 0.28 0.27
Giðs̄ ¼ szÞ 0.017 0.015 0.018 0.014

(a) (b)

FIG. 2. Spatial maps of the vortexlike ferroelectric domain
pattern in hexagonal manganites for a range of different cooling
rates through Tc. Images were recorded by PFM under ambient
conditions. Labels denote the respective cooling rates. Scale bar
in all images is 5 μm. (a) DyMnO3. (b) ErMnO3. The Kibble-
Zurek-like increase of vortex density with cooling rate, followed
by a reversal and decrease of vortex density, is clear in both
compounds.
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of the six trimerization-polarization domains identify the
location of the topological vortex defects. DyMnO3 shows
an increase of vortex density n up to a cooling rate of
1 K=min, followed by a striking decrease of n by 2 orders
of magnitude upon further increase of the cooling rate.
ErMnO3 displays qualitatively the same behavior, but the
decrease of n sets in at higher cooling rates than in
DyMnO3. Note that previous experiments [12,13] were
performed at slower cooling rates, and so did not discover
the turnaround in the slope of n.
The vortex density as a function of cooling rate for all

four RMnO3 compounds is displayed in Fig. 3, clearly
revealing that both the Kibble-Zurek and the anti-Kibble-
Zurek behavior are generic features of the vortex formation
in the hexagonal manganites. We also find an intriguing
dependence on the crystal chemistry, with larger R3þ radius
correlating with higher n at a given cooling rate within the
Kibble-Zurek region, as well as with a decrease of the
cooling rate at which the turnaround occurs. In addition,
we observe deviations from Kibble-Zurek scaling in the
ultraslow-cooling regime to which we return in Sec. III.
Note that variations of the temperature at which we begin
and end the controlled cooling above and below Tc,
respectively, according to Appendix B, have no influence
on the data. This becomes particularly clear by the
similarity of the data for YMnO3 and DyMnO3 for which

the controlled cooling is maintained down to 500 and 50 K,
respectively, below Tc. This confirms that the temperature
intervals of the quenchings are wide enough to observe
Kibble-Zurek physics.

C. Global Kibble-Zurek mechanism

We now discuss the origin of the turnaround between
Kibble-Zurek and anti-Kibble-Zurek behavior. According
to the Kibble-Zurek mechanism, the vortices are expected
to emerge from critical fluctuations with a density that is
essentially determined by the rate of cooling through the
phase transition and the critical slowing-down of the
system [28]. When the relaxation of the order parameter
becomes slower than the changes introduced by the
quenching, the thermal fluctuations freeze out and give
rise to a nonequilibrated order-parameter distribution.
We first revise this picture by making a distinction

between two fluctuation regimes, namely, the Gaussian
(about mean-field) and the Ginzburg (or scaling) regimes
[29–31]. Roughly speaking, fluctuations are assumed to be
noninteracting fluctuations in the Gaussian approximation
while their interaction becomes crucial and controls the
critical properties in the Ginzburg regime. These fluctua-
tions determine the vortex density n expected according to
the Kibble-Zurek hypothesis as

n ∼
1

ξ2ðt�Þ
¼ 1

ξ20

�
τ0
τq

�
2ν=ð1þzνÞ

: ð2Þ

Here, ξðt�Þ is the coherence length at the freeze-out time t�,
which in turn is the time at which the quenching process
becomes faster than the relaxation of the order parameter τ.
For a linear quench with TðtÞ ¼ ð1 − t=τqÞTc, where τq is
the characteristic time set by the cooling rate r ¼ Tcτ

−1
q , the

freeze-out time is given by t� ∼ ðτ0τzνq Þ1=ð1þzνÞ [2,20]. Here,
z and ν are the dynamical critical exponent and the critical
exponent for the correlation length according to τðεÞ ¼
τ0=jεjzν and ξðεÞ ¼ ξ0=jεjν, where ε ¼ ðT − TcÞ=Tc is the
(time-dependent) reduced temperature [32–34].
We see in Eq. (2) that the precise form of the Kibble-

Zurek scaling is fundamentally related to the nature of the
critical fluctuations at the freeze-out. In the mean-field
regime the critical exponents are ν ¼ 1=2 and z ¼ 2,
which leads to a mean-field Kibble-Zurek exponent
2ν=ð1þ zνÞ ¼ 1=2. In addition, the microscopic correla-
tion length is ξ0 ¼

ffiffiffiffiffiffiffiffiffiffi
s=a0

p
in terms of the Landau free-

energy parameters in Eq. (1) with the expansion
a ¼ −a0Tcε. On the other hand, the critical exponents
for Eq. (1) in the Ginzburg regime take the values ν ¼
0.672 and z≃ 2 of the 3D XY model [13,24,35,36]. As a
result, the Kibble-Zurek exponent becomes 2ν=ð1þ zνÞ ¼
0.58. The onset of interaction between fluctuations char-
acterizing the transition to the Ginzburg regime modifies

FIG. 3. Dependence of domain vortex density on cooling rate
through Tc across the RMnO3 series for R ¼ Y, Dy, Er, Tm. Two
regimes, one in which the vortex density increases and one in
which it decreases with cooling rate, are obvious. Lines show the
fitted Kibble-Zurek behavior. Error bars represent the statistical
error of the counted vortex number. Data for TmMnO3 were
taken from Ref. [13]. Starlike red symbols indicate data points
taken on flux-grown samples in Ref. [12]. Insets show PFM
images of the domain structure after quenching at 1 K=min for
5 × 5 μm2 sections. The TmMnO3 image is sketched as its
domain size would exceed the shown section.
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not only the critical exponents but also “microscopic”
parameters such as ξ0, which becomes

~ξ0 ¼
�
5bkBT
π2s̄2

ξ0

�
2ν=5

ξ0; ð3Þ

where s̄ is the relevant parameter determining the gradient
stiffness (see Appendix D).
The crossover between the mean-field and Ginzburg

regimes is defined by the Ginzburg-Levanyuk criterion as
the point at which the order-parameter fluctuations in a
correlation volume of size ξ3 reach the magnitude
of the order parameter itself [29–31]. This crossover can
be more accurately estimated from direct observables
such as the specific heat. Thus, with Eq. (1) one obtains
the so-called Ginzburg-Levanyuk number Gi≡ εcrossover ¼
ðbkBTcÞ2=½ð4πÞ2a0s̄3� [30].
This has to be compared with the reduced freeze-out

temperature εðt�Þ ¼ ðτ0=τqÞ1=ð1þzνÞ to determine the for-
mation of vortices in the Kibble-Zurek picture. At slow
cooling rates, where εðt�Þ < Gi, the Kibble-Zurek mecha-
nism probes the fluctuation-dominated Ginzburg region.
However, as the cooling rate increases, the freeze-out
eventually occurs so far from Tc that εðt�Þ > Gi and,
hence, the Kibble-Zurek physics emerges from Gaussian
fluctuations in the mean-field regime. The critical
exponents and the microscopic parameters then change
accordingly.
The expected crossover for a system described by Eq. (1)

is illustrated in Fig. 4. Since the Kibble-Zurek exponent
2ν=ð1þ νzÞ is larger in the Ginzburg regime than in the
mean-field regime, an offset between the related lines in the
double-logarithmic plot is expected. The density of defects
can then be expected to show a dropdown if the transition

from the Ginzburg to the mean field is sufficiently
abrupt (see Fig. 4, red solid line, in contrast to the softer
transitions shown as red broken lines). The observed
scenario eventually depends on the particular system under
consideration.
The values for Gi obtained from DFT calculations (see

Table I) justify the slow-cooling scenario of the Ginzburg
regimewith its value of 0.58 for the Kibble-Zurek exponent.
Note that the Gi values in Table I are unusually large (see,
e.g., Ref. [37]) and could imply unphysically high crossover
temperatures. Smaller, possibly more realistic values of Gi
are obtained if we assume that the relevant stiffness
controlling the fluctuations is sz instead of the averaged
value s, which may be justified in view of the anisotropy of
our system. This replacement would also reduce the
resulting crossover temperature. Thus, the expected cross-
over in the Kibble-Zurek scaling is fully compatible with
the dropdown observed in our experiments.
Two additional effects determine the relative position of

the Ginzburg and mean-field asymptotic lines in Fig. 4.
On the one hand, we see in Table I that the hexagonal
manganites have a consistently larger correlation length ~ξ0
in the Ginzburg than in the mean-field regime, ξ0. This
should tend to reduce the offset shown in Fig. 4 and could
even lead to a crossing of the Ginzburg and mean-field
graphs (Fig. 4, inset), along with a smooth transfer between
the regimes as indicated by the line. On the other hand, a
central factor discriminating between the two scenarios is
the renormalization of the relaxation time τ0. Equation (3)
shows that the correlation length increases in the Ginzburg
regime, and with this we expect the relaxation time τ0 to go
up. Hence, the dropdown scenario is the more likely one,
providing an explanation for our experimental results in
Figs. 2 and 3. We expect that experiments at higher quench
rates, which we have not yet been able to access, should
show a second turnaround, as vortex densities begin once
again to increase with quench rate following a mean-field
scaling.
Note that, in the seemingly unrelated case of a quantum

phase transition driven by a noisy control parameter, the
possibility of a dropdown has also been pointed out [38].
The analogy between this system and our system is that, in
both cases, the departure from the Kibble-Zurek scaling is
due to the running of the critical exponents—which, in
Ref. [38], change from their nominal to their noise-limited
value.

III. DISCUSSION

We first discuss the deviations observed in our ErMnO3

samples in the ultraslow-cooling regime. As shown in
Fig. 3, here the vortex density increases but without
reaching expected value. Such behavior was already
noticed for other systems [4,14,39] and attributed to
vortex-antivortex annihilation. This explanation is consis-
tent with our finding that the falloff is largest at very slow

FIG. 4. Evolution of the Kibble-Zurek scaling [μ¼2ν=ð1þzνÞ].
As the fluctuation regime probed in the experiment changes from
Ginzburg (green dashed lines) to mean-field (blue dashed lines)
behavior, the density of defects can display either a dropdown
behavior (solid red line), a steplike transition (broken red lines),
or a smooth transition (solid red line in the inset). The scenario
depends on the microscopic parameters of the system, foremost
the renormalization of the relaxation time τ0 when entering the
Ginzburg regime (see text).
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cooling, when the time spent close to Tc is large. It is also
consistent with its absence in the flux-grown samples of
Ref. [12]; our samples are grown using the floating-zone
method, which we expect to have distinctly different
stoichiometric modifications. We indeed observe that the
mobility of vortices below Tc can vary substantially among
samples depending on the annealing gas atmosphere.
We now analyze the pronounced trends with the chem-

istry across the RMnO3 series that are clear in Fig. 3. In
particular, the vortex density for a given cooling rate in the
slow-cooling regime increases by 3 orders of magnitude
from Tm to Dy, i.e., with decreasing R3þ radius. In the
Kibble-Zurek picture this is directly related to the micro-
scopic parameters ξ0 and τ0. Our first-principles calcula-
tions (see Table I) indicate that the mean-field value for ξ0 is
essentially the same in the four systems, as is the renor-
malized value ~ξ0 (≃1.3ξ0) in the fluctuation regime.
Therefore, to obtain a factor ∼103 in the vortex density
in either the conventional mean-field or fluctuation-domi-
nated Kibble-Zurek picture, τ0 would need to change by an
unphysical factor of ∼106. Strictly speaking, the renorm-
alization of ξ0 should be computed at the freeze-out
temperature T�¼½1þðτ0=τqÞ1=ð1þzνÞ�Tc. However, this does
not help us to reconcile the differences, since to increase the
vortex density by the observed factor 103, the freeze-out
temperature would have to reach T� ∼ 100Tc ≳ 105 K.
This is again unphysical. We thus see that the vortex
formation in the RMnO3 systems displays quantitative
features challenging the interpretation in terms of the
original Kibble-Zurek mechanism. Specifically, the trend
with chemistry does not fit with the standard scenario, even
with the role of critical fluctuations beyond the mean-field
description fully taken into account.
Another trend in Fig. 3 is the several-orders-of-magni-

tude shift of the cooling rate at which the departure from the
initial Kibble-Zurek scaling occurs and which is not
predicted by the calculated values for Gi in Table I.
Specifically, the Gi number turns out to be essentially
constant across the RMnO3 series even if it has the usual
strong dependence on the relevant gradient parameter [37].
At the same time, it is striking that the huge spread of the
vortex density in the Kibble-Zurek range is substantially
reduced in the anti-Kibble-Zurek regime (from 1000 to 4),
and, in fact, almost restores the approximate R independ-
ence expected from Table I.
At least in part, extrinsic factors may be responsible for

these unexpected trends with chemistry. Temperature-
dependent processes related to chemical or mechanical
impurities could affect the vortex formation differently
across the RMnO3 series, simply because of the substantial
increase of Tc from Dy to Tm. In addition, the chemical and
mechanical quality of the samples may change with R.
DyMnO3, in particular, is much harder to grow hexagonally
than, e.g., TmMnO3 because of the closer proximity of the
competing perovskite phase. In fact, we find that batches of

the same material grown under slightly different conditions
can show, at a specific cooling rate, a vortex-density spread
up to factor 4 with overall trends with cooling rate like in
Fig. 3 (see Appendix B).
These factors can modify, in particular, the thermal

conductivity of the samples. This conductivity is another
ingredient limiting the overall thermalization of the
system, and is such that the instantaneous temperature
can additionally be position dependent across the sample.
If this happens, the local transitions will not be simulta-
neous during the experiments. Instead, there will be a
phase-transition front propagating at the speed vf ¼
½ðdxÞ=ðdtÞ�jTðx;tÞ¼Tc

, which needs to be compared with
the characteristic speed vc ¼ ξðεÞ=τðεÞ ¼ ðξ0=τ0Þjεjz of the
order-parameter relaxation [40–43]. Thus, if the front
propagates much slower than the order-parameter pertur-
bations, the formation defects can be heavily suppressed in
a composition-dependent fashion.
Finally, we briefly discuss other possible origins of the

anti-Kibble-Zurek behavior. The thermal conductivity
could be one of them since, according to the above, a
maximum in the vortex density can be expected at vf ¼ vc,
followed by a quick decrease as the cooling rate (and,
hence, vc) increases. On the other hand, the reversal from
Kibble-Zurek to anti-Kibble-Zurek scaling has also been
demonstrated in a recent Bose-Einstein-condensate tran-
sition experiment [15]. In that case, it has been ascribed to
vortex-vortex repulsive interactions. Such interactions
could also play a role in our RMnO3 systems, which
certainly display a rather dense vortex pattern in the
crossover region (see Fig. 2). In addition, there are addi-
tional time scales that can become relevant in the problem.
The most obvious one is the time scale needed to obtain a
fully developed vortex from the initial seed. Indeed, by
increasing the cooling rate, this process can be expected to
be gradually suppressed—simply because the phonons will
not have time to propagate the order-parameter perturba-
tions [44]—which will eventually lead to a decrease in the
vortex density.
Thus, the overall trend in Fig. 3 may still be largely

determined by intrinsic properties, and, hence, directly
related to the corresponding universality class. In this regard,
the discrete nature of the symmetry breaking can play a
crucial role, especially if, as has been repeatedly underlined
(see, e.g., Refs. [45–47]), the defect formation is decided
after crossing the transition temperature. In fact, a generic
feature ofZ6models likeEq. (1) is the emergence of a second
correlation length below Tc associated with the phase of the
order parameter supplementing that of its amplitude [24].
This, however, is missed in the usual Kibble-Zurek mecha-
nism formulated for U(1) models. This second correlation
length diverges faster than the standard correlation length
[24]. Thus, if the critical slowing-down of the phase itself
becomes a dominant process, the vortex density might
become affected in a substantial way.
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IV. CONCLUSION

In summary, we show theoretically that the Kibble-Zurek
picture inherently includes a transfer from the asymptotic
scaling, where the system is well inside the Ginzburg
region, to mean-field scaling, where fluctuations represent
small perturbations. This transfer is general since all phase
transitions, from the interatomic to the cosmological scale,
are formally expected to undergo such a crossover. We
match our predictions with the experimental behavior in the
series of hexagonal manganites and show that this cross-
over can be behind the striking reversal of the topological
defect density as a function of the cooling rate (anti-Kibble-
Zurek scaling). In addition, using density functional theory,
we quantify the expected Kibble-Zurek behavior across the
RMnO3 series. This quantification reveals the presence of
sizable chemical trends that call for a vital upgrade of the
original Kibble-Zurek considerations for the systems in
this class.
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APPENDIX A: GROWTH AND
CHARACTERIZATION OF

DyMnO3− δ SAMPLES (δ ≈ 0.05)

Hexagonal crystalline DyMnO3−δ is prepared by the
optical floating-zone melting technique using a Cyberstar
mirror furnace as follows.
The starting materials are Dy2O3 powder (abcr GmbH,

99.99% rare-earth oxide basis) and Mn2O3 powder
(MaTeck, 99.9% metals basis). Any moisture in the starting
materials is removed by heating them at elevated temper-
atures under air in a laboratory chamber furnace (Mn2O3

powder up to 400 °C, Dy2O3 up to 1100 °C) for a dwell time

of at least 1 h. In addition, the chemical composition of the
Mn2O3 powder is confirmed using thermogravimetric
analysis.
A 1∶1 molar ratio of mingled Dy2O3 and Mn2O3

powders is pre-reacted in an alumina crucible overnight
up to 1250 °C (dwell time 4 h) under air. The sintered
powder is then ground and pressed into rods which are
sintered for 4 h at 1310 °C under air. Next, the polycrystal-
line sintered rods are processed by floating-zone melting in
a Cyberstar mirror furnace under flowing argon (99.999%,
flow rate 24 liter=h) and with a zone speed or growth rate
of 8 mm=h.
The oxygen content of argon at the gas outlet of the

Cyberstar mirror furnace is monitored using an oxygen
analyzer. During the creation of the molten zone an oxygen
content of about 400 ppm is detected for a short time. This
decreases steadily during the first hour of growth so that
after 1 h and during the subsequent 4 h the detected oxygen
content is always in a range of about 50–40 ppm. This
enhanced oxygen content of the argon at the outlet of the
mirror furnace indicates that the original chemical compo-
sition DyMnO3 has released oxygen resulting in a melt-
grown sample with composition DyMnO3−δ with δ > 0.
This is confirmed by thermogravimetric analysis, which
indicates δ ≈ 0.05.
Powder x-ray diffraction of melt-grown and pulverized

DyMnO3−δ is performed with a Panalytical X‘Pert PRO
MPD diffractometer equipped with a Ge monochromator
(Cu Kα1 radiation). The measured powder x-ray pattern of
the melt-grown DyMnO3−δ displays 31 peaks within the
angle range 3° ≤ 2Θ ≤ 73°. All observed peaks fit to a
hexagonal YMnO3-type structure. Lattice parameter refine-
ment gives a¼b¼6.18Å, c¼11.47Å, and V ¼ 379.3 Å3

(P-type Bravais lattice). The modulus of the difference
between the observed and calculated peak position is
≤0.035° for all observed peaks.
The applied procedures and used devices such as the

custom-made agate mortar and pestle, special and custom-
made pressing dies, preparation of the feed and seed rod,
mirror furnace, special sample holders for the feed and seed
rod, oxygen analyzer, videos from the floating-zone melt-
ing process, and pictures of melt-grown crystalline
DyMnO3 are presented in detail in Ref. [48].

APPENDIX B: SAMPLE PREPARATION

Samples are grown at ETH (DyMnO3), PSI (YMnO3),
and Lawrence Berkeley National Laboratory (ErMnO3) by
the FZ technique as described in Appendix A and else-
where [49–51]. Rods are oriented by Laue diffraction and
cut into z-oriented platelets of a few mm lateral size and a
thickness of about 0.7 mm.
For minimizing sample-dependent drifts in measure-

ments of the cooling-rate-dependent ferroelectric domain
vortex density, all samples of a batch are preannealed under
identical conditions by heating above Tc for several hours
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(YMnO3, 1400 K; DyMnO3, 1270 K; ErMnO3, 1470 K)
and cooling through Tc at a rate of 5 K=min. To reveal the
intrinsic 3D bulk domain structure and suppress surface-
dependent effects, samples are then thinned by at least
100 μm by lapping with Al2O3 powder. This is followed by
etch polishing with a silica slurry, revealing shiny surfaces
with a root-mean-square roughness below 1 nm before
determining the vortex density by PFM.
The PFM characterization of the preannealed specimens

reveals that the vortex density changes systematically with
the location in the original FZ-grown rod from which the
samples are extracted. A variation of up to a factor 2 was
observed for a distance of 10 mm along the growth
direction of the rod. As described in the main text, we
therefore preselect only those samples that reveal, within
statistical error, the same density of vortices under identical
annealing conditions.
The quench experiments are performed like the prean-

nealing experiments but with a dwell time above Tc of few
tens of minutes and varying cooling rate through Tc. In
order to avoid accumulation of chemical drift occurring
during the quench cycles, each data point is gained
from a different specimen of the preselected set. The range
across which the specified cooling rate is maintained is as
follows: DyMnO3 (Tc ¼ 1223 K), 1270–1170 K for cool-
ing rates <100 K=min and 1420–1170 K for cooling
rates >100 K=min; YMnO3 (Tc¼1259K), 1460–970 K;
ErMnO3 (Tc ¼ 1429 K), 1470–970 K.

APPENDIX C: FIRST-PRINCIPLES
CALCULATIONS

For our density functional calculations we use the pro-
jector-augmented wave method as implemented in the
ABINIT code [52–55]. We use a plane-wave cutoff of
30 Ry and a 6 × 6 × 2 k-point grid. To take into account
correlation effects on the Mn atoms, we use the LDAþ U
methodwithin the fully localized limit method as introduced
in Refs. [56,57]. We choose a value of U of 8 eV and
J ¼ 0.88 eV. For all our calculations we adopt an A-type
magnetic ordering of theMn ions and freeze the rare-earth f
electrons in the pseudopotential cores. To extract the param-
eters in theLandau free energy,Eq. (1),we first fully relax the
P63=mmc structure toanaccuracyof10−6 Ry=bohr.Wefind
unit-cell volumes of 364.73, 364.42, 367.50, and 353.00 Å3

for YMnO3, DyMnO3, ErMnO3, and TmMnO3, respec-
tively. We then calculate the force constants using the finite
displacement method and extract the eigenvectors of the
force constant matrix. We then gradually freeze in the
eigenvector of the unstable K3 mode and fit a sixth-order
polynomial to extract the a0 and b terms. To calculate the
gradient term s we exploit the fact that in q space sð∇QÞ2
reduces to sq2jQqj2 and s can then be obtained by fitting a
parabola to the corresponding branch of the force constant
dispersion, as shown in Ref. [27]. We note that the values of

the parameters are dependent on the choice of exchange-
correlation functional becausea scales quadratically andb to
the fourth power with the lattice constant. The trends across
the series, however, are robust to the computational details.

APPENDIX D: DERIVATION OF EQ. (3)

Here, we derive Eq. (3) for the renormalized correlation
length in the Ginzburg region.
First, we note that due to the actual anisotropy of the

gradient term in Eq. (1), the integrals in Fourier space
become

Z
d3kfðsk2Þ ¼ 1

s3=2

Z
d3qfðq2Þ →

Z
d3kfðsxk2x; sxk2y; szk2zÞ ¼

1

ðs2xszÞ1=2
Z

d3qfðq2x; q2y; q2zÞ:

This defines s̄ ¼ ðs2xszÞ1=3 as the appropriate mean for the
gradient coefficient, which we use in the following.
To derive Eq. (3) we follow Larkin and Varlamov [30].

Thus, we obtain the renormalization-group equations,

∂aðT;ΛÞ
∂Λ ¼ −kBTμD

bðΛÞΛD−1

aðΛÞ
2

þ s
2
Λ2

; ðD1Þ

∂bðT;ΛÞ
∂Λ ¼ 5kBTμD

4

b2ðΛÞΛD−1

ðaðΛÞ
2

þ s
2
Λ2Þ2

; ðD2Þ

for the parameters in the Landau free energy Eq. (1)
(here and hereafter, s has to be understood as s̄). Here,
μD ¼ D=½2DπD=2Γð1þD=2Þ�, where D is the dimension-
ality of the problem (D ¼ 3 in our case). Strictly speaking,
these equations are valid close enough to Tc in the
Ginzburg region for D → 4. Nevertheless, the critical
behavior of our 3D system can be studied from these
equations by means of the so-called ϵ expansion [30].
The generalized correlation length is defined by the

equation

ξ−2ðTÞ ¼ α(Tc; ξ−1ðTÞ)
s

Tcε; ðD3Þ

where α is determined from the expansion aðT;ΛÞ ¼
aðTc;ΛÞ þ αðTc;ΛÞTcε. For this latter quantity, the self-
consistent solution of the renormalization-group equations
gives [30]

αðTc;ΛÞ ¼ α0

�
1þ 10kBTμD

s2ð4 −DÞ ðΛ
D−4 − ξ4−D0 Þ

�
−2=5

: ðD4Þ

As T → Tc the right-hand side of this expression is
dominated by the term containing ΛD−4. Accordingly,
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αðTc; ξ−1Þ ≈ α0f10kBTμD=½s2ð4 −DÞ�g−2=5ξ2ðD−4Þ=5 and,
therefore,

ξ−2 ≈
α0Tc

s

�10kBTμD
s2ð4 −DÞ

�
−2=5

ξ2ðD−4Þ=5ε: ðD5Þ

By means of simple manipulations, this equation can be
transformed into

ξ ¼ ξ0
�10kBTμDbξð4−DÞ

0

s2ð4 −DÞ
�
1=ð1þDÞ

ε−ν; ðD6Þ

where ν¼1=f2½1−ð4−DÞ=5�g. Thus, applying this result
to the 3D case, we obtain

ξ ¼ ξ0

�
5kBTb
π2s2

ξ0

�
2ν=5

ε−ν; ðD7Þ

with ν ¼ 3=5. Equation (3) directly follows from this
expression.
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