
February 2007
Reidar Conradi, IDI

Master of Science in Computer Science
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Build and Release Management
Supporting development of accelerator control software at CERN

Petter Enes

Problem Description

1)A review of the literature within the field of software configuration management, including
existing tools providing build and release support.
2)A review of the group’s software development process and the tools that support it.
3)Improve/extend the functionalities of the tools based on the specific needs of the group and the
reviews in 1) and 2).

Assignment given: 18. August 2006
Supervisor: Reidar Conradi, IDI

Abstract

Software configuration management deals with control of the evolution of complex
computer systems. The ability to handle changes, corrections and extensions is
decisive for the outcome of a software project. Automated processes for handling
these elements are therefore a crucial part of software development. This thesis
focuses on build and release management, in the context of developing a control
system for the world’s biggest particle accelerator. Build and release cover topics
such as build support, versioning, dependency management and release manage-
ment.

The main part of the work has consisted of extending an in-house solution sup-
porting the development process of accelerator control software at CERN. The
main focus of this report is on the practical work done in this context. Based
on a literature survey and examining of available tools, this thesis presents the
state of the art concerning build and release management before elaborating on
the practical work. Based on the experience gained from the work of this the-
sis, I conclude with a discussion of whether or not it is beneficiary to stick with
in-house solution, or if switching to an external tool could prove better for the
development process implemented.

i

Preface

This document represents my master thesis at the Department of Computer and
Information Science (IDI), at the Norwegian University of Science and Technology
(NTNU) in Trondheim. It has been written as a part of a Technical Student
program at CERN, the European Organization for Nuclear Research, in Geneva,
Switzerland, in the period from August 06 to February 07. The work has been
carried out in the AB/CO/AP section at CERN.

Firstly, I would like to express my thanks to my supervisor at NTNU, Reidar
Conradi for supporting my stay at CERN and providing valuable feedback on
the report. Secondly, I would like to thank Eugenia Hatziangeli for providing me
with an exiting topic for my thesis, and Wojtek Sliwinski for support and guidance
throughout the work. I would also like to thank the rest of the members of the
AB/CO/AP section for making my stay here at CERN such an enjoyable and
rewarding experience.

Last but not least, I thank the academic staff of the IDI Department at NTNU
for 5 years of exceptional education and the department’s management for their
support of my stay at CERN.

Geneva, February 23, 2007

Petter Enes

iii

Contents

I Background and context 1

1 Introduction 3
1.1 Background . 3
1.2 Motivation . 3
1.3 Thesis Outline . 4
1.4 Limitation of scope . 5

2 CERN. . . where the web was born 7
2.1 Background . 7
2.2 The Large Hadron Collider . 9
2.3 The CERN Control Center . 10

2.3.1 Accelerator Control Software 10

II State of the art 13

3 Software Configuration Management 15
3.1 Evolution of Software Configuration Management 15
3.2 Key Functionalities of SCM . 16

3.2.1 Workspace . 17
3.2.2 Versioning . 18
3.2.3 Building . 18
3.2.4 Dependency management 18
3.2.5 Release Management . 19
3.2.6 Repository management 19
3.2.7 Change management . 19

4 Existing Tools 21
4.1 Gentoo . 21
4.2 Apache Maven . 22
4.3 Software Release Manager . 23

5 Build and Release management for AB/CO/AP 25

v

vi CONTENTS

5.1 Background . 25
5.2 The development process of accelerator control software 26
5.3 The build and release tools . 28

5.3.1 Operational aspects . 29
5.3.2 Development of CmmnBuild and Release 30
5.3.3 Technical aspects and functionality 31

III Own Contribution 39

6 Problem Elaboration 41
6.1 Current state . 41
6.2 Problem formulation . 42

7 Research Method 45
7.1 Literature survey . 45
7.2 System development . 46

8 Extending the build and release management solution 47
8.1 Branching . 48

8.1.1 Branching scenarios . 48
8.1.2 Requirements for Branching 49
8.1.3 System design - Branching 50
8.1.4 Implementation - Branching 50

8.2 Maintaining the production repository 53
8.2.1 Scenarios of Repository Maintenance 54
8.2.2 Requirements for Repository Maintenance 55
8.2.3 System design - Repository Maintenance 56
8.2.4 Implementation - Repository Maintenance 57

8.3 Notification of release . 62
8.3.1 Scenarios of Release Notification 62
8.3.2 Requirements for Release Notification 63
8.3.3 System design - Release Notification 64
8.3.4 Implementation - Release Notification 65

9 Evaluation and discussion 69

IV Conclusion and Further Work 73

10 Conclusion 75

11 Further Work 77
11.1 Further work for CmmnBuild and Release 77

CONTENTS vii

11.2 Further work for SCM in general 77

Appendix 80

A CmmnBuild targets 81

B Sequence diagram 83

Bibliography 87

List of Figures

2.1 Illustration of the LHC and CERN 9
2.2 Overview of the CERN accelerators 11

3.1 Evolution of the context of SCM systems 16

5.1 CVS repository structure for accelerator control software 27
5.2 Overview of CmmnBuild and Release Tool 31
5.3 The directory structure imposed by CmmnBuild 33
5.4 The build.xml file . 34
5.5 An example of the product.xml file 34
5.6 An example of the project.properties file 35
5.7 An example of the people file . 35
5.8 Structure of the distribution area 36
5.9 The repository.xml file . 38
5.10 The repository user interface . 38

7.1 Overall progress of the project . 45
7.2 Illustration of the development process 46

8.1 CVS branch . 48
8.2 Flow of events for Branching . 50
8.3 Products and artifacts in the production repository 54
8.4 Overview of the repository maintenance process 56
8.5 The cern-jjar package . 57
8.6 An example of the subscriptions.xml file 64
8.7 Overview of the release notification scheme 65
8.8 The web interface for the release notification scheme 66
8.9 The cern.release.notification package 66
8.10 Overview of the mail sending process 67
8.11 The ant-script sending mail . 68
8.12 The mail-template used to notify users of a release 68

B.1 Repository maintenance sequence diagram 83

ix

List of Tables

3.1 CM functionality requirements . 17

5.1 A selection of CmmnBuild targets 32

6.1 Current state of CmmnBuild and Release Tool 43
6.2 Goals for the desired increments 44

8.1 Production repository data . 53

9.1 Updated production repository data 70

A.1 CmmnBuild targets - complete 82

xi

Part I

Background and Context

Chapters

1 Introduction 3
2 CERN. . . where the web was born 7

Chapter1
Introduction

1.1 Background

The AB/CO/AP section is responsible the development of the accelerator
control system used to run and control the particle accelerators at CERN.
Control of all the major accelerators is performed from the CERN Control
Center, the CCC. The control software was previously written in C and C++,
but a migration to the platform independent language Java was initiated in
2002. The development of software in C and C++ had a well defined process
and solid tools supporting it, but unfortunately, they were unfitted for the new
programming language. The need for a new solution to support Java was agreed
upon, and the decision was made to develop an in-house tool. The solution
consisted of one new tool, and a re-writing of an existing one. During the last
years, these tools have been extended with new functionality as requests from
the section have appeared. The tools are now fully operational and are relied
upon by all Java developments in AB/CO/AP. However, new functionality
requirements are still appearing as the development process for the accelerator
control software evolves.

1.2 Motivation

Software configuration management (SCM) addresses the problem of
coordinating and controlling change in software projects. The current trend of
moving towards component based development, involving independently built
and released products, large development teams and even distributed locations
increases the need for a set of tools to support the process.

When focusing on build and release management, we find important issues such
as software versioning, automated build support and artifact repositories. The
strategy of the development of accelerator control software implies a high focus
on independently developed packages, including in-house as well as third-party
developments. These packages make up the accelerator control system in use in

3

4 Chapter 1. Introduction

the CERN Control Center.

To accommodate such a strategy, the AB/CO/AP section has implemented a
solid development process, including tools to support versioning, building,
management of dependencies and installation of software into a distribution
area. These tools are developed in-house, which allows the section to address
specific needs in a timely and accurate manner.

1.3 Thesis Outline

Chapter 1 contains this introduction.

Chapter 2 presents an introduction to CERN, the CERN Control Center and
accelerator control software.

Chapter 3 takes a look at the state-of-the-art within SCM. Focus is on
functionality related to build and release management

Chapter 4 presents three external tools developed in different contexts. They
represent important functionality within build and release management.

Chapter 5 introduces the development process implemented in AB/CO/AP
for accelerator control software. This includes the tools supporting the
process. The aim of this chapter is to provide an overall understanding of
the tools, before the practical parts of this thesis are elaborated in
Chapter 8.

Chapter 6 sums up the state of the build and release tools before the work of
this thesis commenced. Furthermore, it presents the areas in which new
functionalities were desired, and a formulation of the goals put in place.

Chapter 7 presents the methods used during the work of this thesis.

Chapter 8 elaborates on the practical part of this thesis. The chapter is
divided into three sections, one for each extension of functionality.

Chapter 9 evaluates the process and result of the work. A discussion of
possible future solutions based on the experience from this thesis is also
presented here.

Chapter 10 presents a conclusion of the work of the thesis.

Chapter 11 presents future areas of interest for SCM in general, in addition to
specific areas of focus for the build and release tools in AB/CO/AP.

1.4. Limitation of scope 5

1.4 Limitation of scope

The main goal of this thesis is to extend the build and release management tool
used by the developers of accelerator control software at CERN. This implies a
technical focus.

Due to the interest of the AB/CO/AP section and the level of technicality of the
project, an in-depth study of the field of Software Configuration Management
(SCM) falls outside the scope of this thesis. The study of the area of SCM is
limited to cover only those concepts and aspects necessary to develop quality
extensions to the build and release management tools used in AB/CO/AP.

The technical aspects will be elaborated.

Chapter2
CERN. . .where the web was born

On the French-Swiss border, in the near proximity of Geneva, Switzerland, lies
CERN 1, the world’s largest particle physics laboratory. Founded as a joint
venture by a number of European governments in the period after the Second
World War, CERN’s goal was to promote European research by gathering the
best researchers from all sides of the conflict.

During its years of operation, CERN has achieved three Nobel prizes in physics,
as well as providing to the world with one of the most significant innovations in
newer history, the World Wide Web. CERN and its research has even been
popularized through an important role in Dan Brown’s bestseller ”Angels and
Daemons.” Although Dan Brown’s CERN is not entirely based on reality, one
does not have to rely on fiction to make the story about CERN fascinating and
impressive 2. This chapter will take a closer look at CERN’s history, mission
and current projects.

2.1 Background

CERN was founded in 1954 by 12 European governments. Their mission was to
explore the field of particle physics, also known as High-Energy Physics (HEP).
At that point in time, America had taken over Europe’s previously leading role
in science, and to get back on their feet, Europe needed to join ”forces.”
Investments involved in HEP research was beyond the means of any single
European country. Throughout the years, more countries have joined the
project, and CERN counts today a total of 20 official European members states.
In addition, numerous countries from all over the world are involved through
various research contributions.

The research of High-Energy Physics means studying the smallest particles of
our world, the particles that are the building blocks of the universe. Many of

1CERN stands for Conseil Européen pour la Recherche Nucléaire but is also known as The
European Organization for Nuclear Research

2For CERN’s own comments about the book, please visit
http://public.web.cern.ch/public/Content/Chapters/Spotlight/SpotlightAandD-en.html

7

8 Chapter 2. CERN. . . where the web was born

these particles do not exist under normal circumstances in nature, and if they
do, they may not be visible. To study these particles, one must create the
proper conditions for them to appear, even if it’s only for a fraction of a second.
By accelerating other particles to almost the speed of light, and then smashing
them into each other, large quantities of energy are released, thereby producing
new particles. Using sophisticated instruments, these short-lived particles can
be detected and data about their characteristics can be collected. Analysis of
this data can help the scientific community to explain phenomena such as the
Big Bang and gravity.

To accommodate the acceleration of the particles, CERN has, over the years,
built a collection of Particle accelerators. The research within the HEP domain
is closely related to the energy contained by the particles at impact. Following
the theories of relativity by Albert Einstein, the energy released during a
collision of particles is directly linked to their velocity, the ultimate velocity
being the speed of light. More powerful accelerators can accelerate the particles
closer to this limit, thus providing researchers with new, interesting data.
CERN’s role has been to provide the research community with the
state-of-the-art within particle accelerators. Since the startup in 1954, 7
accelerators have been built, the next more complex, more powerful and more
expensive than the previous. The biggest accelerator so far is the Large
Electron-Positron collider (LEP) measuring a total of 27 km in circumference,
located between 50 to 175 meters under earth’s surface. The LEP was
operational between 1989 and 2000.

CERN employs about 3500 people, representing a wide range of skills:
physicists, engineers, technicians, scientific fellows, students, craftsmen,
administrators, secretaries and workmen. These people are responsible for
building, maintaining and operating the intricate machinery that makes up the
accelerators and detectors. They also take part in preparing, running, analyzing
and interpreting the complex scientific experiments. In addition, some 6500
visiting scientists, half of the world’s particle physicists, come to CERN to
perform their research experiments. They represent 500 universities and over 80
nationalities.

Among the major achievements resulting from the research at CERN is the
discovery of the W and Z boson, for which Carlo Rubbia and Simon von der
Meer were awarded the physics Nobel Prize in 1984. Also important was the
breakthrough in the field of particle detectors which led to the invention of the
multiwire proportional chamber, earning Georges Charpak the physics Nobel in
1992. 3

3For an in-depth study of these discoveries, please take a look at the homepage of the Nobel
Prize: http://nobelprize.org/nobel prizes/physics

2.2. The Large Hadron Collider 9

CERN’s focus today is on the installation of their newest accelerator, the Large
Hadron Collider (LHC). The LHC project will start its first tests by the end of
2007.

2.2 The Large Hadron Collider

The LHC will be the largest and most powerful particle accelerator ever built,
with the cost of installation itself amounting to almost 9 billion euros.
Thousands of researchers are working to prepare the experiments that will use
the LHC, and even more will take part in analyzing the results. Trying to
pinpoint the smallest fragments of the universe, the LHC pushes the boundaries
of technology and the scale of science experiments.

Through the use of complex radio frequencies, LHC will accelerate protons to
0.999999991 times the speed of light. A total of 9000 magnets, creating a
magnetic field 200,000 times stronger than the earth’s own magnetic field, will
make sure that the beam of particles follows the circular track. In order to do
this, the magnets must be cooled down to about 2 Kelvin, approximately 300
degrees Celsius below room temperature, thereby making the LHC the coldest
place in the Universe.

Figure 2.1: Illustration of the LHC and CERN

The LHC is being installed in the same tunnel as the previous accelerator, the
LEP. Each particle will travel the 27 km ring 11,000 times per second. Located

10 Chapter 2. CERN. . . where the web was born

around the ring are four detectors, or experiments, which will capture the
results of the collisions. The biggest detector, ATLAS, is the size of a five story
building. When the LHC is fully operational, collisions will occur one billion
times a second, producing an enormous amount of data. The data created
corresponds to 10,000 Britannica Encyclopedias per second. This has forced
CERN to look for innovative ways for organizing the data processing. The
result is the CERN Computing Grid which aims to utilize computer power from
all over the world through the use of a multi-tiered network of computers.

Some of the questions that are hoped to be answered by the research of the data
produced by the LHC includes: why particles have mass; why the mass we can
observe only accounts for 4% of the total mass in the Universe; why our
Universe is made of matter and not of antimatter; and what occurred during
the first milliseconds of Big Bang. It is well outside the scope of this thesis to
further elaborate on these questions, and for more information about the topic,
I refer to the CERN web pages, www.cern.ch.

2.3 The CERN Control Center

The control of the accelerators at CERN is done from a control center. In the
beginning of 2006, the control of all the major accelerators, including PS, SPS
and LHC (see figure 2.2), were gathered in the newly built CERN Control
Center. The CCC is the workplace of the Operators, usually consisting of
physicists and technicians, who are responsible for producing and maintaining
the particle beam for the physics experiments. Operators constantly monitor
the quality of the produced particle beam and take corrective actions when it
degrades. Similarly, in case of a failure in the highly complex accelerator
infrastructure, the Operators have to make a first diagnoses on the nature of the
problem, and then call the right experts for help. To accomplish this work, the
operators use an accelerator control system, a sophisticated system with
functionality to supervise the accelerator and to control it.

Figure 2.2 provides an overview of the CERN particle accelerators.

2.3.1 Accelerator Control Software

The accelerator control system consists of what is termed as accelerator control
software. In this thesis, control software refers mainly to the software developed
in the AB/CO/AP section at CERN. In collaboration with the Operations

2.3. The CERN Control Center 11

Figure 2.2: Overview of the CERN accelerators

12 Chapter 2. CERN. . . where the web was born

group, this section is in charge of providing the application software for the
control of PS, SPS and LHC.

Rather than relying on a few major applications, accelerator control software
consists of many small interdependent products, spanning from low-level
services to end-user applications. This approach allows the products to be
implemented, tested and released independent of each other.

This approach does, however, demand solid conventions and guidelines for
source organization and structure. The development process of accelerator
control software is further explained in chapter 5.

Part II

State of the Art

Chapters

3 Configuration Management 15
4 Existing Tools 21
5 Overview of CmmnBuild and Release 25

Chapter3
Software Configuration

Management

To increase the possibility of success within the area of software engineering, the
ability to manage change is crucial. Large complex systems may consist of
several independent components working together to solve a need. The
challenges of handling changes, corrections, extensions and adaptations of such
systems are the focus of Software Configuration Management.

The definition provided by J. Estublier in [12] states that

. . . SCM is the control of the evolution of complex systems

In her article about ”Using a Configuration management tool to coordinate
software development [15], the author states three reasons why proper
management of software evolution is so difficult. The first reason, is that the
developers can very easily change code. Second, because of the
interdependencies among components, modifications can affect entire systems,
and third, because software is usually developed in teams, the changes of one
person often makes an impact on the work of others.

This chapter takes a closer look at the concepts of Software Configuration
Management. After presenting a short history of the subject, and how research
has played a part in the evolution of SCM, I will present some important
functionalities relevant for this report.

3.1 Evolution of Software Configuration

Management

SCM as a discipline emerged in the late 70s and early 80s, soon after the so
called ”software crises,” when it was realized that software development
consisted of more than just programming. Issues like architecture, building,
evolution and so on were also important, time-consuming parts of the process.
The focus of SCM has changed over the years as it has tried to address the
different issues of software development.

15

16 Chapter 3. Software Configuration Management

In the beginning, SCM was needed to support versioning and (re)building in
managing critical software by a single person on a mainframe. It later evolved
into the support of large-scale development and maintenance by groups of users
on Unix systems. Today, SCM supports a multitude of software developments,
often including several participants in distributed locations. Figure 3.1
illustrates the evolution of the context in which SCM works.

Figure 3.1: Evolution of the context of SCM systems

Today’s focus of a typical SCM tool includes: management of component
repositories, support for the usual activities of engineers and process
control and support [12][13].

The evolution and success of SCM is closely related to the amount of research
performed within the domain. Both industry and academia has contributed to
the research which has pushed for continuous innovations in the field. Several
fundamental techniques, which now form the basis of many of today’s tools,
were first published in one form or another. This research has contributed to
why J. Estublier et al. concludes in [13] that:

SCM is arguably one of the most successful software engineering
disciplines.

3.2 Key Functionalities of SCM

Susan Dart presents in her article ”Concepts in Configuration Management” [9]
from 1991 a list of key functionalities, or operational aspects, of configuration
management (See table 3.1). It has taken considerable time and effort to
implement these functionalities to their full extent, and it was not until recently

3.2. Key Functionalities of SCM 17

that high-end SCM systems, providing good support for the whole spectrum of
functionality, has emerged [13].

Functionalities
Components identifies, classifies, stores and accesses the components

that make up the product. Keywords: versioning, selec-
tion, consistency

Structure represents the architecture of the product. Keywords: re-
lationships, selection, consistency

Construction supports the construction of the product and its artifacts.
Keyword: building, dependencies

Auditing keeps an audit trail of the product and its process. Key-
words: traceability, logging

Accounting gathers statistics about the product and the process.
Controlling controls how and when changes are made. Keywords:

change propagation, access control, change requests
Process supports the management of how the product evolves. Key-

words: lifecycle support
Team enables a project team to develop and maintain a family of

products. Keywords: workspaces

Table 3.1: CM functionality requirements

The spectrum of functionalities covered by SCM is substantial, and the focus of
this report will be on the services included in build and release management. In
the context of this report, build and release management includes such elements
as workspace, versioning, building, release management, dependency
management, repository management and change management. The
remainder of this chapter presents an introduction to these topics.

3.2.1 Workspace

During the software development process, a workspace is where the files are
created and edited. It is a programmer’s local environment where he can put
artifacts that he needs to extend, build or test. Typically, such artifacts are
checked out from a versioning system and may include source files, libraries and
configuration files. Providing the right files, in the right file system and letting
developers work independent of each other is the responsibility of an SCM
system [4][12].

18 Chapter 3. Software Configuration Management

3.2.2 Versioning

Versioning is the action of assigning a specific number to a certain aggregate of
artifacts for the intention of keeping a history of this aggregate. Version control
systems usually include a data repository where the versioned aggregates are
stored. From this repository, aggregates can be accessed through the use of the
version numbers. In addition to the data contained by the artifacts, it is also a
common feature to record additional information such as time of commitment,
name of the author(s), the author’s annotation etc [31]. Such aggregates are
often referred to as configuration items and the concepts and mechanisms used
to handle relations between them are termed a version model [7].

Versioning can appear on several levels, depending on the granularity of the
aggregate. On fine-grained level, versioning keeps track of digital documents,
while on a higher level, the aggregate might be a collection of components
making up a software product.

3.2.3 Building

Building is the process of compiling source code and making a program
runnable. The efficiency of a build process relies heavily of only rebuilding
whatever is necessary. A well known and classic building tool, relied upon by
many SCM tools, is Make, originally developed for the Unix platform. In recent
years, Ant has emerged from the Java community offering a build tool based on
the Java language. Berczuk [4] mentions two types of builds. One ”private”
build process, performed within a local workspace to assure the changes made,
and one build process to integrate changes into a larger system.

3.2.4 Dependency management

Dependency management deals with the mechanisms of identifying
dependencies of single software components, and analyze and manage their
impact on an entire system [26]. Support for managing dependencies is crucial
as software development shifts towards a component-based, distributed strategy.
The difficulty of analyzing and tracking dependencies increases as
component-based systems not only rely on in-house developed components, but
also third party packages [25].

3.2. Key Functionalities of SCM 19

3.2.5 Release Management

Release Management is the discipline of deploying software into a software
repository. It is the link between a developer and a product store allowing the
developer to make his program available for other users in a controlled and
consistent manner. This involves building the product, resolving possible
dependencies and providing a unique identifier which can be used for accessing
the product at a later point (this is typically a version number).

3.2.6 Repository management

In relation to the levels of versioning presented earlier, there are different
repositories, or libraries. The level referred to as controlled library is used to
control the current baselines of a project and manage the evolution of them [16].
A static library, or software repository, contains released aggregates of artifacts
for general use. Repository mangament is the process of maintaining these
libraries, providing users the possibility to store and fetch aggregates of data
based on version numbers.

3.2.7 Change management

SCM is the control of changes in software projects. Joeris [17], argues that
change management is one of the core problems of software development,
referring to management of change process, as well as change in artifacts making
up a system. Important elements addressed by the change management process
include change requests, problem reports, change logs and notification schemes.

Chapter4
Existing Tools

The aim of this chapter is to present three concrete examples of available SCM
tools. It will not provide a depth-study of the mechanisms involved, but give an
overall presentation of the state of practice related to some of the key
functionalities mentioned in 3.2. Over the years, a number of tools have become
available, both through open source communities and industry. The three tools
presented here do not by any means represent all concepts available through the
vast collection of tools existing, but they represent important functionality in a
build and release management process. The first tool, Gentoo is not an SCM
tool in its right definition, but it contains functionalities which are important
elements of an SCM tool. Second is Apache Maven, a tool developed under the
Apache Software Foundation [14]. It was taken into account in AB/CO/AP’s
decision of making an in-house solution. It was not chosen, but has inspired
certain aspects of the section’s solution presented later. The last tool is a
prototype presented by André van der Hoek and Alexander L. Wolf [24]. They
introduce a tool aimed at supporting both developers and users in the process
of software release management.

4.1 Gentoo

Gentoo is an open source software for distributing and installing packages on
different Unix variants. Although Gentoo is not an SCM tool per se, there are
many similarities in the tasks supported by Gentoo and the tasks of a typical
Configuration Tool. The key functionality of the Gentoo system is to install
packages on a local computer, keep the installed packages up-to-date as new
releases are made available and to uninstall existing packages. A package, which
is the atomic unit of the Gentoo system is typically a third-party OSS
application, like Java or Emacs.

The Gentoo package is comparable to a computer software configuration item,
defined by [11] as:

An aggregation of software that is designated for configuration
management and treated as a single entity in the configuration

21

22 Chapter 4. Existing Tools

management process.

The Gentoo system’s equivalent of a repository is the Portage tree. The portage
tree is a centralized database, of which a computer running Gentoo keeps a
local copy. The users copy of the portage tree is referred to as portage, and its
functions include resolving dependencies between packages, downloading and
unpacking source code, updating packages by deleting old versions and
installing new. While the portage tree can be seen as a repository, containing all
artifacts available, the local portage contains functionality which would be
managed by an SCM’s workspace tool [23].

4.2 Apache Maven

Apache Maven is a tool aimed to facilitate the build process of any Java-based
project. The areas of concern that Maven tries to deal with includes:

• Making the build process easy

• Providing a uniform build system

• Providing quality project information

• Providing guidelines for best practices development

• Allowing transparent migration to new features

Maven defines a build lifecycle, which contains important tasks such as
compilation, test, package, install and deploy 1. The tasks in the build lifecycle
are the actions that take place when a product is being built.

Maven also defines a Project Object Model, POM, which is the fundamental
unit of work in Maven. It is an xml-file containing information about the project
in addition to configuration details used by Maven when performing the build.
Examples are the build directory, the source directory, the test-source directory.

Maven supports two types of repositories, local and remote. A local repository
refers to a local copy of the remote repository including temporary build
artifacts not yet released. A remote repository refers to any other type of
repository accessed through a variety of protocols, such as http and file. In
general, the layout of the repository is completely transparent to the user.

Dependency management is one of the areas of Maven that is best known to its
users. When dealing with multi-module projects and applications, consisting of
tens or hundreds of modules, Maven claim to be able to help you a great deal in

1for a complete definition of the build lifecycle, I refer to the Maven documentation found
at http://maven.apache.org

4.3. Software Release Manager 23

maintaining a high degree of control and stability. After the release of version
2.0, Maven supports transitive dependencies, meaning that is no longer
necessary for a user to discover and specify the libraries that your own
dependencies rely on. Maven will include them automatically.

In addition Maven supports dependency scope, which is used to limit the
transitivity of a dependency. A user can specify for what parts of the build,
compilation, test or runtime, a dependency is applicable [19][29].

4.3 Software Release Manager

The emergence of component-based software has increased the level of
complexity when it comes to the process of release management. Software is
being constructed from pre-existing, independently used, independently
developed and released components. Little attention has been paid to the
question of how these components should be released, and how users of such
components can obtain them in an effective and accurate manner. Hoek et. al.
term this problem Software Release Management, which has given the name to
the prototype they are presenting, Software Release Manager, SRM [24].

SRM’s focus is on the activities taking place in between the moment a
component is developed and when it is installed. SRM does not consider
traditional SCM functionality like source code management and installation,
but it instead tries to bridge the gap between authoring and releasing
components and assembling such components into an application.

The Release Database is the repository in which SRM stores both metadata
explaining the components, as well as the release archives themselves. SRM
provides location transparency meaning that for a user of SRM, it appears as
one single database, while in reality the artifacts are stored in separate
repositories spread across different sites.

SRM provides its users with a Release Interface where a user might release,
withdraw or modify components. Modifying a release includes modifying its
metadata, or even the underlying dependencies. Withdrawing, or removing, a
released component from the repository is provided to make obsolete and
non-supported components unavailable for download. Only components which
are not serving as dependencies for other projects might be removed.

Once released, information about a component is made available through the
Retrieve Interface of SRM. This interface is the main access point to the release
database and presents information about the components.

Presented in this chapter were three tools covering different aspects of build and

24 Chapter 4. Existing Tools

release management. The following chapter will present the solution used by the
AP/CO/AP section for supporting their development process of accelerator
control software.

Chapter5
Build and Release management for

AB/CO/AP

This chapter presents the process, and the accompanying tools which together
make up the build and release management solution for the AB/CO/AP section
at CERN. The tools support the development of accelerator control software
and are being used by both specialized Java developers in addition to physicists
developing operational software for the CERN Control Center. 5.1 introduces a
short background before an elaboration of the development process is presented
in 5.2. Chapter 5.3 presents the tools. The aim of this chapter is to provide a
base of understanding before the presentation of the practical part of the thesis.

5.1 Background

Accelerator control software was previously written in C and C++, but a
migration to Java was initiated in 2002. All new software would be written in
Java, and when time and resources would allow it, old applications would be
rewritten in the new language. For projects based on C and C++, there was in
place a well defined and mature development process, but this did not exist for
new the Java developments. The build services offered through the IDE’s in use
were limited and they provided no satisfactory solution to the problem of
sharing JAR files between projects. To fulfill this need, it was decided to set up
an easy and uniform process that should be used by all future developments.
This process should be based on standards, knowledge and tools available in the
Java community whenever possible. The tools to support this process were
decided to be implemented in-house, thereby allowing custom functionality, and
avoid the risk of implementing a tool which would be discontinued in the future.
CmmnBuild (pronounced: common build) was initiated to support tasks such
as the building process and dependency management. The Release Tool1

handles all the interaction with the software repositories. Before elaborating on
the tools, the development process they support is explained.

1To avoid confusion with release as an action, the tool is referred to as the Release Tool or
simply Release Tool

25

26 Chapter 5. Build and Release management for AB/CO/AP

5.2 The development process of accelerator

control software

A software process is defined as the collection of related activities involved in
the production of a software system [10]. The process of developing accelerator
control software is defined as follows:

All activities from the moment a developer starts a new project to
the moment the resulting application is running on operational
consoles in the control room

The process includes issues such as project and source-code organization,
build services, dependencies management, release management and
application deployment. The development process in this context does imply
a certain development method. Rather, it refers to important tasks involved in
the process of developing software. Following is a presentation of the key issues
in the accelerator control software development process.

Projects and code organization

As mentioned in the introduction, the development strategy of accelerator
control software implies focus on small interdependent products, implemented,
built, tested and released independent of each other. For such a strategy to
work, the use of solid conventions and guidelines for source organization and
structure is crucial.

A project is to be given a name corresponding to where it belongs. The
recommendation is to prefix each package with ”cern” followed by the name of
the accelerator the software belonged to. The prefix ”accsoft” should be used for
cross-accelerator software.

Source management

The source version management is handled by the CERN central Concurrent
Versioning System (CVS). A dedicated repository for accelerator controls
software is maintained with a well defined directory structure. A product’s path
within the repository corresponds to the package name explained earlier. See
figure 5.1. For basic functionality like checkout and commit, the IDE’s are used.
More advanced functionality is integrated into CmmnBuild. One example is
tagging. The CVS constitutes the controlled library for AB/CO/AP.

5.2. The development process of accelerator control software 27

Figure 5.1: CVS repository structure for accelerator control software

Build process

Building software is the process of combining a set of configuration items,
belonging to a baseline, together into composites. It serves the purpose of
constructing all or parts of a product’s deliverables from its components. The
build services are used for prototyping, testing of new functionality and creating
a distribution before releasing a new version of a product. The build process
includes actions such as compilation, packaging, running of unit tests and
generation of certain files and documents. The build process is supported by the
CmmnBuild tool.

Dependency management

One of the most important factors of the section’s development process is the
management of dependencies. In order to simplify the dependency declaration
for the user, and facilitate the maintainability of all products, it is crucial to
support transitive dependencies. This means that a user only specifies the
products he depends directly on, without worrying about the libraries his
dependencies rely on. In a scenario where a low level product changes its
dependency-declaration, all products depending on this product (directly or
indirectly), would have to update their dependencies as well. This quickly
becomes complicated, especially in environments with many products and
complicated dependency-trees.

In addition, the dependency management must take into account that products

28 Chapter 5. Build and Release management for AB/CO/AP

might be stored in different repositories. AB/CO/AP separates its own
developments from third party tools in two separate locations. CmmnBuild
handles the management of dependencies and fetches both direct and indirect
dependencies from either of the two product stores. Like all three tools
mentioned in chapter 4, CmmnBuild handles the different repositories
transparent to the user.

Release management

Release management is the process of installing a built and tested product into
the operational distribution area, referred to as the production repository. All
deliverables are installed and distributed on their corresponding platforms,
where they are made available for use in operation. The products are available
through an assigned version number. Previous operational versions stay
available. The release management is handled by the Release Tool.

Software deployment

The deployment of GUI applications is done using Java Web Start. To enable
the use of JaWS, a web server has been installed which makes the production
and the third-party repositories accessible through the web. To run an
application, all that is needed is the URL to the product’s descriptor file
(JNLP) residing in the repository. It is possible to run any released version of
the product. The JNLP files are created by CmmnBuild during the build and
made available on the server by Release Tool. Also available is the generation of
a command script for launching an application.

Presented here were the most important aspects of the development process,
with an indication of which services is provided by which tool. Following is a
detailed explanation of the two tools.

5.3 The build and release tools

This section presents the tools supporting the development process explained in
the previous chapter. First is a closer look at the operational environment in
which the tools operate. Second is an elaboration of why and how the tools
have been developed. The last section explains the technical aspects of the
tools, how they interact and what are the services they provide.

5.3. The build and release tools 29

5.3.1 Operational aspects

The new tools supporting the development process were meant to support the
development of all accelerator control software for the use in the Cern Control
Center (CCC). The developers of such software vary in background and
software development experience.

User Characteristics

The users of CmmnBuild and Release Tools consists of both specialized Java
developers and physicists developing operational software. CmmnBuild and
Release Tool have an estimated total of 80 users. This is mostly members of the
AB/CO/AP and the AB/OP section at CERN, but it also includes developers
in other research institutions developing software for the CERN Control Center.
The main example is Fermilab in the USA 2.

In more detail, the users are:

• software developers and project managers who deliver software for the
operation and control of the CCC

• people who maintain operational software which is not necessarily
developed by them

• the software administrator who will be in charge of the administration of
the SCM system

• members of the AB operations group, AB/OP. They are responsible for
the operation of the different accelerators, and they also develop a large
amount of operational software

Operational environment

CmmnBuild is running on a user’s local workstation and must support both
Windows and Linux. Release Tool is running on a server and must stay
independent of network file system (NFS, AFS, etc.).

2http://www.fnal.gov/

30 Chapter 5. Build and Release management for AB/CO/AP

5.3.2 Development of CmmnBuild and Release

CmmnBuild and the Release Tool are two separate and independent tools. Both
of them can be used without the use of the other and the development of the
two has previously been done separately. They are now combined to one
project. The next two sections explains the choice of development for the tools.

CmmnBuild

Before starting the development of an in-house tool to solve the need for
configuration management of accelerator control software, several tools in the
Java community were examined and considered. However, they were all found
to be in an early stage of development, with limited functionality, especially
regarding dependency management. They were not considered mature enough,
and there was no guaranty that these tools would be continued into the future.
In addition, no satisfactory solution to the incorporation of 3rd party libraries
was found. Considering these facts, it was decided to develop an in-house,
custom solution. This would guaranty the section the necessary functionality. It
would cost time and resources, but so would customization of an external tool.

The first production version of CmmnBuild was deployed in 2003 with a
minimum of functionality. Since then, it has been incrementally developed and
new functionality has been added when needed.

CmmnBuild is still under development as new requirements from the users
appear.

Release Tool

The Release Tool already existed at the startup of CmmnBuild, though it was
not created to support Java-projects. As CmmnBuild evolved and was taken
into use by all Java-developments, it was decided to rewrite the Release Tool to
better suit the needs of the new language. It was previously based on bash
script aimed for C and C++, and modifying this to accommodate the changes
were considered more work than to rewrite the tool in Ant. Ant is specifically
aimed at supporting Java.

The Release Tool is still under development as new requirements from the users
appear.

5.3. The build and release tools 31

5.3.3 Technical aspects and functionality

This section takes a look at the technical aspects of the tools, including
technical details, functionalities and the constraints of the system.

Client-server design

The relationship between CmmnBuild and Release Tool is based on a
client-server model. The tools are, however, not tightly linked and CmmnBuild
is just one of several clients using the Release Tool. Other clients are not
considered here. Figure 5.2 provides an overall view of the two tools and the
interaction between them.

Figure 5.2: Overview of CmmnBuild and Release Tool

Apache Ant

Both tools are based on the Java-based scripting language Ant, stemming from
the Apache Software Foundation. A short introduction to the use of Ant in
CmmnBuild and Release Tool is presented before elaborating on the technical
aspects.

32 Chapter 5. Build and Release management for AB/CO/AP

The Ant package provides a set of tasks representing different functionality.
Example of such tasks are javac, mkdir and echo [2]. In addition to these core
tasks, there are several additional tasks available through external packages
easily included into the local Ant installation. Examples being the ant-contrib
[21] and the xmltask [20]. Even more specialized tasks can be written if needed.
All underlying logic of Apache Ant is written in the Java language, and extra
functionality may therefore easily be written in Java. Most of the underlying
logic of the services performed through CmmnBuild and the Release Tool is
provided by standard Ant packages or extensions such as xmltask and
ant-contrib. In addition, some specialized features are implemented in Java.
These are further explained when needed.

Technical details of CmmnBuild

CmmnBuild consists of a set of ant-scripts divided into several files based on
their functionality. The main file is the common-build.xml. Through these
scripts CmmnBuild can provide its services through a set of predefined targets.
CmmnBuild offers no graphical user interface to its users, and the targets may
be run from command line or through an IDE. This requires an Ant plugin.
CmmnBuild includes three main areas of support: creating a distribution of a
product, fetching dependencies and releasing the product.

Not all targets are available for direct execution. Some are incorporated into
more substantial services, and may be enabled/disabled through the use of
properties on a project level. The properties are explained later.

Table 5.1 presents a list of the most important target available for direct
execution, but a complete list may be found in Appendix A.

Targets Action
usage prints all targets available for the user
compile compiles all source code
dist creates a complete distribution of the prod-

uct
getjars fetches the dependencies specified from the

repository
release releases the product into production; involves

Release Tool
devrelease releases the product to the Qfix folder
junit executes all unit tests written for the project

Table 5.1: A selection of CmmnBuild targets

5.3. The build and release tools 33

The dist target is the main task of CmmnBuild. It performs all tasks which are
needed to create a full distribution of a product. The resulting output depends
on the properties specified for the project. Included in the dist service are:

• Fetching of dependencies

• Compilation

• Packaging to jar or war file

• Certain code generation

• Generation of Javadoc and java2html

• Style checking

• Compilation and execution of JUnit tests

• Generation of JNLP or command script

Through command line, the command:

ant dist

would execute the dist target.

CmmnBuild is a centralized tool, meaning that it prevents downloading a big
buildfile for every new project. An important goal for CmmnBuild is to keep
the overhead of using it as little as possible. That is why all that is needed is a
small buildfile working as a proxy to the targets defined in the user’s
installation of CmmnBuild. In addition, the user must adapt a certain directory
structure which includes four special configuration files (the buildfile included).
See figure 5.3.

example−p ro j e c t /
bu i ld . xml
product . p r op e r t i e s
product . xml
people
s r c /

java /
t e s t /

Figure 5.3: The directory structure imposed by CmmnBuild

Configuration files

The build.xml file is a regular Ant build file that imports the target from the
CmmnBuild-distribution installed on the user’s computer. This build file is the

34 Chapter 5. Build and Release management for AB/CO/AP

same for every product (figure 5.4). Advanced users may extend this file with
custom targets.

� �
1 <?xml version=”1 .0 ”?>
2 <p r o j e c t name=”example−p r o j e c t ” default=”de f au l t ”>
3 < !−−
4 Defines p ro j e c t v a r i a b l e s
5 −−>
6 <property f i l e=”p r o j e c t . p r op e r t i e s ”/>
7 < !−−
8 import the standard t a r g e t from cmmnbuild
9 −−>

10 <property environment=”env ”/>
11 <property name=”cmmnbuild . home” value=”${ env .CMMNBUILDHOME} ”/>
12 <property name=”cmmnbuild . t a r g e t s ” l o c a t i o n=”${cmmnbuild . home}/ t a r g e t s . xml ”/>
13 <import f i l e=”${cmmnbuild . t a r g e t s } ”/>
14
15 </ p r o j e c t>� �

Figure 5.4: The build.xml file

The product.xml file is a descriptor file for the product. It contains the name,
the version, CVS module name and may also contain a description, a webpage
link and a set of dependencies. Product.xml is relied upon by any target in need
of metadata about a product. When specifying the dependencies in the
product.xml, the user can either specify a certain version number of the product
to depend on, or choose to depend on the production version (figure 5.5). The
production version is explained later.

� �
1 <?xml version=”1 .0 ” encoding=”UTF−8”?>
2 <products>
3 <product name=”example−p r o j e c t ” version=”3 . 0 . 2 ” d i r e c t o r y=”example−p r o j e c t ”>
4 < j a r>example−p r o j e c t . j a r</ j a r>
5 <desc></ desc>
6 <hr e f />
7 <dependenc ies>
8 <dep product=”xalan ” version=”2 . 7 . 0 ”/>
9 <dep product=”cern−j j a r ” version=”PRO” />

10 </ dependenc ies>
11 </product>
12 </ products>� �

Figure 5.5: An example of the product.xml file

The project.properties file specifies properties unique to a project and is used to
activate specific services in CmmnBuild during the build process (figure 5.6).
An example is enabling the generation of javadoc by setting the property
javadoc.enabled=true.

The last file is the people file, indicating the names of the users who have the
right to release the product. It is used during the release process (figure 5.7).

5.3. The build and release tools 35

� �
1 javadoc . enabled=true
2 java2html . enabled=f a l s e
3 war . enabled=true� �

Figure 5.6: An example of the project.properties file� �
1 gkruk
2 ws l iw ins
3 enes
4 vfram
5 eroux� �

Figure 5.7: An example of the people file

Technical details of the Release Tool

The Release Tool is organized similarly to CmmnBuild with a set of ant-scripts
containing targets available through the main file release.xml. The release
management is handled by the Release Tool. This tool is not exclusively for
Java projects, and can also be used for C and C++, depending on the tool
specified for building the product. The focus of this report is on Java projects
using CmmnBuild. In this case, Release Tool is not used directly by the user,
but is called from CmmnBuild when running the ant release command.
Before CmmnBuild invokes the Release Tool, it tags the the collection of the
artifacts making up the product in the CVS with a version tag.

The release tool is running on the release server, in an operational account
referred to as PCROPS. In addition to hosting the Release Tool, PCROPS also
contains two software repositories, production repository and 3rd party
repository. Production repository contains all released products of accelerator
control software developed in-house. The 3rd party repository contains third
party libraries used by developers in their projects. The 3rd party repository
resembles the Gentoo Portage Tree in the way that it stores and maintains
external software. Example of 3rd party libraries are JUnit and Log4J. The
release tool only supports releases to the production repository. Information
about the content of the repositories is contained in xml files, referred to as
repository.xml. This is further explained later.

When a product is released, the Release Tool extracts this product from the
CVS to the dedicated production repository and builds the product. The
product is extracted from the CVS based on a CVS version tag assigned in the
first step of the release process. In case of Java products, the release will call its
own local CmmnBuild installation to build and prepare the product. To
maintain the loose coupling between the Release Tool and CmmnBuild, a
different build or make tool can easily be used instead.

36 Chapter 5. Build and Release management for AB/CO/AP

Figure 5.8 illustrates how a product in the production repository is structured.
The directory structure corresponds to the structure in the CVS repository. For
every new version, the Release Tool creates a separate directory, taking the
version as name, without modifying old versions. This leaves the opportunity of
going back to an older version at a later point.

Figure 5.8: Structure of the distribution area

To indicate which version is the current production version, the the Release
Tool maintains a set of symbolic links, referred to as aliases:

PRO - points to the current production version

NEXT - points to the next version that may become production version

PREV - points to the previous production version (version replaced by PRO)

The alias of which a product shall be released with, is specified in the command
line when launching the release process. As default, a product when released,
becomes the production version, but there is the possibility to release a product
as the next version (pointed by the NEXT alias). This feature may be used to
evaluate a release in its real environment before releasing it as the production
version. The PREV alias allows the user to easily revert to the previous version
in case the newly released production version does not work as planned. The

5.3. The build and release tools 37

following command executed in the example-product folder, would release the
product as NEXT

ant release -Dalias=NEXT

In addition to a normal release, there is the possibility of releasing a product to
a folder called Qfix. The motivation for this possibility is to supply the
developers with a place to quickly release a bug fix or untested functionality.
The Qfix folder has full write access which means that a developer can modify
his code immediately, even without being at his usual workstation. Products
released to Qfix are not related to any version number and will be overwritten
at next Qfix-release. The Qfix can be affiliated with any of the aliases.

The repository.xml file

The information about the content of a repository is kept in an xml file named
repository.xml (also referred to as repository descriptor). Both 3rd party and
the production repository keep such a file mirroring their content. These files
are the source of information when interacting with the repositories.
CmmnBuild uses them to resolve and fetch dependencies, and the Release Tool
uses the repository.xml of the production repository when installing a new
version of a product. In addition, these files are available, through the use of
XSLT, for a user to view via a web-page. This is similar to the Release Interface
in SRM from chapter 4.3, but differs by the fact that the repository web
interface is only for viewing. Actions are performed through ant commands.
Consistency between the repositories and their respective xml files mirroring
their content is crucial for the operation of CmmnBuild and Relaese. Figure 5.9
shows a section of the repository xml in its normal appearance, while figure 5.10
shows the view available for a user through a web-browser. For the remainder of
this report, when referring to the repository.xml, its referred to the file
mirroring the production repository.

This chapter has presented the development process implemented in the
AB/CO/AP section, and the tools supporting it. The following chapter will
summarize the functionality available, and introduce the areas in which new
functionality is desired.

38 Chapter 5. Build and Release management for AB/CO/AP

� �
1 <product d i r e c t o r y=”a c c s o f t / r f / ac c so f t−r f−l o gg ing ” l i n k=”PRO”
2 name=”acc so f t−r f−l o gg ing ” version=”0 . 7 . 1 ”>
3 < j a r>0 . 7 . 1 / bu i ld / d i s t / ac c so f t−r f−l o gg ing . j a r</ j a r>
4 <desc>Logging Appl i ca t ion . Store CMW i t e r f a c e s data in to l o c a l f i l e s and
5 memory , read i t and show i t in p l o t s .</ desc>
6 <dependenc ies>
7 <dep l o c a l=”true ” product=”commons−l o gg ing ” version=”1 . 0 . 4 ”/>
8 <dep product=”japc ” version=”0 . 14 . 1 3 ”/>
9 <dep product=”japc−context ” version=”0 . 9 . 5 ”/>

10 <dep product=”japc−ext−d i r s e r v i c e ” version=”1 . 1 . 8 ”/>
11 <dep product=”japc−gui−viewer ” version=”1 . 0 . 1 1 ”/>
12 <dep l o c a l=”true ” product=” l o g 4 j ” version=”1 . 2 . 9 ”/>
13 </ dependenc ies>
14 <r e l ea s eDate>Monday , November 27 , 2006</ r e l ea s eDate>
15 </product>
16 <product d i r e c t o r y=”cmmnbuild/ cern−j j a r ” name=”cern−j j a r ” version=”3 . 5 . 3 ”>
17 < j a r>3 . 5 . 3 / bu i ld / d i s t / cern−j j a r . j a r</ j a r>
18 <desc>CERN JJar f a c i l i t y</ desc>
19 <hr e f>ht tp : // cern . ch/ te s t−r e l e a s e</ h r e f>
20 <dependenc ies>
21 <dep l o c a l=”true ” product=”ant ” version=”1 . 6 . 5 ”/>
22 <dep l o c a l=”true ” product=”xalan ” version=”2 . 7 . 0 ”/>
23 </ dependenc ies>
24 <r e l ea s eDate>Monday , November 27 , 2006</ r e l ea s eDate>
25 </product>� �

Figure 5.9: The repository.xml file

Figure 5.10: The repository user interface

Part III

Own Contribution

Chapters

6 Problem Elaboration 41
7 Research Method 45
8 Extending the Build and

Release Management Solution
47

Chapter6
Problem Elaboration

This chapter sums up the current state of the two tools, CmmnBuild and
Release Tool, referring to the state before the practical part of this thesis was
started. What services were already supported, and what were the areas in
which new functionalities were desired. Furthermore this chapter presents the
problem formulation for this thesis. What were the goals to achieve. To improve
the software development process implemented in the section, the focus of this
project has been to implement and deploy desired extensions to the group’s
build and release management solution. The goal of each extension has been to
develop a functional feature, and making this available for users in the newest
versions of the tools.

6.1 Current state

Both CmmnBuild and Release have been operational for several years, and
many projects developing control software for different accelerators have been
entirely based on these tools. The tools have provided support spanning from
the startup of a new project, or a new version, to the installation of that product
in the production repository. This included all steps in the development process
presented in chapter 5.2. Table 6.1 summarize the current services available in
CmmnBuild and Release Tool. There are, however still services not supported
by the tools and three of them were addressed during the work of this thesis:

The strategy taken by AP/CO/AP when it comes to maintaining released
versions is simple; a released version is never patched or fixed in responds to a
bug-report or similar. Instead, a new version is released with the proper
changes. This might cause a problem if the version with the bug is old, and the
project is in such a state that a bugfix cannot be provided any time soon in the
newest release. The CVS provides a service called branching to allow a
developer to create a parallel development path of a project based on a version
tag [6]. Incorporating the branching functionality into CmmnBuild was the first
problem addressed.

The production repository contains all products developed for accelerator

41

42 Chapter 6. Problem Elaboration

control in the AP/CO/AP section. With the startup of the LHC closing in, and
the installation of the new control center, much software is produced and the
amount of software kept in the repository increases continuously. To keep the
repository in an easily maintainable state, functionality to remove unnecessary
products was wanted.

The AP/CO/AP section relies on JIRA, which is a third party, issue-tracking,
project management application [3]. It is used by developers and users to
register issues about a product. Such issues can consist of bug-reports, wanted
functionality or a change log. Currently, this tool works independently of
CmmnBuild and the Release Tool. An overall goal is to merge the tools in order
to support the full product lifecycle. As a start, an automatic release
notification scheme was looked into.

These issues led to the following problem definition.

6.2 Problem formulation

Since the startup of this project, AB/CO/AP has undertaken an iterative,
incremental development approach towards CmmnBuild and Release Tool. This
project represents three such increments responding to the problems presented
in the previous section. The overall goals for the increments are shown in table
6.2. The purpose of this thesis has been to implement support for each of the
goals presented, and make this available in new versions of the tools. An
elaboration on the issues and specific requirements for each goal are presented
in chapter 8.

Before the decision was made to develop an in-house solution for build and
release management, several external tools were considered. One reason for the
final decision was that the tools were found immature, unstable and lacking key
functionality. Today, however, many of these tools have grown to become widely
used SCM tools, and the question has been asked whether it might be
beneficiary for this section to switch one of these tools. A final goal of this
thesis is therefore:

Based on the experience of the last 6 months improving the SCM solution, could
it be beneficiary to migrate to an external tool to solve the sections SCM needs?

The goal is not to give a final answer to such a question, but to shed some light
on the subject which might be of value in an upcoming discussion.

6.2. Problem formulation 43

Current state of CmmnBuild and Release Tool
Subject Functionality

Code
organization
and
Source
Management
(CmmnBuild)

A certain file structure is imposed by CmmnBuild. For
source management, CmmnBuild relies on CVS. Certain
CVS actions are available through CmmnBuild, like tag-
ging, but for simple interactions, such as check in/check
out, the developers use their IDE or command line

Build services
(CmmnBuild)

Provides support for compiling, generation of code, com-
pilation and running of unit tests and verification of code.
Packaging to jar and war files is possible. In addition, gen-
eration of javadoc, jnlp and html is available. Some of these
are available as stand-alone services. All are incorporated
in the creation of a distribution and may be enabled/dis-
abled in the projects properties declaration. Some of these
services rely on customized Java packages, while the rest
are based on the functionality provided through Ant. One
exception is code generation, which is a customized target
relying on XSLT

Dependency
management
(CmmnBuild)

Provides the service of fetching the dependencies of a prod-
uct from either the production repository or the 3rd party
repository. This happens transparent to the user. This
service is made available through a customized Ant task
developed in Java

Release
management
(CmmnBuild
&
Release Tool)

Builds and installs a product in the production repository.
Aliases may be specified, to decide whether or not to release
as production version

Software
deployment
(CmmnBuild
&
Release Tool)

A JNLP file may be generated during the build process and
made available on a web server during the release process.
Java Webstart is used to run the application, based on this
JNLP. Also available is the generation of a command script
for launching the application

Table 6.1: Current state of CmmnBuild and Release Tool

44 Chapter 6. Problem Elaboration

Desired extensions to CmmnBuild and Release Tool
Subject Goals
Incorporation
of branching

incorporation of the CVS branching feature into Cmmn-
Build facilitating the process of providing a bugfix

Repository
maintenance

provide functionality to limit the amount of manual la-
bor necessary to keep the repository-server in an easily
maintainable state

Release notifi-
cation

provide support for automatic release notification. A
first step in a more extensive solution

Table 6.2: Goals for the desired increments

Chapter7
Research Method

This thesis consists of two parts. Presented in Part II is the current state of
Software Configuration Management with emphasize on key functionality for
build and release management. Part III is a detailed explanation of the
implementation of a set of selected features in an existing build and release tool
used by the AB/CO/AP section at CERN.

Figure 7.1 illustrates the overall work plan of the project. The two parts are
further explained in the following section.

Figure 7.1: Overall progress of the project

7.1 Literature survey

During the first part of the thesis, a literature survey was conducted to get an
overview of the concepts of software configuration management. In addition,
important features and functionalities of build and release management were
explored through studying a set of external tools in addition to tools presented
in this thesis.

The search for articles was carried out on search-engines covering databases and
on-line article repositories accessed through licenses of NTNU. The search was
limited to a set of well known repositories, mainly IEEE and ACM. In addition
NTNU and CERN’s document servers were used.

45

46 Chapter 7. Research Method

7.2 System development

The development process for the practical part of this thesis was never formally
defined. Since the project consisted of developing independent extensions to the
tools, it was natural to assume an iterative, incremental strategy on the overall
level. The overall level referring to the development of each new feature.

There are several approaches to software development depending on the type of
project, the size and location of the development team, customers etc. Three
well known approaches are the waterfall model [22], iterative development [18]
and agile methods [1]. The methods are often recognized by their abilities to
adapt in changing environments. The waterfall method is the most predictive of
the three, while agile methods are considered most adaptive. A mixture of both
may be found in iterative development.

Agile methods emphasize real-time communication over written documents,
with face-to-face communication as the preferred way. Development using agile
methods consists of dividing work into small iterations, each iteration often
representing a mini-increment of the software [30].

The development team has mainly consisted of two people, the author of this
report, responsible for the implementation, and a project leader, responsible for
the tools in total, and acting as an advisor on implementation issues. In
addition to working close to our ”customers,” which are the developers in our
section, we also represent the customers ourselves. Because of these factors, it
was natural to adapt an agile development strategy based on face-to-face
communication, both within the team and with customers. To be able to react
fast in change of requirements, each extension implemented consisted in several
iterations which were planned, implemented and tested along the development
path. Figure 7.2 illustrates the development process.

Figure 7.2: Illustration of the development process

Chapter8
Extending the build and release

management solution

This chapter presents the practical work of this thesis. Included here is the
implementation of the three new features of the build and release management
solution presented in chapter 6.

Section 8.1 elaborates on the incorporation of branching into CmmnBuild. It
was the first extension implemented. The branching feature does not represent
a grand implementation and served therefore as a good introduction to the tool.
As for all three implementations, scenarios and specific requirements are
presented in their respective section.

The most substantial extension implemented was the repository maintenance,
section 8.2. The feature was to be incorporated into the cern-jjar package,
containing logic for interaction with the repositories. The package was already
used to fetch dependencies and to update the descriptor file for the production
repostitory during release. The functionality for updating of the descriptor file
was rewritten during this implementation. The old solution of this function is
not an object of focus in the elaboration of the implementation.

Last is the implementation of the release notification scheme. Automatic mail
creation is a type of feature which is not always welcome, as it might lead to
heavy traffic in the inbox of programmers involved in many projects. It is
therefore not only important to offer developers means to choose only certain
projects for subscription, but also provide them a way to stop the notifications.

Chapter 9 evaluates the process and the result of all three sections.

47

48 Chapter 8. Extending the build and release management solution

8.1 Branching

AB/CO/AP relies on CVS for storing and sharing code. One of the features
provided by the CVS is called branching. Branching provides the functionality
of creating a parallel programming path, independent of the main branch (figure
8.1) [6]. This feature of the CVS can easily be used manually through command
line or an IDE (in our case, Eclipse), but incorporation of this feature into
CmmnBuild was desired, thereby making sure it is done in a consistent and
standardized way.

Figure 8.1: Illustration of a CVS branch with the name Branchname

When a version of a product is released and installed in the production
repository, that particular version is ”out of the hands” of the developer. A
specific version is not maintained and updated in the repository. New versions
may be released, and old versions may be deleted, but apart from that, a
released version is static. This means that a version is never patched to suit the
need of a user, even if it contains a bug. Instead, a new version is released. A
specific scenario for the use of the branching-feature is further explained in the
following section.

8.1.1 Branching scenarios

The main scenario for this functionality was bug fixing. A concrete example
follows.

8.1. Branching 49

Fixing a bug in an old version

Frank, responsible for a large low-level application, receives a call from an
operator reporting a bug in Franks software. The operator himself was
developing a new feature to a program, when he realized that there was a bug
in one of his dependencies. He tells Frank that he is depending on version 3.0.2.
This version, which dates six months back, was the last version released by
Frank before a major change of the application was initiated. The feature
desired by the operator was not available in the version before, and has not yet
reappeared after the restructuring. To avoid going back on his new changes to
fix this one bug, Frank creates a branch at the point the version which the
operator is using. By creating a branch, he will be able to fix this bug in an
independent and parallel programming path. This way, he can provide the
operator with a working product until he will release his new and improved
version.

8.1.2 Requirements for Branching

A branch must be based on the version of a product. To minimize the manual
actions necessary, a checkout of the new branch should automatically be
performed after the branch-creation.

Default values should be provided for both branch tag name and check-out
folder, but users should also be allowed to specify this themselves. No default
can be provided for the version number to branch.

The following functional requirements were defined.

Functional requirements

• F-B1 - The feature must provide a means to create a branch at a given
version

• F-B2 - The new branch should be automatically checked out from the
CVS after creation.

• F-B3 - Must provide the possibility to specify both the name of the
branch and the target directory of the checkout. If not, default values will
be used.

50 Chapter 8. Extending the build and release management solution

8.1.3 System design - Branching

The branching feature is created as extension to CmmnBuild and consists
purely of ant-script. The functionality is placed in the script which is also
responsible for releasing a product. The branch command is made available as a
direct target for the user. The parameters used to perform the branch and the
following checkout; product version, branch name and checkout folder, can be
supplied by the user as system variables in the command (ex: -Dversion=1.2.1).
If no version is specified, a popup box will appear for the user to provide it. For
the other properties, default values are used in case they are not specified.

Figure 8.2 shows the flow of events when the branch-command is executed.

Figure 8.2: Flow of events for Branching

1. User executes the branch-command, and gets prompted for version to
branch and password

2. CmmnBuild connects the user to release server using SSH

3. The server tags the desired version in the CVS with a branch tag

4. Control is returned to CmmnBuild, which checks out the branch that was
just created.

5. The product is installed in the specified, or default, directory.

8.1.4 Implementation - Branching

Because of security reasons, any CVS write-operations performed by
CmmnBuild are executed through a server using Kerberos, an authentication
scheme based on symmetric key cryptography. This is to avoid installing the

8.1. Branching 51

necessary software on every machine using CmmnBuild. The checkout is a
read-operation and is executed from the local machine.

Following is the implementation of the Branching. It is based purely on
standard Ant which provides functionality for both SSH and CVS commands
(lines 56 and 76 respectively)� �

1 <!−−
2 c r e a t e branch
3 −−>
4 <t a r g e t
5 name=”branch ”
6 depends=”prope r t i e s−i n i t , readUsername , readPassword , branch−impl ,
7 branch−checkout−impl , update−product . xml−impl ”
8 d e s c r i p t i o n=”Creates a branch at a s p e c i f i e d ve r s i on ” />
9

10 <t a r g e t name=”read−branch−ve r s i on ” un l e s s=”branch . v e r s i on ”>
11 <t a skde f name=”query ” classname=”cern . cmmnbuild . ant . Query ”
12 c l a s s p a t h r e f =”antext . c l a s spa th ”/>
13 <query name=”branch . v e r s i on ”
14 message=”Enter the versionnumber where you want to branch ”
15 password=”f a l s e ” />
16 </target>
17
18 <t a r g e t name=”rec r ea t e−branch−vers ion−tag”>
19 <property name=”branch . v e r s i on . temp” value=”${branch . v e r s i on }”/>
20 <proper tyregex property=”branch . v e r s i on . temp” input=”${branch . v e r s i on }”
21 regexp =”\ .” r ep l a c e=” ” ove r r i d e=”true ”/>
22 <property name=”branch . v e r s i on . tag ”
23 value=”${ r e l e a s e . cvs . tag . prepend}${branch . v e r s i on . temp}”/>
24 </target>
25
26 <t a r g e t name=”generate−branch−tagname ” un l e s s=”branch . tagname”>
27 <property name=”branch . tagname ” value=”${branch . v e r s i on . tag } f i x ” />
28 </target>
29
30 <t a r g e t name=”generate−branch−d i r ” un l e s s=”branch . d i r ” >
31 <property name=”branch . d i r ” va lue=”${product . name} $ {branch . tagname}”/>
32 </target>
33
34 <t a r g e t name=”branch− i n i t ” depends=”read−branch−vers ion ,
35 r e c r ea t e−branch−vers ion−tag , generate−branch−tagname , generate−branch−d i r ”>
36 <echo>
37 branch . v e r s i on=${branch . v e r s i on }
38 branch . tagname=${branch . tagname}
39 branch . d i r e c t o r y=${branch . d i r }
40 </echo>
41 </target>
42
43 <t a r g e t name=”branch−impl ” depends=”branch− i n i t ”>
44 <!−−
45 c r e a t e branch
46 −−>
47 <property name=”branch . command”
48 value=”cvs −d : k s e rve r : ${ r e l e a s e . cvs . host } : ${ r e l e a s e . cvs . r o o t d i r }/
49 ${ r e l e a s e . cvs . repos i toryname } r tag −r ${branch . v e r s i on . tag }
50 −b ${branch . tagname} ${product . d i r e c t o r y }” />
51 <echo>
52 Branching ${product . name} , v e r s i on : ${branch . v e r s i on } with ${branch . tagname}
53 Command: ${branch . command}
54 </echo>
55

52 Chapter 8. Extending the build and release management solution

56 <s shexec host=”${ r e l e a s e . hostname }” username=”${username }”
57 password=”${password }” command=”${branch . command}”
58 t r u s t=”yes ” f a i l o n e r r o r =”true ”/>
59 </target>
60
61
62 <!−−
63 Checkout branch
64 −−>
65 <t a r g e t name=”branch−checkout−impl ” >
66 <property name=”branch . checkout . command” value=”cvs ” />
67 <property name=”branch . checkout . cv s roo t ”
68 value =”: pse rve r : anonymous :@${ r e l e a s e . cvs . host } :
69 ${ r e l e a s e . cvs . r o o t d i r }/${ r e l e a s e . cvs . repos i toryname }” />
70 <echo>
71 Checking out ${branch . tagname} i n t o ${ based i r } / . . / ${branch . d i r }
72 Command: ${branch . checkout . command} −d ${branch . checkout . cv s roo t }
73 co −r ${branch . tagname} −d ${branch . d i r } ${product . d i r e c t o r y }
74 </echo>
75
76 <cvs cvsRoot=”${branch . checkout . cv s roo t }” dest=”${ based i r } / . . ” >
77 <commandline>
78 <argument l i n e=”−d” />
79 <argument l i n e =”${branch . checkout . cv s roo t }” />
80 <argument l i n e =”co ” />
81 <argument l i n e=”−r ” />
82 <argument l i n e =”${branch . tagname }” />
83 <argument l i n e=”−d” />
84 <argument l i n e =”${branch . d i r }” />
85 <argument l i n e =”${product . d i r e c t o r y }” />
86 </commandline>
87 </cvs>
88 </target>� �

8.2. Maintaining the production repository 53

8.2 Maintaining the production repository

All operational software developed for the CCC is contained in the production
repository. Whenever a release is executed, a new version is built and installed
on this server in the correct place. The problem of any repository is the lack of
infinite storage space, and every release is place consuming. More important, a
repository growing uncontrolled is harder to maintain. There has never been in
place an automated process to keep the repository in a maintainable state by
removing obsolete products. This has been done manually by the administrators
of the Release Tool. The process includes both removing the physical files from
the server, and updating the file mirroring the repository, repository.xml. As
the xml file grows, the chance of human error during editing increases.

In the current state of the CCC, new software is being developed and tested
continuously. Table 8.1 shows the increase in artifacts stored in the production
repository during the last year, and this growth is likely to continue as the LHC
starts its test by the end of 2007. The growth further is illustrated in figure 8.3.

Repository data
Month Data1 Data2 Data3
March 204 478 7591
May 207 913 12756
August 242 1221 15534
November 260 2046 27051

Table 8.1: Data1 is to the number of products in the repository, Data2 is the
total number of artifacts and Data3 presents the size of the repository descriptor
(repository.xml) in lines (of xml-code)

An automated operation to remove unnecessary products from the repository at
every release was wanted. This would reduce manual labor of keeping the
number of artifacts from growing uncontrolled, and decrease the possibility of
leaving the repository and the mirroring file in an inconsistent, unmaintainable
state. The following definitions were put in place:

Obsolete version - a version which is not depended on by any other products,
and that is not tied to an alias.

Number of versions to keep - the number of obsolete products the user
wants to keep from being removed from the repository

The release of a product should only clean obsolete versions of that specific
product. Obsolete versions of other products should remain unchanged. The
process, hereby referred to as AutoCleanUp resembles the functionality referred
to as withdrawing a release in SRM [24].

54 Chapter 8. Extending the build and release management solution

Figure 8.3: Products and artifacts in the production repository

8.2.1 Scenarios of Repository Maintenance

Following are two scenarios describing real cases of the use of the release server
focusing on the autocleanup of the repository.

Cleaning all obsolete products

Lisa is ready to release the newest version of her product. During the product’s
lifetime, it has been released many times and list of versions kept in the
repository has grown large. She wishes to release her newest version as
production version, alias PRO, and she would also like some of the older version
to be removed. She considers her newest release quite stable and concludes that
there is no point of keeping a long history of versions. Knowing that the default
number of versions to keep is set to two, she overrides this property in her
project.properties and sets it to zero. When releasing, all obsolete versions will
be deleted, saving only the ones that are being depended on, or the ones
affiliated with an alias.

Saving obsolete products

John is ready to release. He would like to release some new features of his
product as a development version, thus with the alias NEXT. Before he releases,

8.2. Maintaining the production repository 55

he takes a look into the repository and sees that not all obsolete products
should be removed. Two of the latest version numbers, not be depended on by
any other project, and not containing an alias should not be deleted. Knowing
that the default value of number of versions to keep is two, he does not have to
reset this property in his project.properties. During the release, two of the
products considered obsolete will be kept.

8.2.2 Requirements for Repository Maintenance

Cleaning versions of a product from the repository consists of two parts;
deleting the physical files from the server, and deleting the occurrence of those
files in the repository.xml. In order for CmmnBuild and Release Tool to work
properly, it is crucial that the file system and the repository.xml stay consistent.

In case an obsolete product is deleted against the will of a developer, it is
important to know exactly which versions were deleted. This will allow us to
re-release the versions in question based on the source files kept in the CVS.
Keeping track of which files are deleted and when is therefore important.

If for some reason, the automatic cleanup of the repository is no longer desired,
it should be possible for an admin of the tools to switch off the removal of
obsolete versions.

In addition to the definitions presented earlier, this led to the following
functional requirements.

Functional Requirements

• F-AC1 - Calculate obsolete versions (see definition in 8.2)

• F-AC2 - Allow users to specify a property stating how many obsolete
version not to delete. Provide a default value of 2 (see definition in 8.2).

• F-AC3 - Delete, from the repository, the versions deemed obsolete, after
”saving” the number of version specified in F-AC2

• F-AC4 - Update the file mirroring the repository (repository.xml) in a
consistent matter

• F-AC5 - Record which versions of which product were deleted and when

• F-AC6 - Provide the admin of the Release Tool with a ”switch” to easily
turn on and off the cleanup functionality

56 Chapter 8. Extending the build and release management solution

8.2.3 System design - Repository Maintenance

The repository maintenance feature is an extension to the Release Tool, but
properties will be set by the user in CmmnBuild. Cleaning obsolete products is
only supported for users releasing through CmmnBuild.

The logic for the AutoCleanUp is placed in the ant-script
updateandclean.build.xml. In addition to use a set of standard Ant targets, this
service relies on the cern-jjar package to fulfill its requirements. The cern-jjar
package is written in Java and provides custom functionality to CmmnBuild
and Release Tool. Its services are used from the ant-scripts. To accommodate
the functionality needed for the AutoCleanUp, cern-jjar was extended with the
ReleaseTask. This task handles the update of the repository.xml and the
calculation of which versions of a product are obsolete. The list of obsolete
versions is returned to the ant-script where the deleting is carried out. An
overall illustration of the process is provided in figure 8.4.

Figure 8.4: Overview of the repository maintenance process

8.2. Maintaining the production repository 57

8.2.4 Implementation - Repository Maintenance

This section provides a detailed view of the implementation of the autocleanup
functionality. It is divided into sections based on the sequence of actions making
up the whole process. Figure 8.5 shows a class diagram of the classes involved
in the process. A detailed illustration of the sequence may be found in
Appendix B.1.

Figure 8.5: A selection of the classes in the cern-jjar package

Updating repository.xml

All information about the contents of the repository is gathered from the
repository.xml. This file is parsed using the JJarParser which uses the
Document Object Model, DOM [27], providing the possibility to change and
update the information contained by the file.

The information about the new project being released is taken from the
product.xml. After parsing, this information is modified using XPath [28] to fit
into the repository.xml. The new product info is then added to the file, followed
by an update of the aliases for the current product. The total process of
updating the repository descriptor is done in two steps. First, the new product

58 Chapter 8. Extending the build and release management solution

is added and the aliases are updated, and second, the obsolete versions are
removed from the document. The document is not written to file between these
actions.

Calculating obsolete versions

The decision to only consider versions of the current product when calculating
obsolete versions, limited the need for a complex algorithm. After the obsolete
versions of the product have been calculated, the user-specified number of
obsolete versions to save are removed from the list of versions to delete.
Following is the section of the AutoCleanUp responsible for computing the
obsolete versions of a product:� �

1 pub l i c Product [] computeObsoleteVersionsForProduct (Product product) {
2 f i n a l Mult iVers ionsProduct mvp =
3 getProduct ionStore () . getProduct (product . getName ()) ;
4 // in case o f an i n i t i a l r e l e a s e o f a new product
5 i f (mvp == nu l l) {
6 re turn new Product [0] ;
7 }
8
9 // removes a l l v e r s i on s which have an a l i a s . These are not ob s o l e t e

10 Product [] v e r s i on sF i l t e r edOnAl i a s = f i l t e rVe r s i o n sOnA l i a s (mvp . getProducts ()) ;
11
12 Set a l lDependec i e s = ge tA l lDependenc i e s InA l lRepo s i t o r i e s () ;
13
14 L i s t ob so l e t eVe r s i on s = f i l t e rVer s i onsOnDependenc i e s (ve r s i on sF i l t e r edOnAl i a s ,
15 a l lDependec i e s) ;
16
17 re turn (Product []) ob so l e t eVe r s i on s . toArray (
18 new Product [ob so l e t eVe r s i on s . s i z e ()]) ;
19 }
20
21 p r i va t e L i s t f i l t e rVer s i onsOnDependenc i e s (Product [] v e r s i on sToF i l t e r ,
22 Set a l lDependec i e s) {
23
24 L i s t f i l t e r e d L i s t = new ArrayList () ;
25 f o r (i n t i = 0 ; i < ve r s i on sToF i l t e r . l ength ; i++) {
26 St r ing productName = ve r s i on sToF i l t e r [i] . getName () ;
27 Vers ion productVers ion = ve r s i on sToF i l t e r [i] . ge tVers ion () ;
28
29 // to f i nd i f the ve r s i on o f the product we are check ing i s obso l e t e , we
30 // c r e a t e a new in s tance o f Dependency based on the product in fo and check
31 // i f i t i s in the l i s t
32 i f (! a l lDependec i e s . conta in s (new Dependency (productName , productVers ion))) {
33 f i l t e r e d L i s t . add (v e r s i on sToF i l t e r [i]) ;
34 }
35 }
36 re turn f i l t e r e d L i s t ;
37 }
38
39 p r i va t e Product [] f i l t e rVe r s i o n sOnA l i a s (Product [] products) {
40 L i s t l i s t = new ArrayList () ;
41
42 f o r (i n t i = 0 ; i < products . l ength ; i++) {
43 i f (! products [i] . hasAl ia s ()) {
44 l i s t . add (products [i]) ;

8.2. Maintaining the production repository 59

45 }
46 }
47 re turn (Product []) l i s t . toArray (new Product [l i s t . s i z e ()]) ;
48 }
49
50 p r i va t e Set g e tA l lDependenc i e s InA l lRepo s i t o r i e s () {
51 f i n a l Set a l lDeps = new HashSet () ;
52 f o r (i n t i = 0 ; i < r e p o s i t o r yS t o r e s . s i z e () ; i++) {
53 Repos i to ryStore s t o r e = (Repos i to ryStore) r e p o s i t o r yS t o r e s . get (i) ;
54 Mult iVers ionsProduct [] a l lMul t iVer s i onedProduct s = s t o r e . getProducts () ;
55
56 f o r (i n t j = 0 ; j < a l lMul t iVer s i onedProduct s . l ength ; j++) {
57 Product [] mult iVers ionedProduct = a l lMul t iVer s ionedProduct s [j]
58 . getProducts () ;
59
60 f o r (i n t k = 0 ; k < mult iVers ionedProduct . l ength ; k++) {
61 Dependency [] deps = mult iVers ionedProduct [k]
62 . getDependenciesAsArray () ;
63 a l lDeps . addAll (Arrays . a sL i s t (deps)) ;
64 }
65 }
66 }
67 re turn a l lDeps ;
68 }� �

Deleting the versions

The deletion of the versions is done in the ant-script. Ant provides a core-task
for deleting files based on a relative path. The list of versions to delete is given
to the ant-script as a comma-separated list of paths. It is provided by setting a
property in ReleaseTask called product.versions.to.remove. Following is a
section of the ant-script responsible for calling ReleaseTask and deleting the
versions deemed obsolete.� �

1
2 <t a r g e t name=”removeObsoleteVers ions ”
3 depends=”updateRepostioryXMLandCalculateObsoleteVersions ”
4 i f =”use . product . xml”>
5
6 <var name=”log . output ”
7 value=”RELEASE: Ca l cu l a t ing ob s o l e t e v e r s i o n s o f the product :
8 ${ r e l e a s e . product . name}” />
9 <echo message=”${ l og . output }” />

10 <an t c a l l t a r g e t=”writeToLog ” />
11
12 <var name=”log . output ” value=” number o f ob s o l e t e v e r s i o n s to keep :
13 ${ numberofvers ionstokeep }” />
14 <echo message=”${ l og . output }” />
15 <an t c a l l t a r g e t=”writeToLog ” />
16
17 < i f ><equa l s arg1=”${product . v e r s i on s . to . remove }” arg2=”empty” />
18 <then>
19 <var name=”log . output ” value=” No ve r s i on s to remove f o r t h i s product ” />
20 <echo message=”${ l og . output }” />
21 <an t c a l l t a r g e t=”writeToLog ” />
22 </then>
23 <e l s e >

60 Chapter 8. Extending the build and release management solution

24 <var name=”log . output ” value=” ob so l e t e v e r s i o n s to remove :
25 ${product . v e r s i on s . to . remove }” />
26 <echo message=”${ l og . output }” />
27 <an t c a l l t a r g e t=”writeToLog ” />
28
29 <var name=”log . output ” value=”RELEASE: De le t ing ob s o l e t e v e r s i on s . . . ” />
30 <echo message=”${ l og . output }” />
31 <an t c a l l t a r g e t=”writeToLog ” />
32
33 < f o r l i s t =”${product . v e r s i on s . to . remove }” d e l im i t e r =”,”
34 param=”ve r s i on . to . d e l e t e ” >
35 <s equen t i a l >
36 <de l e t e d i r=”${ r e l e a s e . a r eas . d i s t r i b u t i o n }/@{ ve r s i on . to . d e l e t e }” />
37
38 <var name=”log . output ”
39 value=” d e l e t i n g ${ r e l e a s e . a r eas . d i s t r i b u t i o n }/
40 @{ ve r s i on . to . d e l e t e }” />
41 <echo message=”${ l og . output }” />
42 <an t c a l l t a r g e t=”writeToLog ” />
43 </s equent i a l >
44 </for>
45
46 <var name=”log . output ” value=” De le t ing completed ” />
47 <echo message=”${ l og . output }” />
48 <an t c a l l t a r g e t=”writeToLog ” />
49 </e l s e >
50 </ i f >
51 </target>
52
53
54 <t a r g e t name=”updateRepostioryXMLandCalculateObsoleteVersions ”
55 depends=”updateRepostioryXMLandCalculateObsoleteVersions− i n i t ” >
56 <var name=”log . output ” value=”RELEASE: Updating r epo s i t o r y . xml ” />
57 <echo message=”${ l og . output }” />
58 <an t c a l l t a r g e t=”writeToLog ” />
59
60 <t rycatch property=”except ion ” >
61 <try>
62 <j j a rRe l ea s eProduc t
63 numberofvers ionstokeep=”${ numberofvers ionstokeep }”
64 k e e p a l l v e r s i o n s =”${ k e e p a l l v e r s i o n s }”
65 r e s o l v e a l i a s =”${ r e s o l v e a l i a s }”
66 l o c a l d e s c r i p t o r =”${ r e l e a s e . product . l o c a l d e s c r i p t o r }”
67 l o c a l r e p o s i t o r y =”${ r e l e a s e . product . l o c a l r e p o s i t o r y }”
68 de fau l tdependencyver s i on=”${which . v e r s i on }”
69 f i l e d i r e c t o r y =”${ r e l e a s e . product . v e r s i on }/${ r e l e a s e . product . d i s t . d i r }”>
70
71 <r e p o s i t o r y u r l=”${ r e l e a s e . f i l e s . r e p o s i t o r y . product ion }” />
72 <r e p o s i t o r y u r l=”${ r e l e a s e . f i l e s . r e p o s i t o r y . th i rdpar ty }” />
73 </j ja rRe l easeProduct >
74 </try>
75 <catch>
76 <property name=”r e l e a s e . e r r o r ” value=”${ except ion }” />
77 <an t c a l l t a r g e t=”cleanup”/>
78 </catch>
79 </trycatch>
80 <var name=”log . output ” value=” r epo s i t o r y . xml updated s u c c e s s f u l l y ” />
81 <echo message=”${ l og . output }” />
82 <an t c a l l t a r g e t=”writeToLog ” />
83 </target>� �

8.2. Maintaining the production repository 61

Consistency

For the release-server to function properly it is crucial that the repository.xml
mirrors the content of the repository precisely, and that this stays consistent. If
for any reason, an exception should occur in the ReleaseTask, it must be
possible to perform a roll-back leaving the situation as it was before the release
was initiated. Ant provides a try/catch which will catch any exception thrown
from the ReleaseTask. If an exception is thrown, a proper message is displayed,
and the release of the product will be rolled back, leaving both the repository
and the repository.xml in the state they were before the release was initiated.

Logging

A logging of all releases was already in place. All that needed to be done was to
add a list of which versions of the product being released was deleted.

Admin switch

A property, switch.off.repository.cleaning, was added to the property file
of the Release Tool. Default value is false, but if set to true, the cleanup
feature will be deactivated for all releases. This property is, as the name
implies, only available for administrators of the tool.

62 Chapter 8. Extending the build and release management solution

8.3 Notification of release

As mentioned in the previous section, software developed for the control center
is under constant evolution. This includes several low-level applications relied
upon by many other projects. Each time a product is re-released with changes
in form of extensions or improvements, this might affect anybody depending on
this project. The section uses a JIRA which contains information about each
project under development. The JIRA tool offers users the possibility to
register issues in form of bug reports or requests, while it provides the
developers the opportunity to update information of the current state of their
product. This however, requires that the developer actually updates the
information and that the person interested checks to see if there are any
updates. No notification scheme is now in place, and developers solve this by
sending emails to mailing lists informing about a new release. This, of course,
means that the information reaches many developers with no interest of this
particular piece of software. To solve this problem, and to provide an easier way
to send a notification of a release, an automated release-notification
functionality included in the release process was thought of.

The overall goal is to merge the functionality of JIRA and Release Tool. The
notification scheme described here will constitute a first step.

8.3.1 Scenarios of Release Notification

Presented here are two scenarios of the use of the notification scheme.

Subscribe to a product of interest

John is developing a new product, ”japc-ext-remote”. He depends on the
functionality of four other products, product A, B, C and D, developed in his
section. Products A and C are stable and the rate of change is low. The last
two however, B and D, are still in a state where new functionalities are added
frequently. To be able to exploit these improvements to the full extent, John is
interested in knowing when a change has occurred, and what has changed.
Preferably as soon as possible after a release. He goes to the web page for
subscribing to change-notifications and registers product B and D with his
email address. Next time any of the two products are released, he will receive
an email explaining the changes done.

8.3. Notification of release 63

Unsubscribe to a product no longer interesting

Lisa is currently subscribing to three different products, A, B and C. Her
product which depended on product B and C has now been handed over to a
new developer, and the updates for these products are no longer interesting for
Lisa. Product A, on the other hand, is still interesting, as she depends on this
in another project she is still active in. To avoid ”spam” every time product B
and C are released, she goes to the web page, clicks on the button to view her
subscriptions, and then unsubscribes to B and C. She continues to subscribe to
product A.

8.3.2 Requirements for Release Notification

Seeing that most developers depend on several other projects from the section,
being able to subscribe to multiple products is an obvious necessity. If a
product, for some reason is no longer of interest to a developer, unsubscribing to
products must be an opportunity.

Considering the magnitude of projects available to subscribe to, and the number
of potential subscribers, the subscriptions.xml has the potential of becoming
quite big. Therefore it should only contain products which, at any given
moment, has subscribers.

Because of the limited functionality of the feature, no security in form of
username and password is necessary and it should support all email addresses.

For an admin, it might be interesting to see a list of all products under
subscription and by whom.

It was early decided that focus would be on getting this functionality up and
running, and that advanced features could be added at a later point. The first
priority was therefore to create a working prototype. This led to the following
functional requirements.

Functional requirements

• F-AC1 Register email to subscribe to a release notification of a product

• F-AC2 Possibility to subscribe to several products

• F-AC3 Possibility to unsubscribe

• F-AC4 Possibility to view all subscriptions per user

64 Chapter 8. Extending the build and release management solution

• F-AC5 Products with no subscribers should not appear in the
subscription descriptor file

• F-AC6 Possibility to view all products subscribed to, with all
subscribers registered for each.

8.3.3 System design - Release Notification

The release notification scheme consists of two parts. One part is responsible for
registering subscriptions from a user, while the other part sends a release
notification mail during a release. The sending of mails is included in the
Release Tool.

The subscription feature is offered to the users through a web page running on
the release-server. This page lists all available products in the production
repository. The information about the content of the repository is gathered
from repository.xml. Because of the simplicity of this feature, it was decided
against using any form of web service framework for the implementation.

Information about subscriptions, consisting of products currently being
subscribed to, with a list of subscribing emails attached, is stored in
subscriptions.xml (figure 8.6).� �

1 <sub s c r i p t i on s >
2 <product name=”lhc−lbds”>
3 <sub s c r i b e r s >
4 <sub emai l=”enes@cern . ch”/>
5 <sub emai l=”olaho@cern . ch”/>
6 <sub emai l=”goleb iov@cern . ch”/>
7 </sub s c r i b e r s >
8 </product>
9 <product name=”sps−multiq”>

10 <sub s c r i b e r s >
11 <sub emai l=”enes@cern . ch”/>
12 <sub emai l=”v idar f ro@cern . ch”/>
13 </sub s c r i b e r s >
14 </product>
15 <product name=”sps−mult i tq”>
16 <sub s c r i b e r s >
17 <sub emai l=”enes@cern . ch”/>
18 <sub emai l=”goleb iov@cern . ch”/>
19 </sub s c r i b e r s >
20 </product>
21 </sub s c r i p t i on s >� �

Figure 8.6: An example of the subscriptions.xml file

While the web page provides the user interface for the notification service, all
the logic is implemented in Java, in the cern.release.notification package.

8.3. Notification of release 65

Figure 8.7 shows an overview of the system.

Figure 8.7: Overview of the release notification scheme

8.3.4 Implementation - Release Notification

The web interface

The web interface is written in JSP with the use of HTML forms to collect data
from the user. The page is left simple, with only the necessary components
available. All the logic is performed by Javabeans included in the
cern.release.notification package explained in the following section.

When entering an email, the user may choose to view his subscriptions, or he
may choose one or several products to register for. When viewing ones
subscriptions, one might also choose to unsubscribe to selected products. Figure
8.8 shows the web interface after enes@cern.ch has entered his email and chosen
to view his subscriptions.

For the use of the administrators of the Release Tool, it is possible to view all
subscriptions registered. When entering ”*” as email, a list of all products being
subscribed to, with their subscribers, will be displayed.

The cern.release.notification package

The cern.release.notification package contains a subpackage Javabeans which
handles all interaction with the JSP pages. Figure 8.9 provides an overview of
the content of the package.

66 Chapter 8. Extending the build and release management solution

Figure 8.8: The web interface, while viewing subscriptions for enes@cern.ch. The
number of products available for subscription is reduced for illustration purposes.

Figure 8.9: The cern.release.notification package

8.3. Notification of release 67

The subpackage anttasks contains the logic for returning a list of products
based on a product name. It is used from the Release Tool in the ant-script
notification.build.xml. By returning to the ant-script a comma-separated list of
recipients, the <mail> target in the script is able to notify the subscribers.
Figure 8.10 shows the flow of events of the release notification when a product is
released. Notifying subscribers is the last thing done in the release process.

Figure 8.10: Overview of the mail sending process

Figure 8.11 shows the notification.build.xml, including the <mail> target, while
figure 8.12 shows the mail-template used to notify the users.
$release.notification.subscribers is set in notificationGetSubscribers implemented
in Java. The current state of the mail-template does not include any user
comments, but this will most likely be added later.

68 Chapter 8. Extending the build and release management solution

� �
1 <t a r g e t name=”sendNot i f i c a t i onMa i l ” depends=”ge tSubsc r ibe r s , c r e a t eSub j e c t ” >
2 <mail mai lhost=”${ r e l e a s e . n o t i f i c a t i o n . mai lhost }” sub j e c t=”${ sub j e c t }”
3 me s s a g e f i l e=”${ r e l e a s e . f i l e s . n o t i f i c a t i o n . mai l template }”
4 t o l i s t =”${ r e l e a s e . n o t i f i c a t i o n . s ub s c r i b e r s }”
5 >
6 <from address=”Release ”/>
7 </mail>
8 </target>
9

10 <t a r g e t name=”c r ea t eSub j e c t ”>
11 <property name=”sub j e c t ” value=”New ve r s i on o f ${ r e l e a s e . product . name}
12 j u s t r e l e a s e d . ” />
13 </target>
14
15 <t a r g e t name=”ge tSubs c r i b e r s ” >
16 <no t i f i c a t i o nGe tSub s c r i b e r s
17 productname=”${ r e l e a s e . product . name}” >
18 </no t i f i c a t i onGe tSub s c r i b e r s >
19 </target>� �

Figure 8.11: The ant-script sending mail

� �
1 NEW RELEASE:
2 ===
3 Product : ${ r e l e a s e . product . name}
4 Vers ion : ${ r e l e a s e . product . v e r s i on }
5 Al i a s : ${which . v e r s i on }
6 ===
7
8 A new ve r s i on o f ”${ r e l e a s e . product . name}” has j u s t been
9 r e l e a s e with ve r s i on number ”${ r e l e a s e . product . v e r s i on }”

10 The new ve r s i on was r e l e a s e d as ”${which . v e r s i on }”
11
12 For more in fo rmat ion about t h i s product , p l e a s e v i s i t
13 ${ r e l e a s e . u r l . product ion . r e p o s i t o r y }/${ r e l e a s e . f i l e s . r e p o s i t o r y . d e s c r i p t o r }
14 #${ r e l e a s e . product . name}−${ r e l e a s e . product . v e r s i on }
15
16 Kind regards ,
17
18 Release
19
20 To unsubscr ibe to t h i s product , go to ${ r e l e a s e . u r l . n o t i f i c a t i o n }� �

Figure 8.12: The mail-template used to notify users of a release

Chapter9
Evaluation and discussion

The approach assumed for the practical parts of this thesis constituted of an
agile development process based on face-to-face communication with many
small iterations defined along the way. Even though the overall goals remained
the same throughout the project, this allowed us to adjust quickly to changes in
requirements, and made facing difficulties easier. In addition, such an approach
has allowed me benefit from the expertise and experience of both my supervisor
and other developers representing the customers.

Following is an evaluation of each of the new features implemented during the
work of this thesis:

Branching

Overall goal:

Incorporation of the CVS branching feature into CmmnBuild,
facilitating the process of providing a bugfix

The branching extension of the CmmnBuild tool was the first implementation of
the project, and acted as an introduction to both CmmnBuild and Ant. The
technical documentation available for CmmnBuild and Release at the startup of
my thesis was very limited. Therefore, starting with a small extension provided
me with a good opportunity of learning by doing, which was valuable
throughout the rest of the project.

Branching is not a highly used feature, but it was desired due to the strategy of
never to patch released software. The desired functionality was implemented,
and branching through CmmnBuild has been available for users since
September. For the specific requirements implemented, I refer to chapter 8.1.

Repository maintenance

Overall goal:

Provide functionality to limit the amount of manual labor necessary

69

70 Chapter 9. Evaluation and discussion

to keep the repository-server in an easily maintainable state

The repository maintenance constituted the biggest part of this thesis, and was
the most important extension implemented. There were no requirements as to
measure the success or failure of the implementation other than support for the
requirements presented in 8.2. All the functional requirements were
implemented and a new version of the Release Tool and CmmnBuild, including
the AutoCleanUp extension was released in late November 2006.

Table 9.1 is an extension to the table presented in 8.2. February has been added
to the list, and the data shows a clear moderation of the growth. Even though
the number of products has increased by 65, which is the highest delta in the
column, the number of artifacts in total has decreased by 13. This clearly shows
that the repository did contain a lot of software no longer used. Even though
the descriptor file has grown, due to the many new products, it has grown at a
much lower rate than it would have without the repository cleaning.

Repository data
Month Data1 Data2 Data3
March 204 478 7591
May 207 913 12756
August 242 1221 15534
November 260 2046 27051
February 325 2033 30897

Table 9.1: Data1 refers to the number of products in the repository, Data2 is the
total number of artifacts and Data3 presents the size of the repository descriptor
(repository.xml) in lines (of xml-code)

There are no data indicating the exact number of artifacts released in the
period between November and February, but we can assume that data from
previous months gives us an indication. In that case, the cleaning of the
repository have been successful in relieving the manual labor normally spent
trimming the repository.

Release notification

Overall goal:

Provide support for automatic release notification. A first step in a
more extensive solution

Release notification scheme was the last extension implemented, and the only
one considered a prototype. Due to lack of time, a full notification solution

71

including support for release-notes, issue tracking, etc. was not implemented. A
working service, covering the functionality requirements defined, has been
implemented as explained in chapter 8.3, but the service is not yet made
available for users. All functionalities were implemented as planned, but an
evaluation of the feature based on its use is so far not available.

In chapter 6.2, I posed the question of whether or not it could be beneficiary to
switch to external tools to handle build and release management. During the
last few years, many tools have appeared in the build and release category, and
the topic is getting more attention now than earlier. Estublier et. al. [13] argues
that high-end SCM tools, providing good support for all concepts presented by
Dart [9], are now emerging. Component-based, distributed development
increases the need for solid tools to support the software process.

Accelerator control software certainly addresses a very specific field of operation,
but the question is if the development process in use differ so much from that of
other domains. However, CmmnBuild, together with the Relase Tool have been
in use for several years and are well implemented by the developers. Developing
an in-house tool cost time and effort, but so does the migration to and
customization of an external solution. One option is to combine the
customization of a tool with the participation in an open-source project or
similar, and thereby collaborate with other institutions in developing desired
features. As mentioned, the CmmnBuild tool is already in use in Fermilab.

Any solution involving existing tools will have to be started with a thorough
analysis of what’s available. A natural place to start is Apache Maven
considering it was taken into account in 2002. Since then, Apache Maven has
evolved to become a serious actor providing SCM solutions focusing on the
support of the build life-cycle. Support for transitive dependencies has even
been available since Apache released the 2.0 version [19].

A conclusion of the thesis, including this question is presented in chapter 10.

Part IV

Conclusion and Further
Work

Chapters

10 Conclusion 75
11 Further Work 77

Chapter10
Conclusion

The theory of SCM emphasizes the importance of a well implemented
infrastructure supporting the evaluation of complex systems. Automated
processes for handling changes, corrections, extensions and adaptations are
agreed upon to be important factors of software projects [12]. Proper tools is
important for the overall management of software development, but also for the
efficiency of the single developer [4].

This thesis has presented an extension of two tools supporting the build and
release process in the AB/CO/AP section at CERN. The tools, CmmnBuild
and Release Tool, provide build and release support for the development of
accelerator control software. Accelerator control software is used by the CERN
Control Center to run and control the major accelerators at CERN.

The purpose of the this thesis was to implement and deploy new functionality
to CmmnBuild and Release. Three new features were defined with overall goals
and specific functional requirements.

Based on the evaluation and discussion presented in chapter 9, this project has
succeeded in providing valuable extensions to the tools in question. All three
features were implemented, and the branching feature and automated repository
cleanup have been included in the production version of their respective tools.
The last feature, the notification scheme is at the current moment not yet made
available for use, but is ready to be deployed when time allows it.

In 2002, the AB/CO/AP section posed the question of whether to implement an
in-house solution, or select an existing external tool. An in-house solution was
chosen at that time, but as new SCM tools are emerging, offering a wider
spectrum of functionality the earlier, this question has reappeared.

A discussion of the question was presented in chapter 9, indicating different
possible solutions. A final answer involves a discussion of the future of
CmmnBuild and Release Tool. This project has given an indication of the cost,
in form of time and resources, required to extend the functionalities of the tools.
Whether or not the acquisition of an external tool results in less work can only
be the result of a thorough analysis of available tools in addition to a clear
vision of what future requirements might include. In any case, I think the

75

76 Chapter 10. Conclusion

allocation of enough time and resources will be a key issue in providing the
developers of accelerator control software with quality tools to support their
development process.

Chapter11
Further Work

11.1 Further work for CmmnBuild and Release

The immediate work of CmmnBuild and Release Tool includes the deployment
the release notification scheme implemented. The next issue to address is the
incorporation of JIRA into CmmnBuild and Release. This will not only provide
support for a developer along the path of developing a new version of a product,
it will also provide support for proper change management, change requests,
issues tracking etc. It will bridge the gap between the release of one version to
the start of the next, which is so far not supported by CmmnBuild and Release.
It will provide complete support for the product lifecycle.

In addition, it is the discussion of whether or not to change to an external tool.
I tried to shed some light on this question in Chapters 9 and 10, but a final
decision lies in the hands of AB/CO/AP.

11.2 Further work for SCM in general

To survive, SCM must evolve to address new concepts and trends as they
appear within the field of software development. To a higher extent than earlier,
projects involve distributed locations and independently developed components.
Presented here are two areas which might be of interest for SCM in the future,
however it is important to note that this is only a fraction of possible areas in
which SCM might extend.

The research of Computer Supported Cooperative Work, CSCW, addresses the
field of how collaboritive activities might be supported through computer
systems [5]. One area of interest wihtin SCM is support for cooperative work
across distributed locations by incorporating CSCW elements into SCM tools
[8].

Process support is another area in which SCM may advance. Estublier states
that specific formalisms are needed in which different aspects of SCM processes

77

78 Chapter 11. Further Work

may be defined, tailored and enhanced [12]. Conradi et. al. argues that
advanced SCM tools offer faciclities for process support, but raises the question
if this might be made independent of basic product management [8].

The basic concepts and technologies of SCM may be agreed upon, but the work
of expanding them will continue as software development evolves. New areas of
interest will apear, and relations to other domains will be explored. It’s a
continuous process in order to provide quality support to the complex field of
software development.

Appendices

79

AppendixA
CmmnBuild targets

Targets Action
Compilation / packaging
compile compile all source files
dist creates the full distribution (including all documentation and

junit)
clean removes all generated files
Deployment and release
tagcvs tag the cvs repository with the current version
branch create a branch at a specified versionnumber, and check out this

branch
release tagcvs and release in production. Default alias is PRO. Can be

changed using -Dalias=NEXT
devrelease release the head of cvs and place the product in Qfix replacing

whatever was before.
nextmajor change the major of the version in the descriptor to the next one

(1.2.3 => 2.0.0)
nextminor change the minor of the version in the descriptor to the next one

(1.2.3 => 1.3.0)
nexttiny change the tiny of the version in the descriptor to the next one

(1.2.3 => 1.2.4)
nextmodifier change the modifier of the version in the descriptor to the next

one (1.2.3beta1 => 1.2.3beta2)
setversion set the version in the descriptor file to one given in the version

variable ex: ant setversion -Dversion=1.0.0
dist-release dist target called by the release for building the product in pro-

duction

81

82 Chapter A. CmmnBuild targets

Jar management
cleanjars removes all jars from the local lib directory
getjars get dependencies in the local lib directory. Default alias is PRO.

It is possible to specify the alias to use via -Dalias=DEV
getjarsdev get dependencies in the local lib directory using the DEV alias
getjarsnext get dependencies in the local lib directory using the NEXT alias
publishjars publishes the jar and the descriptor of this product to the dev

jars repository
JUnit Test
junit execute all unit tests written for the project
Documentation / Code Quality
javadoc creates the javadoc
java2html creates html files from the java source files
jdepend analysis of the dependencies in the source code
pmd Runs a set of static code analysis rules on source code
checkstyle checks the style of the source code
NetBeans modules management
makenbm creates and packages the nbm file produced by this project
publishnbm publishes the nbm file produced by this project to the remote

update center

Table A.1: The complete list of targets in CmmnBuild

AppendixB
Sequence diagram

Figure B.1: Repository maintenance sequence diagram

83

Bibliography

[1] Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen, and Jussi
Ronkainen. New directions on agile methods: a comparative analysis. In
ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pages 244–254, Washington, DC, USA, 2003. IEEE Computer
Society.

[2] Apache Ant. Apache ant 1.7.0 manual.
http: // ant. apache. org/ manual/ index. html . [Accessed August
2006].

[3] Atlassian. Jira. http: // www. atlassian. com/ software/ jira/ .
[Accessed December 2006].

[4] Steve Berczuk. Pragmatic software configuration management. IEEE
Software, 20(2):15–17, 2003.

[5] P. Carstensen and K. Schmidt. Computer supported cooperative work:
New challenges to systems design, 1999.

[6] Per Cederquist. Version management with cvs. http://ftp.gnu.org/non-
gnu/cvs/source/stable/1.11.22/cederqvist-1.11.22.pdf. [Accessed December
2006].

[7] Reidar Conradi and Bernhard Westfechtel. Version models for software
configuration management. ACM Comput. Surv., 30(2):232–282, 1998.

[8] Reidar Conradi and Bernhard Westfechtel. Scm: Status and future
challenges. In System Configuration Management, pages 228–231, 1999.

[9] Susan Dart. Concepts in configuration management systems. In
Proceedings of the 3rd international workshop on Software configuration
management, pages 1–18, New York, NY, USA, 1991. ACM Press.

[10] Mark Dowson. The software process and software environments (panel
session). In Jack C. Wileden, editor, ICSE ’85: Proceedings of the 8th
international conference on Software engineering, pages 302–304, Los
Alamitos, CA, USA, 1985. IEEE Computer Society Press.

85

http://ant.apache.org/manual/index.html
http://www.atlassian.com/software/jira/

86 BIBLIOGRAPHY

[11] Institute O. Electrical and Electronics E. (ieee). IEEE 90: IEEE Standard
Glossary of Software Engineering Terminology. 1990.

[12] Jacky Estublier. Software configuration management: a roadmap. In ICSE
’00: Proceedings of the Conference on The Future of Software Engineering,
pages 279–289, New York, NY, USA, 2000. ACM Press.

[13] Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi,
Geoffrey Clemm, Walter Tichy, and Darcy Wiborg-Weber. Impact of
software engineering research on the practice of software configuration
management. ACM Trans. Softw. Eng. Methodol., 14(4):383–430, 2005.

[14] Apache Software Foundation. http: // www. apache. org/ . [Accessed
September 2006].

[15] Rebecca E. Grinter. Using a configuration management tool to coordinate
software development. In COCS ’95: Proceedings of conference on
Organizational computing systems, pages 168–177, New York, NY, USA,
1995. ACM Press.

[16] IEEE. Ieee guide to software configuration management. ANSI/IEEE Std
1042- 1987. IEEE, New York.

[17] Gregor Joeris. Change management needs integrated process and
configuration management. In ESEC ’97/FSE-5: Proceedings of the 6th
European conference held jointly with the 5th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 125–141, New
York, NY, USA, 1997. Springer-Verlag New York, Inc.

[18] Craig Larman and Victor R. Basili. Iterative and incremental development:
A brief history. Computer, 36(6):47–56, June 2003.

[19] Apache Maven. http: // maven. apache. org/ . [Accessed September
2006].

[20] oops consultancy. Xmltask.
http: // www. oopsconsultancy. com/ software/ xmltask/ . [Accessed
September 2006].

[21] Ant-Contrib Project. Ant-contrib.
http: // ant-contrib. sourceforge. net/ . [Accessed October 2006].

[22] W. W. Royce. Managing the development of large software systems:
concepts and techniques. In ICSE ’87: Proceedings of the 9th international
conference on Software Engineering, pages 328–338, Los Alamitos, CA,
USA, 1987. IEEE Computer Society Press.

[23] Thomas Ósterlie (unpublished). Problems and solutions: An ethnography
of large-scale software maintenance work. Draft of PhD Thesis.

http://www.apache.org/
http://maven.apache.org/
http://www.oopsconsultancy.com/software/xmltask/
http://ant-contrib.sourceforge.net/

BIBLIOGRAPHY 87

[24] André van der Hoek and Alexander L. Wolf. Software release management
for component-based software. Softw. Pract. Exper., 33(1):77–98, 2003.

[25] Marlon Vieira and Debra Richardson. Analyzing dependencies in large
component-based systems. In ASE ’02: Proceedings of the 17th IEEE
international conference on Automated software engineering, page 241,
Washington, DC, USA, 2002. IEEE Computer Society.

[26] Marlon Vieira and Debra Richardson. The role of dependencies in
component-based systems evolution. In IWPSE ’02: Proceedings of the
International Workshop on Principles of Software Evolution, pages 62–65,
New York, NY, USA, 2002. ACM Press.

[27] W3C. Document object model (dom). http: // www. w3. org/ DOM/ .
[Accessed October 2006].

[28] W3C. Xml path language (xpath). http: // www. w3. org/ TR/ xpath .
[Accessed October 2006].

[29] Wikipedia. http: // en. wikipedia. org/ wiki/ Apache_ Maven .
[Accessed September 2006].

[30] Wikipedia. Agile software development.
http: // en. wikipedia. org/ wiki/ Agile_ software_ development .
[Accessed October 2006].

[31] Xiaomin Wu, Adam Murray, Margaret-Anne Storey, and Rob Lintern. A
reverse engineering approach to support software maintenance: Version
control knowledge extraction. In WCRE ’04: Proceedings of the 11th
Working Conference on Reverse Engineering (WCRE’04), pages 90–99,
Washington, DC, USA, 2004. IEEE Computer Society.

http://www.w3.org/DOM/
http://www.w3.org/TR/xpath
http://en.wikipedia.org/wiki/Apache_Maven
http://en.wikipedia.org/wiki/Agile_software_development

