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Abstract 
 
 
This Master thesis implements an architecture that reduces the search space used in reinforcement 
learning by a group of experts regime. The experts filter the original input signals, so the 
reinforcement learning system is left with a much smaller search space. The main goal of the thesis 
is to find at what abstraction level this filtering should be done at.  
 
The experience gained through experimenting suggests that the filtered data need to be filtered 
intelligently, and the usage of the filtered data is processes on a high abstraction level. This thesis 
did not succeed in implanting an architecture that successfully deals with a huge input search 
space. The experiments has been done on a moderately low scale and magnitude, but is none the 
less a good starting point for this novel approach of combating one of the obstacles found in 
reinforcement learning systems: their tendency to get stuck in huge search spaces.  
 
Other challenges connected with reinforcement learning still apply, and the potential success of a 
reinforcement learning system is still depended on a lot of obstacles and challenges to be overcome 
by the designers.  
 
It is the hope that this thesis is a contribution in this field, and that this approach might be useful 
and interesting for others working with reinforcement learning systems.  
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Preface 
 
This report is the result of the master thesis, which is the final project for the Master degree in 
Computer Science at the Norwegian University of Science and Technology (NTNU). This thesis is 
titled Reduction of search space using group-of-experts approach. The defined goal for the project 
goes as follows: 
 

This is a novel approach in trying to reduce the search space by having the input 
signals being worked upon, and hence reduced, before being presented to the problem 
solver. Standard Reinforcement Learning systems get bogged down in the huge 
search spaces created by fine-resolution input states.  But, unfortunately, it is not 
enough to just manually reduce the resolution, since it is not always clear exactly 
what details need to be abstracted away and what details are necessary for proper 
action selection. I will try the group-of-experts approach to finding the proper 
abstraction level. 
 
The reduction will be achieved by having different experts work on the raw input 
signals, which can be of great magnitude, and their filtered input signals makes the 
foundation for what actions to perform to an action selector. In this way, all the input 
signals are being pre-digested by some experts, and the search area in which the 
agent must learn how to react is greatly reduced to the output signals of these 
experts. 
 
This diploma builds on the project I delivered this spring with the focus on action 
selection combined with reinforcement learning. 

 
The simulator environment chosen to conduct the experiments was the BREVE simulator.  
 
Finally, I would like to thank my supervisor Keith Downing for his input and for being available 
and understanding. 
 
Holmestrand, January 22, 2007 
 
Tore Rune Anderson
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1 Introduction 
 
As technology and knowledge keep developing, new possibilities and problem domains surface the 
world of computer technology. Old techniques can be refined and further developed and new 
possibilities raise new challenges. An agent is a software program designed to solve certain 
problems. The complexity of the world the agents live could make it impossible for the 
programmer to predict all possible scenarios, and the need for the agents capability to learn in 
runtime by interaction with its environment arises. Agents existing in an online environment need 
to be able to adapt and learn continuously, and reinforcement learning is good technique for 
achieving this.  
 
Nearly all theories of learning and intelligence are based on the foundational idea of learning from 
interaction [5]. The capability of agents learning in runtime is a need that has risen in the field of 
Artificial Intelligence (AI). Machine learning is a domain that has existed for decades, and offers 
generally three main categories of learning, namely supervised, unsupervised and reinforcement 
learning. Reinforcement learning has some qualities and advantages that make it the preferred 
choice in certain problem domains where learning is desired.  
 
However, one challenging aspect is the size of the search space, commonly known as the scaling 
problem, or the curse of dimensionality. This thesis suggests a new possible strategy on how to 
deal with this problem. 
 

1.1 Motivation 
 
All though reinforcement learning is a preferred choice in many problem domains, as will be stated 
in chapter 2, RL has some major drawbacks, too. One of the most pronounced currently might be 
its problem dealing with huge search spaces. If there are many parameters to be set during learning, 
the RL system tends to get bogged down, [11], [13][22]. Reinforcement learning generally maps 
the various possible states with the various possible actions to perform. Learning from experience, 
the agent needs to both explore and exploit, it needs to build up knowledge through experience, 
and use the gained knowledge in choosing future actions. The exponential growth of the number of 
parameters to be learned with the size of any compact encoding of system state is often referred to 
as the curse of dimensionality [13]. This leads to the core of the problem of this thesis: reducing 
the search space by the use of group-of-experts regime.  
 
There are many various approaches trying to deal with the challenge of huge search space in 
context with reinforcement learning. I would like to experiment with a novel approach, namely by 
having the search space reduced by experts, so that the input space in which the RL system works 
in, is greatly reduced. Similar approaches have been made, but generally lower level experts 
present possible actions to a higher level to choose between. The difference is that the lower level 
experts do not produce suggestions on what actions to choose, rather, they simply filter the input 
signals, and pass on only parts of the original input space. Instead of dealing with a huge input 
space, the higher level module of the agent is presented with different filtered input signals. The 
goal of the agent is to achieve the following: the combination of the actual accessible 
information stored in the different filtered input signals, combined with the experience of 
which expert provides which input signals, should allow the agent to learn its task and exhibit 
desired behaviour. If this is successful, the agent can then exist in much bigger and more complex 
worlds, and still benefit from the RL technique by simply having the search space reduced by 
lower level experts.  
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1.2 Research question 
Assuming that it is possible to filter a huge search space in order to obtain a much smaller, and 
hence, feasible search space for a reinforcement system to deal with, the research question for this 
thesis can be formulated as follows: 
 
At what abstraction level should this be done? 
 
How much intelligence and processing of information is needed within the lower level experts, and 
what level of information processing is then the higher level agent left to work with? These are 
important aspects to consider, and deserves attention during the experimentation.  
 
 

1.3 Methodology  
 
I will use the BREVE simulator to experiment with this, as this simulator is free and open source. 
It makes it fairly easy to set up simulations of agents, and is a popular simulator used in areas of 
artificial intelligence dealing with multi-agent system and artificial life. Reinforcement learning is 
typically used in an online environment, and a technique often used by situated or real agents. The 
existence of the BREVE simulator was pointed out to be me by my supervisor Downing, and has 
been a good simulator to work with.  
 
My approach will be to set up an environment in the BREVE simulator, in which an agent exists 
and uses the RL technique to adjusting to its environment. As the BREVE simulator easily allows 
you to visualize your simulations, the acting and behaviour of the agent can be observed visually. I 
will design an RL architecture that involves action selection and reducing the search space by the 
use of group-of-experts regime, and based on the experiments, I will discuss and conclude upon the 
results.  
 

1.4 The aspiration level 
The idea behind the reducing the search space by having it filtered by experts represents a new 
angle on how to overcome one obstacle in RL systems. This thesis does not revolutionary solve all 
problems connected with RL systems. I do hope that this work will be an entry point for an 
approach that might become a great resource in the RL methodology, and that this novel approach 
might be found interesting and valuable in the area of artificial intelligence dealing with RL 
systems.  
 

1.5 Organization 
The thesis is organized as follows: first, in chapter 2, comes a presentation of obstacles typically 
found in standard Reinforcement learning systems, and some approaches that has been tried in 
order to deal with the challenges. Action selection is then presented in chapter 3, describing its 
major categories of action selection, as well as a short presentation of some selected architectures 
of action selection. This is to give the reader an understanding of both the reinforcement learning 
and action selection disciplines before describing my architecture design in chapter 4.  
 
I will evaluate my experiments and experiences in chapter 5, and finally make a conclusion in 
chapter 6. Some ideas for future work are presented in chapter 7.  
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2 Reinforcement learning 
 
I will start this chapter by introducing the three main categories of learning, namely supervised, 
unsupervised and reinforcement learning (RL) in chapter 2.1, and argue why RL is my preferred 
choice in the setting of this thesis. Next I will give a description of reinforcement learning by 
listing its main properties and showing some examples of formulas for RL and the basic algorithm 
for value and policy updating, chapter 2.2 and 2.3. I will look at some challenges accompanying 
using RL, and specially focus on the scaling problem. The scaling problem will be illustrated by 
showing the process and describing why it is so computational demanding. This challenge is the 
obstacle this thesis offers a strategy to overcome.  
 
 

2.1 Main categories of learning 
 
I will here describe the 3 main groups of learning found in machine learning, namely supervised, 
unsupervised and reinforcement learning. Supervised learning is characterized by learning from 
labeled examples. In unsupervised learning one creates clusters from unlabeled examples. And 
finally, reinforcement learning is learning from interaction. 
 

2.1.1 Supervised learning 
Supervised learning is characterized by learning from labeled examples. A very typical and well 
used method of implementing supervised learning is back propagation. Using a neural network, 
with input nodes, hidden nodes and output nodes, the back propagation learning works by 
computing an error signal for the output neurons and spread it out over the hidden neurons. The 
error is calculated by comparing the actual output up against the desired, or correct, output. The 
weights are updated in order to increase the error given the input and desired output. Back 
propagation is a computer technique used in machine learning that does not have its counterpart in 
nature. Supervised learning, as the name states, needs an outside teacher as guidance, as illustrated 
in Figure 1. Whether that is the programmers knowledge put into the system at design time or some 
inputs the system gets at runtime, this model becomes generally unattractive dealing with for 
instance agents performing actions in real time. Also, in many problem domains, there exists no 
predefined correct answer. This could be simply because the correct answers are not known in 
advance. If the environment the agent exists in is changing continuously so that the state of the 
world, and hence any correct answers, are subject to change, they cannot be defined in advance. 
This is a characteristic found in the real world – there are simply too many factors to consider, 
making it impossible to be able to predict all future states of the world. There exist no teachers. If 
an agent is to learn, it needs to do so by other means that supervised learning. 
 
 

 
Figure 1: Supervised learning 

In supervised learning the agent receives some input and produces an output. This output is 
then measured up against a target output, the correct answer, provided by a “teacher”. The 
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agent makes adjustment in order to increase the gap between his output and the target 
output. 

2.1.2 Unsupervised learning 
 
Unsupervised learning is assumed to be much more likely common in the brain than supervised 
learning. Here the agent receives some input, and based on that in produces some output. It has no 
target, or predefined correct answer, to measure the result up against, see Figure 2. There is no 
teacher telling you what is right and wrong. 
  

 
: Unsupervised learning 
In unsupervised learning the agent receives some input, and from that it makes an output. It 
has no feedback from a “teacher”. Its only k

Figure 2

nowledge comes from its input and its 

use in a new world where the input signals are different 
om the ones used during the learning period. Reinforcement learning offers a method of learning 

t.  

r to supervised than unsupervised learning. It 
receives its feedback from the environment from which it exists in, and uses changes in the 
environment as a tool in the learning, see Figure 3.  

produced output. Given this knowledge, gained over time, the agent can for instance learn 
to group the input signals into clustered groups.  

 
Clustering is a good example of unsupervised learning. The task of the unsupervised learning is to 
find and characterize structures in the input, preferably on a low dimension. To illustrate, each eye 
has 106 photoreceptors [17]. It the task is to learn to differentiate between oranges and apples 
unsupervised learning will hopefully be able to detect, categorize and cluster sufficiently the input 
patters on a much lesser dimension than 106. Bayesian network is a well known technique used in 
unsupervised learning, where one comes to the conclusions probabilistically warranted rather that 
logically [18]. In [19] we get examples of how Bayesian networks can be used to learn casual 
relationships. Unsupervised learning does not directly result in a difference in the agent’s behavior, 
as the outputs are only internal representations. These representations can however be used other 
parts of the agent in a way that affects the behavior, a technique often used in perceptual systems. 
If the input signals are changing, this technique becomes unattractive – the clustering, or learning, 
achieved in the past becomes quickly of no 
fr
while existing in a changing environmen
 

2.1.3 Reinforcement learning 
Supervised and unsupervised learning are quite opposite approaches to learning. Reinforcement is 
often considered as its own category, and is close

 
: Reinforcement learning Figure 3
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In reinforcement learning the agent receives input signals and produces an output signal. It 
reacts in its environment, and changes in the environment give the agent feedback on its 
actions. The reward signal is defined to be outside of the agent’s control. This reward is 
then used to adjust the agent’s behavior and learning. The agent has no knowledge of a 
perfect answer, it only has knowledge of its input signals, its output signals and to some 
degree the effect its behavior has on the environment. 

not 
p to the 

rammer does not tell 
e agent how to solve the problem, the programmer only tells the agent what goal to achieve. The 

ne is to learn the value function, meaning how to 
redict a value to a certain state. The other is to learn the policy function, meaning how to use the 

To give an understanding of RL, I will next describe the elements of RL, and then give some 
 value and policy updating.  

he example below illustrates a typical reinforcement learning iteration form an outsider, 
ervant, perspective: 

al of 4 actions to choose from. 

a total of 3 possible actions to choose from. 

eward of value -1. 
ou are now in state 88, you have a total of 7 actions to choose from. 

m the environment. Your task is to learn  
e optimal behavior in order to accumulate the highest possible rewards over a longer time period. 

icy, a reward 
nction, a value function and optionally a model of the environment. S denotes the space of 

he policy (π) is the decision making function of the agent. It specifies what action A to take being 

  
 
As opposed to supervised learning, where the agent can compare its output with the correct, 
desired output, RL receives a scalar input, a reward, from the environment. This scalar does 
reveal any optimal, desired action; it only gives a value to the state the agent is in. It is u
agent to use this scalar input to increase its expected reward signals in the future. It uses its 
experience to improve its performance. An interesting and distinctive aspect of RL that 
distinguishes RL from other typical machine learning forms, is that the prog
th
agent must discover which actions yield the most reward by trying them.   
 
There are basically two approaches in RL. O
p
value function in order to choose actions.  
 

examples of formulas for RL and show the basic algorithm for

2.2 The elements of reinforcement learning 
 
T
obs
 
… 
You are in state 45, you have a tot
You choose action 2 which puts you in state 44. 
You receive a reward of value 1. 
You are now in state 44, you have 
You choose action 1, which puts you in state 88. 
You receive a r
Y
You choose… 
 
The state is here represented as integers. Being in a certain state, identified by an integer, gives you 
some various options of what action to choose next. Your action will possible put you in a new 
state, and you might possible receive a reward signal fro
th
This mapping of state and action is called the policy [9]. 
 
There are typically four elements to a reinforcement learning system, namely a pol
fu
possible states the agent can be in, and A denotes the possible actions it can perform. 
 
T
in state S.  
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The reward function (r) defines a goal of the reinforcement learning agent. The definition of this 
function is greatly depended on the task and what we want the agent to learn. A simple reward 
function is to give a value of 1 whenever the goal is reached, and 0 for all other states, or equally 
opposite, to give a reward of -1 whenever an undesired state is reached, and 0 otherwise. It could 

ave any numeric value with no boundaries to either a top score or a low score. Generally, a 

tion and the value function, an example from the game of chess is illustrative. 
heckmating your opponent is associated with a high reward, but winning his queen is associated 

f the environment, such as dynamic programming, while others do not, 
uch as Q-learning [5]. Methods not requiring a model of the world are called model-free learning 
ethods. Model-free methods are generally able to find optimal behavior, but model-based 

methods find it faster [5]. 

he value 
iteration algorithm. The algorithm loops through all the states and all the possible actions that can 

 this is done again and again, until one has settled on a value 
functio

h
reward function gives a numerical reward signal to the agent based entirely on the state of the 
environment (which the agent is a part of), and not being under control of the agent.  
 
The value function (v) specifies what is good in the long run. To exemplify the difference between 
the reward func
C
with a high value [5]. For an agent to achieve its goal, it is of high interest to learn the value of the 
different states. 
 
The last and optional element, a model of the environment, is an internal representation of the 
environment of some kind. It could be that this model predicts the resultant next state and next 
reward. This is a part of the reinforcement system that potentially requires most storage space. A 
reward function and a value function might only map states to real numbers. Given a space of 
states S, this would require a storage space of |S|, while an model of the world given a space of 
states S and a space of potential actions A, a complete model would require a storage space of size 
|S| x |S| x |A|, while a stochastic policy would be of a maximum size of size |S| x |A|. Some learning 
methods require a model o
s
m

 
 

2.3 An insight in RL 
 
Kaebling et al, [9], gives some examples of the basic algorithms found in RL, which I will briefly 
present here.  
 
RL is about learning a policy, so that you can guide your actions achieving a higher accumulated 
sum of rewards. One way of finding such an optimal policy is to find the optimal value function. 
Its algorithm is illustrated below in Figure 4. It finds the optimal policy derived from t

be taken from those states, and
n V one is satisfied with. The detailed description of this algorithm is found in [9]. 

 
Figure 4: Value iteration algorithm 

 6 
 



It is not obvious when to stop the value iteration algorithm, so proper stopping criterions 
need to be decided based upon when the policy is measured as good enough. Figure taken 
from [9].   

 
An different approach is the policy iteration algorithm, where one manipulates the policy directly, 
without instead of finding the optimal value function, as illustrated in Figure 5. An explanation of 
this algorithm is found is [9]. This algorithm can illustrate the problem of scaling. It is shown that 
this algorithm terminates in at most an exponential number of iterations [9]. The worst case 
scenario is interesting, and “it is known that the running time is pseudopolynomial and that for any 
fixed discount factor, there is a polynomial bound in the total size of the MDP”. (Markow Decision 
Process).  

 
Figure 5: Policy iteration algorithm 

One can with this algorithm ensure that any changes will strictly improve the policy. And 
re are no more changes, the optimal policy has been found. Figure taken 

es the Markow property [5]. It means that a memory of recent 
ry for the agent. The present state determines what possible 
 Process (MDP) is characterized by the agent being able to 

esigners must 
eal with in standard RL systems.  

on 

 of high interest to pursuit the angle of incorporating RL 
to autonomous agents. This idea is also greatly supported by theories and research within 

neuroscience, and then specifically with regards to the basal ganglia [16]. So instead of abandoning 
RL because of its challenges, one should be optimistic and try to solve them instead. 
 

hence, when the
from [9].   

 
The theory of  RL generally assum
actions and states are not necessa
choices one has. Markow Decision
distinguish all different states. If that is not the case, one has a partially observable MDP 
(POMDP). All though the theory assumes this, this is very rarely the case in real-world problems, 
but one generally still acts as though the problems as MDPs. 
 

2.4 Challenges 
In any problem solving tasks, certain areas are more critical than others in order to succeed in 
solving the task. I will here take a look at some challenges the programmers and d
d

2.4.1 The right RL functi
It might be hard to come up with the right RL function that will induce good learning. Because of 
this, [6] it is argued why evolutionary computation is often better suited to solve problems than RL. 
Instead of being pessimistic and giving up on the RL strategy because it seems hard and difficult to 
implement, due to the close resemblance between RL and an understanding how learning takes in 
humans and in verbrates in general it is
in
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2.4.2 Learning to learn 
This topic is being addressed among others by the actor-critic model, and might serve as an answer 
to the challenge of creating the right RL-function. The actor critic model allows the agent to be 
able to view itself and its own cleverness, or lack of such, in learning. As stated in [7], actor critic 
architecture includes learning to improve evaluative feedback. An agent does not only learn things, 
but also increases its learning abilities.  
 

2.4.3 Action today, reward tomorrow 
In RL the agent must discover what actions yield the most rewards by trying them. Actions taken 
might not only affect the immediate reward, but also the next one, and through that, all subsequent 
rewards [20]. Having performed one action might affect all possible future rewards. So when a 
reward signal is received by the agent, it is not necessary clear which action or actions that lead up 
to this reward. This is one aspect found RL, unlike supervised learning, called the aspect of 
delayed reinforcement rewards. When you get the reward, the actions leading up to it is most likely 
in the past - but where, and which actions? Given the challenge of rewarding the correct actions 
with the experienced rewards, this might take some trial and error to classify what really leads to 
what. So learning should be an activity when one has energy, time and life enough to deal with 
ome losses during learning. Even we, as complex and sophisticated agents as humans, might fail 

em time. Time to try out actions, explore, make assumptions and 
ypothesis about the mapping between actions and payoffs, and then test the guesswork they have 

and concludes that the hypothesis can be looked 

he longer the agent plays the game, the worse the 
onsequences of prematurely converging to a suboptimal strategy will be. The more time the agent 

ply for a real situated and autonomous agent? 
 forever, at least relatively speaking. Or until its 

s
to learn the real lesson the first time. It might actually take some time before one, if ever, learns the 
true connection between the outcome and ones actions. If mapping rewards to actions is hard 
enough for us humans, how can we design agents to do that successfully and satisfactory? I think 
the answer lies in giving th
h
done. After some testing one makes the decision 
upon as a fact.  
 
This problem, also called “temporal credit assignment problem”, has been dealt with a various 
ways. Delayed reinforcement learning is one approach, and can be divided into two categories, 
model-based methods and model-free methods [8]. The actor critic architecture and Q-learning are 
of the model-free methods.  
 

2.4.4 When to learn, when to act 
RL is different from most types of learning in that is has to deal with the dilemma of exploration 
versus exploitation. In supervised learning the agent is provided with the correct answer while in 
RL the agent uses training information that evaluates the actions [5]. The agent can evaluate how 
good or bad the action was, but has no idea whether it is the worst or best action possible. It needs 
to explore, try out different actions, and then exploit, use its gained knowledge. Kealbling et al. 
give a survey of reinforcement learning in [9]. They point out some general characteristics and 
challenges typical of RL, such as the exploration/ exploitation dilemma. Using a well-known 
example from math and statistics, finding an optimal strategy for playing the one-armed bandit in a 
given setting, they illustrate that the balance between exploration and exploitation depends on how 
long the agent is to play the game. T
c
has, the more it should explore. What does this im
Hopefully the agent might stand a chance to live
task has been done, be it lasting one day or 10 years to achieve it. So generally one does not know 
what timeframe one is working under. We don’t know at the time of implementation how many 
times an agent needs to perform actions with the purpose of exploration before it can begin to 
exploit its gained knowledge. A challenge RL have to deal with, is the adjusting of the balance 
between the exploration and exploitation.  
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2.4.5 New and changing environment 

rd, 
nd some evidence show that animals to treat novelty as rewarding [10]. In a machine learning 
ontext, this would allow the agent to plan to visit novel states a number of times in order to 

be achieved by adding a novelty factor the input 
actor reduced as the input signals are reoccurring.  

arkov decision problem, a finite set of states, a finite set of actions, a reward 
e reward for performing a certain action being in a certain state, and finally 

ht 

 
 

am, there are roughly 6.25 x 1010 possible states, assuming a tile, a square, can only be upheld by 
ots can take. 

he task of the mapping of states with actions becomes very quickly too slow.  

ctive model-free algorithm  
r learning from delayed reinforcement. It does learn, no matter how the agent behaves during the 

approaches of how to deal with the curse of dimensionality comes next. 

allenges 

Once an agent has reached a high level of knowledge, as in having learned how to act in a given 
environment, how can one motivate that agent to explore new and novel situations? In of set of 
theories within the theoretical reinforcement learning literature, novelty acts as a surrogate rewa
a
c
explore the new or changed environment. This can 
signals, as if there is a reward, and have that f
 
Then the agent would explore new situations, and over time learn whether or not there is any 
reward attached to the new situation. As the novelty factor is reduced over time, the likelihood of 
choosing actions leading to that situation becomes more depended on the experienced rewards.  
 
 

2.4.6 Scaling up to large problems 
 
In reinforcement learning, the environment is typically modelled as a controllable Markov process, 
so the agent must solve a Markov decision problem. There are typically four components to 
consider in a M
function that predicts th
the action model, which gives a probability of getting to a certain next state being in one state and 
performing a certain action. However, when problems get on a large scale, the set of states might 
not be discrete and definite. If an agent exists in the real world, one can not at design time predict 
all the possible states one agent might find oneself in, nor predict all possible actions, and certainly 
not predetermine the effect an action will have upon the environment. In a real world setting, an 
agent can not access all the possible information, the input signals, if all were to be covered is 
simply endless.  
 
Even if the states are definite, and hence the world might be deterministic, the share volume mig
hinder the agent of practical use of RL systems, since going through the standard RL systems is too 
time consuming. In [22] we get a good illustration of how demanding it gets when the search space
gets big. Imagine robots playing football. If the football field of 10x10 large, with 2 players of each
te
one robot at a time. In addition,  one also has to consider the possible actions the rob
T
 
Q-learning is a very popular and seems (dated 97) to be the most effe
fo
learning period, as long as all state-action pairs are tried often enough. The convergence might be 
slow to obtain a good policy. This becomes a problem when dealing with a huge search space [9].  
 
Some various 
 

2.5 Various attempts to deal with the ch
 
Standard reinforcement learning systems typically gets bogged down when dealing with a fain 
grained and huge search space. I will in the following chapters take a brief look at two of 

 9 
 



approaches to overcome this obstacle that are interesting as they have similarities to the approach 
of this thesis. 
 

2.5.1 Hierarchical reinforcement learning 
Barto 
algorith
their o

igure 

and Mahadevan find it natural to use hierarchical control architectures and learning 
ms [13]. Here one can allow the execution of temporally-extended activities which follow 

wn policies until termination. Learning can take place at different levels of the hierarchy. 
6 illustrates three different abstraction levels concerning a robot navigation task with F

respect to the memory state.   
 

 
Figure 6: Hierarchical memory 

n level, which might have to 
. Figure taken from [13]. 

cialize for different sub-goals.  

early 

he number of states gets high, paring each state with a value gets intractable. The curse of 
e dimensionality, or the intractability of state spaces, suggests a value function approximation 

[12]. Value function approximation (VFA) is a well-studied problem.  

ahadevan et al tries two novel approaches in [14]. Much of the existing VFA is handcoded in an 
ad hoc trail-and-error process by a human designer. In contrast to this main-stream of attacking the 

At the navigation level, a decision is being made at every intersection. At the lower 
abstraction level, decisions are being made while the robot is in the corridor, between 
intersections. At the lowest level is the most primitive abstractio
do with the output signals given to the executors (wheels or motor)

 
In hierarchical learning one can benefit from working with sub-goals. The hierarchical structure is 
often pre-wired by the designer, as one can assume with the illustrated hierarchical memory 
illustrated  in Figure 6. This task can be solved online, too. In [11] Bakker et al have developed 
methods and algorithms where high-level policies discover sub-goals, whereas low-level policies 

arn to spele
 
This thesis also investigate at what level the abstraction should be, meaning at what level should 
the RL system take affect. It is similar to the hierarchical reinforcement learning in that it cl

ivides levels of abstraction; only in my approach the RL system only takes place on the highest d
abstraction level. The implementations and architecture of systems on the lower abstraction levels 
is not concerned with RL systems, and the RL system does not concern itself with how the lower 
levels of abstraction work. 
 

2.5.2 Value function approximation 
 
When t
th

 
M
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problem, they try to derive VFA from the geometry of the underlying state space. Their 
mathematical approach uses eigenfunctions of the Laplacian, Fourier analysis and diffusion 
wavelets.  
 
Sutton et al [15] points out some theoretical drawbacks of value function estimation. One 
drawback is that the policies that would produce superior performance might be ignored since most 
implementations lead to deterministic policies in spite of the optimal policy being stochastic.  

d of relying on raw input signals from the world, it simplifies the 
world by only seeing the filtered input done by the lower level experts, and has no knowledge of 
what is better or worse, other than to compare the different outcomes of the experts up against each 
other.  
 

2.5.3 Prioritized Sweeping 
 
Moore et al introduced a memory-based technique in [21]. Their approach is that while dynamic 
programming works faster in huge search spaces, classical methods are more accurate. Their 
algorithm tries to do the same task as the classical method Gauss-Seidel iteration, but accompanied 
with the usage of memory to concentrate all computation effort of the most “interesting” parts of 

y operate with are more then 10000, and would initially seem 

experie

 against others and present the results, 
s Figure 7 is an example of.  

 
My strategy of overcoming the curse of dimensionality is by reducing the search space, and to 
design an architecture that allows the RL system to work with much fewer parameters. In stead of 
pairing each state or the world with a value, the RL systems has a narrow view of the world by 
only considering its internal generated states of the different experts agreements, and based on this, 
it conducts its learning. Instea

the system. The numbers of states the
to require a lot of memory allocation, but their strategy is to only allocate memory for the 

nces the system actually has.  
 
They test their algorithm on different problems, and compare the results up against other 
techniques, and find that their system in many cases finds the solution faster than other systems, 
and in some cases they are able to find an answer where the other systems they compared it up 
gainst could not. In their paper, they compare their systema

a

 
Figure 7: Prioritized Sweeping compared 

 This figure is taken from [21]. It illustrates the success of Prioritizes Sweeping in a given 
problem (rod-in-maze task) compared to other techniques. 

 
This approach is similar to mine, in that it reduces the search space by the means of guided search. 
All though they don’t present any mathematical proves of convergence, their tests shows that in 
certain settings their algorithm is able to solve a given task.  
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3 Architectures dealing with action selection 
 
Since the information accessed is being used to choose what action to perform, it is natural to take 
a look at different architectures dealing with action selection. A short presentation of the 3 main 
categories of action selection architectures, namely distributed, centralized and subsumption 
architecture is given in 3.1, 3.2 and 3.3. 
 
The DAMN architecture has many similarities to my approach. Because of this, I will take a closer 
look at this one specific architecture in 3.4. 
 
As stated in the problem description, I will try the group-of-experts approach to finding the proper 
abstraction level. A presentation of the Mixture of Experts regime is presented in 3.5. 

3.1 Distributed architecture 
 
In this architecture each module or behavior receives the same input. They are all linked to each 
other with inhibitory links, and they all have an excitatory link to the shared output resource. The 
weights of these links varies, and the chosen competitor emerges from the network. Such a 
network, using recurrent reciprocal inhibition can support winner-take-all functionality, a model 
often used in action. This architecture comes at a high cost regarding both the density of 
connections between rivals and the cost of integrating a new competitor in an existing network.  
 
As we see in Figure 8, the distributed architecture has no central control of which competitor is to 
be chosen over another. Instead, the selection is often described an emergent property of the 
network. This property has been found in investigations of verbrate neural circuitry, where 
relatively small differences in the input leads to a change of selected behavioral output [1] . 
 

 
Figure 8: Action Selection Architecture – distributed 

Solid arrows represents support for A2 which in turn imposes greater reciprocal inhibition 
on competing elements. Figure taken from [1]. 

 
 
This architecture is by definition distributed. All the elements are connected to each other, they all 
receive the same input and they all have access to the actuators. They influence each other by 
inhibition each other through their connecting links. This is a costly architecture with respect to the 
number of links. One positive effect of having the control distributed is that it handles errors 
efficiently. If one element goes down, the others are still functional, allowing the agent to function. 
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Adding more elements would require some work, though, given that all elements have links to all 
the others. 
 
Whether or not to include learning is an open question for the designer. Each element could be a 
subject to learning, as they could learn from experience what output to give to the actuators. The 
weighted links between the elements could also be a target for learning, as the agent would 
experience the pairs of censor input and actuators output, and the effect that has on the 
environment. If it has a good effect, the weights could be further strengthened, increasing the 
likelihood of performing the same action in a similar setting again. A problem with this, is that 
changing the weights due to one situation, might cause the agent to perform worse in a different 
situation, as the changes in the weights might cause the agent to choose more poorly in other 
situations than the one causing the changes in the weights.  
 
This architecture could embrace all different levels of awareness. That would depend on the 
environment the agent exists in, and its censor inputs. If this is used in a grid world where all the 
information is accessible, it would have a high degree of awareness. If this is an agent situated in 
the real world, it would be impossible to have access to all the information. The architecture itself 
puts no restriction, though, on the degree of awareness.  
 
Since the output is being decided by the weighted links between the elements, one would assume 
this architecture to perform well even under time constraints. The time element would depend on 
each elements required time to produce an output signal. 
 
This architecture could be totally self-contained. With all decisions being made internally, this 
architecture opens for a high degree of autonomousy.  
 
 

3.2 Centralized architecture 
 
Centralized architecture, as illustrated in Figure 9 is less costly that the distributed architecture [1], 
since a competitor only needs two connections, to and from the central selecting mechanism, while 
in distributed one needs two connections to every competitor. This is a desired advantage in both 
artificial and biological control. A second argument favoring this class of architecture is the 
modularity. A change directed at one aspect of the behavior or the agent could impact the 
switching behavior of the network with possibly negative and undesirable consequences. When 
using an artificial neural network, one finds that even small changes to the weights can result in 
great change in the output. It is desirable to adjust the network to produce the right output. By 
partitioning this network, one could train one part of it dealing with one sub-problem, while other 
parts of it deals with other problems. When an update is being performed, it should only affect the 
region of interest, and not interfere with the other regions causing a change in their weights. In a 
centralized architecture one allows for parts of the network being used for certain aspects of 
behavior and changes within this local cluster will have much smaller effect on other aspects of the 
agents behavior. 
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Figure 9: Action Selection Architecture – centralized 

All elements receive the inputs, and they all have a linked connection to the 
element 
2 element is 

chosen as the winner. Figure taken from [1]. 

tly than the distributed architecture, as all the elements 
oes not have links to all the others, only to the central switch. The drawback is the systems 

There are fewer links here than in the distributed architecture, and it should therefore perform even 
faster. It would depend greatly on the different elements time requirements to produce an output, 
and especially the central switch.  
 
It has the same potential for autonomousy as the distributed architecture. 
 

3.3 Subsumption architecture 
 
To subsume means to contain, to include. In this architecture the action selection is being decided 
hierarchically. The various behaviors to choose from are hierarchal ordered, as illustrated in Figure 
10. The bottom ones are the most basic ones, and are implemented first. Whenever more than one 
behavior is competing for gaining the control of the output, it is always the highest level that wins. 

ption Architecture [2] is the hierarchy. If the 
program o pick up 
garbag
needed e 

portant behavior, defined by the hierarchy, competes with a less important one, it always wins. 

shared output resource. The Central Switch (SW) supports the A2 
(white arrow) and inhibits the others (black arrows). Thereby the A

 
Being a centralized architecture it is less cos
d
vulnerability, as it would not function if the central switch failed. It could easily function even if 
other elements went down. And it would require less work to add new elements, as this need not 
affect any existing elements other than the central switch. 
 
One could in this architecture more easily integrate learning, as this could be done onto the central 
switch only in order to increase the performance.  
 
This architecture has the same restrictions with respect to awareness as does the distributed one. It 
opens for both low and high degrees of awareness. 
 

A fundamental principle within Brooks Subsum
mer decides that it is more important for the robot to avoid obstacles than t

e, the behavior PickUpGarbage will be inhibited by the behavior AvoidObstacle when 
. That is how the architecture of subsumption deals with action selection. When a mor

im
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Figure 10: Action Selection Architecture - subsumption 

The subsumption architecture. If any of the layers are in competition, the highest 

this architecture. 
ne can observe ones agent, and add behaviors as to increase the performance of the agent. How 
e agent is supposed to learn itself, is not so easy to suggest as with centralized and distributed 

architecture. One way of introducing learning could be to add a behavior that has learning 
he programmer decide all behaviors at design time, the behavior 

could b
 

he degree of awareness can vary as the agent is further developed. One basic behavior could be to 

 no restriction in the level of awareness. 
that one need not explicitly represent the 

n classical AI.  

 

layer always wins. The agent is fully working at any level, so removing layers 
from the top still leaves a fully functional agent, only less complex. Figure taken from [1]. 

 
The learning aspect seems to be in the hands of the programmer when it comes to 
O
th

capabilities. Instead of having t
e guided during runtime by for instance reinforcement learning.  

T
avoid obstacles. When adding a behavior that seeks out other agents, too, one might need to 
increase the input signals to also cover signals being send from other agents. To what degree the 
agent is aware of its surroundings is depended on what the agent is designed for. As with 
istributed and centralized architecture, there is generallyd

A basic thought Brooks [2] presented, though, is 
environment with symbols, typically found i
 

3.4 The DAMN architecture 
 
This is an architecture used to control a mobile device. The Distributed Architecture for Mobile 
Navigation (DAMN) is described in [3]. This architecture works by different modules, or 
behaviors, sending their votes to an arbiter, which then decides the output signals to send to the 
motors. The architecture is illustrated in Figure 11. Figure 11: The DAMN architecture 
 

 
Figure 11: The DAMN architecture 
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This figure, taken from [3] shows the overall structure of the DAMN architecture. We see 
the distributed behaviors sending their votes to the arbiter, who decides the output. 

 
 
The mode manager assigns weights to the votes received by the different modules, or experts. All 
the modules send their votes to the arbiter, and have no control over which expert gets to decide. 
That is determined by the weights of the mode manager. 
 

3.4.1 Distributed and centralized 
 
DAMN is combining a distributed with a centralized architecture, having different modules, or 
behaviors, being distributed, and letting a central arbiter deciding the output [3]. As we see in 
Figure 11 each behavior sends their vote to the arbiter, which then decides what output to send to 
the vehicle control. One can add new behaviors without any need for modification of the already 
existing behaviors. This is similar to the subsumption architecture, only here one does not need to 

o it in a hierarchal manner. The arbiter does not care how the different modules reach their d
decisions; it only evaluates the current situation via the censor inputs and the incoming votes.  

ehavior have say at what the output should be at any given time. Then it could be an area for 
way of doing the fusion. Having the behavior with the most votes 
e. Having them all count according to their votes is another way. 

rnal mechanism trying to achieve better results according to their 
wn goals. One challenge there would then be that the arbiter might in a given situation learn that 

trol. However, as time goes on, this module might learn to 

dless space of different 
tates the system can be in. How much information, and what kind of information, each behavior 

 

3.4.2 The learning aspect 
 
The mode manager can influence and change the weights of the incoming votes from the 
behaviors, and thus change dynamically the final outcome and behavior of the agent. This is a 
natural place to add learning, letting the mode manager change the weights if needed according the 
changes in the environment. A different form for learning could be incorporated in the arbiter. The 
arbiter is the one who decides what signal is being send out. It could learn how to do this in the 
most beneficial way. Collecting all the votes, and implement a winner takes all algorithm is one 

ay of doing it. One could also let the arbiter performs a command fusion, letting more than one w
b
learning to developed the best 
count 100 percent is one extrem
Maybe one should perform a fusion between the 3 most highest votes, or let the highest vote count 
for 50 percent, the next highest for 40 percent, and the rest share the remaining 10 percent. Once 
this is set for a specific environment, the arbiter might need to learn how to do things differently in 
a different environment, as with the example of icy roads versus dry asphalt with the mode 
manager. 
 
This architecture opens for letting the various modules include learning, also. Nothing hinders the 
various modules to learn as the agent exists and performs actions, and they could improve their 

ehavior according to their inteb
o
one module should not be given any con
act differently and should be allowed to control the agent in the same situation in the future. The 
arbiter would then need some sort of re-evaluation of its weights, allowing the different modules to 
be reconsidered as time has gone by and they might have learned to act differently.  
 

3.4.3 The degree of awareness 
 
This architecture is being used in situated, real mobile units, or agents. Dealing with the real world, 
t is impossible to have access to all relevant information considering the eni

s
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and the arbiter is to receive can
esired outcome. A purely reactive be

 be adjusted individually, according to each behaviors need or 
havior designed to not hit obstacles have a less interest of 

3.4.5 The degree of autonomy  
This architecture is open for any degree of autonomy (except the philosophical level that would 
require being omniscient). One could use the architecture in a mobile device with a very little 
degree of autonomy. The ABS-breaks on most new cars might serve as an example, where the 
human driver makes almost all the decisions, and the ABS kicks in and helps when needed. A fully 
automated mobile unit might perform all the choices itself regarding turning, accelerating, doing 
specific tasks and so on. The level of abstraction could range over the whole specter, from low 
level deciding whether or not to accelerate and turn in any given moment to the higher level of 
planning the route on how to get from the current position to a goal target. 
 

3.5 Mixture of Experts 
 
One could look at the agent as being not just one unit, but being made up by a number of different 
experts. Each expert would then be good in its specific domain, and by letting the agent being 
controlled by all these experts in a workable fashion, the agent as a whole would be able to deal 
with a variety of challenges. One approach to solving problems is the divide-and-conquer strategy. 
To solve a problem you can divide it into sub problems, and then sub problems into sub- 
subproblems, and so on and so forth until the problems are easily solvable. This general algorithm 
is well known and used. In [4] we find a model using this strate ing that the input space, 

ilar groups, it would be smart to have certain groups of the 
neural 
betwee
talk ab
training t to use for the training case at hand, and 

nly that experts weights are updated. How this gating expert is implemented can vary, and one 

d
inner values and set of beliefs as would a behavior that conducts longer term planning of actions. 
Being situated in the real world, there is also the aspect of noise. The censor inputs does not have 
all the information available, and the information it has might not be totally accurate. 
 
 

3.4.4 The aspect of time 
This architecture is being used in a real mobile agent, and thus faces the challenges of dealing with 
real time issues. If the mobile unit is about to drive of the road having a certain speed, one only has 
a limited time available to choose actions that will prevent the likely for future accident from 
happening. The frequency of how often each behavior sends its vote are adapted to each behavior. 
A purely reactive behavior, designed to react to a situation as the one described above, might need 
to be allowed to issue its vote most frequently. While a behavior that is involved in longer term 
planning does not need to express its vote that often, just every now and then to guide the mobile 
according to its long term plan. 
 

gy. Assum
or problems, can be clustered into sim

network represent certain groups of the input space. Not knowing a priori the boundaries 
n the different groups, Jacob et al [4] suggests an architecture that tries to solve this. They 
out experts, meaning one expert is focused on one cluster or group of input values. When 
 the network, a gating expert chooses which exper

o
can also include learning to the gating expert, so that he learns to choose the most appropriate 
expert. This architecture is shown in Figure 12.Figure 12: Group of expert’s architecture 
. 
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Figure 12: Group of expert’s architecture 

This figure is taken from [4], and illustrates the data flow in the architecture. Each expert 
is a feed-forward network, as well as the gating expert, and they all receive the same input 
signal. The weights from the gating expert, its output, is a main component for the selector 
when it decides which expert is given the control. 

 
This approach of havi
a mech

ng different experts, or agents, suggesting different actions, and then through 

some h
basal g
role of 

anism, (e.g. a gating expert), decide who gets their action executed, is closely related to 
ypothesis about how the basal ganglia works. Among other tasks and believed purposes, the 
anglia is believed to be an area where action selection within the brain is taking place. The 
basal ganglia as an action selector is a recurrent idea in the basal ganglia literature [1]. 
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4 The architecture 
 
In this chapter I will describe the architecture I have designed. I will first in 4.1 describe the world 
the agents live in, and the restrictions I put on the world and the agents. I will then take a look at 
the architecture of the agent in 4.3, and specifically point out the three important features of the 
gent, namely the filtering of input signals by the group-of-experts, the action sa election and the 

m the main agent, I will refer to the other agents as targets. Each target has its 
haract r and shape. Existing in a 3D world, they also have properties such as 

locatio ine 
the age  are 
not. Th
being eaten by the agent. If the target proves
generat e

 learn to d  in 

learning system.  
 

4.1 The world 
 
The scenario is as follows: the agent exits in a 3D world along with other agents. To distinguish 

ese froth
c eristics, such as colou

n and speed in the virtual world. Certain combinations of characteristics of the targets def
hichnt as inedible, being poisonous. The agent is to learn which targets are edible and w

e agent hunts down the targets, one at a time. Upon impact the target cease to exist, as in 
 to be poisonous, a negative feedback signal is 

ed. If not, a positive signal is generated. This reinforcement signal is then used by th  agent 
ifferentiate between the different categories of the other agents, the targets. As seento

Figure 13 we see the agent, being a white cone, existing in a crowd of other agents. The white agent 
tracks down targets, and chases them until they collide. At that point, the target is eaten, and the 
white agent sets out for a new target. All agents move around, the targets somewhat randomly.  
 

 
Figure 13: The scenario 

In the middle of this picture we can see the agent, a white cone, existing among other 
agents, the targets. The targets have various shapes and colors. Certain combinations of 
characteristics are poisonous, and should not be eaten by the agent once it has learned 
whose are edible and not.  

 
 
The world is of a limited size, and the number of agents existing is determined online and 
randomly, but within the boundaries of a maximum and a minimum number of agents. The other 
agents live for a period of time, either till they are eaten, or until they just expire after having 
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existed for a set time. This is done so that the agent, when it learns who is edible, always should 
have both poisonous and edible targets to choose from. The targets move somewhat randomly 
round. If they get to the border of the existing world, they turn around 180 degrees. If the agent 

vity, mass 
eight and so on, but advice against using those features if it is not absolute necessary for the 

ore complicated and slows down the simulation 
onsiderably.  

 both 
hich agents are poisonous and generate the reinforcement signal within the agent. This does not 

nal, it only receives it.  

The complexity of the targets can easily be changed before the program is run, as well as the 
 to exist at the same time. This makes it easy to experiment with lower and 

igher degrees of complexity which determine the size of the initial search space.  

follows:  

gents 

the 

 possible variations of 
haracteristics, the total number of states of the world can then be represented as 24^8= 
10’075’314’176. The agent, however, does not exist on a grid world of size 9, it exists in a virtual 

continuous world. In a world defined by tiles, allowing the total number of locations of the world 
to be a known integer, it very quickly becomes of such a size that representing the total number of 
possible different states in the world becomes infeasible. If the space location of the world is 

a
comes to the end of the world, it is simply relocated to the centre of the world. This would not be 
possible in a real world, but the main idea is to explore how the agent can take advantage of lower 
level experts combined with reinforcement learning, and the resemblance to a real world setting is 
of less interest. BREVE opens for simulating a real world, taking into consideration gra
w
simulation, as it makes things much m
c
 
The reinforcement signal is to be outside of the agent’s control, a general principle in 
reinforcement learning. This can be done explicitly by having the agents inner energy go up or 
down as it its other targets, depending on if they are poisonous or not. For simplicity, I define
w
collide with the definition of reinforcement learning, since it is the definition of the target that 
triggers either a positive or a negative feedback signal, and hence, it is outside of the agent’s 
control. This could have been programmed differently, but the area of the agent that uses the 
reinforcement signal to induce learning has no control of this sig
 

number of agents that is
h
 
The agent lives in a 3D world. Its main goal is to move around and catch other “edible” mobile 
agents. Some agents are poisonous and not edible, and should be avoided. The agent sees the 
whole world, which consists of itself and the other mobiles. Each mobile has its own 
characteristics defined by shape and colour. They are all mobile, and move around in the virtual 
world somewhat randomly. Some parameters for the simulation worth paying attention to are as 

 
n: number of a
s: number of possible shapes (cone, sphere, disk). One object can be of only one shape.  
c: number of colours (red, green, blue), either being on or off (2^3=8 possibilities) 
v: velocity, speed in 3D world defined by a vector of 3 dimensions (x,y,z) made up of three 
float values  
l: location, defined by a vector of 3 dimensions (x,y,z) made up of three float values 

 
To illustrate how infeasible it would be to represent every possible state of the world in a lookup 
table: each target has the permanent characteristics of shape and colour, adding up to 3x23=24 

ariations. Imagine the agent existing on a grid world made up of 9 tiles, with itself being in v
middle. That leaves 8 tiles open for possible occupations of targets. Only one object can occupy 
one tile at a time. If these 8 tiles are to be occupied by 8 targets, the targets can position themselves 
in 40320 different ways. The agent in the middle deals with a possible variations of states of the 
world with the size of 40320 – that is assuming that the agent represents each target uniquely, and 
there are only 8 different targets total. However, the agent can only observe the targets, and are left 
o define them by their characteristics. Since each has one out of 24 differentt
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continuous, it quite simply becomes impossible to fully represent every state of the world in a 
table.  
 
Defining which agents are edible are done be defining which combinations of characteristics are 
lethal. For instance can all red agents be poisonous, or alternatively, all blue agents with the shape 
of a cone are lethal. Defining which agents are poisonous takes place in the method that is called 
upon impact, and can be modified during runtime by changing parameters using the menus. 
 
The agent needs to learn which objects are desirable, and which are to be avoided. This is achieved 
by using reinforcement learning. The experts do not give a specific advice on what action to take, 
but rather filter the input signals and pass on to the agent the input signals that they choose. 
Initially, this is done by having experts seeing only certain types of mobiles depending on their 
characteristic. The input signal is, thanks to breve, easy accessible by easily getting a list of all 
mobiles present in the environment. One expert can then pass on only red agents, while another 
expert only passes on agents with the shape of a cone. This can further be diverged, so that one 
limits the view of an expert to be of a certain distance and/or angle, while other input signals could 
be of importance, too, such as velocity, angle of moving direction compared to the agents moving 
direction and so forth.  

As men
how th
the pro
experim
 
Variou
 
I choos
But the
need to have a lookup table for each possible state, but rather a lookup-table that connects chosen 

ehaviour with which expert was given the control, or degree of control, in a given situation.  

The input signals come reduced in magnitude to the agent. The agents, based on these signals, 
at action to perform, and converts the input signals into a 

he other agents are all potential targets. They all have characteristics such as shape, colour and 
location. They move around randomly, and exist in a time span set at runtime. Each agent is 

t between a lower and higher boundary. This means that the agent 
might 
numbe
the age

ll the time. These other 

 
tioned before, how the experts filter the input signals are of no interest to the agent. It is 

e agent can learn to use the much smaller space of input signals that is of importance. From 
grammers perspective, finding the proper abstraction level is the main goal, so of course, 
enting with how the various experts filter the input signals are of great interest.  

s reinforcement learning methods 

e to use look-up tables. Normally, in a huge search space, a look-up table is not feasible. 
 very effect of greatly reducing the input space allows me to use look-up table here. I do not 

b
 

work out some various options of wh
smaller number of varieties, so action can be paired with state, and used in a lookup table for 
learning. This is one possible approach examined in this thesis. 
 

4.2 The targets 
 
T

randomly given a time span se
chase a target, and the target disappears before it has been hunted down. At all times, the 
r of other agents is between a lower and higher boundary limit, ensuring possible targets for 
nt to find and chase down. 

4.3  The agent 
 
The agent is made up of a virtual agent set up in the BREVE simulator. It is very basic; it has the 
shape of a cone, a size and colour. And it moves around. The BREVE simulator gives easy access 
to all agents within a limited radius of the agent, which is set before runtime. By setting this limit 
to be wider that the size of the world, the agent has access to all the agents a
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agents, with their distinct location, velocity, shape and colour, represent the input space in which 
the agent is to do its search. As explained in the setting above, certain characteristics are defined to 
be poisonous and undesirable. This is the learning goal for the agent, to determine which are 
edible, and eventually avoid the poisonous ones while only chasing and eating the edible ones.  
 
The agent uses experts (processes within the agent) to filter the input space, and based upon this 
filtered input signals it will do its learning and base its actions. The overall architecture is shown in 
Figure 14. How many experts, and how they process and select the input signal to be forwarded to 

e agent, is entirely up to the programmer before runtime. The number of experts can easily be 
hanged, and experts can be added or subtracted from the agent very easily.  

 

th
c
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N lists of agents
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(n^2 - n)/2

credibility

Execute move

Filtering by n
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The world
LearningReinforcement signal

Adjusting valuesAgreements
of execution

list

history

expertsAll agents

the agent itself. The 
agent receives input signals from the world. In my experiment, the input signals are objects, 
or agents, existing in the world, containing information about each agent, such as color, 
velocity, shape etc. These input signals are filtered by experts, and only chosen objects are 
passed on the Chief of Command. Here the various agreements between the different 
experts are evaluated by the means of the lookup table, and a target is chosen to chase 
down. This results in executing a move, which affects the world. The experts, chosen to 
decide which target to chase down based on their agreements, are stored in a list. When the 
agent receives a reinforcement signal from the world, it uses this to update the values 
stored in the lookup table.  

 
 

4.3.1 The Chief of Command 
The Chief of Command is the core of the agent with respect to the reinforcement learning system 
and action selection. This module need not have any knowledge of how the different experts 
produce their output, how they filter the original input signals. The Chief of Command will 
through experience learn which combinations of agreements between the agents are desirable and 
which are not. This knowledge will then be used to avoid the poisonous agents. The more detailed 
architecture of the Chief of Command is illustrated in Figure 15   
 

 
Figure 14: The architecture of the agent 

The box “world” contains everything that exists in the world, including 
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Figure 15: The Chief of Command 

The chief of Command is the heart of the agent with respect to how it chooses to behave. It 
receives a list of agents from the experts, and processes these lists to suggest  which agent 
to chase down, one for each expert.  

 
In my experiment, deciding the target is done simply by finding the closest agent within each list. 
All agents exist in the simulated world in the BREVE simulator, and have a physical location 
represented as a vector made up of three float values, x, y and z. It is a trivial task in BREVE to 
calculate the distance between any two objects. For each list of agents filtered by the experts, the 
agent chooses the one agent, or target, out of those available in the lists, closest to itself, relatively 
speaking. The criteria on how to choose the targets can easily be changed.  
 
The suggested targets are then compared towards each other, and any agreements between the 
different experts are further investigated by using the lookup table. The Chief of Command then 

 by choice either explore or exploit its knowledge. By 
explori
experie
When s
of agre
list of a  the credibility values stored in the lookup table. 

lly designed sunglasses 

ace as their input signals. To simplify matters in order to keep a 
cus on the task at hand, I have designed the experts to be very simple. One expert filters the input 

be of less magnitude than the original input. Secondly, the time spend to filter the 
put should benefit the agent on a whole so that the agent spends less time than it would if it were 

decides what target to settle on. It can
ng it chooses targets which predicted outcome (feedback) is not certain, and needs to be 
nced. By exploiting, it chooses a target that is most likely to result in a positive feedback. 
ettling on a target, the location of the chosen target decides what action to perform. The list 
eing experts resulting in choosing the target is stored. Upon receiving feedback, the stored 
greeing experts is used to update

 
 
 

4.3.2 The experts – specia
 
Each expert gets the whole input sp
fo
signals, and passes forward only those agents who contain the colour red. A different expert might 
only pass on all the agents with the shape of a sphere. One could have a near-sighted expert only 
passing on the agents that are closer than a certain set distance relative to the agent. One could have 
experts that only pass on agents that are moving in the same direction as itself. The possibilities are 
many. There are, however, at least three important aspects to consider. Firstly, their combined 
output should 
in
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to behave the same way without the aid of the experts filtered input signals. And last, but not least, 
the filtered inputs need to contain enough information for the solution, or desired behaviour and 
learning, to emerge. 
 
Each expert generate their own list, being a filtered representation of the original input signals, so n 
agents produces n lists that is forwarded to the Chief of Command. The agent then is presented 
with filtered segments of the original input, on which it must base its actions, see Figure 16. The 
urpose of this architecture is to reduce the search space and the workload put upon the Chief of p

Command, while maintaining the possibility of acting and learning as desired.  
 
 

 
Figure 16: Experts filtering the input signals 

Here we see an illustration of how the original input space is being reduced by the experts. 

rmation, the chief of command starts the process 

Each expert filters the input signals, and passes on the input signals it chooses. The main 
agent, the Chief of Command (CC), is then presented with a fragmented input space filtered 
by the experts. Based on this available info
that ends in an action selection. 

 
The experts used in this experiment have names reflecting the lists of agents that slips through the 
filter of the expert. The cone expert’s filtered list contains only agents with the shape of a cone, and 
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the same goes for the other experts, namely the sphere, the disk, the red, the green and the blue 
expert. 

4.3.3 The action selection 
 
The module that deals with the action selection deserves a closer look, see Figure 15. Each expert 
produces a list containing some, but not all, of the total input signals. In my setting, these input 
signals are other agents. The total input signal contains all the agents, while the filtered lists 
ontains only certain agents, chosen by the expert making the list. Being presented with these lists 

. All targets are located somewhere in the 
imulated world, having x, y and z coordinates, as well as the main agent. Since the agent is to 

 chase is to chase down the one 
n all targets in the filtered lists and the main agent itself is 

alculated, and the one target being the closest is suggested as a new place to move closer to. This 

ects its predicted reward signal, see Figure 17. A 
ositive value suggests that the effect of executing that move will result in a positive reward. A 

ibility, meaning the agent can rely on the 
alue to predict the next future reward signal. If the value is below a the threshold, the expected 

c
of selected agents, or potential targets, the agent will choose one target out of these filtered lists 
with targets.  
 
To keep things simple in my experiment, the Chief of Command module first finds the closest 
agent, relative to itself, in all the lists presented to it
s
chase down and eat the targets, one way of choosing what target to
closest to it. The distance betwee
c
results in n number of suggested ways to move next.  
 
If there are two or more suggested moves that point in the very same direction, they are categorized 
as being in an agreement. If the suggested move based on expert 1,2 and 4 all point to the same 
direction, there is as agreement of the tupples (1,1), (1,2), (1,4), (2,2), (2,4) and (4,4). Each tupple 
has a value stored in the lookup table that refl
p
threshold value sets a limit for when the value is believed to be trustworthy. If the value is above a 
the set threshold, the tupple is believed to be of good cred
v
outcome is more uncertain, and should be explored further to gain experience and to adjust the 
value further, until it is above the threshold. The agent has no awareness of the correct answer, and 
can only rely on its own experts and its variety of different choices it has.  
 
Expert_1 expert_1 0.6753 
Expert_1 expert_2 -0.8700 
Expert_1 expert 3 1.0000 
Expert_2 expert_2 -1.0000 
Expert_2 expert_3 0.0240 
Expert_3 expert_3 0.7090 
Figure 17: The lookup table 

Each agreement between any two experts are assigned a float value between -1 and 1. Each 
expert is of course in agreement with itself, and is also represented in the table. A high float 
value means this pair of agreeing experts have received more positive than negative 
rewards in the past. The agent needs to explore, and try out different combinations of 
agreeing experts in order to increase or decrease the float value. After some experimenting, 
the agent can then start to exploit its gained knowledge stored in the lookup table by 
choosing the pair of agreeing experts with the highest float values. 

In the example in Figure 17, if expert_1 and expert_3 are in an agreement, meaning the next 
ective filtered lists are the 

ame, the agent can expect a positive reward signal as a result of executing that move, or set of 

exploration before the agent can rely on the credibility of the predicted reward value.  

 

calculated move done by the Chief of Command based on their resp
s
moves, until the target has been chased down. If the threshold is set to be 0.7, then the three rows 
containing expert_1 expert_1, expert_2 expert_3, and expert_3 expert_3, still requires more 
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4.3.3.1 Exploring versus exploiting 

an vary between exploring and 
xploiting its gained knowledge and experience.  

 there are a total of three experts, named expert_1, expert_2 and expert_3, the lookup table has 6 
row
table is  order to choose which experts to 
list
 
If a , positive or negative, the 
age
values  the one with the 
hig
 
To 
probab ose a total random move, even if the predicted 
outcom
 
Based 
expert_
of their filtered input signals. If expert_1 produces lists with agents with the shape of a cone, 
exc
shape o
 

4.3.4
 
The ta
experie
good targets. This is done by the learning system by si ent the credibility value of all 
the
multipl
value i
 

very time the agent eats a fish and receives a positive reinforcement signal, all the tupples of 

 If the agent 

compensate for this, the agent needs to have 
nough impacts with targets that induce a positive reinforcement signal, so that all the tupples that 

got punished “wrongly” get their credibility adjusted up again.  

he learning rate is represented by the size of the increments of which the lookup table is being 

 
The lookup table is the arena for learning. This is where the agent c
e
 
If

s holding 6 float values, as illustrated in Figure 17: The lookup tableFigure 17. This lookup 
 being used by the Chief of Command, see Figure 15, in

en to when deciding the next target to chase down. 

ny absolute values of the lookup table are lower than the set threshold
nt chooses a target from the choices that still has values below the threshold. If, however, all 

are higher than the threshold, it simply chooses among those. It can choose
hest value, or choose randomly between them.   

insure exploring long into the run, one could add that choosing the best candidate is of a certain 
ility, but that it every now and then would cho
e is negative.  

on the example in Figure 17, the Chief of Command will over time learn that whenever 
1 and expert_2 are in an agreement, it should not move into the direction resulting from any 

lusively, and expert_2 only produces lists of red agents, this implies that any agent with the 
f a cone and having the color red is not edible.  

 The learning system 

sk of the learning system is to adjust the values stored in the lookup table to reflect the 
nces the agents gets with the real world, so that it can avoid the bad targets, and only eat the 

mply increm
 tupples that was in the last agreement on executing the last move, by a certain increment 

ied by the reinforcement signal. The reinforcement signal is either -1 or 1, where a negative 
ndicates the situation being undesirable. 

E
agreeing moves, aka experts, gets their values increased.  
 

o illustrate, lets say that any fish with the colour red and the shape cone is poisonous.T
eats such a fish, all the tupples of agreeing experts that agreed to execute this past move in 
punished by having their lookup table value reduced. However, it might only be one tupple of 
agreeing experts that will end up with a learned negative value, while the others just happened to 
be pointing to the same direction at that time. To 
e

 
T
adjusted by. Very small increments would imply slow learning, and maybe too slow to be able to 
react in a reasonable timely manner. Big increments would imply fast learning, but might then be 
subject to premature converging. Various techniques can be used to adjust the learning rate. One 
way is to just set the increment value at design time, which is what I have used most in my 
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experiments. Another technique could be to vary the size of the increment depending on the 
original value in the lookup table, with the effect that a value that is above the threshold is not as 
greatly affected as a value below the threshold. This would be of importance if the world were not 
deterministic, so that a target that is edible at certain odd times will produce a negative reward 
ignal. 

 

4.4 A walkthrough of a sequence in the simulation 
 
I will here go through a possible scenario to exemplify the code. This is not an exhausting 
explanati erves as n the understanding of the code and the architecture described 
above. I w show exa w they can be displayed to describe the learning 
effect tak . 
 

4.4.1 T inuous loop running inside the agent 
 
The agen ough cer s at each iteration, as illustrated in the list below.  
 

1. G  the inp ls, produce filtered lists. This is done by the (internal) experts. 
The resulting lists a  in the list filteredInput. 

2. C he next  order to move closer to the closest target within each list, and 
s suggeste  in the list lastVelocity.  

3. M  of all un ggested moves, store in indexMoves. 
4. Make a list of all agreeing experts by comparing each unique move up against the move 

calculated in step 2. Save the list of agreeing experts in matchingMoves.  
5. C e list of i in the list matchingMoves to string names, being used in a hash 

table in BREVE as the actual lookup table. List of names saved in lookupNames. 
6. U okup tab esLookupTable) and find the maximum and minimum value, 

store these values in the list lookupValues. 
7. Decide which expert lists to use for deciding the next target, and hence deciding the 

f moves a n until the target has been chasen down or until it disappears. 
Either explore to gain information and knowledge, or exploit to try and avoid negative 
feedbacks and get positive reward signals. Save the list of experts agreeing on this move in 
l mentAge

8. I not lock  before, then set this target to be the locked target by giving the 
index value of one of the experts in agreement of this move into the parameter 
lockedTarget. If target is already locked, continue pursuing that target until its distinction. 

9. U ct, check ibility of the target. If not editable, the agent receives a negative 
reward signal, if edible, it receives a positive reward signal. Set the value of the 
lockedTarget to -1, implying a new target must be decided on. Remove the target from 
t ion. Incr he parameter good or bad depending on the reward signal. Do a 
p f the cur ues of the good and bad, to a file, “output.txt” for viewing and 
evaluation later.  

10. Use the reward signal to update the values in the lookup table. This is done by looking at 
t greeing that lead to this reward signal, stored in lastAgreementAgents. 
The values in the lookup table namesLookupTable are then incremented by the value stored 
i eter RL ENT multiplied with the reward signal, which is either -1 or 1.    

 
The agent u es these 10 points in each time step of the simulation, and will more and more 
have the characteristic of being in an exploitation mode as time passes by.  
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There are always targets available, and the targets have a relative short lifespan. This ensures a 
variety rent targ sent, since the agent will by learning its behaviour decrease the 
current f edible . Adding new targets is done by the main controller, the 
headquarters and the staring point of the simulation. 
 

4.4.2 P d outpu d in a text file 
 
The file “ou t” will a n contain a list. By analyzing this list one can make statements 
about th achievem d learning capabilities. The number of bad hits should decrease 
into the sim , and ho come to a stop, while the number of good hits keeps increasing. 
Below ple of a nt of the content of the file. Each hit is recorded, stating the 
number  and ne wards received so far. A graphical visualization illustrating the 
learning effect can be done by showing the ratio between positive and negative rewards, as 
illustrat e 18. 
 

of the diffe ets pre
number o  targets

roduce t save

tput.tx fter a ru
e agent’s ents an

ulation pefully 
is an exam  fragme
 of positive gative re

ed in Figur

0 good 1 bad 
1 good 1 bad 
2 good 1 bad 
2 good 2 bad 
3 good 2 bad 
4 good 2 bad 
5 good 2 bad 
6 good 2 bad 
7 good 2 bad 
8 good 2 bad 
9 good 2 bad 

10 good 2 bad 
11 good 2 bad 
12 good 2 bad 
13 good 2 bad 
14 good 2 bad 
15 good 2 bad 
15 good 3 bad 
16 good 3 bad 
17 good 3 bad 
18 good 3 bad 
19 good 3 bad 
20 good 3 bad 
21 good 3 bad 
22 good 3 bad 
23 good 3 bad 
24 good 3 bad 
25 good 3 bad 
26 good 3 bad 
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27 good 3 bad 
28 good 3 bad 
29 good 3 bad 
30 good 3 bad 
31 good 3 bad 
31 good 4 bad 
32 good 4 bad 
33 good 4 bad 
34 good 4 bad 
35 good 4 bad 
36 good 4 bad 
37 good 4 bad 
38 good 4 bad 
38 good 5 bad 
39 good 5 bad 
40 good 5 bad 
41 good 5 bad 
42 good 5 bad 
43 good 5 bad 
44 good 5 bad 
45 good 5 bad 
46 good 5 bad 
47 good 5 bad 
48 good 5 bad 
49 good 5 bad 
50 good 5 bad 
51 good 5 bad 
52 good 5 bad 
53 good 5 bad 
54 good 5 bad 
55 good 5 bad 
56 good 5 bad 
57 good 5 bad 
58 good 5 bad 
59 good 5 bad 
60 good 5 bad 
61 good 5 bad 
62 good 5 bad 
63 good 5 bad 
64 good 5 bad 
65 good 5 bad 
66 good 5 bad 
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67 good 5 bad 
68 good 5 bad 
69 good 5 bad 
70 good 5 bad 
71 good 5 bad 
72 good 5 bad 
73 good 5 bad 
74 good 5 bad 
75 good 5 bad 
76 good 5 bad 
77 good 5 bad 
78 good 5 bad 
79 good 5 bad 
80 good 5 bad 
81 good 5 bad 
82 good 5 bad 
83 good 5 bad 
84 good 5 bad 
85 good 5 bad 
86 good 5 bad 
87 good 5 bad 
88 good 5 bad 
89 good 5 bad 
90 good 5 bad 
91 good 5 bad 
92 good 5 bad 
93 good 5 bad 
94 good 5 bad 
95 good 5 bad 
96 good 5 bad 
97 good 5 bad 
98 good 5 bad 
99 good 5 bad 

100 good 5 bad 
Figure 18: Example of content in file output.txt 

Upon every reward signal received, the result is printed to the file output.txt. It shows the 
number of positive and negative rewards received. The desired result is for the increasing 
of negative reward counts to stop, meaning the agent avoids getting negative rewards. 

 

4.4.3 Interpreting the numbers 
 
During the run, the count of positive and negative rewards are printed on the screen, as well as the 
ratio between them, as illustrated in Figure 19. 
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Figure 19: Screen during runtime 

In the bottom left corner is the counts of positive and negative rewards displayed, with the 
ratio shown. In the upper left corner is the runtime shown. A desired effect is to see the 
ratio value increasing during the run, verifying the agents increasing capability of choosing 
actions leading to positive rewards and avoiding negative rewards. If no learning takes 
place, the ratio between positive and negative rewards will simply reveal the ratio of 
existing poisonous agents existing in the world.  

 
 
Plotting the numbers saved in the output.txt into a excel worksheet allows me to show the 
development of the ratio between good and bad rewards received. It is the ratio shown taken from 
the example given in Figure 18 that is displayed in Figure 20. 
 
 

ratio positive versus negative rewards
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igure 20: Ratio positive versus negative rewards 
As the graph displays, the ratio of good rewards versus negative rewards keep increasing. 
Thus, the agent keeps getting better at avoiding targets that are not edible. 

F
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5 Results 
 
Experimenting using the BREVE simulator gave a great opportunity to watch the behaviour of the 
agent during runtime. The observance of the behaviour was guiding my experimenting, and it took 
some work and time to reach the architecture described in this thesis. The goal was to find the 
proper abstraction level, assuming that the novel strategy of filtering the input signals through 
experts prior to the agent working on the data would actually work. 
 
Starting out in an approach very similar to standard group-of-experts regime ala Jacobs et al 
approach in [4], the action selection was taken at each iteration, and the influence of the experts 
filtered input signals would influence every next action chosen. This, however, turned out to be 
problematic. A this low abstraction level in my setting meant that the agreements between the 
different agents would decide every single action performed by the agent, and was subject to 
change for each time step. In the early process of the testing, I had problems with avoiding the 

u  move towards one agent, and in the next 

state, m
occasio
possibl
etwee spend between each reward signal given. 

Using the BREVE simulator gave an opportunity to observe the agents behaviour during runtime 

This un
code in hich was 

e main essence in solving this problem mentioned above.  

 
The solution was to maintain a certain level of both edible and poisonous agents in the world at all 
times. This was done by setting a maximum time span limit for the other agents to exist in. By 
balancing the number of total agents existing at all times along with their maximum life span a 
somewhat steady ratio between edible and poisonous agents was upheld. The agent could never 
finish off all edible food before new agents emerged. Also, the targets would disappear after a 
while, so the reproduction of new agents is not depended on the behaviour of the agent. This 
ensured a continuous supply of new agents, both edible and poisonous. By extending the lifespan 
of the agents, I needed to also increase the number of total agents present at all times, to insure the 
possibility of finding edible food. 
 
I found that the balance of total number of targets and their individual lifespan made a difference 
on the result. The best result came with having many targets existing, and having their lifespan 
being extended. A minimum number of 100 agents with a lifespan between 100 and 200 seconds 
produced a good learning environment for the agent. 
 

agent to get stuck between two different targets. It wo
time st

ld
ep change direction and move towards another. The agent would often get stuck in such a 
oving forward very slowly, and not being able to actually reach any targets. Only at rare 
ns, if ever, would it reach a target, spending most of its time going back and forth between 
e targets. The output file “output.txt” does not reveal this as the output reveals only the ratio 
n good and bad rewards received, and not the time b

and made this problem very easy detectable.  
 

desired behaviour can be reproduced in the current code by simply commenting out the 
 the method doNext where the agents checks if a target has been locked already, w

th
 
This motivated me to try and raise the abstraction level. In stead of doing the traditional action 
selection, where every move is decided at each time step, I instead would use the input from the 
agents to decide on a target. Once a target has been decided, the Chief of Command, Figure 15, 
would decide and execute the next actual move, moving in closer towards the target. The target 
would remain fixed until it has been chased down. This seemed to work nice, but presented a 
different problem: after a short while most edible targets had been eaten, and mostly only 

oisonous agents were left in the world.  p
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This reflects a typical challenge with reinforcement learning: the fine tuning of the parameters in 
order to achieve the desired results. Some of the parameters I changed, was determining the 
environment the agent lives in. I could do this, since I was in full control of that environment. If 
reinforcement learning is to be used in a real world setting, the opportunity to change the 
environment might be significantly less, to put it mildly. Then even more fine tuning of the 
parameters and methods inside the agent is required.  
 
If the parameters deciding the environment were set in an unfortunate manner, the agent would fail 
to learn. The ratio between good and bad hits would simply reflect the ratio of edible versus 
poisonous food. This is shown in Figure 21. As illustrated in Figure 20, the graph should keep 
increasing as an effect of successful learning.  
 

ratio positive versus negative reward signals

1
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1 55 109 163 217 271 325 379 433 487 541 595 649

 
Figure 21: Not improving behaviour 

As the graph displays, the ratio of good rewards versus negative stays fixed. The agent 
maintains the ratio of negative and positive rewards, and is not learning how to avoid the 
negative rewards. An example of the output file is in the attachments, 
“output_not_learning.txt”. 

 
As the agent finally was able to learn successfully and produce the desired behaviour, it still 
encountered negative rewards, all though not often. This is shown in Figure 22, where the 

 a sphere of colour red. Figure 23 shows the actual counts of 
positiv e rewards generating the graph in Figure 22. 
poisonous agents were defined to be

e and negativ
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Figure 22: Learning, but still encountering negative rewards 

As the graph displays, the ratio of good rewards versus negative increases.  stays fixed. The 
agent maintains the ratio of negative and positive rewards, and is not learning how to avoid 
the negative rewards. An example of the output file is in the attachments, 
“output_learning_but_not_acting_perfectly.txt”.  
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Figure 23: The numbers of positive and negative rewards 
As the graph displays, the pink line keeps increasing. No matter that the agent learns, it still 
encounters negative rewards. This is from the same data as Figure 22. An example of the 
output file is in the attachments, “output_learning_but_not_acting_perfectly.txt”.  

 
 
The failure of the agent to complete avoid poisonous food led me to take a closer look at the code. 
The failure of the agent was of no fault of the agent. If it could only choose between poisonous 
targets, it would do so, in lack of any other alternative. Adding an escape from this, by adding the 
choice of not moving at if there are no predicted positive rewards in sight solved this issue. Instead 
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of having the agent standing still, waiting for edible targets to come close enough, one could add a 
behaviour that would cause the agent to circle randomly about while no edible targets are in sight.  
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Figure 24: Successfull learning and behaviour 
As the graph displays, the pink line stays fixed at 4. Having learned which targets are not 
edible, no more negative rewards are encountered. The ratio keeps increasing steadily. 
keeps increasing. An example of the output file is in the attachments, 
“output_successful_learning.txt”.  

 
Varying the number of combinations of edible agents would result in the same successful 
behaviour, but it would require a longer training period before the increasing counts of negative 
rewards came to a stop. This can be explained by the fact that given more combinations being non 
edible, the expert agreement values in the lookup table that should contain a positive value would 
more often get punished and increased as the likelihood of this agreement pair of expert would line 
up with an agreement pair of experts that pointed to non edible targets. An example of the output 
from such runs is given in “output_triple.txt”, where the first run is with two combinations of non 
edible targets, and the second is with three non edible targets. As we can see in , the values in the 
lookup table does reflect the defined non edible targets, but the learning takes much longer. The 
average number of received rewards in the example below was 1000, and still the agent has not 
learned enough to avoid the negative rewards, but as the values show, the values are moving 
towards reflecting which agreeing experts points to edible food and not.  
 

sphere 
sphere -0,16 
sphere cone 0,00 
sphere disk 0,00 
sphere red 0,24 
sphere blue -0,68 

sphere green 0,40 
cone cone 0,32 
cone disk 0,00 
cone red -0,84 
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cone blue 0,96 

e 0,40 

As the numbers reveal, in this setting, red cones and blue spheres are not edible. The 

 earlier. Since the possibility of 
ncountering a negative reward, without any prior experience, is so much higher due to the 

. One might expect the same effect as with increasing the various combinations of non 
edible agents, since the ratio of edible agents in both cases would increase. But this proved to not 
be the case, as illustrated in .  

cone green 0,80 
disk disk 1,00 
disk red 1,00 
disk blue 1,00 
disk green 1,00 
red red 0,24 
red blu
red green 0,12 
blue blue 1,00 
blue green 0,68 
green green 0,96 

Figure 25: Slow learning, but progressing 

learning is slower than when there are fewer combinations of non edible targets. An 
example of the output file is in the attachments, “ouput_triple.txt”.  

 
Again, the fine tuning of the parameters might be a solution to shorten the length of the training 
period, allowing the agent to reach its desired behaviour
e
increased combinations of characteristics defining the non edible targets, it results in a much more 
frequent decrease of the values stored in the lookup table. One possible way to counter effect this 
might be to give the positive rewards a greater impact on the increments being done in updating the 
lookup table.  
 
Having the same combination of non edible agents as shown in Figure 24, but increasing the 
number of those agents relative to the total number of agents did not have any effect on the 

arningle
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6: Displaying same learning and behaviour 
As the graph displays, the pink line stays fixed at 10. Having learned which targets are not 

Figure 2

edible, no more negative rewards are encountered. The ratio keeps increasing steadily. 
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keeps increasing. This is the same result as in , and shows that the increased number of  
non edible agents does not cause an extended learning period before negative rewards are 
avoided. An example of the output file is in the attachments, 

he colour 
reen was the only characteristic needed to generate a negative reward signal, then the agent had to 
arn that any of the combinations green cone, green sphere or green disk was not edible.  

 
pend much more time updating 

the val
experts
agreem
This w
to give
feedbac
exploit its gained knowledge and avoid non edible fish.  

he results being stored in the file “output.txt” after each simulation reveals only the ratio of good 

“output_increasing_liklihood_of_number_of_targets_not_combinations.txt”.  
 
The experts should work at such a low abstraction level so their code can be executed fast, and not 
being subject to a huge time restraint. The agent was still able to learn the values, but encountered 
more hits with the non-edible targets.  
 
Deciding more refined which targets are edible, the agent improved its learning by being able to 
learn the values faster. It was easier for the agent to distinguish the combination of for example 
green cone being poisonous versus all shapes with the colour green being non edible. If t
g
le

If only a few combinations were set to be edible, the agent had to s
ues in the lookup table. This can be explained by that the likelihood of a pair of agreeing 
, though not pointing to poisonous targets themselves, would often find themselves in an 
ent with pairs of experts which did, and then be punished by having the value increased. 
ould then lead to a hugely increased learning period for the agent. A compensation would be 
 a much higher increment on positive feedbacks, while smaller increments on negative 
ks. This helped, but the agent still required a much longer training period before it could 

 
T
rewards versus bad rewards. It reflects the agent’s ability to avoid poisonous food, but does not tell 
anything about the agents ability to exploit the edible food. It might, without it showing in the 
results stored, get stuck on one type of edible targets, and not take advantage of all the edible 
agents present. This might reflect upon the policy and value functions used in the architecture. The 
agent was not being punished for moving around, whether it moved a short or long distance 
between the targets. So it was not forced to learn to take advantage of the nearest, meaning the 
closest located relative to itself, targets. It was only punished for attacking non edible agents.  
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6 Conclusion 
 
I was struggling for quite some time setting up the reinforcement system, and working out the 
policy and value functions. This is a typical challenge in reinforcement systems, and my approach 
s no different in that matter. Ii t seemed harder for the agent to learn which are edible and not the 

od solution, or architecture, that will lead to the desired, or best, 

lookup table is too 

t value between -1 and 1 in a lookup table, are used by the 

higher ratio of not edible combinations of characteristics.  
 
One weakness is the architecture of the value system, meaning the lookup table. In order to keep 
things on a small scale, I chose to use lookup table. An alternative approach would have been the 
use of neural networks, see Figure 28, but neural networks often tend to be slow learning systems, 
nd it is often hard to find the goa

behaviour. By using a lookup table, I am in more control of what is happening and how, and can 
monitor the learning process more consciously.  
 

owever, using lookup tables puts a restrain on the complexity, or size. If the H
big, it will be unfeasible to learn how to set the parameters right in an online learning agent system. 
So the lookup table has to remain of a manageable size. To insure that the agent still has the 
potential of learning the optimal behaviour, one needs to be sure that all the variety necessary to 
induce such learning can be expressed in such a look up table.  
 
In my experiment, I allow every expert to be measured against every other experts, creating a list 
of (n^2 – n)/2 tupples. These tupples are illustrated as the connecting lines in Figure 27. These 

easurements, represented as a floam
agent to decide what target to chase down. This allows for any two combinations to define a 
poisonous agent, but not more. A combination requiring three different characteristics to be present 
simultaneously can not be expressed in this lookup table, and hence can not be learned by the 
agent.  
 

 
Figure 27: Agreement between experts 

Each expert’s filtered input is represented by a circle. A suggestion on what target to 
pursue is being calculated based on each experts filtered input. The connecting lines 
between the circles represent the agreement between the chosen targets based on the 
respective experts input signals. A connecting line is then either positive or not. The 
assigned value to each line, representing the agreement between two experts, is stored in a 
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lookup table, and are used to decide which target to pursue, and are subject for change as 
the agent learns.  

sight of the problem and the filtered signals 

aluate each expert’s credibility in any given state 

 
etting up the lookup table requires then a deeper inS

generated by the experts to ensure a possibility of detecting the parameters that defines what is 
desirable and not. The greater and more complex problem, the bigger lookup table is needed, and 
with any problems of significant size it soon becomes unfeasible. However, by reducing the input 
signals by having it filtered by the agents, and then have a lookup table assign credibility values to 
the filtered signals from the various experts, I don’t have to represent every possible state in the 
world in the lookup table. Given that the only information available to the CC is the filtered input 

om the experts, the CC uses the experts to evfr
represented in the lookup table. The lookup-table is hence reduces to a manageable size.  
 
 

 
Figure 28: Neural network representing the agreements between the agents 

This figure illustrates a possible shape of a neural network. The connecting lines between 
the nodes are not completed in this illustration, as the figure serves only to demonstrate 
how the lookup table can be replaced by a neural network. Each top circle is decided and 
connected to one separate expert. The different agreements are represented by the middle 
layer, and the final outcome in the output nodes. The weights in the network play the same 
role as the float values in the lookup table as in assigning credibility to the different 
agreements.  

 
 
Another weakness is the simplicity of the setting. The idea was tested out in a very limited arena, 
and on one specific problem. To convey credibility to this approach, having tested it in other 
problem domains and environments would have been preferable. Many reinforcement learning 
tests and experiments are guilty of the critic raised in ref xx, that the experiment is conducted in a 
small environment with a relative small input space. This is an accurate criticism of this 
experiment, too. This experiment has been done on a relatively small scale, and the resulting 
behaviour of the agent could have been hand coded, and executed faster. However, the goal was to 
reduce the input signals, find at what abstraction level this is most beneficial, whilst being used in a 
reinforcement system. Therefore it was more important to experiment with the use of group of 
experts and reinforcement learning than to hand code the desired behaviour. 
 
Having stated these weaknesses, I need to point out that the architecture opens for easily changing 
any module of the agent with a different built module. For instance, the lookup table can easily be 
replaced by a neural network, so that the agent can learn to define any number of combinations of 
the targets characteristics as being poisonous. Such a neural network is illustrated in Figure 22.   
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ents one a small scale, the results do not guarantee a successful scaling up to 

plexity. The very goal of this thesis was to find an approach that 
d 
 a
iq

get a better understanding of how the group of experts regime might be beneficial dealing with 
orc

 
s b

of some value and interest. Having experimented with this architecture on a small scale, I believe 
hi
 c  the weaknesses in 
xp
rob
 a

system due to the usage of lookup tables is therefore by no means a good enough reason to 
ar

to be a f tude and complexity when 
re

ro
o
 t

 
abstraction level should be high.  

On thos
tig

performi

The answ
level sho

c
sim lifi

a 
so that th ts and maintains its ability to learn how to 

e

u
in , 

the low ce the preferred behaviour 
themselves, as this would not require a higher level module.  

 will n lts might be depended on my 
pecial setting for the experiment, the chosen simulator and programming language, as well as the 

typical challenges accompanied with the technique or using reinforcement learning systems. Only 
further research might be able to reach a general applicable conclusion on where the abstraction 
level for such a system should be.  

By doing the experim
rge size problems of great comla

woul help in this scaling problem, the curse of dimensionality, but yet it itself suffers from being 
tested nd experimented only on a small scale. Suggestions for future work is to refine the 
techn ue, and run analysis and compare the results with alternative ways of problem solving, to 

reinf ement learning on larger scales. 

It ha een interesting and fun to work with this problem, and I hope that others will find this thesis 

that t s approach is worth further investigation. It is my hope that this way of reducing the search 
n be bspace a eneficial in many systems of great complexity. However, due to

my e eriment, as pointed out in 5, there is no evidence that this will have the desired effect when 
the p lem is of great magnitude and the task is of great complexity. The architecture, though, is 
easily daptable to different systems, techniques and approaches. A weakness in say the learning 

disch ge the fundamental idea. It can easily be changed, and the overall system might prove itself 
ruitful approach for how to deal with problems of great magni

using inforcement systems.  
 
The p blems encountered in the early stages of the testing suggests that moving the abstraction 
level t  a higher level is preferable. However, there could be other reasons for the lack of success 
during he lower abstraction levels. Having achieved results with this novel approach by using the 
group of experts regime on a high abstraction level is backing up my hypothesis that the 

 
e grounds I suggest that this architecture has not yet failed, but m ight deserve a closer 

inves ation and more experimenting, even if I have not come up with hard proof of this system 
ng its task satisfactory when the magnitude and complexity gets high.  

 
er to the main question raised in the problem description of this thesis, at what abstraction 

uld such a group of experts regime work at. My work suggests that it should be on a high 
abstra t level. For the possibility of having a reinforcement learning system relying on a greatly 

p ed view of the world, the achieved simplification needs to be done intelligently. There has 
to be certain level of quality and guaranteed information value incorporated in the filtered inputs, 

e RL system can rely only on those filtered inpu
behav  in the more complex world.  
 
To ins re some quality of the filtered input, and that the necessary information is to be found in the 
comb ations of the different filtered input signals, a high abstraction level is preferred. However

er level experts themselves should not be able to produ

 
ot make any conclusions very bombastically, as my resuI

s
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7 Future work 

tigated, I would advice to test out the architecture in different 
omains and varying the magnitude of the input space. It would also be interesting to see how the 
igher level module, which I called the Chief of Command, could deal with lower level experts 

that the and changing. This is not something I tested out in my experiments. 

 
If this idea is to be further inves
d
h

mselves were learning 
Once the correct behaviour has been learned, the agent depended on the lower level experts to 
maintain their ways of filtering the data.  
 
When trying out the architecture in different problem domains, when this architecture proves itself 
to be successful, it should be compared to other ways of attacking the same problem. In this way, 
the value of this architecture could be measured up against other existing ways of dealing with 
such problems. By doing comparisons up against other approaches one might gain an 
understanding of which domains this architecture is most suitable, and which domains are better 
addressed using other ways of solving the problem.  
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Appendix A 
 

A. At ch

tly like the ones one 
 website. The website does keep a good track of the 

ange een done to the simulator, so using different versions should not be a 
released the 12th of 

ecem imulator from its 
ebpag  www

ta ments 

 

a. Source code 
The source code is attached to the thesis. The BREVE simulator is continuously going through 
improvements and updates, so the source code attached here might not be exac
might currently download from the BREVE
ch s and updates that has b

 The problem. latest version being used in this thesis is the version 2.5, that was 
D ber 2006. To run the code, it is recommended to download the BREVE s
w e .spiderland.org/, and just copy and paste the two code files “the agent” and 

where the exe-file 
r running the code. Open the agent.tz file and 

om data printed to the file output.txt 
ut file”. I have chosen to add 

de in a printed example of this 
show the data material underlying the figures shown 

“abstract000.tz” from the appendix. Saving these two files in the same catalogue 
for the BREVE simulator is should be sufficient fo

n the simulator.  ru

b. Samples of content of file “output.txt” 
The graphs and figures used in chapter 5 and chapter stems fr
during the simulations. These data are attached in the file “data outp
this as a separate file, as these data are not of great interest to inclu
thesis. They are attached, though, to 

iscussing the results in chapter 5. d
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The Object class 
 
% The root object in breve. 
 
NULL : Object (aka Objects) [version 2.1] { 
 % Summary: the top level object class. 
 % <P> 
    % The Object class is the root class.  All classes used in breve have 

implements some basic    bj s an ancestor.  The object class   % O ect a
  % se vices 
  % <  

l) and  
separations of the Object class containing  

d for computation  
subclassing   

     

d manually.  If subclasses need to free 

on on a per-object basis. 

is. 

       Retur ociated with the current  
      simu erence the variable 
      

 About an Object" 

 % Returns the number of seconds this object has existed in the  
simulation. 

 
  return (controller get-time) - birthTime. 
 
    + to get-type: 
        % Returns as a string the type of this object. 
 
        return objectName(self). 
 
    + to is a className (string): 
        % This method returns true or false (1 or 0) depending on whether 
        % the instance in question belongs to class className.  This  
        % method checks if className is a superclass of the current  
        % object as well. 
        % <p> 
        % The declaration of this method looks strange, but it should be  
        % looked at as a statement about an instance which returns true 
        % or false: object is a "thing". 
 
        return isa(className). 

  r that all classes will have access to. 
  p>

are.  The classes OBJECT(Rea    % Subclassing Object directly is r
 % OBJECT(Abstract) are logical 
 % "real" objects (which correspond to a physical entity in the simulated  
 % world) and "abstract" objects which are generally use
 % or control of the real objects.  You should consider 

  % one of these classes instead.   
 

  + variables:   
        objectReferences (int). 
        controller (object). 
  birthTime (float). 
 
    + to init: 
  objectReferences = 1. 
   controller = (self get-controller). 
 
  birthTime = (controller get-time). 
 
    + to destroy: 

when this object is freed.  This method         % Automatically called 
lle        % should never be ca

        % objects or data, they should implement their own "destroy"  
        % methods. 
 
 + section "Garbage Collection and Memory Management" 
 
 + to enable-auto-free: 
  % Experimental--enables garbage collecti
 
  setGC(1). 
 
 + to disable-auto-free: 
  % Experimental--disables garbage collection on a per-object bas
 
  setGC(0). 
 

- to get-retain-count:  
  return getRetainCount(). 
 
    - to get-controller: 

% ns the controller object that ass  
   % lation.  It's preferable to simply ref
  % "controller". 
 
        return getController(). 
 
  tion "Getting I+ sec nformation
 

+ to get-age:  
 
  % 
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  - to is-a-s  ubclass of className (string): 

Returns 1 if this object is a subclass of the class specified with 
returns 0 otherwise. 

an r

 prints an object, it calls this method 

sses, you can append other sorts of data to the  

 

f error of the callback time is equal 
      step (see METHOD(set-iteration-step)). 

 
      % current time, use the method METHOD(get-time) to get the 

        % current simulation time and then add the offset you want. 
 
        addEvent(theMethod, theTime, 0). 
 
 - to schedule-repeating method-call theMethod (string) with-interval theInterval (double):  
        addEvent(theMethod, theInterval, theInterval). 
 
    + to observe instance theObject (object) for-notification theNotification (string) with-method 
theMethod (string): 
        % Causes the current object to observe theObject.  By registering as 
        % and observer, the current object will receive a call to theMethod whenever 
        % theObject calls the METHOD(announce) method with notificiation 
        % theNotification. 
 
        addObserver(theObject, theNotification, theMethod). 
 
    + to unobserve instance theObject (object) for-notification theNotification (string): 
        % Unregisters the current object as an observer of theObject with  
        % notification theNotification. 
 
        removeObserver(theObject, theNotification). 
 
    + to announce message theMessage (string): 
        % Sends a notification with the message theMessage to all observer   
        % objects.  See METHOD(observe) for information on making an object an observer. 
 
        notify(theMessage). 
 
 + to call-method named methodName (string): 
  % Calls the method named methodName for this object.  Returns the result of 
  % the method call. 
 
  return callMethodNamed(self, methodName, { }). 
 
 + to call-method named methodName (string) with-arguments argList (list): 
  % Calls the method named methodName for this object.  Returns the result of 
  % the method call. 
  % <p> 
  % The arguments to the object are passed in using the list argList.  Since 
  % keywords are not passed in, this method relies on the order the arguments 
  % appear in the argument list and passes them to methodName in the order  
  % in which they appear in methodName's definition. 
  % <p> 
  % Why not call a method  
  % directly?  This method is used in circumstances where you might 

  % 
  % className, 
 
  return (self is a className). 
 
    + to can-respond to methodName (string): 
        % Returns true or false (1 or 0) depending on whether this instance 
        % c espond to a method called methodName. 
   %      <p> 
        % But wow, what an awkward declaration!  Same reason as the  
        % method METHOD(is).  Again, works like a statement that 

respond to "run".         % replies with true or false: object can-
        % <p> 
        % It's really not my fault that the infinitive of "can" is "be able". 
  
        return respondsTo(self, methodName). 
 
 + to get-description: 
  % This method should provide a textual description of an object. 
  % When the "print" command
  % to get a description of the object.  By default, print will show 
  % the class and pointer of an object, but by overriding this method 
  % in your own cla
  % output. 
 
  + section "Scheduling Events and Notificiations" 
 
  o ule method-call theMethod (string) at-time theTime (float):

eMethod when the simulation time equals 
  + t sched

        % Schedules a call to th
      % theTime.  The margin o  

   % to iteration
        % <br> 

     % If you want to schedule an event at a time relative to the   
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  % want to have some sort of callback method.  As an example, let's  
 % say you write a general purpose class which can sort objects based   

  % on different criteria.  How would the user specify these arbitrary 
% criteria?  Using this method would allow the user to pass in the 

ou can 

 fileName. 

e). 

ame (string) on portNumber (int): 
ver the network to a breve server on host hostName 

r, self). 

object): 
ce depend on instance i when archiving and  
s means that if this instance is archived, 

ved, that i will have to be dearchived  

se large numbers of instances to be archived 

ncies of dependencies of dependencies, ad 
chived).  This means that you should make 

ject's dependency list.  See 

to po

ject dearchiving. 

  
  % name of the method they want to use, and the sorting object could 
  % use this method to execute the callback. 
  % <p> 
  % If the concept of a callback doesn't make sense, then y
  % probably ignore this method. 
 

f, methodName, argList).   return callMethodNamed(sel
 
  + section "Archiving & Dearchiving" 
 
    + to archive-as-xml file fileName (string): 

 the XML file        % Writes the current object to
 

am        archiveXMLObject(self, fileN
 
 + to send-over-network to hostN
  % Sends this object o
  % listening on port portNumber. 
 
  sendXMLObject(hostName, portNumbe
 
 + to add-dependency on i (
  % Makes this instan
  % dearchiving.  Thi
  % then i will also have to be archived, and that when this  
  % instance is dearchi
  % first. 
  % <p> 

au  % Dependencies can c
 % in response to a single archiving event (as dependencies of   

  % dependencies, and depende
  % infinitum will also be ar
  % dependencies sparingly, only when absolutely required. 
  % <p> 
  % Circular dependencies are forbidden. 
 
  if i: addDependency(i). 
 
 + to remove-dependency on theObject (object): 
  % Removes theObject from this ob
  % METHOD(add-dependency) for more information on dependencies. 
 
  removeDependency(theObject). 
 
 - st-dearchive-set-controller: 

 % Used internally to set the controller instance for this variable.    
  % Used after ob
 
  controller = (self get-controller). 
 
 + to dearchive: 
  return 1. 
 
 + to archive: 
  return 1. 
} 
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The line class 
 
Object : Line { 
 + bles: varia

 theStyle = "----------------" 
tring)

d end.   

      The   The default 

 line.  theStyle is a 
ttern to be drawn. 

       A dot  - - - - ".  A thickly 
 use the pattern "--------        ".  If no style is given, a 

awn. 

world-object-

ectLine(linePointer). 

  start, end (object). 
  linePointer (pointer). 
 
 + to connect from start (Real object) to end (Real object)  
  with-color theColor = (0, 0, 0) (vector) with-style
(s : 
  % Adds a line to be drawn between Real objects start an
  % <P> 
   % optional argument theColor specifies the color of the line.
        % color is the vector (0, 0, 0), black. 
        % <P> 
        % The optional argument th

      stri
eStyle specifies a pattern for the

   % ng of 16 spaces and/or dashes which specify the line pa
% ted line, for example, would use the pattern "- - - -  

        % dashed line would
      % solid line is dr  

 
  if start == end: return. 
 
  linePointer = addObjectLine((start get-world-object-pointer), (end get-
pointer), theColor, theStyle). 
 
 + to is-linked to worldObject (object): 
  % Returns 1 if this line is associated with worldObject. 
 
  if start == worldObject || end == worldObject: return 1. 
  return 0. 
 

+ to destroy:  
  if linePointer: removeObj
} 
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Th l  e Rea class

se Ob ct. 
se Lin . 

ject :

ScaleY (float). 

". 

: 

bject. 

 item self. 

 used in response to a user action like 
enu callback. 

 Delete Instance?" 
this object may cause a fatal error in 

e sim

ct" 

 collision. 

a lump of clay) 
alistically) 

 
@u je

e@u
 
Ob  Real (aka Reals) [version 2.1] { 
 % A class which is never instantiated--just used as a logical 
 % distinction from the Abstract classes.  See the child classes 
 % OBJECT(Mobile), OBJECT(Link) and OBJECT(Stationary) for 

 here may be used   % information.  The methods documentedmore 
 % with any of the child classes. 
 
 + bles: varia
  realWorldPointer (pointer). 
  collisionHandlerList (list). 
  texture (int). 
  lightmap (int). 
  bitmap (int). 
  menus (list). 

).   color (vector
  lines (list). 
 
  textureScaleX, texture
  neighborhoodSize (float). 
 
  eT (float). 
  e (float). 
  mu (float). 
 
 + to init: 
  texture = -1. 

 lightmap = -1.  
  bitmap = -1. 
 
  textureScaleX = 16. 

 textureScaleY = 16.  
 
  self add-menu named "Delete Instance" for-method "delete-instance". 
  self add-menu named "Follow With Camera" for-method "watch
 
 - to get-world-object-pointer
  % Used internally. 
 
  return realWorldPointer. 
 
 + to watch: 

 o  % Makes the camera follow this
 

r watch  controlle
 
 - to delete-instance: 
  % Produces a dialog box (if supported by the current breve  
  % engine) asking if the user wants to delete the object.   
  % This is typically
  % a click or m
 
  result (int). 
 
  result = (controller show-dialog  
      with-title "Really

  with-message "Deleting     
th ulation.  Really remove it?" 
      with-yes-button "Okay" 
      with-no-button "Cancel"). 
 

 if result: free self.  
 

+ section "Configuring Physical Properties of the Obje  
 
 + to set-e to newE (float): 
 
  % Sets the "coefficient of restitution" a value which 
  % determines the elasticity of the object in a
  % Valid values range from 0.0 to 1.0, with 0.0 representing 
  % a totally inelastic collision (such as 
  % while 1.0 represents a totally (and unre
  % elastic collision (such as a rubber ball). 
 
  e = newE. 
  setCollisionProperties(realWorldPointer, e, eT, mu). 
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 + to set-eT to newET (float): 
 % Sets the "tangential coefficient of restitution", a  

  % frictional version of the "coefficient
 % described in the documentation for METHOD(set-e).  The 

 of restitution" 

 e, eT, mu). 

o newMu.  mu is a  

tween 0 and infinity. 

, mu). 

ethod (string): 

he menu will become 

n 
y 

a 

 menuName for-object self for-method 
eMetho

 empty menu item. 

ethod ""). 

hin 

+ sect on "Ch s" 

 
  % value ranges from -1.0 to 1.0.  Negative values mean that 
  % friction pushes against the sliding object. 
 
  eT = newET. 
  setCollisionProperties(realWorldPointer,
 
 + to set-mu to newMu (float): 
  % Sets the coefficient of friction t
  % parameter controlling friction between two bodies and  
  % may be any value be
 
  mu = newMu. 
  setCollisionProperties(realWorldPointer, e, eT
 
  + section "Using Menus" 
 
 + to add-menu named menuName (string) for-method theM
  % Adds a menu named menuName to the application which will result 
  % in a call to theMethod for the calling instance. 
  % <p> 
  % If the calling instance is the Controller object, then the menu will 
  % become the "main" simulation menu.  Otherwise, t
  % a contextual menu associated with the specific object in the simulation. 
  % <p> 
  % Note that unlike the METHOD(handle-collision) which sets the collisio
  % handler for the whole type (class, that is), this method affects onl

ich it is called, meaning that each instance of   % the instance for wh
 % certain class may have a different menu.  

 
  newMenu (object). 
 
  newMenu = ((new MenuItem) create-menu named
th d). 
  self add-dependency on newMenu. 
  push newMenu onto menus. 
 
  return newMenu. 
 
 + to add-menu-separator: 
  % Adds a separator menu item--really just an
 
  newMenu (object). 
 
  newMenu = ((new MenuItem) create-menu named "" for-object self for-m
  self add-dependency on newMenu. 
  push newMenu onto menus. 
 
  return newMenu. 
 
  + section "Using Neighbor Detection" 
 
 + to get-neighbors: 
  % Returns a list of all real objects in the simulation that are wit
  % the "neighborhood" range of this object in the world. 
 
  return getNeighbors(realWorldPointer). 
 
 + to set-neighborhood-size to size (float): 
  % Used in conjunction with METHOD(get-neighbors), this function will set 
  % the neighborhood size for the current object. 
 
  neighborhoodSize = size. 

er, size).   setNeighborhoodSize(realWorldPoint
   

+ to get-neighborhood-size:  
  % gets the neighborhood size for the current object. 
   
  return neighborhoodSize. 
 
  i anging the Appearence of Agent
 
 + to show-bounding-box: 
  % Shows the bounding box for the object. 
 

1).   setBoundingBox(realWorldPointer, 
 
 + to hide-bounding-box: 
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  % Hides the bounding box for the object.  The bounding box is  
only need this method if you've  

. 

to ad olor theColor = (0, 0, 0) (vector) with-style 

.  The line can be removed  

e.  The default 

yle is a  

attern "- - - - - - - - ".  A thickly 
 style is given, a  

color and/or style will be updated. 

with-style theStyle. 

 0, 0) (vector): 
r more information 

s connecting this object to other objects. 

ter, 1). 

ldPointer, 0). 

rldPointer, 0). 

isible again later 

  % hidden by default, so you'll 
  % previously enabled them using METHOD(show-axis)
 
  setBoundingBox(realWorldPointer, 0). 
 
 + d-line to otherObject (object) with-c
theStyle = "----------------" (string): 
  % Adds a line to be drawn from this object to otherObject
  % later using METHOD(remove-line). 
  % <P> 

in  % The optional argument theColor specifies the color of the l
  % color is the vector (0, 0, 0), black. 
  % <P> 
  % The optional argument theStyle specifies a pattern for the line.  theSt
  % string of 16 spaces and/or dashes which specify the line pattern to be drawn. 
  % A dotted line, for example, would use the p
  % dashed line would use the pattern "--------        ".  If no
  % solid line is drawn.  

 % <P>  
  % If a line to otherObject already exists, its 
 
  line (object). 
 
  self remove-line to otherObject. 
 
  line = new Line. 
 
  line connect from self to otherObject with-color theColor 
 
  push line onto lines. 
 

to otherObject (object) with-color theColor = (0, + to add-dotted-line 
  % Adds a dotted line to otherObject.  See METHOD(add-line) fo
  % on object lines. 
 
  self add-line to otherObject with-color theColor with-style "- - - - - - - - ". 
 
 + to remove-line to otherObject (object): 
  % Removes the line connecting this object to otherObject. 
  
  line (object). 
 

: {   foreach line in lines
   if (line is-linked to otherObject): { 
    free line. 
    return. 
   } 

 }  
 

o remove-all-lines:  + t
  % Removes all line
 
  free lines. 
  lines = { }. 
 
 + to show-axis: 

es for the object.   % Shows the X and Y ax
 
  setDrawAxis(realWorldPoin
 
 + to hide-axis: 

y   % Hides the X and Y axes for the object.  The axes are hidden b
  % default, so you'll only need this method if you've previously 
  % enabled them using METHOD(show-axis). 
 

 setDrawAxis(realWor 
 
 + to show-neighbor-lines: 
  % Draws lines to this objects neighbors (when neighbor checking is 
  % enabled). 
 
  setNeighborLines(realWorldPointer, 1). 
 
 + to hide-neighbor-lines: 
  % Hides lines to this objects neighbors. 
 
  setNeighborLines(realWo
 
 + to make-invisible: 
  % Makes the object invisible.  Can be made v
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  % using the method METHOD(make-visible). 
 

e(realWorldPointer, 0).   setVisibl
 
 + to make-visible: 
  % Makes the object visible again (if it has previously been hidden 

to se

or  

 if !textureImage: texture = -1. 
  else texture = (textureImage get-texture-number). 
 
  setTexture(realWorldPointer, texture). 
 
 + to draw-as-point: 
  % Draws the object as a single point.  This is by far the fastest way 
  % to display an agent.  Points can be used to draw upwards of 20,000 
  % agents with a reasonable frame rate, while drawing as many spheres or  
  % bitmaps would slow down the simulation significantly. 
 
  setDrawAsPoint(realWorldPointer, 1). 
 
 + to set-texture-scale to scaleSize (float): 
  % Changes the "scale" of the texture.  When a texture is applied 
  % over a shape, this value is used to decide how large the texture 
  % will be in terms of breve-world units.  The default value is 16, 
  % meaning that a 16x16 face will have one copy of the textured image. 
  % For smaller objects, this number will have to be decreased, or else 
  % the texture will be too big and will not be visible. 
 
  textureScaleX = scaleSize. 
  setTextureScale(realWorldPointer, scaleSize, scaleSize). 
 
 + to set-texture-scale-x to scaleSize (float): 
  % Sets the texture scale in the X dimension.  The Y texture scale  
  % value is unchanged.  See METHOD(set-texture-scale) for more information. 
 
  textureScaleX = scaleSize. 
  setTextureScale(realWorldPointer, scaleSize, textureScaleY). 
 
 + to set-texture-scale-y to scaleSize (float): 
  % Sets the texture scale in the Y dimension.  The X texture scale  
  % value is unchanged.  See METHOD(set-texture-scale) for more information. 
  textureScaleY = scaleSize. 
  setTextureScale(realWorldPointer, textureScaleX, scaleSize). 
 
 + to set-bitmap-image to bitmapImage (object): 
  % Changes the bitmap of this object to bitmapImage, an instance of  
  % class image.  If bitmapImage is NULL, bitmapping is turned off 
  % for the object. 
 
  if !bitmapImage: bitmap = -1. 
  else bitmap = (bitmapImage get-texture-number). 
 
  setBitmap(realWorldPointer, bitmap). 
   
 - to set-bitmap to textureNumber (int): 
  % Deprecated. 

  % using METHOD(make-invisible). 
 
  setVisible(realWorldPointer, 1). 
 
 + to get-color: 
  % Returns the color of the object. 
 

 color.   return
 
 + to set-color to newColor (vector): 

 this object to newColor.   % Sets the color of
 
  color = newColor. 
 
  setColor(realWorldPointer, newColor). 
 
 - to set-texture to textureNumber (int): 
  % Deprecated -- use METHOD(set-texture-image) instead. 
 
  setTexture(realWorldPointer, textureNumber + 1). 
 

tureImage (object):  + t-texture-image to tex
  % Changes the texture of this object to textureImage, an instance of  
  % class Image.  If textureImage is NULL texturing is turned off f

 % the object.  
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 bitmap  = textureNumber. 

tmap(realWorldPointer, textureNumber + 1). 

  

r): 

 transparency of this object to alphaValue, a number  
e) and 0.0 (fully transparent). 

tmapImage (object): 

fied and treats it like a light 

Exposure of this Mobile Object" 

ure detection 
re-detection)), this 

h-type theType (string) with-method theMethod (string): 

is type and theType, the 

. 

 objects. 
ified with METHOD(handle-collisions). 

onHandlerList: { 

  setBi
 
 + to set-bitmap-heading to radianAngle (float): 
  % If this object is in 2d bitmap mode, the rotation of the
  % bitmap will be set to radianAngle. 
 
  setBitmapRotation(realWorldPointer, radianAngle). 
 

Vector (vecto + to set-bitmap-heading-point towards-vector rotation
  % If this object is in 2d bitmap mode, the rotation of the  
  % bitmap will be set to degreeAngle degrees. 
 

r(realWorldPointer, rotationVector).   setBitmapRotationTowardsVecto
 
 - to set-bitmap-transparency to alphaValue (float): 
  % Sets the transparency to alphaValue, a number between 0.0  
  % (totally transparent) and 1.0 (fully opaque).  
 
  setAlpha(realWorldPointer, alphaValue). 
 
 + to set-transparency to alphaValue (float): 
  % Sets the
  % between 1.0 (totally opaqu
 

ointer, alphaValue).   setAlpha(realWorldP
 
 + to set-lightmap-image to ligh
  % Sets the object to be displayed using a "lightmap".  A  
  % lightmap uses the texture speci

 % source.  It's hard to explain.  Give it a try for yourself.  
  % <p> 
  % set-lightmap only has an effect on sphere shapes.  Other  
  % shapes can be textured, but only spheres can be made into  
  % lightmaps. 
 
  if !lightmapImage: lightmap = -1. 
  else lightmap = (lightmapImage get-texture-number). 
 
  setLightmap(realWorldPointer, lightmap). 
 
 - to set-lightmap to textureNumber (int): 
  % Deprecated. 
 
  lightmap = textureNumber. 
 
  setLightmap(realWorldPointer, lightmap + 1). 
 

+ section "Getting the Light   
         

+ to get-light-exposure:  
  % When used in conjunction with light expos
  % (OBJECTMETHOD(Control:enable-light-exposu
  % method returns the level of light exposure on this object. 
 
  if realWorldPointer: return worldObjectGetLightExposure(realWorldPointer). 
  else return 0. 
 

isions"  + section "Handling Coll
 
 + to handle-collisions wit
  % Adds a collision handler for this object.  When a collision 
  % occurs between an instance of the th

 % breve engine will automatically call theMethod of the colliding  
  % instance
 
  push { theType, theMethod, 0 } onto collisionHandlerList. 
  addCollisionHandler(self, theType, theMethod). 
 
 + to ignore-collisions with-type theType (string):  
  % Instructs the engine to ignore physical collisions with theType
  % This does not affect collision callbacks spec
 
  push { theType, 0, 1 } onto collisionHandlerList. 
  setIgnoreCollisionsWith(self, theType, 1). 
 
 + to dearchive: 
  handler (list). 
 
  foreach handler in collisi
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    if handler{1}: addCollisionHandler(self, handler{0}, handler{1}). 
With(self, handler{0}, 1). 

ion (vector) with-direction theDirection (vector): 
eLocation towards theDirection 

, 0) will be returned. 

cation and direction vector must be given relative to the world's 

rn raytrace( realWorldPointer, theLocation, theDirection ). 

   if handler{2}: setIgnoreCollisions
  } 
 
  if texture > -1: self set-texture to texture. 
  if lightmap > -1: self set-lightmap to lightmap. 
  if bitmap > -1: self set-bitmap to bitmap. 
  self set-texture-scale-x to textureScaleX. 
  self set-texture-scale-y to textureScaleY. 

set-neighborhood-size to neighborhoodSize.   self 
  self set-color to color. 
 
  return (super dearchive). 
 
 - to delete: 

ointer).   if realWorldPointer: removeObject(realWorldP
 free menus.  

 
  + section "Useful Funtions for Sensors" 
 
 + to raytrace from-location theLocat
  % Computes the vector from th
  % that hits the shape of this object. 
  % <p> 
  % If the object was not hit vector (0, 0
  % <p> 
  % The lo
  % coordinate frame.  
 
  retu
} 
 

 53 
 



The Stationary class 

z" 
Item.tz" 

nary (aka Stationaries) [version 2.4] { 
ary objects are objects such as floors and walls that may  
with other objects but will never move.  Stationary objects 

bile) objects, so it is  

 

 Object" 

 1, 0 ), ( 0, 0, 1 ) ] (matrix) : 
ing shape theShape at the location 

 a Shape object ($theShape).". 

ionary object with uninitialized Shape.". 

heLocation, theRotation ). 

onary object. 

r to the world.  Do not use this method 

ject" 

uld display shadows (and/or reflections)  
s and reflections will always be shown on 

ing upwards on the Y axis--that is to say, 
.  If the object does not have a plane 
ows and reflections will not be displayed 
used in conjunction with the method  
le-shadows). 

should also refer to an improved shadowing 

not be called before Stationary object is registered.". 

 
@include "Real.t
# @include "Menu
 
Real : Statio
    % Station
    % collide 
    % require much less computation than OBJECT(Mo
    % always preferable to use a Stationary object when you know that an 
 % object will not need to move during a simulation. 
 % <P> 
 % To setup a stationary object, you'll need to associate it with a 
 % OBJECT(Shape) object using the method METHOD(register). 
 
 # Notes for future implementation:  
 # Beginning in breve 2.5, Stationary functionality has been enhanced 
 # to allow repositioning at any time.  The distinction between Stationary
 # and OBJECT(Mobile) objects is that Stationary objects do not react 

.  They can be   # to physics and thus do not move <i>on their own</i>
 # repositioned explicitly by simulation code at any time, but do not  
 # have their own velocities or react to physics in any other way. 
 
    + variables: 
        color (vector). 
  shadowCatcher (int). 
 
        objectLocation (vector). 
  shape (object). 
 

ry  + section "Setting Up the Stationa
 

  + to register with-shape theShape (object) at-location theLocation = (0, 0, 0) (vector) with-  
rotation theRotation = [ ( 1, 0, 0 ), ( 0,
        % Registers a stationary object us
        % specified by theLocation. 
 
        if !(theShape is a "Shape"): 
            die "method 'register' expects
 
        if !(theShape get-pointer): 
            die "attempt to register Stat
 
  shape = theShape. 
  self add-dependency on shape. 
 
        objectLocation = theLocation. 
        realWorldPointer = addStationary( ( theShape get-pointer ), t

      self set-texture to 0.   
 

 return self.  
 
    + to get-location: 
        % Returns the location of the Stati
 
        return objectLocation. 
 
    - to get-world-object: 
        % Used internally to get the pointe
        % in user simulations. 
 
        return realWorldPointer. 
 

 Ob  + section "Changing the Appearence of the
 
    + to catch-shadows: 

      % Informs this object that it sho  
        % of Mobile objects.  The shadow

nt        % the plane of the object poi
        % the plane with normal (0, 1, 0)
        % with normal (0, 1, 0), the shad
        % correctly.  This method must be 
  % OBJECTMETHOD(Control:enab
  % <P> 
  % Before using this method, you 
  % technique outlined in OBJECTMETHOD(Control.tz:enable-shadow-volumes).   
 
        if !realWorldPointer:  

 can            die "method 'catch-shadows'
 
  shadowCatcher = 1. 
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        setShadowCatcher(realWorldPointer, (

      controller set-floor-defined. 
0, 1, 0)). 

nary object to newColor.  Textures  
ure to set the texture to -1  
ture if you want a flat color  

 default for stationary  

lor are interpreted as red, green,  
     
     

be called before Stationary object is 

r). 

  + to get-co
      Retu t. 

      elf re objectLocation. 
ch-shadows. 

of si  that the ground  

 -
, 0)

  
 
    + to set-color to newColor (vector): 
        % Sets the color of the Statio
        % override color settings, so be s
        % using the Real.tz method set-tex
        % to be displayed--the texture is on by
        % objects. 
        % <p> 

      r elements of newCo  % The vecto
   % and blue 

 <p> 
values, on a scale from 0.0 to 1.0.   

   %
        % <b>The Stationary object must be registered in the world before 
        % calling this method.  See METHOD(register).</b> 
 
        if !realWorldPointer: die "method 'set-color' cannot 

gistered.". re
 
        color = newColor. 
        setColor(realWorldPointer, colo
 
   lor: 
   % rns the color of the Stationary objec
 
        return color. 
 
    + to archive: 

      eturn   r 1. 
 
    + to dearchive: 

s gister with-shape shape at-location   
        if shadowCatcher: self cat
        return 1. 
} 
 
Stationary : Floor { 
 % A floor is a special case of the class OBJECT(Stationary).  It is a box  
 % ze (1000, 5, 1000) with location (0, -2.5, 0), such
 % plane is placed at Y = 0. 
 
 + to init: 

(0,  self register with-shape (new Cube init-with size (1000, 5, 1000)) at-location 
2. . 5
   # with-rotation [ ( .707, .707, 0 ), ( -.707, .707, 0 ), ( 0, 0, 1 ) ]. 
} 
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The Control class 

se Mo e. 

strac
tions. 

s simulations.  Every simulation 

nit" method. 

ser 

<p> 

there res.  In 

breve engine, for example, will 

r). 

. 

adows and reflections are legal... 

ctMenu (object). 

u (object). 

 
@use Abstract. 

se MenuItem. @u
@use Shape. 
@u vi
@use Image. 
@use Camera. 
 
Ab t : Control (aka Controls) [ve

Summa
rsion 2.3] { 

 % ry: a parent class for the "controller" object required for all simula
 % <P> 
 % The Control object sets up and control
 % must have one Control subclass.  The user subclass of Control should  
 % set up the simulation in the "i
 % <p> 
 % The Control class also acts as the main interaction between the u
 % and the breve environment itself.  It provides access to elements of  
 % the user interface, for example, so that the user can add menus and 
 % other interface features from inside simulations. 
 % 
 % Because the breve engine is designed to run on a variety of systems, 
 %  are varying levels of support for some of these featu
 % some cases, the features won't be supported at all on a system.  A 
 % background daemon written to use the 
 % not place a dialog on the screen and wait for user input. 
 

varia + bles: 
  simTime (float). 
  simStep (float). 
  xRot (float). 

 yRot (float).  
 

 camTarget (vector).  
  camOffset (vecto
  lightPosition (vector). 
 
  watchObject (object). 
 
  lightMenu (object). 
  lightFlag (int)
 
  drawMenu (object). 
  smoothFlag (int). 
 

or (vector).   backgroundCol
  fogColor (vector). 
  lightAmbientColor, lightDiffuseColor (vector). 
 

 backgroundTexture (int).  
 

 fogIntensity (float).  
 
  loadedImages (list). 
 
  # we need to know when sh
 
  floorDefined (int). 
 
  shadowMenu (object). 
  shadowFlag (int). 
 
  shadowVolumeFlag (int). 
   
  refle
  reflectFlag (int). 
 
  fogMenu (object). 

 fogFlag (int).  
 
  blurMen
  blurFlag (int). 
  blurFactor (float). 
 
  selectedObject (object). 
 
  deltaOffset (vector). 
  deltaTarget (vector). 
 
  offsetting (int). 
  frozen (int). 
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  drawEveryFrame (int). 
 
  genericShape (object).  

 

 

  xRot = 0.0. 

ighting"). 
le-smooth"). 

shadows"). 
. 

add-menu named "Record Movie to \"simulation.mpeg\"" for-method 

"Save Snapshot to \"simulation.png\"" for-method "save-

ng. 

nit-with radius 1.0). 

  genericLinkShape (object). 
 
  movie (object). 
  movieMenu (object). 
 
  cameraPointer (pointer). 
  camera (object). 
 
 + to init: 
  % Initializes the Control object by setting up default values for  
  % variables such as the size of the integration timestep.  Subclasses 

s.  % of Control may override these defaults in their own init function
 

etMainCameraPointer().   cameraPointer = g
 
  camera = new Camera. 
  camera set-camera-pointer to cameraPointer. 
 
  floorDefined = 0. 
 
  self set-integration-step to .005. 
  self set-iteration-step to .05. 
  self enable-draw-every-frame. 
 
  backgroundTexture = -1.
 
  self set-background-color to (.5, .7, 1.0). 
  self set-fog-color to (.8, .8, .8). 
 

  yRot = 0.0. 
 
  self move-light to (0, 0, 0).   
  self point-camera at (0, 0, 0) from (0, 0, 30). 
 
  self set-background-scroll-rate x 0.001 y 0.0001. 
 
  lightMenu = (self add-menu named "Use Lighting" for-method "toggle-l
  drawMenu = (self add-menu named "Use Smooth Shading" for-method "togg

-  shadowMenu = (self add-menu named "Draw Shadows" for-method "toggle
g")  fogMenu = (self add-menu named "Draw Fog" for-method "toggle-fo

raw Reflections" for-method "toggle-  reflectMenu = (self add-menu named "D
reflections"). 

 blurMenu = (self add-menu named "Use Motion Blur" for-method "toggle-blur").  
 

 self add-menu-separator.  
  movieMenu = (self 
"toggle-recording-to-movie"). 
  (self add-menu named 
snapshot-to-file"). 
 
  self enable-smooth-drawi
 
  # lighting is off by default, but we'll call the method anyway  
  # to sync up the menus (shadow & reflect menus should be disabled). 
 
  self disable-lighting. 
 

tor.   self add-menu-separa
 
  genericShape = (new Sphere i

 genericLinkShape = (new Cube init-with size (.1, 1, .1)).  
 
 - to toggle-recording-to-movie: 
  if movie: { 
   movieMenu uncheck. 
   movie close. 
   free movie. 
   return. 
  } 
 
  movie = new Movie. 
  movie record to "simulation.mpeg". 
  movieMenu check. 
 
 - to save-snapshot-to-file: 

 self save-snapshot to "simulation.png".  
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 - to parse-xml-network-request from-string s (string): 

 return dearchiveXMLObjectFromString(s).  
 
 - to get-generic-shape: 
  % Returns a "generic" shape for agents, a sphere of radius 1.0. 

rent simulation display and saves  

. 

l 

cond 

his method is not supported on all  

o be a whole  

 
  return genericShape. 
 
 - to get-generic-link-shape: 
  % Returns a "generic" shape for links, a cube with size (.1, 1, .1). 
 
  return genericLinkShape. 
 

+ sect  ion "Accepting network uploads" 
 
 + to accept-upload of uploadedObject (object) from host (string): 
  % This method is automatically called when an object is uploaded 
  % through a OBJECT(NetworkServer).  This implementation simply  
  % prints out a message saying that the object has been received, 
  % but your controller may override the method to take other actions. 
 
  print "object $uploadedObject sent from host $host". 
 
  + section "Saving snapshots of simulations" 
 
 + to save-snapshot to filename (string): 
  % Takes a PNG snapshot of the cur
  % it to a file named filename.  filename should end with ".png". 
 

me)  snapshot(filena
 
  + section "Updating neighbors" 
 
 + to update-neighbors: 

 % The neighborhood for each object in the simulation is the set of   
  % other objects within a specified radius--calling this method wil
  % update the neighborhood list for each object.  This method is  
  % only useful in conjunction with methods in OBJECT(Real) which  
  % set the neighborhood size and then later retrieve the neighbor 
  % list. 
 
  updateNeighbors(). 
 
  + section "Getting simulation time" 
 
 + to get-real-time: 

rose  % Returns the number of seconds since January 1st, 1970 with mic
  % precision. 
 
  return getRealTime(). 
 
 + to get-time: 
  % Returns the simulation time of the world. 
 
  return getTime(). 
 
  + section "Pausing and stopping simulations" 
 

ion:  + to end-simulat
  % Ends the simulation gracefully. 
 
  endSimulation(). 
 
 + to pause: 

 % Pauses the simulation as though the user had done so through  
  % the user interface.  T
  % breve client interfaces. 
 
  pauseSimulation(). 
 
 + to unpause: 
  % Pauses the simulation as though the user had done so through 
  % the user interface.  This method is not supported on all  
  % breve client interfaces. 
 
  unpauseSimulation(). 
 
 + to sleep for-seconds s (float): 
  % Pauses execution for s seconds.  s does not have t

 % number.  Sleeping for a fraction of a second at each iteration  
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  % (inside your controller's iterate method) can effectively slow  

steps" 

(float): 

imulation runs: large values (perhaps 

the integration timeStep 

hey want their simulation 

used as a suggestion--the  
ust the integration stepsize 

  The iteration stepsize 
s run between calling the  

is value may not be 

erably. 

ions, the iteration stepsize should be  

 

simStep. 

 step size. 

n.  Two runs which use the same  

 manually, you can make simulations 

lable). 

or most simulations.  However, if  

y  

sname String" 

  % down a simulation which is too fast to observe. 
 

 sleep(s).  
 
  + section "Setting and getting the iteration and integration time 
 
 + to set-integration-step to timeStep 
  % Sets the integration stepsize to timeStep.  The integration stepsize 
  % determines how quickly the s
  % as high as 1 second) mean that the simulation runs quickly at the  
  % cost of accuracy, while low values mean more accuracy, but slower 
  % simulations. 
  % <p> 
  % The control object and its subclasses set 
  % to reasonable values, so this method should only be invoked by 
  % expert users with a firm grasp of how t
  % to run. 

 % <p>  
  % Additionally, this value is only 
  % integrator itself may choose to adj
  % according to the accuracy of previous timesteps. 
   
  simStep = timeStep. 
 
 + to get-integration-step: 
  % Returns the current integration step size. 
   
  return simStep. 
 
 + to set-iteration-step to timeStep (float): 
  % Sets the iteration stepsize to timeStep.

econd  % is simply the number of simulated s
  % controller object's "iterate" method. <b>Th

 % smaller than the integration timestep</b>.   
  % <p> 
  % The control object and its subclasses set the iteration stepsize  
  % to reasonable values, so this method should only be invoked by 
  % expert users with a firm grasp of how they want their simulation 
  % to run.  Small values slow down the simulation consid
  % <p> 
  % For physical simulat
  % considerably larger than the integration stepsize.  The iteration 
  % stepsize, in this case, can be interpreted as the reaction time
  % of the agents in the world to changes in their environment. 
 
  simTime = timeStep. 
 
  if simStep > simTime: simTime = 
 
 + to get-iteration-step: 

 iteration  % Returns the current
   
  return simTime. 
 
  + section "Setting the Random Seed" 
 
 + to set-random-seed to newSeed (int): 
  % Sets the random seed to newSeed.  Setting the random seed determines 
  % the way random numbers are chose
  % random seed will yield the same exact random numbers.  Thus, by 
  % setting the random number seed
  % repedible. 
 
  randomSeed(newSeed). 
 
 + to set-random-seed-from-dev-random: 
  % Sets the random seed to a value read from /dev/random (if avai
  % <P> 
  % By default, breve sets the random seed based on the current time.  
  % This is generally sufficient f
  % you are dealing with a setup in which multiple simulations might  
  % be launched simultaneously (such as a cluster setup), then you ma
  % have a situation in which the same random seed would be used for  
  % multiple runs, and this will make you unhappy.  Using this method 
  % will restore happiness and harmony to your life. 
 
  randomSeedFromDevRandom(). 
 

+ sect ance From a Clas  ion "Creating a New Inst
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 + to make-new-instance of-class className (string): 
  % Returns a new instance of the class className. 
 

ing(className).   return newInstanceForClassStr
 
  + section "Getting Command-Line Arguments" 
 
 + to get-argument-count: 
  % If this instance of breve was run from the command line, this me

 
thod 

first 
this method 

is method 
returned 

pes  

s index 0.  <b>The first  
f the simulation  

ethod in conjunction with  
get-argument-count).  Make sure you check the number of arguments 

&& ((selectedObject is a "Mobile") || (selectedObject is a 

  
w of the simulation.  The default 

ur 

lick method, but still want to 

eObject" from your method. 

 object.  This means 
ted, i.e., a deselection 

 hide-bounding-box. 

ultibody). 

. 

sed  

-it would work, but it would be  

  % returns the number of arguments passed to the program.  <b>The
me of the simulation file</b>.  Use   % argument is always the na

  % in conjunction with METHOD(get-argument). 
 
  return getArgc(). 
 
 + to get-argument at-index theIndex (int): 
  % If this instance of breve was run from the command line, th
  % returns the argument at index theIndex.  The argument is always 

rally be converted to other ty  % as a string, though this may natu
 % depending on the context.  The arguments (like arrays and lists in <i>steve</i>)  

  % are zero based, meaning that the first element ha
  % argument (the one at index 0) is always the name o
  % file</b>.  Use this m
  % METHOD(
  % available before calling this method--requesting an out-of-bounds argument 
  % will cause a fatal error in the simulation. 
 
  return getArgv(theIndex). 
 
  + section "Selecting Objects" 
 

- to get-drag-object:  
  if (selectedObject 
"MultiBody"))): return selectedObject. 
  return 0. 
 
 + to click on theObject (object): 
  % Called automatically when the user clicks on an theObject from
  % the graphical display windo
  % behavior of this method is to select the object that was clicked 
  % and execute its "click" method, if it exists.   
  % <p> 
  % If you do not wish to allow users to select objects in your  

plement your own click method in yo  % simulation, you should im
  % controller object. 
  % <p> 
  % If you wish to implement your own c

 % maintain the default behavior of this method, make sure you   
  % call "super click on th
  % <p> 
  % <b>theObject may be NULL</b>--an uninitialized

lick occurred, but no object was selec  % that a c
  % event.  You should test theObject before calling any of its methods. 
 
  if selectedObject == theObject: return. 
 
  if selectedObject: { 
   selectedObject
   selectedObject hide-axis. 
  } 
 
  selectedObject = theObject. 
 
  if selectedObject && (selectedObject is a "Link") && (selectedObject get-multibody): 
   selectedObject = (selectedObject get-m
 
  if !selectedObject ||  
   !(selectedObject can-respond to "show-bounding-box") ||  

is") : return.    !(selectedObject can-respond to "show-ax
 
  selectedObject show-bounding-box
  selectedObject show-axis. 
 
 - to catch-key-0x7F-down: 

e delete key is pres  % This method is automatically called when th
  % down to delete the selected object.  It deletes the selected instance. 
  % Do not call this method manually-
  % a bit roundabout.  
 
  if selectedObject: selectedObject delete-instance. 
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 + to get-selection: 
 object which  

n. 

electedObject is a "Link") && (selectedObject get-multibody): 
Object get-multibody). 

to se (float): 

lor of the rendered world to newColor. 

. 

by the method  
t texture.  Setting 

ckgroundTexture). 

 (int): 
 

1). 

JECT(Mobile) object theObject.  If  

ion (vector): 

tays the same. 

 The target of 

rom of the camera from its target.   

nction in conjunction with camera  

  % Returns the "selected" object--the
  % has been clicked on in the simulatio
 
  if selectedObject && (s
   return (selected
 
  return selectedObject. 
 
  + section "Background Appearance Options" 
 
 + t-background-scroll-rate x xValue (float) y yValue 
  % Sets the rate of the background image scrolling.  Purely cosmetic. 
 
  setBackgroundScroll(xValue, yValue). 
 

+ to set-background-color to newColor (vector):  
  % Sets the background co
 
  backgroundColor = newColor. 
  setBackgroundColor(newColor)
 
 + to set-background-texture-image to newTextureImage (object): 
  % Sets the background color of the rendered world to newTexture. 
  % xture must be a texture returned 

 0 for the defaul
newTe

  % METHOD(load-image) or
  % the texture to -1 will turn off background texturing. 
 
  backgroundTexture = (newTextureImage get-texture-number). 
  setBackgroundTexture(ba
 
 - to set-background-texture to newTexture
  backgroundTexture = newTexture + 1.

oundTexture(newTexture +   setBackgr
 
  + section "Camera & Lighting Options" 
 
 + to get-main-camera: 
  % Returns the OBJECT(Camera) object corresponding to the main camera. 
  % This allows you to directly control camera options. 
 
  return camera. 
 
 + to watch item theObject (object): 
  % Points the camera at the OB
  % theObject is passed in as 0, then the camera will stop watching 
  % a previously watched object. 
 
  watchObject = theObject. 
 
 - to aim-camera at location (vector): 

   % Depricated.
 
  self set-camera-target to location. 
 
 + to set-camera-target to locat
  % Aims the camera at location.  The offset of the camera (the offset 
  % from the existing target) s
 
  cameraSetTarget(location). 
 
 - to offset-camera by amount (vector): 
  % Depricated.   
 

ra-offset to amount.   self set-came
 
 + to set-camera-offset to offset (vector): 

 camera from the target by amount.   % Offsets the
  % the camera remains the same. 
 
  cameraSetOffset(offset). 
 
 + to get-camera-offset: 
  % Returns the current offset f
  % Note that the camera offset can be changed manually by the user,  
  % so it may be wise to use this fu
  % movements to ensure consistency. 
 
  return cameraGetOffset(). 
 
 + to get-camera-target: 
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  % Returns the current
 % target can be changed manually by the user, so it may be wise  

 target of the camera.  Note that the camera 

conjunction with camera movements to  

mount (vector) steps stepCount (int): 

 the physical simulation 

teps stepCount (int): 

tion steps. 

to newTarget. 

et-camera-target)) / stepCount. 
pCount + 1. 

 stepCount (int): 

 

by amount. 

ptional 
era relative 

and on the y-
is by y. 

to se

rotation without regard for the current rotation. 
rrent position,  

 

 
  % to use this function in 

 % ensure consistency.  
 
  return cameraGetTarget(). 
 
 + to bullet-pan-camera-offset by a
  % Sets the camera in motion to smoothly change the camera offset 
  % over stepCount iteration steps, with
  % frozen in the meantime. 
 
  frozen = 1. 
 
  self pan-camera-offset by amount steps stepCount. 
 

to pa + n-camera-target to newTarget (vector) s
 % Sets the camera in motion to smoothly change the camera target  

  % over stepCount itera
 
  if stepCount < 2: { 
   self set-camera-target 
   return. 
  } 
 

et = (newTarget - (self g  deltaTarg
  offsetting = ste
 

to pa + n-camera-offset by amount (vector) steps
  % Sets the camera in motion to smoothly change the camera offset 
  % over stepCount iteration steps.
 
  if stepCount < 2: { 

  self offset-camera  
   return. 
  } 
 
  deltaOffset = (amount - (self get-camera-offset)) / stepCount. 
  offsetting = stepCount + 1. 
 
 + to point-camera at location (vector) from offset = (0, 0, 0) (vector): 
  % Points the camera at the vector location.  The o

f the cam  % argument offset specifies the offset o
  % to the location target. 
 
  camTarget = location. 
  self set-camera-target to location. 
 

 != 0.0: {   if | offset |
   camOffset = offset. 
   self set-camera-offset to offset. 
  }  
 
 + to pivot-camera x dx (float) y dy (float): 
  % Rotates the camera (from it's current position) on the x-axis by dx 
ax  d
 
  rot (vector). 
 
  rot = (camera get-rotation). 
  rot::x += dx. 
  rot::y += dy. 
  camera set-rotation x rot::x y rot::y. 
 

loat) y ry (float):  + t-camera-rotation x rx (f
 % Sets the camera rotation on the x-axis to rx and the y-axis to ry.    

  % This method sets the 
  % If you want to offset the camera rotation from the cu

ivot-camera) instead.   % use the method METHOD(p
 
  camera set-rotation x rx y ry. 
 
 + to zoom-camera to theDistance (float): 
  % Zooms the camera to theDistance away from the current target-- 
  % whether the target is a vector or object.
 

theDistance).   cameraSetZoom(
 
 + to move-light to theLocation (vector): 
  % Moves the source light to theLocation.  The default position is  
  % (0, 0, 0) which is the origin of the world.   

 62 
 



 
  lightPosition = theLocation. 
  setLightPosition(theLocation). 
 
 + to iterate: 
  result (float). 
 
  if watchObject: self set-camera-target to (watchObject get-location). 

" pan 

Time, simStep). 

 simulation.". 

(self get-camera-offset) + deltaOffset). 
((self get-camera-target) + deltaTarget). 

previously,  
 rendering 

can lead to faster simulations with choppier 

does, as do all threaded command-line breve programs. 

thod, except in instances where 
and the computation is simple.  The included 

l not be drawn.   

00.0 and this works well for most simulations, 
 method. 

 they are too far away. 

te 

 
  # we might be doing a "bullet-time
 

dStep(sim  if !frozen: result = worl
 
  if result == -1: die "An error occurred during world
 
  # if we're in the middle of a pan, continue 
 
  if offsetting: { 
   self set-camera-offset to (

et to    self set-camera-targ
   offsetting--. 
 
   # if we are done the pan, let the simulation roll again. 
  
   if offsetting == 0: frozen = 0. 
  }   
 
  + section "Rendering Options" 
 
 - to set-floor-defined: 
  if lightFlag: { 
   shadowMenu enable. 

u enable.    reflectMen
 }  

 
  floorDefined = 1. 
 
 + to enable-draw-every-frame: 
  % If the method METHOD(disable-draw-every-frame) has been called 
  % this method will resort to the default behavior, namely that the
  % engine will try to render an image for each and every iteration of the breve 
  % engine. 
 
  drawEveryFrame = 1. 
  setDrawEveryFrame(1). 
 
 + to disable-draw-every-frame: 

 % Allows the rendering engine to drop frames if the simulation is moving   
  % faster than the display.  This 

 % displays.  Not all breve development environments support this option.  The   
  % Mac OS X application 

 % <p>  
  % There is rarely any benefit from using this me
  % the drawing of a scene is complex, 
  % DLA.tz demo is an example of one such simulation which benefits immensely from 
  % this feature. 
 
  drawEveryFrame = 0. 
  setDrawEveryFrame(0). 
 
 + to set-z-clip to theDistance (int):  

.  The Z clipping plan    % Sets the Z clipping plan to theDistance
  % determines how far the camera can see.  A short Z clipping distance 
  % means that objects far away wil

 % <p>  
  % The default value is 2
  % so there is often no need to use this
  % <p> 

 % Using a short Z clipping distance improves drawing quality, avoids   
  % unnecessary rendering and can speed up drawing during the simulation.   
  % However, it may also cause objects you would like to observe in the  
  % simulation to not be drawn because
 
  setZClip(theDistance). 
 

ons"   + section "Special Effects & Drawing Opti
 
 + to enable-outline: 
  % Enables outline drawing.  Outline drawing is a wireframe black and whi
  % draw style.  Reflections and textures are ignored when outlining is  

e images.  It    % enabled.  Outlining is useful for producing diagram-lik
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  % looks cool. 

e. 
ctMenu enable. 

le-smooth-drawing) and  

 enables  
 feature 

e objects. 

d whenever  

specially on larger polygons. 

 
s 

-drawing) 

Flag). 

adows) and  
  

the current  
onto a flat  

 
 setDrawOutline(1).  

 
 + to disable-outline: 
  % Disables outline drawing. 
 
  setDrawOutline(0). 
 
 + to toggle-lighting: 
  % toggle lighting for the main camera 
 

ting.   if lightFlag == 1: self disable-ligh
  else self enable-lighting. 
 
 + to enable-lighting: 

 % enable lighting for the main camera  
 
  lightFlag = 1. 
  setDrawLights(lightFlag). 
  lightMenu check. 
 
  if floorDefined: { 
   shadowMenu enabl
   refle
  } 
    
 + to disable-lighting: 
  % disable lighting for the main camera 
 
  lightFlag = 0. 

   setDrawLights(lightFlag).
 lightMenu uncheck.  

 
  shadowMenu disable. 
  reflectMenu disable. 
 
 + to toggle-smooth: 
  % Toggle smooth drawing for the main camera.  See METHOD(enab
  % METHOD(disable-smooth-drawing) for more information. 
 
  if smoothFlag == 1: self disable-smooth-drawing. 
  else self enable-smooth-drawing. 
 
 + to enable-smooth-drawing: 
  % Enable smooth drawing for the main camera.  Smooth drawing
  % a smoother blending of colors, textures and lighting.  This

rg  % is especially noticeable when dealing with spheres or la
  % <p> 

ng be enable  % It is strongly recommended that smooth drawi
 % lighting is enabled (see METHOD(enable-lighting)).  Otherwise,  

  % major artifacts may be visible, e
  % <p> 
  % The disadvantage of smooth drawing is a potential performance hit.
  % The degree of this performance hit depends on the number of polygon
  % in the scene.  If speed is an issue, it is often best to disable  
  % both lighting and smooth drawing. 
 
  smoothFlag = 1. 
  cameraSetDrawSmooth(cameraPointer, smoothFlag). 
  drawMenu check. 
    
 + to disable-smooth-drawing: 

g for the main camera.  See METHOD(enable-smooth  % Disable smooth drawin
 % for more information.  

 
 smoothFlag = 0.  

  cameraSetDrawSmooth(cameraPointer, smooth
  drawMenu uncheck. 
 
 + to toggle-shadows: 
  % Toggle shadows for the main camera.  See METHOD(enable-sh
  % METHOD(disable-shadows) for more information on shadows. 
 
  if shadowFlag == 1: self disable-shadows. 
  else self enable-shadows. 
 
 + to enable-shadows: 
  % Enable shadows for the main camera.  Shadows use 
  % position of the light in order to render shadows 

 % plane in the world.  Because of the complexity of drawing shadows,   
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  % they can only be drawn onto a single plane of a OBJECT(Stationary)  

see METHOD(enable-shadow-volumes). 

ag). 

a.  See  
on on shadows. 

 = 0. 

e-another, 
 the case 
 in fact 

e accurate 
m will. 

use  
the better 

 

sed to draw a mirror 

nto a single plane 

ion-catching object must already be defined in 

.  See METHOD(enable-reflections for  

en  
t.   

  % object--see the method catch-shadows of OBJECT(Stationary) for more  
  % information.  The shadow-catching object must already be defined in 
  % order for this method to take effect. 
  % <P> 
  % For an improved shadowing algorithm, 
 
  if !floorDefined: return. 
 
  shadowFlag = 1. 

ow(shadowFl  setDrawShad
  shadowMenu check. 
 
 + to disable-shadows: 
  % Disable "flat" shadows for the main camer

 for more informati  % METHOD(enable-shadows)
 
  shadowFlag
  setDrawShadow(shadowFlag). 

 shadowMenu uncheck.  
 
 + to enable-shadow-volumes: 
  % Enables shadows drawn using a "shadow volume" algorithm.  This 
  % is an alternative to the shadows rendered using METHOD(enable-shadows). 
  % <p> 
  % Shadow volumes allow all objects in the simulation to shadow on
  % as opposed to having objects only shadow a single plane (as is
  % with the METHOD(enable-shadows) algorithm).  Shadow volumes are

rat  % superior in every way but one: shadow volumes will not gene
he original algorith  % shadows of bitmapped objects the way t

  % If you want high-quality bitmap shadows in your simulation, 
  % METHOD(enable-shadows), otherwise, shadow volumes are likely 
  % choice. 
 
  shadowVolumeFlag = 1. 

 setDrawShadowVolumes(shadowVolumeFlag).  
 
 + to disable-shadow-volumes: 
  % Disable shadow volumes for the main camera.  See  
  % METHOD(enable-shadow-volumes) for more information on shadows.
 
  shadowVolumeFlag = 0. 
  setDrawShadowVolumes(shadowFlag). 
 
 + to toggle-reflections: 
  % Toggle reflections for the main camera.  See METHOD(e lections) for  nable-ref
  % more information on reflections. 
 
  if !floorDefined: return. 
 
  shadowFlag = 1. 
 
  if reflectFlag == 1: self disable-reflections. 
  else self enable-reflections. 
  
 + to enable-reflections: 

e main camera.  Reflections are u  % Enable reflections for th
  % image of objects in the world onto a single plane.  Because of  
  % the complexity of drawing reflections, they can only be drawn o
  % of a OBJECT(Stationary) object--see the method catch-shadows of OBJECT(Stationary) 
  % for more information.  The reflect
  % order for this method to take effect. 
 
  if !floorDefined: return. 
 

.   reflectFlag = 1
  setDrawReflection(reflectFlag). 

 reflectMenu check.  
 
 + to disable-reflections: 
  % Disable reflections for the main camera
  % more information on reflections. 
 
  reflectFlag = 0. 
  setDrawReflection(reflectFlag). 
  reflectMenu uncheck. 
 
 + to disable-text: 
  % Disable the timestamp and camera position texts (which appear wh
  % changing the camera angle or position).  The text is on by defaul

t).   % The text can be re-enabled using METHOD(enable-tex
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  setDrawText(0). 
 
 + to enable-text: 
  % enables the timestamp and camera position texts (which appear when chan
  % the camera angle or position).  This is the default setting.  The text c

ging  
an  

r.  Factor should be a value  

-blur).  Note % that a blur level of 0.0 is  
or blur--to disable % blur completely, use the  

cts which are drawn after  
has not been 

. 

eeds to know where the fog  

t's highest intensity). 

han or equal to zero.  fogEnd 

fore fog  

): 

r, newIntensity). 

 

  % be disabled using METHOD(disable-text). 
 
  setDrawText(1). 
 
 + to toggle-blur: 
  % Toggle motion blur for the main camera.  See METHOD(enable-blur) for  
  % more information on reflections. 
 
  if blurFlag == 1: self disable-blur. 
  else self enable-blur. 
 

+ to enable-blur:  
  % Enables blur.  Blurring simply draws a frame without  
  % totally erasing the previous frame.  
 
  blurFlag = 1. 
  cameraSetBlur(cameraPointer, 1). 
  blurMenu check. 
 
 + to disable-blur: 
  % Disables blurring.  See METHOD(enable-blur) for more  
  % information. 
 
  blurFlag = 0. 
  cameraSetBlur(cameraPointer, 0). 

 blurMenu uncheck.  
 

+ to set-blur-factor to factor (float):  
  % Sets the blur level to facto
  % between 1.0, which corresponds to the highest blur level,  
  % and 0.0, which corresponds to the lowest blur level.   
  % <p>Blur must first be enabled using the method  
  % METHOD(enable
  % still a min
  % method METHOD(disable-blur). 
 
  blurFactor = factor. 
  cameraSetBlurFactor(cameraPointer, factor). 
 
 + to clear-screen: 
  % Clears the camera to the current background color.  This  
  % method clears blurred artifa

enabl  % ing METHOD(enable-blur).  If blurring 
method has no visual effect.   % enabled, this 

 
  cameraClear(cameraPointer)
 
 + to set-fog-limits with-start fogStart (float) with-end fogEnd (float): 
  % The calculation which calculates fog n
  % starts (the point at which the fog appears) and where the fog ends 
  % (the point at which the fog has reached i
  % <p> 
  % This method sets the start value to fogStart and the end value to  
  % fogEnd.  fogStart must be greater t
  % must be greater than fogStart. 
  % <p> 
  % Fog must first be turned on with METHOD(enable-lighting) be
  % is displayed. 
 

 fogEnd).   setFogDistances(fogStart,
 
 + to set-fog-intensity to newIntensity (float

 % Sets the fog intensity to newIntensity.  Fog must first be turned on with  
  % METHOD(enable-lighting) before fog is displayed. 
 
  fogIntensity = newIntensity. 
  cameraSetFogIntensity(cameraPointe
 
 + to set-fog-color to newColor (vector): 

th   % Sets the fog color to newColor.  Fog must first be turned on wi
splayed.   % METHOD(enable-lighting) before fog is di

 
  fogColor = newColor. 
  cameraSetFogColor(cameraPointer, newColor).
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 + to enable-fog: 
  % Enables fog for the main camera.  This adds the visual effect of fog to the 

),  

ore information. 

 

e text.  The coordinate system  

 

  

geNumber, xLoc, yLoc, (0, 0, 0)). 

 on adding text messages to the display  

string) with-number messageNumber (int) at-x xLoc 
vector): 

corner.  The color of the text is set 

ssage "slot" to modify.   

. 

, xLoc, yLoc, textColor). 

ate of the mouse relative to the simulation window. 
tive if the mouse is to the left of the simulation 

to ad hod (string): 

nstance. 

  % world.  Fog parameters can be set using methods METHOD(set-fog-color
D(set-fog-limits).   % METHOD(set-fog-intensity) and METHO

  % <p> 
  % Fog and lightmap effects don't mix. 
 
  fogFlag = 1. 
  cameraSetDrawFog(cameraPointer, 1). 
  fogMenu check. 
 
 + to disable-fog: 
  % Disables fog for the main camera.  See METHOD(enable-fog) for m
  fogFlag = 0. 
  cameraSetDrawFog(cameraPointer, 0). 
  fogMenu uncheck. 
 
 + to toggle-fog: 

 % Toggle fog for the main camera  
 
  if fogFlag == 1: self disable-fog. 
  else self enable-fog. 
 
 + to set-display-text number messageNumber = 0 (int) to theString (string) at-x xLoc = -.95
(float) at-y yLoc = -.95 (float): 
  % Sets a text string in the simulation display.  xLoc and yLoc  
  % represent the location of th
  % used goes from (-1, -1) to (1, 1) with (-1, -1) at the lower  
  % left hand corner, (0, 0) in the center of the window and 
  % (1, 1) in the top right hand corner. 
  % <p> 
  % The optional argument messageNumber may be used to specify
  % up to 8 different messages. 
 
  cameraSetText(theString, messa
 
 + to set-display-text-scale to scale (double): 
  % Sets the scaling factor for text in the display window.   
  % See METHOD(set-display-text) and METHOD(set-display-message)  
  % for more information
  % window. 
 

   cameraSetTextScale(scale).
 
 - to set-display-message to theString (

loat) (f at-y yLoc (float) with-color textColor = (0, 0, 0) (
  % Sets a text string in the simulation display.  xLoc and yLoc  
  % represent the location of the text.  The coordinate system used 
  % goes from (-1, -1) to (1, 1) with (-1, -1) at the lower left hand  

e center of the window and (1, 1) in    % corner, (0, 0) in th
ht hand   % the top rig

  % to textColor. 
  % <p> 
  % Up to 8 messages can be displayed in the simulation window.   
  % messageNumber specifies which me
  % Subsequent calls to this method with the same slot number 
  % erase previous entries
 
  cameraSetText(theString, messageNumber
 
  + section "Interacting with the User Interface" 
 
 + to get-mouse-x-coordinate: 
  % Returns the X-coordin
  % The value may be nega
  % view. 

 % See also METHOD(get-mouse-y-coordinate).  
 
  return getMouseX(). 
 
 + to get-mouse-y-coordinate: 
  % Returns the Y-coordinate of the mouse. 
  % The value may be negative if the mouse is outside of the simulation 
  % view, towards the bottom of the screen.   
  % See also METHOD(get-mouse-x-coordinate). 
 
  return getMouseY(). 
 

thod theMet + d-menu named menuName (string) for-me
  % Adds a menu named menuName to the application which will result 
  % in a call to theMethod for the calling i
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  % <p> 
  % If the calling instance is the Controller object, the

.  Otherwise, the m
n the menu will 

enu will become 
c object in the simulation. 

collision) which sets the collision 

each instance of a 

nuItem) create-menu named menuName for-object self for-method 

e-menu named "" for-object self for-method ""). 

with-yes-button 

he current breve environment) 

String). 

 returning an OBJECT(Image) object. 

 X and Linux included), not 

 light to newColor.  Only has an effect on the 

the ambient and diffuse colors, which can also 

  % become the "main" simulation menu
  % a contextual menu associated with the specifi
  % <p> 
  % Note that unlike the METHOD(handle-
  % handler for the whole type (class, that is), this method affects only 
  % the instance for which it is called, meaning that 
  % certain class may have a different menu. 
 
  return ((new Me

eMethoth d). 
 
 + to add-menu-separator: 
  % Adds a separator menu item--really just an empty menu item. 
 

MenuItem) creat  return ((new 
 
 + to show-dialog with-title title (string) with-message message (string) 
yesString (string) with-no-button noString (string): 
  % Shows a dialog box (if supported by t
  % and waits for the user to click on one of the buttons.   
  % <p> 
  % If the "yes button" is clicked on, the method returns 1--if the  
  % "no button" is clicked, or if the feature is not supported, 0 
  % is returned. 
 
  return dialogBox(title, message, yesString, no
 
 + to beep: 
  % Plays the system beep sound, if supported by the implementation. 
 

 playSound().  
 
 - to load-image from file (string): 

age from a file,  % Loads an im
  % <P> 
  % This method is provided for backwards compatability only. 
  % The p 
  % <p> 
 
  image (object). 
 
  print "warning: the Control method \"load-image\" is now deprecated!". 
 
  image = new Image. 
 
  if (image load from file): { 

  loadedImages{ loadedImages } = file.  
  } else { 
   free image. 

  return -1.  
  } 
 
  return (image get-texture-number) - 1. 
 
 - to load-image-without-alpha from file (string): 
  % Deprecated. 
 
  return (self load-image from file). 
 
 + to execute command systemCommand (string): 

mCommand using /bin/sh.     % Executes the shell command syste
  % Returns the output of command.  Supported on UNIX-based 
  % implementations only (Mac OS
  % supported on Windows. 
 

 return system(systemCommand).  
 
 + to set-light-color to newColor (vector): 
  % Sets the color of the
  % rendering when lighting has been turned on using  
  % METHOD(enable-lighting). 
  % <p> 
  % This method sets both 
  % be set individually with METHOD(set-light-ambient-color) and  
  % METHOD(set-light-diffuse-color). 
 
  self set-light-ambient-color to newColor. 
  self set-light-diffuse-color to newColor. 
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 + to set-light-ambient-color to newColor (vector): 
  % Sets the ambient, or background, color of the light to newColor.   

ect on the rendering when lighting has been turned    % Only has an eff
 % on using METHOD(enable-lighting).  

   
  lightAmbientColor = newColor. 
  setLightAmbientColor(newColor). 
 
 + to set-light-diffuse-color to newColor (vector): 

r.  % Sets the diffuse, or foreground, color of the light to newColo
lighting has been tu

   
rned  

. 

an  
olors, 

e  

.   

 and blue intensity on a scale  

or hsvColor 

 return HSVtoRGB(hsvColor). 

 
 + to archive: 
  camTarget = cameraGetTarget(). 
  camOffset = cameraGetOffset(). 
  return (super archive). 
 
 + to dearchive: 
  image (string). 
  images (list). 
 
  cameraPointer = getMainCameraPointer(). 
  camera set-camera-pointer to cameraPointer. 
 
  foreach image in loadedImages: images{ images } = image. 
  foreach image in images: (self load-image from image). 
 
  self move-light to lightPosition. 
  self set-background-texture to backgroundTexture. 
  self set-background-color to backgroundColor. 
  self set-fog-color to fogColor. 
  self point-camera at camTarget from camOffset. 
  self set-blur-factor to blurFactor. 
 
  if lightFlag == 1: self enable-lighting. 

  % Only has an effect on the rendering when 
  % on using METHOD(enable-lighting). 
  % <p> 

ight,   % The diffuse color is the color coming directly from the l
erated  % as opposed to the "ambient" light that is also gen

 
  lightDiffuseColor = newColor. 

 setLightDiffuseColor(newColor).  
 
 + to set-interface-item with-id tag (int) to-string newValue (string): 
  % This method will set the interface item tag to newValue.  This 
  % is for simulations which have an OS X nib file associated with 
  % them. 
 
  return setInterfaceString(newValue, tag). 
 
  + section "Manipulating and Using Colors" 
 
 + to unique-color for-number n (int): 

 for each different value of n up    % Returns a unique color
  % to 198.  These colors are allocated according to 
  % algorithm which attempts to give distinguishable c
  % though this is subjective and not always possible. 
 

 return uniqueColor(n).  
 
 + to get-hsv-color for-rgb-color rgbColor (vector): 
  % All colors in breve expect colors in the RGB format--a vector wher
  % the 3 elements represent red, green and blue intensity on a scale  
  % from 0.0 to 1.0.   
  % <p> 
  % This method returns the HSV color vector for a given vector rgbColor 
  % in RGB color format
 
  return RGBtoHSV(rgbColor). 
 
 + to get-rgb-color for-hsv-color hsvColor (vector): 

 % All colors in breve expect colors in the RGB format--a vector where   
  % the 3 elements represent red, green

 % from 0.0 to 1.0.    
  % <p> 
  % This method returns the RGB color vector for a given vect
  % in HSV color format.   
 
 
 
  + section "Archiving & Dearchiving" 
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  if sh
 if shadowVolumeFlag == 1: self enable-shadow-volumes. 

adowFlag == 1: self enable-shadows. 

(string): 
e of the world to an XML file, filename.   
ne of the following extensions: .xml,  

. 

ring): 

ted using  
s-xml). 

 Exposure" 

xposure detection will attempt to tell you how much "sunlight"  

e light source with METHOD(set-light-exposure-source).  Then,  

t how much light was detected for 

ght is hardcoded towards the world point  
s out to fill an angle of 90 degrees. 
emoved in the future if needed. 

etectLightExposure(1). 

posure detection.  See METHOD(enable-light-exposure-detection). 

re(0). 

ector): 
lating exposure.  See  

. 

e screen. 

e-drawing: 
t exposure buffer to the screen. 

-camera: 
hat can be used to control the light detection 

ureCamera(). 

vel (int): 
evel.  This value determines the level of  

 % The default value, 0, prints only regular output.  An output filter 
  % of 50 will print out all normal output as well as some warnings and  

 
  if fogFlag == 1: self enable-fog. 

 if reflectFlag == 1: self enable-reflections.  
  if smoothFlag == 1: self enable-smooth-drawing. 
  if blurFlag == 1: self enable-blur. 
 
  if drawEveryFrame: (self enable-draw-every-frame). 
  else (self disable-draw-every-frame). 
 
  return 1. 
 
  + to save-as-xml file filename 
  % Writes the entire stat

o  % filename should have 
  % .brevexml, .tzxml. 
  % <p> 

 % After saving the state of the world as an XML file, you can later  
  % start a new run of the same simulation from the saved state.  You 
  % will still need the original steve code which generated the file 
  % in order to restart the simulation. 
 
  writeXMLEngine(filename)
 
 + to dearchive-xml file filename (st
  % Asks the controller to dearchive an object from an XML file.  The 
  % XML file must have been crea
  % OBJECTMETHOD(Object:archive-a
 
  return dearchiveXMLObject(filename). 
 
  + section "Detecting Light
 

ion:  + to enable-light-exposure-detect
  % <B>Experimental</B> 
  % <P> 
  % Light e
  % is reaching each object in your simulation.  You can set the location 
  % of th
  % use the method get-light-exposure (in OBJECT(Stationary), OBJECT(Mobile), 
  % and OBJECT(Link)) in order to find ou
  % individual objects. 
  % <P> 
  % The direction of the sunli
  % (0, 0, 0), and only spread

may be r  % These limitations 
 
  setD
 

+ to disable-light-exposure-detection:  
  % Disables light ex
 
  setDetectLightExposu
 
 + to set-light-exposure-source to source (v
  % Changes the light source for calcu
  % METHOD(enable-light-exposure-detection). 
 
  setLightExposureSource(source)
 
 + to enable-light-exposure-drawing: 
  % Enables drawing of the light exposure buffer to th
  setDrawLightExposure( 1 ). 
 
 + to disable-light-exposur
  % Disables drawing of the ligh

( 0 ).   setDrawLightExposure
 
 + to get-light-exposure
  % Returns a camera t
  % light-source. 
  camera = new Camera. 
  camera set-camera-pointer to getLightExpos
 
  + section "Debugging & Performance" 
 
 + to set-output-filter to filterLe

 filter l  % Sets the output
 % detail used in printing simulation engine errors and messages.  
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  % 
 % may be added in the future to allow for more granularity of error  

other information useful mostly to breve developers.  Other values 

 

t has been disabled using  
-protection). 

n(1). 

abling freed instance protection means that the breve engine will 
track of freed objects, and will yield better 

se  
  

nt that no freed 

 may be reenabled with  

n 
int in the simulation.  This method is  

 

tion to the log. 

 
  % detail.
 
  setOutputFilter(filterLevel). 
 
 + to enable-freed-instance-protection: 
  % Freed instance protection means that the breve engine retains  

ey   % instances which have been freed in order to make sure that th
ory   % are not being incorrectly accessed.  This has a small mem

  % cost associated with each freed object. 
  % <p> 
  % Freed instance protection is enabled by default, so you'll only 
  % need to call this method if i
  % METHOD(disable-freed-instance
 
  setFreedInstanceProtectio
 

+ to disable-freed-instance-protection:  
  % Dis
  % not attempt to keep 
  % memory performance when large numbers of objects are being created 
  % and destroyed. 
  % <p> 
  % The downside is that improper access of freed instances may cau
  % crashes or unexpected behavior when freed instance protection is

s should thus always use freed instance    % disabled.  Simulation
  % protection during development and testing, and the feature should 
  % only be disabled when the developer is confide

st.   % instance bugs exi
  % <p> 
  % Freed instance protection
  % METHOD(enable-freed-instance-protection), but only instances 

tection is enabled will be protected.   % freed while instance pro
 
  setFreedInstanceProtection(0). 
 
 + to stacktrace: 
  % Prints out a breve stacktrace--all of the methods which have bee
  % called to get to this po
  % useful for debugging. 
 
  stacktrace(). 
 
 + to get-interface-version: 
  % Returns a string identifying the program using the breve engine.   

 format "name/version".   % This string is in the
 
  return getInterfaceVersion().
 

+ to report-object-allocation:  
  % Prints data about current object alloca
 
  objectAllocationReport(). 
} 
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The MenuItem class 
 

t@use Abs ract. 

) [version 2.0] { 
 items associated with objects.  Menus 

  % ca

 
ring)  

Name.". 

it exists. 

     enuIt

     

 
Abstract : MenuItem (aka MenuItems
    % The MenuItem class holds menu
  n be associated with Mobile objects, in which case they are shown 
    % as contextual menu items, or associated with Control objects in which 
    % case they are shown under the global application menu. 
 
    + variables: 
        menuPointer (pointer). 
  name (string). 
  method (string). 
  owner (object). 
 
  enabled, checked (int). 
 

  + to create-menu named menuName (string) for-object theObject (object) for-method methodName  
:(st

        % This method initializes a menu item with title menuName for 
  % theObject which will call methodName when selected. 
 
  name = menuName. 
  method = methodName. 
 
  owner = theObject. 
  self add-dependency on owner. 
 
        menuPointer = menuItemNew(owner, method, name). 
 
        if !menuPointer: { 
   print "error adding menu item for method $method
   free self. 
   enabled = 1. 

  return 0.  
  } 
 
        return self. 
 
    + to check: 
        % Places a check mark next to the menu item. 
 
        if !menuPointer: return. 
        menuItemSetCheck(menuPointer, 1). 
  checked = 1. 
 
    + to uncheck: 

      % Removes the check mark next to the menu item, if   
 
        if !menuPointer: return. 

uPointer, 0).         menuItemSetCheck(men
  checked = 0. 
 
    + to enable: 
        % Enables a menu item, if it is disabled. 
 
        if !menuPointer: return. 
        menuItemSetEnabled(menuPointer, 1). 
  enabled = 1. 
 
    + to disable: 

that it cannot be selected.         % Disables the menu item such 
 
        if !menuPointer: return. 

 0).    m emSetEnabled(menuPointer,
 enabled = 0.  

 
 + to get-description: 
  return name. 
 
 + to dearchive: 
   menuPointer = menuItemNew(owner, method, name). 
  if checked: self check. 
  else self uncheck. 
  if enabled: self enable. 
  else self disable. 
  return 1. 
} 
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The Shape class 
 

nclude "Abstract.tz" @i
 
Abstract : Shape (aka Shapes) [version 2.0] { 
 % The Shape class is a work-in-progress which allows users to create  

% shapes which will be associated with OBJECT(Mobile), OBJECT(Stationary) 
% or OBJECT(Link) objects and added to the simulated world.  An instance 

+ sec ape's Mass Properties" 

ized, this method returns the  

implicitly changes the  

.  This implicitly changes the  

+ sect on "Dy " 

+ to scale by scale (vector): 

 
 
 % of the class Shape may be shared by several objects simultaneously. 
 % <p> 
 % Each Shape has it's own local coordinate frame, with the origin 
 % at the middle of the shape. 
 
 + variables: 
  shapePointer (pointer). 
  density (float). 
  shapeData (data). 
  lastScale (vector). 
 
 + to init: 
  density = 1.0. 
 
  tion "Getting and Setting a Sh
 
 + to get-mass: 
  % If the shape is properly initial
  % shape's mass. 
 
  if shapePointer: return getMass(shapePointer). 
  return 0.0. 
 

+ to set-mass to newMass (float):  
  % Sets the mass for this Shape object.  This 
  % density of the object. 
 
  if shapePointer: shapeSetMass(shapePointer, newMass). 
 
 + to get-density: 
  % If the shape is properly initialized, this method returns the  
  % shape's density. 
 
  if shapePointer: return getDensity(shapePointer). 

 return 0.0.  
 
 + to set-density to newDensity (float): 
  % Sets the density for this Shape object
  % mass of the object. 
 
  density = newDensity. 

 shapeSetDensity(shapePointer, density).  
 

i namically Changing the Size of a Shape  
 
 
  % If the shape is <i>not</i> a sphere, scales the shape by the x, y  
  % and z elements of scale.  If the shape <i>is</i> a sphere, scales  
  % the shape by only the x element such that the shape always remains  
  % spherical. 
  % <p> 
  % After the size has been changed, the instances announces a  
  % "size-changed" notification. 
 
  scaleShape(shapePointer, scale). 
 

 lastScale = scale.  
 

 self announce message "size-changed".  
 
 - to get-last-scale: 
  % Used internally... 
  return lastScale. 
 
  + section "Initializing the Shape" 
   
 + to init-with-sphere radius r (float): 
  % Sets this Shape object to a sphere with radius r. 
 
  shapePointer = newSphere(r, density). 
 
  return self. 
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 + to init-with-cube size v (vector): 
 % Sets this Shape object to a rectangular solid of size v.    

 
 shapePointer = newCube(v, density).  

 
  return self. 
 
 + to init-with-polygon-disk radius theRadius (float) sides sideCount (int) height theHeight 

ds, 

Go figure. 

 

deCount sides. 

sideCount, theRadius, theHeight, density). 

 % method is used internally and should not typically be used in  
  % user simulations. 
 
  return shapePointer. 
 
  + section "Getting Information About a Shape's Geometry" 
 
 + to get-point-on-shape on-vector theVector (vector): 
  % This method is experimental. 
  % <p> 
  % Starting from inside the shape at the center, this function goes in  
  % the direction of theVector until it hits the edge of the shape. 
  % The resulting point is returned.   
  % <p> 
  % This allows you to compute link points for arbitrary shapes.  
  % For example, if you want to compute a link point for the  
  % "left-most" point on the shape, you can call this method with 
  % (-1, 0, 0).   
  % <p> 
  % Returns (0, 0, 0) if the shape is not initialized or if an 
  % error occurs. 
 
  if shapePointer: return pointOnShape(shapePointer, theVector). 
  else return (0, 0, 0). 
 
 + to destroy: 
  if shapePointer: freeShape(shapePointer). 
 
  + section "Serializing the Shape" 
 
 + to get-data-for-shape: 
  % Returns serialized data for the shape (if the shape object has  
  % been properly initialized).  Used for archiving/dearchiving, 
  % should generally not be called manually, unless you <i>really</i> 
  % know what you're doing. 
 
  if shapePointer: return dataForShape(shapePointer). 
 
 + to archive: 

(float): 
deCount sides, in other wor  % Sets this Shape object to an extruded n-gon of si

  % a disk with sideCount sides. 
  % <p> 

 the n-gon faces to the vertices    % The distance from the center of
  % is theRadius.  sides has a maximum value of 99.  Higher values 
  % will cause the shape not to be initialized. 
  % <p> 

   % The height, or depth of the extrusion, is theHeight.
  % <p> 
  % This method is experimental, but seems to work okay.  
  
  shapePointer = newNGonDisc(sideCount, theRadius, theHeight, density). 
  
  return self. 
 
 + to init-with-polygon-cone radius theRadius (float) sides sideCount (int) height theHeight
(float): 
  % Sets this Shape object to a cone-like shape with si
  % <p> 
  % The distance from the center of the n-gon faces to the vertices  
  % is theRadius.  sides has a maximum value of 99.  Higher values 

nitialized.   % will cause the shape not to be i
 % <p>  

  % The height, or depth of the extrusion, is theHeight. 
  % <p> 
  % This method is experimental, but seems to work okay.  Go figure. 
 
  shapePointer = newNGonCone(
 
  return self. 
  
 - to get-pointer: 

 % Returns the shapePointer associated with this Shape object.  This   
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  sh
 re

apeData = (self get-data-for-shape). 
turn 1. 

  
f  

wing rules: 
>inside</b> (not outside or  

</ul>
<p> 

 in vertextList. 

zation of the shape.  The density given  
ape if  

is method will trigger an error. 

theDensity). 

 
Shape : Sphere (aka Spheres) { 
 % This class is used to create a sphere shape. 
 
 + to init-with radius r (double): 
  % Initializes the sphere with the given radius. 
 
  shapePointer = newSphere(r, density). 
 
  return self. 
} 
 
Shape : Cube (aka Cubes) { 
 % This class is used to create an extruded rectangle.  Even though the class 
 % is named "Cube", the shapes do not need to be perfect cubes--they can be  
 % rectangular solids of all sizes. 
 
 + to init-with size s (vector): 
  % Initializes the cube to a rectangular solid with size v.   
 
  shapePointer = newCube(s, density). 
 
  return self. 
} 
 
Shape : PolygonDisk (aka PolygonDisks) { 
 % This class is used to create a polygon-disk.  This is a shape which can be  
 % described as an extruded polygon.  
 
 + to init-with radius theRadius = 1 (float) sides sideCount (int) height theHeight (float): 
  % Initializes the polygon-disk. 
  % <p> 
  % The distance from the center of the n-gon faces to the vertices  
  % is theRadius.  sides has a maximum value of 99.  Higher values 
  % will cause the shape not to be initialized. 
  % <p> 
  % The height, or depth of the extrusion, is theHeight. 
  

 
 

+ to dearchive:  
  shapePointer = shapeForData(shapeData). 
  return (super dearchive). 
 
} 
 
Shape : CustomShape (aka CustomShapes) { 

 to % A CustomShape is a subclass of (Shape) which allows the user
 % construct an arbitrary convex shape by specifying the faces o
 % the shape. 
 % <P> 
 % The shapes must conform to the follo
 % <li>The point (0, 0, 0) must be on <b

% on the surface of) the shape.  
 % <li>The shape must be convex. 
 % <li>The shape must be solid and sealed by the faces. 
 %  
 % 
 % If any of these conditions are not met, you will get errors  
 % and/or unexpected results. 
 
 + to init: 
  shapePointer = newShape(). 
   
 + to add-face with-vertex-list vertexList (list):  
  % Adds a face defined by the list of vectors
 
  addShapeFace(shapePointer, vertexList). 
 

eDensity (float):  + to finish-shape with-density th
 % This method must be called after all of the faces are added   

  % to complete initiali
  % here will effect the physical properties of the sh
  % physical simulation is used.  A value of 1.0 is reasonable. 
  % <P> 
  % If the shape specified is invalid (according to the constraints 
  % listed above), th
 

 return finishShape(shapePointer,  
} 
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  shapePointer = newNGonDisc(sideCount, theRadius, theHeight, density). 

eturn self. 

 is a shape with a polygon 
yramid is an example of a polygon-cone with 

 circular and the 

ht theHeight (float): 

rtices  

ill cause the polygon-cone not to be initialized. 

r depth of the extrusion, is theHeight. 

trary 3d mesh shapes.   

tection is not currently supported for MeshShapes</b>. 
etected using spheres, with the radius 
esh. 

(string) with-node nodename = "" (string):  
Studio scene file named filename. 

s not provided, the first mesh found   

  
  r
} 
 
Shape : PolygonCone (aka PolygonCones) { 
 % This class is used to create a polygon-cone shape.  This
 % base which tapers off to a point.  A p
 % 4 sides.  As the number of sides increases, the base becomes more
 % resulting shape will more closely resemble a true cone. 
 
 + to init-with radius theRadius (float) sides sideCount (int) heig
  % Initializes the polygon-cone. 
  % <p> 
  % The distance from the center of the n-gon faces to the ve
  % is theRadius.  sides has a maximum value of 99.  Higher values 
  % w
  % <p> 
  % The height, o
 
  shapePointer = newNGonCone(sideCount, theRadius, theHeight, density). 
 
  return self. 
} 
 
Shape : MeshShape { 
 % An experimental class to load arbi
 % <p> 

ll collision de    % <b>Fu
    % MeshShapes are currently collision d
    % defined by the maximum reach of the m
 
 + to load-from-3ds file filename 
  % Attempts to load a mesh from a 3D 

 % The optional argument nodename specifies which mesh in the scene   
  % should be loaded.  If nodename i
  % in the scene is loaded. 
 
        shapePointer = meshShapeNew(filename, nodename). 
 
  return self. 
} 
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The Movie class 
 
@u st  se Ab ract.

 of the simulation 

. 

ed to the movie as the 
e) 

".mpeg". 

movieClose(moviePointer). 

movieAddWorldFrame(moviePointer). 

 
Abstract : Movie { 
 % Records MPEG movies of breve runs. 
 % <P> 
 % The dimensions of the movie are determined by the size
 % viewing area when the movie export begins.  Resizing the viewing area  
 %  the movie is exporting wiwhile ll produce undesirable results
 % <P> 
 % The Movie class does not work when using the non-graphical  
 % ("breve_cli") breve. 
 
 + variables: 
  moviePointer (pointer). 
 
 + to record to filename (string): 

 % Create a new MPEG movie file with the name filename.  
  % New frames will be automatically add
  % simulation runs until the object is released or METHOD(clos
  % is called.  filename should end with ".mpg" or 
 
  moviePointer = movieCreate(filename). 
 
 + to iterate: 
  self add-frame-from-display. 
 
 + to close: 
  % Closes the MPEG file and stops recording. 
 

 if moviePointer:  
  moviePointer = 0. 
 
 - to add-frame-from-display: 
  % Add a frame from the current simulation display. 
 
  if moviePointer: 
 
 + to destroy: 
  self close. 
} 
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The Image class 
 
@use Abstract. 
 
Abstract : Image (aka Images) [version 2.0] { 
    % The Image class provides an interface to w
    % textures.  The individual pixels of the ima

ork with images and  

the  

a.  In addition, the method  
 to provide a pointer to the  

ss and analyze image data. 
o implement agent vision. 

 

imageFile. 

 
      if !imageData: { 

  print "Error loading image $imageFile!". 
   return 0. 
  } 
 
        if textureNumber != -1: modified = 1. 
 
        return self. 
 
    + to init-with width imageWidth (int) height imageHeight (int): 
        % Creates an empty image buffer with width imageWidth 
        % and length imageLength. 
 
        if imageData: imageDataFree(imageData). 
 
        imageData = imageDataInit(imageWidth, imageHeight). 
 
        return (self). 
         
    - to destroy: 
        if imageData: imageDataFree(imageData). 
 
    - to get-image-data: 
        return imageData. 
 
  + section "Getting information about the size and format of an image" 
 
    + to get-width: 
        % Returns the width of the image.   
 
        if !imageData: return 0. 
        return imageGetWidth(imageData). 
 
    + to get-height: 
        % Returns the width of the image.   
 
  if !imageData: return 0. 
        return imageGetHeight(imageData). 
 
  + section "Getting the value of pixels" 
 
    + to get-red-pixel at-x x (int) at-y y (int): 
        % Returns the red pixel at the image coordinates (x, y). 

ge can be read  
    % or changed by the simulation as desired. 
    % <P> 
    % The image class can read rendered images from the screen using 

s), so that agents in the 3D world      % method METHOD(read-pixel
    % can have access to real rendered dat
    % METHOD(get-pixel-pointer) can be used
    % RGBA pixel data so that plugins can acce
    % This could be used, among other things, t
 
    + variables: 
        imageData (pointer). 
        textureNumber (int). 
        modified (int). 
 
    + to init: 
        textureNumber = -1. 
 
    + to iterate: 
        if modified: { 
            imageUpdateTexture(imageData). 
            modified = 0. 
        } 
 
  + section "Loading and creating Images"
         

  + to load from imageFile (string):   
        % Loads an image from the file 
 
        if imageData: imageDataFree(imageData). 
 
        imageData = imageLoadFromFile(imageFile).
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        % The pixel value is given on a scale from 0.0 to 1.0. 

imageGetValueAtCoordinates(imageData, x * 4, y). 

     
ale from 0.0 to 1.0. 

Data, (x * 4) + 2, y). 

  + t t): 
 at the image coordinates (x, y). 

. 

(imageData, (x * 4) + 3, y). 

t) at-y y (int): 
s of the pixel 

0, 0, 0). 

     es(imageData, x * 4, y). 

r
x, y) to redPixel. 

 and 1.0. 

     el). 

  + to set-gr  
 greenPixel. 

      
     

  + t set-b
to bluePixel. 
 

     

): 
 to alphaPixel. 
. 

     rdinates(imageData, (x * 4) + 3, y, alphaPixel). 

 (int): 
       compatibility only. 

      at image coordinates  

 
  if !imageData: return 0. 

      return   
 
    + to get-green-pixel at-x x (int) at-y y (int): 
        % Returns the green pixel at the image coordinates (x, y). 
        % The pixel value is given on a scale from 0.0 to 1.0. 
 
  if !imageData: return 0. 
        return imageGetValueAtCoordinates(imageData, (x * 4) + 1, y). 
 
    + to get-blue-pixel at-x x (int) at-y y (int): 

age coordinates (x, y).    % Returns the blue pixel at the im
s given on a sc        % The pixel value i

 
  if !imageData: return 0. 

nates(image        return imageGetValueAtCoordi
 
  o get-alpha-pixel at-x x (int) at-y y (in
        % Returns the alpha channel pixel
        % The pixel value is given on a scale from 0.0 to 1.0
 
  if !imageData: return 0. 
        return imageGetValueAtCoordinates
 

  + to xel at-x x (in   get-rgb-pi
   % Returns t     he red, green and blue component
        % at image coordinates (x, y) as a vector. 
 
        r, g, b (double). 
 
  if !imageData: return (
 
   r = imageGetValueAtCoordinat
        g = imageGetValueAtCoordinates(imageData, (x * 4) + 1, y). 
        b = imageGetValueAtCoordinates(imageData, (x * 4) + 2, y). 
 
        return (r, g, b). 
 
  + section "Setting the value of pixels" 
 

nt) at-y y (int):   o ed-pixel to redPixel (float) at-x x (i
es (

  + t set-
        % Sets the red pixel value at coordinat
        % redPixel should be a value between 0.0
 
        modified = 1. 

mageS   i etValueAtCoordinates(imageData, (x * 4), y, redPix
 

 een-pixel to greenPixel (float) at-x x (int) at-y y (int):  
        % Sets the green pixel value at coordinates (x, y) to

      % greenPixel should be a value between 0.0 and 1.0.   
 
  modified = 1. 
   imageSetValueAtCoordinates(imageData, (x * 4) + 1, y, greenPixel). 
 

t-y y (int):   o lue-pixel to bluePixel (float) at-x x (int) a
        % Sets the blue pixel value at coordinates (x, y) 
        % bluePixel should be a value between 0.0 and 1.0.
 
   modified = 1. 
        imageSetValueAtCoordinates(imageData, (x * 4) + 2, y, bluePixel). 
 

) at-y y (int    + to set-alpha-pixel to alphaPixel (float) at-x x (int
        % Sets the alpha pixel value at coordinates (x, y)

      % alphaPixel should be a value between 0.0 and 1.0  
 

      modified = 1.   
   imageSetValueAtCoo
 
    - to set-pixel to pixelVector (vector) at-x x (int) at-y y
  % Deprecated -- for
 
   s et-red-pixel to pixelVector::x at-x     elf s  x at-y y. 
        self set-green-pixel to pixelVector::y at-x x at-y y. 
        self set-blue-pixel to pixelVector::z at-x x at-y y. 
         

  + to o pixelVector (vector) at-x x (int) at-y y (int):    set-rgb-pixel t
   % Sets the red, green and blue pixel values
        % (x, y) from the values in pixelVector. 
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   s et-red-pixel to pixelVector::x at-x x at-y
-green-pixel to pixelVector::y at-x x a

     elf s  y. 
t-y y. 

el to pixelVector::z at-x x at-y y. 

+ sect on "Re

     

     ng in RGBA 

        self set
        self set-blue-pix

 
  i ading Pixels from the Screen" 
 
    + to read-pixels at-x x (int) at-y y (int): 
        % Reads pixels into this Image from the rendered image on the  

 scre file or     % en.  The resulting image can be written to a 
        % analyzed if desired.  This is only supported in graphical 
        % versions of breve. 
 
        imageReadPixels(imageData, x, y). 
 
  + section "Getting a Pointer to Pixel Data" 
 

  + to get-pixel-pointer:   
   % Returns a pointer to the pixels this image is holdi
        % format.  The size of the buffer is 4 * height * width.  This  
        % data is provided for plugin developers who wish to read or  
        % write pixel data directly.   
 
        return imageGetPixelPointer(imageData). 
 
    - to get-texture-number: 
        % Internal use only. 
 

re(imageData).    i tureNumber == -1: textureNumber = imageUpdateTextu     f tex
 
        return textureNumber. 
 

e to a file"   + section "Writing an imag
 
    + to write to imageFile (string): 
        % Write the image to imageFile.  The image is written as a  
        % PNG file, so imageFile should end with .PNG. 
 
        imageWriteToFile(imageData, imageFile). 
 
} 
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The Camera class 
 
@use Abstract. 

a (aka Cameras) [version 2.4] { 

on
a  

he  
or 

 

ter). 

 with-width 100. 

amera" 

ng: 

g of colors, textures and lighting.  This feature 

formance hit. 

best to disable 

     , 1). 

or more information. 

. 

view from this camera will not be  

ndow after each iteration. 

, 1). 

+ sec on "E

inter, 1). 

indow" 

t camera width. 

 
Abstract : Camer
 % Summary: creates a new rendering perspective in the simulated world. 
 % <P> 
 % The Camera class is used to set up a viewing perspective in a simulati . 

camer % Creating a new camera object places a viewing area with the new 
 % perspective in the main viewing window. 
 % <P> 
 % See the OBJECT(Image) class to read data from a Camera (or from t
 % main simulation window) into a pixel buffer.  This can be useful f
 % implementing vision algorithms. 
 
 + variables: 

 cameraPointer (pointer).  
  shared (int).
 

:  - to set-camera-pointer to p (pointer)
  % Used internally. 
 
  if !shared: cameraFree(cameraPoin
 
  cameraPointer = p. 
  shared = 1. 
 
 + to init: 
  cameraPointer = cameraNew(). 
  self set-size with-height 100
  self set-position with-x 0 with-y 0. 
 
  + section "Configuring the C
 
 + to enable-smooth-drawi

 % Enable smooth drawing for the camera.  Smooth drawing enables  
  % a smoother blendin
  % is especially noticeable when dealing with spheres or large objects. 
  % <p> 
  % The disadvantage of smooth drawing is a potential per
  % The degree of this performance hit depends on the number of polygons 
  % in the scene.  If speed is an issue, it is often 
  % both lighting and smooth drawing. 
             

amera   c SetDrawSmooth(cameraPointer
 
 + to disable-smooth-drawing: 

 % Disable smooth drawing for the main camera.    
  % See METHOD(enable-smooth-drawing) f
 
  cameraSetDrawSmooth(cameraPointer, 0)
 
  + section "Enabling and Disabling the Camera" 
 
 + to disable: 
  % Disables this camera.  The 
  % updated or drawn to the viewing window.  
 
  cameraSetEnabled(cameraPointer, 0). 
 
 + to enable: 
  % Enables the camera.  The view from this camera will be updated 
  % and drawn to the viewing wi
  
  cameraSetEnabled(cameraPointer
 

t in the Camera's Display"   ti nabling and Disabling Tex
 
 + to enable-text: 
  % Enables text for this camera. 
  cameraTextSetEnabled(cameraPo
 
 + to disable-text: 
  % Disables text for this camera. 
  cameraTextSetEnabled(cameraPointer, 0). 
 
  + section "Changing the Size, Position and Perspective of the Viewing W
 
 + to get-width: 
  % Returns the curren
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  return cameraGetWidth( cameraPointer ). 

th. 

ointer ). 

ble): 

in window. 

osition (vector): 
 it at target.  target is 

r, position, target). 

.  A short Z clipping distance 
be drawn. 

 most simulations, 

short Z clipping distance improves drawing quality, avoids 
ed up drawing during the simulation. 

re too far away. 

the camera about the X-  

 Y-axes. 

  
+ to get-height:  

  % Returns the current camera wid
 
  return cameraGetHeight( cameraP
  
 + to set-size with-height newHeight (double) with-width newWidth (dou
  % Sets the size of the camera viewing area. 
 
  cameraResizeDisplay(cameraPointer, newWidth, newHeight). 
 
 + to set-position with-x newX (double) with-y newY (double): 
  % Sets the position of the camera viewing area inside the ma
 

 newY).   cameraPositionDisplay(cameraPointer, newX,
 
 + to look at target (vector) from p
  % Moves the camera to position and aims

 % is the target's location <b>relative to the camera</b>, not the  
  % target's "real-world" location. 
 
  cameraPosition(cameraPointe
 
 + to set-z-clip to distance (double): 
  % Sets the Z clipping plan to theDistance.  The Z clipping plan 
  % determines how far the camera can see
  % means that objects far away will not 
  % <p> 
  % The default value is 500.0 and this works well for
  % so there is often no need to use this method. 

 % <p>  
  % Using a 
  % unnecessary rendering and can spe

 % However, it may also cause objects you would like to observe in the  
  % simulation to not be drawn because they a
 
  cameraSetZClip(cameraPointer, distance). 
 
 + to get-rotation: 
  % Returns a vector containing the rotation of 
  % and Y-axes return cameraGetRotation(cameraPointer). 
  return cameraGetRotation(cameraPointer). 
 
 + to set-rotation x rx (float) y ry (float): 
  % Sets the rotation of the camera about the X- and

ry).   cameraSetRotation(cameraPointer, rx, 
 
 - to delete: 
  if !shared: cameraFree(cameraPointer). 
} 
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The Mobile class 

se Re
se Sh e. 
se Me Item.

n the simulated world which move around    
ts.  This is in contrast to  

other er move. 

t will be by default a simple  

rent class OBJECT(Real).  Or  
er with the method METHOD(set-shape). 

r). 

linkAddToWorld(linkPointer). 

obile Object" 

to re t): 

ile is deprecated, use the method 

 deprecated, use the method \"set-

  

ed shape ($theShape)". 

 
. @u al

@u ap
@u nu  
 
Real : Mobile (aka Mobiles) [version 2.2] { 
 % Mobile objects are objects i
 % and interact with other objec
 % OBJECT(Stationary) objects which can collide and interact with  
 %  objects but which nev
 % <P> 
 % When a Mobile object is created, i
 % sphere.  You can change the appearence of this sphere by using 
 % ds in this class, or its pametho
 % you can change the shape altogeth
 
 + variables: 

 worldObjectShape (object).  
  linkPointer (pointer). 
 
  archiveLocation (vector). 
  archiveRotation (matrix). 
  archiveVelocity (vector). 
  archiveRvelocity (vecto
  archiveAcceleration (vector). 
 
  linkForce, linkTorque (vector). 
 
  physicsEnabled (int). 
 

+ to init:  
  e = .2. 
  eT = .5. 
  mu = .2. 
 
  color = (1, 1, 1). 
 
  linkPointer = linkNew(). 
  realWorldPointer = 
 
  self set-shape to (controller get-generic-shape). 
 
 - to get-link-pointer: 
  % For internal use only. 
 
  return linkPointer. 
 

 Shape of a M  + section "Setting the
 
 - gister with-shape theShape (objec

 % Deprecated.  Don't use.  
  print "warning: the method \"register\" of Mob
\"set-shape\" instead". 
 
  self set-shape to theShape. 
 
 - to set shape theShape (object): 
  % Deprecated.  Don't use. 
  print "warning: the method \"set\" of Mobile is
shape\" instead". 
 
  self set-shape to theShape. 
 

+ to set-shape to theShape (object):  
  % Associates a OBJECT(Shape) object with this Mobile object. 

 % Returns this object.  
 
  if !(theShape get-pointer):  
   die "attempt to register Mobile object with uninitializ
 
  if worldObjectShape:  
   self remove-dependency on worldObjectShape. 
 
  worldObjectShape = theShape. 
  self add-dependency on worldObjectShape. 
 
  linkSetShape(linkPointer, (theShape get-pointer)). 
 
  return self. 
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 + to get-shape: 
 % Returns the OBJECT(Shape) associated with this Mobile object.  

 
  return worldObjectShape. 
 
  + section "Configuring Physics Parameters" 
 
 + to enable-physics: 
  % Enables physical simulation for a OBJECT(Mobile) object.   

led for an object, the acceleration  

ter, 0). 

get-mass). 

+ sec

Location. 

inter, newLocation). 

x): 

a more simple 

s object to the Euler angles specified  

e). 

:x)*sin(angles::z). 

ngles::y)*cos(angles::x)*cos(angles::z). 

) ]. 

  % This must be used in conjunction with a  
  % OBJECT(PhysicalControl) object which sets up physical  
  % simulation for the entire world.   
  % <p> 

ysics is enab  % When ph
  % can no longer be assigned manually--it will be computed  
  % from the forces applied to the object. 
 
  physicsEnabled = 1. 
  linkSetPhysics(linkPointer, 1). 
 
 + to disable-physics: 
  % Disables the physical simulation for a OBJECT(Mobile) object. 
 
  physicsEnabled = 0. 
  linkSetPhysics(linkPoin
 
 - to suspend-physics: 
  linkSetPhysics(linkPointer, 0). 
 
 - to resume-physics: 

ysics(linkPointer, physicsEnabled).   linkSetPh
 
 + to get-mass:  
  % Returns the mass of the object. 
 
  return (worldObjectShape 
 
  tion "Controlling the Agent's Motion and Position" 
 
 + to move to newLocation (vector): 
  % Moves this object to location new
 
  if !realWorldPointer: 
   die "attempt to move uninitialized Mobile object.". 
 

cation(linkPo  linkSetLo
 
 + to set-rotation to theRotation (matri

 % Sets the rotation of this object to the rotation matrix theRotation.  
  % Working with matrices can be complicated, so 

 % approach is to use METHOD(rotate).  
 
  linkSetRotationMatrix(linkPointer, theRotation). 
 
 + to set-rotation-euler-angles to angles (vector): 
  % Sets the rotation of thi
  % by angles (in radians). 
   
  m (matrix). 

12, r20, r21, r22 (doubl  r00, r01, r02, r10, r11, r
 
  r00 = cos(angles::z)*cos(angles::x) - cos(angles::y)*sin(angles:
  r01 = cos(angles::z)*sin(angles::x) + cos(angles::y)*cos(angles::x)*sin(angles::z). 
  r02 = sin(angles::z)*cos(angles::y). 
  

 r10 = -sin(angles::z)*cos(angles::x) - cos(angles::y)*sin(angles::x)*cos(angles::z).  
  r11 = -sin(angles::z)*sin(angles::x) + cos(a

 r12 = cos(angles::z)*sin(angles::y).  
 
  r20 = sin(angles::y)*sin(angles::x). 
  r21 = -sin(angles::y)*cos(angles::x). 
  r22 = cos(angles::y). 
 
  m = [ ( r00, r01, r02 ), ( r10, r11, r12 ), ( r20, r21, r22 
 

.   self set-rotation to m
 
 - to rotate around-axis thisAxis (vector) by amount (float): 
  % Deprecated.  Renamed to METHOD(set-rotation). 
 
  self set-rotation around-axis thisAxis by amount. 
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+ to set-rotation around-axis thisAxis (vector) by amount (float):  

  % Sets the rotation of this object around vector axis thisAxis  
 % by scalar amount (in radians).  This is an "absolute" rotation--the   

  % current rotation of the object does not affect how the  
  % object will be rotated.  For a rotation relative to the  
  % current orientation, set METHOD(relative-rotate). 

sAxis, amount). 

xis (vector) by amount (float): 
 thisAxis  

, amount). 

to po ): 
rotates  

, points towards 

o face, and theVertex indicates  
nt". 

s v by a. 

  % This method has no effect if physical simulation is turned  
  % on for the object, in which case the physical simulation  
  % engine computes acceleration. 
 
  linkSetAcceleration(linkPointer, newAcceleration). 
 
 + to set-rotational-acceleration to newAcceleration (vector): 
  % Sets the rotational acceleration of this object to  
  % newAcceleration.  This method has no effect if physical  
  % simulation is turned on for the object, in which case the  
  % physical simulation engine computes acceleration. 
 

   
  length (float). 
 
  # normalize the axis 
 
  length = |thisAxis|. 
 
  if length == 0.0: return. 

 thisAxis /= length.  
 
  linkSetRotation(linkPointer, thi
 
 + to relative-rotate around-axis thisA
  % Sets the rotation of this object around vector axis
  % by scalar amount (in radians).  This is a rotation relative to the  
  % current position. 
 
  length (float). 
 
  # normalize the axis 
 
  length = |thisAxis|. 
 
  linkRotateRelative(linkPointer, thisAxis
 
 + int vertex theVertex (vector) at theLocation (vector

on   % An easier way to rotate an object--this functi
 point theVertex  % an object such that the local

 % the world direction theLocation.  In other words, theLocation  
  % is where you want the object t
  % which side of the object is to be considered the "fro
 
  v (vector). 
  a (float). 
 
  v = cross(theVertex, theLocation). 
  a = angle(theVertex, theLocation). 
 
  if |v| == 0.0: { 
   self rotate around-axis theVertex by 0.01. 
   return. 

 }  
 

i  self rotate around-ax
 
 + to get-location: 
  % Returns the vector location of this object.  
 
  return linkGetLocation(linkPointer). 
 
 + to get-rotation: 
  % Returns the matrix rotation of this object.  
 
  return linkGetRotation(linkPointer). 
 
 + to offset by amount (vector): 
  % Moves this object by amount, relative to its current position. 
 

 amount).   linkSetLocation(linkPointer, (self get-location) +
 
 + to set-acceleration to newAcceleration (vector): 

 % Sets the acceleration of this object to newAcceleration.  
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  linkSetRotationalAcceleration(linkPointer, newAcceleration). 

et-acceleration: 
% Returns the vector acceleration of this object. 

linkGetAcceleration(linkPointer). 

+ to set-velocity to newVelocity (vector): 

alWorldPointer: { 

rn. 

locity(linkPointer, newVelocity). 

newForce (vector): 

e will remain in effect until it is disabled with a  
 % new call to METHOD(set-force). 

 called with uninitialized Mobile object". 
n. 

ce. 

kPointer, linkForce). 

n the object, which was previously  
).   

+ to set-torque to newTorque (vector): 

ill remain in effect until it is disabled with a  
 % new call to METHOD(set-torque). 

bject". 

 (vector): 

% angularVelocity. 

elocity(linkPointer, angularVelocity). 

+ to get-velocity: 
 % Returns the vector velocity of this object. 

 return linkGetVelocity(linkPointer). 

+ to get-rotational-velocity: 
lar velocity of this object. 

t): 
ce from this object's center to  

rld coordinate frame to a  

 
 + to g

  
 
  return 
 
 
  % Sets the velocity of this object to newVelocity. 
 
  if !re
   print "set-velocity called with uninitialized Mobile object". 
   retu
  } 
 
  linkSetVe
 
 + to set-force to 

 % Sets the velocity acting on the object to newForce.  This   
  % forc
 
 
  if !linkPointer: { 
   print "set-force
   retur
  } 
 
  linkForce = newFor
 
  linkSetForce(lin
 
 + to get-force: 
  % Returns the force acting o
  % set using METHOD(set-force
 

return linkForce.   
 
 
  % Sets the torque acting on the object to newTorque.  This  
  % torque w
 
 
  if !linkPointer: { 
   print "set-torque called with uninitialized Mobile o
   return. 
  } 
 

linkTorque = newTorque.   
 
  linkSetTorque(linkPointer, linkTorque). 
 
 + to get-torque: 
  % Returns the torque acting on the object, which was previously  
  % set using METHOD(set-torque).   
 
  return linkTorque. 
 

Velocity + to set-rotational-velocity to angular
% Sets the rotational velocity of this object to    

  
 
  linkSetRotationalV
 
 
 
 
 
 
 
  % Returns the vector angu
 
  return linkGetRotationalVelocity(linkPointer). 
 

from otherObject (objec + to get-distance 
  % Returns the scalar distan
  % otherObject. 
 
  return | (self get-location) - (otherObject get-location) |. 
 
 + to transform world-vector theVector (vector): 
  % Transforms theVector in the wo
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  % vector in the frame of this object.   

ctive(linkPointer, theVector). 

maximum: 
s the vector representing the maximum X, Y and Z locations of 

and Z locations of 

t's Appearence" 

linkSetLabel(linkPointer, theLabel). 

 drawn next to an object. 
). 

tation = (self get-rotation). 

archiveRvelocity = (self get-rotational-velocity). 
acceleration). 

dPointer = linkAddToWorld(linkPointer). 
-shape to worldObjectShape. 

self move to archiveLocation. 

celeration. 

% Depricated. 
). 

% Returns a list of objects currently colliding with this object. 

roublesome 

his is not meant as a general purpose collision 
eant to detect potentially troublesome 
hen they are created. 

eckSelfPenetration(linkPointer). 

 
  return vectorFromLinkPerspe
 
 + to get-bound-
  % Return
  % points on this link. 
 

kGetMax(linkPointer).   return lin
 
 + to get-bound-minimum: 
  % Returns the vector representing the minimum X, Y 
  % points on this link. 
 
  return linkGetMin(linkPointer). 
 
 
  + section "Changing an Objec
 
 + to set-label to theLabel (string): 
  % Sets the label to be drawn along side the object. 
 
  
 
 + to remove-label: 

the label that would be  % Removes 
  linkRemoveLabel(linkPointer
 
 - to archive: 
  archiveLocation = (self get-location). 
  archiveRo

archiveVelocity = (self get-velocity).   
  

  archiveAcceleration = (self get-
per archive).   return (su

 
 - to dearchive: 
  linkPointer = linkNew(). 
  realWorl
  self set
  
  self set-rotation to archiveRotation. 
  self set-velocity to archiveVelocity. 

chiveRvelocity.   self set-rotational-velocity to ar
  self set-acceleration to archiveAc

dearchive).   return (super 
 
  + section "Determining Whether an Object is Colliding" 
 

o check-for-penetrations:  - t
  
  return (self get-colliding-objects
 
 + to get-colliding-objects: 
  
  % This is not meant as a general purpose collision 
  % detection tool -- it is meant to detect potentially t
  % configurations of links when they are created. 
 
  return linkGetPenetratingObjects(linkPointer). 
 

o check-for-self-penetrations:  + t
  % Determines whether this link is currently penetrating with other links 
  % in the same multibody.  T
  % detection tool -- it is m

s w  % configurations of link
 
  return linkCh
} 
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The 000abstract class 
 
@use Object. 
 
 
Object: MyAbstract { 
 
 
 
+ to listExperts: 
    experts (list). 
 

 exper   ts{0}="sphere". 
  experts{1}="cone". 

    experts{3}="red". 
    experts{4}="blue". 
    experts{5}="green". 
     
    return experts. 
 
 
+ to lookupNames with indexes (list): 
    lookupNames,temp,experts (list). 
    m,n,a,b (int). 
    namea, nameb (string). 
     
    experts=(self listExperts). 
 
    for m=0,m<|indexes|,m++:{ 
        temp={}. 
        for n=0,n<|indexes{m}|,n++:{ 
            namea=experts{indexes{m}{0}}. 
            nameb=experts{indexes{m}{n}}. 
            push "$namea $nameb" onto temp. 
        } 
        push temp onto lookupNames. 
    } 
     
    return lookupNames. 
 
 
    #return the location (vector) of the closest agent 
    + to askExpert_a with agentsInSight (list) from myLocation (vector): 
        agent (object). 
        closestLocation (vector). 
        closestDistance, difference (float). 
         
        closestLocation = (myLocation). # returning itself if no objects insight, meaning standing 
still 
        closestDistance = 1000.0. 
        difference = 1000.0. 
         
        foreach agent in agentsInSight:{ 
            difference = |(myLocation)-(agent get-location)|. 
            if(difference<closestDistance):{ 
                closestLocation = agent get-location. 
                closestDistance = difference. 
            } 
        } 
 
        return closestLocation. 
 
 
 
 
 
 
 
   +  to printText with text (string): 
        print text. 
         
    + to findSpheres with agentsInSight (list): 
        agent (object). 
        spheres (list). 
        foreach agent in agentsInSight:{ 
            if((agent getShape)=="sphere"): push agent onto spheres. 
        } 
        return spheres. 
 
    + to findCones with agentsInSight (list): 

  
    experts{2}="disk". 
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        agent (ob
      cones (l

ject). 
ist).         

ight:{ 
"cone"): push agent onto cones. 

InSight (list): 

sInSight:{ 
)=="disk"): push agent onto disks. 

nSight (list): 

 
sInSight:{ 

or)::x==1): push agent onto reds. 

  + to findGreens with agentsInSight (list): 

agentsInSight:{ 
color)::y==1): push agent onto greens. 

  + to findBlues with agentsInSight (list): 
      agent (object). 

      foreach agent in agentsInSight:{ 
          if((agent get-color)::z==1): push agent onto blues. 

fish in somewhat ordered form according to distance (close, medium, far) 
 of expert_a 

nSight (list): 

mList,farList (list). 

t_d). 

= (controller vision_expert_d)/4. 

nSight:{ 
(agent get-location)|. 

getList. 

eturn targetList. 

ject): 
ish: velocity, shape, color, location 
 (int). 

x. 

f(red+sphere == 2): return -1. 

  
        foreach agent in agentsInS

)==            if((agent getShape
        } 
        return cones. 
 
    + to findDisks with agents
        agent (object). 
        disks (list). 
        foreach agent in agent
            if((agent getShape
        } 
        return disks. 
         
    + to findReds with agentsI
        agent (object). 
        reds (list).        
        foreach agent in agent
            if((agent get-col
        } 
        return reds. 
 
         
  
        agent (object). 
        greens (list). 

n         foreach agent i
            if((agent get-
        } 

 greens.         return
         
 
  
  
        blues (list). 
  
  
        } 
        return blues. 
         
         
     # returning lists of 

ded version    # an exten
    + to askExpert_d with agentsI
        agent (object). 
        difference (float). 
        targetList,closeList,mediu
        closeView,mediumView,farView (float). 
         

         
        farView = (controller vision_exper
        mediumView = (controller vision_expert_d)/2. 
        closeView 
         
         
        foreach agent in agentsI
            difference = |(self get-location)-
            if(difference<closeView): push agent onto closeList. 
            else: if(difference<mediumView): push agent onto mediumList. 
            else: if(difference<farView): push agent onto farList. 
        } 
         
        push closeList onto targetList. 

argetList.         push mediumList onto t
h farList onto tar        pus

         
      r  

        
     + to checkPoison with fish (ob
        #variables that makes up the f
        red,blue,green,cone,sphere,disk
        { 
        red=(fish get-color)::
        blue=(fish get-color)::y. 
        green=(fish get-color)::z. 
        cone=(fish getShape)=="cone". 
        sphere=(fish getShape)=="sphere". 
        disk=(fish getShape)=="disk". 
 
        #i
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        if(green == 1): return -1. 

      
 otherMobile (object) from mySelf (object): 
ctor). 

Mobile get-location) - (mySelf get-location). 
 get-velocity), tempVector). 

 
turn 1.         re

        }        
         
   
    + to get-angle to
        tempVector (ve
         
        tempVector = (other
        return angle((mySelf
         
} 
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The Agent class 
 
@define PI              3.14159. 
@define SIZE_WORLD      150. 
@define MINFISH         80. 
@define MAXFISH         160. 
@define MINAGE          100. 
@define MAXAGE          200. 
@define PROB_RED        0.5. 
@define PROB_GREEN      0.5. 
@define PROB_BLUE       0.5. 

0. @define PROB_DISK       1.
@define PROB_CONE       0.66. 
@define PROB_SPHERE     0.33. 
@define SPEED_FISH      0.1. 
@define SPEED_AGENT     3.5. 
@define TABULARASA      1. 
@define READINPUT       0. 
@define THRESHOLD    

e RL_INCREMENT
   0.3. 

   0.1. 

e RUNTIMES       10. 

 
 
 
Controller myControl. 
 
 
 
Control : myControl { 
    + variables: 
        myAgent (object). 
        runNumber (int). 
       
   + to init: 
        (random[20]+1) new Fish. 
        runNumber=1. 
        myAgent = new JamesBond. 
        self point-camera at (0, 0, 0) from (SIZE_WORLD/2,SIZE_WORLD/2,SIZE_WORLD). 
        self displayText with runNumber. 
  
    + to displayText with text (string): 
        self set-display-text to text at-x -.95 at-y -.95.  

        newInt (int). 
        self update-neighbors. 
        super iterate. 
        myAgent doNext. # here it all happens 
        #self point-camera at (myAgent get-location) from (SIZE_WORLD/6,SIZE_WORLD/6,SIZE_WORLD/3). 
        #self point-camera at (myAgent get-location) from (0,0,0). 
        #self watch item myAgent. 
        if(|all Mobile|<MINFISH):{ 
            newInt = MAXFISH - |all Mobile|. 
            newInt new Fish. 
        } 
         
 
        if((myAgent get-age)>RUNLENGTH):{ 
            myAgent recordValues. 
            # pause simulation 
            self sleep for-seconds 5. 
            runNumber++. 
            free all Mobile. 
            free myAgent. 
            if(runNumber>RUNTIMES): self end-simulation. 
            (random[20]+1) new Fish. 
            myAgent = new JamesBond. 
            self displayText with runNumber. 
        } 
         

@defin
@define RUNLENGTH      800. 
@defin
@define PRINTING       (0,0,0).  
@define STRATEGY       1. 
 
 

 "Stationary.tz" @include
@include "Control.tz" 
@include "Mobile.tz" 
@include "000abstract.tz" 
@use Object. 
@use File.  

 
    + to iterate: 
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    + to pause: 
        self sleep for-seconds 4. 
         
    + to runNumber: 
        return runNumber. 
} 
 
Mobile : JamesBond { 
+ variables: 
    energi (float). 
    output,input (object). 
    good,bad,lost (int). 
    lastVelocity,experts,lookupTable,lookupNames,lastAgreementAgents (list). 
    namesLookupTable (hash). 
    myAbstract (object). 
    lockedTarget,lastIndex (int). 
    lockedObject (object). 
          
+ to recordValues: 
    count,minicount (int). 
    namea,nameb,joint,tekst (string). 
    { #START: saves the learned values stored in namesLookupTable to the file "output.txt". 
    input open-for-appending with-file "output.txt". 
    for count=0,count<|experts|,count++:{ 
        for minicount=count,minicount<|experts|,minicount++:{ 
         namea=experts{count}. 
         nameb=experts{minicount}. 
         joint = "$namea $nameb". 
         #input write-line text "$joint". 
         tekst = namesLookupTable{joint}. 
         input write-line text "$joint=$tekst". 
        } 
    } 
    count=(controller runNumber). 
    joint="Finished run $count". 
    input write-line text joint. 
    input close. 
    } #END ----------------------------------------------------------- 
 
+ to updateLookupTable with feedback (int): 
    count (int). 
    namea (string). 
    valueb (float). 
    changes (list). 
    tekst (string). 
    change (float). 
     
    { #START: Updates the values stored in namesLookupTable 
        if(PRINTING): print "feedback: $feedback". 
        for count=0,count<|lastAgreementAgents|,count++:{ 
            namea=lastAgreementAgents{count}. 
            tekst= namesLookupTable{namea}. 
            #change=max((1-|namesLookupTable{namea}|),RL_INCREMENT). 
            change=RL_INCREMENT. 
            #print "change $change". 
            if(PRINTING):printf "enige om målet: $namea",namesLookupTable{namea},"->". 
            #if(feedback>0): 
namesLookupTable{namea}=(min((RL_INCREMENT*feedback)+namesLookupTable{namea},1)). 
            #if(feedback<0): 
namesLookupTable{namea}=(max((RL_INCREMENT*feedback)+namesLookupTable{namea},-1)). 
            if(feedback>0): 
namesLookupTable{namea}=(min((change*feedback*3)+namesLookupTable{namea},1)). 
            if(feedback<0): 
namesLookupTable{namea}=(max((change*feedback)+namesLookupTable{namea},-1)). 
            if(PRINTING):print namesLookupTable{namea}. 
            #print change. 
        } 
    #print "- - - -". 
    # keep a backup-file 
    # self copyBackup with (controller get-real-time). 
     
    #update the file to the newlearned values    
    #self setValuesToFile.     
     
    } #END ----------------------------------------------------------- 
  
  
 
+ to getFishData with fish (object): 
    shape,color (string). 
    { #START: Returns the characteristics of the fish. Used for printing during simulation. 
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    shape=(fish getShape). 
    if ((fish get-color)::x)==1: color="red,$color". 
    if ((fish get-color)::y)==1: color="green,$color". 
    if ((fish get-color)::z)==1: color="blue,$color". 
     
    return "$shape($color)". 
    } #END ----------------------------------------------------------- 
 
+ to kill with fish (object): 
    rewardSignal (int).  
    history,fishInfo,namea,nameb,name (string). 
    myage,count,m (int). 
    procent (float). 
    { #START: Calls the method (self updateLookupTable with rewardSignal), sets the parameter 
lockedTarget to -1., frees the fish 
    if(PRINTING):print "- - -". 
    #rewardSignal=(myAbstract checkPoison with fish). # negative rewardSignal means poison, 
punishment 
    rewardSignal=1. 
     
    # colors: x::red y::green z::blue 
     
  
   #if((fish get-color)::x==1):{ #red sphere 
    #    if((fish getShape)=="sphere"): rewardSignal=-1. 
            #rewardSignal=-1. 
    #} 
 
   if((fish get-color)::x==1):{ #red sphere 
        if((fish getShape)=="cone"): rewardSignal=-1. 
        if((fish getShape)=="disk"): rewardSignal=-1. 
            #rewardSignal=-1. 
   } 
 
   if((fish get-color)::z==1):{ # 
        if((fish getShape)=="cone"): rewardSignal=-1. 
   }   
 
 
 
 
    if(rewardSignal>0): good++. 
    else:{ 
        bad++. 
        #print "BAD BAD BAD". 
    } 
    energi+=rewardSignal. 
     
    self updateLookupTable with rewardSignal. 
     
    #myAbstract printText with "fish has been killed.". 
    #myage=(self get-age). 
    fishInfo=(self getFishData with fish). 
    #if(rewardSignal==-1): print "FASIT: cone(red) HIT: $fishInfo". 
    history = "$good;good;$bad;bad". 
    output open-for-appending with-file "output.txt". 
    output write-line text "$history". 
    output close. 
    lockedTarget=-1. 
    free fish. 
    #self move to (0,0,0). 
    if(bad>0): procent=(good+0.0)/(bad+0.0). 
    controller displayText with "$good:$bad $procent". 
 
    if((bad+good)%50==0):{ 
        for count=0,count<|experts|,count++:{ 
            for m=count,m<|experts|,m++:{ 
                namea=experts{count}. 
                nameb=experts{m}. 
                namea="$namea $nameb". 
                print "$namea",namesLookupTable{"$namea"}.             
            } 
        } 
    } 
 
    } #END ----------------------------------------------------------- 
 
+ to doNext: 
    fish (object). 
    neighbors,spheres,cones,disks,reds,greens,blues,filteredInput,indexMoves,matchingMoves,temp, 
lookupValues (list). 
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    velocity_new,expertA,tempMove (vector). 
    n,m,count (int). 
    tempIndex (int). 
    hashMove (hash). 
    chooseMe (int). # the index pointing to the best choice according to the lookupTable 
    chooseLocal,chooseBest,tempMin,tempMax,float_max,float_min (float). 
    namea,nameb (string). 
    accelerate (int). 
    chooseAmongThese (list). 
 
         
    accelerate = 1. 
         
    { #START 1 filteredInput(e):      the input goes through the experts, storing filtered input 
signals 
    # getting all the agents that are in the neighborhood, aka the whole world. 
    foreach fish in (self get-neighbors): if !(fish == self): push fish onto neighbors. 
 
 
    #Transforms raw input into filteredInput (list) containing objects indexed by n (number of 
experts) aka expert 
    spheres=(myAbstract findSpheres with neighbors). 
    cones=(myAbstract findCones with neighbors). 
    disks=(myAbstract findDisks with neighbors). 
    reds=(myAbstract findReds with neighbors). 
    blues=(myAbstract findBlues with neighbors). 
    greens=(myAbstract findGreens with neighbors). 
     
    push spheres onto filteredInput. 
    push cones onto filteredInput. 
    push disks onto filteredInput. 
    push reds onto filteredInput. 
    push blues onto filteredInput. 
    push greens onto filteredInput. 
    } #END 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
         
    { #START 2 lastVelocity(e):       Caculates next suggested velocity 
    # containing vectors 
    # indexed by n (number of experts) aka expert 
 
    # doing it simple, finding the closest target relative to itself within each expert-given data 
    for n=0,n<|experts|,n++:{ 
        tempMove=((self askExpert_a with filteredInput{n})-(self get-location)). 
        if(tempMove):tempMove=(tempMove/|tempMove|)*SPEED_AGENT. 
        lastVelocity{n}=tempMove.       #used in lookuptable when receiving feedback 
    } 
    } #END 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
    { #START 3 indexMoves(eu):        eu indicates a sample of a unique move. contains min 1, max 6 
elements 
    #Find one unique example of each move indexMoves (list)  
    # containing ints matching index in lastVelocity 
    # indexed by m 
 
     for n=0,n<|lastVelocity|,n++:{        # index n saved in list indexMoves 
        if(!hashMove{lastVelocity{n}}):{ 
            hashMove{lastVelocity{n}}=1. 
            push n onto indexMoves. 
        } 
    } 
    } #END 3- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
    { #START 4 matchingMoves(eu):     each unique move is mapped against the matching expert e  
      # for instance: eu(1): e1,e3 
      #               eu(2): e2 
      #               eu(3): e4,e5,e6 
      # saving a list temp (with all matching indexes) in a list matchingMoves{index} where index 
is in same order as indexMoves  
      for m=0,m<|indexMoves|,m++:{       
            temp={}. 
            for count=0,count<|lastVelocity|,count++:{ 
                if(lastVelocity{count}==lastVelocity{indexMoves{m}}): push count onto temp. 
            } 
            push temp onto matchingMoves. 
      } 
    } #END 4- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
    { #START 5 lookupNames(eu):       the same as matchingMoves, only replacing ints with actual 
names of experts 
    #Make a list of lookupNames (list) with strings identifying the hash indexes of matching moves 
    # containing a list of strings 
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    # indexed by m 
    lookupNames = (myAbstract lookupNames with matchingMoves). 
     
     
    if(1==-1):{                     # printing out values - strings - in lookupNames 
        print "_______________________". 
        for n=0,n<|lookupNames|,n++:{ 
            printf n. 
            for m=0,m<|lookupNames{n}|,m++:{ 
                printf " ",lookupNames{n}{m}. 
            } 
            print "". 
        }         
    } 
 
    if(1==-1):{                     # printing integrity of the values so far 
        print "Verifying integrity of the values so far". 
        for count=0,count<|experts|,count++: print experts{count},count,lastVelocity{count}. 
        for count=0,count<|indexMoves|,count++:{ 
            printf experts{indexMoves{count}},count,indexMoves{count},"ints: ". 
            for n=0,n<|matchingMoves{count}|,n++:{ 
                printf matchingMoves{count}{n},"names: ". 
                printf lookupNames{count}{n}. 
            } 
            print "". 
        } 
    } 
    } #END 5- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
     
    { #START 6 lookupVales(eu):       min and max value in lookuptable for each unique move 
    #Find max and min value in lookupTable for each matchingMoves matchingMovesCred (list) (aka 
experts agreement matrix) 
    # containing a list with pairs of ints, max and min value found in lookuptable 
    # indexed by m 
 
    lookupValues={}. 
    for n=0,n<|lookupNames|,n++:{ 
        tempMin=2.0. 
        tempMax=-2.0. 
        for m=0,m<|lookupNames{n}|,m++:{ 
            namea=lookupNames{n}{m}. 
            if(1==-1):print "Unique move number $n, agreement number $m named $namea has value 
",namesLookupTable{namea}. 
            tempMin=min(tempMin,namesLookupTable{namea}). 
            tempMax=max(tempMax,namesLookupTable{namea}). 
        } 
        push {tempMin,tempMax} onto lookupValues.        
    } 
    if(1==-1):{                     # printing values 
        for n=0,n<|lookupValues|,n++:{ 
            print "AGAIN, unique 
move",n,"min",lookupValues{n}{0},"max",lookupValues{n}{1},lastVelocity{indexMoves{n}},experts{index
Moves{n}}. 
        } 
    } 
 
    } #END 6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
    { #START 7 chooseMe:              decide on target. If no target is locked from before, decide 
on new target 
    if(STRATEGY==0):{ # choose the one with the highest max score        
        float_max=lookupValues{0}{1}. 
        chooseMe=0. 
        for count=0,count<|lookupValues|,count++:{ 
            if(lookupValues{count}{1}>float_max):{ 
                float_max=lookupValues{count}{1}. 
                chooseMe=count. 
            } 
        } 
    } 
 
    if(STRATEGY==1):{ # choose the one with the lowest max score        
        float_min=lookupValues{0}{1}. 
        chooseMe=0. 
        for count=0,count<|lookupValues|,count++:{ 
            if(lookupValues{count}{1}<float_min):{ 
                float_min=lookupValues{count}{1}. 
                chooseMe=count. 
            } 
        } 
    } 
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    if(STRATEGY==2):{ # choose the one with the highest min score        
        float_max=lookupValues{0}{0}. 
        chooseMe=0. 
        for count=0,count<|lookupValues|,count++:{ 
            if(lookupValues{count}{0}<float_max):{ 
                float_max=lookupValues{count}{0}. 
                chooseMe=count. 
            } 
        } 
    } 
 
 
     
    } #END 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
     
     
   
    chooseAmongThese={}. 
    # if m gets a non-negative value, then some available values needs to be learned 
    m=-1. 
    for n=0,n<|lookupValues|,n++:{ 
        if(|lookupValues{n}{0}|<THRESHOLD):{ 
            m=n. 
            #print "need to learn $n". 
            push n onto chooseAmongThese. 
        } 
        if(|lookupValues{n}{1}|<THRESHOLD):{ 
            m=n. 
            #print "need to learn $n". 
            push n onto chooseAmongThese. 
        } 
    } 
     
 
 
     
    # if m<0, means all values available has been learned, then exploit information 
    if(m==-1):{ 
        chooseAmongThese={}. 
        m=0. 
        tempMax=-2.0. 
        for n=0,n<|lookupValues|,n++:{ 
            #if(lookupValues{n}{1}>tempMax && lookupValues{n}{0}>THRESHOLD):{ 
            if(lookupValues{n}{0}>THRESHOLD && lookupValues{n}{1}>tempMax):{ 
                tempMax=lookupValues{n}{1}. 
                m=n. 
                #push n onto chooseAmongThese. 
            } 
        } 
        push m onto chooseAmongThese. 
        #print "don't need learning, expected min",lookupValues{m}{0},"max",lookupValues{m}{1}. 
         
    } 
 
    # stay focused if target has been locked, and there still exists fish of this kind 
    if(lockedTarget>-1 && |filteredInput{lockedTarget}|>0):{ 
        tempMove=lastVelocity{lockedTarget}. 
        accelerate=10. 
    }else:{ 
        if |chooseAmongThese|>0:{ 
            count=random[|chooseAmongThese|]. 
               
            if count==|chooseAmongThese| && count>0:count--. 
         
            m=chooseAmongThese{count}. 
        } 
        #print m. 
        #print count,"<",|chooseAmongThese|. 
        #count=(random[count]). 
        #count=random(|chooseAmongThese|). 
         
        #print "random",count. 
        #for count=0,count<|chooseAmongThese|-1,count++:{  
        #    print "$count",chooseAmongThese{count}. 
        #} 
        #print "value stored",chooseAmongThese{count}. 
        #if(count>|chooseAmongThese|):count--. 
        #m=chooseAmongThese{count}. 
            tempMove = lastVelocity{indexMoves{m}}.  
            lockedTarget=m. 
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            lastAgreementAgents=lookupNames{m}. 
            lastIndex=m. 
         
         
    } 
      
    # testing if tempMove scores bad on the lookupTable 
       
    #controller displayText with experts{indexMoves{m}}. 
    expertA=tempMove. 
       
    #print "choosing expert $maxNumber". 
    velocity_new=expertA. 
    #(controller displayText with experts{maxNumber}). 
         
         
    if(|velocity_new|>0):{ 
        self set-velocity to ((velocity_new/|velocity_new|)*SPEED_AGENT*accelerate). 
        self point vertex (0, 1, 0) at (self get-velocity)/|(self get-velocity)|. 
    } else: { 
        self set-velocity to tempMove. 
    } 
     
     
    # sending the agent back to the centrum if too far off. 
    if (|(self get-location)|>SIZE_WORLD*2):{ 
        (self move to (0,0,0)). 
        lockedTarget=-1. 
        #lastIndex=-1. 
    } 
     
 
     
         
+ to get-angle to otherMobile (object): 
    tempVector (vector). 
    { #START 
        tempVector = (otherMobile get-location) - (self get-location). 
        return angle((self get-velocity), tempVector). 
    } #END 
 
+ to findSmallestIndex with targets (list): 
   location (vector). 
    count,smallest (int). 
    distance (float). 
    { #START 
    distance=SIZE_WORLD*4. 
    foreach location in targets:{ 
        if(|location - (self get-location)|<distance):{ 
            distance=|location - (self get-location)|. 
            smallest=count. 
        } 
        count++. 
    } 
    return smallest. 
    } #END 
 
#return the location (vector) of the closest agent 
+ to askExpert_a with agentsInSight (list): 
    agent (object). 
    closestLocation (vector). 
    closestDistance, difference (float). 
    { #START 
    closestLocation = (self get-location). # returning itself if no objects insight, meaning 
standing still 
    closestDistance = 1000.0. 
    difference = 1000.0. 
     
    foreach agent in agentsInSight:{ 
        difference = |(self get-location)-(agent get-location)|. 
        if(difference<closestDistance):{ 
            closestLocation = agent get-location. 
            closestDistance = difference. 
        } 
    } 
 
    return closestLocation. 
    } #END 
 
+ to init:  
    runNumber (int). 
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    count,minicount (int). 
    RLrows (int). 
    namea,nameb,name (string). 
    poisonList (list). 
    initialValue (float). 
    { #START 
     
    myAbstract = new MyAbstract. 
 
    #myExpert = new ExpertDef. 
    output = (new File). 
    input = (new File). 
     
    runNumber=(controller runNumber). 
    print "Now doing runNumber $runNumber". 
     
    output open-for-appending with-file "output.txt". 
    output write-line text "***************************************". 
    output write-line text " run $runNumber - high level abstraction". 
    output write-line text "". 
    output close. 
     
    #output open-for-appending with-file "output.txt". 
    #input open-for-reading with-file "input.txt". 
    self set-shape to (new PolygonCone init-with radius 0.5 sides 6 height 1.0). 
    self set-neighborhood-size to SIZE_WORLD*3. 
    self set-color to (1, 1, 1). # white  (red ,green ,blue) 
    self move to (20,20,20). 
    energi = 1000.0. 
    print "... and action!". 
    self handle-collisions with-type "Fish" with-method "kill". 
     
    experts{0}="sphere". 
    experts{1}="cone". 
    experts{2}="disk". 
    experts{3}="red". 
    experts{4}="blue". 
    experts{5}="green". 
 
    for count=|experts|, count>0, count--: { 
        RLrows+=count. 
        push (0.0,0.0,0.0) onto lastVelocity. 
    } 
      
    
   if(READINPUT==1): (self getValuesFromFile). 
   if(READINPUT==0):{ 
        for count=0,count<|experts|,count++:{ 
            for minicount=count,minicount<|experts|,minicount++:{ 
                namea=experts{count}. 
                nameb=experts{minicount}. 
                 
                #print "$namea $nameb". 
                if(TABULARASA==1): namesLookupTable{"$namea $nameb"}=0.0. 
                else :{ 
                    namesLookupTable{"$namea $nameb"}=(random[0.75] - 0.25). 
                     
                } 
            } 
        } 
    } 
 
    #(self setValuesToFile). 
     
    if(1==1):{ 
        for count=0,count<|experts|,count++:{ 
            for minicount=count,minicount<|experts|,minicount++:{ 
                namea=experts{count}. 
                nameb=experts{minicount}. 
                name="$namea $nameb". 
                print "$name",namesLookupTable{"$name"}.             
            } 
        } 
    } 
    } #END 
 
 
# (controller get-real-time): add to name when saving a copy of previous files. 
 
 
+ to copyBackup with name (string): 
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    count,minicount (int). 
    newName,namea,nameb,joint (string). 
    newName="$name backup.txt". 
     
    input open-for-writing with-file "$newName". 
    for count=0,count<|experts|,count++:{ 
        for minicount=count,minicount<|experts|,minicount++:{ 
             namea=experts{count}. 
             nameb=experts{minicount}. 
             joint = "$namea $nameb". 
             input write-line text "$joint". 
             joint = namesLookupTable{joint}. 
             input write-line text "$joint". 
        } 
    } 
    input close. 
#        output open-for-appending with-file "output.txt". 
#        output write-line text "$history". 
#        output close. 
     
 
+ to setValuesToFile: 
    count,minicount (int). 
    namea,nameb,joint (string). 
    input open-for-writing with-file "input.txt". 
    for count=0,count<|experts|,count++:{ 
        for minicount=count,minicount<|experts|,minicount++:{ 
             namea=experts{count}. 
             nameb=experts{minicount}. 
             joint = "$namea $nameb". 
             input write-line text "$joint". 
             joint = namesLookupTable{joint}. 
             input write-line text "$joint". 
        } 
    } 
    input close. 
#        output open-for-appending with-file "output.txt". 
#        output write-line text "$history". 
#        output close. 
     
+ to getValuesFromFile: 
    name (string). 
    value (float). 
    count (int). 
 
    input open-for-reading with-file "input.txt".     
 
    while((input is-end-of-file)==0):{ 
        count++. 
        name=(input read-line). 
        value=(input read-line). 
        if(name && value):{ 
            namesLookupTable{"name"}=value. 
            if(1==-1):{ 
                print name,namesLookupTable{"name"}. 
            } 
        } 
    } 
    input close. 
     
    #(controller pause). 
     
} 
Mobile : Fish { 
    + variables: 
        myColor (vector). 
        maxAge (int). 
        myHeight (float). 
        myRadius (float). 
        myShape (string). 
        number (float). 
 
    + to init: 
        startSpeed (vector). 
        rand (float). 
         
        myRadius = 0.5. 
        myHeight = 1.0. 
        myColor=(0.0,0.0,0.0). 
        maxAge=random[MAXAGE - MINAGE] + MINAGE. 
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        #rand=random[1.0]. 
        #myColor=(0,0,1). 
        #if(rand<0.33): myColor=(1,0,0). 
        #if(rand>0.66): myColor=(0,1,0). 
        if(random[1.0]<PROB_RED): myColor = myColor+(1,0,0). #  red | green | blue 
        if(random[1.0]<PROB_GREEN): myColor = myColor+(0,1,0). #  red | green | blue 
        if(random[1.0]<PROB_BLUE): myColor = myColor+(0,0,1). #  red | green | blue 
         
        number=random[1.0]. 
 
        myShape="disk". 
        self set-shape to (new PolygonDisk init-with radius myRadius sides 3 height myHeight). 
   
        if(number<PROB_CONE):{ 
            myShape="cone". 
            self set-shape to (new PolygonCone init-with radius myRadius sides 3 height myHeight). 
        } 
        if(number<PROB_SPHERE): { 
            myShape="sphere". 
            self set-shape to (new Sphere init-with radius myRadius). 
        } 
     
         
         
         
        self set-color to myColor. 
        self move to random[(SIZE_WORLD,SIZE_WORLD,SIZE_WORLD)]-
((SIZE_WORLD/2),(SIZE_WORLD/2),(SIZE_WORLD/2)). 
        startSpeed =(random[(1,1,1)]-(0.5, 0.5, 0.5)). 
        self set-velocity to (startSpeed/|startSpeed|)*SPEED_FISH. 
         
        #print "New fish has entered the world, lifespan $maxAge". 
 
     + to iterate: 
        oldS,newS (vector). 
         
 
        oldS = self get-velocity.          
        newS = (oldS +random[(2,2,2)]-(1,1,1)). 
        if(random[5]<2 && newS): self set-velocity to ((newS/|newS|)*SPEED_FISH). 
        if(|(self get-location)|>(SIZE_WORLD)) : { 
            self set-velocity to (self get-velocity)*-1. 
        } 
         
        if(self get-velocity):self point vertex (0, 1, 0) at (self get-velocity)/|(self get-
velocity)|. 
 
        if((self get-age)>(maxAge)):{ 
            #print "tired of waiting, disappear!!!!". 
            free self. 
        } 
 
    + to getShape: return myShape. 
}   
 

 
 


