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Summary

This master’s thesis has made investigation into waves and currents interaction numerically
by the use of an oscillating cylinder as a wave-maker. Three cases were investigated: still
water, uniform flow and linear shear current. A small parameter parameter study was per-
formed to compare OpenFOAM’s damping option to other existing wave damping tools in
other competing software. The results showed that, while the damping parameter f can be
estimated through linear scaling law, this serves at best as a first guess. The wave damping
was applied in all cases, proving a helpful tool for damping also on a shear current. The
still water case validated the use of the oscillating cylinder as a wave-maker, where linear
surface waves were created and checked against the dispersion relation. The amplitude of
the waves produced by the cylinder proved to be around half of the excitation amplitude.
Both the uniform flow case and the linear shear case looked into the non-linear effects
of a moving oscillating cylinder at an excitation frequency near to the Doppler resonance
frequency, τ = 1/4 = ςU/g. Non-linearity was in both cases proven to occur upstream of
the cylinder. In the uniform flow case, it caused wave breaking and overturning, while lin-
ear waves was produced downstream. In the linear shear case, a positive vorticity S, was
shown to assist the waves downstream, while it opposed the waves upstream. This lead
to smaller wavelengths downstream and larger wavelengths upstream compared to a case
zero vorticity. The dispersion relation showed good concurrence both downstream and
upstream with non-linear corrections of the dispersion relation upstream. Downstream, in
the linear regime, the relative error for the wavelength was shown to be 4%, 6% and 3.7%,
for the respective cases.
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Sammendrag

Denne master oppgaven har undersøkt bølge- og strøm-interaksjoner numerisk ved hjelp
av en oscillerende sylinder som bølgekilde. Tre tilfeller ble undersøkt: vann i ro, uni-
form strømning og linær skjærstrøm. En liten parameterstudie ble gjennomført for å sam-
menligne OpenFoams dempefunksjon med andre eksisterende dempefunksjoner i andre
konkurrerende programvarer. Resultatene viste at å estimere dempekonstanten f ved en
linær skaleringslov, kun kan brukes som et første forslag. Bølgedemping ble brukt i alle
studier og ble bevist som hjelpsomt verktøy for bølgedemping, også ved skjærstrøm. Vann
i ro studiet validerte bruken av en oscillerende sylinder som bølgekilde, der linære bølger
ble sammenlignet ved hjelp av dispersjons-relasjonen. Amplituden til bølgene ble vist til
å være rundt halvparten av den eksiterte amplituden til cylinderen. Både det uniforme og
i det linære skjærstrøm tilfellet undersøkte ikke-linære effekter av en bevegende sylinder
ved en eksitasjon frekvens nært Doppler resonans frekvensen, τ = 1/4 = ςU/g. Ikke
-linearititet oppstrøms for sylinderen ble bevist i begge tilfeller. For den uniforme strømn-
ingstilfellet resultererte dette i bølge brytning og -velt, mens linære bølger ble produsert
nedstrøms. I det linære skjærtilfellet, bidro en positiv virvling S, til å motarbeide bøl-
ger oppstrøms og hadde motsatt virkning nedstrøms. Dette ga mindre bølgelengder ned-
strøms og større bølgelengder oppstrøms sammenlignet med ingen virvling. Dipersjons-
relasjonen ga god overenstemmelse både nedstrøms- og oppstrøms med ikke-linær korrek-
sjon. Nedstrøms, i det linære regime, ble den relative feilen vist å være 4%, 6% og 3.7% i
de respektive sakene.
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Nomenclature

αs Correction factor for the dispersion relation for third order Stokes expansion

u The velocity vector consisting of u,v and w respectively

δt Time step

δij The Kronecker delta

γ The surface tension
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ω The angular frequency

φ The velocity potential

σij The stress tensor

τ Resonance frequency

ς Excitation frequency

ζ Surface height, which is described as the distance from the mean water level

a Amplitude of the wave

cg Group velocity or velocity of a wave packet

Co Courant number

cp The phase velocity of a wave

Fr Froude number

Fr The Froude number

Frs The shear Froude number

g The gravitational acceleration

h The water depth
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K The curvature of the surface

kx, ky The wave number in x and y directions respectively

l Characteristic length

p The scalar pressure

R Radius of the cylinder

R1, R2 The principal radii of the curvature

S Vorticity constant

s Wave steepness
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Chapter 1

Introduction

1.1 Background

The work in this thesis is performed on behalf of EPT, NTNU as part of the Fluid Me-
chanics group. A broad range of theoretical work (see [11],[12],[13],[49]) has recently
been published concerning shear currents and wave interactions. This work has shed a
lot of light on how shear currents can even effect the Kelvin angle of the wake. Shear
currents are found in coastal waters, where the current can be very different dependent on
the depth. The shear current can be caused by wind, tides or bottom geometry and can
be an important factor for say a ferry crossing a river. Even though a lot of theory has
been published, are numerical studies on the subject at best limited. The theoretical work
is focused on linear and weakly non-linear theory, while a numerical study has no such
restrictions. This work is considered as a pursuit in knowledge of numerical studies of
shear currents and wave interactions.

An extensive review on wave and current can be found in Peregrine [41]. Shear cur-
rents are of interest in oceanography and coastal engineering. Recently work done by
Ellingsen and Li [35] showed that the wave resistance upstream of the ship increases due
to the shear current, therefore indicating its importance in any ship calculation. Simple
models for a ship movements are oscillating sources, where heave and/or sway can be
effectively modelled[54]. Linear theory predicts infinite amplitudes in the bow wave for
certain frequencies, and these frequencies are affected by shear current(see [21] and [51]).
Numerical studies of cylinders fully submerged in a fluid are often used as benchmark
studies of numerical solvers, as a lot theory and many experimental studies are available.
Close to a free surface, the vortex shedding behind the cylinder is influenced by the free
surface [44]. The vortex shedding causes a wave pattern in wake, where the frequency of
the waves produced coincide with the frequency of the wave. From this, one can postu-
late that a cylinder with a given oscillation will produce waves much like a wave-maker,
creating waves of correspondent frequencies as the excitation.

The numerical study was performed on the open-source software, OpenFOAM. Open-
FOAM has large library of applications and solvers that are very useful for this project.
Furthermore, modifications can with caution be made, making the software highly attrac-
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tive for use beyond the more commonly used CFD practices. Recently, a new framework
for wave models with tools for wave initialisation and damping was added to OpenFOAM
with the release of version 5.0. This makes the OpenFOAM package fully competitive
with the current market of commercial software in terms of wave modelling.

Figure 1.1: Wake patterns formed behind islands in the North Sea observed by NASA satellites[45]

1.2 Motivation and Objectives
The overall motivation of the thesis is to shine some light on shear currents and wave
interactions with the aid of numerical simulation. To accomplish this, several intermediate
objectives were set, which is also found in the master’s contract:

1. Developing and implementing an appropriate boundary condition for surface waves,
which can absorb a continous spectrum of waves in 2D geometries.

2. Extended the 2D treatment to include a current of constant shear (linear-depth de-
pendence).

3. Study 2D ship wave problems with linear shear current at the inlet and a surface
obstacle (for example a cylinder).

4. Analyze the sub-surface structures beneath a nonlinear surface wave.

5. Generalize inflow conditions to allow more general shear flow and study differences
from linear current case.

The first objective was an extension of the project done as a prelude to the thesis, where
mono-chromatic waves were absorbed and a simplified model was used to linear wave the-
ory. In section 2.8, the current state of the art of absorbing boundary condition are shown
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and reviewed in terms of their feasibility. A small parameter study is also performed in
section 3.4, to investigate any discrepancy from other software, where Peric and Maksouds
model is used for comparison [43]. The second, third and fifth objective, are all dependent
on modelling a shear flow which is shown in section 4.3. The second objective was solved
in as an intermediate step to objective three, but results are not specifically shown for this
step. In order to study a ship wave problem, following objective three, through trial and
error a choice was made to look at an oscillating cylinder. The oscillating cylinder proved
valuable as both a model for ship as well as a wave-maker. The fifth objective was partly
achieved, where a the inflow conditions for an arbitrary shear current were found, while
only a linear shear was presented in section 4.3. The fourth objective was not given a spe-
cial focus, but was treated indirectly in section 4.3 and section 4.2. The linear phenomena
of infinite amplitudes due to resonance of a moving source was compared to a numerical
solution, which includes non-linear effects. At the time master’s contract was drawn up,
there was possibility that experiments were to be made for comparison, however this was
not performed in time for this master’s due date.

1.3 Outline
The thesis starts with presenting the relevant theories in the next chapter. At first wave
parameters and terminology is explained, then the concept of a free surface is defined.
From the free surface boundary condition, linear wave theory derivations are showed be-
fore oscillating sources and wave regimes are clarified. That concludes the first part of
the theory, where the second part focuses on numerical methods. Numerical methods are
introduced with an emphasis on the finite volume method and a detailed explanation of the
PIMPLE-algorithm. Then numerical representations of free surfaces are explained, before
a review of current absorbing boundary conditions is presented. The theory portion is con-
cluded with dynamic mesh handling specific to the OpenFOAM module. In chapter 3, the
numerical setup and pre- and postprocessing are explained explicitly. Quality parameters
are defined for the mesh, and numerous solver settings are discussed and explained. The
chapter ends with a test of the damping layer boundary condition implemented in Open-
FOAM, which is compared to similar setups. Then in the following chapter, three cases
are run with an oscillating cylinder. The first case is an oscillating cylinder on quiescent
water, which is used to validate the oscillating cylinder as a wave-maker by comparing the
simulation data to the dispersion relation found in the theory section. The second case is
run with a uniform inflow, modelling a moving source, where the excitation frequency is
approximately at the resonance frequency. The same procedure is then repeated for linear
shear profile at the inlet. The results and further work are then discussed in chapter 5.
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Chapter 2

Theory

In this chapter, the general theory is outlined. At first, some general aspect of waves ter-
minology is given, then free surface waves and linear wave theory is presented. The wave
part is concluded with theory on oscillating sources and water wave regimes. Then the
numerical methods used in the simulation are shown, including the finite volume method-
ology, discretization schemes, PIMPLE algorithm, free surface modeling and dynamic
mesh handling.

2.1 Wave theory and terminology
Waves, in the classical definition given in wave theory, are described as a periodic pertur-
bation from an original state. In the case of water waves, this perturbation arises in the
interface between two different phases by some sort of displacement from an equilibrium
state or the still water level.

Wave theory is applicable to several fields of studies such as acoustics, electromag-
netics and elasticity. The terminology, however is generally the same and some of the
important terms is characterized here. The general solution for 2D plane waves

f(x, y, t) = e−i(ωt+kxx+kyy), (2.1)

describes the behaviour of the waves in time and space. Here ω is the angular frequency,
kx and ky are the wave number in x and y directions respectively. An important distinction
for waves is whether or not they are dispersed. Dispersion occurs when the propagation
velocity of the plane waves is dependent on wavelength. This generally means that it now
has a phase and group velocity as shown in Figure 2.1. Phase velocity, cp, is defined as

cp =
ω

k
, (2.2)

while group velocity, which is the velocity of the wave packet or envelope, is

cg =
∂ω

∂k
. (2.3)

5



It is important to note that though generally phase and group velocities have the same
direction as in Figure 2.1, this is not necessarily always the case. The dispersion rela-
tion describes the nature of the relationship between the wave number, k and the angular
frequency, ω.

Figure 2.1: Group and phase velocity of a wave packet

2.2 Free surface flows

A general definition of free surfaces is that "... free surface flows occurs in a deformable
solution region whereby the shape and size of the region is part of the solution." This
introduces one of the reasons why free surface flows are complicated to deal with. The
boundary itself is allowed to move, affecting the flow, which in turn affects the movement
of the boundary.

This general definition excludes open channel flow and some wave problems, which is
often included in an engineering point of view. A more physical definition can therefore be
stated as: Free surface flow occurs in a liquid, where one or more of the boundaries is not
physically constrained, but can adjust itself to conform to the flow conditions. Examples
of these types of flows are jets, cavities, flow over weirs, stratified flow and of course
problems that involves water and air such as waves propagating on the ocean[23].

2.2.1 Free surface boundary conditions

In order to properly model a free surface, boundary conditions are needed to express it
mathematically. The free surface has two boundary conditions, the kinematic and the
dynamic boundary condition [16]. The kinematic boundary condition states that a particle
on the surface stays on the surface. That can be mathematically expressed as:

z − ζ = f(x, y, t) (2.4)

where f = 0 on the surface, z is the coordinate in the gravitational direction and ζ is the
surface height function. The kinematic relation to express the surface height with respect
to motion is

Df

Dt
= (∂t + u · ∇)(z − ζ) = 0, (2.5)
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where u is the velocity vector,∂t is the time derivative. For z = 0 as a reference plane and
from (2.5), ∂z

∂t = u ∂z∂x = v ∂z∂y = 0 and w ∂z
∂z = w since z is constant. This gives the

general kinematic boundary condition.

∂ζ

∂t
+ u · ∇ζ = w(0, t) (2.6)

The dynamic boundary condition states that the sum of forces through a surface must be in
equilibrium. From the Young-Laplace[17] relation discontinuity due to the surface tension
can be expressed. As viscous effects can be ignored the stress can be derived from the
stress tensor as a simple pressure relation. The stress relation is described as

σij = −pδij , (2.7)

where σij is the stress tensor and δij is the Kronecker delta, which is 0 for i = j and else
equal to 1 and p is the pressure. Then the Young-Laplace relation and (2.7) gives

1

R1
+

1

R2
= − ζxx√

1 + ζ2x
− ζyy√

1 + ζ2y

≈ −ζxx − ζyy (2.8a)

pabove = pbelow − γK ≈ pabove = pbelow − γ(ζxx + ζyy) (2.8b)

where K = 1
R1 + 1

R2 is the curvature of the surface, R1 and R2 are the principal radii of
the curvature and γ is the surface tension. The pressure below is found through the Euler
equation as formerly defined. The full dynamical boundary condition, where the viscous
terms are neglected for simplicity, is then

Du

Dt

∣∣∣∣
z=ζ

= −ρgẑ +∇(γ(ζxx + ζyy)). (2.9)

In this thesis, the effects of surface tension are negligible and can be simply removed
from (2.9). By non-dimensionalization of (2.9), Fr or the Froude number, naturally ap-
pears. The Froude number is an expression for the ratio of the flow inertia compared to
the external field (gravity) and is defined as

Fr =
U
√
gl
, (2.10)

where l is a characteristic length such as the length of a boat, diameter of cylinder or
similar.

2.3 Surface waves

2.3.1 Linear surface waves
In order to simplify analytical analysis, surface waves are often restricted to being linear.
Linear refers in this case to the fact that any non-linearity arising from the NS-equations or
boundary conditions are neglected. Surface waves are considered as linear if the amplitude
of the wave is negligible in comparison to the wave length. Therefore the assumption that
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the waves are linear is in the order of s = λ
a , where λ is the wavelength, s is the steepness

and a is the amplitude of the wave. Wavelength is the distance from crest to crest or trough
to trough. This is an approximation, but it is an effective way of modelling many wave-
phenomena, except of course the non-linear effects such as for instance breaking waves.
Starting from the governing equations one can assume that the Reynolds number will be
high as the viscosity of water is in the order of 10−6, which unless boundary layer present,
and fairly long waves are assumed is an valid assumption. In boundary layers viscosity
becomes very important for the attachment of the flow to the geometry, which means that
the flow is no longer inviscid. Inviscid flow can be described by the Euler equations, and
in the case that the flow is irrotational, then velocity potential can be applied. The relation
between the velocity and the velocity potential is

u = ∇φ, (2.11)

where φ is the velocity potential.
This holds true if

∇× u = 0. (2.12)

The dynamic and kinematic can then be simplified, if no external flow is present and z
is the direction of gravity, to

∂ζ

∂t
+ g

∂φ

∂z
= 0 (2.13a)

∂φ

∂t
+ gζ = 0, (2.13b)

where g is the gravitational acceleration. The continuity equation then becomes a Laplace-
equation

∇2φ = 0. (2.14)

A wave travelling in the x-direction can now be expressed in the way common to linear
wave theory

ζ = a sin(kx− ωt) (2.15)

The relationship between the wave number and the wave frequency is called the dispersion
relation and can be derived from solving Equation 2.14 and Equation 2.13. Landau [34]
and Peregrine[41] are among those who treat this problem. The dispersion relation is in
this case

ω = 2
√
gk tanh(kh) (2.16)

where h is the water depth. In the case of a uniform background flow in the x-direction,
the solution is Doppler-shifted so that

ζ = a sin(kx− (ω + U0k)t). (2.17)
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If the background flow is a linear shear flow and the flow is considered to be 2D, the
argument of using potential flow still holds according to Ellingsen and Brevik [13]. The
surface waves are superimposed on a mean flow U , where the mean flow is

U(z) = U0 + Sz, (2.18)

and the vorticity, S, is

S = U0/h. (2.19)

One of the main differences is that the phase velocities becomes direction dependent. In
other words, the phase velocity of the wave moving upstream will be different from the
phase velocity of the wave moving downstream. Upstream and downstream here is defined
according to the direction of the mean flow. Therefore a new expression is formed for the
liquid surface and ζ can be written as

ζ(x, t) = βu(k)eik(x−U0t+cut) + βd(k)eik(x−U0t+cdt). (2.20)

The expression has two undetermined amplitudes, βu and βd, which must be deter-
mined from initial conditions. The phase velocities are then

cu(k) =

√√√√g

k
tanh kh+

(
S

2k
tanh kh

)2

+
S

2k
tanh kh (2.21a)

cd(k) =

√√√√g

k
tanh kh+

(
S

2k
tanh kh

)2

−
S

2k
tanh kh, (2.21b)

and the dispersion relation is

ωu(k) =

√√√√gk tanh kh+

(
S

2
tanh kh

)2

+
S

2
tanh kh (2.22a)

ωd(k) =

√√√√gk tanh kh+

(
S

2
tanh kh

)2

−
S

2
tanh kh. (2.22b)

For arbitrary shear currents, the math becomes much more involved and solutions are
moved into the realm of approximations. By assuming a weak current in the order of ε,
Kirby and Chen [33], found a way to approximate the dispersion to the order of ε for an
arbitrary current of finite depth. Weak shear current are defined as U(z) << c, where
c is the absolute phase velocity. Another method to solve the arbitrary shear profile was
presented by Smeltzer and Ellingsen [49]. They used a piecewise linear approximation,
where there is no need for a weak shear assumption. The approximation was shown to be
accurate down to 1% for 4 to 5 layers.
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Figure 2.2: Comparison of Stokes 5th order and Airy wave [9]. A Stokes wave has deeper troughs
and higher crests and does not oscillate with equal amplitude on each side of the mean water level

2.3.2 Non-linear surface waves

Linear waves are assumed to be of a low steepness s = λ/a = ka, but for moderately
steeper waves corrections can be added. These corrections do not affect the velocity po-
tential formulation, but must be added to correct for the added steepness. The weakly-
non-linear waves are often known as Stokes wave, and for detailed derivations, the reader
is referred to Stokes [50]. Stokes based his approach on a pertubation theory, where φ and
ζ are expanded in a series.

φ =

∞∑
i=0

εiφi ζ =

∞∑
i=0

εiζi (2.23)

Here ε = s and is expanded to the i-th order. For a second order solution, the linear
dispersion relation still describes the relation between angular velocity and wave number,
however in the third-order expansion for infinite depth, a correction factor appears. The
correction factor, αs, is related to the dispersion relation by

ω = ω0αs αs = [1 +
1

2
(ka)2], (2.24)

where ω0 now is the linear dispersion relation.

2.4 Oscillating source
In the land of velocity potentials, flow singularities can be used to model floating and
submerged bodies. Bodies such as these can represent ships or marine structures and is
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a highly used method in marine hydrodynamics. The obvious advantage of using poten-
tial theory to describe this type flow is that the use of sources allow for panel methods,
which have been very successful in aerodynamics and there already exists any number
well tested approaches. The general problem of a time-dependent submerged source of
a time-dependent source in uniform flow was outlined by Wehausen and Laitone[54]. It
was predicted that there exist a certain frequency and velocity relationship leads to reso-
nance for upstream waves. Grue and Palm showed that a source distribution due to a 2D
oscillating body in a uniform flow[21], has waves of finite amplitude. Dagan and Miloh
discovered that the amplitudes become bounded once higher order terms are considered[6].
For a body oscillating in a uniform current, several wavelengths are generated. For weak
currents, τ = Uω0/g < 1/4, four waves are generated. For stronger currents, τ > 1/4
two waves are generated. They are termed as k1, k2, k3 and k4 wave types, where k1 have
a group velocity less then the strength of the uniform current, U , and is found downstream,
while k2 have a group velocity larger than U , and is found upstream. The k3 wave has a
positive phase velocity smaller than U and the k4 has a negative phase velocity and is lo-
cated downstream. As τ approaches 1/4, the k1 wave and k2 wave merge into one wave
with a group velocity equal to U . This creates a singularity at τ = 1/4, which can shown
through the Green function as described by Grue and Palm [21]. The resonance frequency,
τ is defined as

τ =
Uς

g
, (2.25)

where ς is the excitation frequency of the source. From Grue and Palm, an expression is
shown for the far-field solution of the surface height:

ζ∞ = a2 sin(k2x− ςt+ θ2) (2.26a)

ζ−∞ = a1 sin(k1x− ςt+ θ1) + a3 sin(k3x− ςt+ θ3)− a4 sin(k4x− ςt+ θ4). (2.26b)

Here θ is the angular shift by a sway motion, while any numeral subscript refer to the wave
type associated with the same subscript. The amplitudes aq , (q = 1, 2, 3, 4), was found to
be:

aq =



2π(kqR)2ε

(1− 4τ)1/2
e−kqd (τ < 1/4, q = 1, 2)

0 (τ < 1/4, q = 1, 2)

2π(kqR)2ε

(1 + 4τ)1/2
e−kqd (q = 3, 4)

, (2.27)

where R is the radius of the cylinder, d is the depth and ε is the amplitude of the heaving
motion. This result has two special cases: Firstly, as mentioned earlier, the amplitude of
the k1 and k2 wave merge and create a infinite amplitude for τ = 1/4, but also secondly
that the amplitude for the downstream wave is zero when τ > 1/4.

Tyvand and Lepperød made use of the line source and included a linear shear, where
they showed that shear affects the resonance frequency [51]. Even though their method
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was physically inconsistent as showed by Ellingsen and Tyvand [14], the dispersion prob-
lem is treated correctly. The frequency-velocity relationship at resonance was showed to
be dependent of shear current and expressed as

τ =
(1 + Frs)

2

4
(2.28)

for a 2D source travelling in shear assisted motion. The shear Froude number, Frs, is
defined as

Frs =
V S

g
, (2.29)

where S is the uniform vorticity. It comes from the choice of sub-surface shear current as
U(z) = Sz.

2.5 Water wave regimes
Water waves can be categorized by different regimes, which generally indicates what type
of flow to expect and can be used to simplify analysis. Water can first of all be divided
into capillary and gravity waves. Capillary waves are often seen as ripples and are caused
by the surface tension acting between interfaces of different densities, such as water and
air. In Figure 2.3a the phase velocity of capillary and gravity waves are compared. The
phase velocity gives information on which type of waves are dominant for different wave
numbers. For a small wavelength, the capillary waves propagate at a much larger velocity
then gravity waves and therefore gravity waves are the dominant wave type. While for
smaller λ the gravity waves propagate at a larger velocity then capillary waves and opposite
effect occurs.
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Figure 2.3: Water wave regimes

The next regime to characterise water waves is divided between shallow, intermediate
and deep water waves. The phase velocity for shallow water is only affected by depth,
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while for deep water the wave number is the important parameter. Intermediate depth is
anything in between, where both parameters are important. So for gravity waves the phase
velocity is

cp =
√
gk tanh kh (2.30)

and is plotted in Figure 2.3b. The phase velocity, cp, for water waves, can be found
by combining (2.16) and (??). For large depths, kh � 1, the phase velocity becomes
independent of h

cp =
√
gk. (2.31)

For smaller depths, kh� 1, the phase velocity becomes independent of the wave number,
k and the phase velocity is in that case

cp =
√
gh. (2.32)

2.6 Numerical methods
In the thesis, OpenFOAM has been chosen to be used for simulation. Within the Open-
FOAM framework, there is support both for finite volume and finite element methods,
which are the most prominent solution methods for fluid simulation.

2.6.1 Finite Volume Method
The finite volume method is based on the integral form of conservation equations. Starting
from the momentum equation in its compact form with tensor notation

∂ui

∂t
+
∂uiuj

∂xj
= −

∂P

∂xi
+ ν

∂2ui

∂xi∂xj
+ fi, (2.33)

where ui is the velocity for directions i = 1, 2, 3 , P is the pressure divided by the density,
ν is the kinematic viscosity, xi is the spatial coordinates and fi is the body force term,
which is also divided by the density. Then integrating over a control volume ,V , gives

∫∫∫
V

[
∂ui

∂t
+
∂uiuj

∂xj

]
dV =

∫∫∫
V

[
−
∂P

∂xi
+ ν

∂2ui

∂xi∂xj
+ fi

]
dV, (2.34)

and applying the divergence theorem to the advection, pressure gradient and diffusion
terms allows it to be rewritten as

∂ui

∂t
V +

∫∫
S

uiujnj dS = −
∫∫
S

Pni dS +

∫∫
S

ν
∂ui

∂xj
nj dS + fiV. (2.35)

where S is the surface of the control volume and nj is the normal of the surface. The con-
trol volume, V , can be any type of volume an is usually applied to a small computational
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Regular and equilateral cells Skewed and non-regular cells

cell centroid cell vertex

Figure 2.4: Examples of regular, non-regular, equilateral and skewed cells

Figure 2.5: Structured orthogonal grid vs unstructured non-orthogonal grid

ensuring local conservation and thereby ensuring global conservation for a large volume
divided into cells. A computational cell can in theory be any shape, but in 2D quadrilateral
or triangular cells are the most common.

A grid of cells can be structured, unstructured, orthogonal, non-orthogonal and any
combination of these depending on the geometry and problem. Structured meshes are
defined by every interior vertex in the domain has the same number neighbouring cell
vertexes [40]. Block structured meshes are divided into blocks where each block has its
own block structure. Orthogonal meshes have grid lines perpendicular to the intersection,
whereas non-orthogonal meshes have no such restriction. Another distinction is done by
considering body-fitted or curvilinear grids which are based on curvilinear coordinates
instead regular Cartesian coordinates. In general, structured orthogonal meshes are easier
to deal with numerically, but unstructured and non-orthogonal meshes are much easier to
deal with when complicated geometries are present.

2.6.2 Spatial and Temporal discretization
The finite volume version of the momentum equation as shown (2.35) is solved as a set of
linear equations, where each term is discretized in space and time. Cell-face values used
in these linear equations are approximated in terms of the nodal values. For instance a
surface integral can be approximated by the midpoint rule for an arbitrary term [42], f , as

Fe =

∫
Se

= feSe ≈ feSe (2.36)

This approximation is valid if the value at ’e’ is known, but this is generally not the case.
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Figure 2.6: A usual depiction of mesh notation, where n is the face value at the north face of a
volume, N is the cell value at the cell at the north position and ne is the normal in the east direction

Therefore interpolation is needed in order to find this value. The two main ways of find-
ing the interpolated value are upwind differencing scheme (UPS) and linear differencing
scheme (LDS).

Upwind Interpolation

Upwind differencing scheme is a backward or forward approximation for the first deriva-
tive in the upstream direction. A quantity ϕe at ’e’ is approximated as

ϕe =

{
ϕP if (v · n)e > 0

ϕE if (v · n)e < 0
(2.37)

A first order Taylor expansion around P:

ϕe = ϕP + (xe − xP )

(
∂ϕ

∂ x

)
P

(2.38)

(
∂ϕ

∂ x

)
P

=
ϕP − ϕe
xP − xe

(2.39)

The UDS is a first order scheme, which is the only scheme that satisfies the boundedness
criterion and can never yield oscillatory solutions. However, the scheme is highly diffusive
and accurate results can only be acquired for very fine grids.

Linear Interpolation

A more accurate scheme is the central differencing scheme (CDS), which interpolates the
value at CV-face center by linear interpolation. Again at ’e’
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ϕe = ϕEΛe + ϕP (1− Λe), (2.40)

where the linear interpolation factor Λe is defined as

Λe =
xe − xP
xE − xP

(2.41)

and a second order Taylor expansion of ϕE about xP is

ϕe = ϕEΛe + ϕP (1− Λe)−
(xe − xP )(xE − xe)

2

(
∂2ϕ

∂ x2

)
P

. (2.42)

Since CDS are second order, they are accurate to the square of the grid spacing , which ap-
plies for uniform and non-uniform grids [42]. Despite gain in accuracy, the scheme reduces
stability and can produce oscillations like any higher order method. Many other differenc-
ing schemes exist, but they are usually a combination of these schemes or a higher order
version of these. In OpenFOAM many of these schemes are implemented, among others
the linear upwind scheme (LUDS). LUDS approximate ϕe linear extrapolation from two
upstream nodes. From OpenFOAM’s User Guide[20], LUDS is a "second order, upwind-
biased, unbounded scheme that requires discretization of the velocity to be specified."
However, boundedness can still be achieved. Bounded variant of the schemes relate to the
treatment of the material time derivative which is equals the left hand side of the momen-
tum equation if the derivative is the velocity. Therefore from

Du

Dt
=
∂u

∂t
+ u · ∇u =

∂u

∂t
+∇ · (uu)− (∇ · u)u (2.43)

boundedness can be accomplished if the last term on the right hand side of (2.43) is kept.
Normally, (∇·u) is zero when continuity is fulfilled, however numerically this never hap-
pens as residuals are always present, therefore this can be included and thereby ensuring
boundedness. These types of schemes are normally used for steady state calculation as it
helps with convergence.

LUDS is second-order space scheme [53], which switches between a linear or an up-
wind biased formulation depending on the gradient. Large gradient usually causes wiggles
or oscillations in linear schemes and this can be negated by introducing a weighted upwind
scheme. In OpenFoam, there are two such schemes; linearUpwind and linearUpwindV.
The only difference between them is that linear linearUpwindV calculates a single value
for the weighted scheme and applies that value in all directions, while linearUpwind finds
value in all directions. The single value is calculated in the direction of the largest gradient.

Limits can also be applied make sure a scheme does not overshoot or wiggles. The
Van Leer scheme [52] is a monotonic conservation scheme that is more diffusive then a
linear scheme, but that can handle jumps and shocks fairly well. This scheme is normally
used for conservation equation for energy or phase fraction, which has a jump across the
surface as the phase fraction goes to from 1 to zero. Wiggles would create artificial values
of larger than 1 and less then zero, which can cause serious problems.
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Time schemes

The same type of differencing can be applied to the time derivative. Forward and backward
differencing are known as backward or forward Euler and can be written as(

∂ϕ

∂t

)n+1

=
ϕn+1 − ϕn

δt
(2.44)

∂ϕ

∂t
n+1 =

ϕn − ϕn−1

δt
, (2.45)

for a time step δt, where the backwards Euler is implicit, while the forward is explicit.
In terms of stability , backward Euler is preferred as the boundedness ensures stability.
Forward Euler has limited use as the stability requirements causes time-steps to be very
small as well accuracy is only first-order.

Crank-Nicolson is a second order time differencing scheme [5], where the time deriva-
tive is (

∂ϕ

∂t

)n+1

=
ϕn+2 − ϕn

2δt
. (2.46)

In OpenFoam, it is implemented as a hybrid scheme with the backward Euler for stability.
The blending must be specified, where 0 is Euler and 1 is Crank-Nicolson, normally a
value of 0.9 ensures accuracy and robustness according to the OpenFoam documentation
[20].

An important parameter for scaling the time step in terms of stability is the Courant
number. The Courant number is defined as

Co = u
δt

δx
. (2.47)

Time-dependent stability of schemes are usually measured in terms of the Courant num-
ber, where for explicit schemes Co must be lower then 1 or 1/2 depending on the scheme.
Implicit schemes allow larger time-stepping,Co > 1, however larger time-steps can de-
crease the accuracy of the flow resolvability. Therefore care must be taken keep time-
stepping at sufficient level so that all important flow properties are resolved sufficiently.

Linear equations

All of the schemes involved with finite volume method must be solved as a system of
linear equations of the form

Ax = b (2.48)

where A is the coefficient matrix, x is the vector of unknowns and b is the source vector.
A and b are filled by the discretization schemes. The system of equations are then on the

17



form 
a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann



x1
x2
...
xn

 =


b1
b2
...
bn

 . (2.49)

In order to solve (2.48), the coefficient matrix must be inverted and the solution vector
is then

x = A−1b. (2.50)

In OpenFoam, three groups of iterative linear solvers are available for matrices; smooth
solvers, conjugate gradient solvers and multigrid solvers.

Smooth solver are used to decrease high frequency errors, which can arise from the
solving the linear equations. Smooth solvers are usually based on Gauss-Seidel methods,
but can also be diagonal incomplete-Cholesky or incomplete-LU. Details on these linear
methods are best explained in resources among which Youssef Saad[47] is recommended.
The difference between them are usually related to solution time and types of matrices. For
symmetric matrices symmetric solvers are usually much faster then asymmetric solvers,
while symmetric solvers cannot be used for asymmetric matrices.

Multigrid methods are somewhat self explanatory in that they utilize a series of grids,
where the first grid is coarse and then the resolution is increased until the final fine mesh is
reached. Mapping from grid levels can cause oscillatory behaviour and therefore smooth-
ing should be applied.

Conjugate gradient solvers are not used in the simulation of the text and are therefore
beyond the scope of the text.

2.6.3 PIMPLE - Algorithm
Solving the Navier-Stokes requires numerical strategies for coupling the pressure and mo-
mentum quantities. The coupling arises by the fact that the Navier-Stokes has four un-
knowns and three equations to be solved and including the mass conservation gives a
fourth equation. Applying the divergence to the momentum and using the mass conserva-
tion to get rid of excessive terms one can end up with a Poisson equation for the pressure
p[42].

∂

∂xi

(
∂p

∂xi

)
= −ρ

∂

∂xi

[
∂uiuj

∂xi

]
(2.51)

There are three main algorithms for solving the coupling of momentum and pressure
in OpenFoam:

• SIMPLE - Semi-Implicit-Method-Of-Pressure-Linked-Equations

• PISO - Pressure-Implicit-Split-Operator

• PIMPLE - Merged SIMPLE and PISO
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For an implicit method, the Poisson equation for the pressure is

∂

∂xi

(
∂pn+1

∂xi

)
= −ρ

∂

∂xi

[
∂(uiuj)

n+1

∂xi

]
, (2.52)

and the momentum equation rewritten as

Aui

P u
n+1
i,P +

∑
l

Aui

l u
n+1
i,l = Qn+1

ui
−

(
∂pn+1

∂xi

)
P

. (2.53)

P is as before the index of the arbitrary velocity node and index l denotes the neighbour
points that appear in the discretized momentum equations. The source term Q contains all
of the terms that may be explicitly computed in terms of uni as well as any body force or
linearized terms that may depend on un+1

i . Non-linearity makes only iterative approaches
possible. The iterations in a single time-step, where the coefficient and source matrices
are updated, are called outer iterations, to separate from inner iterations done to solve the
linear equations. For every outer iteration, the equations solved are:

Aui

P u
m∗
i,P +

∑
l

Aui

l u
m∗
i,l = Qm−1ui

−

(
∂pm−1

∂xi

)
P

, (2.54)

where the time step index n + 1 is skipped for the outer iteration counter m. At the
beginning of every outer iteration the right hand side is evaluated at the previous outer
iteration. To enforce the continuity equation the velocities need to be corrected, because
the velocities used are estimated. The velocity at P is expressed as:

um∗i,P =
Qm−1ui

−
∑
lA

ui

l u
m∗
i,l

Aui

P

−
1

Aui

P

(
∂pm−1

∂xi

)
P

. (2.55)

The SIMPLE algorithm does not use the actual pressure, but a pressure-correction.
The velocities computed from the linearized momentum equations and the pressure pm−1

are taken as a starting value and a correction is then added:

umi = um∗i + u′ and pm = pm−1 + p′ (2.56)

These are substituted into (2.54) and a relation between the corrections is obtained:

u′i,P = ũ′i,P −
1

Aui

P

(
∂p′

∂xi

)
P

(2.57)

where ũ′i is defined by (2.55):

ũi,P = −
∑
lA

ui

l u
′
i,l

Aui

P

. (2.58)

Then using the discretized continuity equation

∂(ρumi )

∂xi
= 0, (2.59)
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and (2.57) to produce the pressure-correction equation:

∂

∂xi

[
ρ

Aui

P

(
∂p′

∂xi

)]
P

=

[
∂(ρ)um∗i
∂xi

]
P

+

[
∂(ρ)ũ′i
∂xi

]
P

(2.60)

The velocity corrections ũ′i are unknown and is neglected. According to [42], this is
why the method has convergence problems. The SIMPLE algorithm is normally used for
steady state problems only. In the PISO algorithm, the first correction step is the SIMPLE
algorithm and the second correction u′′ is:

u′′i,P = ũ′i,P −
1

Aui

P

(
∂p′′

∂xi

)
P

. (2.61)

Then the second pressure-correction equation is:

∂

∂xi

[
ρ

Aui

P

(
∂p′′

∂xi

)]
P

=

[
∂(ρũ′i)

∂xi

]
P

(2.62)

The PIMPLE algorithm lets these outer corrections and pressure corrections be set to
an arbitrary number. It also has the advantage of larger time steps (Co) than the PISO
algorithm.

2.7 Numerical Representation of Free Surfaces
This section reviews current methods for representing free surfaces. Depending on the
nature of the problem there are different approaches. In general methods are divided into
two main categories, the Eulerian and the Lagrangian formulation. The Eulerian approach
is well rooted in fluid mechanics and keeps the node of the mesh constant, while letting the
fluid move within the mesh. The Lagrangian description can be thought of as a structural
mechanics approach, where the mesh nodes follow the material and thereby changing their
initial form. The Lagrangian algorithm is considerably better at resolving interfaces with
high degree of accuracy. However it struggles with large deformations as this can lead
to distorted meshes, which in turn can have convergence and stability issues as well as
effect the total accuracy. This can in some cases be handled by remeshing, but for large
internal movements as those experienced by fluids this causes a whole range problems and
therefore is ill suited for this type problem. The Eulerian algorithms, on the other hand,
has no problem in coping with large deformations, but they struggle with capturing an
accurate representation of the surface, which often leads to a smeared out solution or has a
high computational cost due to high grid refinement. Generally most methods for handling
free surfaces are versions or combinations of these approach and the most important are
given in this section.

2.7.1 Arbitrary Lagrangian Eulerian - ALE
The Arbitrary Lagrangian Eulerian algorithm (ALE) is a combination of the two previ-
ously mentioned methods in a way that uses the strength of each method. It can be set to
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Figure 2.7: An example of the Eulerian, Lagrangian and ALE mesh and particle motion

Lagrangian at surfaces and be locked at other positions where large movements in the ma-
terial occur. One of the major drawbacks of the method is that it cannot handle topological
changes, for example breaking of water or the burst of a droplet. The differences between
the three methods are illustrated in Figure 2.7.

In mathematical terms, there exist two domains in continuum mechanics describing
the motion of particles. The material domain, RX ⊂ Rnsd , with nsd spatial dimensions
and Rx is the spatial domain, where x is the spatial dimension. This follows a specific
notation, which will be used in this section [10]. For the ALE description there also exist
a third domain, the reference domain Rχ. The reference domain can be considered as the
distance relative to a stationary observer, and therefore does not change

If we first look at the conservation equations (energy is omitted for simplicity) in its
normal Eulerian form

dρ

dt
=
∂ρ

∂t

∣∣∣∣
x

+ u · ∇ρ = −ρ∇ · u (2.63a)

ρ
du

dt
= ρ

(
∂u

∂t

∣∣∣∣
x

+ (u · ∇)u

)
= ∇ · σ + ρb (2.63b)

where ρ is the density, v is the material velocity vector, σ is the stress tensor and b is
the specific body force vector.

To obtain the ALE form of the conservation equation the material velocity,u, in the
convective terms needs to be replaced with the convective velocity c = u − û. û is the
mesh velocity defined as

21



û (χ, t) =
∂x

∂t

∣∣∣∣
χ

. (2.64)

Then the conservation equations can be expressed in the ALE form as:

dρ

dt
=
∂ρ

∂t

∣∣∣∣
χ

+ c · ∇ρ = −ρ∇ · u (2.65a)

ρ
du

dt
= ρ

(
∂u

∂t

∣∣∣∣
χ

+ (c · ∇)u

)
= ∇ · σ + ρb (2.65b)

2.7.2 Volume of Fluid - VOF
Volume of Fluid (VOF) method as developed by Hirt and Nicholas is an Eulerian ap-
proach [26]. VOF can be considered as an extension of the MAC method in some sense as
it uses the somewhat the same methodology in marking cells. However, Hirt and Nicholas
describes fluids as a volume fraction instead merely denoting them as 1 or zero i.e con-
taining fluid or empty. This allows for a more accurate expression for the amount of each
fluid in each cell, as this has been previously assumed either one or zero leading to a rel-
atively high number of cells. Another important aspect is that it is more general method
that allows for multiphase flows as it can handle different fluids in the same cell.

1

Figure 2.8: Volume fraction is captured as fraction from 1 to 0, which can be illustrated by color
function from red to blue respectively.

The method belongs to the class of Eulerian advective schemes, a numerical recipe to
track the shape and position of the surface. The Volume of Fluid method is based on the
idea of a fraction function α on the form:

∂α

∂t
+ u · ∇α = 0 (2.66)
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The discontinuous phase boundary is replaced with a soft boundary governed by the
phase fraction α. Thus the interface is tracked indirectly through the phase fraction α and
not explicitly. A sufficient resolution in the boundary zones is a requirement for accurate
boundary tracking. This can be done by increasing the mesh resolution which gives sharper
boundary.

In an air-water system the phase fraction parameter α can be defined as

α =


1, water
0, air
0 < α < 1, at the interface

(2.67)

The density and viscosity of a fluid in a cell is found by summing over the product of the
phase fraction and phase property in a given cell

ρ =
∑

αiρi (2.68)

µ =
∑

αiµi (2.69)

In order to retain boundedness a limit must be set on the value of volume phase fraction
in the cell. The limit is set by

α1 + α2 = 1. (2.70)

This limits the total phase fraction in any cell to be max 1. The way to negate this
is by using flux limiters to ensure boundedness. In OpenFOAM, this is done by using a
bounded scheme such as the van Leer scheme.

2.7.3 Level set methods
Free surfaces can also be represented by level set methods. Level set was developed in
the 1980s in a series of papers by Osher and Sethian [39]. Level set methods are based on
dynamic implicit representations of surfaces. An explicit representation is done by writing
the explicit points of a curve, whereas the implicit representation is made up of a series of
iso-contours. Each iso-contour has a set of points that crosses the interface. For example
the zero contour of φ(x) = x2 − 1 is the set of points that equals φ(x) = 0. This can just
as easily be done for a curve instead of points. For φ(x, y) = x2 + y2 − 1 a zero contour
is any points on the curve, while contours inside the zero contour has values φ < 0 and
outside they are φ > 0.

This provide an excellent tool for judging whether a point lies on the inside, outside or
on the interface simply by checking on values for φ.

If the Eulerian approach is kept, the φ function can be used both to represent and evolve
the interface. The evolution is represented by the simple advection equation

φt + v · ∇φ = 0. (2.71)

The advection equation is a hyperbolic equation and therefore share any number of
similarities to existing equations in fluid mechanics. Numerical approximations to the
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Figure 2.9: Implicit representation of the curve x2 + y2 − 1 = 0 [38]

equations are therefore similar methods such as a simple first-order upwind scheme or
more complex scheme such as Hamilton-Jacobi ENO, Hamilton-Jacobi WENO or Runge-
Kutta TVD [38].

Despite being a powerful tool for describing free surfaces and multiphase flow, espe-
cially effective with topological changes, level set methods suffer from leakage of mass
in underresolved regions of the flow. Foster and Fedkiw [18] suggest a improvement
hybridizing the particle and level set method and use the local interface curvature as a
diagnostic. This technique reduces much of the mass lost and has been used as realistic
animation tool for water, a result can be shown in Figure 2.10.

2.8 Absorbing Boundary Conditions
Special care is needed near the outlet regions as waves hitting normal boundary conditions
gets reflected and can then affect the solution area. This can be illustrated by looking at
the scalar 1D wave equation

∂2ϕ

∂t2
− c2 ∂

2ϕ

∂x2
, (2.72)

where ϕ is the advected quantity and c is the velocity of the advection or phase velocity
of the wave, in this case constant. The wave equation can be solved by a finite difference
approach and the solution is shown in Figure 2.11.Here a initial wave propagates towards
boundaries in the x-direction. Two approaches are compared; a zero gradient boundary
and a transparent boundary condition. For a zero gradient boundary condition the entire
wave is reflected and returns with same amplitude and propagation speed. For a radiating
boundary condition, the wave height is predicted at the boundary in such a way that the
wave appears to pass perfectly through the boundary. This shows the importance of being
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Figure 2.10: Sphere generating a splash of water[18]

able to effectively treat waves hitting boundaries in order to minimize their effect on the
solution.

2.8.1 Transparent Boundaries

For the scalar wave equation, there exist several version of transparent boundary condi-
tions. Enquist and Majda[15] to make a formal formulation of a transparent boundary
condition for the 2D scalar wave equation with c = 1

(
∂

∂x
+ i
√
k2y − ω2

)
ϕx=0 = 0, (2.73)

where ky is the y component of the wavenumber. The global formulation in half space
(2.73) can be approximated (given in first order for simplicity) by Padè or Taylor approxi-
mation and moved back into real space, can then be written as

(
∂

∂x
+
∂

∂t

)
ϕx=0. (2.74)

This is the same formulation as the Sommerfeld radiation condition. Orlanski[37] had
already provided a finite difference approximation by extrapolation for the same radiation
condition, including a way to estimate the phase velocity. Higdon[25] extended the for-
mulation to dispersive waves and the Klein-Gordon equation, including the phase velocity
and group velocity in the formulation. Higdon[24] also accounted for waves at an angle
of incidence to the boundary. This was extended by Romate[46] to include free surface
waves with a velocity potential formulation. The BC was formulated in first and second
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(a) Time = 0.45 (b) Time = 0.55

(c) Time = 0.65 (d) Time = 0.8

Figure 2.11: Wave height at different timesteps for 1D wave for different sets of boundary conditions

order, where the first order BC was expressed as(
∂

∂x
+ c

∂

∂r

)
ϕx=0 (2.75a)

c =
ω

k
r =

{
cosβ

sinβ
, (2.75b)

where β is the incident angle between the wave and the boundary. Radiating boundary
conditions give in theory no reflection at the boundary, but when numerical approxima-
tion is applied the conditions are no longer valid and therefore some reflection is always
present. Formulation of these kinds are very useful for the advection of scalar quantities
such as the pressure, acoustic, elastic or electromagnetic waves[22]. These are all linear
approximations, that being said the boundary can be set at a location, where non-linearity
is avoidable. However, introducing a non-uniform background flow makes the use of ve-
locity potentials inapplicable as well as making the phase velocity hard to predict, and
other methods should be considered.

2.8.2 Zonal techniques
Instead of formulating an exact boundary condition, strategies exist for developing zones
or layers for dampening or absorbing waves in domains. One of the main benefits of
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these methods are that they can be quite easily expressed and implemented. Generally
they work by adding extra mesh points that stretch, absorb or dampen the wave in some
fashion to reduce or avoid reflection at the boundary. In the literature these techniques
are often referred to as "absorbing layers", "sponge layers", "buffer zones", "numerical
beaches" or similar. As mentioned all the methods in this section increase domain size and
are therefore considered as computational costly. The benefits of using of these methods
has to be weighed against this extra cost.

Perfectly matched layer

In 1994, Perfectly Matched Layer (PLM), was formulated by Bèrenger[3] to dampen elec-
tromagnetic waves propagating towards boundaries. The idea is that an absorbing layer
attenuates the solution and therefore can make simpler to set correct boundary condition
on the outer domain. A simple outline of the idea is given in Figure 2.12.

Figure 2.12: An overview of a 2D model with the original domain and the PML layer around[55].

Bèrenger developed method for electromagnetic waves, which have behaves as accord-
ing to the scalar wave equation.The Laplace transformation of (2.72) is

s2ϕ̂ = c2
∂2ϕ̂

δx2
, (2.76)

where ϕ̂ is the Laplace transform of ϕ. This holds true for any waves inside the regular
domain, now we introduce a coordinate transformation as is the essence of the PML.

x̃i = xi +
i

ω

∫ Li

ai

$(xi)dxi (2.77)

where $(xi) is the complex stretching factor. The PML starts at a point ai and ends Li
at the end of the domain in any given direction i = 1, 2, 3. This stretching contributes
the actual absorbing of the wave and can have properties of an exponentially decaying
function, but of matching impedance as of the system in question. For the PML, the
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assumption is that the same equation expressed in terms of this coordinate transform, holds
true. In terms Bèrengers paper [3], this is in fact matching of PMLs. This can be illustrated
looking at the effect the transformation has on the general solution.

u(x, t) = e
−i
(
ωt+

∫ Li
ai

$(xi)dxi

)
(2.78)

As seen in (2.78), the PML works as a exponentially decaying function unlike the gen-
eral solution which has a purely oscillating nature. However, it is important to distinguish
between oscillating and evanescent modes of waves and how they respond to the PML.
Evanescent waves are exponentially decaying and when exposed to the PML they become
oscillating and can cause potential problematic behaviour. This is important to consider
when designing PML’s, given a bigger distance between the PML and the starting point of
the evanescent waves it is likely that the waves have decayed substantially enough.

Perfectly matched layers have been modified to be able to account for a mean flow,
making able to be used to for instance the linerised Euler [27]. Hu extended his approach
for use to both the non-linear Euler as well as the Navier-Stokes equation and thereby
making it a very viable option for use in CFD[28]. However, for non-linear equations the
perfectly matched is no longer perfectly matched due to the conversion from Fourier trans-
formed expressions to time domain equations. Non-linearity in the flux vector excludes
the formally perfectly matched layer. It is still effective, but the performance is decreased
if there is strong non-linearity present inside the perfectly matched layer.

Artificial dissipation and damping

In the added parts of the domain one can customize the dissipation and/or add a damp-
ing term to reduce waves travelling toward the exit. This can be added directly into the
governing equations and thereby likely keeping them well-posed. Effectiveness has for
the one-dimensional wave-equation has been considered by Israeli and Orzag [29]. They
posed it as a system of two equations

∂u

∂t
=
∂v

∂x
+ µ(x)

∂2u

∂x2
− ν(x)u (2.79)

∂v

∂t
=
∂u

∂x
(2.80)

where both µ, ν >= 0. Dissipation alone was found to be rather ineffective, needing
over 15 wavelengths to achieve a reflection of 1%. Damping was found to much more
effective and was considered only to need about one and a half wavelength to achieve
minimal reflection.

Damping is therefore a much more used technique and has been used effectively also
for the Navier-Stokes equation. Freund used this for aerodynamic soundwaves simply by
adding the damping as a pressure term in governing equation[19].

∂u

∂t
= L(u)− ν(u− u0) (2.81)
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Term Description
ẑ vertical direction along gravity
x̂ flow direction
S Momentum sink term in the z direction
C1 linear damping resistance [1/s] (default value of 10)
C2 quadratic damping resistance [1/m] (default value of 10)
V velocity in the z direction
x distance from free surface
z distance along the flow direction x̂
f(x) damping function in the x̂ direction
f(z) damping function in the ẑ direction

Table 2.1: A detailed description of the terms in (2.85)

Here, u0 is a aimed value of the velocity field, which depend on the nature of the
problem. A similar approach is to damp out the disturbance directly in every time loop
with an appropriate function.

u = uref + ξ(x) (u− uref ) (2.82)

This damping technique is used in commercial software such as Ansys Fluent and
Star CCM+ for dealing with waves travelling out of the domain. According to Peric
and Maksoud most methods of this kind can be generalized as either linear or quadratic
damping[43]. Linear wave damping is obtained by adding a source term,qd,lini , to the
momentum equation:

qdi , quad = ρCi,linui, (2.83)

where the linear damping coefficient, Ci,lin, often has a spatial dependency. Ci,lin
regulates the strength and gradual blend-in of the damping as this is important to reduce
reflections. Reflections still occur at entrance and exits of these layers, however tuning the
parameters can decrease the reflections substantially.

Quadratic damping is usually described as

qd,quadi = ρCi,quad|ui|ui. (2.84)

This is very similar to the linear damping, however it is weighted by the magnitude
of the velocity, causing particles of higher velocities to experience more damping. In the
Fluent literature the sink term is defined

S = −ρf(x)f(z)

[
C1V +

1

2
C2|V |V

]
(2.85)

The damping functions are determined by scaling factors according to

f(x) = r2x (2.86a)
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f(z) = 1− rz, (2.86b)

where the scaling factors, rx and rz , are determined by

rx =
x− xs
xe − xs

(2.87a)

rz =
z − zfs
zb − zfs

(2.87b)

In Fluent, linear damping is used in flow direction, while quadratic damping is used in
the direction of the gravity. Peric̀ and Maksoud asses the use of these in-built functions in
their 2016 paper [43]. They also discuss important aspects concerning design of the wave
tank and absorber, as well as discussing the evaluation of the data received. In particular,
since the waves cannot be perfectly absorbed, unlike in the analytical cases, standing waves
will oscillate in time around the actual value.

They further discovered that the quadratic damping did not offer any actual improve-
ment compared to the linear. In fact, the linear seemed to work efficiently for a broader
range of wave frequencies than the quadratic. The width, xd = xe − xs, seemed to have
a great effect on the damping quality. Normally, the damping length is recommended as
1.5λ ≤ xd ≤ 2λ, but for set-ups where the parameters of the wave is not known in advance
such as waves reflected of bodies, a longer damping zone is recommended.

Peric̀ and Maksoud[43] also introduced a scaling law for the length of the damping
layer:

xd = xd,ref ·
λ

λref
, (2.88)

and similarly for the damping coefficient

f1 = f1,ref ·
ω

ωref
. (2.89)

Based on the results, they also recommend a damping setup:

f1 = Ψ1ω, (2.90)

with Ψ = π, wave frequency ω, xd = 2λ and n = 2
In OpenFoam, similar ramping options exist for wave damping. The fvOption verti-

calDamping can be added as a source term to the momentum, where a set constant is mul-
tiplied with the vertical velocity similar to in Fluent and Star+ CCM. Ramping function
can be used to blend the source term in order to cause minimal reflections. In Figure 2.13,
three of these ramping function are plotted against the ramping function used by Peric̀ and
Maksoud. Peric̀ and Maksoud reported best results for their function

Grid stretching and numerical filtering

Another way of attenuating the solution can be achieve in a simple numerical way. Stretch-
ing the grid in the wave propagating direction to the extent that the grid becomes coarse
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Figure 2.13: Ramping options in OpenFOAM plotted against the functions provided in Star+ CCM

enough to under-resolve the wave. Grid stretching is computationally equivalent to coor-
dinate modification. In the x-direction this can be written as

∂

∂x
→ α(x)

∂

∂x
. (2.91)

This must however, be used with caution as sharp transition to a coarser grid can cause
numerical reflection in itself. Grid stretching can also cause high frequency grid-to grid
oscillations and therefore high-order numerical filters should be considered.

Filtering techniques similar to what is used in Large-Eddy Simulations (LES) has been
developed as an absorbing layer for compressible flows [4]. By using a Fourier transform
on the governing equations and then filtering the equation in Fourier space, flow distur-
bances can be dampened out. The filtering area is controlled by a window function in
analogy to signal processing, which is restricted to a smooth function as for instance the
tanh function. A second filtering is performed on the physical grid and a model for the
unresolved scales is also suggested.

2.9 Dynamic Mesh Handling
Dynamic meshes involves any automatic changes performed by the solver during a simu-
lation, including moving and adaptive meshes. These types of problems are normal to find
in any type moving boundaries such as a moving piston or a prescribed motion of wing
actuators. One separates between two main dynamic mesh actions, mesh deformation
and topological changes. Mesh deformation is caused by moving boundaries that moves
points by a prescribed velocity. Topological changes are more complicated as they involve
changes in the number and/or connectivity of points,faces and cells.
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Figure 2.14: Mesh deformation problem[31]

Methods for dealing with dynamic meshes are dependent on the discretization. The Ar-
bitraty Lagrangian-Eulerian Finite Element Method (ALE-FEM) is considered a textbook
subject, while extensions to finite volume methods have been present since the 1980s[7].
Moving mesh FVM takes advantage of the integral form of the governing equations over
an arbitrary moving volume V bounded by a closed surface S. The general formulation
for an tensorial property φ is then

∂

∂t

∫
V

ρφ ∂V +

∮
S

ρn · (u− uS)φ∂S +

∮
S

ργφn · ∇φ∂S =

∫
V

sφ ∂V, (2.92)

where ρ is the density, n is the outward pointing normal vector on the boundary sur-
face, u is the fluid velocity, uS is the velocity of the boundary surface, γφ is the diffusion
coefficient and sφ the volume source/sink of φ. The rate of change of the volume V and
the velocity uS are related through the space conservation law (SCL)[31]:

∂

∂t

∫
V

∂V −
∮
S

n · uS ∂S = 0 (2.93)

A general mesh deformation problem can be stated as follows. Let D represent a do-
main configuration at a given time t with its bounding surface B and a valid computational
mesh as given in Figure 2.14. During a time interval δt, D changes shape into a new con-
figuration D′. A mapping between D and D′ is sought such that the mesh on D forms a
valid mesh on D′ with minimal distortion of control volumes.

Solving the mesh deformation is non- trivial and there are several strategies to accom-
plish. One way to consider this by a spring analogy which aims to link each point of the
mesh by fictitious springs. However, this can lead to failure modes as shown by Jasak
and Tukovic[32]. These failure modes can be avoided introducing non-linear and torsional
springs. The cost however, is huge and this method suffers greatly from that. The Laplace
smoothing equation offers a totally different strategy. In D

∇ · (γ∇uD) = 0 (2.94)

whereuD is the mesh deformation velocity and mesh deformation can be found from
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xnew = xold + δt.uD) (2.95)

An important thing too note that the Laplace smoothing equation does not take into
account coupling of motion due to rotation. Too achieve this one must use a pseudo-solid
equation, which are simplifications of the non-linear spring problem. In the thesis, only
Laplace smoothing equation has been used as there is no rotational mesh motion.

The diffusivity, γ, can have a large effect on the distribution of the movement of the
cells. Too high values can lead to self intersecting or other ill conditioned meshes due to
too large displacements of the grid points [1]. The diffusivity can also be varied from the
moving boundary, which is usually done by making it inverse or square inverse propor-
tional with the distance from the moving boundary. If the mesh movement is large, one
must consider making topological changes to keep the mesh at an acceptable quality. This
will not be considered further in this text as mesh deformation is kept at a significantly low
level.

2.10 Frequency analysis
In signal processing, it is very useful to perform frequency analysis, which can be made
through the Fourier transform of the signal. Fourier transforming the signal is done by
using a fast Fourier transform (FFT) algorithm. The FFT algorithm computes the discrete
Fourier transform (DFT) of a sequence or its inverse. This a very helpful tool for quick
switching between the time domain and the frequency domain. The discrete Fourier is
defined by:

Xk =

N−1∑
n=0

xn · e−i2πkn/N , (2.96)

where N is the amount of numbers in a sequence. An example is shown here, as this
process is much used in the post-processing stages of the work done in this text. Assume
a surface is has an initial Gaussian deformation and over a uniform current then the sur-
face as a function of time and space. The expression can be easily derived by combining
(2.20),(2.21) and (2.22) with the vorticity S set to zero. The expression is then :

ζ(x, t) = β(k)eik(x−U0t+ct) + β(k)eik(x−U0t+ct), (2.97)

where c =

√
g

k
tanh kh. The amplitude β can is found from

ζ(x, 0) = 2βeikx = (e−(x/a)
2

. (2.98)

Then the dispersion relation is plotted in Figure 2.15. In this example, a large number of
frequencies are available from the analytical solution and it distributes nicely. Since the
example has a uniform current, the dispersion has different shape upstream then down-
stream. This has do with that upstream of the initial disturbance, the waves have a lower
wavelength, while downstream the current "stretches" the wave and therefore the wave is
longer. If the current is set to zero, both sides are identical.
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Figure 2.15: Frequency analysis of an Gaussian initial wave deformation over a uniform current

2.11 Summary
In the theory section, it was uncovered the necessary relations, parameters and equations
that are to describe waves and wave theory. A broad presentation was also given of nu-
merical representations of free surfaces as well as the absorbing boundary conditions. The
VoF-method was selected as in OpenFoam, the interFoam solver is fully integrated with
this. However, a Euler-Lagrangian approach is also implemented for the dynamic mesh
handling used to oscillate cylinder in chapter 4. A damping layer was chosen to handle
reflections on the boundaries. The damping layer was chosen both due to the fact that its
already implemented in OpenFoam, but also because it has abilities to dampen broad wave
spectrum’s. It also is universally defined, without considering inflow or outflow conditions.
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Chapter 3

Method

Numerical methods are used in this thesis to perform analysis of surface waves. The open-
source software OpenFoam, which is an open-source CFD program, is the software of
choice to perform the analysis. This section will quickly cover into what kind of software
and hardware that has been used in the thesis, before explaining about meshing and mesh
quality. Then the solver and solver settings will be discussed, before doing a test case to
determine an optimal setting for the wave damping parameter f .

3.1 Software
OpenFOAM is the main tool for the CFD analysis, in addition Paraview and Matlab is used
for post-processing. Paraview is also open-source software, which is the most common
tool for viewing results from OpenFOAM and is easily accessed via the terminal window.
In OpenFOAM, most cases are generally set-up through three folders; 0, constant and
system. The 0-folder contains the boundary conditions, the constant folder includes fluid
properties and the polyMesh-folder, which describes the mesh. In addition, the system-
folder includes a number of files that controls the solvers, schemes and other important
settings. Commands are then executed in a terminal window, instead of using a interactive
tool as is common in most commercial CFD softwares. The CAD model and mesh are
created with the ANSYS package, by the use of Design Modeler and ANSYS Meshing.
Meshing can be performed directly in OpenFOAM, as well by using the blockMesh tool or
from a CAD model with snappyHexMesh. However, due to familiarity with the ANSYS
package, this was chosen to ease the work flow. A mesh can easily be imported by using
the fluentMeshToFoam command, however care must be taken as to which patch types and
boundary conditions are important as these may not be what was originally intended.

Post-processing was done in Paraview and MATLAB, where Paraview generally was
used to visualize the flow during simulation time as well as used for filtering. The filters
used were a contour set at α = 0.5, and a cell-center filter to extract only the value at a
cell center, as Paraview interpolates to cell corner values. This was exported as a .csv
file, which could then be reread into MATLAB. In case of any multiple entries, linear
interpolation was used to find α, and then the surface height was simply ζ = α · y.
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Simulation time varied from 8 hours to 24 hours and was performed on a Dell Latitude
E6420.

3.2 Meshing

3.2.1 Mesh Quality
In order to determine whether a mesh has been properly or poorly designed, mesh quality
parameters are used for a quantifiable . ANSYS Mesh uses element quality, aspect ratio,
Jacobean ratio, warping factor, parallel deviation, maximum corner angle, skewness and
orthogonal quality as mesh metrics. The definition has been gathered from ANSYS Doc-
umentation, Mesh Metric. The most parameters used to measure the quality are explained
below.

Element quality is a composite quality metric ranging from 0 to 1. It is based on the
ratio of the volume to the sum of the square of the edge length for 2D quad elements.
Element quality is expressed as

Quality = C
Area∑

(Edge length)2
(3.1)

for 2D elements, where C = 4 for quad elements.
Aspect ratio is simply the ratio between sets of orthogonal edges, when the edges are

not aligned they are calculated according to Figure 3.1.

Rectangle through midpoints

Quadrilateral

Midpoint

Figure 3.1: Illustration of how ANSYS Mesh calculates aspect ratio

Skewness is a measure how close an ideal i.e equilateral or equiangular a face or cell is.
Highly skewed elements have values close to 1 and at exactly 1 the element is completely
degenerate. If the skewness of an element is close to 0, the element is almost equilateral
and considered an ideal element.

Orthogonal quality for a face is computed as the smallest cosine of the angle between
the edge normal vector, Ai for each edge and the vector from the face centroid to the
centroid of each edge, ei.
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Value of Skewness Cell Quality
1 degenerate
0.9 - < 1 bad(sliver)
0.75 - 0.9 poor
0.5 -0.75 fair
0.25 - 0.5 good
> 0 - 0.25 excellent
0 equilateral

Table 3.1: List of skewness values and the corresponding cell quality

~A1

~A2

~A3

~e1 ~e2

~e3

Figure 3.2: Vectors used to compute orthogonal quality for an element

3.3 Solver and numerical settings

3.3.1 Solver

In openFoam, the standard solver for multiphase simulations is interFoam. This solver
utilizes the VOF method, by solving an extra equation for the phase fraction α. The in-
terFoam solver has been thoroughly tested in literature [8], where performance tests were
done on the solver. Deshpande, Anumolu and Trujillo also cover a large section of refer-
ences to the use of the solver not based on the actual performance, but measured against
experimental, previous numerical and analytical data. These include, but are not limited
to; a comparison of the droplet impact and crater formation with their experiments [2], mi-
crofluidic flow in rectangular channels with an analytical solution [48] and a comparison
of the velocity profiles for a flow around a partially submerged cylinder with experimental
data [36]. As a part of the verification they tested a standing wave in 2D, which showed
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excellent agreement in terms of frequency and small overshoots in the wave amplitude in
the inclusion surface tension effects, which also could be found in other numerical solvers.

For the oscillating cylinder cases, the interDyMFoam is used because of its ability to
handle dynamic meshes. The interDyMFoam solver is essentially an extension of the in-
terFoam solver, solving the multiphase equations equally, but has an inclusion for handling
mesh operation such as node movement, removal and addition.

3.3.2 Settings

Solver

The interFoam solver utilizes the PIMPLE or PISO algorithm depending on the number
of outer corrections in the nOuterCorrectors in the fvSolution file found in the system
folder. For a value of 1 the PISO-algorithm is used and for larger value the PIMPLE-
algorithm is chosen. For each iteration of nOuterCorrectors the velocity matric pressure
corrections are made and from these pressure corrections a new velocity matrix is built
based on the new flux field, then pressure corrections are again calculated and the flux field
is corrected. The number of cycles the pressure is corrected based on the old flux field is
nCorrectors. By specifying a tolerance based on the initial residual for each variable, the
number of nOuterCorrectors can be set to a large number and the solver finished the loop
when all tolerance criterion are met. Relaxation factors were used for stability purposes
and they were set for the velocity vector and pressure field at 0.6 and 0.4 respectively. The
viscosity and density are inheritly different in water and air. This jump causes convergence
and numerical instability due to the phase fraction. Therefore ρwater/ρair = 100 and
µwater/µair = 100 was chosen following Reichl et.al [44]. This only affected the air
properties and water was chosen to have its regular values for the density and viscosity.

Numerical schemes

The numerical schemes in OpenFoam are set in the fvSchemes file also in the system
folder. The schemes are chosen for; time, gradients, advection terms, diffusion terms and
interpolation. The numerical schemes used in the simulations are listed in Table 3.2.

Term Scheme
Time Crank Nicholson
Gradients Linear
Advection, Velcity linearUpwindV
Advection, Phase Fraction van Leer
Diffusion Linear corrected
Interpolation Linear

Table 3.2: Numerical schemes used in all simulations

All schemes, except time, are second order accurate and are linear schemes, except
for the advection schemes. The advection of velocity is a delicate non-linear term, which
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can become unstable for a linear scheme, therefore the linearUpwind scheme was chosen.
The van Leer scheme, was chosen because it is a bounded scheme, which also helps with
stability and ensures a smooth transition over the surface, where phase fraction jumps.

Time stepping

Time stepping was set by a calculated time-step, where the max Courant number was a
set value. OpenFoam uses cell volumes instead of grid spacing for calculating the Courant
number, in order to account for variable grid spacing in all directions. For easy start-up the
simulation was initiated by an Euler time-stepping scheme(value of 0), which was ramped
up during the first second of simulation time to a value of 0.9 in the Crank-Nicholson
weighting scheme, which was kept throughout the simulation.

3.4 Damping layer case

In order to treat waves approaching the boundaries a damping layer was deemed necessary.
The damping layer was added by the fvOption tool in openFoam, verticalDamping. This
function adds a force term which works in the direction of gravity and is intended to
damp vertical motion of an interface in the region approaching an outlet. A constant of
proportionality has to be determined. This is determined from an initial case, where waves
of amplitude a = 0.08m and wavelength λ = 4m enters from the left and propagates
towards the exit. The length of the mesh, Ltot = 6λ and the damping layer starts at
x = 4λ and its length is Ldamp = 2λ. The vertical domain size was Lvert = 4.5λ and the
depth is, d = 4λ.

3.4.1 Mesh

An orthogonal, quadrilateral and structured mesh was created in Fluent Mesh, where 10
cells per amplitude and 50 cells per wavelength were used. The number of cells were
decided from Peric and Maksoud’s paper [43] and ITTC’s guidelines which states that
"Use no less than 40 grid points per wavelength on the free surface ... Use no less than 20
grid points in the vertical direction where the free surface is expected" [30]. Resolution is
most important where gradients are large i.e where the flow changes fastest. In this case
that is only close to the surface. The bottom was given a no-slip boundary condition, but
the boundary layer was not of interest and therefore not resolved. The growth rate away
from the free surface and bottom was 1.1 to achieve good resolution on the free and have
excellent mesh quality. The mesh size was therefore at 46800 cells.

Quality parameter Value
Aspect Ratio Min = 1 Max = 8
Mesh non-orthogonality Max = 0.012 Avg = 0.005

Table 3.3: Quality parameter for the mesh
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(a) An overview of the mesh (b) Close-up in the free surface zone

The quality parameters in Table 3.3 are taken from OpenFoams checkMesh utility. The
definition for mesh non-orthogonality is different from the orthogonal quality in Fluent
Mesh. Generally speaking, here a value close to 0 is good quality, while Fluent have good
quality close to 1.

3.4.2 Boundary conditions and initializations

All simulations in this section was initialized using the openFoam tool funkySetFields,
where α = 0 for y ≤ 0, which is equal to an undisturbed water surface.The hydrostatic
pressure and the velocity field was initialized as zero in the entire field.

Inlet

The velocity and phase-fraction boundary conditions at the inlet was, as mentioned, given
by an fifth order Stokes wave model, with no background flow. Values are gathered from a
table and mapped onto the inlet patch. The hydrostatic pressure prgh is set by a fixedFlux-
Pressure. This boundary condition sets the pressure gradient to the provided value such
that the flux on the boundary is that specified by the velocity boundary condition.

Outlet

At the outlet a zero gradient boundary condition is used for the velocity and the phase
fraction. A fixed value of 0 was used for the hydrostatic pressure.

Top

The velocity at the top patch was set as an pressureInletOutletVelocity condition. It
is mixed inlet/outlet boundary condition, where pressure is specified from the pressure
boundary condition. Outflow or inflow is decided from the sign of the flux, in case of
outflow, zero-gradient is applied. For inflow the velocity is found from the patch-face nor-
mal component of the internal-cell value. The hydrostatic pressure is set according to a
totalPressure boundary condition:
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pp = p0 −
1

2
|u|2. (3.2)

This pressure BC describes the the patch-pressure, pp by subtracting the dynamic pres-
sure from the total pressure p0, which is in this case p0 = 0. The phase-fraction is a mixed
condition inletOutlet, where the inlet value is set as 0 or in other words air.

Bottom

The bottom has a no-slip boundary condition for the velocity, U = 0. The phase-fraction
has a zero-gradient boundary condition. The pressure is set by the fixedFluxPressure.

3.4.3 Optimizing the damping parameter f

This setup is very similar to the one Peric and Maksoud [43] used to propose a range of
guidelines and a scaling law for practical purposes of a damping layer. The idea was to
compare the quarterCosineRamp with Peric and Maksouds result for the ramp functions
in Star CCM+.

Initially, the simulations was run for 20s of simulation time, with the PISO-algorithm
(nOuterCorrectors = 1). The number of inner loops (nCorrectors) was three, an extra loop
was added for non-orthogonal corrections (nNonOrthogonalCorrectors), and no relaxation
factors were added. After this start-up phase, relaxation factors were added (0.4 for prgh,
0.6 for U ) and the PIMPLE-algorithm was run with tolerance at 1 · 10−4 for the pressure
and 1 · 10−5 and the number of nOuterCorrectors was increased such that the tolerance
was reached until 50s of simulation time. Following Peric and Maksoud [43], the damping
parameter, f was initially set to Ψω, where Ψ = π. The frequency was calculated from
the dispersion relation, which for λ = 4m gave an omega ω = 3.92rad/s. This gave a
value for the damping coefficient at f ≈ 12rad/s.
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Figure 3.4: Surface height for the entire domain plotted for the last 6 periods for f = 12
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From Figure 3.4, it was observed that reflections were present, which indicated that the
damping coefficient was not at an optimal value. This led to the conclusion that Peric and
Maksoud’s parameters were not directly applicable to OpenFoam’s quarterSineRamping
function, despite the fact that show very similar behaviour as seen in Figure 2.13. There-
fore, the simulation was rerun with f = 40rad/s to establish an appropriate value, which
could be used as a basis for the rest of the simulations. The simulation for the new damping
coefficient is portrayed in Figure 3.5.
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Figure 3.5: Surface height for the entire domain plotted for the last 6 periods for f = 40

In order to look quantitatively on the effect of the damping coefficient, a reflection
coefficient,Cr, was calculated from the largest and smallest amplitude measured at 8 dif-
ferent location starting at x = −12 with a distance of λ. The largest and smallest amplitude
is taken to the most positive and negative value at any given point during the course of a
wave period. The reference amplitude was taken to be the amplitude at x = −8. The
coefficient,Cr is given by:

Cr =
max(a)−min(a)

max(aref )−min(aref )
. (3.3)

The computation of the wave model at the inlet boundary seemed to struggle with
accurately predicting the wave at the boundary. This is shown in Figure 3.6, where one
can observe that the shape of the wave is visibly different as well as that the water level
seems to be at a slightly different height. The reason for this was suspected to relate to the
boundary condition for the hydrostatic pressure. The wave model was not accounted for
in the definition of the pressure boundary condition, which may have been the reason for
the slightly off-put value. Therefore the reference was chosen to be set at x = -8.
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Figure 3.6: Reflection coefficient for the averaged value over 6 wave periods
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Chapter 4

Case Studies

These case studies encompasses three different cases; oscillating cylinder with quiescent
water, oscillating cylinder with uniform velocity and an oscillating cylinder moving at
uniform velocity over a shear current. For still water, the simulation validates the use of an
oscillating cylinder as a wavemaker by comparing the solution to the dispersion relation
for linear surface waves.

4.1 Oscillating cylinder - Quiescent water
This case was performed on a domain of (x, y) = [−3.33.3− 0.150.075], with an initially
at rest surface at y = 0. At the origin a cylinder of diameter 0.05 m was placed and
oscillated following a sinusoidal trajectory ycylinder = a sin(ωt), where a = 0.0075m is
the amplitude and the frequency is run at ω = 4π.

The meshing was divided into two different parts, where the mesh around the cylinder
was performed in ANSYS Meshing and then imported into openFoam. In openFoam, the
mesh was extruded in the x-direction for 6 λ and stretched in the damping zone for 2 λ
at both sides. In the extruded part there were 50 cells per wavelength and 20 cells per
amplitude and in the damping zone the cells were stretched with a growth rate of 1.2. The
number of cells then numbered 70240 in total. In Figure 4.1, the mesh around the cylinder
is shown and Figure 4.2 shows the outline of the domain used.

Quality parameter Value
Element Quality Min = 0.2 Max = 0.99 Avg = 0.75
Aspect Ratio (original mesh) Min = 1 Max = 9.8 Avg = 2.2
Aspect Ratio (stretched mesh) Max = 186.169
Orthogonal Quality Min = 0.71 Max = 1 Avg = 0.98

Table 4.1: Quality parameter for the original mesh

In Table 4.1, quality parameters are listed for the mesh. The stretched part had a lot
worse aspect ratio due to the stretching, which was expected. The stretching was used for
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Figure 4.1: Original mesh around the cylinder

Figure 4.2: The domain setup for the moving cylinder cases

two reasons; firstly to damp out incoming waves by poorly resolving them causing disper-
sion and secondly by reducing the number of cells for faster computing. The boundary
condition are given in Table 4.2.

Boundary U α prgh Displacement

Top pressureInletOutletVelocity
value (0 0 0) inletOutlet totalPressure fixedValue 0

Bottom slip zeroGradient fixedFluxPressure fixedValue 0

Cylinder movingWallVelocity zeroGradient fixedFluxPressure oscillatingDisplacement
ycylinder = a sin(ωt)

Inlet zeroGradient zeroGradient fixedFluxPressure fixedValue 0
Outlet zeroGradient zeroGradient fixedFluxPressure fixedValue 0

Table 4.2: Boundary conditions for quiescent water

The simulation was run for 20s with a variable timestep with the PISO algorithm,
where the timestep was calculated from the last Courant number value and the maximum
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Figure 4.3: Courant number and δt plotted for the time interval: [30s 35s]
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Figure 4.4: The last 1000 iterations for the hydrostatic pressure, prgh

Courant number was set at 0.5. The ITTC guidelines [30], recommend "100 time steps
per period for regular waves". The wave period in this case was 0.5 s, which would lead
to a recommended minimum of δt = 0.005. From Figure 4.3, δt was found in general to
be under the requirements. Usually the flow requirements or restrictions on the Courant
number are more strict then the restrictions on the number of time steps per period, which
was shown to be an accurate prediction in this simulation and was chosen as the restrictive
time parameter for the rest of the simulations.

From simulation time 20s to 30s, the number of nOuterCorrectors was increased to
10. The solution was deemed to be periodically time independent at 30s, and was run
another 5s for data sampling. In Figure 4.4, a sample of the residuals for the hydrostatic
pressure is plotted. This corresponds to approximately 26 time steps. For each time step,
a peak value is observed for the first PISO iteration, the initial residual then reduces down
below the tolerance criteria, which was for the pressure was set at 1 · 10−4. The tolerance
for the velocity was set at 1 · 10−5 and then when both criteria was met or if the number
nOuterCorrectors was reached, the solution progressed in time.

In Figure 4.5,the surface height is plotted at 20s of simulation time. The wave height is
clearly increased towards the damping layer, which gives no physical meaning. One might
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Figure 4.5: Surface height plot at t = 20 s

expect that the surface height could potentially increase close to the start of the damping
layer, but this effect is evident over the entire solution range. This is likely due to two
main causes; Firstly, the PISO algorithm is used causing large residuals for the pressure
and velocity, secondly the solution has not yet reached a steady, periodically varying state,
due to the start-up.
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Figure 4.6: Surface height plot at t = 20 s

In Figure 4.6, the wave amplitude is largest close to the cylinder and propagating with
dispersion towards the exits. This is an indicative sign that the solution have been solved
to an adequate accuracy. This can also be observed for the change in volume fraction with
respect to time, which is plotted in Figure 4.7.

Another thing of note in Figure 4.6 is that the amplitude of the initial disturbance
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caused by the moving cylinder is not directly translatable in the amplitude of the waves in
travelling away from the cylinder. This is expected, because the cylinder will only act as
crude wave-maker and cannot directly create wave of the same amplitude as it is moved
with. Since the amplitude of the waves were smaller, the vertical resolution of the waves
was less then optimal. Therefore in subsection 4.1.1, a second case was used to refine the
cells across the free surface by a factor of 2.

Near the cylinder a small irregularity is observed, which can be seen in Figure 4.9. The
irregularity can also be seen during the first wavelength close to the cylinder in Figure 4.6,
but dissipates beyond this due to the grid resolution, and is therefore not considered to
influence the solution significantly.
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Figure 4.7: Volume fraction for two time intervals, where the variance from the initial starting value
is given a function of time

Another thing to consider is how much of the wave reaches the boundaries. In Fig-
ure 4.8, the relative surface height in percent is shown. The wave is still present, but the
disturbance at the boundary never constitutes to more then a small contribution during the
start up. Between 30s and 35s, the mean value of the disturbance was 0.0451% and the
variance was 0.0038%.

4.1.1 Refined mesh

Since the elevation was lower then originally expected, a new mesh with a higher amplitude-
wise resolution was created. The number of cells were increased from 20 to 40 cells, which
gave an new mesh size of 84080 cells. Then the simulation was run from 30 to 35 s for
the coarse and fine resolution. The effect of increasing the mesh size can be seen in Fig-
ure 4.10. There is little effect in the waves of larger amplitude as expected, but a small
effect can be seen for the waves close to the damping zones, which are somewhat smaller.
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Figure 4.8: The surface height at the boundary divided by the amplitude of the initial disturbance
and the amplitude of the smallest waves observed at 30s outside the damping zone

Figure 4.9: A small irregularity near the cylinder

More of the amplitude is resolved, which causes less smearing of the amplitude.
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Figure 4.10: A comparison of increased resolution amplitude-wise

4.1.2 Frequency analysis
Frequency analysis was used to look at how the solution behaved in terms of the disper-
sion relation. The surface height, which was calculated from the assumption that it was
located at α = 0.5 was transformed by FFT (Fast Fourier Transform), and then compared
to the dispersion relation in Figure 4.11a. As the waves were concentrated for a single
frequency, there was a lot information for the excitation frequency and little data for all
other frequency found in the dispersion relation. This did, however, show that the fre-
quency of the waves correspondent to the excitation frequency was accurately portrayed
by the oscillating cylinder. From Figure 4.11b, the link between the wavenumber and fre-
quency, can be witnessed more clearly. The FFT-algorithm caused the spectral leakage or
smearing seen Figure 4.11b and Figure 4.11a. From the FFT, a fast assumption could be
made to find the largest element in the matrix, which gives k ≈ 17.56. This was checked
against the peak to peak distance, which was found at end of the simulation at 35s. The
peak to peak distance gave an average wavelength of 0.37m, which then implies a value
for k around 17. From the dispersion relation, the wavenumber is slightly less, k = 16.33,
which led the peak to peak distance to be about 4% less than the analytical value.

4.1.3 Discussion
This case study helped show that an oscillating cylinder could be an effective wave maker,
despite the fact that the amplitude of the waves was not one to one with the amplitude
of the cylinder oscillations. The waves had closer to half the size of the amplitude of the
cylinder oscillation, but a parameter study was not performed to see if this was a proven
trend. Instead, a new simulation was run on a refined mesh in the amplitude-direction, and
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(a) Frequency analysis of the surface height compared to the dispersion relation
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(b) A closer look on the dispersion.
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the comparison gave a good correspondence between the two meshes, except for a slight
under-prediction for the smallest amplitudes.

Valuable insight was also given comparing the PISO - and PIMPLE - algorithms, where
the PISO proved to be too inaccurate causing large residuals for the pressure and velocity.
Increasing the number of correctors remedied the problem, however solution time was
naturally increased. Generally, the PISO-algorithm was found to be useful to progress
faster in time and a switch was made to the PIMPLE- algorithm for time-accuracy.

The damping layer was deemed capable of handle the incoming waves at both ends
without causing to much reflections. The amplitude at the boundaries was found to be less
then 0.2% of the smallest amplitudes in the domain, which was an excellent result. The
volume fraction for the total domain was also used as measure of convergence, where it
showed a slight periodic oscillation around the starting value at the end of the simulation,
which was taken to be at an acceptable value.

4.2 Oscillating cylinder - Uniform flow
In this section, an oscillating cylinder on uniform flow will be considered. The simulation
was performed on a similar mesh as the simulation for still water, but the damping zone
near the outlet was extended to be twice as long as for the quiescent water case. This was
done to accommodate for the longer wavelength expected at the outlet zone.

The boundary conditions were changed from two outlets at each end to one inlet and
one outlet. The inlet was split in two, where in the top end of the inlet alpha was set to 0
(air) and in the lower end alpha was set to 1 (water). The water was given a velocity U =
0.2 m/s. This was chosen from (2.25), where linear theory predicts a resonance frequency.
The boundary condition for the velocity of the air was not that trivial. One could give the
air velocity U, however this could lead to high velocities close to the cylinder, which in
turn could increase solution time. Another alternative was to set the inlet to zero, but this
an non-physical condition, because the interface between the air works as boundary layer,
where the air is given a velocity by sticking to the water surface. Therefore, the air velocity
was unknown at the boundary which implied zero gradient condition. From simulations,
observations was made that while the air velocity seemed to be properly estimated in the
interface, air velocities in other parts of the of the boundary kept increasing. This happened
due to the fact that the air was swirling as it hit boundary suggesting inflow. The inlet air
boundary was therefore changed to an mixed boundary, where any inflow was accounted
for by setting it to zero velocity and this effectively solved the issue.

In addition, the variableHeightFlowRate was introduced at the outlet boundary as it
was known to maintain the water level better then a zeroGradient condition. The variable-
HeightFlowRate differs from the zeroGradient by having an upper and lower bound. The
upper bound was set as 0.8 and the lower bound was set as zero.

α =


0 α < lowerBound
zeroGradient lowerBound ≤ α ≤ upperBound
0 α > upperBound

(4.1)

The cylinder was oscillated at ω = 4π, and the inflow velocity was 0.2m/s. In order
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Figure 4.12: The inlet was split in order to control air and water separately.

Boundary U α prgh Displacement

Top pressureInletOutletVelocity
value (0 0 0) inletOutlet totalPressure fixedValue 0

Bottom slip zeroGradient fixedFluxPressure fixedValue 0

Cylinder movingWallVelocity zeroGradient fixedFluxPressure oscillatingDisplacement
ycylinder = a sin(ωt)

Inletair InletOutlet fixedValue 0 fixedFluxPressure fixedValue 0
Inletwater fixedValue (0.2 0 0) m/s fixedValue 1 fixedFluxPressure fixedValue 0

Outlet zeroGradient variableHeightFlowRate fixedFluxPressure fixedValue 0

Table 4.3: Boundary conditions for uniform flow

to obtain reliable results, the simulation was first run with the cylinder at rest on a coarse
mesh. Then when the solution was deemed as time-independent, the cylinder was set to
oscillate and run again until time-independence. The solution was then mapped onto a
fine mesh, and then run for 40 seconds of simulation time, corresponding to 80 periods
of oscillations. There was still some degree of unsteadiness in the solution, which can be
seen in Figure 4.13, where the surface height is plotted for two time instances with equal
phase.

From Figure 4.13, it was clear that the downstream and upstream behaviour was gen-
erating very different types of waves. The wavelength was much longer downstream then
upstream as expected. Downstream there only existed one wave, and the wavelength was
quite uniform as can be witnessed in Figure 4.14. Upstream, the wave pattern was more
complicated, as close to the cylinder the amplitude was large until it suddenly dropped
significantly from the fifth to the sixth wavelength without any significant change in wave-
length.

The mean peak to peak value downstream was λm = 0.51 m, which compared quite
well with the dispersion relation, which gave a value of λ = 0.5478 m, giving a . Up-
stream, the dispersion relation gives a value for λ ≈ 0.11 m, while the peak to peak
measurement gave a mean λm = 0.2133 m and a lowest value at λ = 0.15 m. This was
further reflected in the frequency analysis shown in Figure 4.15a, where the dispersion
relation was plotted alongside for comparison.

The results were even more clear, when plotted alongside the dispersion relation. The
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Figure 4.13: The surface height at two time intervals with equal phase
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Figure 4.14: The peak to distance measured from the cylinder for each wavelength.

accuracy downstream were very good, while the solution was more smeared in the up-
stream direction, which was a direct consequence of that for the same frequency several
wavelengths were measured. In addition, the incline of dispersion was at this point small,
and therefore a small difference in frequency leads to a large difference in the wavenum-
ber and wavelength. Therefore a weakly non-linear expansion of the dispersion relation
was added to illustrate that the difference between the linear dispersion relation and the
simulation might have been caused due to non-linearity. An expansion factor of αs = 1.2,
is indicative of ka = 0.6325.
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(a) The frequency analysis of the results from the uniform inflow simulation.
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(b) A closer look on the dispersion upstream.

4.2.1 Discussion

One of the main issues was being able to keep a steady inlet and outlet condition so that the
water level remained constant. Fixing the water level at the inlet was considered necessary,
as this should create a steady boundary condition for the inflow of the water. However, un-
steady behaviour was observed at one cell length into the mesh in terms of the phase
fraction. This did appear to have correlation with damping parameter, as it was observed
to react to changes in the parameter. During simulations the damping parameter close to
the inlet was set to a low value, which was possible due the long incubation time of the
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waves travelling against the main flow hitting the boundary. For the outflow condition, it
helped greatly to switch from a zeroGradient to a variableHeightFlowRate condition. But
still there were some water leakage, which is why from Figure 4.13 one can notice the
waves are oscillating around a value, slightly less then the original still water level y = 0.
As mentioned in the results, the downstream wavelength corresponded well with linear
dispersion relation giving a relative error of 6.9%. The upstream effects were considered
to be quite non-linear, which was clear from frequency plot, where a weakly non-linear
correction to the dispersion relation gave good correspondence with measured data. The
upstream data was necessarily imprecise to the very low gradient in the dispersion rela-
tion or low group velocity in other words. Another observation from Figure 4.13 was the
sudden jump in amplitude between the fifth and sixth wavelength upstream of the cyliin-
der, similar to a hydraulic jump. However, unlike an hydraulic jump the wave does not,
increase in velovity, but rather the opposite, almost stagnates.

4.3 Oscillating cylinder - Linear shear flow
The objective of this case was to look into potential non-linear-effects caused by the reso-
nance frequency of a moving source on linear shear current. This was done by superimpos-
ing the velocity of the oscillating cylinder, U , on a shear current. The problem description
is shown in Figure 4.16.

y

x

ζ(x, t)

y = asin(wt)

−h

U0 + Sy

Figure 4.16: The problem description for the linear shear case.

The inlet velocity was U = 0.25, while the vorticity was S = 5.2; Several changes
had to be made to the boundary conditions. The velocity boundary was changes to a linear
profile using the groovyBC library, while all the pressure condition containing fixedFlux-
Pressure was changed as especially on patches it was incompatible with a shear current
and any attempt to use it led to crashing the solver. Therefore the inlet and outlet bound-
aries were changed to inletOutlet to account for backflow setting any inlet values to zero,
while the cylinder and bottom was changed to zeroGradient. The simulation pattern was

57



identical to that for the uniform flow case, where the cylinder is first placed in the flow
until the transients were died out and then allowed oscillate on a coarse mesh and then
mapped onto a finer mesh. The mesh was the same the one used in all three cases.
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Figure 4.17: The surface height at the end of simulation time at the same phase.
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Figure 4.18: The peak to peak distance for the linear shear.
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4.3.1 Discussion
From Figure 4.17 and Figure 4.18, the conditions were quite unlike the moving cylinder
case, the wavelength has increased significantly to a mean of λm = 0.3438, while main-
taing a larger amplitude. This happened due to the introduction of vorticity, where the
flow counteracts the rotation for the particles causing large amplitudes and larger wave-
lenghts upstream. Downstream, it has the opposite effect, more vorticity caused the waves
to shorten and the amplitude is lessened. This corresponds well with behaviour as seen
in the frequency analysis plot in Figure 4.19. Upstream, the wave number from the fre-
quency seemed to correlate better with an assumptive non-linear expansion. In the uniform
flow case, this Stokes order assumption is valid for the dispersion relation, however to the
author’s knowledge there exist no extension for shear flow. This assumed behaviour was
merely shown as possible explanation for the discrepancy between the simulation data and
the linear dispersion relation. This assumption was based on that the third order Stokes
expansion, which causes correction for the dispersion relation without shear flow exhibits
the same behaviour with shear flow. The mean steepness of the waves was found to be
sm = kmam = 0.06, which would also indicate a non-linear regime. Another typical sign
of non-linear regime can be observed in Figure 4.17, where the linear wave downstream
oscillates around a zero still water level, while upstream the wave oscillates around a level
higher then the mean water level. The relative error in the wave length was in this case
calculated as 3.74%.
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Figure 4.19: The linear dispersion relation and an assumptive correction for weakly non-linear
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Figure 4.20: Frequency analysis of the linear shear case
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Chapter 5

Conclusion

5.1 Concluding remarks

Returning to the main objectives that was put forward in the master’s contract. The devel-
oping and implementing of an appropriate boundary conditions able to absorb continuous
wave spectrum’s was achieved by implementing the quarterCosineRamp and tested in the
damping layer case in chapter 3. Overall this exhibited a good behaviour being able to ef-
fectively dampen waves close to outlets. Some issues were discovered close to inlets such
as in uniform and linear shear flow case. Oscillations due to a fixed value on the boundary,
may require a deeper study, but it was manageable with trial and error to find appropriate
values that gave stable conditions. Especially at inflow for the shear case, only low values
f was permitted, therefore some reflections were unavoidable upstream of the cylinder for
the linear shear flow case.

The 2D "ship wave" problem was studied through an oscillating cylinder moving at
constant velocity. Two cases were shown, where the first case had no background flow
and the second had shear assisted flow. The two cases gave both non-linear behaviour
upstream and linear behaviour downstream. This was shown analytically by comparing
the dispersion relation with a frequency analysis of the surface. Visually it was also found
classical signs of non-linear behaviour such as steep troughs and crests, waves that risen
from oscillating with equal height on each side of the mean still water level. For the
uniform flow case, vortices was also observed crashing into the surface boundary causing
wave breaking and overturning(see section 5.2). The linear shear profile was chosen as it
is well treated in literature, and has a rather simple dispersion relation, but with the current
set-up any velocity profile could be chosen. Though due to time restrictions no effort was
made to look at other shear flows. The accuracy in the linear regimes were measured in
terms of the wavelength, which had a relative error of 4% in the still water and 6% uniform
case and 3.74% in the linear shear case for the linear part.
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5.2 Further work
This thesis has shown that OpenFoam can be used to simulate surface waves in the linear
regime with accuracy and has also showed that it can describe non-linearity, and there-
fore can be a useful tool in further research. Limits were set on the degree of accuracy as
number of cells closer to 100,000 slowed the computation fairly done. One of the main
reasons was due to the mesh movement, which had a solution time of up to one second
per time step. This was the main limiting feature of this kind of simulations, therefore
future work could be facilitated towards making the mesh movement more efficient, opti-
mizing the mesh structure by increasing the resolution near the surface, without causing
an increase in the global mesh size. Originally, an idea was to set the surface boundary
as a moving mesh. However, the gain in not solving the air could easily be lost in effort
of solving the mesh movement itself.Further research could immediately investigate more
thoroughly the effects between shear flows and non-linear waves as seen in linear shear
flow case. Parameter study could be done of the linear shear flow case, which also could
work towards establishing how shear flow and non-linearity interact. Data from several
simulation run at different frequencies could put together in the frequency analysis to give
a broader picture, of the surface that was barely scratched in the thesis.
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Appendix

Non-linear effects observed for the uniform flow case

Figure A1: Vortices were formed in front of the cylinder and trapped as the wave velocity and
background flow were in opposite direction. Sometimes these vortices would collide into the surface
causing wave overturning and breaking.
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Figure A2: An example of vortex hitting the boundary causing wave breaking.
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Linear shear current plots

Figure A3: Streamfunction at t =23 for linear shear current
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Figure A4: The magnitude of the velocity vector t =23 for linear shear current
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Figure A5: The hydrostatic pressure at =23 for linear shear current
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