

i

Abstract

This project evaluates the Peer2Me framework, a framework for collaborative applications on mobile
phones that utilize Personal Area Networks(PANs). Peer2Me is the work of Carl-Henrik Wolf Lund and
Michael Sars Norum carried out in their master thesis in 2005.

This paper describes central, theoretical concepts related to Peer-to-Peer(P2P) computing, Mobile Ad
Hoc NETworks (MANETs) and Computer Supported Cooperative Work (CSCW) domains, focusing on
presence-collaboration.
Evaluation methods used in this project are presented along with four developer research questions and
seven end-user questions.

In order to find answers to the research questions, the report describes two applications that have been
developed using the Peer2Me framework. The applications are called PeerQuiz and PeerShare. These
applications have been tested both by the developers and by a test-group. During the process of this
project, weaknesses and fields of improvements in the Peer2Me framework have been discovered. These
problems are described in detail in the evaluation part of this report.

This report also contains a prestudy that describes essential cooperation theory and technology, related
technology, details about the Peer2Me framework and related projects.

We argue how PAN-technology enables a broad range of collaborative applications supporting both
collocated and spontaneous interaction.
Description and evaluation of relevant technologies and projects related to Peer2Me is also described.

The source code and deployable packages of PeerQuiz and PeerShare can be found on the attached
CD found in the back of this report.

ii

Preface

This project is the result of the work carried out by Kim Saxlund and Tommy Bjørnsg̊ard from August to
December 2005. The project is a part of the course TDT4735 Software Engineering, Depth Study. The
course is a part of the fifth year of the Master in Technology degree in Computer Science at the Norwegian
University of Science and Technology. The project descriptions was assigned by the Department of
Computer and Information Science.

Acknowledgements

We would like to thank Alf Inge Wang for his invaluable guidance during the writing of this report.
We would also like to thank Michael Sars Norum and Carl-Henrik Wolf Lund for valuable information
regarding the Peer2Me framework.

We would also like to thank the participants of the end-user testing and for letting us borrow their
mobile phones : Torbjørn Vatn, Steinar Anders Hestnes, Jørgen Rygh and Even Andrè Fiskvik.

Trondheim December 19th, 2005

Kim Saxlund Tommy Bjørnsg̊ard

iii

iv

Contents

List of Tables ix

List of Figures x

I Introduction 1

1 Motivation 3
1.1 Problem definition . 4

2 Project context 5

II Research questions and methods 7

3 Research questions 9
3.1 Research questions . 9
3.2 Evaluation plan . 11

3.2.1 Research . 12
3.2.2 Design . 12
3.2.3 Implementation . 12
3.2.4 Testing . 12
3.2.5 Evaluation . 12

3.3 Test-application evaluation method . 13

4 Development method and software 15
4.1 Development methods . 15
4.2 Development tools . 15

4.2.1 Eclipse with plugins . 16
4.2.2 Java Wireless Toolkit (J2ME) . 16
4.2.3 MiKTeX . 16
4.2.4 Concurrent Versioning System . 16

5 Requirements elicitation and process 17
5.1 Scenario . 17
5.2 Goals . 17
5.3 Functional requirements . 17
5.4 Use case diagram . 18
5.5 Quality requirements . 18

III Prestudy 19

6 Essential Cooperation Theory and Technology 21
6.1 Peer-to-peer . 21
6.2 Mobile P2P networks . 23

v

vi CONTENTS

6.3 Mobile Ad Hoc Networks (MANET) . 23
6.4 Communication and Collaboration . 26

6.4.1 Groupware and Computer Supported Cooperative Work (CSCW) 26

7 Peer2Me 29
7.1 Introduction . 29
7.2 Design . 29

7.2.1 Domain Concepts . 29

8 State of the art 33
8.1 Bluecove . 33
8.2 Bluetooth Ad-hoc Networking for Inter-Vehicle Communication 33
8.3 Umbrella.net . 34
8.4 BEDD . 35
8.5 Other projects . 35

9 Technology 37
9.1 Mobile phones . 37
9.2 Java 2 Micro Edition . 38

9.2.1 J2ME architecture . 38
9.2.2 Optional packages . 39

9.3 Wireless network technologies . 39
9.3.1 Bluetooth . 40
9.3.2 Zigbee . 40
9.3.3 Radio Frequency IDentification . 41
9.3.4 Wireless Local Area Network . 41
9.3.5 Comparison . 42

9.4 XML . 44
9.4.1 Strengths and weaknesses . 44
9.4.2 Syntax . 45
9.4.3 Validation . 45
9.4.4 XML parsing . 46

IV Test application 1 - PeerQuiz 49

10 Introduction 51

11 Requirements 53
11.1 Scenario . 53
11.2 Goals . 53
11.3 Functional requirements . 54
11.4 Usecase description . 55
11.5 Quality requirements . 56

11.5.1 Usability . 56
11.5.2 Testability . 56
11.5.3 Modifiability . 56
11.5.4 Availability . 57

12 Dependencies 59
12.1 Packages . 59
12.2 Supported mobile phones . 60

13 Design 61
13.1 The PeerQuiz Package . 61
13.2 The Game Package . 62

CONTENTS vii

13.3 The Gui Package . 62
13.4 The Question Package . 63
13.5 The Util Package . 63
13.6 Class Diagrams . 64
13.7 Program flow . 71

14 Implementation 73
14.1 Xml parsing and Questions.xml . 73

14.1.1 kXml Pull Parsing . 74
14.1.2 Put to use . 74

14.2 Availability tactics and ping-functionality . 74
14.2.1 Ping/echo . 75
14.2.2 QuizTimer . 75

14.3 GUI - Graphical User Interface . 75
14.3.1 Form . 75
14.3.2 The PeerQuiz progressbar, BarItem . 76

14.4 Communication . 76
14.4.1 Initialization . 76
14.4.2 Master vs. Slave . 77
14.4.3 Sending messages . 78

14.5 Code statistics . 79

15 Testing 81
15.1 Test of functional requirements . 81

15.1.1 Comments on the implementation of the requirements 82
15.2 Test of quality requirements . 83

V Test application 2 - PeerShare 85

16 Introduction 87

17 Requirements 89
17.1 Scenario . 89
17.2 Goals . 89
17.3 Functional requirements . 90
17.4 Usecase description . 90
17.5 Quality requirements . 90

17.5.1 Usability . 91
17.5.2 Testability . 91
17.5.3 Modifiability . 91
17.5.4 Availability . 91

18 Dependencies 93
18.1 Packages . 93
18.2 Supported mobile phones . 94

19 Design 95
19.1 The peershare package . 95
19.2 The peershare.gui package . 96
19.3 The peershare.util package . 96
19.4 Class Diagrams . 98
19.5 Program flow . 101

20 Implementation 103
20.1 FileConnection APIs . 103

viii CONTENTS

20.2 Xml parsing . 104
20.3 GUI - Graphical user interface . 105
20.4 Communication . 105

20.4.1 Initialization . 105
20.4.2 Setting up the filesharing network . 106
20.4.3 Downloading files from others . 107
20.4.4 The truth about Peer2Me communication . 107

20.5 Storing application data . 108
20.6 Code statistics . 108

21 Testing 109
21.1 Test of functional requirements . 109

21.1.1 Comments on the implementation of the requirements 109
21.2 Test of quality requirements . 110

VI Evaluation 113

22 Answers to research questions 115
22.1 Developer questions . 115
22.2 End-user questions . 120

22.2.1 Answers to PeerQuiz . 120
22.2.2 Answers to PeerShare . 122

22.3 Summary . 123

23 Summary of the project 125
23.1 Conclusion . 125
23.2 Further work . 125

23.2.1 Short-term goals . 125
23.2.2 Long-term goals . 126

Bibliography 127

VII Appendix 131

A Snapshots of PeerQuiz 133

B Snapshots of PeerShare 141

C Questionnaire for Peer2Me developer testing 149

D Contents of CD-Rom 153

List of Tables

3.1 Format of buglist . 10
3.2 Format of improvement list . 10
3.3 Format of new functionality list . 11

5.1 Description of quality attribute scenario . 18

6.1 Comparison of pure and hybrid model . 22
6.2 Groupware Time Space Matrix . 27

7.1 Framework statistics . 32

9.1 Display resolutions of mobile phone with J2ME support 38
9.2 The different WLAN standards . 42
9.3 Strength and weaknesses of XML . 45

11.1 Functional requirements for PeerQuiz . 54

12.1 Supported mobile phones . 60

14.1 PeerQuiz code statistics . 79

15.1 Fulfillment of functional requirements for PeerQuiz . 82

17.1 Functional requirements for PeerShare . 90

18.1 Supported mobile phones . 94

20.1 PeerShare code statistics . 108

21.1 Fulfillment of functional requirements for PeerShare . 110

ix

List of Figures

6.1 Taxonomy of computer systems . 22
6.2 Ad hoc networks taxonomy . 24
6.3 A singlehop ad hoc network . 24
6.4 A multihop ad hoc network . 25
6.5 Scatternet comprising three piconents . 26
6.6 Digital spheres intersecting . 27

7.1 Taxonomy of computer systems . 30
7.2 Taxonomy of computer systems . 31

8.1 The GUI of the Umbrella software . 34

9.1 Taxonomy of computer systems . 39
9.2 Speed comparison . 43
9.3 Range comparison . 43
9.4 Power consumption comparison . 44

11.1 Use case model for PeerQuiz . 55

13.1 Package diagram for PeerQuiz . 61
13.2 The peerquiz package . 64
13.3 The game package . 65
13.4 The game package part 2 . 66
13.5 The gui package part 1 . 67
13.6 The gui package part 2 . 68
13.7 The question package . 69
13.8 The util package . 70
13.9 PeerQuiz flowchart . 71
13.10Peer Quiz UML activity diagram . 72

14.1 BarItem graphics . 76

17.1 Use case model for PeerShare . 90
17.2 File transfer in PeerShare . 92

19.1 Package diagram for PeerShare . 95
19.2 The peershare package . 98
19.3 The gui package . 99
19.4 The util package . 100
19.5 Activity diagram of PeerShare . 101

20.1 Taxonomy of computer systems . 106
20.2 Taxonomy of computer systems . 107
20.3 Taxonomy of computer systems . 107

22.1 Mobile ad hoc collaboration in a natural environment . 121

x

LIST OF FIGURES xi

A.1 Splash screen . 134
A.2 Main menu . 134
A.3 Settings menu . 135
A.4 Choosing quiztype . 135
A.5 Custom quiz . 136
A.6 Entering nickname . 136
A.7 Entering nickname . 137
A.8 Request to allow Bluetooth connection . 137
A.9 Searching for master . 138
A.10 Searching for slaves . 138
A.11 Answering questions . 139
A.12 Submitting answers . 139
A.13 Winner declared . 140

B.1 Main menu . 142
B.2 Settings menu . 142
B.3 Permission to access file system . 143
B.4 Selecting download and upload folders . 143
B.5 Selecting download folder . 144
B.6 Download folder is selected . 144
B.7 Download & Upload folders selected . 145
B.8 Entering nickname . 145
B.9 Request to allow Bluetooth connection . 146
B.10 A master’s perspective - Nodes found . 146
B.11 A slave’s perspective - Nodes found . 147
B.12 Browsing the connected peer’s files . 147

Listings

9.1 Example of an xmlfile . 45
9.2 Example of an DTD file . 46
14.1 Xml-format, from Questions.xml . 73
14.2 DTD for Questions.xml . 74
14.3 Setting new screen codeexample . 75
14.4 Initializing the framework . 76
14.5 Setting listeners and handlers . 77
14.6 Registering components . 77
14.7 Searching for slavenodes . 77
14.8 Slavenode is discovered by masternode . 77
20.1 Imports in the FileHandler class, from FileHandler.java 103
20.2 Getting content of directory, from DirectoryBrowserScreen.java 103
20.3 Connecting to filesystem and retrieving contents, from FileHandler.java 104
20.4 Calling the recursive method, from FileHandler.java . 104
20.5 DTD for example.xml, from rules.dtd . 104
20.6 Sample xml file, from example.xml . 105
20.7 Slave - Initializing components, from PeerShare.java . 105
20.8 Master - Initializing components and start search, from PeerShare.java 105
20.9 Master - Starting search, from PeerShare.java . 106
20.10Slave - joins group, from PeerShare.java . 106

xii

Part I

Introduction

1

CHAPTER 1

Motivation

Numbers from SSB, Statistics Norway [28] shows that the last five years in the telecom sector, sales have
never been higher, nor have the penetration of the market been greater. As the number of mobile phones
are increasing, they are also getting more and more advanced. Todays mobile phones are able to perform
tasks that were impossible two years ago, and a big challenge is to take advantage of the new technology.
With todays technology focusing on connectivity and recreation, mobile ad-hoc communication and
collaboration is a growing domain.
Creating software solutions for this domain can be difficult due to the multitude of different mobile phones
on the market. With commercial software, one must be sure that whoever is using the application, uses
it sucessfully. There are several processes which can aid the developer in creating good applications,
whereas standarization would be the most useful. Standards are good for shortering the time-to-market
as well as increasing the target area for an application. There are several standards and solutions when
it comes to software on a mobile phone. Today, Java is supported by most modern mobile phones and
Java 2 Platform, Micro Edition (J2ME), is proving to be de facto standard. Windows Mobile - based
smartphones are also increasing in number. These mobile phones support applications developed on the
.NET Compact Framework and some even support J2ME applications. With J2ME, software developers
can create useful and sensible applications, promoting informal ad-hoc collaboration. Kraut, Fish, Root
and Chalfonte defines informal collaboration:

”Informal collaboration, opportunistic or spontaneous, lacks predefined agenda and sched-
ule, is short, and involves random participants.” [31]

Peer2Me is a framework which lets the developer create applications based on the principle of mobile
ad-hoc communication. Framework is defined as:

”A set of classes that embodies an abstract design for solutions to a family of related
problems.” [30]

Peer2Me abstracts the network layer, making the communication semi-transparent to the developers. It
will be easier to create powerful applications that communicate wirelessly.
The Peer2Me framework is not ready to be released, and still needs a final touch. Our motivation is to
improve the framework, discover faults and weaknesses, and take it one step closer to release. This leads
to our problem definition.

3

4 CHAPTER 1. MOTIVATION

1.1 Problem definition

A goal of the Peer2Me project is to distribute the framework freely over the Internet. The problem is
that the framework has not been properly tested yet. Our objective is therefore to make a thorough
evaluation of the Peer2Me framework. The evaluation will find out how useful Peer2Me is for developing
applications for mobile phones. During this process, we expect to find issues in Peer2Me that need to be
resolved. These issues may be bugs in the framework or lack of wanted functionality. The findings will
most likely give proper incentive to further development with the Peer2Me framework.

CHAPTER 2

Project context

This project is a part of a research project called MOWAHS - Mobile Work Across Heterogeneous Systems.
The project started in early 2001. Responsible for the project is professor Reidar Conradi and professor
Mads Nyg̊ard, which both work at NTNU. The partners of the MOWAHS project are the software
engineering and database research groups at IDI, NTNU. The goals of MOWAHS are threefold:

G1) Helping to understand and to continuously assess and improve workprocesses in virtual organiza-
tions.
G2) Providing a flexible, common work environment to execute and share real workprocesses and their
artifacts, applicable on a variety of electronic devices (from big servers to small PDAs).
G3) Disseminating the results to colleagues, students, companies, and the community at large.

This project evaluates a framework created in 2005 at NTNU, which satisfies G2. The results are
distributed on the Peer2Me website1 which then fulfills G3. There is also another group of students
at NTNU who are working with the framework at the same time as us. Both groups have the same
goal: evaluate the framework, but with different approaches. This project evaluates the framework by
developing applications that incorporates the framework, while the other group’s focus is on performance,
persistence and fault tolerance. Both groups exchange knowledge and ideas with each other during the
project period regarding fields of improvement and problems experienced. These encounters are informal
and spontaneous since we are located in the same building. We are also communicating through a instant
messaging program.

1http://www.peer2me.org

5

6 CHAPTER 2. PROJECT CONTEXT

Part II

Research questions and methods

7

CHAPTER 3

Research questions

In this chapter we will identify the research questions we seek to answer in this project, and how we will
answer these questions.

3.1 Research questions

In every development project, an evaluation process will often imply major challenges including choosing
proper evaluation methods. An evaluation of a project should be thorough, but still easy to carry out.
The evaluation should determine weaknesses and strengths in a project, and will often be used to improve
or change the software. In this project, we will evaluate the Peer2Me-framework by creating applications
using the framework. This will give useful knowledge about the framework, and how it can be used as
building-blocks in diverse applications. This is a more practical approach to an evaluation phase and
has its’ advantages and disadvantages compared to more standardized evaluation methods like Scenario-
based software architecture evaluation methods (SAAM) [19] being a method to evaluate architecture.
While our approach best reflects how the framework can be used in real-life, a SAAM evaluation method
would use different scenarios to express quality aspects as modifiability, flexibility etc. in a more isolated
environment.
Since the Peer2Me framework is based on a new and immature technology, it is interesting to see if this
has inflicted the performance and/or functionality of the framework. The research questions we want to
answer are:

Question 1: Can a developer with some experience in Java, adopt the Peer2Me framework as a utility
for developing applications for mobile phones?

Answer requirements: Sars and Norum [22] performed a workshop with a couple of students. None
of the students had any experience with Java 2 Micro Edition, but managed to complete the workshop
nevertheless. They also filled out a questionnaire at the end of the workshop. We will also fill out a
slightly modified questionnaire and compare the results with the findings in [22]. We expect to find
differences in the two findings. In the workshop, Sars and Norum were present to answer questions and
help the participants. We have the ability to send e-mails to them, but it is more or less expected that
the documentation in [22] is sufficient enough. Also, our applications will be much more extensive than
the one in the workshop.

9

10 CHAPTER 3. RESEARCH QUESTIONS

Question 2: Which bugs exists in the framework and what kind of impact do they have for development?

Answer requirements: The bugs should be noted as they are found during development. The bugs
must be categorized into two groups: previously documented and undocumented. Each buglist must
follow the format illustrated by Table 3.1.

Description of bug A short description of the bug.
Found in class Include the package as well as the class name the bug was found in
Affected classes A list of any other classes that must be changed in order to correct the bug
Priority Should indicate how important it is to fix the bug. The values are: low,

medium, high
Est. time to correct Should contain a rough estimate of time to correct based on reasonable

arguments. Measured in hours.

Table 3.1: Format of buglist

If the bugs found actually is in the J2ME platform and not the Peer2Me, they should also be included
in the answer.

Question 3: How can the framework be improved?

Answer requirements: This answer should list the bugs found in question 2 worth fixing. If there are
components in the framework that seems to need improvement, a careful consideration should be made
before recommending improvements. Elements that are ready for modification should be represented like
Table 3.2.

Element What element in the framework needs to be changed? Examples:
messaging system, network type etc.

Classes affected Include the packages as well as the class names that are affected
Est. time to change Should contain a rough estimate of time to change based on rea-

sonable arguments. Measured in hours.
Projected positive outcome List of positive effects
Projected negative outcome List of negative effects

Table 3.2: Format of improvement list

Question 4: How can we add functionality and value to the framework?

Answer requirements: This answer should list new functionality that could be implemented. The
answer must also evaluate the suggested further work discussed in Chapter 21 in [22].
New functionality should be represented like Table 3.3.

3.2. EVALUATION PLAN 11

Element What element that should be implemented?
Est. time to develop Should contain a rough estimate of time to develop based on rea-

sonable arguments. Measured in hours.
Projected positive outcome List of positive effects
Projected negative outcome List of negative effects

Table 3.3: Format of new functionality list

To answer these questions we have to develop applications using the framework, and take notice of
problems and/or bugs during the process to gather as much information as possible.

Since we are going to develop applications, we would also like to perform a usertest in order to evaluate
the applications themselves. From our test-group we hope to find answers to these questions:

1. What kind of functionality does the application lack?

2. What problems did you experience?

3. What are the positive sides of the application?

4. What are the negative sides of the application?

5. What do you think is the MOST important factor for this kind of application; Usability, Stability,
Performance, Functionality or Entertainment value?

6. What do you think of the usability of the application (1=poor, 10=fantastic) and why?

7. Do you see yourself using such applications often (daily, monthly, never) and why?

The answers found by these questions will be the foundation for the evaluation phase of this project. The
evaluation will be the starting point in the master thesis which will be written spring 2006.

3.2 Evaluation plan

This section will describe how the evaluation process will be rendered, and which criteria that will be in
focus.
There are many research methods that can be applied in software-evaluation. Basili describes three
different approaches in [4]:

The engineering method: By using the engineering experimental method, engineers build and test a
system according to a hypothesis. Based upon the result of the test, they improve the solution
until it requires no further improvement. This method is typically used to find better methods for
structuring large system.

The empirical method: A statistical method is proposed as a means to validate a given hypothesis.
Data is collected to verify or falsify the hypothesis. This method is typically used when comparing
a new technology against an old technology.

The mathematical method: This method is based on mathematical and formal methods for doing
experiments. The formal method is compared with empirical observation to get results. The
mathematical method is usually used to find better formal methods and languages.

The best suited method for this project is the engineering method, because it is defined as the best
approach when trying to improve existing software. It will also give a more practical approach and is
typically used for structuring large systems.

12 CHAPTER 3. RESEARCH QUESTIONS

3.2.1 Research

Before answering the research questions by developing the applications, background knowledge about the
Peer2Me framework is crucial in order to plan and design sensible applications. This is done by reading
the Peer2Me documentation found in the master thesis by Sars and Norum[22], and getting an overview
of the available technologies.
Performing a thorough research will give good insight in the components that makes up the framework,
and how they relate to each other. This will be useful when designing the test-applications.

3.2.2 Design

To evaluate the framework in the best possible way, it is important to design the test-applications to
utilize as much of the framework as possible. Doing this will give a more complete overview of the
framework’s performance and stability. To achieve this, two test-applications will be developed, and a
set of requirements will be elicited for each.

3.2.3 Implementation

Each of the applications will be developed independently of each other using the same Java runtime
version and test-equipment. This is to ensure that the Peer2Me framework does not behave differently
in one of the applications.
During the implementation all problems and issues will be written down and used to answer the research
questions described in Section 3.1.

3.2.4 Testing

The test-phase will consist of two main parts:

Internal testing: Here we will test the applications ourselves to see if the requirements are met. If the
requirements are not met, this will be discussed in the evaluation.

Test group: A test group which will consist of 3-6 persons should test the applications and gives us
feedback through a questionnaire.

The applications will also be tested for bugs during the implementation.

3.2.5 Evaluation

The evaluation of the project will be based on several factors:

Answers to research questions: The answers to the research questions will be presented and dis-
cussed .

Requirements: Which requirements was not met by the application and why not.

Improvements: Which improvements can be made to the framework? This involves finding bugs in the
framework.

Expansion: Did we find any lack of functionality? Here we will present new functionality that the
framework will benifit from implementing.

Answers to user questionnaire: We will discuss and present how the test-group answered the ques-
tionnaire.

3.3. TEST-APPLICATION EVALUATION METHOD 13

3.3 Test-application evaluation method

The test-applications will be evaluated by a handful of test-subjects which will answer the 7 questions
listed in chapter 3.1. The first four questions requires the participants to answer freely. In question five,
five alternatives are given: Usability, Stability, Performance, Functionality and Entertainment value.
Question six, requires that the participant give an appropriate score (1=poor, 10=excellent) along with
reasoning for the given score. In the last question, the participant will be given five alternatives: daily,
weekly, monthly, yearly and never.

14 CHAPTER 3. RESEARCH QUESTIONS

CHAPTER 4

Development method and software

In order to create software, methods and tools are needed. Using the proper methods and tools, time-to-
market can be substantially reduced, with the focus on the quality of the product.
There are many different methods and tools to choose from, and those used in this project are described
in Section 4.1 and Section 4.2.

4.1 Development methods

There are many development methods available, and two of the most common ones regarding software
development are the waterfall development method and XP, eXtreme Programming. Both offer different
approaches, and can often be used in the same situation. XP is based on values of simplicity, communi-
cation and feedback, with a focus on frequent testing and user review. The requirements are often based
on user stories, and therefore less traceable.
The method most commonly used in software development project, is the waterfall method. This is an
incremental development process going through several steps in a structured way. When using waterfall,
it is common to divide the process into four main step:

• Elicit requirements

• Create requirements

• Design code

• Implement

We chose to use the waterfall method, since this is best suited in a team consisting of two persons, while
XP works best in larger teams. The waterfall method is also providing a more structured way of creating
an application.

4.2 Development tools

This section will describe the software tools used in this project, and all the software are either freeware
or shareware.

15

16 CHAPTER 4. DEVELOPMENT METHOD AND SOFTWARE

4.2.1 Eclipse with plugins

Eclipse1 is a an open source development platform with lots of available plugins for different purposes,
e.g. making UML-diagrams or designing graphical user interfaces.
We had to install several plugins in order to cover our needs:

Texlipse - We wanted to write this documentation in LATEX and used the plugin Texlipse2, that allowed
us to do this in Eclipse.

EclipseMe - It is not possible to create J2ME MIDlets in Eclipse without EclipseMe3. The plugin
connects to a wireless toolkit that is installed on the system. This means that the emulator can be
run within Eclipse.

Metrics - In order to find good code statistics we used the plugin Metrics4.

Modelistic JME - The Modelistic JME plugin 5 automatically creates class diagrams with a wide
range of different views. It is possible to show only public methods, highlight special items such as
abstract classes, suppress private methods, create dependencies etc. There are plenty more options
available which much be experienced to see the advantage of using it.

4.2.2 Java Wireless Toolkit (J2ME)

The EclipseMe plugin requires that a wireless toolkit is installed. For this purpose, we installed the Sun
Java Wireless Toolkit 2.2 6.
This toolkit offers a complete solution for developing JAVA MIDlet applications on a computer. It
includes the libraries, emulation environments, documentation, and examples of how J2ME is utilized.

4.2.3 MiKTeX

To write in LATEX we needed an implementation of TEX and we chose MiKTeX7 for this purpose.
MiKTeX offers a complete set of utilities, macro packages and fonts, and can easily be used with devel-
opment environments such as Eclipse.
The idea behind LATEX is that author should be able to concentrate on writing within the logical structure
of their document, rather than spending their time on the details of formatting.

4.2.4 Concurrent Versioning System

Concurrent Versioning System, CVS, is a software package thatkeeps track of different versions of files,
and can handle both text and binary data. We used a CVS-system to deploy our documentation and
source code to a Linux server at NTNU. This has helped us a lot since we have been working both at
home and at the university.

1http://www.eclipse.org/
2http://texlipse.sourceforge.net/
3http://eclipseme.org/
4http://www.teaminabox.co.uk/downloads/metrics/
5http://www.modelistic.com/
6http://java.sun.com/products/sjwtoolkit/
7http://www.miktex.org

CHAPTER 5

Requirements elicitation and process

This project aims to develop two applications in order to test the Peer2Me framework. Before development
can start, we need to create a requirements specification. Part IV and V each contain a chapter called
”Requirements”. The ”Requirements” chapter consists of four sections: ”Scenario”, ”Goals”, ”Functional
requirements”, ”Use case diagram” and ”Quality requirements”. This chapter explains how these sections
are constructed.

5.1 Scenario

We start the process by creating a scenario we find interesting. This scenario is easily understood, even by
people with very little technical knowledge. The scenario description also helps the reader to understand
what we want to accomplish in more general terms.

5.2 Goals

The goals listed in this section only focuses on the goals of the specific application. By examining the
scenario more closely and from a technical standpoint we can extract the goals we need for the application.
These goals are the fundament of the functional and quality requirements.

5.3 Functional requirements

There are several ways of extracting functional requirements from the goals, such as the Sutclife technique
used by Sars and Norum in [22]. We will not apply this technique, our own programming experience to
find these requirements .

The functional requirements are listed in a table with a given ID for each requirement. Each requirement
only contains a specific requirement, not several. If it is not possible to describe a requirement using
only one non-complicated sentence, the requirement is split into ”sub requirements”. This results in the
following structure: 1 -> 1, 1.1, 1.2, 1.3 and so on. We will keep in mind that the main purpose of
developing these applications is to test the Peer2Me framework.

17

18 CHAPTER 5. REQUIREMENTS ELICITATION AND PROCESS

5.4 Use case diagram

In order to explain how the functional requirements relates to each other and the users, we have chosen
to include a use case diagram of the application. It is a standard use case diagram with actors and use
cases.

5.5 Quality requirements

There are three groups of quality attributes: Business, architecture and system quality. We will in this
report only focus on the system quality. Quality requirements are non-functional requirements such as
performance, modifiability, usability, testability, availability and security. A quality requirement can be
presented as a scenario. A concrete scenario is most often derived from a more general scenario. We will
only list concrete scenarios in our elicitation. A quality attribute scenario is illustrated in 5.1.

ID – Description of requirement
Source of stimulus The instance which invokes a specific action in the system. Often a user or

developer.
Stimulus Description of what action the source of stimulus has begun
Environment Which environment the action takes place in. Examples of environments are:

runtime and designtime
Artefact The artifact that is affected by the stimulus
Response How does the system respond to the stimulus?
Response Measure A specific measurement that can relate to the response. This measurement

can be given in time, lines of code, number of bytes etc.

Table 5.1: Description of quality attribute scenario [5]

Availability is one of the most important quality attribute in a mobile peer-to-peer network and it is
important to remember that connection with peers can be easily lost in a mobile environment. We have
therefore chosen to pay special attention to the availability scenarios. Also, after having tried the test-
applications made by Sars and Norum [22], we were quite disappointed with the user interface. It is quite
obvious that GUI had not been a high priority, we claim that in order for a user to start using a mobile
application, it has to be user friendly. This may not have been the case 6 years ago, but today the focus
is very high on usability. We will therefore see if it is possible to develop a user friendly application using
the Peer2Me framework.

Part III

Prestudy

19

CHAPTER 6

Essential Cooperation Theory and Technology

This chapter will explain the central concepts about peer-to-peer (P2P) systems and how they can be used
on mobile devices without the use of an infrastructure. Also, some basic information about groupware
and Computer Supported Cooperative Work (CSCW) is explained in order for the reader to understand
the challenges we are faced with.

6.1 Peer-to-peer

Peer2Me is a based on a peer-to-peer (P2P) architecture. Computer systems can be either centralized or
distributed. Workstations and mainframes are examples of centralized systems. Distributed systems are
classified into two more architectures; the classical client-server model and the P2P model, see Figure
6.1.

The definition of P2P by Wikipedia is:

”A peer-to-peer (or P2P) computer network is a network that relies on the computing
power and bandwidth of the participants in the network rather than concentrating it in a
relatively few servers. P2P networks are typically used for connecting nodes via largely ad-
hoc connections” [42]

Lund and Norum [22] has recognized the following advantages of P2P networking:

• Capacity: Since a network connection between two peers does not depend on an central server,
bandwidth, storage and processing power on the edge of the network is better utilized.

• Independency: Does not depend on a central server.

• Configuration: All peers are equal in terms of functionality and role. The network becomes
self-configurable.

• Decentralization: In contrast to the client-server architecture, the P2P architecture are more
decentralized. There is no significant load on one particular peer that creates a bottleneck in the
network.

• Extensibility: Peers can easily join the network and increase its value.

21

22 CHAPTER 6. ESSENTIAL COOPERATION THEORY AND TECHNOLOGY

Figure 6.1: Taxonomy of computer systems [37]

• Fault tolerance: No single point of failure.

The resources are shared between peers, and a peer can either be a server or a client. In a P2P system,
one peer can be connected to many other peers, or just one. This creates a solid and flexible architecture.
There are three kinds of P2P networks [42]:

Pure P2P - All peers can act as clients and servers, there is no central server or router.

Hybrid P2P - Has a central server which keeps information on peers and responds to requests for that
information.

Mixed P2P - A combination of pure and hybrid P2P.

Table 6.1 compares the pure and hybrid P2P networks.

Pure P2P Hybrid P2P

• All peers have same responsi-
bility

• No central entity for manage-
ment and coordination

• Can easily lose one peer with
no loss of functionality

• Requires complex routing and
location protocols

• One or more central entities
responsible for providing ser-
vices to other peers

• Central entities are contacted
by peers

Table 6.1: Comparison of pure and hybrid model

6.2. MOBILE P2P NETWORKS 23

There are several applications available on the Internet that use P2P as an infrastructure for networking.
Most popular are filesharing applications such as KaZaA and Direct Connect. Such applications creates
a major challenge when it comes to digital content rights. Instant messaging applications such as MSN
Messenger, Yahoo Messenger and ICQ are also quite popular. It is important to remember that appli-
cations based on P2P networking has very high network externalities. As more people start using them,
their value increases drastically. It is much more convenient to have thirty people on your contact list in
MSN Messenger than one.

6.2 Mobile P2P networks

Mobile P2P networks should be based on a pure P2P model so that the peers can discover services
without the use of a central node. There are two different ways of implementing such a network:

• Without an infrastructure: Networking by using Bluetooth or Infrared.

• With an infrastructure: Networking by using GSM or UMTS.

Mobile P2P surely comes with a significant amount of challenges. Although the article is old, Forman
and Zahorjan has identified three categories of challenges for mobile computing which are highly relevant
for mobile P2P systems [12]. The following list briefly address the topics within these categories.

• Communication: Varying bandwidth, interference, security, users outside coverage area, frequent
disconnections, delays and integration of heterogeneous network

• Mobility: Difficult to address devices and location-dependent.

• Portability: Size, weight, limited battery power, exposed to weather, must operate in noisy sur-
roundings

When designing P2P applications for mobile devices, it is very important to remember that the devices
are constantly moving around and the connection may be lost at any time. This can lead to incomplete
data transfers between peers which must be accounted for in order to create solid and useful applications.

6.3 Mobile Ad Hoc Networks (MANET)

Mobile devices equipped with network technologies such as Bluetooth or Infrared can constitute a wireless
personal area network (WPAN). According to Wikipedia, the definition of a personal area network (PAN)
is:

”A personal area network (PAN) is a computer network used for communication among
computer devices (including telephones and personal digital assistants) close to one person.
The devices may or may not belong to the person in question. The reach of a PAN is typically
a few meters. PANs can be used for communication among the personal devices themselves
(interpersonal communication), or for connecting to a higher level network and the Internet
(an uplink). Personal area networks may be wired with computer buses such as USB and
FireWire. A wireless personal area network (WPAN) can also be made possible with network
technologies such as IrDA and Bluetooth.” [43].

Several WPANs can make up a mobile ad hoc network (MANET). Wikipedia defines MANET as:

”A mobile ad-hoc network (MANET) is a self-configuring network of mobile routers (and
associated hosts) connected by wireless links the union of which form an arbitrary topology.
The routers are free to move randomly and organize themselves arbitrarily; thus, the network’s
wireless topology may change rapidly and unpredictably. Such a network may operate in a
standalone fashion, or may be connected to the larger Internet” [39].

24 CHAPTER 6. ESSENTIAL COOPERATION THEORY AND TECHNOLOGY

Cellular telephony relies on systems such as GSM and UMTS, which rely on infrastructure such as base
stations. Ad hoc mobile networks do not need such infrastructure, which has its’ advantages. [13] lists
three of these advantages:

• No infrastructure required: Since no infrastructure is required, the network can be deployed
spontaneously when needed anywhere.

• Self-organization: In a wired network, the topology is determined by the cables that connect the
nodes to each other. In an MANET, the network is created as soon as two nodes are within each
other’s PAN. This means that the network is continuously reconfigured as mobile devices enters
and exits each other’s PANs.

• Fault tolerance: Since there are no infrastructure, the mobile devices cannot fail because of a base
station, which is the case in networks that rely on GSM communication. The only way a MANET
can fail is if one node fails, but since the network is based on P2P communication, the network can
easily be self-reconfigured.

Figure 6.2: Ad hoc networks taxonomy [10]

Figure 6.2 illustrates the taxonomy of ad hoc networks. The horizontal axis shows the reach of each
classification. The classifications are Body(BAN), Personal(PAN), Local(LAN) and Wide Area Net-
works(WAN). The Peer2Me framework is currently being used in PANs because it is based on the Blue-
tooth technology. WANs cover a much larger area such as a campus or a part of the city.

Figure 6.3: A singlehop ad hoc network [15]

Figure 6.3 illustrates a singlehop ad hoc network where only two peers are involved. The communication
is performed directly between the two peers. Several nodes can make up a multihop ad hoc network

6.3. MOBILE AD HOC NETWORKS (MANET) 25

where some nodes are out of direct contact with each other. These communication between these nodes
are then forwarded by the other intermediate nodes in the network. Figure 6.4 illustrates the multihop
where the black lines are the communication paths.

Figure 6.4: A multihop ad hoc network [15]

Peer2Me uses a form of PAN to communicate. A Bluetooth PAN can consist of up to eight devices. One
device must function as a master, while the other seven must function as slaves. This is called a piconet.
If there exists two piconets and one of the devices are connect to both piconets, a scatternet has been
established, see Figure 6.5.

26 CHAPTER 6. ESSENTIAL COOPERATION THEORY AND TECHNOLOGY

Figure 6.5: Scatternet comprising three piconets [23]. m = master, s = slave, m/s = slave and master. The
three piconets A, B and C together form a scatternet.

However, this means that a message from one node may have to be forwarded by several nodes, which
raises security concerns. The problem with the current Bluetooth implementation is that it does not
allow a node to function as both a master and a slave simultaneously. This means that scatternet
implementation of Peer2Me will have to wait.

6.4 Communication and Collaboration

Communication and collaboration among humans is a natural part of our civilization. Most of us change
our behaviour in different contexts and we rarely give it much thought. It sort of happens automatically.
The way we interact with other people are becoming more technologically dependent. Communication
has evolved from regular face-to-face communication and letters to mobile phones and e-mails. Much
research has been done in analysing how humans collaborate without technical devices in order to create
the same context with the use of computers, hand held devices and other communication tools. It has
proven to be very hard to transfer the ”real world” to the ”digital world”. Consider the following scenario
which takes place in an office building:

Jamie takes a break from his computer and takes a walk to the coffee machine to get a warm
drink. There he meets his colleague Adam, who looks quite nervous. Jamie remembers that
Adam is going to present project to some investors this day and starts talking to him. Adam
tells Jamie that he is not sure if the investors will like his idea and has a quick discussion with
Jamie. Jamie calms him down and give Adam a couple of tips on how he should present the
material. Later that day, Adam holds a successful presentation.

This scenario is not easily transferred to the digital world. Just look at all the different elements in
the scenario: Chance encounter at the coffee machine, Adam’s physical appearance triggers Jamie’s
supporting talk, the discussion itself, Jamie’s calming voice etc.

6.4.1 Groupware and Computer Supported Cooperative Work (CSCW)

In order to transfer scenarios similar to the one described above to the digital world, much research in
the field of CSCW has been undertaken. Unplanned, informal cooperation is very often more effective
and useful than planned meetings. When people start working together outside a formal setting, no

6.4. COMMUNICATION AND COLLABORATION 27

special protocol is enforced which sets out a creative atmosphere. The study of CSCW also includes
formal settings such as scheduled video conferences. Groupware are computerized systems that have
been created to support CSCW. These systems can be classified in a time-space matrix illustrated in
Table 6.2.

Same Time Different Times
Same Place face -to-face Inter-

action
asynchronous
Interaction

Different Places synchronous dis-
tributed Interac-
tion

asynchronous
distributed Inter-
action

Table 6.2: Groupware Time Space Matrix [11]

We can further categorize groupware in two more classes: Mobile - and non-mobile groupware. Non-
mobile groupware is the most common type. These applications run on systems that you normally do not
carry around while in use such as desktops and laptops. A laptop may be portable and used everywhere,
but the user is seldom moving around when using the system. Mobile phones and PDAs however are
the target for mobile groupware which Peer2Me is focusing on. Since Peer2Me uses Bluetooth as means
of communication, the framework is designed for applications in the same place, but both real and
asynchronous time space.

Since Peer2Me uses some kind of PAN, peers needs to be in close range of each other such as face-to-face.
These encounters can either be planned or unplanned. A PAN creates a digital sphere around a person
and when two of these spheres comes within range of each other, collaborative applications can be run,
see Figure 6.6.

Figure 6.6: Digital spheres intersecting

Also, Peer2Me does not rely on any infrastructure which opens the possibility for a diverse range of useful
P2P applications. In [13], different types of applications are proposed:

• Alert the user of friends that are nearby in crowded places.

• Identify people we want to meet

• Match making algorithm that takes into account our preferences and interests

• Spread rumours

• Exchange of personal data

28 CHAPTER 6. ESSENTIAL COOPERATION THEORY AND TECHNOLOGY

• More complex tasks such as trade delivery tasks

Many of these applications are suitable in impromptu collaboration. In [22], Norum and Sars identified
three categories of such applications:

• Requiring user interaction: The user has to trigger the application.

• Automatic collaboration: The application collaborates with other users on its own by running
in the background.

• Automatically triggered collaboration: The application searches and locates other peers and
the alerts the user which has to act accordingly.

CHAPTER 7

Peer2Me

The Peer2Me framework is the result of a master thesis by Carl-Henrik Wolf Lund and Michael Sars
Norum, and is a project related to the MOWAHS project Mobile Work Across heterogeneous Systems.
In this chapter we will give a description of Peer2Me and how to use it for mobile application development

7.1 Introduction

The Peer2Me framework is a framework for developing communicating applications on mobile phones and
handheld devices, enabling users to communicate in an ad-hoc environment. The Peer2Me framework is
based on the distributed system concept, Peer-to-peer (P2P).

Peer2Me is can be classified as a hybrid P2P model (see Chapter 6.1) since implementation on mobile
phones has shown that a device cannot function both as a server and a client at the same time using the
Bluetooth technology. Furthermore, the Bluetooth API for mobile phones does only support connection
to seven devices simultaneously. The creators of Peer2Me initially wanted it to support a pure P2P
model, but this is currently very hard to accomplish.

7.2 Design

This Section will describe the design of Peer2Me.

7.2.1 Domain Concepts

In order to understand how the system works, some terms need to be explained:

• Framework: The core entity of the framework. Manages the resources such as known peers and
available network mediums. It is also the interface between the application and the rest of the
system.

• Node: A node is a peer; a mobile phone running the framework. A node must be either a slave or
a master, not both.

• Network: Abstraction of the network layer. Is indirectly access through the framework instance.

29

30 CHAPTER 7. PEER2ME

• Service: An application must be running a specific service in order for other peers to locate the
application and connect to the respective peer.

• Group: A collection of nodes running the same service. The group must have one master node.

• Message: Messages are exchange between the different nodes within a group in order to commu-
nicate.

• Application: Software that uses the framework.

Figure 7.1 illustrates a conceptual model of how the Peer2Me framework works. A mobile phone is a
node which runs an application with a specific service ID. This node then communicates with other nodes
running the same service by messages which is sent using the framework. The network technology used
is Bluetooth.

Figure 7.1: Domain concept of peer2me

In order to make two or more nodes communicate, they have to be a ”member” of the same group. The
Peer2Me framework is built upon the core J2ME components, the CLDC(Connected, Limited Device
Configuration) and the MIDP(Mobile Information Device Profile). The MIDP must be version 2.0 or
later. Peer2Me consists of four main modules, the framework itself, the network interface, the Bluetooth
module and the domain module. Figure 7.2 illustrates a layered architecture of Peer2Me, the J2ME core
components and a Midlet.

7.2. DESIGN 31

Figure 7.2: Layered architectural overview

The generic network interface enables the developer to control the technology specific network modules.
In the current version of Peer2Me, the network technology is Bluetooth. The idea is that new network
technology modules can easily be added at a later point and the same network interface can be used in
order to access it. The Bluetooth network module uses the JAWBT package called JSR82, see [26] for
more information. The package is not a core J2ME component, but is optional.

The Peer2Me framework is available as a jar-file. The classes in the jar-file is organized in a package
structure. There are five main packages:

• no.ntnu.idi.mowahs.project.framework

• no.ntnu.idi.mowahs.project.bluetooth

• no.ntnu.idi.mowahs.project.domain

• no.ntnu.idi.mowahs.project.network

• no.ntnu.idi.mowahs.project.util

The usage area of the first four packages are illustrated in Figure 7.1 and Figure 7.2. The util package
contains ”persistence” classes that can be used to access the recordstore on mobile phones. This package
is only used by MIDlets that requires access to the recordstore1.

As a curiosity, we have chosen to include Table 7.1 which shows some code statistics of the Peer2Me
framework. It only shows statistics from the Peer2Me framework and not the test-applications Norum
and Sars developed.

1A J2ME compatible mobile phone can store application data in a recordstore. The recordstore is a persistent storage
which MIDlets can store and retrieve data at any time

32 CHAPTER 7. PEER2ME

Aspect: Value:
Lines of code: 1163
Number of classes: 26
Number of interfaces 6
Number of packages: 18
Maximum inheritance tree depth: 6

Table 7.1: Framework statistics

CHAPTER 8

State of the art

There are currently several projects that are similar or related to Peer2Me. This chapter presents some
of the most interesting projects. A couple of them have been mentioned in the master thesis by Sars and
Norum [22], but some changes has occurred since they were last reviewed.

8.1 Bluecove

Bluecove is an open source implementation of the JSR 82 Bluetooth API for Java. Bluecove is a library
that can be used to connect a PC with a Bluetooth dongle and a mobile phone with JSR 82 support
together in a Java environment. The library can be downloaded from SourceForge [14]. The current
version of Bluecove only supports the Windows XP SP2 Bluetooth stack. However, the goal is to support
other operating systems and other Windows stacks. Ben Hui has created a guide that explains how to
connect a PC and a phone together using Bluecove. The guide can be found at [16].We have tested
Bluecove using this guide with positive results.

Evaluation

Peer2Me is meant for ad hoc connection between mobile phones only, not between a PC and a mobile
phone. Bluecove does not allow for connection between mobile phones. This means that the two libraries
may overlap each other, creating a robust framework that can connect many mobile phones and PCs
together in an ad hoc fashion. However, Bluecove will only work on a PC that uses the Windows XP
SP2 Bluetooth stack. As optimists, we tried using a different stack to see if we could get it working, but
that experiment failed.

8.2 Bluetooth Ad-hoc Networking for Inter-Vehicle Communi-
cation

The Communications Research Group at University of Sussex has investigated the area of ad hoc commu-
nication between vehicles passing by each other in traffic [32]. The project proposes the use of Bluetooth
for this purpose. If two vehicles are driving in the same direction with speeds 97 km/h and 113 km/h
they will be in range of each other in a duration of 44 seconds. During this time, much information can

33

34 CHAPTER 8. STATE OF THE ART

be exchanged between these vehicles using Bluetooth. These calculations presumes a Bluetooth range of
100 meters, which is the theoretical maximum coverage range a Bluetooth device has. Many piconets
can be created and form a large MANET. There is sadly not much information about the project, other
than it is under investigation. The projects web page was last updated 14th of December 2004.

Evaluation

The project seems very interesting, but the usage area is slightly different than what the Peer2Me
framework is meant for. Also, the documentation is poor and no new information has been published
lately.

8.3 Umbrella.net

Umbrella.net is a developing research platform at the Networks and Telecommunications Research Group
at Trinity College Dublin [9]. The platform explores the mobile ad hoc network possibilities in public
and urban spaces using an umbrella that is connected to a PDA with the Umbrella software. The aim
of the project is to connect individuals, both strangers and friends together in an ad hoc environment.
The PDA that is connected to the umbrella starts a service discovery when the umbrella is opened and
connects to other people that also have their umbrellas open. This might seem a bit silly, but is in fact
very interesting. People having the same needs (protection from the rain) get connected wirelessly and
can then share information. This information can be anything from chatting to a sudden market were
people can buy and sell from each other. Nodes do not need to be in direct connect with each other,
which means that information can pass through a lot of nodes before reaching the destination node.

Figure 8.1: The GUI of the Umbrella software [8]

Evaluation

Umbrella.net seems to have the same goals as Peer2Me, but the projects target platform is a PDA
running Windows CE. The software is not available for download and there is no information regarding
programming platform or architecture. The graphical user interface of Umbrella is very good and seems
intuitive and easy to use. The project has received high recognition and there have been several events

8.4. BEDD 35

and exhibition around the Umbrella.net project in countries like Ireland, Switzerland, USA, UK and
Australia.

8.4 BEDD

BEDD is mentioned in the master thesis by Sars and Norum [22], but a few things have changed since
last review. BEDD is a software suit developed and maintained by the BEDD Corporation [6] that
enables mobile phones to communicate ad hoc. The software can be downloaded for free from BEDD’s
website. It is also free to distribute. The software runs in the background on your mobile phone and
automatically searches for other phones running the BEDD software. BEDD is platform independent
and uses Bluetooth as network medium. Among the applications in the suit we find:

BEDDmates - Matches your profile against others and alerts the user when a match is found

BEDDbay - Place ads and view other ads. Buy and sell

BEDDtalk - Chat application

BEDDfish - Allows the user to send free text messages to Bluetooth devices that does not have BEDD
installed

BEDDbuddies - Get alerted when friends are within range

BEDDings - Sounds, alerts, skins etc

BEDDbios - Your profile viewable for others to see

BEDDshare - Allows the user to share the BEDD software

Evaluation

After the work of Sars and Norum [22] was completed, the BEDD software became free for everyone to
use. The software relates very closely to Peer2Me. The difference is that BEDD is an end user application
and not an open development platform. The applications available in the BEDD software suit are the
exactly the kind of applications that can be developed using J2ME with Peer2Me.

8.5 Other projects

The following projects are mentioned in [22] and we will here just quickly review them.

JXTA - This is peer-to-peer technology developed by Sun Microsystems that enables developers to
create distributed computing software. JXTA is platform independent and can connect several
different devices together in an ad hoc fashion. The JXTA itself is too heavyweight to be deployed
on mobile phones, so Sun created JXME for this purpose. JXTA uses TCP/IP for communication.
See [24] for more information.

JSR-259 (Ad Hoc Network API) - A library for J2ME that enables communication between mobile
devices in a peer-to-peer ad-hoc network environment. The project is still in progress and the final
approval ballot is set to the end of fourth quarter 2005. The JSR API is said to include methods
for:

• Service discovery

• Service registration

• Service availability alert

36 CHAPTER 8. STATE OF THE ART

• Service and service capability inquiry

• Remote service consumption

For more information, see Sun’s JSR specification website, [25].

OBEX - Object Exchange Protocol. The protocol is maintained by the Infrared Data Association.
OBEX was designed to allow exchange of binary dataobjects over an infrared link. It has also been
adopted by Bluetooth SIG and the SyncML wing of the Open Mobile Alliance (OMA). In contrast
to HTTP, OBEX is stateless. More information on OBEX can be found on Wikipedia [40].

SyncML - The former name of OMA. SyncML allows synchronization of contact and calendar infor-
mation between a handheld device and a computer. Current version of SyncML is 1.1.2. More
information on SyncML and OMA can be found on Wikipedia, see [44] and [41].

CHAPTER 9

Technology

This chapter contains information about the latest technologies related to ad hoc networking and mobile
phones. Since this project involves creating applications on mobile phones, an investigation in todays
mobile phone has been done. Peer2Me was developed using Java 2 Micro Edition (J2ME) and a the latest
information available has been retrieved. Bluetooth has been used as network technology in the current
version of Peer2Me. There are several other wireless network technologies worth investigating in addition
to Bluetooth. Wireless devices have limited bandwidth which must be considered when developing
applications for such devices. XML enables information to be exchanged and interpreted regardless of
transport medium and application language. The problem is that with XML comes overhead. XML
technology has been included in this chapter as it is used in the applications described in Part IV and
Part V.

9.1 Mobile phones

There are plenty of mobile phones available that supports J2ME, so listing all of them is pointless.
Applications on mobile phones need to have high usability in order to catch the end-user attention. Our
applications will use more graphical items than the applications developed by Sars and Norum [22] and
it is therefore necessary to find the optimal screen resolution to adapt to. We have therefore created a
table which contains the different screen resolutions on mobile phones from different manufacturers, see
Table 9.1.

Nokia 6021 is the phone that has the lowest screen resolution among the mobile phones considered. The
applications to be developed in this project must ”fit” on such small displays. Since J2ME applications
should be tested on real phones and not just emulators, NTNU has supplied us with the following two
mobile phones:

• Sony Ericsson p900: This phone runs the Symbian OS 7.0. It supports applications created
in Java, C++ and Visual Basic [1]. This phone has a faulty J2ME implementation which was
discovered in [22]. It is possible to develop J2ME applications for this phone, but some source code
in Peer2Me has to changed in order for the application to work.

• Siemens S65: This phone supports also supports J2ME MIDlets and we have not found any errors

1Sony Ericsson S700i and Qtek S110 are the phones with the largest screen resolution
2Nokia 6021 is phone with the smallest screen resolution

37

38 CHAPTER 9. TECHNOLOGY

Manufacturer Model Resolution
Sony Ericsson P900 208 x 320
Sony Ericsson W800i 176 x 220
Sony Ericsson K750i 176 x 220
Sony Ericsson S700i 1 240 x 320
Sony Ericsson W550i 176 x 220
Sony Ericsson K700i 176 x 220
Sony Ericsson K600i 176 x 220
Siemens S65 132 x 176
Siemens M75 132 x 176
Samsung D500 176 x 220
Samsung Z500 176 x 220
Samsung E730 176 x 220
Samsung E530 176 x 220
Samsung E720 176 x 220
Nokia 8800 208 x 208
Nokia 6230i 208 x 208
Nokia 6021 2 128 x 128
Motorola V600 176 x 220
Qtek S110 1 240 x 320

Table 9.1: Display resolutions of mobile phone with J2ME support

with the J2ME implementation yet. The only problem is that this phone does not support Java
threads. More information about this phone can be found at [27].

In addition, we will use one of the group members mobile phone; a Sony Ericsson w800i[2]. This phone
is the newest among the mobile phones at this time and Sony Ericsson has fixed the J2ME bug that were
discovered on the P900. We will probably use the w800i and P900 the most. P900 works well as long as
it is not the master node in a Bluetooth network. During the implementation process the applications
will be tested on a couple of Sony Ericsson k750i, which some friends of us happen to have.

9.2 Java 2 Micro Edition

Since the resources on a mobile phone is limited compared to a desktop, neither the J2EE or J2SE could
be used as development platform for mobile phones. Therefore, Sun developed the Java 2 Micro Edition
so that Java applications could be made for consumer and embedded devices as well.

9.2.1 J2ME architecture

The J2ME architecture defines configurations, profiles and optional packages as elements for building
complete Java runtime environments that meet the requirements for a wide range of devices. The J2ME
architecture has been created with limited memory, processing power and I/O capabilities in mind. To
implement in J2ME, a configuration composed of a virtual machine and a minimal set of class libraries
are needed. There are currently two configurations available for J2ME: CDC (Connected Device Con-
figuration) and CLDC (Connected Limited Device Configuration), see Figure 9.1. CDC is for devices
that have more resources available such as PDAs and set-top boxes. CLDC is for mobile phones, which
is the configuration that will be used in this project. There are currently two versions of the CLDC
configuration: 1.0 (JSR 30) and 1.1 (JSR 139). CLDC 1.1 is a revised version of 1.0 and is said to be
backwards compatible with 1.0.

9.3. WIRELESS NETWORK TECHNOLOGIES 39

We have tried to deploy a Midlet, compiled using CLDC 1.1, on several mobile phones without success.
CLCD 1.0 will therefore be used in this project.

Figure 9.1: Overview of the Java environments [17]

A profile is needed to define the life cycle, user interface and access to device specific properties. Sun has
developed the profile, MIDP for this purpose. Current version of MIDP is 2.0. Optional packages that
provides added functionality is also available, but some of them will not function on all phones even if
they support J2ME and MIDP 2.0. For more information, read the J2ME whitepaper [17] and see Sun’s
website [18].

9.2.2 Optional packages

As mentioned, there are optional packages for J2ME, and the following is used in this project:

• JSR 82 - The JavaTMAPIs for Bluetooth. This is a specification that standardizes a set of Java APIs
to allow Java-enabled devices to integrate into a Bluetooth environment. The Peer2Me framework
depends on this package and must be imported in the J2ME MIDlets that imports Peer2Me.

• JSR 75 - Contains two packages: One for accessing PIM (Personal Information Management) data
and one for accessing the filesystem. This package is meant for PDAs and newer mobile phones.
By having access to the device’s PIM, a Midlet can extract calendar information, address book and
other useful information from the phone. The package that accesses the filesystem is very useful
and we see that it has huge potential. One of the test applications in this project uses this package,
see Chapter 20 for more information.

9.3 Wireless network technologies

Several different wireless network technologies have been developed and are designed with specific usage
areas in mind. This section describes and compares these technologies. Wireless data transfer is more
vulnerable compared to wired data transfer. Theoretically, anyone can ”listen” to wireless data transfers.
Security is therefore important to ensure privacy, especially if sensitive information is transferred.

40 CHAPTER 9. TECHNOLOGY

9.3.1 Bluetooth

Bluetooth is an industrial specification for wireless personal area networks (WPAN). Bluetooth provides
a way to connect and exchange information between devices like PDA, mobile phones, computers etc.
via a low cost, short range radio frequency (2,45GHz)
The range and power consumption are divided into three classes:

Class 1: Range up to 100m and a 100 mW power consumption

Class 2: Range around 10m and a power consumption of 2.5mW

Class 3: Range less than 1m and a power consumption of 1 mW

The most common is class 2, while a hybrid between class 1 and class 2 is often found in mobile phones
and handheld units. This is a suitable tradeoff, range vs. power consumption.
Bluetooth did first arise as version 1.0, but is commonly known as version 1.1 or 1.2 which is most
widely implemented. 2.0 is the latest version, and the greatest improvement in v2.0 is the introduction
of Enhanced Data Rate which increases the speed to a maximum of 2.1Mbit/s. About three times faster
than version 1.1 and 1.2.
Bluetooth also supports a set of profiles, each a description of the Bluetooth unit; a Bluetooth handsfree
would use the Headset-profile, while a Bluetooth mouse would use the HID-profile, Human Interface
Device, and so on.
Bluetooth will continue to evolve, and The Bluetooth Special Interest Group (SIG) [36] controls the
development.

Security

The security can be decided by the users and are divided into three levels:

Level 1: No security functionality. Connection is being made without any encryption or authenti-
cation.

Level 2: Service level security. Security measures like access control to devices and services are
activated to control which units can use different services on other units.

Level 3: Link level security. At this level security is based on a common shared key generated during
the pairing process. This process also involves a PIN-code entry from the users.

Since Bluetooth does not provide end-to-end security, it is exposed to several security issues. These are
discussed in a document published by Adam and Ben Laurie in the article ”Serious flaws in Bluetooth
security lead to disclosure of personal data” [21].

9.3.2 Zigbee

Zigbee is a set of high level protocols using a small, low powered digital radio based on the IEEE 802.15.4
specification. Zigbee is designed to be simpler and cheaper than other Wireless PANs, such as Bluetooth,
but is still more expensive due to the lower demand and therefore higher production costs.
Zigbee is designed as a three layer solution;physical layer, medium access control layer and data link
layer. It can operate on three different frequencies depending on the situation. 2.4 GHz, 915 MHz
and 868 MHz, and each frequency has its own bandwidth limitation reaching from 250 Kbit/s per chan-
nel in the 2.4 GHz band to 20 Kbit/s in the 868 MHz band. The transmission rate is between 10 and 75 m.

9.3. WIRELESS NETWORK TECHNOLOGIES 41

Security

The security in the Zigbee standard are design to offer a high level of protection against attacks and are
divided into four main services:

Data encryption: provides symmetric and asymmetric 128-bit using the AES - advanced encryption
standards

Access control: the device using Zigbee maintains a list of trusted devices within the network

Frame integrity: protects data from being modified by parties without cryptographic keys

Sequential Freshness: reject data frames that have been replayed. The network controller compares
the freshness value with the last known value from the device and rejects it if the freshness value
has not been updated to a new value

The security features of ZigBee is discussed in ”Industrial-strength security for ZigBee: The case for
public-key cryptography” [7], an article written by Mitch Blaser.

9.3.3 Radio Frequency IDentification

Radio Frequency IDentification, RFID, is an automatic identification method, relying on storing and
remotely retrieving data using devices called RFID tags or transponders. An RFID tag is a small object
that can be attached to or incorporated into a product, animal, or person.
RFID tags is divided into three groups:

Passive: This type have no internal power source, but induces enough power through the radio frequency
to transmit a response. The lack of onboard power supply means the amount of data that can be
sent before loss of power is very small, but this makes it possible to make tiny tags.

Semi-active: This is very similar to the passive tag, but includes a small battery which gives a small
amount of power to the chip. This means the tag can be optimized for sending data, without have
to focus on inducing power, which again results in faster transfers.

Active: Also called beacons, uses a fixed internal power supply, which gives larger storage capacity and
greater range. Many active tags have practical ranges of tens of metres, and a battery life of up to
10 years, and to rationalize the power consumption, the beacons often operate in intervals.

The purpose of an RFID system is to enable data to be transmitted by a mobile device, called a tag,
which is read by an RFID reader and processed according to the needs of a particular application. The
data transmitted by the tag may provide identification or location information, or specifics about the
product tagged, such as price, color, date of purchase, etc.

9.3.4 Wireless Local Area Network

WLAN, short for Wireless Local Area Network, is the trademark for a set of product compatibility
standards for WLANs introduced in 1997, and is intended to allow mobile devices communicate, get
Internet access or connect to local area networks. WiFi is also used for wireless Voice over IP phones
(VoIP).
Today, wireless networks is one of the most common wireless technologies, and are divided into four
standards with different operating frequencies and bandwidth as shown in Table 9.2.

42 CHAPTER 9. TECHNOLOGY

Specification Speed Frequency Compatibility
802.11b 11 Mb/s 2.4 GHz b
802.11g 54 Mb/s 2.4 GHz b and g
802.11a 54 Mb/s 5 GHz a
802.11n 100 Mb/s 2.4 GHz b,g and n

Table 9.2: The different WLAN standards

802.11b was the first standard to be released, and got well implemented and quite common before 802.11g
was introduced roughly one year later. The speed got nearly five times faster and the coverage area got
wider. As a descendant to 802.11g, IEEE recently introduced the new 802.11n standard which again
delivers higher speed and even wider coverage. All of these standards is operating on the commercial
2.4GHz frequency, which therefore is most common, but most exposed to interference. As a result of this,
802.11a got designed as an alternative operating on a higher frequency band, 5GHz. This band has less
interference, but is more restricted. 802.11a has also a smaller coverage area than the other standards.
WLAN implements two different types of infrastructure:

Ad hoc mode: The WLAN devices communicate directly with each other without an access point.
Devices within range of each other can connect and act like peers.

Infrastructure mode: This mode incorporates the WLAN device into a wired network via an access
point.

Security

WLAN transmissions can either be open or secure. The security is implemented by encrypting the
transmission using different methods. When the transmission is secure, one cannot automatically access
the transmission in opposite to if the transmission were open.
The encrypting methods available:

WEP: Wired Equivalent Privacy uses a shared key and encodes the data that is being transmitted over
air. WEP implements three levels of security using either a 40bit, 104bit or 232bit key, hence the
strength of the encryption. This is often referred to as 64,128 or 256bit encryption. It uses the RC4
encryption algorithm and TKIP (Temporary Key Integrity Protocol).

WPA: Wi-Fi Protected Access was designed to deal with several weaknesses in WEP as an intermediate
solution before WPA2. It does not support older access points or WLAN-hardware.
Instead of a fixed length key, WPA uses a passphrase. WPA is based on WEP, and uses both RC4
and TKIP. Unfortunately, this can be a security flaw.

WPA2: Wi-Fi Protected Access version 2, often referred to as 802.11i, is avoiding the security flaws
in WEP and is based on the concept of a Robust Security Network (RSN) [3], which supports
additional functionality. Hence, new equipment is required.

WEP contains security risks like jamming, insertion attacks and interception of data, while WPA2 is the
best way to add security to a Wireless LAN, but the equipment must support WPA2. Newer equipment
supports WPA2.

9.3.5 Comparison

The wireless technologies mentioned in the sections above are all solutions which can be used in a mobile
ad hoc situation, but they have different qualities, where speed, range and power consumption are the
most important. A simple comparison is given in Figure 9.2, 9.3 and 9.4. Note: all values are typical

9.3. WIRELESS NETWORK TECHNOLOGIES 43

values.

Figure 9.2: Speed comparison

Figure 9.3: Range comparison

44 CHAPTER 9. TECHNOLOGY

Figure 9.4: Power consumption comparison

As we can see from the figures, there is a correlation between speed, range and power consumption.
Higher range means higher power consumption and higher range means greater speed.
Usually the design of new mobile units and software involves trade-offs, typically battery time versus
performance, e.g. wireless coverage area versus power consumption.

9.4 XML

This section discusses briefly what XML is, its features and how it can be used. This section also describes
the typical structure of an xml-file and software that can be used to process it.

XML stands for eXtensible Markup Language and is a tag-based document format to describe a set
of information. XML makes it easy to store, retrieve and exchange information platform or software
independent. XML can be compared to HTML, but XML can only represent information and is more
general. The XML language has its strengths and weaknesses, as shown in Table 9.3:

9.4.1 Strengths and weaknesses

As we see in Table 9.3 XML is ineffective when it comes to space usage. This might be something you
have to consider if the space available is limited, and instead you might have to used a simple ”clean” text
file. Nowadays with newer handheld units, the space limitation is not an issue. Therefore the applications
we implemented uses XML for structuring data.

9.4. XML 45

Strengths
Support for Unicode, allowing almost any information in any human language to be communicated
Self-documenting format that describes structure and field names as well as specific values
Hierarchical structure which is suitable for most types of documents
Platform-independent
Manifests as a plain text file
Weaknesses
Poor human readability
Ineffective use of space, tag-descriptions take up space
Can be some what redundant and can cause reduced application efficiency
Mapping XML documents to object oriented systems can be cumbersome
Text representation means huge files and no compression

Table 9.3: Strength and weaknesses of XML

9.4.2 Syntax

Xml files are built up of nodes, often called elements, sorted in a hierarchical order, where each element
can have several attributes. This is shown in Listing 9.4.2 below:

Listing 9.1: Example of an xmlfile

1 <Rootnode >

2 <Node1 >

3 <Node2 description="This is Node1 ’s childnode">

4 <Node3 id="0" text="Text here"/>

5 <Node4 id="5" text="9"/>

6 </Node2 >

7 </Node1 >

8 </Rootnode >

An Xml file is built using elements, which can consist of either one or two tags. A tag is for example
<Node1>, and when used in pairs as this: <Node1>Sample text</Node1> you can see the end tag with
the / that corresponds to the starting. When creating an element with only one tag, it could look like
this: <Node1 id="5" content="This is me"/>, with the slash at the end of the tag. This is similar
to HTML-syntax.
As said, each element can have several attributes. Attributes are the fields ”inside” the XML tag. As seen
in Listing 9.4.2 line 4, this element have the attributes id and text. One important thing to remember is
that you cannot have tags inside tags without them being elements.
As an example, this is not allowed:
<Fish id="1" description="This fish is BIG">Trout</Fish>. Here the BIG will
be interpreted as an own element, and not as a bold typesetting when the data is extracted and used
in HTML. To achieve this, XML accepts using some predeclared special characters, and the same XML ele-
ment would look like this: <Fish id="1" description="This fish is lt;bgt;BIGlt;/gt;>">Trout</Fish>.
To ensure that the all tags are correct, all XML documents can be validated with an associated schema
as described in Section 9.4.3 Validation.

9.4.3 Validation

An important feature of the XML concept is the ability to validate documents before processing them.
This is done by comparing the xml document to a description document, called schema.
A schema describes the structure and constraints of the XML:

• defines elements that can appear in the document

46 CHAPTER 9. TECHNOLOGY

• defines attributes that can appear in the document

• defines which elements are child elements

• defines the order of child elements

• defines the number of child elements

• defines whether an element is empty or can include text

• defines data types for elements and attributes

• defines default and fixed values for elements and attributes

There are different types of validation schemas, where DTD, XML Schema and Relax NG are the most
common. DTD, Document Type Definition, is the oldest validation document and is being phased out.
XML Schema, also called XSD, are the most common and is widely used due to its powerful and rich
description of XML files. The drawback is that the specification in XDSs might be very large and complex
and hard to understand and implement. Relax NG is the last validation document and has two formats,
an XML and a non-XML based syntax. The biggest difference between XSD and Relax NG is that Relax
NG is less complex and easier to read, but then again not as powerful.
A DTD associated with the xml examplecode given in Listing 9.4.2 is given in Listing 9.4.3.

Listing 9.2: Example of an DTD file

1 <!ELEMENT Node1 (Node2)>

2 <!ELEMENT Node2 (Node3 , Node4)>

3 <!ATTLIST Node2 description CDATA #REQUIRED >

4 <!ELEMENT Node3 EMPTY >

5 <!ATTLIST Node3 id CDATA #REQUIREDtext CDATA #REQUIRED >

6 <!ELEMENT Node4 EMPTY >

7 <!ATTLIST Node4 id CDATA #REQUIRED text CDATA #REQUIRED >

8 <!ELEMENT Rootnode (Node1)>

9 <!ATTLIST Rootnode xmlns:xsi CDATA #IMPLIED

10 xsi:noNamespaceSchemaLocation CDATA #IMPLIED >

As we can see in the DTD example, it consists of several element descriptions and something called
attlist. Node1 in the element description in the DTD has got only one element: Node2. This is because
the Node2 is, and must be a child of Node1. Then the next element description, the description of Node2
has got two elements: Node3 and Node4. This is then because Node3 and Node4 are children of Node 2.
As you can see, the DTD describes a hierarchical structure, and the XML file associated with the DTD
must follow these definitions.
Since DTD is the simplest way to describe XML files, we will not go into detail on XSD or Relax NG,
but for further reading on these two, we recommend W3C Schools [34] or Relax NG Homepage [29]. For
further reading on DTD, you can visit W3C Schools’ DTD tutorial [33].

9.4.4 XML parsing

To process xml files, you often have to use xml parsers. An Xml parser is an application or code, which
extract the information from the data hierarchy.
There are many types of parsers, while the two most common ones are DOM, Document Object Model
parsers, and pull parsers. The most common parser is the DOM, which can validate xml files with an
XSD or DTD as explained in Section 9.4.3, and return an xml file as a structured tree. This is a quite
cpu and memory intensive operation, and is not recommended used in applications designed for handheld
units. An xml pull parser runs through the xml document once, one line at the time. As the parser runs
through the document, data must be extracted and stored in variables. This means some disadvantages,
but also some advantages. The most noticeable advantage with a pull parser is the speed and the memory
usage. But as shown below, there are a few other differences between a DOM and a pull parser.

9.4. XML 47

DOM Parser

• Advantages

– Creates a tree model for later processing

– Validation of documents with schemes

– Better structure for large documents

– Easy to alter or re-build xml documents

• Disadvantages

– Uses a lot of memory

– Heavy workload

– A slow process

Pull Parser

• Advantages

– Uses less memory

– Easy on the CPU

– Quick parsing/searching

• Disadvantages

– Only one run-through, high demand on data organizing

– No validation of xml documents

– In most cases no way to generate/alter xml using xml-parser

We will focus on the pull parser, because this is best suited in mobile applications. For more information
on DOM parser, please visit W3C Schools XML DOM Tutorial [35].

There are several open source pull parser available, all with their own strengths and weaknesses. The
one that best meets our demands is the kXml parser. It is small, flexible and fast. It is also widely used,
which means that documentation is available.
You can read more about the usage of kXml in PeerQuiz and PeerShare, in Chapter 14.1 and 20.2.

48 CHAPTER 9. TECHNOLOGY

Part IV

Test application 1 - PeerQuiz

49

CHAPTER 10

Introduction

This part will describe the design and implementation of PeerQuiz. We will discuss requirements, chal-
lenges during the implementation and the testing of the application.

We chose to do develop a trivia game, because it describes a good scenario of spontaneous collaboration
in a typical ad hoc situation. A trivia includes communication and interaction. It involves several par-
ticipants, questions, answers and scores, and was designed to manage an infinite number of participants.
The application is design as a hybrid-P2P model, and therefore requires one masternode. There can
be many participants, slavenodes, however, it is the limitations of the masternode that determines the
maximum number of slaves that can be connected at the same time. In most cases there is a maximum
number of seven nodes simultaneously. This means the maximum number of participants can be eight.
But since Bluetooth is constantly evolving, the PeerQuiz can theoretic involve 100 participants when
Bluetooth can handle it.
PeerQuiz is designed and implemented upon the Peer2Me framework [22], which controls the actual
Bluetooth communication between the nodes. This provides an abstractionlayer which helps PeerQuiz
to easily establish communication without adding low-level code.
During the design and implementation of PeerQuiz, there have been to main focuses; utilize the Peer2Me
framework in best possible manner, and create an intuitive and representable user interface. Since the
PeerQuiz is a Java MIDlet design to run on a wide range of different handheld equipment, we encountered
several limitations. More on this in Chapter 14.

51

52 CHAPTER 10. INTRODUCTION

CHAPTER 11

Requirements

This chapter describes a scenario, goals, functional requirements, use case description and quality require-
ments for the application PeerQuiz. An explanation for the different sections can be found in chapter
5.

11.1 Scenario

Joey agrees to meet his friend Christina at the local café to eat lunch. They are chatting and discussing
various subjects, but is starting to get bored of each other. Suddenly Joey sees three of his friends
entering the café. Since both Joey and Christina are frequent users of PeerQuiz, they ask Joeys friends
to join in and participate in an informal quiz. Joeys friends have never heard about PeerQuiz, but all of
them have mobile phones except Vikraam who has a PDA with WLAN-capabilities. Joey tells them to
download the program from the web using a web browser. As they are downloading, Joey sets the rules
of the game;12 questions with a time limit of 15 minutes. Joey then chooses four categories, with three
random alternative based questions in each category. By now, Vikraam and Joey’s two other friends are
finished downloading and have installed the quiz. Joey starts the search for participants. Joey finds his
friends on his phone and starts the quiz. Joeys phone automatically sends out the questions to the other
participants. After 20 minutes, Christina, Vikraam and the others submit their answers to Joey. Joeys
mobile phone the sums up the answers, and declares a winner. They all have a big laugh, and buys
Vikraam, the winner, a beer.

11.2 Goals

1. The application must allow a user to set up a new quiz competition.

2. The application must support several contestants/clients.

3. A quiz must contain a set of rules.

4. The application must store questions in an organized manner.

53

54 CHAPTER 11. REQUIREMENTS

11.3 Functional requirements

The functional requirements shown in Table 11.1 are set up for this application to meet the goals above.

FR1 The application must allow a new quiz to be created
FR2 The creator of the quiz must function as the master node
FR3 The application must allow several different set-ups / rules of a quiz
FR3.1 The creator must choose the number of questions
FR3.2 The creator can select a quick quiz which uses default set-up so that the quiz can start

immediately.
FR3.3 The creator can choose which category the questions will be taken from
FR3.4 The application must select random questions
FR3.5 The creator must choose the contestants
FR3.6 The creator may choose to set a time limit for the quiz
FR4 The creator should be able to participate in the quiz
FR5 The application must declare a winner after all the answers are received
FR6 The questions and answers must be stored in a well organized xml-file
FR7 It must be possible to import new questions to the xml-file
FR8 The application should be able to export the xml-file to other devices
FR9 The participants must be able to quit at any time

Table 11.1: Functional requirements for PeerQuiz

11.4. USECASE DESCRIPTION 55

11.4 Usecase description

The use-case diagram shown in Figure 11.1, illustrates how the functional requirements relate to each
other and the user of the application.

Figure 11.1: Use case model for PeerQuiz

56 CHAPTER 11. REQUIREMENTS

11.5 Quality requirements

An important thing to keep in mind when designing applications, is to consider the non-functional aspects;
The quality requirements. They are often just as important as the functional requirements.
This Section describes the quality requirements we find important for this application.

11.5.1 Usability

U1 – Inform the user of current process
Source of stimulus User
Stimulus User interacts with PeerQuiz and the application starts doing something in

the background that takes more than 1 s
Environment Runtime
Artefact PeerQuiz application
Response The user should be informed of what is going on by displaying a progressbar

or similar
Response Measure The user should be informed immediately in all such cases

Usability requirement U1 is important so that the user can see that the program is still alive during
time consuming operations.

11.5.2 Testability

T1 – Log file
Source of stimulus Developer
Stimulus Developer wants to check if the application is doing what it is supposed to do

by checking a log file.
Environment Runtime
Artefact PeerQuiz application
Response Application logs all events, exceptions and state changes and stores them in

an xml file.
Response Measure Logging should be easily switched off

Since the display on a mobile unit is limited, it is hard to display possible errors in a sensible way,
therefore the application creates a log-file containing information which can be accessed at all times.

11.5.3 Modifiability

M1 - Add new questions
Source of stimulus Developer
Stimulus The xmlfile is extended with new questions. The developer should not need

to change any code.
Environment Design time
Artefact Xml reader class
Response There is no need to change the code.
Response Measure Nothing to measure.

11.5. QUALITY REQUIREMENTS 57

M2 - Add more alternatives to questions
Source of stimulus Developer
Stimulus The questions in the xml file is extended with more alternatives, e.g. a ques-

tion has now got five alternatives. The developer should not need to change
any code.

Environment Design time
Artefact Xml reader class
Response There is no need to change the code.
Response Measure Nothing to measure.

M3 - Change structure of xml file
Source of stimulus Developer
Stimulus The structure of the xml file is changed. The developer should only need to

change code in the class which parses the xml.
Environment Design time
Artefact Xml reader class
Response The change in code should only occur in the class that parses the xml.
Response Measure The change should be accomplished within an hour and no ripple effects should

happen.

The handling of questions in PeerQuiz involves extracting data from an xml-file. Since the xml-file
is not a part of the actual codebase, it is very important that its content and structure can be altered
without the need of larger modifications to the application.

11.5.4 Availability

A1 - Broken link
Source of stimulus Slave or master
Stimulus A slave loose connection with the master
Environment Runtime during quiz
Artefact The slaves application
Response The slave must store current status and the master must register that the

connection was broken
Response Measure Status must be saved 100% of the time and master must disconnect the slave

after 5 attempts at pinging him/her.

As mentioned earlier, mobile communication is vulnerable to unforeseen loss of connection, and it is
important to keep status of the gameplay. An availability tactic should be implemented in order to deal
with the detection of lost connections.

58 CHAPTER 11. REQUIREMENTS

CHAPTER 12

Dependencies

This chapter points out the applications dependencies in order to function properly. Even though Java is
meant to be platform independent, there are a lot of different J2ME implementations on todays mobile
phones.

12.1 Packages

This application uses the following packages:

• J2ME library - The standard J2ME library.

• Peer2Me.jar - The Peer2Me framework.

• jsr082.jar - The Java APIs for Bluetooth.

• kxml2-min.jar - An open source xml pull parser designed for use on devices with limited resources.

The Peer2Me framework uses the J2ME library and the jsr082.jar package. This application uses one
additional package;kXml’s kxml2 min.jar. This package can be run on most mobile phones.

59

60 CHAPTER 12. DEPENDENCIES

12.2 Supported mobile phones

We are using the package jsr82 in order to access the Bluetooth device on the mobile phone. There are
many units on the market that supports Bluetooth, but they must also support Java MIDP2.0. The
newest Sony Ericsson mobile phones supports the use of jsr82, see Table 18.1. The phones that supports
jsr82, also supports MIDP 2.0.

Manufacturer Model JSR 82 support At our disposal
Sony Ericsson W900i Yes No
Sony Ericsson W800i Yes Yes
Sony Ericsson W600 Yes No
Sony Ericsson W500 Yes No
Sony Ericsson K750i Yes Yes
Sony Ericsson K600 Yes No
Sony Ericsson V600 Yes No
Sony Ericsson z520 Yes No
Sony Ericsson p900 Yes, but with bugs Yes
Siemens s65 Yes Yes

Table 12.1: Supported mobile phones

CHAPTER 13

Design

The design of this application is centered around the Quiz class, which acts like the backbone of the
application and extends the MIDlet-class and therefore inherits the ability to display forms and do
action-events. Quiz also acts as a parent to the other pieces of the application. It holds methods to
control the progress and program flow. These methods are called by many of the child classes to change
program states and give the user different views.

The application is divided into to four main packages to minimize dependencies and to ensure the ab-
straction of code.

Figure 13.1: Package diagram for PeerQuiz

Each package has its own focus, and as seen in Figure 13.1 they are all on top of the peerquiz package(root).

13.1 The PeerQuiz Package

This is the root package, and contains only one class and one interface. This is the starting point of the
application.
This package is illustrated in Figure 13.2.

61

62 CHAPTER 13. DESIGN

Quiz: This class is the starter class and functions as a backbone in the application. The quiz-class
creates instances of the different objects and displays the different gui-classes on the mobile units
screen.

Constants: This interface contains several variables used in quiz.

13.2 The Game Package

This package contains the classes, which handles the communication and most of the dataflow. The game
package consists of six classes. These classes handles the communication between the participants in the
quiz.
This package is illustrated in Figure 13.3 and Figure 13.4.

QuizMaster: This class creates and handles the framework components required for the masternode
to communicate with the slavenodes. It also contains the masternode’s methods for creating and
receiving messages.

QuizSlave: This class creates and handles the framework components required for the slavenode to
communicate with the masternode. It also contains the slavesnodes’ methods for creating and
receiving messages.

QuizParticipant: A simple class for holding information about a participant i the quiz. Keeps track of
name, address and score.

QuizParticipants: A class that extends Vector to inherit enumeration functionality. Meant to contain
several Participant-instances and has implemented methods to easily add and remove participants
without having to cast the data.

QuizRule: Holds the information about a quiz’ rules; time limit, number of questions and categories.

QuizMessage: A wrapper-class for the Peer2Me framework’s Message, adds extra functionality that
makes it easy to send questions and other messages. Since QuizMessage extends Message, it’s not
necessary to alter the framework to send a message, you can simply send the QuizMessage.

13.3 The Gui Package

This package contains the classes which extends a Displayable object, most of them a Form, which can
be displayed to the user, hereafter referred to as a screen. This package handles all the interaction with
the user.
This package is illustrated in Figure 13.2 and Figure 13.6.

SplashScreen: This screen shows the user a logoimage and a continue-button.

MainMenuScreen: This screen shows the user three buttons, each with an action-event. The user must
here choose weather to be a masternode or a slavenode. Or enter the settingsscreen.

SettingsScreen: The only choice available here is to active the log-button, which enables the user to
view a log any time during the quiz to detect problems or control the game flow.

SlaveScreen: The screen where the participant enters his or hers name a enters a listening mode and
enables the node to be discovered by the masternode.

MasterChoiceScreen: In this screen the user is first presented with two choices, quick-quiz or custom
quiz. If he/she chooses quick-quiz, there will be a standard quiz with predefined a QuizRule. If
custom quiz is chosen, the user will be presented with options to choose a different time limit, a
different number of questions or choose a single category instead of all categories.

13.4. THE QUESTION PACKAGE 63

MasterScreen: This is where the user enters his or hers name and search for slavenodes. Will display
information about the nodes found.

CommunicationScreen: This is a common class for both master and slave, and behaves in some way
similar to both parts. The slave node is showing the rules of the game, and the progress of receiving
questions, while the masternode shows the progress of sending the questions.

QuestionScreen: The screen where the questions are displayed. Contains simple actionevents for dis-
playing the next question in line, and submitting when finished. This will be the last screen shown
to all users.

BarItem: This item shows the user a non-static progressbar. Contains its own thread and images.

13.4 The Question Package

This package contains classes which represents the question-objects. These are classes which builds up
a hierarchy of objects to identify a QuestionCollection with Question-objects, that contains several
QuestionAlternative-objects. QuestionCategory is used to identify a question when in QuizRule.
This package is illustrated in Figure 13.7.

QuestionCollection: Extends Vector to inherit enumeration functionality. Meant to contain several
Question-instances and has implemented methods to easily add and remove questions without
having to cast the data. has also got methods for getting next or previous question in line.

Question: A simple class which holds the main entities in a question; the questiontext, the answer, the
weighting of the question and the alternatives the user can choose to answer.

QuestionAlternative: A class to provide a simple object to imitate a hash-table with a String-index.

QuestionCategory: Contains only a String, but is used to objectify the design.

13.5 The Util Package

Contains several classes used to provide functionality used by the quiz; a log function, utilizing the Record
Store, the implementation of an XML-parser and a simple timer.
This package is illustrated in Figure 13.8.

QuizLog: Provides the ability to temporary store and retrieve QuizLogMessage-objects to/from memory,
and therefore makes it possible to track events in the quiz and report exceptions. Extends Vector
to inherit enumeration functionality, but with simple methods to add and remove messages and
sort output by severity.

QuizLogMessage: Stores the information on every log-entry by text, timestamp and severity.

QuizRecordStore: Utilizes the Java Record Store and the Java Record Store Enumerator to provide
simple functionality for creating, updating and deleting records from the mobile unit’s recordstore.

XMLTool: Uses the open source xml pull parser kXml to traverse an XML-document, in this case to
find questions. Provides public methods for finding questions and categories.

QuizTimer: Provides a simple timer which controls the ping-function and the time limit in the quiz.
Extends the java.util.TimerTask which runs as an own thread.

64 CHAPTER 13. DESIGN

13.6 Class Diagrams

This Section contains the class diagrams for all the packages in PeerQuiz.

Figure 13.2: The peerquiz package

13.6. CLASS DIAGRAMS 65

Figure 13.3: The game package

66 CHAPTER 13. DESIGN

Figure 13.4: The game package part 2

13.6. CLASS DIAGRAMS 67

Figure 13.5: The gui package part 1

68 CHAPTER 13. DESIGN

Figure 13.6: The gui package part 2

13.6. CLASS DIAGRAMS 69

Figure 13.7: The question package

70 CHAPTER 13. DESIGN

Figure 13.8: The util package

13.7. PROGRAM FLOW 71

13.7 Program flow

This Section will describe the flow in PeerQuiz using two diagrams; a Gane Sarson Flow Diagram, Figure
13.9 and an UML Activity Diagram, Figure 13.10.

Gane Sarson Flow Diagram

The Gane Sarson Flow Diagram shows in which order the graphical user screens appear. This gives an
overview on how the application will appear to the user. It is important to keep in mind that this diagram
does not involve any action events.
The splashscreen is the first screen shown to the user. This is followed by a screen showing a menu giving
the user three choices. The path is now different depending on whether the user acts as a master or a
slavenode. Communicationscreen and Questionscreen is common for both parts.

Figure 13.9: PeerQuiz flowchart

72 CHAPTER 13. DESIGN

UML Activity Diagram

The UML Activity Diagram describes in which stages the user interacts with the application. It describes
the choices the user might meet, and the consequence of making each choice. In the end, after the final
state, the application exits.

Figure 13.10: Peer Quiz UML activity diagram

CHAPTER 14

Implementation

This Chapter describes the implementation details of the PeerQuiz applications, and some code snippets
from important features. We have chosen to focus on the main parts of the application; Xmlparsing,
ping/echo tactic, graphical user interface and communication. Xmlparsing is an important feature in the
application, since it is the way the questions are organized, and the parser is needed to extract the data
from the xmlfile.
We have also met the availability requirements by implementing an availability-tactic in PeerQuiz. This
is described in detail in Section 14.2. This section will also discuss the GUI-components used, and the
details of communication.
The complete source code for this application can be found on the attached CD.

14.1 Xml parsing and Questions.xml

This Section will describe the xml format of the file which stores the questions, and how PeerQuiz utilizes
this file.
In PeerQuiz, the questions are stored in an xml file to ensure modifiability. As explained in Section 9.4,
xml stores the information hierarchical in nodes, where each node can contain subnodes, and each node
contains several attributes. This is a excellent way to objectify data and make sure the data is consistent
and expandable. Since PeerQuiz has no limitation on the number of questions, the data structure of the
questions does indeed need to be expandable.

In todays version of the Peer2Me framework, you can only send messages with ASCII characters. See
Section 21.1.2 in Sars & Norums master thesis [22] for more explanation. This gives us two ways of
utilizing xml in PeerQuiz. We can either convert the xml document(or parts of it) to a long string, and
then send the string. Or we can extract data from the xml document and create several messages or
messageparts. In PeerQuiz we are using the second alternative, while we in PeerShare are using the first
alternative.

Listing 14.1: Xml-format, from Questions.xml

1 <Quiz >

2 <Category name="Geography">

3 <Question text="Where is Timbuktu?" answer="2" weight="5">

4 <Alternative id="0" text="Peru"/>

5 <Alternative id="1" text="Tunisia"/>

73

74 CHAPTER 14. IMPLEMENTATION

6 <Alternative id="2" text="Mali"/>

7 </Question >

8 </Category >

9 </Quiz >

As we can see, the top node is quiz, and there is a categorynode, with a questionnode inside. The
questionnode carries several alternatives. When you have this structure of data, it is quite simple to
traverse the xml and fetch the nodes which match your preference. To validate and explain this xml
document, you can, as explained in Section 9.4.3, use a DTD. The DTD for Questions.xml are shown in
Listing 14.1 below.

Listing 14.2: DTD for Questions.xml

1 <!ELEMENT Alternative EMPTY >

2 <!ATTLIST Alternative

3 id CDATA #REQUIRED

4 text CDATA #REQUIRED

5 >

6 <!ELEMENT Category (Question)>

7 <!ATTLIST Category name CDATA #REQUIRED >

8 <!ELEMENT Question (Alternative +)>

9 <!ATTLIST Question

10 text CDATA #REQUIRED

11 answer CDATA #REQUIRED

12 weight CDATA #REQUIRED

13 >

14 <!ELEMENT Quiz (Category)>

14.1.1 kXml Pull Parsing

To achieve parsing the xml document in a simple manner, we have chosen to implement the kXml parser,
see [20]. As stated in Section 9.4.4 earlier in this document, kXml is a pull parser designed for mobile
applications with a rather small footprint. This is essential when keeping in mind that the Peer2Me
framework must also be included in the application.

14.1.2 Put to use

The parser is using xmlParser.nextToken() to traverse line by line in the XML-document and then
returns the node tagtype (starttag,endtag and so on). When you found your tagtype, in other words the
nodetype you are looking for, you can easily check the identity by calling xmlParser.getName(). To get
the content of a node, simply use xmlParser.getAttributeValue() with the proper attribute-id.
As mentioned the Peer2Me framework has not yet got support for sending xml in other data types than
wrapped as a string, but this could be a possible expansion to the framework in the future.

14.2 Availability tactics and ping-functionality

This Section addresses the availability requirement A1 in Section 11.5.4, and how it is solved in PeerQuiz.

Mobile Bluetooth communication have a hard time when it comes to availability. As soon as two devices
get out of range of each other, there is no immediate reaction even though they are not connected
anymore. You might think the Peer2Me framework got this covered, but there are no functionality in
the framework to take care of this incident, and you will simply get an exception or an error telling you
that the message could not be sent or the node couldn’t be reached.
Utilizing the framework’s messagesending, PeerQuiz has got the ping/echo-functionality implemented to
ensure availability. This is done by bouncing a message from the masternode to the slavenode and back
again.

14.3. GUI - GRAPHICAL USER INTERFACE 75

14.2.1 Ping/echo

The ping/echo-tactic is quite similar to the heartbeat-tactic, but instead of the slave sending a ”I’m
here”-message every now and then, the ping/echo-tactic consists of making the masternode request the
message. Using a timer, QuizTimer(see Section 14.2.2), the PeerQuiz is at a given interval sending a
request to all connected slaves telling them to respond. If a slavenode doesn’t respond on any of the five
last requests, the node is considered lost and removed from quiz.
This functionality will provide awareness to the masternode whether the other participants are connected
and within reach or not. This will increase the amount of data transmitted from the masternode, but
there are no other well defined methods for achieving this in ad hoc network communication. The size
of the message sent back and forth are very small, and should not make any difference if the number of
participants is less than seven.

14.2.2 QuizTimer

To ensure that the ping-request is sent to the slavenodes regularly at a specified interval, PeerQuiz uses
its own QuizTimer. QuizTimer is a class which extends java.util.TimerTask to make sure it runs as an
own thread, and uses java.util.Timer to schedule happenings at certain intervals. The QuizTimer is then
configured to call on a method on the masternode when the desired time is reached. This is referred to
as a tick. The timer can be scheduled in two ways, either to produce a single tick after a given delay,
or produce ticks at given intervals. The last mentioned is used in ping/echo-functionality, while the
single-tick-feature is used when the quiz has a time limit.
This timer can easily be implemented into the Peer2Me framework to provide this availability fault-
detection tactic. For more information about ping/echo-tactics, please see ”Software Architecture in
Practice” by Bass, Clements and Kazman [5].

14.3 GUI - Graphical User Interface

The graphical user interface is very important to the application’s usability. You might have the best
program code and algorithms available, but without a sensible user interface to ensure intuitive interaction
with the user, your application is less user friendly. Most application’s popularity depends on a good
user interface.
In J2ME, creating a good user interface is very difficult due to a limited selection of gui components.
You have two main choices; you can either use a form and then add simple components as text fields
and images. Or you can use a canvas and then draw strings and images at an absolute position. This
will create a better user interface, and as mentioned earlier, enable using the numpad. The drawback is
that it’s not very flexible nor easily created. You also have to keep in mind that the components might
appear differently depending on the handheld unit running the application.

14.3.1 Form

In PeerQuiz forms are used, and in the gui-package (see Section 13.3) most of the classes represents a
single form which can be displayed on the screen. For example the QuestionScreen extends Form and
can be displayed very easily in the MIDlets main class. See Listing 14.3.1 to see the codesnippet which
performs a ”screensetting”

Listing 14.3: Setting new screen codeexample

1 // Getting the MIDlets displayhandler

2 Display display = Display.getDisplay(this);

3

4 public void showQuestionScreen ()

5 {

6 // Creates the screen object that extends Form

7 questionScreen = new QuestionScreen ();

76 CHAPTER 14. IMPLEMENTATION

8

9 //Puts the screen "on display"

10 display.setCurrent(questionScreen);

11 }

As earlier mentioned, the Quiz-class is the backbone of the application, and exposed many methods for
changing screens. This makes it easy to add new screen by simple creating a class that extends Form
and add a new set-method in Quiz.
As a main theme, we are using mostly the javax.microedition.lcdui.ImageItem with an associated com-
mand as buttons. This is the most common way of creating buttons in MIDlets. Where the space on the
display is required to showing text, the buttons are as actions on the mobile units physical buttons.
To always show the user what is happening, we are using the standard progressbar in J2ME; javax.microedition.lcdui.Gauge.
This is a normal progressbar showing a graded bar, with a percentage on some handheld units, for ex-
ample the Sony Ericsson W800i [2]. Since we felt that gauge didn’t give sufficient feedback to the user,
with created our own progressbar, BarItem, which is covered in Section 14.3.2

14.3.2 The PeerQuiz progressbar, BarItem

The BarItem is a displayable item used to let the user know that something is happening; give the user
feedback.
The BarItem extends ImageItem, but utilizes its own class, BarController which runs as an own thread,
constantly changing the BarItem’s displayed picture. One might call this a slideshow consisting of five
images, changing at a specified interval. The BarItem is shown in three steps in Figure 14.1.

Figure 14.1: BarItem graphics

14.4 Communication

The primary goal with PeerQuiz is to utilize the Peer2Me-framework in a P2P setting; make several
handheld units communicate over Bluetooth.
The framework consists of several components which must be used to communicate.

14.4.1 Initialization

The first operation that needs to be done, is initializing the framework-component. As shown in Listing
14.4.1, only two lines are actually necessary to initialize the framework.

Listing 14.4: Initializing the framework

106 // Initializes the framework and setting listeners

107 framework = Framework.getInstance(

108 "HostCommunicator",

14.4. COMMUNICATION 77

109 "Quiz Master",

110 "no.ntnu.idi.mowahs.project.bluetooth.network.BluetoothNetwork");

111 framework.init ();

The next thing to do is to determine the functionality you need, and then add the correct handlers. This
depends whether you need to search for slave nodes, use messagesending/receiving and so on. The three
handlers needed in PeerQuiz is shown in Listing 14.4.1.

Listing 14.5: Setting listeners and handlers

112 framework.setGroupDiscoveryListener(this);

113 framework.setMessageSubscriber(this);

114 framework.setExceptionHandler(this);

These handlers require their own methodstubs in the same class, since the framework implements an
interface, and the class which uses the framework must also implement several interfaces. For more
information, see the master thesis by Norum and Sars [22].
The next step is to register the framework-components with each other. This is to ensure interaction
between the components. There are three main components that are needed to utilize most of the
functionality; Framework,Service and Group. In PeerQuiz this is done by registering the group in the
service, then register the service in the framework. This is shown in Listing 14.4.1 shown below.

Listing 14.6: Registering components

121 // Registrering the group in the service

122 service.setGroup(group);

123

124 // Registering the service in the framework

125 framework.registerService(service);

14.4.2 Master vs. Slave

Since the Peer2Me framework distinguishes between the masternode and the slavenodes, and since there
can be only one masternode, this must come in consideration when designing and implementing the appli-
cations. In PeerQuiz, there is a masternodeclass, QuizMaster.java and a slavenodeclass, QuizSlave.java.
They share some of the same functionality, but are quite different i how the work. We created therefore
two separate classes.
While the slavenode automatically goes into a listening mode after registering the components, the mas-
ternode must actively search for slavenodes. This is in PeerQuiz done easily by calling one single method
as shown in Listing 14.4.2.

Listing 14.7: Searching for slavenodes

137 private void searchForNodes ()

138 {

139 this.parent.getQuizLog (). addMessage(QuizLog.INFORMATION ,"Searching for participants");

140 framework.startGroupSearch(service);

141 }

The framework requires that the class that uses the framework, exposes a set of predefined class-stubs.
These methods are triggered by the framework e.g. when a message is received or a slavenode has joined
the group. This is done by Sars and Norum to ensure that the framework is abstract enough to be
implemented easily.
An important thing to notice, is that in the slavenodes method groupDiscovered(..), the slave will
register a groupmonitor and the masters group to its own framework instance. Listing 14.4.2 shows the
code.

Listing 14.8: Slavenode is discovered by masternode

78 CHAPTER 14. IMPLEMENTATION

242 public void groupDiscovered(Group group)

243 {

244 //Sets the groupmonitor

245 group.setMonitor(this);

246

247 //Join the group found

248 framework.joinGroup(group);

249 }

14.4.3 Sending messages

The key feature of the communication between the units connected to each other is messagesending. The
ability to transmit data to one or more nodes. This is done by using the framework-components to send a
QuizMessage-object, as explained in Section 14.4.3. As mentioned in Section 14.1, PeerQuiz is extracting
data from the xml file and creating Question-objects server side. This is handled by QuizMaster and
QuizMessage.

QuizMessage

QuizMessage is a class that functions as an encoder and a decoder for the messages sent in PeerQuiz
during a game.
QuizMessage extends no.ntnu.idi.mowahs.project.domain.Message to inherit the original functionality
provided by the Peer2Me framework. Since this is provided, it gives the opportunity to send a QuizMes-
sage without have to cast it to a Message-object. As shown in Figure 13.4, QuizMessage defines multiple
constructors which can create a new instance of QuizMessage, all depending on what type of mes-
sage you want to send. The main advantages by doing it this way, is that you don’t have to create
many textmessageparts every time you e.g. send a message, QuizMessage does it for you. QuizMes-
sage stores the input from the appropriate constructor and adds the correct textmessageparts an inter-
nal messageobject. The QuizMessage is now ready to be sent in the framework the same way as the
original message-object is sent, by creating the QuizMessage and adding recipients, and then calling
framework.sendMessage(questionMessage,service).
When the message is sent and the other joined nodes receives it, it is received as a Message, not a
QuestionMessage. This is because of the framework. To avoid having to extract the data from the mes-
sage using many message.getMessagePart().getFieldValue() calls, the toQuizMessage(Message) method
in QuizMessage should be called, and it creates a new QuizMessage object based on the received Message-
object. This is done by analyzing the received message’s messagetype and calling the correct constructor
in QuizMessage. Now that you have the QuizMessage instance, several methods are provided for easy
access to the data that was sent.

14.5. CODE STATISTICS 79

14.5 Code statistics

In order to illustrate the size of the application, we have in Table 14.1 included code statistics for the
PeerQuiz application.

Aspect LOC # of classes Avg. # of methods Avg lines per method
peerquiz.gui 966 10 5.6 15.06
peerquiz.game 942 6 15.33 5.88
peerquiz.util 674 5 6.8 10,13
peerquiz.question 132 4 5 2.25
peerquiz 222 1 25 3.96
Total 2936 26 8.73 7.76

Table 14.1: PeerQuiz code statistics

80 CHAPTER 14. IMPLEMENTATION

CHAPTER 15

Testing

This chapter presents the covered functional and non-functional requirements described in Chapter 11.

15.1 Test of functional requirements

The application is tested in two different environments:

Sun’s Wireless Toolkit 2.2 with included emulator running on an x86 computer using Windows XP
SP2 and Java version 1.5.0 04.

Mobile phones on test subjects. Sony Ericsson W800i and Sony Ericsson K750i.

Table 15.1 lists the functional requirements set out in Chapter 11 and if the requirement is supported by
the application. Two new requirements, FR10 and FR11 are also added.

81

82 CHAPTER 15. TESTING

Requirement Text New requirement Result
FR1 The application must allow a new quiz to

be created
No Pass

FR2 The creator of the quiz must function as
the master node

No Pass

FR3 The application must allow several differ-
ent set-ups / rules of a quiz

No Pass

FR3.1 The creator must choose the number of
questions

No Pass

FR3.2 The creator can select a quick quiz which
uses default set-up so that the quiz can
start

No Pass

FR3.3 The creator can choose which category
the questions will be taken from

No Pass

FR3.4 The application must select random
questions

No Pass

FR3.5 The creator must choose the contestants No Pass
FR3.6 The creator may choose to set a time

limit for the quiz
No Pass

FR4 The creator should be able to participate
in the quiz

No Pass

FR5 The application must declare a winner af-
ter all the answers are received

No Pass

FR6 The questions and answers must be
stored in a well organized xml-file

No Pass

FR7 It must be possible to import new ques-
tions to the xml-file

No Not implemented

FR8 The application should be able to export
the xml-file to other devices

No Not implemented

FR9 The participants must be able to quit at
any time

No Pass

FR10 The application should store data such
as the nickname used in the last session

Yes Pass

FR11 The application should automatically
load saved nickname when the data is re-
quired

Yes Pass

Table 15.1: Fulfillment of functional requirements for PeerQuiz

15.1.1 Comments on the implementation of the requirements

All of the functional requirements are implemented except a few which is regarding the xml-file holding
the questions. Since the focus should be on utilizing the Peer2Me framework, manipulating of the xml-file
is given lower priority.

FR3.2 The quick quiz settings are at this point sat directly in the code, but it is easy to utilize the java
recordstore as it is done with the nickname.

FR3.5 Due to the restrictions or lack of functionality in the Peer2Me framework, the master is not able
to choose which contestants that can join the game. They join automatically since they have the
same serviceID as the master.

FR3.5 At this point only one winner is declared, even if several participants got the same score. The
one who answered first, is the winner.

15.2. TEST OF QUALITY REQUIREMENTS 83

FR7 Import and merging of questions in the xml-file is not implemented because it has no influence or
correlation with utilizing the Peer2Me framework.

FR8 As in FR7, export is not implemented either.

15.2 Test of quality requirements

U1 - Inform the user of current process - Implemented The user is at all times informed about
what is going on, either with text or with a progressbar, the BarItem. All information is displayed
on the screen, but an alternative could be to use some units integrated vibrator. The BarItem is
moving graphical item applied to show the user that the application is alive.

T1 - Log file - Implemented The programmer has to manually specify which messages should be
stored in the log. The log can be easily toggled in runtime on the mobile phone, but is not
stored when the application exits. In order to store the file, the developer can use the peer-
share.util.FileHandler class and write the file to any location he wants. We did not choose to do so
as viewing the log during runtime proved to satisfy our needs.

M1 - Add new questions - Implemented If or when the user decides to add extra questions, he or
she does not need to change any code, just follow the standards of the xml-file to make sure the
parsing is correct. As discussed in Section 9.4, kXml, the pull-parser used in PeerQuiz, does not
offer the ability to verify xml-documents before they are parsed. it is therefore critical that the
syntax of the xml-file is correct.
The number of questions that can be added is restricted by the hardware.

M2 - Add more alternatives to questions - Implemented PeerQuiz and the xml-parsing supports
an infinite number of alternatives, and as for requirement M1, the syntax of the xml-file needs to
be correct for the application to function properly.

M3 - Change structure of xml file - Implemented If the user decides to alter the structure of the
xml-file which holds the questions, he or she only needs to alter code in
peerquiz.util.XMLTool.java. This file contains several methods to extract categories and questions
from the xml-file, and it is in these methods the code needs to be redesigned. These changes does
not take more than one hour to complete provided that the developer has got basic java and xml
knowledge.

A1 - Broken link - Partially implemented This requirement is implemented fully on the mastern-
ode, but only partially on the slavenode(s). The masternode is using the ping/echo functionality
described in Section 14.2.1 in Chapter 14. This means that the masternode is fully aware of the
slavenodes statuses, but at this point the slavenode is unaware that he or she is out of range. As a
solution to this, the ping/echo could be replaced by a heartbeat mechanism, making the masternode
listen for nodes sending a heartbeatmessage, and then time out the nodes that does not give a life
sign in a given period of time. This will give more uncertainty and are not as precise as a two-way
communication e.g. ping/echo.

84 CHAPTER 15. TESTING

Part V

Test application 2 - PeerShare

85

CHAPTER 16

Introduction

This chapter describes the second test application, PeerShare. PeerShare is an application that can be
used to share files between several mobile phones simultaneously. It is of course possible to send files on
your mobile phone to other devices using the ”send as Bluetooth” function implemented on most devices,
but this is not good enough for a filesharing network. This application allows users to browse each others
file before downloading.

First of all, a scenario is presented along with the goals of the application which the requirements are
based on. The requirements for the application are then presented, both functional and non-functional.
The application has several dependencies and only runs on some mobile phones. A selection of supported
mobile phones are listed. The PeerShare application consists of several packages with several classes.
In order for the reader to get an overview, the different packages and their contents are illustrated in a
couple of class diagrams. Reasoning for the package structure and essential implementation details of the
application is then introduced. How we used the Peer2Me framework is also included in that Section.

When we first created the requirements, we were uncertain if all of them were implementable, especially
since our goal was to use the Peer2Me framework for all communication purposes. Testing the application
is a vital part of all application development and the process of testing involves checking if all requirements
are met. At the end of this part, we have included some documentation around the testing process.

87

88 CHAPTER 16. INTRODUCTION

CHAPTER 17

Requirements

This chapter describes a scenario, goals, functional requirements, use case description and quality require-
ments for the application PeerShare. An explanation for the different sections can be found in Chapter
5.

17.1 Scenario

Vikraam, Christina and Joey are three friends who all own a mp3 mobile phone. They are regular users
of the application PeerShare and use their mobile phone as an mp3 player in addition to ordinary phone
usage. They meet at lunch and start discussing their mutual passion music. They all launch PeerShare
and starts browsing through each others music library at the same time. Vikraam sees that Christina
has a sample of the brand new hit single by Robbie Williams, Trippin. He downloads the song to his
phone. Vikraams suddenly remembers that he has an appointment with the doctor and Christina quickly
downloads Vikraams music library list. Vikraam leaves the group and Christina browses to the list she
just received to see if Vikraam has something new she can download later. Joey is also interested and
downloads Vikraam’s list from Christina which results in an update of the last list he received from
Vikraam. Joey also downloads a song from Christina before they decide to exit PeerShare and go to
lecture.

17.2 Goals

By analyzing the scenario above, we can extract a handful of goals that the application must fulfill. The
goals are:

1. The application must allow several users to connect to each other

2. The application must support transfer of files and file lists between peers

3. The application must be able to store the files in an organized manner

4. The files must be accessible from other applications on the phone

89

90 CHAPTER 17. REQUIREMENTS

17.3 Functional requirements

Table 17.1 lists the functional requirements we have set out for this application. The functional require-
ments meets the goals mentioned above.

Requirement Text
FR1 All participants must have a file that contains a list of shared files stored on their

phone
FR2 All participants must be able to download a list of files from each other
FR3 A user must be able to navigate through a list of files and download the desired file
FR4 All downloaded files should be stored in a default download directory
FR5 The application must have a settings menu
FR5.1 The user must be able to set the default download directory
FR5.2 The user must be able to specify which directories he or she wants to share
FR5.3 The user must be able to set a nickname
FR6 The application must support all kind of files
FR7 The user should be informed of what is going when operations are expected to take

a few seconds. A progressbar should also be shown during this process

Table 17.1: Functional requirements for PeerShare

17.4 Usecase description

The use-case diagram, see Figure 17.1, illustrates how the functional requirements relates to each other
and the user of the application.

Figure 17.1: Use case model for PeerShare

17.5 Quality requirements

Quality requirements are just as important as functional requirements and it is easy to get carried away
and just create an application with a lot of functionality without regard to the non-functional aspects.
This section contains a few quality scenarios we find important.

17.5. QUALITY REQUIREMENTS 91

17.5.1 Usability

U1 – Few user prompts
Source of stimulus User
Stimulus User access the local filesystem through the PeerShare GUI
Environment Runtime
Artefact PeerShare application
Response The user should not be prompted for access every time the application tries

to access the local filesystem
Response Measure The application should never ask the user for this sort of permission

Usability scenario U1 is important to ensure usability. It is quite annoying to be prompted for the
same action over and over.

17.5.2 Testability

T1 – Log file
Source of stimulus Developer
Stimulus Developer wants to know if exceptions are thrown
Environment Runtime
Artefact PeerShare application
Response Application should catch all exceptions and write the appropriate error mes-

sage on the mobile phone display
Response Measure These messages should be easily switched on and off

Testability scenario T1 is very helpful for the developer. Mobile phones have small displays and er-
ror checking is very hard to do during runtime if special considerations have not been made. Therefore,
by allowing the developer to see error messages during runtime, finding bugs will take less time.

17.5.3 Modifiability

M1 – Download a whole folder
Source of stimulus Developer
Stimulus The developer wants to add the functionality of downloading a whole folder
Environment Design time
Artefact PeerShare application
Response The change should be easy to accomplish with no ripple effects
Response Measure Downloading multiple files would require multiple messages to be sent. The

change should be accomplished within 5 hours.

The functional requirements in Section 17.3 only specifies that single files can be downloaded from other
peers. A possible expansion of the application would be to allow the user to download whole folders,
instead of single files. Modifiability scenario M1 describes this expansion.

17.5.4 Availability

As mentioned earlier, it is very important to pay special attention to availability in the PeerShare applica-
tion. The J2ME Bluetooth environment does not allow a node to function as a slave and a master at the
same time. Therefore, if one slave node wants to download a file from another slave node, the master node
will have to function as a intermediary. See Figure 17.2 for illustration of the file transfer process. All

92 CHAPTER 17. REQUIREMENTS

three nodes can at any time suddenly break connection. This needs to be handled differently depending
on which node has disconnected. If one node looses connection, the two others are also affected.

Figure 17.2: File transfer in PeerShare

A1 - Broken connection during file transfer
Source of stimulus File transfer
Stimulus One of the nodes in 17.2 disconnects
Environment Runtime during file transfer
Artefact All nodes in 17.2
Response The user most be informed of the occurred event. The application must not

hang.
Response Measure A couple of seconds should be given to see if the connection can be restored.

If this is not possible, the operation should be aborted on the affected nodes
and they should continue to operate as usual. If the master node disconnects,
all the other slavenodes must automatically be disconnected

We have chosen not to include a performance scenario here, because it is highly dependant on the mobile
phones which the application is deployed on. Also, since the Bluetooth API is restricted to the hybrid
P2P model (see Section 6.1), the application is dependant on an effective master node. It is therefore
optimal that the master node is the mobile phone with the most resources available.

CHAPTER 18

Dependencies

In order for the PeerShare application to work, the environment it runs in must satisfy certain criteria.
Even though Java is meant to be platform independent, there are a lot of different J2ME implementations
on todays mobile phones. J2ME comes with several optional packages and PeerShare uses two of these
packages. Not all phones that support the J2ME library supports all optional packages.

18.1 Packages

PeerShare has one more dependency than PeerQuiz. PeerShare will not run without JSR 75 support.
This application uses the following packages:

• J2ME library - The standard J2ME library.

• Peer2Me.jar - The Peer2Me framework.

• jsr082.jar - The Java APIs for Bluetooth, also called JAWBT.

• jsr75.jar - PDA Optional package for accessing PIM data (Personal Information Management) and
file system

• kxml2-min.jar - An open source xml pull parser designed for use on devices with limited resources.

The Peer2Me framework uses the J2ME library and the jsr082.jar package. This application uses two
additional packages. The kxml2-min.jar package can be run on most mobile phones, jsr75.jar can not.

93

94 CHAPTER 18. DEPENDENCIES

18.2 Supported mobile phones

Since we are using the package jsr75 in order to access the filesystem on the mobile phone, there are
currently only a handful of mobile phones which supports this package. PDAs were the first devices that
supported this package. The newest Sony Ericsson mobile phones supports the use of jsr75, see table
18.1. The phones that supports jsr75, also supports JSR 82 (JAWBT) package which is also needed by
the Peer2Me package.

Manufacturer Model JSR 75 support JSR 82 support At our disposal
Sony Ericsson W900i Yes Yes No
Sony Ericsson W800i Yes Yes Yes
Sony Ericsson W600 Yes Yes No
Sony Ericsson W500 Yes Yes No
Sony Ericsson K750i Yes Yes Yes
Sony Ericsson K600 Yes Yes No
Sony Ericsson V600 Yes Yes No
Sony Ericsson z520 Yes Yes No
Sony Ericsson p900 Only PIM API Yes, but with bugs Yes
Siemens s65 Only PIM API Yes Yes

Table 18.1: Supported mobile phones

CHAPTER 19

Design

This application uses the same architectural principles as the PeerQuiz application. PeerShare comprises
of three packages: peershare, peershare.gui and peershare.util. Each package is designed for a specific
purpose which this chapter will elaborate further. The main class, PeerShare is located in the package
peershare.

Figure 19.1: Package diagram for PeerShare

19.1 The peershare package

The peershare package contains the Midlet class, PeerShare, which is the primary class of the application.
It also contains an interface and some other classes that are used both by PeerShare and some of the
classes in the peershare.gui package.
This package is illustrated in Figure 19.2.

Constants: An interface that contains constants that are used by several classes.

95

96 CHAPTER 19. DESIGN

PeerShare: This is the primary application which extends Midlet. Both slave and master nodes run
this class. A variable is set in this class which determines whether the application should run as
master or slave.

ShareNode: This class adds additional information to the no.ntnu.idi.ntnu.mowahs.project.domain.Node
class. This information is used to store information about the node’s shared folders and files. It
also contains an Image that is associated with the node.

ShareNodes: Extends java.util.Vector and keeps a collection of ShareNode. This class is used so that
each node in the network can keep track of each other.

ShareObject: A simple class that determines if a shared object is a folder or a file.

19.2 The peershare.gui package

This package contains the classes which extends a Displayable object such as Form and Image, which can
be displayed to the user, hereafter referred to as a screen. All user input is handled by the classes in this
package. BarItem is the exact same class that is used in PeerQuiz, see Section 13.3. CommunicationScreen
is also almost exactly like the CommunicationScreen class used in PeerQuiz, see 13.3, but with some
changes.
This package is illustrated in Figure 19.3.

BarItem: A class that can be used as a progressbar. This class is used so that the user can know that
something is happening in the background and that the application has not stalled.

CommunicationScreen: A screen that the user is presented with when a communication link is being
established between the slaves and the master. Information about what is going on is displayed
here along with the BarItem.

DirectoryBrowserScreen: A screen that lets the user select which folders to share and where down-
loaded files should be stored.

MainMenuScreen: The first screen that the user is presented with. Gives the user three choices: host,
join and settings.

NickNameScreen: A screen that lets the user select a nickname.

PeerBrowserScreen: A screen that the lets the user browse through all the nodes which has joined the
same PeerShare group and download shared files.

SettingsScreen: Current implementation only presents the user with one adjustable setting: to change
download and upload folder. The idea is that more settings can be added later.

19.3 The peershare.util package

This package contain classes that can do operations on the mobile phones recordstore and filesystem. It
also contains a class that can parse XML and logging functionality. PeerShareRecordStore has the same
contents and structure as QuizRecordStore, described in Section 13.5, but with less methods and some
small modifications. ShareLog and ShareLogMessage are the same as QuizLog and QuizLogMessage used
in PeerQuiz, see Section 13.5.
This package is illustrated in Figure 19.4.

FileHandler: A class that can read and write files to the local filesystem. This class also contains
recursive methods that creates an XML file which contains an hierarchical structure of folders and
files.

19.3. THE PEERSHARE.UTIL PACKAGE 97

PeerShareRecordStore: This class reads and stores application settings such as nickname, folder set-
tings and information about shared files.

ShareLog: Extends java.util.Vector and stores a collection of ShareLog. This class is used to log appli-
cation events and can be viewed on the mobile phone in runtime for testing purposes.

ShareLogMessage: Is used by ShareLog to store single application events.

XMLTool: A class that reads XML files, in this case, the XML file created by the FileHandler. The
class can be used to read both local and externally created XML files. It can also alter the content
of an XML string and return the altered string. The class uses an XML pull Parser.

98 CHAPTER 19. DESIGN

19.4 Class Diagrams

This Section contains the class diagrams for all the packages in PeerShare.

Figure 19.2: The peershare package

19.4. CLASS DIAGRAMS 99

Figure 19.3: The gui package

100 CHAPTER 19. DESIGN

Figure 19.4: The util package

19.5. PROGRAM FLOW 101

19.5 Program flow

This Section describes the flow in PeerShare. When starting the application for the first time, the user
needs to select download and upload folders. Then the user needs to decide if he wants to function as a
master(host) or a slave(join) node. There can only be one master, and all slaves need to join before the
master hosts the game. This may seem awkward, but this is the way the Bluetooth API works. After all
nodes have joined and a master has been selected, the nodes starts exchanging files automatically and
then the filesharing can begin. Figure 19.5 shows an activity diagram of the program flow which can be
divided into two main phases: ”Setting up the network” and ”transferring files”.

Figure 19.5: Activity diagram of PeerShare

102 CHAPTER 19. DESIGN

CHAPTER 20

Implementation

This Chapter describes the implementation details of the PeerShare application. PeerShare executes
operations on the mobile phone’s filesystem, which is described in detail. These operations creates or
uses xml files in order to sort the information retrieved from the filesystem. The kXml parser used in
PeerQuiz is also used PeerShare. The graphical user interface concepts that were used in PeerQuiz, has
also been used in PeerShare.

Communication an essential part of this application. PeerShare does not separate master and slave in
two different classes as the PeerQuiz application does. Therefore, the Peer2Me initialization is done in
one class and not two. Also, since PeerShare is a filesharing application, details around how messages are
sent is described. Lastly this Chapter describes how application data is stored and some code statistics.

20.1 FileConnection APIs

Only a few mobile phones support filesystem access through J2ME as mention in Chapter 18. We have
created one class for this purpose, peershare.util.FileHandler. This class imports necessary classes from
jsr75 shown in Listings 20.1.

Listing 20.1: Imports in the FileHandler class, from FileHandler.java

3 import javax.microedition.io.Connector;

4 import javax.microedition.io.file .*;

In order to use this class, one have to create an instance of it and send a reference to a PeerShare object
as a parameter to the FileHandler’s constructor. When the application needs to retrieve all folders in a
folder, a call to the fileHandler’s listDirectoryContents(..) method is done as illustrated in Listings
20.2. We figured that it was unnecessary to return the files in a folder when specifying the download and
upload folders in the application. A possible expansion of the application would be to let the user decide
if files should also be shown. This does not require a lot of changes.

Listing 20.2: Getting content of directory, from DirectoryBrowserScreen.java

154 Enumeration e;

155 e = fileHandler.listDirectoryContents(directory ,true);

If the specified folder is a valid folder and not the root directory the code listed in Listings 20.3 will be
executed. An enumeration list with the content will then be returned.

103

104 CHAPTER 20. IMPLEMENTATION

Listing 20.3: Connecting to filesystem and retrieving contents, from FileHandler.java

150 FileConnection conn = null;

151 try

152 {

153 conn = (FileConnection) Connector.open(currentDirectoryName);

154 if(conn.isDirectory ())

155 {

156 if(! changeCurrentDircetory)

157 currentDirectoryName = prevDirName;

158 return conn.list ();

159 }

When the user selects a folder he or she wants to share, all files and subfolders in that folder is organized
in an xml string. In order to traverse through a folders subfolders, subsubfolders and so on, we created a
recursive method which is a private method in FileHandler called makeXmlStringRecursive(..). This
method is indirectly called through the makeXmlString(..) method as illustrated in Listings 20.4.

Listing 20.4: Calling the recursive method, from FileHandler.java

233 public String makeXmlString(final String directory)

234 {

235 final ThreadHelper textHolder = new ThreadHelper ();

236 // Create an inner Thread to avoid deadlocks

237 new Thread(new Runnable ()

238 {

239 public void run()

240 {

241 textHolder.setText(makeXmlStringRecursive(directory));

242 textHolder.setFinished(true);

243 }

244 }). start ();

245

246 //Just waiting for the thread to finish before moving on..

247 while (! textHolder.getFinished ())

248 {}

249 return textHolder.getText ();

250 }

Every time the application accesses the filesystem, the operation must be done in a separate thread to
avoid potential deadlock. We have chosen to create inner threads in the FileHandler class in order to
”hide” this from the rest of the application. Classes that uses the FileHandler class does not need to
know that the operations are performed in separate threads.

20.2 Xml parsing

The FileHandler class returns an xml-document represented as a String. The xml document follows the
DTD (Data Type Definition) illustrated in Listings 20.5.

Listing 20.5: DTD for example.xml, from rules.dtd

1 <!ELEMENT dir (dir | file)*>

2 <!ATTLIST dir path CDATA #REQUIRED >

3 <!ELEMENT file EMPTY >

4 <!ATTLIST file

5 name CDATA #REQUIRED

6 id CDATA #REQUIRED

7 fullPath CDATA #IMPLIED >

The application stores two types of xml files; one for local reference and one that is distributed to the
other nodes. The difference is that the local xml file includes the attribute fullpath in the file element.
The id attribute contains a unique id so that each file is associated with a unique number. When a node
receives a request for a file, it receives the id and can easily fetch the correct file from the filesystem using
the locally stored xml file. An excerpt from a sample xml file is illustrated in Listings 20.6.

20.3. GUI - GRAPHICAL USER INTERFACE 105

Listing 20.6: Sample xml file, from example.xml

2 <dir path="shared/">

3 <dir path="shared/articles/">

4 <file id="1" fullpath="file :/// root1/shared/articles/Programming in java.pdf"

5 name="Programming in java.pdf"/>

6 <file id="2" fullpath="file :/// root1/shared/articles/Secrets of C#.txt"

7 name="Secrets of C#.txt"/>

8 </dir >

9 <dir path="shared/big text files/">

The class that handles the xmlparsing is peershare.util.XMLTool. This class uses the kXmlparser men-
tioned in Section 9.4.4 to read the xml file. XMLTool is constructed so that it can take either a String
containing the xml or the filename of an xmlfile that is compiled with the application. Reading the xml
is done in the same way as for PeerQuiz, see Section 14.1.

20.3 GUI - Graphical user interface

The graphical user interface implementation follows the same pattern as in PeerQuiz. The difference is
that in PeerShare we have used the class javax.microedition.lcdui.List as a graphical item in addition.
This class is used when the user is browsing through his or others files.

20.4 Communication

This part of the application utilizes many of the functionalities offered by the Peer2Me framework. All
communication is done through the PeerShare class regardless of the node’s role, slave or master. In
PeerQuiz we had two classes, QuizMaster and QuizSlave, because the master had more responsibility
than in PeerShare.

20.4.1 Initialization

Firstly all nodes that want to join the network must do so before the master start hosting. This may
sound awkward, but as mentioned in the prestudy, it is the master who searches for the slaves and not vice
versa. In order for a slave to join the network, PeerShare runs the code in Listings 20.7. The PeerQuiz
application runs the same code, but in two different classes; QuizMaster and QuizSlave.

Listing 20.7: Slave - Initializing components, from PeerShare.java

193 service = new Service(SERVICE_ID);

194 framework = Framework.getInstance("" + nickName , "PeerShare application" ,

195 "no.ntnu.idi.mowahs.project.bluetooth.network.BluetoothNetwork");

196 framework.init ();

197 framework.setGroupDiscoveryListener(this);

198 framework.setMessageSubscriber(this);

199 framework.setExceptionHandler(this);

200

201 framework.registerService(service);

After all slaves have done this, the master needs to initialize the framework as well and start looking for
slave nodes. Listings 20.8 and 20.9 shows how this is done.

Listing 20.8: Master - Initializing components and start search, from PeerShare.java

156 service = new Service(SERVICE_ID);

157 framework = Framework.getInstance("" + nickName , "PeerShare application" ,

158 "no.ntnu.idi.mowahs.project.bluetooth.network.BluetoothNetwork");

159 framework.init ();

160 framework.setGroupDiscoveryListener(this);

161 framework.setMessageSubscriber(this);

106 CHAPTER 20. IMPLEMENTATION

162 framework.setExceptionHandler(this);

163 framework.setNodename(nickName);

164

165 group = new Group ();

166 group.setMaster(framework.getLocalNode ());

167 group.setMonitor(this);

168 service.setGroup(group);

169 group.setService(service);

170

171 framework.registerService(service);

Listing 20.9: Master - Starting search, from PeerShare.java

213 framework.startGroupSearch(service);

When a master discovers a slave, the method groupDiscovered(..), which is a required method by the
Peer2Me framework, is invoked at the slave node. The slave starts monitoring the group created by the
master and joins the network, see Listings 20.10.

Listing 20.10: Slave - joins group, from PeerShare.java

325 group.setMonitor(this);

326 framework.joinGroup(group);

327 shareNodes.addElement(new ShareNode(group.getMaster(),""));

Every time a new slave node is found, the nodeJoined(Group group, Node node) is invoked by the
master and the slaves and a reference to the node that joined the network is stored. The user that runs
the master node decides when enough slaves has joined the network and presses ”Continue” on his mobile
phone.

20.4.2 Setting up the filesharing network

After the master has found all the slaves, the nodes need to exchange filelists. Each node has an xmlfile
the can be sent to other nodes as mentioned in Section 20.2. We decided to put the Peer2Me framework
to a stress test to see if the messagesystem was able to handle many messages at the same time. If the
group consists of one master and two slaves, 14 messages will be exchanged in total between the nodes.

The PeerShare application has been tested with 1 master and 4 slaves, which resulted in 44 messages
being exchanged, just to receive the filelists. Figure 20.1 shows how one master and two slaves will
exchange messages.

Figure 20.1: Messages exchanged to distribute filelists

20.4. COMMUNICATION 107

In order to lower the amount of total messages sent, the method illustrated in Figure 20.2 can be used
to share the filelists. Here, the master collects all the lists and then distributes the list to the slaves
afterwards.

Figure 20.2: Messages exchanged to distribute filelists

20.4.3 Downloading files from others

After all nodes have received everyone’s filelist, the sharing can begin. From this point on, the master
has no special tasks and the GUI is exactly the same on the master and the slaves. The user is presented
with a list of the other users represented as small heads. When the user clicks a head, an associated
filelist will be shown in the same way as when selecting upload and download folders (see Section 20.3).
When a user selects a file to download, a message is sent to the node that has the file. The message
contains the fileID and the name of the file. When the node receives a file request, it uses the XMLTool
to find out which file that is requested, reads the file and sends the contents back to the sender. This is
illustrated in Figure 20.3.

Figure 20.3: Requesting and sending file

20.4.4 The truth about Peer2Me communication

When using the Peer2Me framework to send messages, the developer has to specify which node to send
the message to before sending it. Even though it seems that the message is sent directly to the recipient,
it always passes through the master node. The Peer2Me framework hides this from the developer which
means that the developer must carefully consider how to distribute a large amount of messages if he

108 CHAPTER 20. IMPLEMENTATION

or she wants the application to become as efficient as possible. We have not aimed to create the most
efficient algorithm for exchanging filelists in PeerShare, but rather tested the Peer2Me functionality.

20.5 Storing application data

The Peer2Me framework offers a functionality to store objects in the mobile phones recordstore. For this
purpose the object to be stored must implement the
no.ntnu.idi.mowahs.project.utilPersistent interface. In order to store the object in the recordstore, the
no.ntnu.idi.mowahs.project.utilPersistentManager class must be used. After several attempts, we have
been unable to make this work. Therefore, we created our own way of storing information in the record-
store. PeerShare uses the peershare.util.PeerShareRecordStore class to store information. When the ap-
plication exits, it stores nickname, download directory, upload directory and two versions of the xmltree.
This is done to avoid the tedious operation of selecting folders when the application starts.

20.6 Code statistics

In order to illustrate the size of the application, we have included some code statistics for the PeerShare
application. See Table 20.1.

Aspect LOC # of classes Avg. # of methods Avg lines per method
peershare.util 767 6 23.8 12.17
peershare.gui 716 8 13.25 12.27
peershare 544 4 19 5.16
Total 2027 18 18.056 9.36

Table 20.1: PeerShare code statistics

CHAPTER 21

Testing

This chapter presents the covered functional and non-functional requirements set out in Chapter 17.

21.1 Test of functional requirements

PeerShare has been tested in the same environments as the PeerQuiz application:

Sun’s Wireless Toolkit 2.2 with included emulator running on an x86 computer using Windows XP
SP2 and Java version 1.5.0 04.

Mobile phones on test subjects. Sony Ericsson W800i and Sony Ericsson K750i.

Table 21.1 lists the functional requirements set out in Chapter 17, a couple of new requirements and if
the application supported the requirement.

21.1.1 Comments on the implementation of the requirements

Requirements FR1, FR2, FR4 and FR5 could not be tested thoroughly on the emulator. It is possible
to run multiple instances of the emulator, but only one instance has access to the emulated filesystem
and recordstore. However, we did manage to transfer dummyfiles and dummyfilelists 1, but this did not
utilize all application modules. This meant that we had to compile, deploy and run the application on
at least two real phones in order to test these functionalities. The process was time-consuming because
it had to be repeated a couple of times before we got the application working properly.

FR2 The application automatically downloads all the filelists from all the nodes. The application does
not currently support refreshing filelists. Implementing this functionality would not take more than
30 minutes if the developer is familiar with the application.

FR8 The Peer2Me framework only supports transfer of messages that are in ASCII format. It is possible
to transfer binary files between Bluetooth nodes with J2ME, but not with the use of the Peer2Me
framework.

1Dummyfile/dummyfilelist - instead of a real file/filelist, we transferred a long string value that was hardcoded in the
application

109

110 CHAPTER 21. TESTING

Requirement Text New requirement Result
FR1 All participants must have a file that contains

a list of shared files stored on their phone
No Pass

FR2 All participants must be able to download a
list of files from each other

No Pass

FR3 A user must be able to navigate through a list
of files and download the desired file

No Pass

FR4 A user must be able to download a file from
another user

No Pass

FR5 All downloaded files should be stored in a de-
fault download directory

No Pass

FR6 The application must have a settings menu No Pass
FR6.1 The user must be able to set the default down-

load directory
No Pass

FR6.2 The user must be able to specify which direc-
tories he or she wants to share

No Pass

FR6.3 The user must be able to set a nickname No Pass
FR7 The user should be informed of what is going

when operations are expected to take a few
seconds. A progressbar should also be shown
during this process

No Pass

FR8 The application must support transfer of all
kind of files between nodes

No Not Possible

FR9 The application should store application data
such as nickname, download folder, upload
folder and information about shared files
when the user exits the program

Yes Pass

FR10 The application should automatically load
saved application data when it starts

Yes Pass

Table 21.1: Fulfillment of functional requirements for PeerShare

FR9 We found out during testing that it was very time-consuming to specify nickname, download folder
and upload folder every time we started the application. The information is currently being stored
in the recordstore.

FR10 If FR8 should be useful, the application data must also be loaded.

21.2 Test of quality requirements

U1 - Few user prompts - Not implemented. After testing the applications developed by Sars and
Norum in [22], we wanted to avoid that the application prompted the user every time it used the
Bluetooth API. The same thing happened when were experimenting with the FileConnection API.
This usability requirement proved to be unresolvable in the programming code. In order to avoid
user prompt popups when the JAWBT is invoked, the user has to manually configure his mobile
phone to automatically accepts that the JAWBT can operate freely without the users approval at
runtime. The case is not the same for the FileConnection API which requires that the Midlet is
digitally signed. The signature must also be verified by a third party such as VeriSign. A standard
code signing certificate from VeriSign costs $400, which we do not possess. See VeriSign’s webpage
for more information [38].

T1 - Log file - Implemented. The programmer has to manually specify which messages should be stored
in the log. The log can be easily toggled in runtime on the mobile phone, but is not stored when the

21.2. TEST OF QUALITY REQUIREMENTS 111

application exits. In order to store the file, the developer can use the peershare.util.FileHandler
class and write the file to any location he wants. We did not choose to do so as viewing the log
during runtime proved to satisfy our needs.

M1 - Download a whole folder - The application’s architecture makes it possible to download a
whole folder. All folders and associated files are stored in an xml file. In order to implement
this functionality, the user who requests the folder, will only need to send one message. The owner
of the files will have to send one Message for each file.

A1 - Broken connection during file transfer - Not implemented due to errors with the Peer2Me
framework. Peer2Me ”hides” that a message is sent using the master as an intermediary. Further-
more, the Peer2Me framework has a method called nodeLeft(Node node which is supposed to tell
the nodes in the group when a node is leaving. We have tried to use this method, but it does not
seem to work. Therefore, in order to fully implement this quality requirement using the Peer2Me
framework, we need to find out why this method is not working. Currently, when a node asks for a
file, it just waits for it to arrive and the user can do other operations in the meantime. It does not
matter if a node asks for several files from different nodes and they arrive in different order than
requested.

112 CHAPTER 21. TESTING

Part VI

Evaluation

113

CHAPTER 22

Answers to research questions

This Chapter will answer the research questions presented in Chapter 3.1.

22.1 Developer questions

Question 1

Can a developer with some experience in Java, easily adopt the Peer2Me framework as a
utility for developing applications for mobile phones?

We have made some small modifications to the questionnaire that Sars and Norum used in [22]. We have
answered the questionnaire and the answers can be found in Appendix C. By comparing the participants
in [22] with ourselves, we see that we have approximately the same programming experience. The only
difference is that Tommy has previously developed Bluetooth applications, but not using J2ME.

When it comes to the understanding of the domain concepts of Peer2Me we see a clear difference. The
participants seem to have a better understanding of some of the concepts than we do. The questionnaire
is purely subjective and the small applications developed by the participants did not involve close inspec-
tion of the underlying logics in the framework. Since we have inspected the framework more closely, we
may have started to question the naming of the different logics in the framework.

Question 1 cannot be answered in a simple yes/no fashion. We do not agree that it is easy to start
using the framework. In order to use the framework, it must be initiated. One must also create a group,
service, set listeners, messagesubscribers, exceptionhandlers, monitors etc. This must be done differently
depending on the role of the node that runs the application, the role can either be slave or master. If we
want to have an application that can run as master during one session and a slave during another session,
we have to take this into account when developing the application. There are also plenty of methods
that are required by all the interfaces the MIDlet has to implement from the Peer2Me framework. It is
time-consuming to find out how to write these methods. We also spent a great amount of time getting
used to the J2ME environment and compiling and deploying applications on mobile phones. This is not
Peer2Me’s fault, but rather our lack of experience with J2ME, which we now have gained.

115

116 CHAPTER 22. ANSWERS TO RESEARCH QUESTIONS

However, there is no doubt that the framework saves the developer a lot of codelines, but before us-
ing this, it has to be 100 % reliable. This is not the case today.

Question 2

Which bugs exists in the framework and what kind of impact do they have for development?

During the development of PeerQuiz and PeerShare, we have come across several bugs that is of different
severity, but they all effect the usage of the framework. The answer to this research question contains
the bugs found and how these affect the framework. The answers to question 3 includes projected time
to fix these bugs and what outcome this will lead to.

Description of bug The method nodeLeft(..) does not function or respond at all
Found in class ...framework.GroupMonitor
Affected classes ...domain.group
Priority High
Est. time to correct 30 minutes

Comments:
This bug concerns a specific method that is called when a node leaves the network on purpose, and
not by accident. This is very ambiguous, since it at first eyesight appears to be a method that is called
whenever a node leaves the group, regardless by the condition. We will discuss how this can be improved
in the third research questions.

Description of bug The messages cannot contain a carriage return (\n) and the message is ended
when this occur.

Found in class ...domain.Message
Affected classes No other classes
Priority High
Est. time to correct 4 hours

Comments:
This bug originates in an algorithm in the method parseBytes(..) in domain.Message. The messagetext
is converted to a bytestream until it detects a carriage return (\n), which means you cannot send multiple
lines of text in one messagepart. This is a silly bug, and the detection of a message-ends should be done
in a more sophisticated manner.

Description of bug A slavenodes name is not possible to retrieve when it is entered directly in
the constructor when creating a slavenode

Found in class ...framework.Framework
Affected classes No other classes
Priority Low
Est. time to correct 30 minutes.

Comments:
This is a weird bug, since it only appears on the slavenode. When Framework is initialized on a slavenode,
a nodename is supplied to the constructor, but it is not display when the slavenode is discovered by the

22.1. DEVELOPER QUESTIONS 117

masternode. A null-pointer occurs. If you explicitly call the method setNodename(..), the nodename is
stored and displayed to the other nodes.

Description of bug Often handleException(..) does not catch underlying exceptions thrown
by the other parts of the framework, nor by the application

Found in class ...framework.Framework
Affected interface ...framework.HandleException
Priority Medium
Est. time to correct 1 hour.

Comments:
The handleException method required by the classes that uses the Framework, seems to malfunction in
certain situations. As an example, it is not possible to throw exceptions to be caught by the class im-
plementing ExceptionHandler, and often handleException is not invoked in cases of frameworkexceptions
either.

Description of bug It is not possible to compile the framework without the test-applications
Found in class N/A
Affected interface N/A
Priority High
Est. time to correct This is a quite time-consuming task. Unable to estimate the time it takes

to fix this bug.

Comments:
During the testing phase of the framework, several debug methods and test applications were created.
These are implemented into the framework, and is dependent of each other. There is a strong dependency
between the different elements in the framework and its test applications. This gives great overhead and
poor exploitation of available space.

Question 3

How can we improve the framework?

An important part of the framework evaluation is to determine points of improvement and new function-
ality that can be added. This answer discusses bugs found in research question 2 worth fixing and how
they can be fixed. Other mprovements are also discussed in research question 4.

Element Messaging system
Classes affected ...domain.Message and ...framework.Framework
Est. time to change This is a quite complicated tasks estimated to take several weeks
Projected positive outcome Adds the ability to send binary data, not only text
Projected negative outcome Network traffic increases due to the possibility of sending great

amounts of data.

Comments:
This improvement is considered as one of the most important features to be implemented. Implementing
this feature will give the developer incentive to develop richer and useful applications. The possibility

118 CHAPTER 22. ANSWERS TO RESEARCH QUESTIONS

to send and receive binary data such as pictures and other media files, will make the framework more
flexible and widen the usage area.
The applications we developed will benefit from this improvement. For example in PeerShare, the users
could exchange MP3 audio files, and in PeerQuiz a question could contain a picture or sound. One a
more technical level, objects can be sent as messages and the receiver can cast the object to the correct
type.

Element Connection loss detection
Classes affected N/A
Est. time to change This is a quite complicated tasks estimated to take one week
Projected positive outcome Adds a connection loss detection system
Projected negative outcome Network traffic increases due to more transmissions

Comments:
This improvement will add valuable availability to the framework. Today, one of the biggest problems
related to the connections of Bluetooth nodes is the ability to detect if one or more nodes are ascent. If a
node has gotten out of reach from the masternode, the masternode does not get any message that a node
is lost. This can be solved by implementing a timeout or ping/echo functionality in every application
using the Peer2Me framework, but should instead be a part of the framework, not the applications. The
only negative outcome would be the increase in network traffic.

Element Utilizing the Java Recordstore
Classes affected ...util.PersistenceManager and ...util.Persistence
Est. time to change Three days
Projected positive outcome Creates a better way of storing data in the recordstore
Projected negative outcome None

Comments:
Today the Peer2Me framework is utilizing the Java Recordstore by exposing storage and retrieving
methods through a class called PersistanceManager. To use this class, the variable or object that is
going to be stored, needs to inherit a class called Persistence and implement several methods. This
gives overhead because the application needs extra methods in every object that is going to be stored.
The PersistenceManager should be able to store objects directly without having to implement a set of
methods in every of these objects.

Element Dependencies in the framework
Classes affected N/A
Est. time to change One day
Projected positive outcome Removes the framework’s dependencies to the test applications,

and reduces the size of the framework-package
Projected negative outcome None

Comments:
Because the Peer2Me framework is in an early development stage, several test-applications and debug
methods are used throughout the framework. Today it is impossible to compile and create a package of

22.1. DEVELOPER QUESTIONS 119

the framework without including these. Removing these dependencies will reduce the footprint1 of the
framework.

Question 4

How can we add functionality and value to the framework?

The framework can never get enough functionality to suit every situation, but implementing all sorts of
functionality into the framework would make it to large and make it impossible to use it on several units.
There are however a small list of functionality which can be implemented without making the framework
grow out of proportions.
Implementing new functionality can be done in two ways; either directly into the framework, or adding it
as optional packages. This would be like Sun has done with Java and the number of JSR-packages that
are optional to use and not required unless you need special functionality.
A list of suggestions of new functionality follows.

Element File IO functionality
Est. time to develop One week
Projected positive outcome Adds filehandling to the framework, both read and write ability
Projected negative outcome Increasing the size of the framework if not included as an optional

package

Comments:
Including filehandling into the framework would add valuable functionality which can be useful when
developing applications that use the mobile phone’s memory card or internal memory. A good example
of this is the PeerShare application, see Part V. If the filehandling functionality was available during the
implementation of PeerShare, the development time would be reduced by roughly 50%.
Including filehandling into the framework will make the framework larger, but only about 8% larger. An
option is to make filehandling available as an optional package.

Element Xml functionality
Est. time to develop Two weeks
Projected positive outcome Adds xml handling to the framework
Projected negative outcome Increasing the size of the framework if not included as an optional

package. Can be very memory and cpu demanding

Comments:
Including the ability to deal with xml-files will give more possibilities. As explained in Section 9.4, xml
is suitable for storing information in a structured manner. This would be useful when an application
needs to store large amounts of structured data or extract data from prevousily stored xml-files. A good
example of this is the xml-file used in PeerQuiz. This is explained in Section 14.1. If the functionality
required to parse and handle xml-files were included in the Peer2Me framework, the time it took to
implement PeerQuiz would be reduced by about 15%.
Creating an xml-parser from scratch is both time-consuming and unecessary, and a possibility is to use
existing xml-parsers such as kXml mentioned in Section 9.4.4. Creating a wrapper using kXml and
exposing suitable methods would be a good solution.

1Footprint of a piece of software is the portion of computing resources, typically RAM, CPU time and disc space, that
it requires in order to operate.

120 CHAPTER 22. ANSWERS TO RESEARCH QUESTIONS

Element Node
Est. time to develop 1 hour
Projected positive outcome Adds extra information to a node
Projected negative outcome None

Comments:
In today’s version of the framework, the information about a node (both master and slave nodes) is
limited to nodename, address and a description. It is often required to store extra information about the
node, and doing this in todays version involves creating a new object that inherits the node-object. This
can easily be avoided by adding a new object datatype with get and set-methods in the node-class.
This will only increase the size of the framework by a fraction, and is done in an hour.

22.2 End-user questions

The end-user group consisted of five people; Torbjørn Vatn, Steinar Hestnes, Jørgen Rygh and us. We
chose to have a small group so that we could discuss issues and help each other during the testing. We
explained how the applications worked and all participants got the chance to try out both the master
role and slave role. When testing PeerQuiz, we used a Sony Ericsson P900, Sony Ericsson W800i, two
Sony Ericsson K750 and a Siemens S65. P900 and S65 does not support PeerShare, so we had to exclude
these mobile phones during the testing of PeerShare.

At the end of the session, the end-users were asked 7 questions. We did not answer these questions,
since the answers would have been subjective. Figure 22.1 shows pictures of the group testing out the
applications.

22.2.1 Answers to PeerQuiz

1. What kind of functionality does the application lack?
Torbjørn: Would like to know the accumulated score during the quiz.
Steinar: Would like to know the correct answers to all the questions, so that I can learn more.
Jørgen: Would like to download new questions from somewhere.

2. What problems did you experience?
Torbjørn: Had some connection problems.
Steinar: The person that hosted the quiz did not always find all the slaves.
Jørgen: No problems.

3. What are the positive sides of the application?
Torbjørn: Persistent and fun to use.
Steinar: Nice graphical user interface. Easy to use.
Jørgen: Easy to use.

4. What are the negative sides of the application?
Torbjørn: Slightly difficult to use. You have to do things in a certain order. I would also like to know
the scores of the other players during the quiz.
Steinar: See answer in 1.
Jørgen: Too few questions in the application. Would like to have more.

5. What do you think is the MOST important factor for this kind of application; Usability, Stabil-
ity, Performance, Functionality or Entertainment value?
Torbjørn: Usability.

22.2. END-USER QUESTIONS 121

Figure 22.1: Mobile ad hoc collaboration in a natural environment

122 CHAPTER 22. ANSWERS TO RESEARCH QUESTIONS

Steinar: Usability.
Jørgen: Entertainment value.

6. What do you think of the usability of the application (1=poor, 10=fantastic) and why?
Torbjørn: 4. Slightly difficult to use. Everybody has to join before the master hosts the quiz. It seems
a bit strange.
Steinar: Difficult to answer. Was instructed on how to do things, did not get the chance to find out on
my own.
Jørgen: 7. It is easy to use.

7. Do you see yourself using such applications often (daily, monthly, never) and why?
Torbjørn: Never. To hard to write on the mobile phone and all participants must be in close proximity
of each other.
Steinar: Probably never.
Jørgen: Never. Would rather play trivial pursuit in ”real” life.

22.2.2 Answers to PeerShare

1. What kind of functionality does the application lack?
Torbjørn: Transfer of other files that textfiles.
Steinar: Killer application. The possibility to transfer other files than textfiles would be ultimate.
Jørgen: Notification when a peer is available and the ability to download a folder.

2. What problems did you experience?
Torbjørn: Was not able to create folders on the mobile phone. Had to connect the mobile phone to my
laptop in order to create folders with some textfiles.
Steinar: Configuration of shared folders.
Jørgen: Was difficult to set up the folders.

3. What are the positive sides of the application?
Torbjørn: Innovative. Good user interface.
Steinar: Killer application.
Jørgen: Interesting concept, nice timing with the coming of mp3 capable phones.

4. What are the negative sides of the application?
Torbjørn: Slightly difficult to use. You have to do things in a certain order. Only able to transfer
textfiles.
Steinar: The usability of sharing folders and specifying download folders.
Jørgen: Unable to transfer binary files.

5. What do you think is the MOST important factor for this kind of application; Usability, Stabil-
ity, Performance, Functionality or Entertainment value?
Torbjørn: Usability.
Steinar: Usability.
Jørgen: Functionality.

6. What do you think of the usability of the application (1=poor, 10=fantastic) and why?
Torbjørn: 8. Fancy. But a bit hard to create upload and download folders.
Steinar: Difficult to answer. Was instructed on how to do things, did not get the chance to find out on

22.3. SUMMARY 123

my own.
Jørgen: 6. Cool design.

7. Do you see yourself using such applications often (daily, monthly, never) and why?
Torbjørn: Monthly, but only if other files than textfiles can be transferred. Would like to transfer music
and pictures as well.
Steinar: Weakly or monthly. More useful than the PeerQuiz application.
Jørgen: Probably never. There are easier ways of getting this done.

22.3 Summary

During this evaluation we have found many aspects of the Peer2Me framework that needs improvement.
The developer questions have helped us in locating bugs and made us consider how we can improve
the framework. The suggested improvements should not be implemented without careful consideration.
The end-user testing also proved to be useful. By testing the applications in a natural environment, we
discovered more issues and got valuable feedback from our participants. The participants pointed out
problems that are directly related the Peer2Me framework, for instance that the framework only supports
transfer of ASCII.

A prioritized list of improvements with reasonings could be a start in deciding which improvements
should be made. It is also important to pay attention to Sun’s development of J2ME and the optional
packages while doing this.

124 CHAPTER 22. ANSWERS TO RESEARCH QUESTIONS

CHAPTER 23

Summary of the project

This chapter summarizes what we have learned during this project and discusses the current version
of Peer2Me. There are a lot of work that needs to be done to the framework before promoting it to
developers. This work is discussed in the last section of this report.

23.1 Conclusion

The objective of this project was to evaluate the Peer2Me framework. We did this by using the engineering
method approach as described in Section 3.2 by developing two applications designed to utilize as much of
the framework as possible. This was done successfully and we have learned much during this process. The
two applications were tested on end-users, which we received constructive feedback from. This feedback
along with our own discoveries have been valuable when evaluating the framework.

The Peer2Me framework is a project that looks very promising. There is currently a shortage of wireless
mobile ad hoc applications available and Peer2Me is a framework that is designed to make it easier to
develop such applications. The development in the market of mobile phones and the increasing capacity
of such devices encourage further work with Peer2Me. Wireless mobile ad hoc networks will add value
to owners of mobile phones and applications on such networks are and will continue to be developed.
Therefore, we highly recommend that the work with Peer2Me continues and hope some day to see the
framework widely adopted among developers.

23.2 Further work

The answers to the research questions in Chapter 22 can be used as a guide to further work. Sars and
Norum [22] mention some issues that are similar to ours which this section discusses. The suggested
further work in this section are presented as short-term and long-term goals

23.2.1 Short-term goals

Fix bugs - We discovered a few bugs in the Peer2Me framework, see Chapter 22, which should be fixed.
Some of the bugs require more time to fix than others. All the bugs have been given a priority that

125

126 CHAPTER 23. SUMMARY OF THE PROJECT

is related to the impacts the bug has on the framework. The bugs should be fixed before adding
new features to Peer2Me.

Evaluate suggested new functionality - In addition to the bugs, we have suggested new functional-
ity that the framework might benefit from offering. These suggestions can be found as answers to
research question 4 in Chapter 22. However, before implementing these new functionalities, they
should be further evaluated. The evaluation should include in-depth analysis of advantages and
disadvantages of the suggestions.

Implement new functionality - The outcome of the evaluation should result in some new functional-
ity that can be added to Peer2Me. It is important that these new functionalities follows the existing
package structure in Peer2Me. As discussed in Chapter 22 some of the functionality may be offered
as optional packages for the Peer2Me framework. Not all applications will need these new features,
and putting them in optional packages will reduce the footprint of the framework.

Investigate security issues - In our prestudy we have included some security issues regarding wireless
network technology, see Section 9.3. Future ad hoc applications might require stricter security than
what is offered by the Peer2Me framework today. Studies can be performed in the area of security
in Bluetooth, and can then be used to enhance the security features in Peer2Me. This will enable
developers to create applications that transfers sensitive information between mobile phones such
calendar information.

23.2.2 Long-term goals

Implement pure P2P - The current version of Peer2Me incorporates a hybrid P2P model due to
restrictions in the underlying Bluetooth network technology. If future Bluetooth technology allows
a node to function as a master and a slave at the same time, a scatternet network can be created.
This will allow Peer2Me to incorporate a pure P2P model. The load will then be balanced on all the
nodes in the network and not just the master which is the case today. Another way to implement
a pure P2P model, would be to use another wireless network technology such as WLAN, but this
requires much more resources from the mobile device than Bluetooth.

Large scale developer test - There has not been conducted a large scale developer test of the Peer2Me
framework yet. After a satisfying version of the Peer2Me framework has been developed, such a
test would give valuable feedback which is of high interest to the project. The test must be carefully
planned and supervised, which is a great challenge.

Release an official version - A milestone in the Peer2Me project is the release of an official version.
If the Peer2Me framework is adopted by large community of developers, then Peer2Me can be said
to have become a success.

Bibliography

[1] S. E. M. C. AB. p900 - overview. Retrieved October 19th, 2005, from http://www.sonyericsson.
com/spg.jsp?cc=gb&lc=en&ver=4000&template=pp1_loader&php=php1_10101&zone=pp&lm=
pp1&pid=10101., 2005.

[2] S. E. M. C. AB. W800i - overview. Retrieved October 19th, 2005, from http:
//www.sonyericsson.com/spg.jsp?cc=gb&lc=en&ver=4000&template=pp1_loader&php=php1_
10245&zone=pp&lm=pp1&pid=10245., 2005.

[3] W.-F. Alliance. Deploying wi-fi protected access (wpa) and wpa2 in the enterprise. 2005.

[4] V. R. Basili. Experimental software engineering issues: Critical assessment and future directions.
The Experimental Paradigm, 1992.

[5] L. Bass, P. Clements, and R. Kazman. Software in Practice, Second Edition. Addison Wesley, 2004.

[6] BEDD. BeddTMbringing people together. Retrieved November 2th, 2005, from http://www.bedd.
com/about.html., 2005.

[7] M. Blaser. Industrial-strength security for zigbee: The case for public-key cryptography. 2005.

[8] J. Brucker-Cohen and K. Moriwaki. Umbrella.net. Retrieved Desember 7th, 2005, from http:
//www.undertheumbrella.net/., 2005.

[9] J. Brucker-Cohen, K. Moriwaki, and L. Doyle. Umbrella.net : exploring coincidence ad-hoc networks.
Technical report, Networking and Telecommunications Research Group, Trinity College Dublin,
2004.

[10] M. Conti. Body, personal, and local ad hoc wireless networks. In The handbook of ad hoc wireless
networks, pages 3–24. CRC Press, Inc., Boca Raton, FL, USA, 2003.

[11] C. Ellis, S. Gibbs, and G. Rein. Groupware: Some issues and experiences. Communcations of the
ACM, 34, January 1991.

[12] G. H. Forman and J. Zahorjan. The challenges of mobile computing. Technical report, University
of Washington, 1994.

[13] J. S. Gerd Kortuem, D. Preuitt, T. G. C. Thompson, S. Fickas, and Z. Segall. When peer-to-peer
comes face-to-face: Collaborative peer-to-peer computing in mobile ad hoc networks. Technical
report, Department of Computer and Information Science, University of Oregon, 2001.

[14] O. S. T. Group. Blue cove. Retrieved Desember 7th, 2005, from http://sourceforge.net/
projects/bluecove/., 2005.

127

http://www.sonyericsson.com/spg.jsp?cc=gb&lc=en&ver=4000&template=pp1_loader&php=php1_10101&zone=pp&lm=pp1&pid=10101
http://www.sonyericsson.com/spg.jsp?cc=gb&lc=en&ver=4000&template=pp1_loader&php=php1_10101&zone=pp&lm=pp1&pid=10101
http://www.sonyericsson.com/spg.jsp?cc=gb&lc=en&ver=4000&template=pp1_loader&php=php1_10101&zone=pp&lm=pp1&pid=10101
http://www.sonyericsson.com/spg.jsp?cc=gb&lc=en&ver=4000&template=pp1_loader&php=php1_10245&zone=pp&lm=pp1&pid=10245
http://www.sonyericsson.com/spg.jsp?cc=gb&lc=en&ver=4000&template=pp1_loader&php=php1_10245&zone=pp&lm=pp1&pid=10245
http://www.sonyericsson.com/spg.jsp?cc=gb&lc=en&ver=4000&template=pp1_loader&php=php1_10245&zone=pp&lm=pp1&pid=10245
http://www.bedd.com/about.html
http://www.bedd.com/about.html
http://www.undertheumbrella.net/
http://www.undertheumbrella.net/
http://sourceforge.net/projects/bluecove/
http://sourceforge.net/projects/bluecove/

128 BIBLIOGRAPHY

[15] M. Guenes. Classification of ad-hoc networks. Retrieved October 11th, 2005, from http://www.
adhoc-nets.de/., 2004.

[16] B. Hui. Connecting pc and phone with java bluetooth api part 1. Retrieved November 2th, 2005,
from http://www.benhui.net/modules.php?name=Bluetooth&page=Connect_PC_Phone_Part_1.
html., 2005.

[17] S. M. Inc. JavaTM2 platform, micro edition: The java tm platform for consumer and embedded
devices. 2002.

[18] S. M. Inc. Java 2 platform, micro edition (j2me). Retrieved November 25th, 2005, from http:
//java.sun.com/j2me/., 2005.

[19] M. T. Ionita, D. K. Hammer, and H. Obbink. Scenario-based software architecture evaluation
methods: An overview. Technical report, Department of Mathematics and Computing Science,
XXXX.

[20] kXml. kxml, a simple pull-parser. Retrieved October 21th, 2005, from http://kxml.sourceforge.
net/., 2005.

[21] A. Laurie and B. Laurie. Serious flaws in bluetooth security lead to disclosure of personal data.
Technical report, A.L. Digital Ltd, 2003.

[22] C.-H. W. Lund and M. S. Norum. The peer2me framework, a framework for mobile collaboration
on mobile phones. Master’s thesis, NTNU, 2005.

[23] Q. H. Mahmoud. ”wireless application programming with j2me and bluetooth”. ”February” 2003.

[24] N. Maibaum and T. Mundt. Jxta: A technology facilitating mobile peer-to-peer networks. Technical
report, University of Rostock; Department of Computer Science, Germany, 2002.

[25] S. Microsystems. Jsr 259: Ad hoc networking api. Retrieved December 8th, 2005, from http:
//www.jcp.org/en/jsr/detail?id=259., 2005.

[26] S. Microsystems. Jsr 82: JavaTMapis for bluetooth. Retrieved December 8th, 2005, from http:
//www.jcp.org/en/jsr/detail?id=82., 2005.

[27] B. Mobile. s65 - style meets performance. Retrieved October 19th, 2005, from http://www.
benqmobile.com/cds/frontdoor/0,2241,hq_en_0_27139_rArNrNrNrN,00.html., 2005.

[28] S. Norway. Retrieved November 19th, 2005, from http://www.ssb.no.

[29] OASIS and R. T. Commitee. Relax ng home page. Retrieved November 19th, 2005, from http:
//www.relaxng.org/., 2005.

[30] R.E.Johnson and B.Foote. Designing reusable classes. Journal of Object-oriented Programming,
1988.

[31] R. R.E.Kraut, R.S.Fish and B.L.Chalfonte. Informal communication in organizations: form, func-
tions and technology. People’s reactions to technology in factories, offices and aerospace, 1999.

[32] G. Rohan and B. Arun. Bluetooth ad-hoc networking for inter-vehicle communication. Retrieved
Desember 7th, 2005, from http://www.undertheumbrella.net/., 2004.

[33] W. Schools. Dtd tutorial. Retrieved November 20th, 2005, from http://www.w3schools.com/dtd/
default.asp., 2005.

[34] W. Schools. Introduction to xml schema. Retrieved November 19th, 2005, from http://www.
w3schools.com/schema/schema_intro.asp., 2005.

[35] W. Schools. Xml dom tutorial. Retrieved November 19th, 2005, from http://www.w3schools.com/
dom/default.asp., 2005.

http://www.adhoc-nets.de/
http://www.adhoc-nets.de/
http://www.benhui.net/modules.php?name=Bluetooth&page=Connect_PC_Phone_Part_1.html
http://www.benhui.net/modules.php?name=Bluetooth&page=Connect_PC_Phone_Part_1.html
http://java.sun.com/j2me/
http://java.sun.com/j2me/
http://kxml.sourceforge.net/
http://kxml.sourceforge.net/
http://www.jcp.org/en/jsr/detail?id=259
http://www.jcp.org/en/jsr/detail?id=259
http://www.jcp.org/en/jsr/detail?id=82
http://www.jcp.org/en/jsr/detail?id=82
http://www.benqmobile.com/cds/frontdoor/0,2241,hq_en_0_27139_rArNrNrNrN,00.html
http://www.benqmobile.com/cds/frontdoor/0,2241,hq_en_0_27139_rArNrNrNrN,00.html
http://www.ssb.no
http://www.relaxng.org/
http://www.relaxng.org/
http://www.undertheumbrella.net/
http://www.w3schools.com/dtd/default.asp
http://www.w3schools.com/dtd/default.asp
http://www.w3schools.com/schema/schema_intro.asp
http://www.w3schools.com/schema/schema_intro.asp
http://www.w3schools.com/dom/default.asp
http://www.w3schools.com/dom/default.asp

BIBLIOGRAPHY 129

[36] SIG. The official bluetooth website. Retrieved November 26th, 2005, from http://www.bluetooth.
com/., 2005.

[37] M. Thoresen. Peer-to-peer systems. Technical report, Institutt for datateknikk og informasjonsviten-
skap, 2003.

[38] VeriSign. Code signing for digital ids. Retrieved November 16th, 2005, from http://www.verisign.
com/products-services/security-services/code-signing/digital-ids-code-signing/
index.html., 2005.

[39] Wikipedia. Mobile ad-hoc network. Retrieved October 7th, 2005, from http://en.wikipedia.org/
wiki/Mobile_ad-hoc_network., 2005.

[40] Wikipedia. Obex. Retrieved November 20th, 2005, from http://en.wikipedia.org/wiki/OBEX.,
2005.

[41] Wikipedia. Open mobile alliance. Retrieved November 20th, 2005, from http://en.wikipedia.
org/wiki/Open_Mobile_Alliance., 2005.

[42] Wikipedia. Peer-to-peer. Retrieved September 25th, 2005, from http://en.wikipedia.org/wiki/
P2p., 2005.

[43] Wikipedia. Personal area network. Retrieved October 7th, 2005, from http://en.wikipedia.org/
wiki/Personal_area_network., 2005.

[44] Wikipedia. Syncml. Retrieved November 20th, 2005, from http://en.wikipedia.org/wiki/
SyncML., 2005.

http://www.bluetooth.com/
http://www.bluetooth.com/
http://www.verisign.com/products-services/security-services/code-signing/digital-ids-code-signing/index.html
http://www.verisign.com/products-services/security-services/code-signing/digital-ids-code-signing/index.html
http://www.verisign.com/products-services/security-services/code-signing/digital-ids-code-signing/index.html
http://en.wikipedia.org/wiki/Mobile_ad-hoc_network
http://en.wikipedia.org/wiki/Mobile_ad-hoc_network
http://en.wikipedia.org/wiki/OBEX
http://en.wikipedia.org/wiki/Open_Mobile_Alliance
http://en.wikipedia.org/wiki/Open_Mobile_Alliance
http://en.wikipedia.org/wiki/P2p
http://en.wikipedia.org/wiki/P2p
http://en.wikipedia.org/wiki/Personal_area_network
http://en.wikipedia.org/wiki/Personal_area_network
http://en.wikipedia.org/wiki/SyncML
http://en.wikipedia.org/wiki/SyncML

130 BIBLIOGRAPHY

Part VII

Appendix

131

133

134 APPENDIX A. SNAPSHOTS OF PEERQUIZ

APPENDIX A

Snapshots of PeerQuiz

Figure A.1: Splash screen Figure A.2: Main menu

135

Figure A.3: Settings menu Figure A.4: Choosing quiztype

136 APPENDIX A. SNAPSHOTS OF PEERQUIZ

Figure A.5: Custom quiz Figure A.6: Entering nickname

137

Figure A.7: Entering nickname Figure A.8: Request to allow Bluetooth connection

138 APPENDIX A. SNAPSHOTS OF PEERQUIZ

Figure A.9: Searching for master Figure A.10: Searching for slaves

139

Figure A.11: Answering questions Figure A.12: Submitting answers

140 APPENDIX A. SNAPSHOTS OF PEERQUIZ

Figure A.13: Winner declared

141

142 APPENDIX B. SNAPSHOTS OF PEERSHARE

APPENDIX B

Snapshots of PeerShare

Figure B.1: Main menu Figure B.2: Settings menu

143

Figure B.3: Permission to access file system Figure B.4: Selecting download and upload folders

144 APPENDIX B. SNAPSHOTS OF PEERSHARE

Figure B.5: Selecting download folder Figure B.6: Download folder is selected

145

Figure B.7: Download & Upload folders selected Figure B.8: Entering nickname

146 APPENDIX B. SNAPSHOTS OF PEERSHARE

Figure B.9: Request to allow Bluetooth connection Figure B.10: A master’s perspective - Nodes found

147

Figure B.11: A slave’s perspective - Nodes found Figure B.12: Browsing the connected peer’s files

148 APPENDIX B. SNAPSHOTS OF PEERSHARE

APPENDIX C

Questionnaire for Peer2Me developer testing

This is the same questionnaire that Sars and Norum gave to their participants in [22]. Some questions
have been removed and some have been slightly modified.

Background and Experiences

1. Describe your programming skills. (Professional, Good, Medium, Poor, None)
Kim: Good
Tommy: Good

2. Describe your Java skills. (Professional, Good, Medium, Poor, None)
Kim: Good
Tommy: Good

3. Have you ever developed a mobile application before?
Kim: No
Tommy: No

4. Have you ever developed using J2ME?
Kim: No
Tommy: No

5. Have you ever developed a Bluetooth application?
Kim: No
Tommy: Yes

6. Do own a mobile phone supporting Bluetooth?
Kim: Yes
Tommy: Yes

149

150 APPENDIX C. QUESTIONNAIRE FOR PEER2ME DEVELOPER TESTING

The Domain Concepts

7. I think the domain concepts of Peer2Me are easy to understand. (Completely agree, Agree, Neutral,
Disagree, Completely disagree)
Kim: Agree
Tommy: Neutral

8. I think the concept Framework is easy to understand. (Completely agree, Agree, Neutral, Disagree,
Completely disagree)
Kim: Neutral
Tommy: Agree

9. I think the concept Node is easy to understand. (Completely agree, Agree, Neutral, Disagree, Com-
pletely disagree)
Kim: Completely agree
Tommy: Completely agree

10. I think the concept Network is easy to understand. (Completely agree, Agree, Neutral, Disagree,
Completely disagree)
Kim: Neutral
Tommy: Neutral

11. I think the concept Service is easy to understand. (Completely agree, Agree, Neutral, Disagree,
Completely disagree)
Kim: Agree
Tommy: Disagree

12. I think the concept Group is easy to understand. (Completely agree, Agree, Neutral, Disagree,
Completely disagree)
Kim: Agree
Tommy: Completely agree

13. I think the concept Message is easy to understand. (Completely agree, Agree, Neutral, Disagree,
Completely disagree)
Kim: Agree
Tommy: Completely agree

14. I think these concepts simplifies the problem domain. (Completely agree, Agree, Neutral, Dis-
agree, Completely disagree)
Kim: Agree
Tommy: Agree

The Peer2Me Development Guide

15. I think the development guide is easy to read. (Completely agree, Agree, Neutral, Disagree, Com-
pletely disagree)
Kim: Neutral
Tommy: Disagree

16. I think the development guide helped me through the exercise. (Completely agree, Agree, Neu-
tral, Disagree, Completely disagree)

151

Kim: Agree
Tommy: Neutral

The development of test-applications

17. What do you think was the most difficult part of using the Peer2Me framework? (Preparing the
Framework, Searching for Other Devices, Monitoring the Group, Sending a Message, Receiving a Message,
When Something Goes Wrong)
Kim: When Something Goes Wrong
Tommy: Searching for Other Devices

18. What was the most time consuming part regarding the Peer2Me framework? (Preparing the Frame-
work, Searching for Other Devices, Monitoring the Group, Sending a Message, Receiving a Message,
When Something Goes Wrong)
Kim: When Something Goes Wrong
Tommy: Preparing the Framework

Summary

19. I think Peer2Me speeds up the development of collaborative mobile applications. (Completely agree,
Agree, Neutral, Disagree, Completely disagree)
Kim: Neutral
Tommy: Agree

20. I think Peer2Me clarifies the domain of mobile collaborative applications. (Completely agree, Agree,
Neutral, Disagree, Completely disagree)
Kim: Agree
Tommy: Neutral

152 APPENDIX C. QUESTIONNAIRE FOR PEER2ME DEVELOPER TESTING

APPENDIX D

Contents of CD-Rom

Report

• Report in pdf -format

PeerQuiz

• Source code

• Jar-package

• Javadoc

PeerShare

• Source code

• Jar-package

• Javadoc

153

	List of Tables
	List of Figures
	I Introduction
	Motivation
	Problem definition

	Project context

	II Research questions and methods
	Research questions
	Research questions
	Evaluation plan
	Research
	Design
	Implementation
	Testing
	Evaluation

	Test-application evaluation method

	Development method and software
	Development methods
	Development tools
	Eclipse with plugins
	Java Wireless Toolkit (J2ME)
	MiKTeX
	Concurrent Versioning System

	Requirements elicitation and process
	Scenario
	Goals
	Functional requirements
	Use case diagram
	Quality requirements

	III Prestudy
	Essential Cooperation Theory and Technology
	Peer-to-peer
	Mobile P2P networks
	Mobile Ad Hoc Networks (MANET)
	Communication and Collaboration
	Groupware and Computer Supported Cooperative Work (CSCW)

	Peer2Me
	Introduction
	Design
	Domain Concepts

	State of the art
	Bluecove
	Bluetooth Ad-hoc Networking for Inter-Vehicle Communication
	Umbrella.net
	BEDD
	Other projects

	Technology
	Mobile phones
	Java 2 Micro Edition
	J2ME architecture
	Optional packages

	Wireless network technologies
	Bluetooth
	Zigbee
	Radio Frequency IDentification
	Wireless Local Area Network
	Comparison

	XML
	Strengths and weaknesses
	Syntax
	Validation
	XML parsing

	IV Test application 1 - PeerQuiz
	Introduction
	Requirements
	Scenario
	Goals
	Functional requirements
	Usecase description
	Quality requirements
	Usability
	Testability
	Modifiability
	Availability

	Dependencies
	Packages
	Supported mobile phones

	Design
	The PeerQuiz Package
	The Game Package
	The Gui Package
	The Question Package
	The Util Package
	Class Diagrams
	Program flow

	Implementation
	Xml parsing and Questions.xml
	kXml Pull Parsing
	Put to use

	Availability tactics and ping-functionality
	Ping/echo
	QuizTimer

	GUI - Graphical User Interface
	Form
	The PeerQuiz progressbar, BarItem

	Communication
	Initialization
	Master vs. Slave
	Sending messages

	Code statistics

	Testing
	Test of functional requirements
	Comments on the implementation of the requirements

	Test of quality requirements

	V Test application 2 - PeerShare
	Introduction
	Requirements
	Scenario
	Goals
	Functional requirements
	Usecase description
	Quality requirements
	Usability
	Testability
	Modifiability
	Availability

	Dependencies
	Packages
	Supported mobile phones

	Design
	The peershare package
	The peershare.gui package
	The peershare.util package
	Class Diagrams
	Program flow

	Implementation
	FileConnection APIs
	Xml parsing
	GUI - Graphical user interface
	Communication
	Initialization
	Setting up the filesharing network
	Downloading files from others
	The truth about Peer2Me communication

	Storing application data
	Code statistics

	Testing
	Test of functional requirements
	Comments on the implementation of the requirements

	Test of quality requirements

	VI Evaluation
	Answers to research questions
	Developer questions
	End-user questions
	Answers to PeerQuiz
	Answers to PeerShare

	Summary

	Summary of the project
	Conclusion
	Further work
	Short-term goals
	Long-term goals

	Bibliography

	VII Appendix
	Snapshots of PeerQuiz
	Snapshots of PeerShare

	Questionnaire for Peer2Me developer testing
	Contents of CD-Rom

