
i

Abstract

This master thesis presents a new and redesigned version of Peer2Me, a framework for developing mobile
collaborative applications on mobile phones. The first version of Peer2Me was designed and created by
Carl-Henrik Wolf Lund and Michael Sars Norum in 2005, which was presented in their master thesis,
The Peer2Me Framework, [31]. We evaluated their framework in our depthstudy [5], fall of 2005. The
evaluation showed that the framework lacked some desired and necessary functionality, had some bugs
and was a bit hard to use.

This thesis also describes the history of Peer2Me along with cental concepts regarding peer-to-peer net-
working in an mobile ad hoc environment. There are a lot of on going and finished projects that can be
related to Peer2Me. We have chosen to investigate the most interesting and relevant projects, which are
presented in Chapter 11, State of the Art. Since a redesign of the Peer2Me framework was necessary, we
have performed a research in the most recognized architectural tactics, design patterns and architectural
patters.

Before embarking on the task of designing the framework, a research in the latest technology was nec-
essary. In our depthstudy [5], we had already performed such a research, so we only had to obtain the
latest development in the related areas. Special attention was given to the Bluetooth wireless network
technology.

All created packages, classes and interfaces are thoroughly described along with their roles in the frame-
work. We felt that a mere description of the modules was not enough, so we wrote Chapter 16, Design
Decisions, which discusses the different crossroads we faced with during development, and the path we
chose.

To give the reader an impression of how the framework can be used, we also developed some appli-
cations that utilizes the new framework. Lastly we evaluated our work, compared the old and new
framework, discussed the problems we encountered, answered our research questions and summarized the
thesis.

All source code, javadoc and a functional, new version of Peer2Me are attached along with this report.

ii

Preface

This master thesis presents the work and related results that Tommy Bjørnsg̊ard and Kim Saxlund have
contributed to the redesign of the Peer2Me framework in the spring of 2006. The Peer2Me project
is related to the MOWAHS (Mobile Work Across Heterogenous Systems) project carried out at the
Department of Computer and Information Science (IDI) at the Norwegian University of Science and
Technology (NTNU).

Acknowledgements

We would like to thank Alf Inge Wang for his excellent advices and guidance during the spring of 2006.

Trondheim May 31st, 2006

Kim Petter Saxlund Tommy Bjørnsg̊ard

iii

iv

Contents

List of Tables x

List of Figures xi

I Introduction 1

1 Motivation 3
1.1 Problem definition . 4

2 Project Context 5

3 Readers Guide 7
3.1 Chapter Description . 7

II Research Methods 11

4 Research Questions 13
4.1 Research Questions . 13

5 Research Methods 15
5.1 Research . 16
5.2 Design . 16
5.3 Implementation . 17
5.4 Testing . 17
5.5 Evaluation . 18

6 Development Tools and Software 19
6.1 Development Tools . 19

6.1.1 Eclipse With Plugins . 19
6.1.2 MiKTeX . 19
6.1.3 Concurrent Version System . 19

6.2 Emulators . 20
6.2.1 Sun Wireless Toolkit . 20
6.2.2 Sony Ericsson SDK . 20

III Prestudy 21

7 The History of Peer2Me 23
7.1 MOWAHS . 23
7.2 Work by Kirkhus and Sveen . 23

7.2.1 Spectre . 24
7.3 Work by Lund and Norum . 24

7.3.1 Framework Prototype . 24

v

vi CONTENTS

7.3.2 Peer2Me, first version . 24
7.4 Our depth study . 25

8 Central Concepts 27
8.1 Peer-to-Peer . 27
8.2 Mobile P2P Networks . 29
8.3 Mobile Ad Hoc Networks (MANET) . 29
8.4 Piconet . 31
8.5 Scatternet . 32

9 Communication and Collaboration 33
9.1 Groupware and Computer Supported Cooperative Work 33

10 State of the Art 37
10.1 Bluecove . 37
10.2 Umbrella.Net . 37
10.3 BEDD . 39
10.4 Other projects . 40

10.4.1 JXTA . 40
10.4.2 JSR82 259 . 40
10.4.3 OBEX . 41
10.4.4 SyncML . 41

10.5 Summary . 41

11 Technology 43
11.1 Mobile Phones . 43
11.2 Java 2 Micro Edition . 43

11.2.1 J2ME architecture . 44
11.2.2 Optional packages . 44

11.3 Wireless network technologies . 45
11.3.1 Bluetooth . 45
11.3.2 Wireless Local Area Network . 48
11.3.3 ZigBee . 48
11.3.4 Radio Frequency IDentification . 49
11.3.5 Wireless USB . 49
11.3.6 Wireless Firewire . 50

12 Software Architecture 51
12.1 Stakeholders . 51
12.2 Quality of a System . 52

12.2.1 Quality Scenarios . 52
12.2.2 Quality Attributes . 53

12.3 Architectural Tactics . 53
12.3.1 Modifiability Tactics . 54
12.3.2 Usability Tactics . 55
12.3.3 Performance Tactics . 55
12.3.4 Availability Tactics . 56
12.3.5 Security Tactics . 57
12.3.6 Testability Tactics . 58

12.4 Design Patterns . 58
12.5 Behavioural patterns . 58

12.5.1 Observer pattern . 59
12.6 Creational patterns . 59

12.6.1 Singleton Pattern . 59
12.7 Structural Patterns . 59

12.7.1 Facade Pattern . 60

CONTENTS vii

12.8 Architectural Pattern . 60
12.8.1 Layered Architecture Pattern . 60

IV Redesign of Architecture 63

13 Introduction 65

14 Requirements 67
14.1 Functional Requirements . 67
14.2 Quality requirements . 68

14.2.1 Modifiability . 68
14.2.2 Usability . 69
14.2.3 Testability . 69
14.2.4 Availability . 70

15 Architecture Design Decisions 73
15.1 A Pure P2P Model . 73
15.2 Layered Software Structure . 74
15.3 Communication protocol . 75
15.4 Messages . 75
15.5 Detecting Node loss . 77

16 Design Overview 79
16.1 Domain concepts . 79
16.2 High level general process scenarios . 80
16.3 Peer2Me and Java . 83
16.4 Peer2Me Package Overview . 84
16.5 The Framework package . 84

16.5.1 Class: Framework . 85
16.5.2 Interface: FrameworkSubscriber . 86
16.5.3 Class Diagram . 87

16.6 The Session package . 88
16.6.1 Class: Session . 88
16.6.2 Class Diagram . 89

16.7 The Service package . 90
16.7.1 Class: Service . 90
16.7.2 Class: HexBuilder . 90
16.7.3 Class Diagram . 90

16.8 The Group Package . 91
16.8.1 Class: Group . 91
16.8.2 Class Diagram . 91

16.9 The Node package . 92
16.9.1 Class: Node . 92
16.9.2 Class Diagram . 93

16.10The Network package . 93
16.10.1Abstract Class: Network . 94
16.10.2Abstract Class: NetworkNode . 94
16.10.3Class: NetworkTimer . 94
16.10.4Class Diagram . 96

16.11The Bluetooth package . 97
16.11.1Class: Bluetooth . 97
16.11.2Class: BluetoothListener . 97
16.11.3Class: BluetoothConnectionHandler . 98
16.11.4Class: BluetoothNode . 99
16.11.5Class: BluetoothObjectPush . 99

viii CONTENTS

16.11.6Class: BluetoothPingListener . 99
16.11.7Class BluetoothPingConnectionHandler . 99
16.11.8Class BluetoothSearcher . 99
16.11.9Class: InstanceOfRemoteDevice . 101
16.11.10Class: MessageQueueProcessor . 101
16.11.11Class: Peer2MeHeaderSet . 101
16.11.12Class: PingQueueProcessor . 102
16.11.13Class Diagrams . 103

16.12The Message Package . 105
16.12.1Class: Message . 106
16.12.2Class: MessagePart . 108
16.12.3Abstract Class: FileObject . 109
16.12.4Class: SendFileObject . 109
16.12.5Class: ReceivedFileObject . 109
16.12.6Class: FileInfo . 109
16.12.7 Interface: Serializable . 110
16.12.8Class: SendableNodeInfo . 110
16.12.9Class ObjectOutputStream . 110
16.12.10Class ObjectInputStream . 110
16.12.11Class LinkedMessageList . 110
16.12.12Class LinkedPingRecipientsList . 110
16.12.13Class Diagrams . 111

16.13The Exception package . 115
16.13.1FileNotFoundException . 115
16.13.2FrameworkNotInitializedException . 115
16.13.3GroupNotFoundException . 116
16.13.4NodeNotFoundException . 116
16.13.5LocalDeviceNotFoundException . 116
16.13.6HexConversionException . 116
16.13.7 InvalidKeyException . 116
16.13.8UnknownKeyException . 116
16.13.9Class Diagram . 117

16.14The Log package . 117
16.14.1Class: Log . 118
16.14.2Class: LogElement . 119
16.14.3Class: LogElementDate . 119
16.14.4Class: LogElementType . 119
16.14.5Class Diagram . 121

16.15The Util package . 121
16.15.1Class: TextUtil . 122
16.15.2Class: FileHandler . 122
16.15.3Class Diagram . 122

V Applications 123

17 Introduction 125

18 The Applications 127
18.1 Chat2Me . 127

18.1.1 Walkthrough . 127
18.2 File2Push . 128

18.2.1 Walkthrough . 129
18.3 ComplexMessageDemo . 130

18.3.1 Walkthrough . 130

CONTENTS ix

VI Evaluation 133

19 Testing 135
19.1 Functional Requirements Results . 135
19.2 Quality Requirements Results . 135

20 Comparison of Old and New Peer2Me 139
20.1 Statistical Comparison . 139
20.2 Functional Requirements Comparison . 139
20.3 Differences that the Application Developer Experience . 141

21 Problems 145
21.1 Emulators vs Mobile Phones . 145

21.1.1 Performance . 145
21.1.2 Graphical User Interface . 146
21.1.3 Exception Handling and Debugging . 146

21.2 Understanding Bluetooth Limitations . 146
21.2.1 Master vs. Slave . 146
21.2.2 Number of Nodes . 147
21.2.3 Interference . 147
21.2.4 Security Issues . 147

22 Answers to Research Questions 149

23 Summary 151
23.1 Conclusion . 151
23.2 Further Work . 152
23.3 Short-term Goals . 152

23.3.1 Optimizing Network . 152
23.3.2 Configuration . 152
23.3.3 Scatternet . 152
23.3.4 Mobile Agents . 153

23.4 Long-term Goals . 153
23.4.1 Adopt new technology . 153
23.4.2 Up-to-Date . 154
23.4.3 Empirical Work and Applications . 154

VII Appendix 155

A Chat2Me Source Code 157

B File2Push Source Code 161

C ComplexMessageDemo Source Code 167

D Contents of Zip File 171

Glossary 173

Bibliography 175

List of Tables

8.1 Comparison of pure and hybrid model . 28

12.1 General availability scenario . 52
12.2 Sample availability scenario . 53

14.1 Functional requirements . 68

16.1 Available user defined OBEX headers . 102

19.1 Test results of the functional requirements . 136

20.1 Statistical data regarding Peer2Me . 139
20.2 Requirements that only exists in the old framework . 140
20.3 Requirements that only exists in the new framework . 140
20.4 Requirements that exists in both framework . 140
20.5 Comparing a chat application using the new Peer2Me framework to PanIm using the old

framework and BlueChat from Ben Hui. 142
20.6 Similar methods in new and old Peer2Me . 143

x

List of Figures

1.1 The principle of multihop ad hoc communication . 3

5.1 The life-cycle of the waterfall method . 16
5.2 The life-cycle of the waterfall method . 17

8.1 Taxonomy of computer systems . 28
8.2 Ad hoc networks taxonomy . 30
8.3 A singlehop ad hoc network . 30
8.4 Multihop ad hoc network . 31
8.5 Scatternet comprising three piconets. 32

9.1 Clasifying groupware with the time-place matrix . 34
9.2 Digital spheres intersecting . 34

10.1 Typical umbrella.net schema . 38
10.2 The GUI of the Umbrella.Net software . 39

11.1 Overview of the Java enviroments . 44
11.2 The Wireless USB topology . 50

12.1 Example of a 3-layer layout in a fictitious application . 61

15.1 The layered layout of Peer2Me . 74

16.1 Domain concepts . 80
16.2 Initialization of the Peer2Me framework . 80
16.3 Search for other nodes . 81
16.4 None of the nodes has been assigned a role . 82
16.5 Node A sends a message to node B . 82
16.6 Node B sends a message to node C . 82
16.7 How the framework relates to J2ME . 83
16.8 The packages of Peer2Me . 84
16.9 Class Diagram of the Framework Package . 87
16.10Class Diagram of the Session Package . 89
16.11Class Diagram of the Service Package . 90
16.12Class Diagram of the Group Package . 92
16.13Class Diagram of the Node Package . 93
16.14A simple hierarchical layout of network . 93
16.15Class Diagram of the Network Package . 96
16.16Node A searches and finds B and C . 100
16.17Node A distributes findings . 100
16.18All nodes can now establish connections with each other 101
16.19How messages are sent from one node to another. 102
16.20Class Diagram of the Bluetooth Package, part 1 . 103
16.21Class Diagram of the Bluetooth Package, part 2 . 104

xi

xii LIST OF FIGURES

16.22Class Diagram of the Bluetooth Package, part 3 . 105
16.23The classes in the Message package . 106
16.24Possible contents of a Message . 107
16.25The message queue. Before and after node A has been removed from the queue. 111
16.26Class Diagram of the Message Package, part 1 . 112
16.27Class Diagram of the Message Package, part 2 . 113
16.28Class Diagram of the Message Package, part 3 . 114
16.29An example of the inheritance of exception . 115
16.30Class Diagram of the Exception Package . 117
16.31The structure of the log system . 118
16.32Class Diagram of the Log Package . 121
16.33Class Diagram of the Util Package . 122

Listings

11.1 Message header from the old Peer2Me framework, from messageHeader.txt 46
12.1 Sample code showing singleton in use . 59
15.1 Sending two messages identified by an int value . 76
15.2 Receiving a message . 76
16.1 The Framework is created in an application . 85
16.2 The methods in the FrameworkSubscriber needed by Framework 86
16.3 Example of creating a group and moving a node into it . 91
16.4 Codesnippet from Session.java where node is created . 92
16.5 The Bluetooth-class inherits the abstract Network-class 94
16.6 The BluetoothNode-class inherits the abstract NetworkNode-class 94
16.7 How NetworkTimer is created, and the ping-functionality is started 94
16.8 Handling a received message in the MIDlet . 98
16.9 Example of creating and sending a simple message in the old framework 107
16.10Example of creating and sending a simple message in the new framework 107
16.11Example of creating and sending a complex message in the new framework 107
16.12Retrieving info about a file . 109
16.13Example of adding an entry to the log . 118
16.14Example of retrieving entries from the log . 119
18.1 Necessary import declarations . 127
18.2 FrameworkSubscriber and Framework instance . 127
18.3 Initialize framework . 128
18.4 Search . 128
18.5 Send a message . 128
18.6 Receive a message . 128
18.7 Create a message and attache a file . 129
18.8 Set received files folder . 129
18.9 Receiving message containg file . 129
18.10Receiving chunks of message . 129
18.11Creating a complex message . 130
18.12Receiving a complex message . 130
20.1 How to implement the old framework . 141
20.2 How to implement the new framework . 141
20.3 How to send a message in the old framework . 142
20.4 How to send a message in the new framework . 142
A.1 Chat2Me source code . 157
B.1 File2Push.java . 161
B.2 LocalFileBrowser.java . 164
C.1 ComplexMessageDemo source code . 167

xiii

Part I

Introduction

1

CHAPTER 1

Motivation

Mobile phones and PDAs are getting more and more advanced. Mobile phones have gone from being
simple phones to personal assistants, much like the first PDAs that entered the market. The usage areas
for these phones are therefore increasing, and so is the public interest. Mobile phones can be used for
much more than just making a phone call. Most recent mobile phones have calendars with scheduling
possibilities, web browsers, e-mail support and lots of other applications. Many of these applications have
been programmed using the Java 2 Microedition platform (J2ME), see [22] . Mobile phones are often
equipped with several network technologies such as GSM, UMTS(Universal Mobile Telecommunications
System), Bluetooth, IrDA and WLAN. These technologies make it possible to connect mobile phones
to other devices in several ways. All of which have different advantages and disadvantages. Several
mobile phones that interconnect using a network technology such as Bluetooth make up a Mobile Ad
Hoc Network (MANET). The vast functionality of mobile phones combined with state of the art network
technology makes them ideal as mobile collaborative devices.

Figure 1.1: The principle of multihop ad hoc communication

Peer-to-Peer is a network that requires no infrastructure, which is perfect for mobile ad hoc commu-
nication. Peer-to-Peer requires no central server or router to handle the communication. Communica-
tion between mobile phones is most often spontaneous when Bluetooth or other short ranged network

3

4 CHAPTER 1. MOTIVATION

technology is used. Ad hoc network connections can be utilized to the fullest with peer-to-peer technol-
ogy. Examples of useful peer-to-peer applications are: synchronization of calendars, file sharing, contact
card exchange, chatting, etc. There are also possibilities for more entertaining applications such as the
PeerQuiz application we developed in our depth study [5].
Since no infrastructure is needed, these kind of applications are completely free to use as well. If a scat-
ternet1 can be implemented using Bluetooth technology, a person can theoretically chat with a person
that is 2 kilometers away, which is far out of the range of a Bluetooth device’s coverage area. This is
illustrated in Figure 1.1.

Developers are often required to spend much time creating network modules for such mobile ad hoc
network applications. Peer2Me is a framework that takes care of this, so that the developer can focus on
other important part of the application, such as the logics and graphical user interface. In our depthstudy
[5], we evaluated the framework by developing two advanced applications. The result showed that the
framework was not mature or good enough to be adopted on a broad scale. The framework was hard
to adopt, contained some bugs and lacked certain wanted functionality. Therefore, a redesign of the
framework was necessary.

1.1 Problem definition

The main goal of the Peer2Me project is to distribute the framework as a digitally signed freeware over
the Internet. In order for this to be successful, the framework has to be thoroughly tested and without
bugs. A substantial amount of sensible functionality is needed for the framework to become popular.

The objective of this master thesis is to improve the Peer2Me framework, based on the result of our
depthstudy performed fall of 2005 [5]. We will repair several bugs concerning stability and availability,
and add new functionality, which will greatly improve the flexibility and usability of the framework. In
order to do this, we will redesign the framework. Even though we will implement a new design, old parts
of the framework can be reused where we find it appropriate.

We will also look into new versions of Java and/or Bluetooth which can be utilized to improve the
framework.

1A scatternet exists if a node is connected to two or more separate networks at the same time. For more info, read
Section 8.5

CHAPTER 2

Project Context

This project is a part of MOWAHS, MObile Work Across Heterogeneous Systems, which is a basic research
project performed in cooperation with the Software Engineering and the Database Techonology groups
of The Department of Computer and Information Science (IDI) at The Norwegian University of Science
and Technology (NTNU).

MOWAHS’ superior goals are:

1. Helping to understand and to continuously assess and improve work processes in virtual organiza-
tions

2. Providing a flexible, common work environment to execute and share real work processes and their
artifacts on a variety of electronic devices (from big servers til small PDAs).

3. Disseminating the results to colleagues, students, companies, and the community at large.

As Lund and Norum stated in [31], the Peer2Me framework is mainly contributing to the second goal of
MOWAHS. Our work will continue supporting this goal. The Peer2Me framework will be available on
the web for anyone who has interest in the project.

This thesis will also contribute to the third goal, but it will focus more on software engineering than
collaboration technology.

5

6 CHAPTER 2. PROJECT CONTEXT

CHAPTER 3

Readers Guide

The contents of this report vary a lot, both with respect to focus and approach. Some parts of the report
might be more interesting to some readers, than others. In order to increase the readability of the report,
we will therefore present a brief outline of each chapter.

If you are not interested in reading the whole report, you should identify yourself with one of the three
following categories:

Readers interested in the problem domain: Should read Chapter 1 along with Part III. Some read-
ers may read Chapter 15 as well. Part III describes essential concepts and technologies along with
a chapter, state of the art, presenting other projects related to the problem domain.

Developers interested in writing applications: Should take a look at the example applications in
Part V. To get background information on how the framework is designed and its possibilities,
he/she could also read Part IV.

Developers interested in improving the framework: Should read and understand Part IV, Part V
and Part VI. These parts present all essential information about the framework beginning with how
it is designed and implemented, how to develope simple applications using the framework, and an
evaluation of the implementation.

3.1 Chapter Description

This section outlines the chapters in the report.

• Part I - Introduction

Chapter 1 - Motivation This chapter describes the motivation behind the project along with
the problem definition.

Chapter 2 - Project Context This chapter describes the context of the project.

Chapter 3 - Readers Guide This chapter presents an outline of the report describing the chap-
ters.

• Part II - Research Methods

7

8 CHAPTER 3. READERS GUIDE

Chapter 4 - Research Questions This chapter described the research questions that is derived
from the problem definition and motivation.

Chapter 5 - Research Methods This chapter presents the research methods used in this project.

Chapter 6 - Development Tools and Software This chapter presents the tools and software
used to create this report and the framework.

• Part III - Prestudy

Chapter 7 - The History of Peer2Me This chapter presents a chronological description of how
the framework initially was drafted.

Chapter 8 - Central Concept This chapter deals with the central concepts related to our prob-
lem domain. These concepts should be understood in order to grasp the background and
intention behind the framework.

Chapter 9 - Communication and Collaboration This chapter discusses the basics behind Group-
ware and Computer Supported Cooperative Work (CSCW).

Chapter 10 - State of the Art This chapter presents similar projects and solutions as the Peer2Me,
and compare these.

Chapter 11 - Technology This chapter presents an update on relevant technology, discussing
advantages and disadvantages.

Chapter 12 - Software Architecture This chapter describes what software architecture is, dis-
cusses architectural tactics and presents relevant design patterns.

• Part IV - Redesign of Architecture

Chapter 13 - Introduction This chapter introduces Part IV.

Chapter 14 - Requirements This chapter describes the requirements for the new Peer2Me frame-
work.

Chapter 15 - Architecture Design Decisions In this chapter we presents the main issues we
met during development, and how we dealt with them.

Chapter 16 - Design Overview This chapter presents the actual design of the new framework,
going in detail on the packages and the classes. It also presents the domain concepts.

• Part V - Applications

Chapter 17 - Introduction This chapter introduces Part V.

Chapter 18 - The Applications Here we present three applications that utilize the new Peer2Me
framework.

• Part VI - Evaluation

Chapter 19 - Testing Compares the actual implementation to the requirements in Chapter 14.

Chapter 20 - Comparison of Old and New Peer2Me This chapter compares the old version
of the framework to the one we have implemented, discussing improvements and new func-
tionality along with simple statistics.

Chapter 21 - Problems This chapter discusses problems and difficulties we came across during
this project.

Chapter 22 - Answers to Research Questions This chapter answers the research questions
presented in Chapter 4.

Chapter 23 - Summary This chapter gives a conclusion to the project, discussing further work
with short and long term goals.

• Part VII - Appendix

Glossary A simple glossary elaborating difficult terms.

3.1. CHAPTER DESCRIPTION 9

Appendix A Chat2Me source code.

Appendix B File2Push source code.

Appendix C ComplexMessageDemo source code.

Appendix D Contents of zip file.

• Bibliography

10 CHAPTER 3. READERS GUIDE

Part II

Research Methods

11

CHAPTER 4

Research Questions

This chapter outlines the questions we seek to answer.

4.1 Research Questions

In every development project, the process of creating software includes major challenges and trade-offs.
These trade-offs will aid the development project to completion, but will often involve short-cuts and
result in instability and lack of performance. It is therefore important in every development project, that
the product is thoroughly tested and completed before the first official release.

As Peer2Me is a framework to be used by other developers, it is important that it is easy to comprehend
and utilize. As mentioned in Chapter 1, a redesign of the architecture of Peer2Me is appropriate. In
addition to removing the bugs, new functionality should also be introduced in the new version of the
framework.

The questions given below are the central aspects which we will seek to enlighten in this project.

1. Will a redesign make the framework easier to adopt, when developing mobile ad-hoc applications
in a J2ME development environment?

(a) Can a pure peer-to-peer network be implemented in the new framework?

(b) Is it possible to implement transfer of binary data in the new framework and what consequences
will this yield?

(c) Will developers use less time to learn and create applications with the new framework compared
to the old one?

(d) Will a redesign of the framework reduce the number of codelines, memory usage and depen-
dencies in applications that uses the new framework compared to the old one?

2. Will implementation of extra functionality make the framework more flexible and attractive?

(a) What sort of functionality would add most value to the framework?

13

14 CHAPTER 4. RESEARCH QUESTIONS

(b) Will the extra functionality make the new framework incompatible with mobile phones that
the old framework supports?

3. What sort of impact would new technology or updates in existing technology have on the Peer2Me
framework?

(a) Will the technology make mobile ad hoc collaboration more efficient in terms of discoverytime,
range and transfer rates?

CHAPTER 5

Research Methods

This chapter presents how the research and development in this master thesis will be performed. There are
many methods that can be applied to a software development process, and some of them are presented in
this chapter. Basili describes three common research methods that are relevant for software development
in Experimental Software Engineering Issues: Critical Assessment and Future Directions [2]:

The engineering method (Scientific): Observe existing solutions, propose better solutions, build/de-
velop, measure and analyze, and repeat the process until no more improvements appear possible.
This method is an evolutionary approach were the software being developed can go through exper-
imental phases in order to find the best solution. This method can also involve analysis of older
versions of the software so that improvements can be made. This method is typically used to find
better methods for structuring large systems. Analysis and measurement is crucial for the success
of this method.

The empirical method (Scientific): Propose a model, develop statististical/qualitative methods, ap-
ply to case studies, measure and analyze, validate the model and repeat the procedure. This
approach is classified as a revolutionary method which can either propose a model based on an
existing one, or suggest an entire new model. This method is typicallly used when comparing a
new technology against an old technology. Analysis and measurement is crucial for the success of
this method as well.

The mathematical method (Analytic): This method is based on mathematical and formal methods
for doing experiments. The formal method is compared with empirical observation to get results.
The mathematical method is usually used to find better formal methods and languages.

We have chosen to use the engineering method since it seems like the best suited approach for our project.
The method is based on an evolutionary approach which is representative for Peer2Me. The method also
involves analysis of older versions, which in our case, is the old version of Peer2Me. Our goal is to
develop a new version. We expect to encounter unforseen obstacles during development, which might
result in change in design. Since we have chosen to use this method, we will test the framework during
development to see if it satisfies the requirements we have set. There are many ways of solving a problem
and we hope to find out the best solution by testing different implementations. In order to do this, we
will have to identify the different solutions to the problems as they appear.

15

16 CHAPTER 5. RESEARCH METHODS

5.1 Research

Before answering the research questions by redesigning the Peer2Me framework, background knowledge
about the old Peer2Me framework is essential. This is done by reading the Peer2Me documentation found
in the master thesis by Lund and Norum[31], and getting an overview of the available technologies.
Performing a thorough research will give good insight in the components that makes up the framework,
and how they relate to each other.

5.2 Design

There are primarily two different approaches we can use to design the framework: The waterfall method
or the evolutionary prototyping method. The waterfall method has five stages as illustrated in Figure 5.1.
The strength of this method is that none of the stages needs to be repeated and planning and design can
be done early in the process. The method is well suited for technically weak or inexperienced developers.
Since the model follows this rigid pattern it is also highly unflexible.

Figure 5.1: The life-cycle of the waterfall method

The evolutionary prototyping method consists of stages that can be repeated an unlimited number of
times, see Figure 5.2. The model is less rigid and is perferct when the requirements are changing or
the application area is hard to grasp. Since steps can repeated many times, it is hard to tell how long
the development will take. It is also unknown how many iterations that is required to get a satisfactory
result.

We have chosen to use the evolutionary prototyping model as a guide during development in this project.
The problem domain is unknown in some areas and we are unsure if we are able to predict how the
system will react on a specific implementation. It will therefore be necessary to go through a couple of
iterations in order to have a satisfactory end result. Since we are going to redesign the framework, we will
use the evaluation we performed in our depthstudy [5] as a guide to find the areas of improvement. This
will result in a set of both functional and non-functional requirements. The requirements are described
in Chapter 14.

5.3. IMPLEMENTATION 17

Figure 5.2: The life-cycle of the waterfall method

5.3 Implementation

The redesign of the framework will be done with the latest available Java version as an incremental
process laying out the base structure and adding functionality. The new framework will be based on the
same concepts as the previous version, but with a whole new implementation. During the implementation
all problems and issues will be noticed, and if applicable, used to answer the research questions described
in Chapter 4.

5.4 Testing

Since we are using the evolutionary prototyping model, we will perform testing for each increment of the
framework. The testing will reveal if our solution was satisfactory. The testing will be performed on the
emulators on desktop computers and on mobile phones. During development in our depthstudy [5], we
discovered that even though an application runs perfectly on the emulator, it might not run at all on
mobile phones. It is a tedious process to test on the mobile phones, since we will have to first transfer the
application to several mobile phones, using either Bluetooth or a cable and then install the application
and run it. This will not be done for each small change, but for more larger changes.

18 CHAPTER 5. RESEARCH METHODS

5.5 Evaluation

We will evaluate the Peer2Me framework by testing it with the applications described in Part V. This
way we can find out if the functional requirements have been fulfilled. We will also use the applications
to test the quality requirements.

Comparing the new and the old framework will reveal differences and point out improvements, and
how this affects the application-developer. An empirical comparison will also be made.

During the development we will probably encounter obstacles and problems. These will also be dis-
cussed in the evaluation, and how it has affected the framework.

All of the above will provide us with enough material to answer the research question. Lastly, a summary
of the project will be presented along with suggestion for further work and short/long-term goals. The
evaluation is described in Part VI.

CHAPTER 6

Development Tools and Software

This chapter presents the different tools used to create this report and the framework.

6.1 Development Tools

Peer2Me is a framework written in Java and the goal of this master thesis is to redesign and improve the
framework. This section presents the tools used.

6.1.1 Eclipse With Plugins

Eclipse [13] is a an open source development platform with lots of available plugins for different purposes,
e.g. writing in LaTeX, creating applications for mobile phones and finding code statistics.

TeXlipse TeXlipse is a plugin for writing LaTeX documents in Eclipse. It includes features like syntax
highlighting, command completion and bibliography completion [16].

EclipseMe EclipseMe [15] is a plugin for developing J2ME MIDlets in Eclipse. A Java Wireless Toolkit
must be installed on the system for the plugin to work.

Metrics Metrics is a plugin that generates code statistics for any given project [19]. The statistics it
generates are very thorough and only small portions of it will be used in this thesis.

6.1.2 MiKTeX

MiKTeX is an implementation of TeX and related programs for Windows on x86 systems [39]. The MiK-
TeX distribution contains many features including the pdfTeX compiler which generates a pdf document.
The compiler is used to produce this document.

6.1.3 Concurrent Version System

In order to keep track of versions of code and documentation, we have used a Concurrent Versioning
System (CVS). NTNU has a Linux server with CVS support which we have used in this master thesis.
The system also makes it easy to work from any computer that has Eclipse and the necessary plugins.

19

20 CHAPTER 6. DEVELOPMENT TOOLS AND SOFTWARE

6.2 Emulators

Applications made in J2ME need to be tested. The applications can run on mobile phones, but it is a
tedious process to do for each iteration. Therefore, emulators can be used instead. There are several
emulators available and each mobile phone producer has its’ own toolkit. In our depth-study [5] we only
used the Sun Wireless Toolkit. During the master thesis we will also use the Sony Ericsson Wireless
Toolkit. The reasoning for this decision is given in Section 6.2.2.

6.2.1 Sun Wireless Toolkit

The Sun Wireless Toolkit [36] is a standard toolkit that can be used to test applications that are based
on J2ME’s Connected Limited Device Configuration (CLDC) and Mobile Information Device Profile
(MIDP). During the testing phase in the depthstudy [5], we found limitations with this toolkit. It is
possible to run several instances of the toolkit so that instances can communicate with each other using
Bluetooth. This is sufficient enough for the Peer2Me framework itself, but not for the applications we
developed. Only one instance can access the emulated recordstore, filesystem and PIM information
database. This proved to be a huge drawback when testing the PeerShare application, see Part V in our
depthstudy [5].

6.2.2 Sony Ericsson SDK

The Sony Ericsson software development kit is a wireless toolkit that can be used to emulate Sony
Ericsson mobile phones that support Java ME technology [1]. The kit can emulate the following phones:
W800, W600, W550, Z520, K750, K600, K300, J300, Z800, V800, S700/S710, Z500, K700, Z1010, K500,
K508, F500i, P900, P910, Z600/Z608, T630-T628, T637 and T610 Series (T610, T616 and T618). P900
and P910 is not supported. The SDK can run applications that uses both MIDP 1.0 and 2.0. In contrast
to Sun’s wireless toolkit, the Sony Ericsson toolkit can run several instances of an application using
emulations of different phones so that each phone has a recordstore, filesystem and PIM database. This
enables us to test the applications with the emulator, where we previously had to deploy the applications
on actual phones. However, using this SDK will only test how the framework and applications will work
on Sony Ericsson mobile phones. Therefore, the framework must be tested using both Sun’s wireless
toolkit and the Sony Ericsson SDK as must as possible to ensure that the software will run on different
hardware.

Part III

Prestudy

21

CHAPTER 7

The History of Peer2Me

This chapter will provide background information on how the Peer2Me initially was created, its prelimi-
nary projects and intentions.

7.1 MOWAHS

As mentioned, this project is a part of MOWAHS, MObileWork Across Heterogeneous Systems, which
is a basic ongoing research project in cooperation with the Software Engineering and the Database
Techonology groups of The Department of Computer and Information Science (IDI) at The Norwegian
University of Science and Technology (NTNU). MOWAHS’ goals are threefold. The second goal states
that MOWAHS should provide a flexible, common work environment to execute and share real work
processes and their artifacts on a variety of electronic devices. It is this goal Peer2Me aims to support.

The MOWAHS project was started in 2001 and was initially planned for 4 years with 2.5 PhD stu-
dents and 1 postdoc researcher on average per year. The project has been extended and is evaluated on
a yearly basis.

7.2 Work by Kirkhus and Sveen

Two former students at The Norwegian University of Science and Technology (NTNU), Lars Kirkhus
and Anders R. Sveen wrote in 2003 a depthstudy aimed to examine the use of mobile devices for spon-
taneous collaboration. This was the start of Peer2Me, as these two student started testing Java’s new
API for Bluetooth; the JSR82 API, described in Section 11.2.2. They started testing the software using
only computers since no mobile devices were available at that time. They focused on evaluating dis-
covery times and transfer rates. Doing this revealed possible problems due to the design of Bluetooth.
For more information, please read their depthstudy, An examination of mobile devices for spontaneous
collaboration[25].

23

24 CHAPTER 7. THE HISTORY OF PEER2ME

7.2.1 Spectre

Kirkhus and Sveen also performed their master thesis within the MOWAHS-project, creating the first
draft of a framework for supporting mobile ad-hoc communication. They called the framework Spectre,
and it was constructed of four parts:

• Application Interface - This is where the application asks the framework to perform tasks.

• System - It contains the main logic of the framework.

• Transport Interface - The interface and implementation that enables the framework to do the
low level communication with other devices.

• Domain - The classes that describes the environment and information the framework operates
within, such as Node etc.

They developed several applications to run on their framework, concluding that developing a frame-
work for mobile collaboration is a difficult task requiring good planning. The obstacles that lies within
new technologies can also be hard to overcome. The master thesis was written in 2004, and for more
information please read their master thesis, MOWAHS - Mobile Collaboration Framework [26].

7.3 Work by Lund and Norum

When Kirkhus and Sveen finished their master thesis, they left NTNU leaving the MOWAHS project
behind. The project was now undertaken by Carl-Henrik Wolf Lund and Michael Sars Norum as a part
of their depthstudy. They also explored the domain of collaborative applications using mobile devices,
and presented a set of requirements for a new improved framework focusing on network independency.
Along with the actual plans of a new framework, they described technologies and theoretical principles
behind peer-to-peer computing.

7.3.1 Framework Prototype

As mentioned, Lund and Norum drafted the outline of a new and improved framework making it network
independent. They implemented a prototype of the framework including a package for communicating
using Bluetooth. Their framework was built on 4 main concepts:

• Framework - The core entity and interface between the application and rest of the system.

• Node - A logical representation of a peer, i.e. a mobile phone running the framework.

• Network - An abstraction of the network layer accessed only by the framework instance.

• Service - The description and identificator of an application running on the framework.

They concluded their framework was quite unique, but it had difficulties running some of the test applica-
tions on a mobile phone. Their prototype was only able to connect 2 mobile phones. For more information,
please read their depth study, A Framework for Mobile Collaborative Applications on Mobile Phones[30].

7.3.2 Peer2Me, first version

In 2005 Lund and Norum continued their work within the MOWAHS-project as part of their master the-
sis. This thesis is based on their depth study mainly refining the framework, now renaming it Peer2Me.
Peer2Me is an abbreviation for peer-to-peer (P2P) and Java 2 Micro Edition (J2ME). Using the engineer-
ing approach, they evaluated their own work and redesigning the framework basing it on a peer-to-peer

7.4. OUR DEPTH STUDY 25

hybrid model. The engineering approach is described in this document in Chapter 5, and the P2P hybrid
model is covered in Section 8.1.

Their version of the Peer2Me framework defined a rigid master/slave setup, routing all information
traffic through the master-peer. They defined domain concepts such as a group, a node and a service,
and managed to connect many nodes, not just two as in the prototype. It was also only possible to send
textmessages, and all the messages were sent through the master node.
To evaluate their framework, they created three applications focusing on different parts of the framework.

For more information on Lund and Norums framework, please read The Peer2Me Framework. A Frame-
work for Mobile Collaboration on Mobile Phones[31].
It is this project, we are redesigning Peer2Me. A comparison of their and our version of the framework
can be found in Section 20.

7.4 Our depth study

Continuing the work of Lund and Norum, we evaluated their version of the framework in our depth
study, creating two applications. The applications, named PeerQuiz and PeerShare, focused on utilizing
as much of the framework as possible. As mentioned in Section 7.3.2, Peer2Me is based on a hybrid
peer-to-peer model which works fine with PeerQuiz, since this is a quiz-game with one defined leader,
namely a master node. We tested the application with several nodes, and it did function as planned, but
since it is not possible to send other data than text between the nodes, the quiz was limited. Sending
pictures, sound etc. would have improved the application.

PeerShare is a filesharing application with no defined roles, it would therefore have been ideal if the
framework was based on a pure peer-to-peer model. The ability to send binary data was also sorely
needed in this application, since the only type of file the application could send and receive, were text
files.

As a part of our evaluation, we answered 4 research questions:

1. Can a developer with some experience in Java, easily adopt the Peer2Me framework as a utility for
developing applications for mobile phones?
The framework is not easy to start using, but it saves the developer a lot codeline in the application
using the framework.

2. Which bugs exists in the framework and what kind of impact do they have for development?
We found five significant bugs. These are listed in Chapter 22 in our depthstudy [5].

3. How can we improve the framework?
To improve the framework, we must fix the bugs from the answer to research question 2, along with
adding functionality as described in the answer to research question 4.

4. How can we add functionality and value to the framework?
The framework can never get enough functionality to suit every situation, but implementing all sorts
of functionality would make it too large and impossible to use on all devices. A list with suitable
functionality is found in Chapter 22 in our depthstudy [5].

These research questions evaluated most of the framework through our applications pointing at important
issues. The answers to these questions along with an update on new technology and state-of-the-art
software can be found in our depth study, Evaluation of Peer2Me[5].

.

26 CHAPTER 7. THE HISTORY OF PEER2ME

CHAPTER 8

Central Concepts

This chapter explains the central concepts about peer-to-peer (P2P) computing systems, and how they
can be used on mobile devices, without an infrastructure. This chapter also explains some basic concepts
about groupware and Computer Supported Cooperative Work (CSCW).

8.1 Peer-to-Peer

Computer systems can either be defined as centralized or distributed, as found in Distributed Systems:
Concepts and Design [10]. Mainframes and workstations are examples of centralized systems; the system
can operate on its own without the aid of another computer or a network. Distributed systems can
be thin clients or terminal computers; computers that require an other computer in order to function
properly. Distributed systems are then classified into two architectures; the typical server-client model
and the P2P model, see Figure 8.1.
Wikipedia defines P2P as:

”A peer-to-peer (or P2P) computer network is a network that relies on the computing
power and bandwidth of the participants in the network rather than concentrating it in a
relatively few servers. P2P networks are typically used for connecting nodes via largely ad-
hoc connections” [44]

Lund and Norum [31] has recognized these advantages of P2P networking:

Decentralization: There is no significant load on one particular node, which could create a bottleneck
in the network.

Capacity: Since a network connection between two peers does not depend on a central server, bandwidth,
storage and processing power on the edge of the network is better utilized.

Independency: Each node is independent of a central server.

Extensibility: Peers can create a network, or easily join an existing network and increase its value.

Configuration: All peers are equal in terms of functionality and role, therefore, the network is self-
configurable.

27

28 CHAPTER 8. CENTRAL CONCEPTS

Figure 8.1: Taxonomy of computer systems

Fault tolerance: No single point of failure.

The resources can be shared between nodes, also called peers, and a peer can be either server or client.
As defined by Wikipedia [44], P2P is divided into three categories:

Pure P2P: All peers can act as both clients and servers with no central server.

Hybrid P2P: Needs a central server which keeps information on peers and responds to nodes requesting
information.

Mixed P2P: A combination of pure and hybrid P2P.

Table 8.1 compares the pure and hybrid P2P networks.

Pure P2P Hybrid P2P

• All peers have the same re-
sponsibility

• No central entity for manage-
ment and coordination

• Can easily loose one peer with
no loss of functionality

• Requires complex routing and
location protocols

• One or more central entities
responsible for providing ser-
vices to other peers

• Central entities are contacted
by peers

Table 8.1: Comparison of pure and hybrid model

There are several applications freely available to the public that use P2P technology. Among the most
popular are filesharing applications such as KaZaA and Direct Connect. Bittorrent are the latest member

8.2. MOBILE P2P NETWORKS 29

to this family. Instant messaging applications such as MSN Messenger and ICQ are also quite popular
P2P applications.
It is important to keep in mind that applications based on P2P networking have very high network
externalities; it would be useless if there are very few users, but the value of the application increases
rapidly as more people start using them.

8.2 Mobile P2P Networks

Mobile P2P networks should preferably be based on a pure P2P model, so that the peers can discover
each other without the use of a central node. This can be implemented in two ways:

With infrastructure: Base-station-based networks like GSM or UMTS.

Without infrastructure: Networking using mobile ad hoc networks like WiFi, Bluetooth or Infrared.

Creating applications based on the pure P2P model, includes a significant amount of challenges. Forman
and Zahorjan defines three categories of challenges for mobile computing which are highly relevant for
mobile P2P systems in their article ”The challenges for mobile computing” [12]:

Communication: Varying bandwidth, interference, security, users outside coverage area, frequent dis-
connections, delays and integration of heterogeneous network.

Mobility: Difficult to address devices and location-dependent.

Portability: Size, weight, limited battery power, exposed to weather, must operate in noisy surround-
ings.

Of the issues mentioned above, disconnections are probably the biggest challenge when designing P2P
applications for mobile devices. The devices are constantly moving around and the connection may be lost
at any time. This will often result in incomplete data transfers between peers, which must be accounted
for in order to create solid and useful applications.

8.3 Mobile Ad Hoc Networks (MANET)

Mobile devices equipped with network technologies such as Bluetooth or Infrared can constitute a wireless
personal area network (WPAN). According to Wikipedia, the definition of a personal area network (PAN)
is:

”A personal area network (PAN) is a computer network used for communication among
computer devices (including telephones and personal digital assistants) close to one person.
The devices may or may not belong to the person in question. The reach of a PAN is typically
a few meters. PANs can be used for communication among the personal devices themselves
(interpersonal communication), or for connecting to a higher level network and the Internet
(an uplink). Personal area networks may be wired with computer buses such as USB and
FireWire. A wireless personal area network (WPAN) can also be made possible with network
technologies such as IrDA and Bluetooth.” [45].

Several WPANs can make up a mobile ad hoc network (MANET). Wikipedia defines MANET as:

”A mobile ad-hoc network (MANET) is a self-configuring network of mobile routers (and
associated hosts) connected by wireless links the union of which form an arbitrary topology.
The routers are free to move randomly and organize themselves arbitrarily; thus, the network’s
wireless topology may change rapidly and unpredictably. Such a network may operate in a
standalone fashion, or may be connected to the larger Internet” [42].

30 CHAPTER 8. CENTRAL CONCEPTS

Mobile phones use cellular technology relying on systems such as GSM and UMTS. These systems relies
on a underlying infrastructure. Ad hoc mobile networks do not need such infrastructure, which has its
advantages. ”When Peer-to-Peer comes Face-to-Face: Collaborative Peer-to-Peer Computing in Mobile
Ad hoc Networks” by Gerd Kortuem et.al. [27] lists three of these advantages:

No infrastructure required: Since no infrastructure is required, the network can be deployed sponta-
neously when needed anywhere.

Self-organization: In a wired network, the topology is determined by the cables that connect the nodes
to each other. In an MANET, the network is created as soon as two nodes are within each others
PAN. This means that the network is continuously reconfigured as mobile devices enters and exits
each other’s PANs.

Fault tolerance: Since there are no infrastructure, the mobile devices cannot fail because of a base
station, which is the case in networks that rely on GSM communication. The only way a MANET
can fail is if one node fails, but since the network is based on P2P communication, the network can
easily be self-reconfigured.

Figure 8.2: Ad hoc networks taxonomy

Figure 8.2 shows the taxonomy of ad hoc networks, where the horizontal axis describes the range of
each technology. They are Body(BAN), Personal(PAN), Local(LAN) and Wide Area Network(WAN).
Peer2Me is based on Bluetooth-technology, and is therefore used in PANs.

The information shared between nodes in an ad hoc network may follow different paths depending on
how many parties involved. It can roughly be divided into two groups:

Singlehop: Only two nodes are involved in a singlehop network, and the communication is performed
directly between the two peers, as Figure 8.3 shows.

Figure 8.3: A singlehop ad hoc network

8.4. PICONET 31

Multihop: A multihop configuration require several nodes, where some nodes are out of direct contact
with each other. The communication between these nodes are then forwarded by other intermediate
nodes in the network. Figure 8.4 illustrates the multihop where the black lines are the communica-
tion paths.

Figure 8.4: Multihop ad hoc network

8.4 Piconet

Peer2Me uses a form of PAN to communicate, and a Bluetooth PAN can consist of up to eight devices
where there must exist one master, while the other nodes acts as slaves. This is called a piconet. A piconet
can start of with singlehop including only two nodes, and then be extended with new nodes converting
to multihop. It is important to keep in mind that the limit of eight devices means eight active devices,
while a masternode theoretically can keep direct track of up to 255 parked devices. The master can
”swap out” active slaves for parked slaves to manage piconets for situations that require a large number
of connected devices, such as providing data services to people in high-population areas.

32 CHAPTER 8. CENTRAL CONCEPTS

Figure 8.5: The three piconets A, B and C together form a scatternet. m=master, s=slave, m/s=master and
slave.

8.5 Scatternet

A scatternet exists if a node is connected to two or more separate piconets at the same time, as illustrated
in Figure 8.5.

However, this means that a message from one node may have to be forwarded by several nodes, which
raises security concerns. The problem with the current Bluetooth implementation is that it does not
allow a node to function as both a master and a slave simultaneously, but sequential.

CHAPTER 9

Communication and Collaboration

Communication and collaboration among humans is both a natural and difficult part of our civilization.
Most of us change our behaviour in different contexts and we rarely give it much thought, it happens
automatically. In todays society, technology is becoming increasingly pervasive, affecting the way we
communicate with each other. Mobile phones , instant messaging and e-mails are more and more replacing
common face-to-face communication and are impersonalizing the art of conversation.
Much research has been carried out in analysing how humans collaborate without technical devices in
order to create the same context with the use of computers, hand held devices and other communication
tools. This has proven to be a difficult task. Transferring real life to a digital world is hard due to many
human factors which computer cannot reproduce. This can be informal chance-encounters by the coffee
machine, soothing factors in a persons voice etc.

9.1 Groupware and Computer Supported Cooperative Work

In order to aid the transition between real life and the digital world as described above, much research
in the field of Computer Supported Cooperative Work, CSCW, has been undertaken. The term CSCW
was introduced by Irene Greif and Paul Cashman in 1984 at a conference attended by researchers and
developers examining how people work together in groups and how technology can support them. This
is described in a report by L.J.Bannon [29].
There are two main groups of cooperations, informal spontaneous and formal planned cooperation. Spon-
taneous, informal cooperation will often give greater results than planned meetings. When people start
working together outside a formal setting, no special protocol is enforced, which sets out a loose and
creative atmosphere. Groupware are computerized systems that have been created to support CSCW.
These systems can be classified in a time-space matrix illustrated in Figure 9.1.

In one dimension, the matrix distinguishes same time (synchronous) cooperative work from different
time (asynchronous). The other dimension distinguishes same place from different place cooperative
work. Using this matrix, groupware systems can be classified by placing it in the quadrant or quadrants
they support. When developing groupware, the biggest challenge lies in systems classified as either
different place or different time. The reason for this is that the groupware becomes the only available
communication channel between the workers. According to P.H.Carstensen and K. Schmidt [8], the
groupware have to comprehend the complexity of human communication, including support for awareness,
and both verbal and non-verbal communication, as well as formal/informal communication.

33

34 CHAPTER 9. COMMUNICATION AND COLLABORATION

Figure 9.1: Clasifying groupware with the time-place matrix

Groupware can further be divided in two groups:

Mobile groupware: The target which Peer2Me focus on, involving mobile phones PDAs. Since Peer2Me
uses Bluetooth as means of communication, the framework is designed for applications in the same
place, but both real and asynchronous time and space.

Non-mobile groupware: The most common type of groupware. Designed to run on systems that you
normally do not carry around while in use, such as desktops and laptops. A laptop might be quite
mobile, but the user is seldom moving around while using the groupware software.

Since Peer2Me uses the principle of PAN, peers needs to be in close reach of each other, such as face-to-
face, either planned or unplanned, formal or informal. One can consider the coverage area of a peer as a
sphere, and when two of these spheres comes within reach of each other, collaborative applications can
be run. Figure 9.2 illustrates the principle of spheres.

Figure 9.2: Digital spheres intersecting

Typical collaborative P2P applications using Peer2Me can have functions such as:

• Exchange personal data

• Spread rumours

9.1. GROUPWARE AND COMPUTER SUPPORTED COOPERATIVE WORK 35

• Alert the user of friends that are nearby in high-population places

• Match making

• Identify people we want to meet

• Trade delivery tasks

Many of the examples mentioned above are typical examples of impromptu collaboration, and suited for
mobile collaboration, even though several of the examples above will also be valid in a non-mobile envi-
ronment. Comparing mobile and non-mobile collaboration reveals that most of the collaboration-software
running on a non-mobile system, will be able to run on a mobile system if the hardware requirements are
met. Mobile collaboration software will often provide more value and greater flexibility for the users.

36 CHAPTER 9. COMMUNICATION AND COLLABORATION

CHAPTER 10

State of the Art

Peer2Me is developed using new and popular technology, and there are several projects similar or related
to Peer2Me. This chapter outlines some of these projects and clarify potential similarities.

Most of these projects are either open-source or research projects. This gives an indication of how
immature the technology is; the technology is not yet ready for commercial release nor release to the
public.

10.1 Bluecove

Bluecove is an open source implementation of the JSR-82 Bluetooth API for Java. Initially, Bluecove
only supports the Windows XP SP2 Bluetooth stack, but will support other operating systems and other
Windows stacks in later versions. The Bluecove library can be used to connect a PC with a Bluetooth
dongle, and a mobile phone with JSR82 support, together in a Java environment.

The Bluecove library can be downloaded from SourceForge [14], and Ben Hui has created a guide which
explains how to take usage of Bluecove. This can be found at the webpage of Ben Hui [18].
We have tested Bluecove using this guide with positive results.

While Peer2Me is meant for ad hoc connection between mobile phones, Bluecove is designed to connect
a mobile phone and a computer. Bluecove does not allow connection between two mobile phones. Using
the Peer2Me framework together with Bluecove, one can create a robust framework that can connect
several computers and mobile phones together, but the two libraries may overlap each other. Peer2Me
and Bluecove will not focus on the same usage area.

10.2 Umbrella.Net

Umbrella.Net is an experimental platform for developing ad hoc networks based around coincidence or
chance occurrences. The project utilizes the unpredictable patterns of weather and crowd formation as a
base for network formation. The system consists of a set of umbrellas functioning as nodes. Umbrella.net
establishes a visual footprint of a network in public space and creates a framework for sharing localized

37

38 CHAPTER 10. STATE OF THE ART

information among connected nodes. A handheld device, typically a PDA, is connected to a real umbrella,
starting a service discovery and connecting to other people with their umbrellas open. People can now
share information ad hoc. This information can be anything from chatting to a sudden market were
people can buy and sell from each other, and nodes do not need to be in direct connection with each
other, which means the information can pass through many nodes before reaching the destination node.
This principle is mentioned in Section 8.5, called a scatternet, using multihoping. A simple graphical
description is shown in Figure 10.1 below.

Figure 10.1: Typical umbrella.net schema

Umbrella.Net is developed to run on a PDAs operating Windows CE only. Example screen shots of the
Umbrella.Net GUI is shown in Figure 10.2.

10.3. BEDD 39

Figure 10.2: The GUI of the Umbrella.Net software

Umbrella.Net seems to have the same goals as Peer2Me, except Umbrella.Net’s target platform is a
PDA running Windows CE.
There are no official details regarding programming platform or architecture. Though the last news avail-
able at Umbrella-Net’s homepage is dated September 2004, the project has received high recognition and
been exhibited in several countries like Ireland, Switzerland, USA and Australia.

Umbrella.Net and Peer2Me can not be seen as competitors, since Umbrella.Net is a complete software
package designed for end-users, while Peer2Me is a framework which developers can take advantage of.
There are currently no release date for Umbrella.Net.

10.3 BEDD

BEDD is a software suite developed and maintained by the BEDD Corporation [4] that enables ad hoc
mobile communication between supported mobile phones, which is any mobile phones using Symbian
Series 60 and supporting Bluetooth. BEDD runs in the background on your mobile phone, and auto-
matically searches for other ”BEDD phones” near by. When BEDD finds new units running BEDD,
it automatically exchanges your profile about whom you are and who you would like to meet. It also
exchanges ads about things that you would like to buy or sell.

The software can be downloaded for free from BEDD’s website, and is also free to distribute. Among the
applications in the suite we find:

BEDDmates - Matches your profile against others and alerts the user when a match is found.

BEDDbay - Marketplace. Place ads and view other ads.

BEDDtalk - A chat application

BEDDfish - Allows the user to send free text messages to other user that does not have BEDD installed
and running

40 CHAPTER 10. STATE OF THE ART

BEDDings - Sounds, alerts, themes etc.

BEDDbios - Your profile for others to see

BEDDbuddies - Get alerted when friends are within range

BEDDshare - Allows the user to share the BEDD software

Since our last review of BEDD in our depthstudy [5], BEDD has signed a deal with Nokia for pre-
installation of the BEDD software in the Nokia 6600, 6670 and 7610 mobile phones.

As Lund and Norum stated in their master thesis [31], BEDD is closely related to Peer2Me. The differ-
ence is that BEDD is an end user application and not an open development platform. The applications
available in the BEDD software suite is exactly the kind of applications that can be developed using
J2ME and Peer2Me. There are no official news regarding the future of BEDD, but one must assume that
it will evolve and gain popularity.

10.4 Other projects

The following projects are mentioned by Lund and Norum in [31] and we will quickly review them.

10.4.1 JXTA

JXTA, Juxtapose, is a language- and platform-independent open-source platform for peer-to-peer net-
working, developed by Sun Microsystems. This platform enables developers to create distributed com-
puting software for connecting several devices together in an ad hoc fashion. The JXTA is itself to
heavyweight to be deployed on mobile phones, so Sun created JXME for this purpose. JXME is a limited
version of JXTA intended to run on a CLDC based device (J2ME).

For more information on JXTA, please read ”JXTA: A Technology Facilitating Mobile Peer-To-Peer
Networks” by Nico Maibaum and Thomas Mundt [33].

10.4.2 JSR82 259

JSR82 259, referred to as the Ad Hoc Networking API, is a library for J2ME that enables ad hoc
communication between mobile devices in a peer-to-peer environment. The JSR82 API may include
methods for:

• Service discovery

• Service registration

• Service availability alert

• Service and service capability inquiry

• Remote service consumption

We mentioned in our depthstudy [5] that the final approval ballot was set to the end of 2005. It has been
voted upon and approved by companies such as IBM, Motorola, Siemens, Nokia etc.

JSR82 259 will offer much of the same functionality as Peer2Me, but will probably not include mes-
saging functionality.

10.5. SUMMARY 41

10.4.3 OBEX

OBEX, the Object EXchange protocol, is maintained by the Infrared Data Association and is designed
to allow exchange of binary dataobjects over an infrared link. It has also been adopted by Bluetooth SIG
and SyncML wing of the Open Mobile Alliance (OMA). OBEX has more or less become the standard
used when send binary data directly between mobile phones, computers, PDAs etc.

There are several ongoing projects using OBEX, among these the open source project Open-OBEX, car-
ried out at the University of Tromsø. OBEX is further described in Section 11.3.1. For more information
regarding the Open-Obex project, please visit the project homepage [38].

10.4.4 SyncML

SyncML, Synchronization Markup Language, an industry-wide effort to create a single, common data
synchronization protocol optimized for wireless networks. SyncML is intended to work on transport
protocols as diverse as HTTP, WSP (part of WAP) and OBEX, and with data formats ranging from
personal data (e.g. vCard vCalendar) to relational data and XML documents. The SyncML consortium
was set up by IBM, Nokia and Psion among others. SyncML is mostly used to synchronize contact and
calendar information betweena handheld device and a computer. Current version of SyncML is 1.1.2.
More information on SyncML can be found on Wikipedia, see [46] and [43].

10.5 Summary

All the technologies and solutions mentioned in the previous sections relate to mobile P2P networking,
but comparing them to Peer2Me reveals differences.
Peer2Me and BEDD is designed to work on mobile phones, while Bluecove should run on a desktop
computer and Umbrella .NET is designed to run on a PDA. These software solutions will manage to do
some of the same tasks, but is designed to run on different platforms.

The projects most comparable to Peer2Me are JXME and JSR259. JXME is as mentioned a limited
version of JXTA, and as Peer2Me it can be used by developers to easily create the P2P-model. JSR259,
developed by Sun Microsystems Inc., is the newest project among the mentioned, and offers must of the
same functionality as Peer2Me. These two projects are the nearest competitors, except the Peer2Me
framework offers more functionality.
Looking at BEDD, it is a complete off-the-shelf solution, unlike Peer2Me, it is a P2P software solution
offered to end-users. BEDD can be downloaded and used directly. One could create a solution like BEDD
by using Peer2Me. Other projects mentioned in Section 10.4, OBEX and SyncML, are protocols allowing
a standardized way of sending data. OBEX are as mentioned used to send data directly between mobile
units, and could be incorporated into an existing communication-framework, like Peer2Me or JSR259.

The conclusion must be that compared to the projects mentioned above, Peer2Me is unique when it
comes to functionality and value.

42 CHAPTER 10. STATE OF THE ART

CHAPTER 11

Technology

This chapter provides an update on the latest technology related to mobile ad-hoc networking, and is
partially based on the research performed in Chapter 9 in our depthstudy [5]. Since this project involves
several mobile hardware and software technologies, it is important to see if new technology or updates in
existing technology can affect the framework. This is mentioned in the research questions in Chapter 4.
There is also a brief overview on how some of the technologies handles security. Security can be essential
when developing software based on a certain technology.

11.1 Mobile Phones

Mobile phones are still the main deployment platform for Peer2Me, and there are no perceptible tech-
nology updates regarding mobile phones. Java Micro Edition 2 (J2ME) and Bluetooth is required, and
a sensible screen resolution of minimum 130x170 pixels is recommended. Peer2Me can also be deployed
on PDAs and other units meeting these requirements. If a device can run the application in the back-
ground while doing other tasks, will depend on the device. As an example, a Sony Ericsson W800i can
minimize a java application while performing other tasks like answering a phone call etc., and maximize
the application afterwards. This can also be done when running the Peer2Me framework.
During this project we are mainly using Sony Ericsson phones to test the software on:

Sony Ericsson K750i A popular model supporting J2ME MIDP2.0 and Bluetooth, and a screen reso-
lution of 176x220 pixels.

Sony Ericsson W800i The same specifications as K750i, except a different casing and some modifica-
tions in the software focusing on mediaplaying.

During our depthstudy [5], we tried to use both a Siemens S65 and a Sony Ericsson P900, but experienced
several problems regarding threading and other problems as mentioned in our depthstudy, Chapter 9 [5].

11.2 Java 2 Micro Edition

A mobile phone can not be compared to a desktop device due to limited resources, and it is not possible
to use desktop software on the mobile phone. Therefore, Sun developed Java 2 Micro Edition (J2ME)

43

44 CHAPTER 11. TECHNOLOGY

because Java 2 Enterprise Edition (J2EE) nor Java 2 Standard Edition (J2SE) could be used. Doing
this, SUN made it possible to run Java applications on consumer and embedded devices as well.

11.2.1 J2ME architecture

The Java architecture defines elements for building a complete Java runtime environment that meets the
requirements of a wide range of devices. The elements consists of profiles, configurations and optional
packages that are structured hierarchically as shown in Figure 11.1.

J2ME is a part of the Java technology, and is, as mentioned, targeted for mobile devices. This means
there are strict limitations on memory, processing-power and I/O-capabilities. J2ME is designed to oper-
ate within these restrictions. To implement in J2ME, a configuration composed of a virtual machine and
a minimal set of class libraries are needed. There are currently two configurations available for J2ME:

CDC - Connected Device Configuration. Used generally by devices that have more resources available
such as PDAs and set-top boxes.

CLDC - Connected Limited Device Configuration. Designed for mobile phones, and are available in two
versions, 1.0 (JSR82 30) and 1.1 (JSR82 139). 1.1 is a revised and backwards compatible version
of 1.0. Version 1.0 will be used in this project.

Figure 11.1: Overview of the Java enviroments

To define the life cycle, user interface and access a device’s properties, a profile is needed. Sun has
defined the profile, Mobile Information Device Profile, MIDP, for this purpose. MIDP defines a set of
available functionality, and can be extended with optional packages. Some of the optional packages will
not function, even if the mobile phone support J2ME and the current MIDP, which is version 2.0. For
more information, read the J2ME whitepaper [21] and see Sun’s website [24].

11.2.2 Optional packages

As mentioned above, several optional packages are available for J2ME, and the following packages are
used in this project.

11.3. WIRELESS NETWORK TECHNOLOGIES 45

JSR82 75 - The Java APIs for accessing PIM (Personal Information Management) data and the filesys-
tem. This package is aimed at PDAs and high-end mobile phones.
By having access to a device’s PIM-information, an application can extract information from the
phones calendar, address book etc. And having access to the filesystem is very useful and gives the
opportunity to create powerful applications. One of the applications developed in our depthstudy,
PeerShare (see Part V in the depthstudy [5]), used the JSR82 75 package.

JSR82 82 - The Java APIs for Bluetooth. This is a specification that standardizes a set of JAVA APIs
to allow Java-enabled devices to integrate into a Bluetooth environment. The Peer2Me framework
depends on this package and must be imported in the J2ME MIDlets that imports Peer2Me.

11.3 Wireless network technologies

Several different network technologies have been developed and are targeting different usage areas offer-
ing divers functionality and specification. This chapter will outline the most common technologies, and
provide a brief update on new technology and upgrades on the existing.

11.3.1 Bluetooth

Bluetooth is a common wireless technology mainly used for connecting and exchanging information be-
tween devices like mobile phones, PDAs, computers etc. It is an industrial specification for wireless
personal networks (WPANs) and operates via a low cost, short range radio frequency (2,4GHz). Blue-
tooth development is controlled by The Bluetooth Special Interest Group (SIG) [40].

Bluetooth exists in several versions which defines different speed, range and power consumption. The
range and power consumption are divided into three classes:

Class 1: Range up to 100m and a 100 mW power consumption

Class 2: Range around 10m and a power consumption of 2.5mW

Class 3: Range less than 1m and a power consumption of 1 mW

As shown above, there is a correlation between range and power consumption. Power consumption is
essential when integrating Bluetooth into mobile units, but then again it is a tradeoff versus range.
The most common combination used is class 2. This gives adequate range while keeping the power
consumption at a reasonable level. A hybrid between class 1 and 2 is often used in mobile phones.

Bluetooth did first arise as version 1.0, but is commonly known as version 1.1 or 1.2 which is most
widely implemented. 2.0 is the latest version, and the greatest improvement is the introduction of En-
hanced Data Rate which increases the speed to a maximum of 2.1Mbit/s. About three times faster than
version 1.1 and 1.2. Version 2.0 has also an improved support for scatternet and shorter discoverytime.
Bluetooth also supports a set of profiles, each a description of the Bluetooth unit; a Bluetooth hands
free would use the Headset-profile, while a Bluetooth mouse would use the HID-profile, Human Interface
Device, and so on.

Bluetooth Services

In order to connect two or more Bluetooth devices, at least one must run a service and one must be
discoverable for other devices. The device that initiates the connection to another device, becomes the

46 CHAPTER 11. TECHNOLOGY

master, while the device that runs the service becomes the slave. Many devices have the capability of
switching between a master and a slave configuration.

Bluetooth Communication

The Bluetooth specification contains a Bluetooth protocol stack which is responsible for all data commu-
nication. Bluetooth devices can use several different communication protocols in order to communicate
with each other. The Java API for Bluetooth allows data communications for three protocols: L2CAP,
RFCOMM and OBEX [32].

L2CAP : The underlying protocol which all Bluetooth communication is layered upon. It multiplexes
data between different higher layer protocols and provides QOS, Quality Of Service management
for higher layer protocols.

RFCOMM : The RFCOMM protocol emulates an RS-232 serial connection which provides a stream-
based interface to the RFCOMM protocol. Important aspects regarding RFCOMM are:

• Only one RFCOMM session at a time can be shared between two devices.

• The maximum amount of active RFCOMM services a Bluetooth device can have is 30.

• A Bluetooth device can only support one client connection to a service at a time.

The RFCOMM protocol is very straightforward to implement in J2ME. However, the protocol has
limited functionality and does not scale very well for more advanced applications. The only option
the developer has is to write to an outputstream and close it. Then the receiving Bluetooth device
must read the stream and parse it. The old version of Peer2Me used the RFCOMM protocol for
all purposes, including message exchange. In our depthstudy [5], we found severe weaknesses with
their implementation regarding messages. The implementation only allowed for simple text strings
to be sent over the protocol. When an application receives a message, it very often wants to know
who sent it, the length of the message, at which time it was created, if it were sent to other devices
as well, etc. In order to achieve this, the old version of Peer2Me created message headers which
where constructed as shown in Listing 11.1.

Listing 11.1: Message header from the old Peer2Me framework, from messageHeader.txt

1 from: no.ntnu.idi.mowahs.project.bluetooth.domain.LocalBluetoothNode :0000 F5EB5AD5;B;

2 to: no.ntnu.idi.mowahs.project.bluetooth.domain.RemoteBluetoothNode :0123456789 AF;A;

3 to: no.ntnu.idi.mowahs.project.bluetooth.domain.LocalBluetoothNode :0000 F5EB5AD5;B;

4 msgtype: 1

5 msgbody:

6 txt.pan_im_message: HELLO

7 txt.service: peer2me_pan_im

The old version did actually not support the use of a linebreak in a message string since it searched
for linebreaks in order to parse the headings in the message. A very good alternative to RFCOMM
is OBEX where this problem does not occur at all.

OBEX : In contrast to HTTP, OBEX (Object Exchange Protocol) is stateless. OBEX is much more
versatile than the RFCOMM. In order for two devices to communicate, an OBEX session has to be
created. The device that initiates the creation of a session is the client, and the other device is the
server. Then, the client can send header information to the server, followed by a put or get request.
The Java implementation of OBEX has 12 predefined headers and allows the developer to create
an additional 64 headers as illustrated in the API for javax.obex [41]. This gives the developer
freedom to attach all sorts of information to a specific message. Using OBEX as the transport
protocol in the new version of Peer2Me, will make it easier to incorporate advanced messaging in
the framework.

The OBEX protocol defines eight operations as explained on the Sony Ericsson developer site [11]:

• CONNECT: Sets up connection and creates session

11.3. WIRELESS NETWORK TECHNOLOGIES 47

• PUT: Sends an object from the client to the server
• GET: Requests an object from the server and receives the object
• SETPATH: Changes active directory on the server
• CREATE-EMPTY: Creates an empty object on the server
• DELETE: Removes an object from the server
• ABORT: Terminates an operation such as PUT before the operation has completed
• DISCONNECT: Ends an OBEX session

The Peer2Me framework does not necessarily need to implement all these operations. The most important
operations such as: CONNECT, PUT and DISCONNECT must however be implemented. The GET
operation can easily be implemented by using two PUT operations. For example, if a client wishes to
download a file from a server, it can simply send one GET message and receive the file in the same
operation if the server accepts. It can also send one PUT message which contains information the server
can interpret as a request to download a file. The server can then use the PUT command on the client
in return.

It is possible for a Bluetooth enabled J2ME application to access a service that uses another proto-
col such as TCP/IP, but the protocol must then be implemented in the application using the CLDC
Generic Connection Framework.

Bluetooth Security

The security can be decided by the users and are divided into three levels:

Level 1: No security functionality. Connection is being made without any encryption or authenti-
cation.

Level 2: Service level security. Security measures like access control to devices and services are
activated to control which units can use different services on other units.

Level 3: Link level security. At this level security is based on a common shared key generated during
the pairing process. This process also involves a PIN-code entry from the users.

Even though Bluetooth implements the security-measures above, it does not provide end-to-end security,
and is therefore exposed to several security issues discussed among others in a document published by
Adam and ben Laurie in the article Serious flaws in Bluetooth security lead to disclosure of personal data
[28].

Bluetooth Updates

The Bluetooth SIG (Special Interest Group), which maintains the Bluetooth standard, has recently joined
forces with the WiMedia Alliance to further develop the Bluetooth technology [34]. They plan to develop
a UWB (Ultra Wide Band) chip that supports high speed data transfer, yet still consumes low power.
The new chip will also be backwards compatible.
In a recent press release, The Bluetooth SIG announced:

”It is critical that the UWB technology be compatible with Bluetooth radios and maintain the
core attributes of Bluetooth wireless technology low power, low cost, ad-hoc networking, built-
in security features, and ability to integrate into mobile devices. Backwards compatibility
with the over 500 million Bluetooth devices currently on the market is also an important
consideration.”[34]

Bluetooth SIG estimates that the first Bluetooth technology/UWB solution chip sets will
be available for prototyping in the second quarter of 2007.

48 CHAPTER 11. TECHNOLOGY

11.3.2 Wireless Local Area Network

WLAN, short for Wireless Local Area Network, is commonly known as a wireless technology
that is intended to allow mobile devices to communicate, get Internet access or connect to
local area networks. It is also used for wireless Voice over IP phones (VoIP).
WLAN is one of the most common used wireless technologies and is divided into four main
standards with different operating frequencies and bandwidth, where 802.11g operating at
maximum of 54 Mbit/s is the most common among end-users. Lately, the focus is shifting to
the new upcoming standard of wireless local area network, 802.11n.

IEEE 802.11n

The n-standard is being drafted by large communication-corporations as Broadcom, Intel and
Philips, and final standardization-proposal are expected at the end of 2006. The performance
802.11n will exceed every present standard and is expected to be 10 times faster than the
current 802.11g-standard, delivering speeds up to 540 Mbit/s.
There are several producers of network equipment that are delivering devices based on a
preliminary draft, labeling their equipment with Pre-N. Pre-N products utilizes parts of the
technology in 802.11n such as MIM0 and OFDM, explained below:

MIMO - Multiple-input multiple-output, is an abstract mathematical model for some com-
munications systems. In radio communications if multiple antennas are in use, the MIMO
model naturally arises because the signal would choose different paths and arrive asyn-
chronously. Normally this is a problem, but the MIMO-technology takes advantage of
this and can send more data at the same time than the technology used in previous
802.11 versions.

OFDM - Orthogonal Frequency-Division Multiplexing, is a technique using a single transmit-
ter to transmit on many different independent frequencies, typically dozens to thousands,
and because the frequencies are so closely spaced, each has only room for a narrowband
signal. This modulation technique coupled with the use of other advanced modulation
techniques, results in a signal with high resistance to interference.

For more information on MIMO or OFDM, please read Using MIMO-OFDM Technology to
Boost Wireless LAN Performance Today by Datacomm Research Company [9].

Wireless LAN transmissions can be either open or secure. The security is implemented by
encrypting the transmission using different techniques and methods. The most commonly
used is WEP -Wireless Equivalent Privacy, which uses a shared key and encodes the data
using either a 40bit, 104bit or a 232bit encryption key (often referred to as 64, 128 or 256bit
encryption). Uses RCA encrypting and TKIP. Another upcoming encryption- method is the
WPA/WPA2 - Wi-Fi Protected Access, which uses a passphrase as key. This encryption
method avoids many of the security-flaws which occurs in the WEP-encryption. WPA2 re-
quires newer equipment. For more information on issues regarding the security of WEP,
please read Intercepting Mobile Communications: The Insecurity of 802.11 by N. Borisov, I.
Goldberg and D. Wagner [37].

11.3.3 ZigBee

ZigBee is a small, low powered digital radio based on the IEEE 802.15.4 specification using
high-level protocols for communicating on low speeds within a range of 10-75 metres. ZigBee
is designed to be simpler and cheaper than other Wireless PANs, such as Bluetooth, but due
to a low market demand, the production cost is still higher than i.e. Bluetooth.
ZigBee, driven by the ZigBee Alliance, are currently working on a certification-program to
ensure that ZigBee-products can communicate ”out of the box”.

11.3. WIRELESS NETWORK TECHNOLOGIES 49

ZigBee offers a service based, high level protection, using encryption, access control, frame
integrity and sequential freshness. The security features of ZigBee is discussed in Industrial-
strength Security for ZigBee: The case for public-key cryptography, written by Mitch Blaser
[6].

11.3.4 Radio Frequency IDentification

Radio Frequency IDentification, RFID, is an automatic identification method, relying on
storing and remotely retrieving data using RFID tags and transponders. An RFID tag is a
small chip which can contain a limited amount of information, and can be incorporated into
a product, animal or person. There are different types of RFID-tags available, both active
and passive. The main difference is that active tags uses a fixed internal power supply, which
gives larger storage capacity and great range, whereas passive RFID tags have no internal
power source. The passive tags rely on inducing enough power through the radio frequency to
transmit a response when called upon. There are also semi-active tags which are quite similar
to passive tags, except using a small battery.
The purpose of an RFID system is to enable data to be transmitted by a tag, which is read by
an RFID transponder and processed according to the needs of a particular application. The
data transmitted by the tag may provide identification or location information, or specifics
about the item tagged, such as price, color etc.

RFID has no implemented security measures, and introduces great challenges regarding per-
sonal information security and access security. There are no well known attempts at designing
a good system which handles security issues in RFID.

11.3.5 Wireless USB

Wireless USB, WUSB, is a new wireless extension to USB intended to combine the speed and
security of wired technology with the ease-of-use of wireless technology. WUSB is based on
ultra wideband wireless technology defined by IEEE 802.15.3a (yet to be accepted), which
operates in the range of 3.1-10.6 GHz. WUSB offers bandwidths of 480 Mbit/s at three meters
and 110 Mbit/s at 10 meters. The maximum bandwidth of 480 Mbit/s is the same as the
bandwidth of USB2.0.
WUSB uses a point-to-point hub-and-spoke topology as shown in Figure 11.2. With wired
USB, in opposite to wireless USB, no hubs are present in the connection topology.

With the growing use of digital media in the PC, consumer electronics and mobile commu-
nication environments, a common standard is needed to support the on-going convergence of
these environments. The trend toward simple and convenient wireless distribution of digital
information gives an opportunity to introduce a single, standard wireless connection capable
of supporting the needs of most technological environments.

WUSB security will ensure the same level of security as wired USB. Connection-level se-
curity between devices will ensure that the appropriate device is associated and authenticated
before operation of the device is permitted. Security measures as encryption must be imple-
mented in the software using wireless USB.
The security features in WUSB will not affect neither performance nor production costs.

As the wireless USB specification is not officially released, products using this technology
will not appear in a large number until a proper release and certification program has taken
place.

50 CHAPTER 11. TECHNOLOGY

Figure 11.2: The Wireless USB topology

11.3.6 Wireless Firewire

Wireless firewire is a new wireless extension to firewire based on the IEEE 1394 over IEEE
802.15.3 standards. When the new wireless firewire is released, it will retain the speed of the
wired version (up to 400 Mbit/s), and a theoretically up to 200 wireless firewire-units can be
in the same WPAN. The main usage area of wireless firewire would be within media, hence
transmitting video and sound to/from set-top boxes, from video cameras etc. Much the same
as the wired version of firewire.

The security of firewire would be much like the principle used in wireless USB described
in Section 11.3.5, the same as the wired version. As for wireless USB, there are no official
products using wireless firewire on the market.

CHAPTER 12

Software Architecture

Software architecture is a field of study that is of high importance to the Peer2Me framework.
It is possible to make such a framework without paying any attention to the architecture,
but doing so will result in a poor, low-quality, non-flexible and over-complex framework.
Software architecture can be used to ensure that the system meets the quality requirements
set out by the different stakeholders of a system. This chapter contains information regarding
quality attributes associated with an architecture, the involved stakeholders, architectural
tactics1 and architectural patterns2 that can be used to achieve quality requirements. This is
explained by Bass, Clements and Kazman in Software Architecture in Practice [3]. Much of
the material in the preceeding sections are from this book.

12.1 Stakeholders

In every development project there are stakeholders. The stakeholders are people who in
some way have interest and/or influence in the project. Their interests have great impact
on the quality of the system. Often, it is nearly impossible to satisfy all the requests. If the
maintainer wants the system to be highly modifiable and flexible, and the marketing manager
wants it to have short time to market, a conflict arises. The architect has to choose either
high modifiability or short time to market.
Typical stakeholders in a project are: Developers, architects, testers, maintainers, end-user,
funders, project manager etc. In the Peer2Me project we can define the following stakeholders:
developers, maintainers, architects, end-users, testers and supervisor. The original architects
of the Peer2Me project are Michael Sars Norum and Carl Henrik Wolf Lund. Now, the
authors of this report, Tommy Bjørnsg̊ard and Kim Petter Saxlund are the developers and
architects. The end-users are developers who we hope will adopt the framework when it is
ready to be released. The maintainers are possible future master students. The testers can
be us or some other independent developers that might benefit from the Peer2Me framework.
Our supervisor, Alf Inge Wang, is also a stakeholder. His primary focus is on usability and
modifiability, since he will probably guide other students in future work with Peer2Me.

Since we are not going to continue work with Peer2Me after we have developed it, we must
1Architectural tactics: Known methods for achieving quality in a system
2Architectural patters: A description of element and relation types together with a set of constraints on how they may

be used

51

52 CHAPTER 12. SOFTWARE ARCHITECTURE

make sure that our followers can easily adopt the framework and understand why it has be
designed the way it has. It also has to be easy for other developers to just use the frame-
work in their applications. Based on this, a set of quality attribute scenarios for the Peer2Me
framework will be presented in Part IV. Quality attribute scenarios are presented in Section
12.2.

12.2 Quality of a System

Functionality is most often the center of attention in a development process. If quality at-
tributes are ignored, the result is most often a poor and unmanageable architecture. A
quality attribute does not necessarily entirely affect the architecture. For instance, a usability
attribute may be the background color of an application window which has no impact on the
architecture itself. However, giving the user the ability to change the background color has
impact on the architecture.

12.2.1 Quality Scenarios

There are several ways of defining non-functional requirements for a system. One solution is
to use quality attribute scenarios. These scenarios describes the quality requirement in detail,
which is very useful when designing the architecture. Such scenarios consists of six parts:

Source of stimulus: The entity that generates the stimulus. Can be either human or com-
puter system.

Stimulus: The condition that arrives at the system and needs to be considered.

Environment: The stimulus occurs in a certain environment. Examples of environments
are: runtime, design time, testing phase, etc.

Artifact: The artifacts that is stimulated. An artifact can be pieces of a system or the whole
system.

Response: When the stimulus arrives at the system, the system has to respond in some way.

Response measure: The response should be measurable so that the attribute scenario can
be tested.

We have two types of scenarios: General and specific. Table 12.1 shows a general availability
scenario. The general availability scenario can be used to derive to specific scenarios. A
specific availability scenario is presented in Table 12.2. Availability is only one out of many
quality attributes that can be defined. The attributes are described in Section 12.2.2.

General availability scenario
Source of stimulus Internal, external
Stimulus (Fault) Omission, crash, timing, response
Environment Normal, degraded operation
Artefact Process, storage, processor, communication
Response Record, notify, disable, continue (normal/degraded), be unavail-

able
Response Measure Repair time, availability, available/degraded, time interval

Table 12.1: General availability scenario [3]

12.3. ARCHITECTURAL TACTICS 53

Sample availability scenario
Source of stimulus External to system
Stimulus Unanticipated message
Environment Normal operation (Runtime)
Artefact Process
Response Inform operator and continue to operate
Response Measure No downtime

Table 12.2: Sample availability scenario [3]

12.2.2 Quality Attributes

Non-functional requirements can be divided into several categories. The categories are not
completely isolated from each other. If the system must be highly available, then high per-
formance will be hard to achieve. The categories are:

Usability: Usability is concerned with how easy it is for a user to perform a certain task and
how the system displays information to the user. Usability is an issue that often must
be considered in the early stages of architectural design. If major problems regarded to
usability is detected late in the project phase, the more repair and modification has to
be done to the architecture.

Modifiability: Modifiability has to do with changes to the system. It is then vital that the
changes can be performed without much hassel. For instance, if a maintainer wants to
change an encryption algorithm, then he/she should only need to replace one module of
the system and not many small changes in many modules. A change does not necessarily
need to be made by a maintainer/developer. It can also be made by the end-user, for
instance in a configuration set-up.

Performance: Basically, performance has to do with how long the system can respond to
an event that occurs. Such events may come from several instances. These instances can
be an end-user, the system itself or from other systems. For example, a user might try
to login to an ftp-server and how long it takes for the server to log the user in will be a
performance scenario.

Availability: A system’s faults and failures are associated with availability. A fault occurs
when something goes wrong in the system and is not visible. If a fault becomes a
failure, the error will be visible. For instance, if the network connection is lost between
two devices without one device registering the loss, a fault has occurred. Then, if the
application acts as if the connection is still available, a failure will occur.

Security: Security is concerned with the system’s ability to prevent unauthorized usage/ac-
cess without compromising normal usage. Attacks can be unauthorized attempts to
access or modify data.

Testability: In order to find bugs and faults in the system, it needs to be testable. Designing
an architecture that can be easily tested for faults will save a lot of time. There are several
different ways of doing this. Most of them involve monitoring the system’s internal state
and logging output that is easy to interpret.

12.3 Architectural Tactics

In order to achieve the different qualities, the architect has to use certain architectural tactics.
Architectural tactics are known methods for achieving quality in a system. There are many
known tactics that can be applied to know issues. Often, many tactics are used to achieve
a certain quality, this is called architectural strategy. Bass, Clements and Kazman [3] have

54 CHAPTER 12. SOFTWARE ARCHITECTURE

defined several tactics that can be used to fulfill all the six quality attributes mentioned in
Section 12.2.2. These are described in the following sections.

12.3.1 Modifiability Tactics

The Peer2Me framework should be easy to maintain and it is therefore necessary to include
modifiability tactics in the architecture. Modifiability tactics can be divided into three cate-
gories: localize modifications, prevent ripple effects and defer binding time.

Localize modifications: The following tactics will ensure that modifications are localized
in the future:

• Maintain semantic coherence - Assigning modules specific responsibilities and make
them work together. Modules should not be to dependent on each other. It is
also important to extract common services. By doing this, future changes to these
services will only have to be done at one place.

• Anticipate expected changes - This tactic has much in common with the previous
tactic. This tactic is concerned with minimizing the effects of the changes. It
is difficult to use this tactic alone, and it is therefore used in conjunction with
maintaining semantic coherence.

• Generalize the module - Making a module more general will allow it to handle a
broad range of functions based on input. The input type can then vary between a
broad range of types. In the future, the changes will then only affect the input type.

• Limit possible options - By limiting the options of future changes, modifications can
be localized. For instance by allowing the change of a CPU, but restricting the
change to one product family, the options will be limited.

Prevent ripple effects: A ripple effect is when a module needs to be changed just because
another module has been changed. This often occurs when the dependency between two
modules are too high. The following tactics can be used to prevent ripple effects:

• Hide information - When making modules, the developer should carefully consider
which information should be made public and which should be kept private. Isolating
changes to one module will prevent modifications to propagate to other modules.

• Maintain existing interfaces - By maintaining existing interfaces, modules that use
the interfaces do not need to change. It is often difficult to mask data, so creating
general interfaces is often a good idea. There are several patterns that implement
this kind of tactic: adding interfaces, adding adapter and providing a stub.

• Restrict communication paths - Try to keep the sharing of data to a minimum be-
tween the different modules. There is often no need to share the data with several
modules.

• Use an intermediary - An intermediary takes care of all activities between two mod-
ules. There exist several types of intermediaries. For more information about these,
see Software Architecture in Practice by Bass et. al. [3].

Defer binding time: Changes can be done by non-developers by using some of the following
tactics:

• Runtime registration - plug-and-play operation at runtime or load time.

• Configuration files - set parameters at startup.

• Polymorphism - late binding of method calls.

• Component replacement - load time binding.

• Adherence to defined protocols - runtime binding of independent processes.

12.3. ARCHITECTURAL TACTICS 55

12.3.2 Usability Tactics

Usability tactics are mostly concerned with how the system responds to user requests. Since
Peer2Me is only a framework, no visual feedback is given directly to the user. However, the
framework should be easy to use for other developers and hence the architecture needs to
achieve high usability. Usability tactics can be divided into two categories: runtime tactics
and design-time tactics. Runtime tactics has to do with how the system interacts with the
user during execution. Design-time is concerned with design of the system by a developer
when it is not running.

Runtime: There are three kinds of human-computer interaction: user initiative, system
initiative and mixed initiative. A user initiative is when a user makes the system do
something like clicking a button. If the system does some logical operation afterwards, it
is called a mixed initiative. If the system does something that the user has not requested,
it is a system initiative. The architect must design system response when a user wants
to perform a task. In the case where the system has to take initiative, it must use
some information about the current situation. It is recommended that the information is
encapsulated in some model the system can use to predict the behaviour of the system.
There are three kinds of models that can be maintained and used:
• Maintain a model of the task - A model of the task the user wishes to perform is

maintained so that the system can give proper response. For instance if the user
wants to login to a webpage, the system can automatically fill out username and
password given that the system has stored username and password for that site.

• Maintain a model of the user - A model of the user’s common behaviour is main-
tained. For instance, in WinXP the system ”remembers” the last programs that the
user executed, it then hides programs that the user never/seldom use and show the
common ones.

• Maintain a model of the system - A model of the system’s behaviour is maintained.
For instance the time to extract a large compressed file.

Design-time: There is one tactic that makes it easier to change the user interface after it
has been evaluated. The tactic is to separate the user interface from the rest of the
application. There are four architectural patterns that can be used to accomplish this:
• Model-View-Controller
• Presentation-Abstraction-Control
• Seeheim
• Arch/Slinky

12.3.3 Performance Tactics

Peer2Me is going to be used on mobile phones which have limited resources compared to PDAs
and desktop computers. Therefore it is important that the framework does not consume all
the resources on the mobile phone. When an event/request arrives at a system, the system
needs to respond in some fashion. This consumes resources and can block other processes as
well. There are three categories of tactics that can deal with this problem: resource demand,
resource management and resource arbitration.

Resource demand: The following tactics can be used to cope with high resource demand:
• Increase computational efficiency - Improve the algorithms that are responsible for

solving a task.
• Reduce computational overhead - Often it can be smart to remove intermediaries to

improve latency.
• Manage event rate - Reduce the sampling rate at which environmental variables

are monitored. Often the sampling rate can be too high which demands a lot of
resources.

56 CHAPTER 12. SOFTWARE ARCHITECTURE

• Control frequency of sampling - If the events of the external generated events are out
of control, sampling the queued request at a lower frequency will ease the pressure
on resources.

• Bound execution times - Set a limit on the time that a can be used to handle a
request.

• Bound queue sizes - The maximum number of queued arrivals can be controlled
which will reduce amount of resources required to handle the arrivals.

Resource management: It is hard to control the demand for resources, but the manage-
ment of resources is easier to control:

• Introduce concurrency - Handle multiple requests in parallel in different threads.
• Maintain multiple copies of either data or computations - Caching data reduces

contention and makes it effortlessly to produce the data upon request.
• Increase available resources - Acquiring faster processors, more memory, more disk

space, better networks etc., will increase the available resources and reduce latency.
Obviously, there is a significant cost associated to this tactic.

Resource arbitration: The most common scheduling tactics are:

• First in first out (FIFO) - All requests are treated equally. The first request will
be handled first. A problem occurs when one request takes a long time and other
requests have to wait.

• Fixed-priority scheduling - By giving each request a priority, the most important
requests will be first handled. There are three common strategies for assigning
priority:
– Semantic importance: The priority assigned is associated with some domain

characteristics of the task that generates the request. In mainframe systems,
this tactic is often used where the characteristic is the time of task initiation.

– Deadline monotonic - Highest priority is given to the request that has the shortest
deadline.

– Rate monotonic - Higher priority is given to the request that takes shorter time
to handle.

• Dynamic priority scheduling - There are two type of dynamic scheduling:
– Round robin - Available resources are assigned to the queued requests in order.

This order is often cyclic.
– Earliest deadline first - The request with the earliest deadline is assigned the

highest priority.
• Static scheduling - The assignment of resources to requests are determined offline.

12.3.4 Availability Tactics

Peer2Me is dependant on wireless network technology in order to communicate with other
devices. Very often, devices that previously were in range becomes out of range. These
issues are important to deal with and therefore, availability tactics is of high relevance to
the architecture. Availability tactics can be divided in three categories: fault detection, fault
recovery and fault prevention.

Fault detection: There are three common tactics for detecting fault in a system:

• Ping/echo - In order to check if one module or component is still available, one
component can send a ”ping” to the other and receive an ”echo” in return that
confirms that it is still alive.

• Heartbeat - One component regularly sends out a heartbeat which another compo-
nents listens to. If the heartbeat stops then the component is assumed failed and
proper actions should be undertaken by the component that listens to the heartbeat.

12.3. ARCHITECTURAL TACTICS 57

• Exceptions - It is also possible to throw exceptions when a fault occurs. The ex-
ception handler is then often located in the same module where the exception is
thrown.

Fault recovery: When a fault has occurred, the system needs to recover and return to
normal operation. There are several known fault recovery tactics, but most of them
are to be used on computers, servers and distributed networks. If a fault occurs in an
application that uses Peer2Me, it usually needs to be restarted. This process only takes
a couple of seconds, but important information should not be lost when the fault occurs.
Therefore, a tactic known as checkpoint/rollback can be used:

• Checkpoint/rollback - If a system faults in an unstable state, the system can roll back
to a previous working configuration. The different versions of Microsoft Windows
has had this functionality for a long time.

Fault prevention: Instead of detecting and recovering from faults, a system can prevent
faults from occurring by using one or several of the following tactics:

• Transactions - A transaction contains many steps which all must be executed success-
fully in order to avoid faults. Transactions are often used when several components
accesses the same data and locking of resources are used.

• Process monitor - A component can watch the processes and terminate a process
when it fails. It can then restart the process in an appropriate state.

12.3.5 Security Tactics

A lot of information is expected to be exchanged between mobile devices that uses the Peer2Me
framework. Some of this information may be sensitive, which only the intended recipient
should have access to. In these cases, proper security tactics must be used. Security tactics
can be divided into three categories: resisting attacks, detecting attacks and recovering from
attacks.

Resisting attacks: The following tactics can be used in combination with each other to
make a system more resistant to attacks:

• Authenticate users - To verify that the user is who he/she claims to be. Can be im-
plemented by using passwords, digital certificates, biometric information, password
calculators (as used with Internet banking) etc.

• Authorize users - Grant correct access to authenticated users. The system will then
need some access control patterns. Users can have specific access rights or be member
of a larger group of users.

• Maintain data confidentiality - Encrypting data provides extra protection when data
is transmitted outside a controlled environment. Data can for instance be encrypted
and transferred through a VPN or SSL connection.

• Maintain integrity - To verify that the data has not been compromised. Checksums
can be used for this purpose.

• Limit exposure - The lesser services that are available on each host, the safer the
system will be.

Detecting attacks: One commonly known way of detecting attacks is by using an intrusion
detection system. Such a system monitors network traffic and compares it to a database.
If it finds something that is abnormal behaviour it must alert the system and take proper
action.

Recovering from attacks: Tactics for recovering from attacks can be divided into two cat-
egories: restoring the system and identify the attacker.

58 CHAPTER 12. SOFTWARE ARCHITECTURE

• Restoration - This tactic overlaps with the fault recovery tactics which is concerned
with restoring the system to normal state. The difference is that special attention
is given to administrative data such as passwords, access control lists, domain name
services and user profile data.

• Identification - By maintaining an audit trail, the systems transactions can be traced
in order to find the attacker. Often, this audit trail is the attack target and should
be highly protected.

12.3.6 Testability Tactics

A problem we discovered in the evaluation of the Peer2Me framework in our depthstudy [5],
was proper ways of testing the applications. Therefore, in the new Peer2Me framework, good
methods of testing should be available for the developer. Testability tactics can be divided
into two categories: input/output and internal monitoring.

Input/output: In this category we find two tactics:
• Record/Playback - Record information that is used as input to a system in order to

playback the same scenario later for testing purposes. By doing this, results can be
compared in a fast and easy manner.

• Specialize access routes/interfaces - Creating special testing interfaces makes it pos-
sible to capture variable values in components through a test harness. This can be
done independently from normal operation as well. By creating a hierarchy of test
interfaces, testing can be done at any level in the architecture.

Internal monitoring: There is one tactic for internal monitoring called built-in monitors.
A component can watch states, performance load, capacity, security etc through an
interface. It should be easy to switch this feature on and off. Often this technique
requires more testing efforts as test must be repeated with the feature switched off.

12.4 Design Patterns

A design pattern is a repeatable solution to a commonly-occurring problem in software design.
It is not a finished design that can be transformed directly into code, but a description or tem-
plate for how to solve a problem that can be used in many different situations. Object-oriented
design patterns typically show relationships and interactions between classes or objects, with-
out specifying the final application classes or objects that are involved. Design patterns can
be classified based on multiple criteria, the most common of which is the basic underlying
problem they solve. According to this criterion, design patterns can be classified into various
classes, some of which are:

• Behavioural patterns
• Creational patterns
• Structural patterns
• Architectural patterns

The next sections will only focus on the patterns relevant to Peer2Me.

12.5 Behavioural patterns

Behavioral design patterns are design patterns that identify common communication patterns
between objects and realize these patterns. By doing so, these patterns increase flexibility
in carrying out this communication. It provides structured methods for intercommunication
between important object within a software solution. A good example of this is the observer
pattern described in Section 12.5.1.

12.6. CREATIONAL PATTERNS 59

12.5.1 Observer pattern

The observer pattern, also referred to the publish subscribe pattern is a design pattern used in
computer programming to observe the state of an object, or publish the result of an operation.
The essence of this pattern is that one or more objects (called observers or listeners) are
registered to observe an event which may be raised by the observed object.

This pattern is widely used when an application must communicate with other application
and receive messages. The application subscribes on the other application’s messages.

12.6 Creational patterns

Creational design patterns are design patterns that deal with object creation mechanisms,
trying to create objects in a manner suitable to the situation. The basic form of object
creation could result in design problems or added complexity to the design. Creational design
patterns solve this problem by somehow controlling this object creation. A good example of
this is the singleton pattern described in Section 12.6.1.

12.6.1 Singleton Pattern

The singleton design pattern is designed to restrict instantiation of a class to one object.
This is useful when exactly one object is needed to coordinate actions across the system.
Sometimes it is generalized to systems that operate more efficiently when only one or a few
objects exist. Before designing a class as a singleton, it is wise to consider whether it would
be enough to design a normal class and just use one instance.

The singleton pattern is implemented by creating a class with a method that creates a new
instance of the object if one does not exist. If an instance already exists, it simply returns a
reference to that object. To make sure that the object cannot be instantiated any other way,
the constructor is made either private or protected.
Listing 12.1 shows sample code of the singleton pattern in use.

Listing 12.1: Sample code showing singleton in use

1 private static MySingleton mySingleton = null;

2

3 public static synchronized MySingleton getInstance ()

4 {

5 if(mySingleton == null)

6 {

7 mySingleton = new MySingleton ();

8 }

9 return mySingleton;

10 }

11

12 private MySingleton (){}

As you can see from the listing above, only one instance of MySingleton can be created. This
example is quite simple, and one must take caution if singleton is used in multi-threaded
classes.

12.7 Structural Patterns

Structural patterns are Design Patterns that ease the design by identifying a simple way to
realize relationships between entities, helping in abstraction. The two most common structural

60 CHAPTER 12. SOFTWARE ARCHITECTURE

patterns are the decorator pattern and the facade pattern. While the decorator pattern is
wrapping a decorator-object around the original object including additional functionality, the
facade pattern disguises an object hiding unnecessary exposed methods. The facade pattern
is described briefly in Section 12.7.1.

12.7.1 Facade Pattern

A facade is an object that provides a simplified interface to a larger body of code, such as a
class library. A facade can make a software library easier to use and understand, since the
facade has convenient methods for common tasks. It makes the code that uses the library more
readable, and reduces dependencies of outside code on the inner workings of a library. The
facade pattern can wrap a poorly designed collection of APIs, creating a single well-designed
API. Facades are very common in object-oriented design. For example, the Java standard
library contains dozens of classes for parsing font files and rendering text into geometric
outlines and ultimately into pixels. However, most Java programmers are unaware of these
details, because the library also contains facade classes (Font and Graphics) that offer simple
methods for the most common font-related operations.

12.8 Architectural Pattern

An architectural pattern is any pattern concerned with the construction context of a whole
system, rather than just some part of a system. Architectural patterns are used to describe the
structure of bigger systems where the number of objects is measured in a large quantity, and
the diversity and complexity of the system is high. This identifies the need of abstraction. In
Pattern Oriented Software Architecture, F.Buschmann, R.Meunier, H.Rohnert, P.Sommerlad
and M.Stal defines architecture patterns as:

”Expressing a fundamental structural organization schema for software systems.
It provides a set of predefined subsystems, specifies their responsibilities, and in-
cludes rules and guidelines for organizing the relationships between them.” [7]

There are many well-known architectural patterns, each suitable in specific situations. Every
architectural pattern include a set benefits and downsides requiring the designer or developer
to carefully consider which pattern to use. Choosing the wrong pattern can be more time-
consuming during implementation than using extra time when deciding on the appropriate
pattern.

Architecture patterns that are relevant to the redesign of Peer2Me is presented in the fol-
lowing sections.

12.8.1 Layered Architecture Pattern

A large system requires decomposition. One way to decompose a system is to segment it
into collaborating objects. In large systems an initial rough model might produce hundreds
or thousands of potential objects. Additional refactoring typically leads to object groupings
that provide related types of services. When these groups are properly segmented, and their
interfaces consolidated, the result is a layered architecture. Even though this might seem
complicated, a layered architecture often gives itself, due to obvious domain responsibilities. In
an application, the graphical user interface, GUI, should only focus on how data is presented,
not how its created. Therefore, the GUI might be a layer lying on top of i.e. a data-layer,
which creates the data the GUI-layer needs.
Since a layered architecture is quite simple, it can easily be explained to other team members

12.8. ARCHITECTURAL PATTERN 61

and easily demonstrate each object’s role in the ”big picture”. Figure 12.1 shows a simple
layout of the layers in a fictitious application.

Figure 12.1: Example of a 3-layer layout in a fictitious application

A well known example of a layered architecture put to use is the 7 layer OSI networking
model, assigning each layer its own responsibility. More on this model can be found at Cisco
Systems Inc. webpage [20]. It is also worth to mention that several layers can lie parallel on
the same ”level”.

As mentioned earlier, patterns provide benefits and downsides. The layered architecture
pattern is no exception. One of the greatest benefits is the easiness of exchanging parts of
the software, in other words exchanging whole layers. This provides good abstraction and
low maintenance. Another benefit is that constructing the software layer-like, breaks complex
problems into smaller, more manageable pieces. Since the software is segmented, developing
it in teams becomes easier.
When it comes to the downsides, they vary greatly depending on the size of the software
solution and complexity. When developing an ”over-sized” software package one might loose
the perfect overview since none of the actual functionality is revealed. A layered architecture
can be a form of information hiding. The actual layer should not be aware of the implemen-
tation details of another layer in its own operations. This can be done if it leads to better
performance.

To find out more about the layered architecture pattern, please read Pattern Oriented Software
Architecture by F.Buschmann, R.Meunier, H.Rohnert, P.Sommerlad and M.Stal [7].

62 CHAPTER 12. SOFTWARE ARCHITECTURE

Part IV

Redesign of Architecture

63

CHAPTER 13

Introduction

This part describes the new architecture of the Peer2Me framework. Here, you will find the
requirements for the Peer2Me framework and how the requirements have been fulfilled.
This chapter will also describe the packages in the framework, along with its classes. We will
argue the challenges we faced, along with the solution.

This part is especially relevant to developers wanting to improve the framework.

65

66 CHAPTER 13. INTRODUCTION

CHAPTER 14

Requirements

This chapter presents the functional and non-functional requirements of the Peer2Me frame-
work. In the master thesis by Lund and Norum [31] a set of requirements to the old framework
is presented. Since this report presents a new and improved version of the Peer2Me framework,
the requirements have been slightly modified. The requirements are based on the previous
work by Lund and Norum [31] and the evaluation of the Peer2me framework presented in our
depthstudy [5]. See Chapter 20 for a comparison of the two sets of requirements.

14.1 Functional Requirements

This section presents the functional requirements of the Peer2Me framework. Functional
requirements are a set of instructions reflecting the functionality which must be implemented
in the application. The requirements are presented in Table 14.1.

Additional information about the functional requirements

FR 14 - At first glance, this requirement might seem trivial, but it is highly necessary.
During the application development phase in our depthstudy [5], we discovered that
logging is harder on mobile phones than on desktop computers. When running MIDlets
in an emulator on the computer, a console is always available and the Java method:
System.out.println("Some debugging text") can be used. However, when deploying
the application on a real phone, the console is not available. This inspired us to develop a
module that can be used to debug applications running on a real phone. The applications
PeerQuiz and PeerShare in our depthstudy [5] use this module, and we plan to implement
this module in the new Peer2Me framework.

Explanation of terms used in the functional requirements

Node - A node is a mobile phone that runs the framework within an application. This node
can be a part of a larger ad hoc network.

Group - A collection of nodes that are aware of each other. The nodes in the group can
communicate with each other.

67

68 CHAPTER 14. REQUIREMENTS

FR 1 The framework must support mobile phones
FR 2 The framework must be able to connect to other nodes
FR 3 The framework must support creation of ad hoc networks
FR 4 The framework must be able to connect to an existing ad hoc network
FR 5 Nodes in the network must be able to exchange messages
FR 6 It must be possible to store primitive variables (String, int, double, long, etc) in

a message
FR 7 It should be possible to store serialized java objects in a message
FR 8 It must be possible to attach files to a message
FR 9 It should be possible to store primitive variables, serialized objects and files in

one message
FR 10 The framework must track the origin of a message in order to enable a mes-

sagereply
FR 11 The framework must be able to create an open group
FR 12 The framework must simulate a pure P2P network
FR 13 The framework must hide the underlying network technology
FR 14 The framework must offer an easy way to create a log that can be viewed in the

mobile phone during runtime
FR 15 The framework should register when a nodes leaves the network

Table 14.1: Functional requirements

Bluetooth networking - A Bluetooth network must have one master and up to seven
slaves. This does not represent a pure peer-to-peer network where all nodes have equal
roles and responsibilities. It would be a great feature of the Peer2Me framework to hide
the underlaying network technology from the application.

14.2 Quality requirements

An important thing to keep in mind when designing applications, is to consider the non-
functional aspects; The quality requirements. They are often just as important as the
functional requirements. This section describes the quality requirements we would like the
Peer2Me framework to have. The following roles is mentioned in this section and it is impor-
tant for the reader to distinguish between these:

• The framework developer - The developer that is responsible for changes and modi-
fications to the framework.

• The application developer - The developer that use the Peer2Me framework in
his/hers application.

• The user - The person that use the application developed by the application developer.

14.2.1 Modifiability

The Peer2Me framework should be designed in a way that allows future modifications and/or
additional modules.

14.2. QUALITY REQUIREMENTS 69

M1 – Implement a workable network component in
Peer2Me
Source of stimulus The framework developer
Stimulus The framework developer wants to implement a workable network

component in the framework other than Bluetooth
Environment Design time
Artefact The network layer in the Peer2Me framework
Response The framework developer should only have to implement a net-

work component on the same architectural level as the Bluetooth
technology without modifications to other parts of the framework

Response Measure Persuming that the network component works, it should not take
more than a couple of days to implement.

14.2.2 Usability

This section concerns usability. Normally usability is associated with the end-user of a system.
However, in this context, usability is concerned with how easy and convenient the framework
is to utilize for the application developer.

U1 – Inform the application developer of exceptions
Source of stimulus The application developer
Stimulus An internal exception in the Peer2Me framework is thrown
Environment Runtime
Artefact The application
Response Calls to methods that might throw an exception must be placed

in a ”try-catch” block in the application
Response Measure The correct exception should always be thrown and the frame-

work should not block or become unavailable in 95 % of the time

Proper exception handling is crucial for the usability of the framework.

U2 – Aid the implementation of Peer2Me i applications
Source of stimulus The application developer
Stimulus The application developer is implementing exposed framework-

methods into his/her application
Environment Design time
Artefact The developers application
Response Peer2Me Code documentation should support well known

Javadoc-standards in order to aid the developer when using the
framework (code insight etc)

Response Measure All classes, interfaces, methods and public variables must be well
documented with Javadoc

Descriptive naming of packages, classes, interfaces, methods and variables helps the applica-
tion developer to easily utilize the framework.

14.2.3 Testability

This section concerns how the Peer2Me framework can be tested during development. During
the development phase in our depthstudy [5], we discovered that if a MIDlet runs perfectly
on the emulator, it might not run at all on a real phone. Most emulators do not act in the
same way as a real phone, especially when running MIDlets that use the JAWBT API. By
experience, we have discovered that network connections on real phones are harder to establish
and harder to maintain. Since networking is a essential part of the Peer2Me framework, it
must be possible to debug the framework on real phones and not just the emulator.

70 CHAPTER 14. REQUIREMENTS

T1 – Log
Source of stimulus The framework developer
Stimulus The framework developer wants to debug the framework on real

phones using a log
Environment Runtime
Artefact The Peer2Me framework
Response The log should be available on the mobile phone
Response Measure The log should always be accessible on the mobile phone

Since a mobile phone does not have a console displaying debug information, a log functionality
recording events in framework would prove useful.

14.2.4 Availability

This section describes some important availability scenarios. Since the framework establishes
network connections, availability is crucial for the success of the framework.

A1 – Normal disconnection of node
Source of stimulus A node disconnects from the network
Stimulus A node disconnects from the network and informs the other nodes

of the disconnection before it happens.
Environment Runtime
Artefact Network module
Response The other nodes in the network registers that the node discon-

nects
Response Measure The other nodes registers the disconnection immediately

Scenario A1 should be considered as a very normal scenario that happens often. In a peer-
to-peer network, nodes will arrive and leave sporadically.

A2 – Abnormal disconnection of node
Source of stimulus A faulty node disconnects from the network
Stimulus A node fails and disconnects from the network
Environment Runtime
Artefact Network module
Response The other nodes in the network registers that the node discon-

nects
Response Measure The other nodes registers the disconnection within 30 seconds

Scenario A2 occurs when something goes wrong with a node which causes it to disconnect
from the network. This can be anything from the battery depleting or other events that are
out of the control from the application environment. The time it takes for the other nodes
to find out that a node is missing, cannot be set too strict, since it would require a lot of
resources. Therefore, we have required that the other nodes should discover that a node is
missing within 30 seconds.

14.2. QUALITY REQUIREMENTS 71

A3 – A new node arrives in an established network
Source of stimulus A new node
Stimulus A new node wants to join the network
Environment Runtime
Artefact Network module
Response The new node searches the network and informs everyone of its

arrival
Response Measure The time it takes for a new node to search and send messages

is highly dependant on the mobile phone’s performance and net-
work technology. Testing have shown that a Sony Ericsson K750i
uses approximately 10 seconds to perform this task using Blue-
tooth.

72 CHAPTER 14. REQUIREMENTS

CHAPTER 15

Architecture Design Decisions

Before the actual implementation of a software solution is started, many important pieces
must be laid out in order to get oversight and structure. As well as requirements, a base
design is important to get a rigid and easy-to-maintain construction. When the base design
is roughed out and implemented, one must keep in mind to apply well-known, good working
tactics and patterns when applicable. Getting all this right, will result in software which is
easy to understand and maintain.

This chapter discusses the many decisions made about how the framework could be designed.
It elaborates why the different pattern and tactics are used, and in some cases, possible al-
ternative methods. This is presented in a collected manner to make it easier to understand
the crossroads we have encountered, and how we dealt with these. This is done over next
sections.

15.1 A Pure P2P Model

As mentioned in Section 8.1, there are three basic peer-to-peer models, each laying out the
structure a bit differently. Choosing either a hybrid or a mixed model will involve great limi-
tations to the framework. Both the hybrid and mixed model needs a central unit which keeps
information about the nodes resulting in a classic client/server, or more appropriate, a mas-
ter/slave configuration. To keep awareness and maintain availability in such a configuration
is very difficult; If the master-node looses its connections, it will result in a dead network.
A solution would be to delegate the server responsibility to a new node, but the algorithms
required in such a task would be complex.

We chose to implement the framework based on a pure P2P model disregarding any clien-
t/server or master/slave solutions. In a pure P2P network, each node is equal and shares the
same responsibility. Every node knows every node directly, not through a master node which
would be the case in a hybrid network. This means that if one node looses its connections,
the network is still alive without the need of delegating new responsibility. Detecting node
disconnections and node loss is also much simpler and less resources demanding. This is
covered in Section 15.5, and provides a robust and stable network.

73

74 CHAPTER 15. ARCHITECTURE DESIGN DECISIONS

Another great advantage with a pure P2P network is the possibility of designing scatternets,
described in Section 8.5. This means that two nodes do not need to be in direct connection
with each other to communicate. The network can therefore cover larger areas and include
more nodes.

15.2 Layered Software Structure

When designing and implementing a software solution like a framework, it is crucial to have
a good architectural structure before implementing all the functionality. Drawing guidelines,
defining responsibility and boundaries are important if the result is to be easy-to-follow and
maintainable.
Creating large systems like a framework has been done before, and it is smart to search for a
best practice. One can compare a pattern to a best practice. A well known method for solving
a known problem. Using an existing pattern will result in a shorter development time and a
more rigid solution.

For the main architecture, we have used a layered architecture pattern, as described in Section
12.8.1. This gave us a good start designing the structure. Since one of the key elements to the
framework is the possibility to exchange parts, particularly the network medium, a layered
structure is well suited. This version of Peer2Me is implemented using Bluetooth, and it is
not required to alter any code to use a implementation of another network technology. Figure
15.1 shows the layered layout of the Peer2Me framework.

Figure 15.1: The layered layout of Peer2Me

As you can see, and as explained in Section 12.8.1, each layer has its own responsibility and
only knows the implementation details of the layer over and the layer beneath, there is no
horizontal link.
As an example, if Network needs something from Group, it could not go directly to Group
because it has no instance of it, nor has Group any static methods exposed. The only classes
that have any knowledge about Group is Session (and Node). Network knows about Session,
and Session knows about Group. The layered structure defines the information path.

15.3. COMMUNICATION PROTOCOL 75

There are several other structural patterns that might have been suitable, such as the process
structure or the client-server pattern, but do not meet the requirements of Peer2Me. These
are described in Software Architecture in Practice [3]. The process structure has a good com-
ponent based structure, which could have made the framework smaller with optional features,
but the functionality would be hard to implement. If the client-server should have been ap-
plied, the network medium would have been locked and the possibility of a pure P2P model
eliminated.
The layered structure have proven to be quite successful, preventing ripple effects, leaving the
framework easy to maintain. The tactic prevent ripple effects is explained in Section 12.3.1.

As Figure 11.1 shows, Java is also a layered structure. How the Peer2Me framework is
connected to the Java structure is shown in Figure 16.7.

15.3 Communication protocol

Peer2Me is currently implemented with one network technology, Bluetooth. Bluetooth was
chosen because an infrared peer-to-peer network is completely unpractical and there are no
WLAN API, available for J2ME. There are currently two protocols that can be used to imple-
ment Bluetooth in J2ME: OBEX and RFCOMM. See Section 11.3.1 for further information
about these two protocols. Both protocols have their advantages and disadvantages. The pre-
vious version of Peer2Me, developed by Lund and Norum [31], used the RFCOMM protocol.
We chose OBEX. OBEX is a well developed protocol with much more flexibility than the basic
RFCOMM protocol. It allowed us to attach headers that described the data being transported
between the nodes, rather than just the data itself. The previous version of Peer2Me appended
descriptions all around data being transported. This required special parsing of the data on
the receiving node. This has proved to be a very awkward way of transporting data. In our
depthstudy [5] we encountered serious problems with this method. It was not possible to send
data that contained special characters such as \n (linebreak), and adding several elements to
a message did just not work good enough with the RFCOMM protocol. The use of OBEX has
allowed us to create and send very advanced messages, containing serialized objects, primitive
datatypes and files. We are proud to say that adding more description to the messages and
creating new type of messages should be easily accomplished for other developers who want
to continue our work.

15.4 Messages

Before we chose the communication protocol, we discussed what kind of functionality we
would like the messages to have. We came up with much higher demands than the previous
version of Peer2Me had. We also sketched out how the code should look like for an application
developer who wants to send a message containing different elements. The previous version of
Peer2Me did not provide a user friendly way of sending messages. The application developer
had to create a Message object, then create MessagePart objects and then add these to the
Message. Our solution does not require the developer to create and add such parts to the
message, thus increasing the usability of the framework.

In the previous version of Peer2Me, the developer had to add a message part to a mes-
sage that contained an int in order to identify the type of message on the receiving node.
The receiving node then had to retrieve the message part and the retrieve a field value in
that messagepart to identify the entire message. This was also awkward. We had to find
a way of distinguishing messages, both the messages that the framework creates and sends
internally and the messages that the application developer creates and sends. We decided

76 CHAPTER 15. ARCHITECTURE DESIGN DECISIONS

early on that messages sent by the framework internally such as ”node joined”, ”node left”
and ”node moved” should be separated by messages sent by the application developer. These
are the alternatives we were faced with:

1. Use OBEX headers to identify internal messages and add a mechanism that allows the
application developer to identify a message using an int.

2. Use OBEX headers to identify internal messages and let the developer decide how he
wants to identify messages.

Alternative 1 would force the application developer to use a specific primitive variable to
identify messages. Alternative 2 does not lock the application developer to a certain way of
defining messages and offers much more flexible solutions than the previous version of Peer2Me
and the other alternative.

In our new version of Peer2Me, the developer now has the freedom to distinguish messages in
a variety of ways. He can use any of the following as an identifier on a message: int, double,
float, String, boolean, char, long and short. And there is no restrictions if he wants some
kind of ”sub identifying” scheme either. Listing 15.1 shows how to add a custom identifier to
a message. This example uses an int.

Listing 15.1: Sending two messages identified by an int value

41 // Creating and sending two messages

42 Message message = new Message ();

43 message.addElement (1,"type");

44 message.addElement("This is type 1 message","info");

45 message.addRecipient(node);

46 framework.sendMessage(message);

47

48 Message message2 = new Message ();

49 message2.addElement (2,"type");

50 message2.addElement(true ,"info");

51 message2.addRecipient(node);

52 framework.sendMessage(message2);

Listing 15.2 shows how to identify the two different messages sent in Listing 15.1.

Listing 15.2: Receiving a message

53 // Receiving a message

54 public void messageReceived(Message message)

55 {

56 int type = message.getInt("type");

57 switch (type)

58 {

59 case 1:

60 String info = message.getString("info");

61 break;

62 case 2:

63 boolean info = message.getBoolean("info");

64 break;

65 default:

66 break;

67 }

68 }

If the developer wants to, he can also use a String as an identifier of the message or maybe
a just a boolean if there only exists two types of messages in his application.

The last crossroad we were faced with regarding the message system, was how to priori-
tize messages. Early testing showed that it was not possible to send more than one message
at a time on a specific Bluetooth channel 1. This meant that if the application tried to send

1Bluetooth assigns a connection to a specific channel when it is created. Bluetooth is also restricted to seven simultaneous
channels

15.5. DETECTING NODE LOSS 77

a message before the previous one was finished, the Bluetooth API would complain that the
Bluetooth module was busy at the time. To solve this problem we implemented a queue of
dynamic size and a module that checks the queue at regular intervals and processes the queue
when messages are added to the queue. This means that the MIDlet that uses Peer2Me does
not invoke the sending of the message directly, but just adds the message to a queue which the
framework processes. Section 12.3.3 describes scheduling tactics, where FIFO is one of them.
We decided to use the FIFO algorithm for handling messages. This eliminates the possibility
of low prioritized messages being unprocessed. Changing the queue handling algorithm or
modifying it can easily be accomplished if a developer wishes another type of tactic.

15.5 Detecting Node loss

A big challenge when designing mobile applications is availability. It is crucial to have good
awareness between the mobile phones, and at all time keep track of the nodes that are avail-
able. To achieve this, one can implement different tactics. The two most commonly used
tactics are the ping/echo-tactic and the heartbeat-tactic.

We chose to implement the ping/echo tactic, as this is more reliable. While in the heartbeat-
tactic the nodes sends out a message at a given interval, it requires the other nodes to con-
stantly listen for special messages containing the heartbeat, without generating a conformity
message to the heartbeat. In a normal situation this tactic would require the least number of
messages, hence reducing the network traffic.
The number of messages in a normal situation, ping/echo vs. heartbeat:
(n is the total number of nodes)

• Ping/echo 2 x (n-1)

• Heartbeat (n-1)

As mentioned, this would be in a normal situation. Since we implemented the framework
using the OBEX protocol instead of the RFCOMM protocol, as mentioned in Section 15.3,
there is a much more clever way to achieve this. Since it is impossible to send a message
to a node that is not connected, sending the actual ping-message is therefore unnecessary.
Instead of sending the actual message, we can just try to connect and if that is successful
the node is alive. If the connection failed, we know that node is currently unavailable. Since
there might be other issues preventing the node from accepting a connection, the connection
will be retried established a given number of times. As mentioned in Section 16.9, each node
carries statistics regarding failed connections and successful ones. A simple call to the method
boolean isNodeAbscent() will return whether the limit of failed connection is reached or not.
Since OBEX includes a standard headerset with each connection, the amount of data needed
in this communication is much lower than sending a message with i.e. RFCOMM. Using this
approach results in 0 ordinary messages, only the headers, and outruns the heartbeat tactic
by a large margin.

As the ping/echo tactic runs constantly, it uses its own channel in OBEX, not interrupt-
ing the normal communication.
When a node is detected lost, it is removed from the list of available nodes at the node which
detected the loss. The loss of a node is not broadcasted.

78 CHAPTER 15. ARCHITECTURE DESIGN DECISIONS

CHAPTER 16

Design Overview

This chapter presents a logical overview along with process views where appropriate of the
Peer2Me framework.

Our depthstudy [5] revealed weakness and lack of functionality in the previous version of
Peer2Me, resulting in this redesign. First we give a quick overview of the central concepts
of Peer2Me, how Peer2Me relate to Java, and then present an architectural overview and a
detailed description of the packages and the classes.

16.1 Domain concepts

To fully understand how the framework is designed, a few key concepts must be explained.
This section will described these concepts.

Framework: The top entity of the framework and the interface between the application
using the framework and the framework itself.

Session: May be regarded as the main link in the framework. A session keeps track of known
peers, groups, available network mediums etc.

Service: Identifies the application running the framework.

Network: An abstraction of the network layer representing the communication medium.

Node: A representation of a peer running the framework.

Group: Represent a collection of nodes known to each other.

Message: An entity that can be exchanged between the nodes. Can be sent to single nodes
or to groups. Can contain text, serialized objects or binary data such as files, pictures
etc.

Application: The MIDlet using the framework.

None of the concepts above are directly dependent of a specific network medium, but might
have small limitations depending on the network technology. It should not be necessary to
alter the conceptual design when changing network mediums.

Figure 16.1 illustrates how the domain concepts are related to each other.

79

80 CHAPTER 16. DESIGN OVERVIEW

Figure 16.1: Domain concepts

16.2 High level general process scenarios

This section presents how data is passed between the different layers in the Peer2Me framework
in some typical scenarios. This section also presents how nodes change roles depending on
which node initiates a transfer of a message.

The MIDlet interacts with the framework through the Framework class. When the Peer2Me
framework wants to send data to the MIDlet, it does this through the FrameworkSubscriber.
Figure 16.2 shows how the Peer2Me is initialized when the MIDlet calls the method initialize()
on the Framework class.

Figure 16.2: Initialization of the Peer2Me framework

16.2. HIGH LEVEL GENERAL PROCESS SCENARIOS 81

After the Peer2Me framework has been initialized, the MIDlet can start a search for other
nodes. Figure 16.3 shows how the framework initiates a search through the different layers
and how the framework alerts the MIDlet when a node is found.

Figure 16.3: Search for other nodes

82 CHAPTER 16. DESIGN OVERVIEW

After a search has completed, a node can send a message to another node. Since we have
implemented a pure peer-to-peer Bluetooth network, nodes are independant of a central node
and must be able to change ”roles” depending on the situation. Figure 16.4 shows three nodes
which are all aware about each other, but none of them have been assigned either a master
or a slave role.

Figure 16.4: None of the nodes has been assigned a role

If node A wants to send a message to node B, node A will take the role as master and node
B becomes a slave, see Figure 16.5.

Figure 16.5: Node A sends a message to node B

Later, if node B wants to send a message to node C, node B will become the master of that
connection. The transfer of a message from B to C is illustrated in Figure 16.6.

Figure 16.6: Node B sends a message to node C

16.3. PEER2ME AND JAVA 83

16.3 Peer2Me and Java

This section describes how the Peer2Me framework relates to Java. As the previous version
of Peer2Me, this version also use the Java 2 Mobile Edition SDK as described in Section 11.2
and is designed to run on mobile phones supporting MIDP 2.0. As Figure 16.7 shows, the
framework lies between the base J2ME components and the MIDlet application.

Figure 16.7: How the framework relates to J2ME

The MIDlet profile MIDP 2.0 defines the methods and objects available to the framework
implementation, running on top of the CLDC, as described in Section 11.2. The application
using the framework, the MIDlet, lies on the top.

As shown in the figure above, two optional packages provided by Java is required in the
framework. The JSR75 which is used for accessing PIM data and the filesystem, and the
JSR82 which is the Java API for Bluetooth.

84 CHAPTER 16. DESIGN OVERVIEW

16.4 Peer2Me Package Overview

This section will give an overview of the packages in Peer2Me, while the preceding sections will
give detailed information about each package. Figure 16.8 shows an overview of the packages
found in Peer2Me, and how they are hierarchically ordered.

Figure 16.8: The packages of Peer2Me

Each of the packages displayed in Figure 16.8, relates to its own layer-component in Figure
15.1 found in Section 15.2, except Log, Message, Util and Exception. As you can see, the
Bluetooth package is subservient the Network package.
We will now present each package.

16.5 The Framework package

The framework package is the main link between the Peer2Me framework and the application.
It resides above all the other packages in the layered structure.
One key element in this version of Peer2Me is that the developer using the framework should
deal with fewest possible classes from the framework, keeping the exposed methods tidy and
understandable. The developer will normally only use methods provided by the framework,
message and node classes. Even though many of the classes in the framework are public,
they are not intended to be used outside the framework.

16.5. THE FRAMEWORK PACKAGE 85

This package provides one class, Framework and one interface, FrameworkSubscriber. Both
equally important and used by each other. They are explained in the preceding sections
beginning with Section 16.5.1.

16.5.1 Class: Framework

Applications using the Peer2Me framework will interact mostly with this class. After this class
is instantiated, it creates an instance of Session, initializes the Log, sets the FrameworkSub-
scriber and the FileHandler. The framework class uses the principle of the singleton design
pattern, and is created as shown in Listing 16.1. Singleton is described in Section 12.6.1.

Listing 16.1: The Framework is created in an application

1 // Creates a new instance of Framework

2 public static synchronized Framework getInstance(String groupName ,

3 String serviceName , Network network , boolean activatePing ,

4 FrameworkSubscriber frameworkSubscriber)

5 {

6 if(singleton == null)

7 {

8 singleton = new Framework ();

9 singleton.setSession(Session.getInstance(singleton.getFramework (),

10 new Group(groupName), new Service(serviceName),

11 network , activatePing));

12 singleton.setframeworkSubscriber(frameworkSubscriber);

13 singleton.setLog(Log.getInstance ());

14 singleton.setFileHandler(FileHandler.getInstance ());

15 }

16 return singleton;

17 }

As you can see in the listing above, Framework.getInstance(..) is needed to get an instance
of Framework, to which initialize() must be called. The framework then calls on the
initialize() method in Session, which again use initialize() in Network. This approach,
a strict information path in a layered architecture, is covered in Section 15.2. This initializes
the framework, which then starts listening for incoming connections. The framework awaits
further instructions from the application, which can be to initiate a search for other nodes.
The framework can now also accept incoming connections. It must also be decided when
calling on the Framework.getInstance(..) if the ping functionality should be activated
or not. This is controlled by boolean activatePing. When the framework starts a search
with the method search() it forwards the call to Session, Network. framework will now
use the network technology provided in the getInstance(..) method call, to search for
other devices running the framework with the appropriate ServiceID. The principle behind
a serviceID is described in Section 11.3.1 and Section 16.7. When a search is finished, the
method searchCompleted() is invoked.

Besides the two main methods, initialize() and search(), the framework class offers
methods for sending messages, handling groups, nodes etc. These methods are all forwarded
through Session to the rest of the Peer2Me framework, but gathering them in the framework
class using principles of the facade pattern, provides a better overview for the developer using
the framework. The facade pattern is described in Section 12.7.1. When the application sends
a message, it must pass on an object of the type Message to the method sendMessage(Message
message). How a message is constructed is explained in Section 16.12.1. The message will
then be passed through the layers.
The framework will at all time store discovered nodes, their groups and all associated infor-
mation. It is therefore unnecessary to store connected nodes in the application, and instead
use the provided get methods for retrieving nodes and groups. A detailed description of these

86 CHAPTER 16. DESIGN OVERVIEW

methods can be found in their respective packages. Methods for handling a Group are found
in Session and methods for handling a Node are found in Group.

There are five methods in the framework class which depends on an interface to be im-
plemented by the application. The interface FrameworkSubscriber must be implemented by
the application using the framework, and give a reference to the framework via the method
setFrameworkSubscriber. Not doing this before engaging any communication will result in
an exception. The interface is described in Section 16.5.2.

16.5.2 Interface: FrameworkSubscriber

This interface is the connection between the application and the Peer2Me framework. It must
be implemented by the application, forcing it to implement five simple methods, showed in
Listing 16.2. This mechanism is based on the observer pattern described in Section 12.5.1.

Listing 16.2: The methods in the FrameworkSubscriber needed by Framework

1 public void nodeDiscovered(Node node)

2 {

3 //node -> The node that is discovered

4 }

5

6 public void nodeLost(Node node)

7 {

8 //node -> The node that is lost

9 }

10

11 public void messageReceived(Message message)

12 {

13 // message -> The message that is received

14 }

15

16 public void messagePartReceived(String messageID , int part , int total)

17 {

18 //part & total -> part of total received

19 }

20

21 public void searchCompleted ()

22 {

23 // Search is completed

24 }

Details on the objects passed to the methods can be found in Section 16.12.1 for Message and
Section 16.9 for Node.

16.5. THE FRAMEWORK PACKAGE 87

16.5.3 Class Diagram

This section show the class diagram of the framework package in Figure 16.9.

Figure 16.9: Class Diagram of the Framework Package

88 CHAPTER 16. DESIGN OVERVIEW

16.6 The Session package

I our layer-structured framework, Session is the most essential part, joining together all
the other classes and controlling the information-flow both upwards and downwards in the
hierarchy. As shown in Figure 16.1, the main branches, Group, Network and Service, all
arise from Session. Doing this, we provide strict rules for how methods can be called upon,
variables transported and objects instantiated.

An application using the framework will only have one instance of Session. The Session
package consists of only one class uniting access methods for operations regarding group and
network.

16.6.1 Class: Session

Session is one of the bigger classes in the framework providing many getters1 and setters2,
but reducing it into several smaller classes would take away the clarity and uniformity. As
mentioned, the framework only need one instance of Session, and Session therefore implements
the singleton pattern. The singleton pattern ensures that only one instance of the class is
created, and the pattern is described in Section 12.6.1. The session class does not contain any
complicated logics, but creates a default Group and sets the network along with some local
properties.

1Getters - Methods that retrives a specific variable are often referred to as a ”getter”-method
2Setters - Methods that sets the value of a specific variable are often referred to as a ”setter”-method

16.6. THE SESSION PACKAGE 89

16.6.2 Class Diagram

This section show the class diagram of the session package in Figure 16.10.

Figure 16.10: Class Diagram of the Session Package

90 CHAPTER 16. DESIGN OVERVIEW

16.7 The Service package

The service package provides simple functionality for registering a serviceID used when dis-
tinguishing different application running on bluetooth. The package consists of two classes
described in the sections following.

16.7.1 Class: Service

This class is used to store a serviceID and pingserviceID in two formats. One in plain ASCII
characters, and one in hexadecimal characters. The ASCII representation is the serviceID
submitted by the developer using the framework, and used in the connection url as described
in Section 16.11.2. This is the same for the serviceID used by the ping functionality.
The serviceID represented by hexadecimal characters is derived from the serviceID in ASCII
character, by using the HexBuilder class. This representation of the serviceID is used as
an Universally Unique IDentifier. An UUID is said to be a unique identfier of a soft-
ware application, and can be generated in J2ME by the java.util.UUID or in J2ME by
javax.bluetooth.UUID. These will only generate either a 128-bit representation, or a 16-bit
representation, and it is not garanteed that it will be the same each time, which is needed in
the framework. The framework has therefore its own conversion algorithm, found in Section
16.7.2.

16.7.2 Class: HexBuilder

This class cannot be instanciated, and provides only one method,
static String getHexString(String serviceID). This method will convert a ASCII string
to a 32-bit hexadecimal representation. If the ASCII string is shorter than 16 characters, the
hexadecimal representation will be shorter than 32-bit. It is therefore looped until exactly
32-bit.
If something goes wrong, a HexConversionException is throwed.

16.7.3 Class Diagram

This section show the class diagram of the service package in Figure 16.11.

Figure 16.11: Class Diagram of the Service Package

16.8. THE GROUP PACKAGE 91

16.8 The Group Package

A peer-to-peer network can involve many participants, and can get quite complex. The
number of participants can affect performance and increase overhead if not dealt with properly.
A way to deal with parts of this problem is to divide the participants into smaller groups to
increase the overview and make the network more efficient. One can regard the group-layout
as a best practice.

The Peer2Me framework is no exception and provides grouphandling. When participants
are joining the network, they are put into a default group. They can then afterwards be
moved into new groups, join existing groups or be removed from a group. There are no limit
to how many participants a group can have.

16.8.1 Class: Group

The group package consists of only one class, Group.java. This class stores all the participants,
known as a Node, in the group. The Node class is covered in Section 16.9. The group
is identified by a name, and contains a vector that holds the nodes. Proper methods are
exposed for retrieving, moving and removing nodes. An example of how to move a node from
one group to another is given in Listing 16.3.

Listing 16.3: Example of creating a group and moving a node into it

1 Group myCurrentGroup = framework.getGroup("MyCurrentGroup");

2 Group myNewGroup = framework.createGroup("MyNewGroup");

3 Node myNode = framework.getNode(0, myCurrentGroup);

4 framework.moveNode(myNode ,myCurrentGroup ,myNewGroup);

As you can see, the method moveNode(Node node, Group from, Group to) takes the node
you want to move, and the groups used in the transfer as parameters. The method getNode(int
index,Group group) gets the node, or throws a NodeNotFoundException if the node is not
found in the group.

16.8.2 Class Diagram

This section show the class diagram of the group package in Figure 16.12.

92 CHAPTER 16. DESIGN OVERVIEW

Figure 16.12: Class Diagram of the Group Package

16.9 The Node package

A peer-to-peer network has two or more participants. The collective term for a participant
is nodes. A node stores information about the participant, and will in Peer2Me represent a
device running an application using the framework. When someone is sending data, he/she
is using a Node as the representative of the recipient device. The node package contains only
one class representing the data structure of a node.

16.9.1 Class: Node

This class stores basic information such as name and address, along with a reference to a
NetworkNode for a device. The NetworkNode class is described in Section 16.10. Simple
statistics regarding the ping/echo-functionality is also stored here. The node keeps track of
how many requests (ping) it has responded (echo) to.
A node is created based on the NetworkNode, which is an abstract class. In this masterthesis,
it would typically be a BluetoothNode, described in Section 16.11. This means the node is in
this case initially based on a RemoteDevice, also described in Section 16.11. A node is only
created by the framework, and should not be created by the developer using the framework.
The nodes are created in Session.java, as shown in Listing 16.4.

Listing 16.4: Codesnippet from Session.java where node is created

1 public void nodeFound(NetworkNode networkNode)

2 {

3 Node node = new Node(networkNode);

4 framework.nodeFound(node);

5 group.addNode(node);

6 }

16.10. THE NETWORK PACKAGE 93

16.9.2 Class Diagram

This section show the class diagram of the node package in Figure 16.13.

Figure 16.13: Class Diagram of the Node Package

16.10 The Network package

A feature in Peer2Me is to abstract the network layer, making the communication semi-
transparent for the developers. An important feature is also to make the network layer
modular, in other words easy to switch the network technology with another. In this version
of Peer2Me, Bluetooth is implemented as the network carrier, but can easily be exchanged
with e.g. WLAN instead. This is because the actual framework components are implemented
towards abstract classes defining a set of required methods. The base network components
could have been implemented as interfaces, but in this case it is not recommended.
A simple hierarchical layout of Network is shown in Figure 16.14.

Figure 16.14: A simple hierarchical layout of network

The Network package consist of three components; the Network class, NetworkNode and
NetworkTimer, as described below.

94 CHAPTER 16. DESIGN OVERVIEW

16.10.1 Abstract Class: Network

This class must be inherited by the desired network technology’s base class. This class defines a
set of methods such as search(), sendMessage(Message message), nodeFound(Node node)
etc., which are required implemented by all network technologies. In the current version,
Bluetooth extends this class. In this case, Network is inherited by Bluetooth as shown in
Listing 16.5. Bluetooth is covered in Section 16.11.

Listing 16.5: The Bluetooth-class inherits the abstract Network-class

1 import peer2me.network.Network;

2

3 public class Bluetooth extends Network

4 {

16.10.2 Abstract Class: NetworkNode

This class describes a set properties required in the node representation used by Node covered
in Section 16.9. NetworkNode must be inherited by the node-class used by the particular
network technology. In this case, NetworkNode is inherited by BluetoothNode as shown in
Listing 16.6. BluetoothNode is covered in Section 16.11.

Listing 16.6: The BluetoothNode-class inherits the abstract NetworkNode-class

1 import peer2me.network.NetworkNode;

2

3 public class BluetoothNode extends NetworkNode

4 {

Since NetworkNode only defines a simple set of methods, thereby the method getObject(),
it gives the developer of a new network technology freedom of adding methods and variable to
the class inheriting NetworkNode. The options the datatype object in NetworkNode provide,
enables the developer to embed complex datatypes in to NetworkNode, or in this project
BluetoothNode. And as NetworkNode is abstract and has no predefined constructor, the
class inheriting NetworkNode can be created in many ways offering flexibility.

16.10.3 Class: NetworkTimer

Extends: java.util.TimerTask

NetworkTimer is used to create a ticker firing off at a given interval. It controls the in-
terval between each ping-message, running as a thread unruffled by the other parts of the
framework. NetworkTimer extends TimerTask provided by the J2ME API. TimerTask re-
quires the method run(), and it is this method that gets called each time the timer reaches
its interval.
NetworkTimer has a reference to Network, and run() calls on the defined abstract method
ping() in Network. This will ensure that no exceptions can occur. Listing 16.7 shows how
the timer and ping is activated in the class Bluetooth.

Listing 16.7: How NetworkTimer is created, and the ping-functionality is started

1 protected void activatePing ()

2 {

3 if(! pingActivated)

4 {

5 new NetworkTimer(this ,PINGRATE);

6 pingActivated = true;

7 }

8 }

16.10. THE NETWORK PACKAGE 95

The ping/echo tactic is described in Section 12.3.4.

96 CHAPTER 16. DESIGN OVERVIEW

16.10.4 Class Diagram

This section shows the class diagram of the network package in Figure 16.15.

Figure 16.15: Class Diagram of the Network Package

16.11. THE BLUETOOTH PACKAGE 97

16.11 The Bluetooth package

This package contains all the classes that are needed to communicate with the Bluetooth
network technology. This package extends and implements the classes and interfaces found in
the network package. If a new network technology is implemented in the Peer2Me framework,
it should offer the same functionality as this package does. The Bluetooth package consists
of 12 classes. All the classes and their purposes are described in this section. There are
currently two ways of implementing Bluetooth in J2ME: OBEX or RFCOMM. See Section
11.3.1 for more information about these two protocols. The Bluetooth implementation in this
version of Peer2Me uses the OBEX protocol for communication. This has great impact on
the architecture within this package.

16.11.1 Class: Bluetooth

Extends: peer2me.network.Network

The Bluetooth class is the central class in this package and almost everything is indirectly
controlled from this class. It is responsible for opening up connections so that other devices
may discover the node and connect to it. The message and ping queues are stored in this class
and the class is also responsible for creating queue processors for the two queues, see Section
16.12.11 and 16.12.12. All messages must pass through this class, both messages that are to
be sent and messages that are received. When messages are received, this class alerts Session
of the received message. This class also receives instructions by Session to send messages.
Most of the functionality have been delegated to the other classes in this package. This was
necessary to avoid an overly complex network class.

16.11.2 Class: BluetoothListener

Implements: javax.lang.Runnable

This class creates and opens up a connection so that other nodes may find this node and
connect to it. This is called creating a local service. In order to create a service, a connection
url is needed. A typical connection URL looks like this:

btgoep://localhost:54657374417070546573744170705465;name=TestApp;authenticate=false;encrypt=false

The url consists of different elements:

btgoep The protocol that is used. This url creates an Bluetooth OBEX connection

localhost:### The string requires an UID. The numbers are the UID created by the
HexBuilder class located in the peer2me.service package, see Section 16.7.2. The char-
acters are generated based on the name of the application running the framework.

name=TestApp The name of the running service. This enables similar applications to
identify each other so that they can create a connection.

authenticate=false This means that connections do not need to be approved by the node
running the service if another node wants to connect. In other words, all connections
are accepted.

encrypt=false The data that is exchanged is not encrypted.

98 CHAPTER 16. DESIGN OVERVIEW

When a remote node discovers another node running this service, a connection does not need
to be established. However, when a remote node wants to send information to this node, a
connection is established and an instance of the BluetoothConnectionHandler class is created.
As long as one connection has been established, this class will not accept new connections
until the current one has finished. The BluetoothConnectionHandler instance is dedicated
to handle the specific connection. The connection exists until an entire message has been
transferred successfully. Then the BluetoothListener class is alerted and starts accepting new
connections again.

16.11.3 Class: BluetoothConnectionHandler

Extends: javax.obex.ServerRequestHandler

This class is responsible for handling all incoming connections and messages except for pings.
Pings are handled by the BluetoothPingConnectionHandler class, see Section 16.11.7. When
a remote node wants to establish a connection to this node, this class has to accept it. Since
OBEX has been used as the protocol for Bluetooth communication, it is very easy to distin-
guish between different messages. OBEX makes it possible to attach a set of headers to an
incoming stream. These headers are described in the Peer2MeHeaderSet class, see Section
16.11.11. As mentioned in Section 11.3.1, the OBEX protocol consists of eight operations.
This class handles the incoming CONNECT, PUT and DISCONNECT operations. When
the onPut(Operation op) is invoked in this class, it receives both headers and the stream
of bytes. The method first extracts the headers and then reads the stream. Based on the
information given in the headers, the stream is read accordingly. The current implementation
distinguish between the following type of streams:

• Information about new nodes in the network

• Contents of a file

• Information describing that a node is moved from one group to another

• Primitive variables or serialized object

This class reconstructs the message as data is being received. If only a part of a message is
received in a stream, it stores the partial message in a hashtable. When all the parts of a
message have been received, the message is sent upwards in the architectural layers, ending
up in the MIDlet via the implemented messageReceived(Message message) method. Then
the message can be handled as illustrated in Listings 16.11.

Listing 16.8: Handling a received message in the MIDlet

24 public void messageReceived(Message message)

25 {

26 boolean containsFile = message.getBoolean("containFiles");

27 if(containsFile)

28 {

29 FileInfo fileInfo = message.getFile("file1");

30 String fileName = fileInfo.getFileName ();

31 String path = fileInfo.getFullPathToFile ();

32 long size = fileInfo.getFileSize ();

33 }

34 int meaningOfLife = message.getInt("meaning_of_life");

35 String plainText = message.getString("string");

36 /*

37 * <Some code that handles the received information >

38 * */

39 }

16.11. THE BLUETOOTH PACKAGE 99

16.11.4 Class: BluetoothNode

Extends: peer2me.network.NetworkNode

When a reference to a node that is connectable by Bluetooth is needed, an instance of this
class is created. This class has one more local variable in addition to the ones inherited from
the NetworkNode class called pingConnectionURL. The current implementation of Peer2Me
creates two ways of reaching another Bluetooth node, either by the ”normal” connection url
that is used for message transferring or the other one which is used to see if the node is
reachable. There are three constructors in this class, and all are used by the framework. This
is because the following three situations occur in the framework regularly:

• The framework needs to create an instance of BluetoothNode of the local node for dif-
ferent purposes.

• The framework needs to create an instance of BluetoothNode of a remote node after it
has been found during a regular service search.

• The framework needs to create an instance of BluetoothNode of a remote node A based
on information received from a remote node B.

16.11.5 Class: BluetoothObjectPush

This class takes care of connecting and sending messages to a node. A new instance of this
class is created for each message that needs to be sent. This class has a method called
sendMessage(Message message) which will connect and send a message to the recipients of
the message. The message will be sent to the recipients sequentially, not simultaneously. The
proper headers will be set based on the information contained in the message object. This
class send the headers to the receiver before the actual stream each time.

16.11.6 Class: BluetoothPingListener

This class has the same purpose as the BluetoothListener class, see Section 16.11.2, except
that it creates a service that is used for ping-echo purposes only. No messages are transferred
using this service. The connection url that this class creates is the same as the other listener
class, except for the name of the service.

16.11.7 Class BluetoothPingConnectionHandler

Extends: javax.obex.ServerRequestHandler

This class is similar to the BluetoothConnectionHandler class described in Section 16.11.3,
but has less functionality. The only purpose of this class is to accept a connection. When a
remote node has established a connection to the local node, it disconnects immediately.

16.11.8 Class BluetoothSearcher

Extends: java.lang.Thread
Implements: javax.bluetooth.DiscoveryListener

This class runs in its own thread and extends a required listener, DiscoveryListener, de-
fined in the Java Bluetooth API (JSR82 82). The purpose of this class is to search for nearby
Bluetooth devices that runs the same application as the local node. The class first finds all

100 CHAPTER 16. DESIGN OVERVIEW

Bluetooth devices in vicinity: computers, laptops, mobile phones etc. It then filters and per-
forms a service search on all the mobile phones. If it finds a service on a mobile phone that
is similar to the local running service, it creates a reference to the node as a BluetoothNode
so that a connection can be established later on. After the search has completed it shares
the findings with all the nodes that it has created a reference to. In Figure 16.16, node A
performs a discovery search and then a service search and finds out that node B and C are
running the same service as itself.

Figure 16.16: Node A searches and finds B and C

In Figure 16.17, node A sends messages to node B and C which contains information about
all the nodes in the vicinity, which in this case is node A, B and C. Node B, then finds out
about A and C. Node C finds out about A and B.

Figure 16.17: Node A distributes findings

Figure 16.18 shows the possible connections that can be created by all the nodes. Every node
can now connect to everyone. Remember that even though node B and C has not performed
any searching, they can still connect to everyone thanks to the discovery done by node A.

16.11. THE BLUETOOTH PACKAGE 101

Figure 16.18: All nodes can now establish connections with each other

16.11.9 Class: InstanceOfRemoteDevice

Extends: javax.bluetooth.RemoteDevice

This class enables the framework to create an instance of a remote Bluetooth node based
on the address of the node. It is not possible to create a javax.bluetooth.RemoteDevice based
on an address, and therefore this class is necessary. Regularly when a node performs a search,
the API returns a RemoteDevice, but the Peer2Me framework has now the ability to create a
RemoteDevice on its own.

16.11.10 Class: MessageQueueProcessor

Implements: javax.lang.Runnable

This class takes care of processing the messages that has been put in a queue. The queue
itself is stored in the Bluetooth class. The queue that it processes, is an instance of the class
LinkedMessageList, see Section 16.12.11. This class runs in its own thread so that the MIDlet
does not freeze while the message queue is being processed. In order to send a message, this
class creates an instance of BluetoothObjectPush in an inner thread so that a message can be
aborted if it takes to long.

16.11.11 Class: Peer2MeHeaderSet

Implements: javax.obex.HeaderSet

The OBEX API given in JSR82 contains a class with a standard set of headers that Peer2HeaderSet
implements. This enables the framework to seamlessly integrate the predefined headers to-
gether with custom headers. When a message is sent, it is decomposed into headers and a
stream of bytes. Figure 16.19 illustrates the default headers that are sent with every stream
of bytes.

102 CHAPTER 16. DESIGN OVERVIEW

Figure 16.19: How messages are sent from one node to another.

In the Javadoc for the javax.obex.HeaderSet, an explanation of how to create custom headers
is given. When creating custom headers, it is very important to follow the ”rules” as shown
in Table 16.1.

Header Identifier Decimal Range OBEX Type Java Type
0x30 to 0x3F 48 to 63 Unicode String java.lang.String
0x70 to 0x7F 112 to 127 byte sequence byte[]
0xB0 to 0xBF 176 to 191 1 byte java.lang.Byte
0xF0 to 0xFF 240 to 255 4 byte unsigned integer java.lang.Long

Table 16.1: Available user defined OBEX headers. Shows ranges and types, [41]

OBEX allows 64 user-defined header values.

16.11.12 Class: PingQueueProcessor

Implements: javax.lang.Runnable

If the ping-functionality is enabled in the framework, pings are sent with regular intervals

16.11. THE BLUETOOTH PACKAGE 103

to all known nodes. All pings are added to a queue which is stored in the Bluetooth class.
This class processes the pings in the same way as MessageQueueProcessor does. The dif-
ference is that this class just tries to connect to the nodes in the queue and reports if the
connection was successful. If a ping fails a given number of times, defined in Node, in a row,
the node is considered lost.

16.11.13 Class Diagrams

This section show the class diagrams of the Bluetooth package in Figure 16.20, Figure 16.21
and 16.22

Figure 16.20: Class Diagram of the Bluetooth Package, part 1

104 CHAPTER 16. DESIGN OVERVIEW

Figure 16.21: Class Diagram of the Bluetooth Package, part 2

16.12. THE MESSAGE PACKAGE 105

Figure 16.22: Class Diagram of the Bluetooth Package, part 3

16.12 The Message Package

The Peer2Me framework is able to send and receive complex messages and this package
contains all the classes that are needed to do this. The message package fulfills the functional
requirements 5 - 10 that are described in Table 14.1. These requirements are far beyond the
implementation of message handling in the old Peer2Me framework. The package consists of
13 classes. The classes are all connected, but some classes are more semantically coherent
than others. This is presented in Figure 16.23.

All the classes and their purposes are described in this section. However, a brief overview will
now be given.

106 CHAPTER 16. DESIGN OVERVIEW

Figure 16.23: The classes in the Message package

The Message class may contain many MessageParts. A MessagePart can contain a child-
class of FileObject. The classes SendFileObject and ReceivedFileObject both extend the class
FileObject. FileInfo is a class that contains information about a received file. The frame-
work is also able to send serialized objects. These objects must be instances of classes that
implements the Serializable3 interface. SendableNodeInfo is such a class. The classes Object-
InputStream and ObjectOutPutStream are used to add and retrieve serialized objects from a
Message. LinkedMessageList is a custom dynamic list that is used to add Messages to a queue
in the framework. The handling of the queue is done in another class, MessageQueueProces-
sor. LinkedPingRecipientList is also a custom dynamic list that contains information about
which nodes that must be pinged. This queue is handled by PingQueueProcessor.

16.12.1 Class: Message

In order to send a message from one node in the network to another, an instance of the
Message class must be created. The Message class can contain different types of information.
There are three different kinds of information that can be attached to a Message, illustrated
in Figure 16.24. The elements in the figure is explained in more detail in Section

Creating Messages and Sending Them

Messages can be created and sent in a much easier fashion than in the old version. This can
be illustrated by a few code examples. Listing 16.9 shows how to create and send a simple
message in the old framework.

3Serialize: In order to represent an instance of an object as pute bytes, the class must implement a Serializable interface.
The API for J2SE and J2EE has such an interface, but the API for J2ME does not.

16.12. THE MESSAGE PACKAGE 107

Figure 16.24: Possible contents of a Message

Listing 16.9: Example of creating and sending a simple message in the old framework

1 Message message = new Message ();

2 TextMessagePart text = new TextMessagePart ();

3 text.setDescription("example");

4 text.setFieldValue("Sample text");

5 message.addMessageBodyPart(text);

6 message.addRecipient(node);

7 framework.sendMessage(message ,service);

Listing 16.10 shows the new way of creating and sending a simple message.

Listing 16.10: Example of creating and sending a simple message in the new framework

3 Message message = new Message ();

4 message.addElement("Sample text","example");

5 message.addRecipient(node);

6 framework.sendMessage(message);

In the old framework, a new MessagePart had to be created for each String you wanted
to attach to a Message. This resulted in 4 lines of code. In the new framework, this has
been reduced to 1 line of code; message.addElement(”Sample text”,”example”). The second
parameter in the addElement method is the key that is associated with the text string. The
developer does not even have to worry about creating instances of MessagePart objects and
attaching those to the message. The new framework still uses the concept of messageparts,
but hides them from the application developer and only uses them internally in the framework.
The new Peer2Me also allows the developer to add other primitive datatypes to the message
and assign a ”key” to each of them. Listings 16.11 shows a Message in the new framework
that contains a String, an int, a double, a boolean, a serialized object and two files.

Listing 16.11: Example of creating and sending a complex message in the new framework

8 Message message = new Message ();

9 message.addElement("This message contains plenty of stuff","string");

10 message.addElement (42,"meaning_of_life");

11 message.addElement (3.14 ,"pi");

12 message.addElement(true ,"containFiles");

13 message.addSerializedObject(customObject , "myObject");

14 message.addFile("file1", "e:/ MSSEMC/Media files/audio/Crazy.mp3");

15 message.addFile("file2", "e:/ MSSEMC/Media files/audio/funny.mp3");

108 CHAPTER 16. DESIGN OVERVIEW

16 message.addRecipient(node);

17 framework.sendMessage(message);

Important methods

All methods in the class are used in the framework and documented with Javadoc, but there
are a few that needs further explanation. It is not expected that the reader understands the
complete workings of these methods, but it is very important for a developer that wants to
modify the framework to be aware of the importance of these methods.

storeAllPrimitivesInOnePart() - When primitive variables and/or Strings are added to
an instance of Message, they are stored in separate instances of MessageParts. When
the framework is instructed to send the message, these variables are stored in one part,
so that all primitive values can be converted into a stream of bytes that can be sent over
the network.

extractPrimitivesToSeparateParts() - The receiving node must extract all the primitives
back to their original MessageParts.

numberOfChunksNeeded() - The number of parts in a message determines how many
”chunks” of bytestreams the message must be split in before it can be sent over the
network. Keep in mind that all primitive values have been stored in one part prior to
sending and if a message only contains primitive values, only one chunk is needed. If
three serialized objects are added in addition to the primitive values, four chunks are
needed. If a file is added, the number of chunks needed is determined by the size of
the file and how large the chunks of the file should be sent each time. The size is set
programmatically in the SendFileObject class.

addFile(String key, String fullPath) - This method must be used by the application de-
veloper when adding files. A call to this method, will add a part containing an instance
of SendFileObject to the message. The contents of the file will not be read until the
message is sent.

addReceivedFile(String key, FileObject fileObject) - The node that receives a mes-
sage containing a file, will add a part containing a ReceivedFileObject to the message.

addFileInfo(String key, FileInfo fileInfo) - After all the chunks of a message have been
received, an instance of FileInfo will be added to the message. This object should be used
if the receiving node wants details about the file it just received. The object is retrieved
by calling the method getFileInfo(String key) on the received message object.

16.12.2 Class: MessagePart

As mentioned in the previous section, a Message can contain multiple MessageParts. A
MessagePart can only contain one of the following elements:

• A file

• A serialized object

• A primitive data type or a String

The class has one constructor for each type of MessagePart that can be created. There
are 12 constructors in MessagePart. There are also get-methods for each of the elements.
For instance if a MessagePart is created using this constructor: MessagePart(String key,
double doubleValue), a call to the method getDoubleValue() will return the double value
that was given in the constructor. When creating an instance of MessagePart, the class
automatically knows what kind of information it contains by the local variable, type. This
enables the framework to easily determine what kind of information is stored in a MessagePart.

16.12. THE MESSAGE PACKAGE 109

The MessagePart class exposes public variables that must be used to determine the type of
message. The reader is invited to inspect the Javadoc and the source code for a more detailed
view of the logics of the class.

16.12.3 Abstract Class: FileObject

This class is an abstract class. There are two other classes that extends this class: Send-
FileObject and ReceivedFileObject. The abstract class contains variables and methods that
are common for the to child classes such as filename, file size, full path to the file and if access
has been granted to the file.

16.12.4 Class: SendFileObject

Extends: peer2me.message.FileObject
Implements: java.lang.Runnable

This class extends the FileObject class. If a node wants to attach a file to a message and
send it over the network, an instance of this class is created and added to the message by the
framework. When the framework is instructed to send the message, a connection to the file is
established. This connection must be approved by the user of the application. The display
on the mobile phone will show the following messages: ”Allow application to read user data?
/ Allow application to write user data?”. The user must answer ”yes” to these questions to
allow access to the filesystem. After this is done, this class can begin reading from the file.

16.12.5 Class: ReceivedFileObject

Extends: peer2me.message.FileObject
Implements: java.lang.Runnable

This class extends the FileObject class. When a node receives a message containing a file, an
instance of this class is created and added to the message by the framework. Before the file
is created, the user will be asked to allow the application to write user data. When the user
confirms this, the framework creates the file and writes content to it. For each chunk of file
that is received, new data is written to the file by this class.

16.12.6 Class: FileInfo

After a node has received an entire file, an instance of the FileInfo class is created and attached
to the message. This class contains useful information about the file that has been received
such as: filename, path to file and the size of the file. As described in Section 16.12.1, a key
is associated with a file. The same key must be used on the receiving node to get information
about the file. Recall in Listings 16.11 how a file was added to a message. Listings 16.12
shows how to retrieve information about the file associated with key ”file1” on the receiving
node.

Listing 16.12: Retrieving info about a file

19 FileInfo fileInfo = message.getFile("file1");

20 String fileName = fileInfo.getFileName ();

21 String path = fileInfo.getFullPathToFile ();

22 long size = fileInfo.getFileSize ();

For instance, the variable fileName will contain the String: ”Crazy.mp3”, while filePath
will contain the String: ”e:/MSSEMC/Media files/audio/Crazy.mp3”.

110 CHAPTER 16. DESIGN OVERVIEW

16.12.7 Interface: Serializable

In order for the framework to send objects over the network, the objects must implement
this interface. The interface has two methods: one for serializing and one for deserializing.
This interface was created since there are currently no serializable interfaces available for
J2ME. Classes that implements this interface must also implement an empty constructor.
The Peer2Me framework has one class that implements this interface: SendableNodeInfo.
Application developers are encouraged to use this interface.

16.12.8 Class: SendableNodeInfo

Implements: peer2me.message.Serializable

This class implements the Serializable interface and instances of this class can therefore be
sent over the network. This class is used by the framework to send information about all the
nodes in the network. This class is used as a linked list, since it also contains an instance of it-
self. This enables the framework to iterate through the nodes easily. The linked list is created
in the Bluetooth package and is sent to all the nodes right after a search has completed.

Developers that want to create their own serialized classes should use the SendableNodeInfo
class as an example.

16.12.9 Class ObjectOutputStream

When a serialized object is added to a message, this class serializes it into a bytestream so
that it can be sent over the network. This class calls the implemented serialize() method
from the Serializable interface.

16.12.10 Class ObjectInputStream

When a node receives a stream of bytes, this class deserializes the stream and creates an
object of it. This class calls the implemented deserialize() method from the Serializable
interface. The object that is created must be casted to the correct class. This task must be
solved by the application developer.

16.12.11 Class LinkedMessageList

This class is used as a message queue by the framework. Each time the sendMessage(Message
message) is called on the framework, the message is added to this queue. The queue follows
the First-In-First-Out (FIFO) algorithm. The algorithm is described in Section 12.3.3. In
Figure 16.25, message A is added to the queue first, then B, C and D. When the framework
processes the queue, it removes message A from the queue, sets the next message in the queue
to B and processes message A.

16.12.12 Class LinkedPingRecipientsList

The framework uses a ping-tactic to increase availability and this class is used as a ”ping-
recipient-queue”. The ping-tactic is described in Section 12.3.4. The framework uses this
queue in the background and the queue is created and processed according to a timeinterval
that is set in the framework. This whole process is not visible for the application developer.
The queue follows the same structure and prioritizes pings according to the FIFO algorithm
in the same way as the LinkedMessageList class described in Section 16.12.11 prioritizes
messages.

16.12. THE MESSAGE PACKAGE 111

Figure 16.25: The message queue. Before and after node A has been removed from the queue.

16.12.13 Class Diagrams

This section shows the class diagrams of the message package in Figure 16.26.

112 CHAPTER 16. DESIGN OVERVIEW

Figure 16.26: Class Diagram of the Message Package, part 1

16.12. THE MESSAGE PACKAGE 113

Figure 16.27: Class Diagram of the Message Package, part 2

114 CHAPTER 16. DESIGN OVERVIEW

Figure 16.28: Class Diagram of the Message Package, part 3

16.13. THE EXCEPTION PACKAGE 115

16.13 The Exception package

An important thing in all software solutions is handling exceptions and errors. One way is to
try/catch most of the code, but this is definitively not a best practice. The important thing is to
catch and throw the right exceptions giving good explanation of what the exception is about.
The typically thing to do is extending a Java Exception, inheriting the base functionality and
adding your own. You can then throw your own exception. Figure 16.29 shows the path of
inheritance.

Figure 16.29: An example of the inheritance of exception

This version of Peer2Me uses several own exception types, all described briefly in the preceding
sections.

16.13.1 FileNotFoundException

Extends: java.lang.NullPointerException

This exception is thrown when the framework tries to read or send a file that not exist.

16.13.2 FrameworkNotInitializedException

Extends: java.lang.NullPointerException

This exception is thrown if the framework is not initialized before search is called. The
method framework.initialize() must be called before trying to search for devices.

116 CHAPTER 16. DESIGN OVERVIEW

16.13.3 GroupNotFoundException

This exception is thrown when getting or removing a group from the framework. Is thrown
by the methods getGroup(..) and removeGroup(..). The reason is that the group at the
specified index or with the specified name does not exist.
Extends NullpoinerException.

16.13.4 NodeNotFoundException

Extends: java.lang.NullPointerException

This exception is thrown when getting, moving or removing a node from the framework.
Is thrown by the methods getNode(..), moveNode(..) and removeNode(..). The reason is
that the node at the specified index and group, or a node with the specified address does not
exist.

16.13.5 LocalDeviceNotFoundException

Extends: java.lang.NullPointerException

This exception is thrown when the framework tries get properties from the mobile device,
but fails. This can be because of Bluetooth security issues or if the Bluetooth does not func-
tion properly.

16.13.6 HexConversionException

Extends: java.lang.Exception

This exception is thrown if the process of converting an ASCII-string to a HEX-string fails.
Will occur if a ServiceID in ASCII-characters cannot be converted to a 32-bit HEX-string.

16.13.7 InvalidKeyException

Extends: java.lang.IllegalArgumentException

This exception is thrown by addSerializedObject(String key, Object o) if the key is
invalid.

16.13.8 UnknownKeyException

Extends: java.lang.IllegalArgumentException

This exception is thrown by getSerializedObject(String key) if the key is invalid, or
if the key points to nothing.

16.14. THE LOG PACKAGE 117

16.13.9 Class Diagram

This section show the class diagram of the exception package in Figure 16.30.

Figure 16.30: Class Diagram of the Exception Package

16.14 The Log package

This package contains the Log functionality found in Peer2Me. The Log stores runtime-
messages created at different locations in the framework. The log is useful for debugging as
well as getting real-time information at runtime of the frameworks progress and well-being.
The log package’s contents are structured in layers as shown in Figure 16.31.

118 CHAPTER 16. DESIGN OVERVIEW

Figure 16.31: The structure of the log system

A log-entry is divided into four categories: Error, Warning, Information and MIDlet, de-
fined by LogElementType. The three first categories described logentries arisen within the
framework, the last one is intended to be used by the application running the framework.
Each entry will also carry information about time and date. These can be switched off as
described in Section 16.14.1. The actual logging can also be switched off if the device running
the framework has limited memory resources.
Four log-classes defines the log system, and is described beginning at Section 16.14.1.

16.14.1 Class: Log

The Log class is the base of the Log system. This class defines a Vector storing LogElements
(described in Section 16.14.2), and provides methods for adding and retrieving entries, or clear-
ing the Log. The class also provides an enumeration-capability for iterating through the en-
tries. These methods are created with the aid of an internal counter keeping the track of entry
last displayed. Using the methods getNextElement() or getPreviousElement() will return
null if there are no more entries respectively first or last. Methods like getFirstElement()
or getLastElement() can also be used.
If only a specific type of entry is wanted, getElements(LogElementType type) can be used,
returning an array of LogElements of the specified type.

As mentioned, Log can be reached from all over the framework and the application due
to its Singleton pattern. Adding a new entry in the log is therefore quite simple. Getting
a reference to the Log-object is done by calling the getInstance()-method, and thereby
calling the addElement(LogElementType type, String description). This is shown in
Listing 16.13.

Listing 16.13: Example of adding an entry to the log

1 // Example #1 - Adding an information entry

2 String description = "The framework is initialized";

3 Log.getInstance (). addElement(LogElementType.INFORMATION ,description);

4

16.14. THE LOG PACKAGE 119

5 // Example #2 - Adding a warning

6 Log myLog = Log.getInstance ();

7 String description = "Could not get local name. Default set.";

8 myLog.addElement(LogElementType.WARNING ,description);

After adding an entry to the log, it will be stored ready to be retrieved by using the get-
methods previously mentioned which returns a LogElement, or the methods
getElementsAsList(..) which returns a javax.microedition.lcdui.List object ready to be
used in the graphical interface of a MIDlet. Input to these methods are title and/or which
types of entries wanted in the list. These methods can prove to be quite useful, since it will
reduce the amount of code needed in the MIDlet. We used these methods frequently during
development for debugging purposes.
Listing 16.14 shows an example of how entries can be retrieved from the log.

Listing 16.14: Example of retrieving entries from the log

1 // Example #1 - Getting all elements

2 Log myLog = Log.getInstance ();

3 LogElement [] allElements = myLog.getElements ();

4

5 // Example #2 - Getting only warnings

6 Log myLog = Log.getInstance ();

7 LogElement [] warningElements = myLog.getElements(LogElementType.WARNING);

8

9 // Example #3 - A List to show in GUI

10 display = Display.getDisplay(this);

11 Log myLog = Log.getInstance ();

12 List list = myLog.getElementsAsList("MyLog");

13 display.setCurrent(list);

As these methods retrieve entries from the log created both by the framework and in the
application using the framework, one must keep in mind to be careful when adding entries
in the application using other LogElementTypes than MIDlet, since this might be confusing
when mixed with the framework’s native logentries.

Altering the properties showDate and showTime with their respective exposed methods will
change the default toString of a LogElement. This is described in Section 16.14.2.

16.14.2 Class: LogElement

A LogElement holds information about the actual log-entry, and its constructor is not visible
to application developer, since it is only created by Log. When retrieving a LogElement and
displaying its toString() property, it contains the date, time, type and description. If desired,
this can be customized by the methods showDate(boolean show and showTime(boolean
show).

16.14.3 Class: LogElementDate

This class holds only a time description for the actual LogElement it is created by. It
uses the java.util.Date to get a date/time representation, and split(String text,char
splitcharacter) in the class TextUtil to get date and time on the correct format. This
could be achieved by using java.util.Calendar object, but this will result in unnecessary mem-
ory usage, and reduce the performance since Calendar is a complex object.

16.14.4 Class: LogElementType

A single log entry is defined as a type, a LogElementType, and as mentioned above it describes
the severity or category of the entry. There are four available types:

120 CHAPTER 16. DESIGN OVERVIEW

• Information: Useful information generated mainly in the framework

• Warning: Typical warnings generated by the framework. Severity medium.

• Error: Critical errors or exceptions caught within the framework

• MIDlet: Intended for the MIDlet using the framework

They are all constructed to imitate enums in Java 5, enabling the use of objects as switches
instead of integers. This not a big thing if the types are only used to distinct the types from
each other when programming, but when it comes to displaying them, there is a difference.
While using the typical approach, integers as identifiers, displaying the chosen value would
output i.e. a number which does not say much if you have not got a translation table. Our
approach to this is creating protected classes inheriting LogElementType and overriding the
toString()-method. Then when calling i.e. LogElementType.WARNING, it instantiates a new
object of the type Warning, storing this in LogElement. Displaying this would give the output
”Warning”.

16.15. THE UTIL PACKAGE 121

16.14.5 Class Diagram

This section show the class diagram of the log package in Figure 16.32.

Figure 16.32: Class Diagram of the Log Package

16.15 The Util package

The Util package acts as a stand-alone package with two classes needed to perform specific and
rare tasks. These can be reached from anywhere within the framework with a direct reference,
i.e. the class Textutil and the static method split(String text, char splitcharacter is
used in LogElementDate directly. This is done despite our strict layered structure pattern, but
in this case it is necessary with direct references since centralizing the utilities would create
overhead and unwanted complexity.

122 CHAPTER 16. DESIGN OVERVIEW

16.15.1 Class: TextUtil

At this moment, this class contains only one method, static String[] split(String text,
char splitcharacter which mimics the split method provided in J2SE. The basic construc-
tion is dividing the inputstring into an array of chars, then locating the splitcharacter, return-
ing an array of strings with the chunks found. The method will return a null-string-array if
the splitcharacter is not found.

16.15.2 Class: FileHandler

FileHandler is created using the Singleton pattern, described in Section 12.6.1, and is used
store information about the mobile phone’s filereceive-folder. This is done by getting the
phone’s root directories using getRootDirectories(), and adding the given prefix. The
prefix is a static String sat to file:///.
If the received file folder is not sat explicitly, which is recommended, the folder is sat to (and
created if necessary), file:///<root>/tempp2me, where <root> is the first root directory
found on the mobile phone.

16.15.3 Class Diagram

This section shows the class diagram of the util package in Figure 16.33.

Figure 16.33: Class Diagram of the Util Package

Part V

Applications

123

CHAPTER 17

Introduction

This part describes three different applications that uses the new Peer2Me framework. The
source code for the applications are listed in the Appendices.

The three applications:

1. Chat2Me - This is a kind of ”multichat” application. All mobile phones that runs this
application will be able to chat with each other. If a participant writes a message, it
will be sent to all the phones in the network. It follows the same principle as a classic
”group meeting” in MSN Messenger. The application consist of only one file containing
131 lines of code: Chat2Me.java.

2. FilePusher - This application lets you search for nearby devices running the same
application and send a file to one of them. The application consists of two files: File-
Pusher.java and FileBrowser.java. The latter file contains the logic for browsing the
filesystem on the mobile phone.

3. ComplexMessageDemo - This application illustrates how a message can contain a
lot of different information and how the information can be retrieved on the receiving
device. This application consist of one file: ComplexMessageDemo.

125

126 CHAPTER 17. INTRODUCTION

CHAPTER 18

The Applications

This chapter presents three applications that can be used to get familiar with the framework
and is recommended reading for anyone who wants to create MIDlets using the new Peer2Me
framework.

18.1 Chat2Me

Chat2Me demonstrates how easy a multichat MIDlet can be created using the Peer2Me frame-
work. The MIDlet uses some basic J2ME functionalities such as displaying forms, letting the
user input some text in a box and implements a CommandListener so that special function-
alities is applied to the menubuttons. Only a small portion of code make up the necessary
framework interaction which is explained in Section 18.1.1.

18.1.1 Walkthrough

Firstly, the class needs to import some classes from the framework, see Listing 18.1.

Listing 18.1: Necessary import declarations

11 import peer2me.framework.Framework;

12 import peer2me.framework.FrameworkSubscriber;

13 import peer2me.message.Message;

14 import peer2me.network.bluetooth.Bluetooth;

15 import peer2me.node.Node;

The class must implement the FrameworkSubscriber and have a Framework variable, see
Listing 18.2.

Listing 18.2: FrameworkSubscriber and Framework instance

19 public class Chat2Me extends MIDlet implements FrameworkSubscriber ,

20 CommandListener

21 {

22 private Framework framework;

Then the framework needs to be initialized as shown in Listing 18.3.

127

128 CHAPTER 18. THE APPLICATIONS

Listing 18.3: Initialize framework

71 framework = Framework.getInstance("MyGroup","Chat2Me",new Bluetooth (),this);

72 framework.initialize ();

After the above operations are done, the application can now be discovered by other phones
running the same application. In order to find these, a search can be done as shown in Listing
18.4.

Listing 18.4: Search

105 framework.search ();

After the search has completed, the method searchCompleted() is invoked and the display
on phone shows the main chat window where all messages appear as participants write them.
If the user wants to write a message, he clicks the ”write” button, writes his message, and
presses ”send”. The message will appear in the main window on all participants, including
himself. Listing 18.5 shows how the application creates a Message and sends it.

Listing 18.5: Send a message

93 Message message = new Message ();

94 message.addElement("message",chatMessage.getString ());

95 message.addElement("nick",nick);

96 message.addRecipients(framework.getAllNodes ());

97 framework.sendMessage(message);

98

99 dialog.append(nick + ": " + chatMessage.getString (),null);

100 display.setCurrent(dialog);

101 dialog.setSelectedIndex(dialog.size()-1,true);

When one application sends a message, all the other phones will receive the message and
the method messageReceived(Message message) is invoked. Listing 18.6 shows how the
application handles the incoming message and displays the contents in the main chat window.

Listing 18.6: Receive a message

138 String from = message.getString("nick");

139 dialog.append(from + ":" + text ,null);

140 dialog.setSelectedIndex(dialog.size()-1,true);

141 }

The application contains other methods that must be implemented by the FrameworkSub-
scriber interface:

• nodeDiscovered(Node node) - Is invoked when a new node is found in the network
• nodeLost(Node node) - Is invoked when a node leaves the network
• messagePartReceived(int partNumber, int totalParts) - Is invoked each time a chunk of

a Message is received. This method serves no purpose in this simple application since
no messages needs to be split up in different chunks. In the FilePusher application, this
method comes in handy.

That is all you need for creating a simple multichat application. The chat does not depend
on any device and participants may join and leave as they please. No new search is ever
necessary for the devices that are already in the network. This application uses one class,
Chat2Me.java. The complete source code can be found in Appendix A.

18.2 File2Push

File2Push is a MIDlet that lets the user select a file and send it to another peer. The peer
will receive the file in several chunks, depending on the size of the file. The peer will shown
details about the file, when the entire file is received.

18.2. FILE2PUSH 129

18.2.1 Walkthrough

File2Push instanciates and performs a search in the same way as the Chat2Me application,
see Section 18.1. After a search has completed, the user can select ”Show Nodes” from the
menu on the phone. When he or she selects a node, a custom filebrowser will appear, where
the user can browse through all the files on the mobile phone. The user then has to select a
file, which will invoke the sendFile(String fullPath) method in the MIDlet. The MIDlet
then creates a message containing the file and sends it as shown in Listing 18.7.

Listing 18.7: Create a message and attache a file

151 public void sendFile(String fullPath)

152 {

153 Message message = new Message ();

154 message.addFile("file1", fullPath);

155 message.addElement("file",true);

156 message.addRecipient(currentlySelectedNode);

157 mainForm.append("Sending\n");

158 framework.sendMessage(message);

159 }

The peer that receives the file, must know where to store the file, which is specified as shown
in Listing 18.8.

Listing 18.8: Set received files folder

75 framework.setReceivedFilesFolder("root1/temp/");

The listing above shows how to specify the folder on an emulator. If the MIDlet is running
on a mobile phone a different path must be used. For the Sony Ericsson phones we have
used during testing, we have specified this folder: e:/MSSEMC/Media files/audio/. When
the peer has received the entire message, the messageReceived(Message message) method
is invoked. Listing 18.9 shows how to extract information about the file it just received.

Listing 18.9: Receiving message containg file

161 public void messageReceived(Message message)

162 {

163 FileInfo receivedFile = message.getFile("file1");

164 String filename = receivedFile.getFileName ();

165 String fullPath = receivedFile.getFullPathToFile ();

166 long sizeInBytes = receivedFile.getFileSize ();

167 mainForm.append("A file has been received\nName: " + filename +

168 "\nFull path: " + fullPath + "\nSize (bytes): " + sizeInBytes);

169 }

If the file is large, the file will be sent in chunks as explained in Section 16.12.1. File2Push
shows how to follow the progress of these chunks. Each time a chunk is received, the MI-
Dlet calculates how much it has received and shows the user the progress in percentage of
completetion as illustrated in Listing 18.10.

Listing 18.10: Receiving chunks of message

171 public void messagePartReceived(String messageID , int part , int total)

172 {

173 int percent = (int)(((double)part/(double)total) * 100);

174 mainForm.deleteAll ();

175 mainForm.append("Received: " + percent + " %");

176 }

This application uses two classes, File2Push.java and LocalFileBrowser.java. The complete
source code can be found in Appendix B.

130 CHAPTER 18. THE APPLICATIONS

18.3 ComplexMessageDemo

ComplexMessageDemo is a MIDlet that shows the possibilities of the message functionality
that recides in the framework.

18.3.1 Walkthrough

ComplexMessageDemo instanciates and performs a search in the same way as the Chat2Me
application, see Section 18.1. After a search has completed, the user can select ”Show Nodes”
from the menu on the phone. When he or she selects a node, a predefined complex message
is created and sent as shown in Listing 18.11. This specific application has no real practical
value, but is mearly meant as an illustration of how a message can contain multiple elements.

Listing 18.11: Creating a complex message

151 public void sendComplexMessage ()

152 {

153 Message message = new Message ();

154 message.addFile("file1", file1);

155 message.addFile("file2", file2);

156 message.addElement("summertime",true);

157 message.addElement("country","Norway");

158 message.addElement("pi" ,3.14);

159 message.addElement("age" ,25);

160 message.addElement("achar",’x’);

161 short value = 2;

162 message.addElement("ashort",value);

163 long largenumber = 922337000;

164 message.addElement("longnumber",largenumber);

165 message.addSerializedObject("info",makeStuffObject ());

166 message.addRecipients(framework.getAllNodes ());

167 framework.sendMessage(message);

168 mainForm.append("Sending\n");

169 }

As you can see, the application attaches two files that have been specified in the code itself. In
the File2Push application, the user selected the file that was attached to the message. Also, a
serialized object is attached to the message. Listing 18.12 shows how the message is received.

Listing 18.12: Receiving a complex message

171 public void messageReceived(Message message)

172 {

173 String outPut ="";

174 boolean containFiles = message.getBoolean("file");

175 if(containFiles)

176 {

177 FileInfo receivedFile1 = message.getFile("file1");

178 String filename1 = receivedFile1.getFileName ();

179 String fullPath1 = receivedFile1.getFullPathToFile ();

180 long sizeInBytes1 = receivedFile1.getFileSize ();

181

182 FileInfo receivedFile2 = message.getFile("file2");

183 String filename2 = receivedFile2.getFileName ();

184 String fullPath2 = receivedFile2.getFullPathToFile ();

185 long sizeInBytes2 = receivedFile2.getFileSize ();

186

187 String country = message.getString("country");

188 double pi = message.getDouble("pi");

189 int age = message.getInt("age");

190 char charValue = message.getChar("achar");

191 short shortValue = message.getShort("ashort");

192 long longValue = message.getLong("longnumber");

193 MyObject myObject = (MyObject)message.getSerializedObject("info");

194 MyObject myObject2 = myObject.getMyObject ();

18.3. COMPLEXMESSAGEDEMO 131

195

196 outPut += "\nFile1\nName: " + filename1 +

197 "\nFull path: " + fullPath1 +

198 "\nSize (bytes): " + sizeInBytes1 +

199 "\nFile2\nName: " + filename2 +

200 "\nFull path: " + fullPath2 +

201 "\nSize (bytes): " + sizeInBytes2 +

202 "\nCountry: " + country + "\npi: " + pi +

203 "\nage: " + age +

204 "\ncharValue: " + charValue +

205 "\nshortValue: " + shortValue +

206 "\nlongValue: " + longValue +

207 "\MyObject 1:\ nName: " + myObject.getName () +

208 "\nIntValue: " + myObject.getIntValue () +

209 "\ndoubleValue: " + myObject.doubleValue +

210 "\MyObject 2:\ nName: " + myObject2.getName () +

211 "\nIntValue: " + myObject2.getIntValue () +

212 "\ndoubleValue: " + myObject2.doubleValue;

213 mainForm.append(outPut);

214 }

215 }

This application uses two classes, ComplexMessageDemo.java and MyObject.java. The com-
plete source code can be found in Appendix C.

132 CHAPTER 18. THE APPLICATIONS

Part VI

Evaluation

133

CHAPTER 19

Testing

The framework has been tested during development in order to get a satisfactory end result.
The testing has taken place in the SUN Microsystems Wireless Toolkit Emulator, The Sony-
Ericsson Development Kit and on mobile phones. The mobile phones used in testing have
been a couple of K750i and a W800i. Even though a test runs perfectly with no problems
on the emulators, it might not run at all on a mobile phone. It has been time-consuming
detecting why it works on the emulator and not on the mobile phone. Nevertheless, we feel
that we have created a good framework for developing peer-to-peer applications on mobile
phones. Section 19.1 describes the results of the testing of the functional requirements set out
in Section 14.1. Section 19.2 describes the results of the testing of the quality requirements
set out in Section 14.2.

19.1 Functional Requirements Results

Some of the tests can be carried out simultanously, while some of the tests have to isolated.
Since we are as mentioned in Section 5.2, using evolutionary prototyping as a guideline, the
testing has been carried out during the implementation process. If the requirement was not
fulfilled, we would do another loop and evaluate again.
The results are presented in Table 19.1, and shows the results of testing the Peer2Me frame-
work together with a custom testapplication suited for testing all the requirements on at least
three mobile phones simultaneously.

19.2 Quality Requirements Results

This section describes how well we have implemented the quality requirements we set out in
Section 14.2. Each requirement is given a status result and a comment to elaborate on how
the requirement has been fulfilled.

Requirement: M1 Implement a workable network component in Peer2Me
Covered: Yes
Comments: The main architectural pattern in the Peer2Me framework is based on a layered
model. We have currently implemented Bluetooth as a network technology and it should be
possible to implement other network technologies as WLAN when the API becomes available
for J2ME.

135

136 CHAPTER 19. TESTING

Requirement Description Covered
FR 1 The framework must support mobile phones Yes
FR 2 The framework must be able to connect to other nodes Yes
FR 3 The framework must support creation of ad hoc networks Yes
FR 4 The framework must be able to connect to an existing ad

hoc network
Yes

FR 5 Nodes in the network must be able to exchange messages Yes
FR 6 It must be possible to store primitive variables (String, int,

double, long, etc) in a message
Yes

FR 7 It should be possible to store serialized java objects in a
message

Yes

FR 8 It must be possible to attach files to a message Yes
FR 9 It should be possible to store primitive variables, serialized

objects and files in one message
Yes

FR 10 The framework must track the origin of a message in order
to enable a messagereply

Yes

FR 11 The framework must be able to create an open group Yes
FR 12 The framework must simulate a pure P2P network Yes
FR 13 The framework must hide the underlying network technol-

ogy
Yes

FR 14 The framework must offer an easy way to create a log that
can be viewed in the mobile phone during runtime

Yes

FR 15 The framework should register when a nodes leaves the net-
work

Yes

Table 19.1: Test results of the functional requirements

Requirement: U1 Inform the application developer of exceptions
Covered: Yes
Comments: Method and classes that might fail due to events out of control of the framework
will throw custom exceptions that can be caught in application that utilizes the framework.
We have not yet experienced that the framework has become unavailable due to exceptions
or errors.

Requirement: U2 Aid the implementation of Peer2Me i applications
Covered: Yes
Comments: All classes, interfaces, methods and parameters have been given descriptive
names to help support easy interpretation and implementation for the developers point of
view. The entire framework has also been documented with the de facto standard of Java
documentation, Javadoc [23]. In addition, this masterthesis contains in depth information for
the keen developer who wants to know more about the framework.

Requirement: T1 Log file
Covered: Yes
Comments: This was probably the first quality requirement that was implemented. During
development we used this logging feature extensively in order to debug our code. Without
this, debugging would have been a nightmare on mobile phones.

Requirement: A1 Normal disconnection of node
Covered: Yes
Comments: A node can easily disconnect by simply invoking a method on the framework.

19.2. QUALITY REQUIREMENTS RESULTS 137

The framework then sends a message to all the other nodes that it now disconnects.

Requirement: A2 Abnormal disconnection of node
Covered: Yes
Comments: In order to fulfill this requirement, we had to implement some sort of availability
tactic. We used the ping/echo tactic for this purpose. If a node is lost, the framework will
detect the lost node within a time frame of 30 seconds.

Requirement: A3 A new node arrives in an established network
Covered: Yes
Comments: If a new node wants to join an existing network, it can simple invoke a search
and will join the network automatically.

138 CHAPTER 19. TESTING

CHAPTER 20

Comparison of Old and New Peer2Me

This chapter compares the old versus the new framework. First some empirical data such
as total number of codelines, class, packages etc will be compared. Then we compare the
requirements for both frameworks. Lastly, we illustrate how the new framework is put to use,
and show the reader that the new framework is far easier to use than the old framework.

20.1 Statistical Comparison

Table 20.1 compares the old and new version of Peer2Me.

Aspect: Old Peer2Me New Peer2Me
Lines of code: 1875 3605
Number of classes: 29 52
Number of interfaces: 6 2
Number of packages: 18 11
Maximum inheritance tree depth: 6 5
Size of deployed jar file: 47,2 KiloByte 71,2 KiloByte

Table 20.1: Statistical data about the old and new version of the Peer2Me framework

The new framework contains over three times as much more code as the old framework. This
does not mean that the old framework contains more efficient code, but that the new frame-
work contains more functionality, especially when it comes to messages. The new framework
also has twice as many classes, but less packages. We think that the old framework has too
many packages which make it overly complex to navigate through. A slight increase in avail-
able memory would be required by the new framework as opposed to the old one. This would
not be noticeable on newer mobile phones.

20.2 Functional Requirements Comparison

The two versions have both similar and different functional requirements. Table 20.2 shows
the requirements that only resides in the old framework. Table 20.3 shows the requirements

139

140 CHAPTER 20. COMPARISON OF OLD AND NEW PEER2ME

that only resides in the new framework. Table 20.4 shows the requirements that resides in
both frameworks

Requirement Covered
The system must support the creation of closed groups Yes
The framework must include a mechanism for storing and retrieving objects Yes
The system must support to allow a node to try to join a closed group Yes
The system must allow users in a closed group to reject other nodes to join
the group

Yes

The system must be able to present decision messages to the user Partially

Table 20.2: Requirements that only exists in the old framework

Requirement Covered
It must be possible to store primitive variables (String, int, double, long, etc)
in a Message

Yes

It should be possible to store serialized java objects in a message Yes
It must be possible to attach files to a message Yes
It should be possible to store primitive variables, serialized objects and files
in one message

Yes

The framework must simulate a pure P2P network Yes
The framework must offer an easy way to create a log that can be viewed in
the mobile phone during runtime

Yes

The framework should register when a nodes leaves the network Yes

Table 20.3: Requirements that only exists in the new framework

Covered
Requirement Old New
The framework must support mobile phones Yes Yes
The framework must be able to connect to other nodes Yes Yes
The framework must support creation of ad hoc networks Yes Yes
The framework must be able to connect to an existing ad hoc network. Yes Yes
Nodes in the network must be able to exchange messages Yes Yes
The framework must track the origin of a message in order to enable a
messagereply

Yes Yes

The framework must be able to create an open group Yes Yes
The framework must hide the underlying network technology Yes Yes

Table 20.4: Requirements that exists in both framework

The old Peer2Me framework had the possibility to create closed groups and store objects
to the phone’s recordstore. We did not create closed groups since we had other priorities
such as creating an advanced message system, filehandling and a pure ad hoc P2P network.
Storing data in the phone’s recordstore is an easy task which we did in two applications in
our depthstudy last fall, [5]. We chose not to include this requirement in the new framework,
since the recordstore has nothing to do with a peer-to-peer network, which is what Peer2Me
really is about. The recordstore should be used to store data that the application can retrieve
in subsequent executions and we leave this up to the application developer.

20.3. DIFFERENCES THAT THE APPLICATION DEVELOPER EXPERIENCE 141

20.3 Differences that the Application Developer Experi-
ence

A great improvement from the old to the new framework, is the way the developer utilizes
the framework. Listing 20.1 shows how a MIDlet needs to implement the different interfaces
in the old framework and how it needs to be initialized.

Listing 20.1: How to implement the old framework

1 public class PanIm extends MIDlet implements GroupMonitor ,

2 GroupDiscoveryListener , ExceptionHandler , MessageSubscriber

3 {

4 Framework framework;

5 Group groups;

6 Service service;

7 String role;

8

9 protected void startApp () throws MIDletStateChangeException

10 {

11 /* Initial GUI code removed

12 *First the user has to select role , either master or slave */

13 groups = new Hashtable ();

14

15 if(role.equals("Slave"))

16 chatForm = new ChatForm("PAN IM",this ,"Slave");

17

18 if(role.equals("Master"))

19 chatForm = new ChatForm("PAN IM",this ,"Master");

20

21 service = new Service(RECORD_STORE);

22

23 framework = Framework.getInstance(nickName , firstName + " " + lastName

24 , "no.ntnu.idi.mowahs.project.bluetooth.network.BluetoothNetwork");

25 framework.init ();

26 framework.setGroupDiscoveryListener(this);

27 framework.setMessageSubscriber(this);

28 framework.setExceptionHandler(this);

29

30 if(role.equals("Master"))

31 {

32 group = new Group ();

33 group.setMaster(framework.getLocalNode ());

34 group.setMonitor(this);

35 service.setGroup(group);

36 group.setClosed(true);

37 group.setService(service);

38 foundNodes = new Hashtable ();

39 }

40 framework.registerService(service);

41 //

Listing 20.2 shows how this is done in the new framework.

Listing 20.2: How to implement the new framework

1 public class Chat2Me extends MIDlet implements FrameworkSubscriber , CommandListener

2 {

3 private Framework framework;

4

5 protected void startApp () throws MIDletStateChangeException

6 {

7 /* Removed GUI code*/

8 framework = Framework.getInstance("MyGroup","Chat2Me",new Bluetooth (),this);

9 framework.initialize ();

10 //

142 CHAPTER 20. COMPARISON OF OLD AND NEW PEER2ME

As you can see, there is ridiculously much that needs to be done the get the framework up and
running in the old framework. Also, the framework must be initialized differently depending
on the role of the device, which must be either master or slave. The new framework does not
require this from the user, it just starts.

Looking at amount of code needed in an application using the new framework as opposed
to the old one, will reveal how much more easier it is to use. Taking an application such
as Chat2Me and comparing it to one similar test application in the old framework, shows
the difference. Table 20.5 shows the lines of code needed. They are also compared to a
chatapplication, BlueChat developed by Ben Hui [18].

Application Total lines of code Communication specific of codelines
Chat2Me 138 16
PanIM 242 42

Table 20.5: Comparing a chat application using the new Peer2Me framework to PanIm using the old framework
and BlueChat from Ben Hui.

The column Total lines of code shows the total number of codelines in the application, in-
cluding codelines regarding the graphics and program logics, as well as codelines regarding
the communication. The column Communication specific lines of code is the total number
of codelines which deals with the communication. This can be calling upon methods in the
framework. BlueChat uses a bit different approach since it does not import any framework,
but uses several classes to handle the communication. The number given in the second column
for BlueChat is therefore the number of codelines equivalent to Chat2Me.

Now over to the differences in sending messages. In both cases, a message contains some
text that needs to be sent to the members of the network. Listing 20.3 shows how this is done
in the old framework.

Listing 20.3: How to send a message in the old framework

47 Message message = new Message ();

48 TextMessagePart text = new TextMessagePart ();

49 text.setDescription("message");

50 text.setFieldValue("This is some text");

51 message.addMessageBodyPart(text);

52 message.addRecipientGroup(service.getGroup ());

53 framework.sendMessage(message ,service);

Listing 20.4 shows how this is done in the new framework.

Listing 20.4: How to send a message in the new framework

31 Message message = new Message ();

32 message.addElement("message","This is some text");

33 message.addRecipients(framework.getGroup("MyGroup"))

34 framework.sendMessage(message);

We have tried to make the new messagingsystem as intuitive and as simple as possible, yet
more flexible. See Section 16.12.1 for details about the new possibilities. Receiving messages
shows the same type of differences as sending messages.

Both the old and the new framework require that the MIDlet implements certain interfaces.
The old framework requires three interfaces, the new requires one. Table 20.6 shows methods
that are must be implemented by both versions and that serve the same purpose.

The common purposes of the methods listed in Table 20.6 are:

20.3. DIFFERENCES THAT THE APPLICATION DEVELOPER EXPERIENCE 143

Method in old Peer2Me Method in new Peer2Me
nodeJoined(Group group, Node node) nodeDiscovered(Node node)
nodeLeft(Group group, Node node) nodeLost(Node node)
messageReceived(Message message) messageReceived(Message message)

Table 20.6: Similar methods in new and old Peer2Me

• nodeJoined and nodeDiscovered - Is invoked by the framework when a new node ap-
pears in the network

• nodeLeft and nodeLost - Is invoked by the framework when a node leaves the network

• messageReceived - Is invoked by the framework when a message is received

Applications using the old framework must also implement these methods:

• allowJoin(Group group, Node node) - The application must accept a new node be-
fore it can join

• groupDiscovered(Group group) - A group has been discovered in the network

• handleException(Exception e) - An exception is thrown in the framework an is sent
to this method

• runningService(String serviceID) - Checks to see if the given service is running on
the local node

Applications using the new framework must also implement these methods:

• searchCompleted() - When a search has completed, this method is invoked

• messagePartReceived(int partNumber, int totalParts) - A message can be split
into many parts due to size or complexity. This enables the application developer to
create an informative progressbar when receiving messages

144 CHAPTER 20. COMPARISON OF OLD AND NEW PEER2ME

CHAPTER 21

Problems

This Chapter will outline some of the problems we encountered during this project. It will
focus on describing how and why the problems did arise, and what we did to overcome
them. This chapter may be essential to understand some of the hidden obstacles that can be
uncovered when designing large software solution for mobile phones.

21.1 Emulators vs Mobile Phones

A set of emulators is distributed as a part of the Java Wireless Toolkit, and is meant for
testing MIDlets and mobile software before deploying it to a mobile phone. These emulators
are described in Section 6.2.

One might think that getting the MIDlet to run on an emulator is a fool-proof indication
that the software will run smoothly on a mobile phone. This might be correct in some sim-
ple applications, but when it comes to software like a framework, there are great differences
between a mobile phone and the emulator. The next sections will outline some of the main
issues regarding using emulator vs. mobile phones.

21.1.1 Performance

The emulator running on a computer possesses the same computing power as the computer
unless this is explicitly set in the toolkit’s preferences, and there is no exact way of adjusting
the performance of the emulator to meet the performance level of a mobile phone.

A good example is running several threads in the application. Running two or three threads,
or even four thread may not offer any difficulties on the mobile phone, but exceeding this
running i.e. ten threads may get the phone to stop responding or turning off. This will of
course not happen using an emulator. It is therefore of great importance to reduce the number
of simultaneous threads to a minimum.
Another example would be handling files. When reading a file using an emulator, the speed
is high and latency low. Using a mobile phone, the speed is significant lower. Since there
are many things that runs slower on a mobile phone, it can also be necessary to focus on
synchronizing threads and operations.

145

146 CHAPTER 21. PROBLEMS

During the implementation phase of this project we experienced the problems mentioned
above, along with memory shortage. When debugging the software, we used the framework’s
Log functionality excessively causing a frequent out-of-memory exception. Difficulties like
this will strongly depend on the mobile phone the application is running on.

21.1.2 Graphical User Interface

As often when creating software with an user interface, one must pay close attention to
the layout of the components. Designing a user interface on the emulator will only give an
indication on how it will look on a mobile phone. This will also depend on how the mobile
phone handles the GUI-components. As a rule of thumb, the display on the phone will be
smaller and can contain less elements than the emulator’s display.

The lack of updating can also be noticeable if the application consumes much resources.
As an example to this is bad responsibility when using a javax.microedition.lcdui.Gauge at
the same time as doing intensive computing. This occurred frequently when we developed the
framework.

21.1.3 Exception Handling and Debugging

One of the few advantages of using an emulator when developing mobile software, is that there
is at all times a console window which can be written to by a simple System.out.println(..).
When running the application on a phone, there is no possibility to get real-time informa-
tion without writing it to the display same way as when adding components. The same is
for unhandled exceptions. When a unhandled exception arise from the software, you might
experience that the mobile phone turns it self off, or the application exits. When using an
emulator, the console prints out that there has been an unhandled exception. This is espe-
cially useful to uncover simple bugs that are hard to locate. Getting the NullPointException
is a classic, but also more random occurring exceptions as BluetoothStateException can occur.

21.2 Understanding Bluetooth Limitations

This Section will underline important issues to keep in mind when developing application using
Bluetooth. As we have experienced during this project, there are many poorly documented
sides of Bluetooth. Bluetooth is a complex technology depending on many factors when
using it from scratch, and can behave quite differently after small alterations in the software.
Debugging software using Bluetooth is a time-consuming task, even with the aid of emulators.

21.2.1 Master vs. Slave

There are strict rules concerning the roles when communicating via Bluetooth. In any session
between two mobile phones there must be a master and a slave. This is also mentioned in
Section 11.3.1. When User A wants to send a message to User B, A becomes the master,
and B the slave. Normally, this setup does not have to change if B wants to respond with a
message. This can however generate unusual circumstance with more than two participants
and multiple messagesending, and if user B does not need to respond at once. This will keep
the connection busy. We discovered this during the second half of this project forcing an
unwanted reimplementation of the actual communication-handling. We made the roles switch
as the sender switched. In other words, if user A as a master was finished sending a message
to B, and B wanted to responded, they would switch roles. This approach is quite different to
the approach used in the previous version of Peer2Me, but is by far more stable and produces
less overhead.

21.2. UNDERSTANDING BLUETOOTH LIMITATIONS 147

21.2.2 Number of Nodes

Bluetooth technology has several constraints as discussed in Section 11.3.1, and in addition
to this, there is a restriction to the number of connection a Bluetooth unit can handle at the
same time. A Bluetooth device can only have 7 active connections at the same time. This
means that a Bluetooth device can know many other Bluetooth devices, but only communicate
with seven of these simultaneous. The number can even be lower on some mobile phones.
It is therefore important to uncover the limitations of the mobile device that should run the
application, or even better, design the software flexible enough to handle such situations.

21.2.3 Interference

Due to the fact that Bluetooth is a widespread technology embedded in many devices, it
is not uncommon to discover devices that you do not want communication with. During a
device search with a subsequent service search you might discover device that will make your
search throw an exception. This is because the device responds to your request in peculiar
way. A typical example of this is when discovering a computer with a USB-dongle with high
security restrictions. Even though an exception is thrown, the search will continue. There is
no particular way to avoid this issue.

21.2.4 Security Issues

Since Bluetooth has its own software included in the mobile phone’s software, unwanted
actions can occur when connecting to a new and unknown device. This is because the security
mechanisms on the mobile phone interferes trying to pair the two phones. This will normally
happen only once and will no affect the applications. The only problem we had with this,
was that the software running when these messages appeared, continued running and did not
halt. This gave at first problems synchronizing actions as one can not know how long the
user of the phone needs to confirm the messages. This can perhaps be avoided with a signed
MIDlet, but it may depend on the mobile phone.

Setting up a connection using Bluetooth can either be authenticated and/or encrypted. In
this version of Peer2Me, neither is implemented. This is to keep the framework simple and
well functioning.

148 CHAPTER 21. PROBLEMS

CHAPTER 22

Answers to Research Questions

In this chapter we answer the research questions from Section 4.1.

1. Will a redesign of the framework make it easier to adopt when developing mobile ad-hoc
applications in a J2ME development environment?

(a) Can a pure peer-to-peer network be implemented in the new framework?

Yes. We have successfully implemented a pure peer-to-peer network topology in
the framework. The old framework only constituted a hybrid peer-to-peer network
topology.

(b) Is it possible to implement transfer of binary data in the new framework and what
consequences will this yield?

Yes. It is possible to transfer all types of files and data. The consequence is a slightly
larger framework which does not have significant impact on the performance.

(c) Will developers use less time to learn and create applications with the new framework
compared to the old one?

We compared how the applications must be implemented in the two different ver-
sions, it is no doubt that developers will spend less time learning how to use the new
framework. current app. The new framework requires 2 lines and depends on no
roles.

(d) Will a redesign of the framework reduce the number of codelines, memory usage
and dependencies in applications that uses the new framework compared to the old
one?

The number of codelines is drastically reduced as explained in the last answer. Slightly
more memory is used, since the new framework is larger in size. The new framework

149

150 CHAPTER 22. ANSWERS TO RESEARCH QUESTIONS

has one more required dependency due to filehandling possibilities, namely the JSR82
75 package.

2. Would implementation of extra functionality make the framework more flexible and
attractive?

(a) What sort of functionality would add most value to the framework?

The evaluation of the old framework in our depthstudy, [5], revealed the following
desired functionality:
• Ability to send files, binary data and primitive datatypes between nodes
• A pure peer-to-peer network technology that distributes network load and in-

creases the availability and stability of the network drastically

(b) Will the extra functionality make the new framework incompatible with mobile
phones that the old framework supports?

Yes. It is not possible to implement a filehandling functionality without introduc-
ing the JSR82 75 package. Older phones such as the SonyEricsson P900 supports
the Bluetooth API (JSR82 82), but not JSR82 75. The old framework was compatible
with this phone, which the new framework is not.

3. What sort of impact would new technology or updates in existing technology have on
the Peer2Me framework?

(a) Will the technology make mobile ad hoc collaboration more efficient in terms of
discoverytime, range and transfer rates?

As mentioned under ”Bluetooth Updates” in Section 11.3.1, everything indicates
that the new technology will make mobile ad hoc collaboration more efficient when
the new chip arrives the market. The press release by the Bluetooth SIG does not
mention discoverytime, but the specification may be available in the near future. If
this new chip is integrated in mobile phones, the Peer2Me framework will surely
become even more attractive.

CHAPTER 23

Summary

This chapter will summarize the master thesis focusing on achievements, and further work.

23.1 Conclusion

Our goal for this master thesis was to create a new and improved Peer2Me framework. After
an evaluation of the old framework in our depthstudy [5], we found that a total redesign
of the framework could be beneficial. When designing the new framework, we paid special
attention to the problems that Lund and Norum had experienced in their master thesis [31]
in addition to our evaluation last fall. Our most important goal was to solve the dependency
of a master node in the network. The old framework was based on a hybrid peer-to-peer
network topology. We wanted to implement support for pure peer-to-peer network, which we
successfully accomplished. The task was not a simple one as explained in Chapter 21. The
new framework is also much easier to start using and requires fewer codelines than the old
framework. Lund and Norum pointed out the messaging system in their framework as the
weakest point. We recognized this as well and have come up with a new way of creating,
sending and receiving messages. The new message system also supports the reading and
transfer of files and serialized java objects. This opens up new possibilities that old framework
did not have.

The new framework has grown in size, but also in functionality, scalability and usability
which is three important aspects to consider. It is not compatible with older phones, but we
expect that by the time the framework is ready for a wide spread use, most phones should
support the framework. The most significant set-back for creating ad hoc mobile networks
with Bluetooth is the discoverytime 1 which can be anything from 7 seconds to 20 depending
on the device. Ad hoc networks should be created instantaneously to attract end-users and
developers. However, the Bluetooth SIG (Special Interest Group) is planning on creating a
new ultrawide band chip together with WiMedia Alliance that will have higher performance
than todays chips. The chip will not consume any more power than todays Bluetooth chips, so
that it can be incorporated with mobile devices and maintain it’s current market segments.

It is very important that potential students who will follow up this project, pay special
1Discoverytime: The time it takes for a device to perform a search for all Bluetooth devices in the vicinity.

151

152 CHAPTER 23. SUMMARY

attention to the development of Ad Hoc Networking API (JSR82 259) which is lead by Sun
Microsystems [35]. The goal of that project is to define an API that enables communication
between mobile devices in a peer-to-peer ad-hoc network environment. We are not sure if the
API can be used to create scatternets since it is not finished yet. However, we are confident
that the Peer2Me framework will cover areas that the JSR82 259 will not, such as group
management, complex message handling and availability tactics used in framework.

23.2 Further Work

Although the Peer2Me framework in its new version works fine without any problems, it can
still be refined. From our point-of-view, the framework is not ready for a full release, but
will function as a base for beta-testing, since all the main functionality is implemented. This
section will discuss what needs to be done to the framework, presented in short term goals
and long term goals.

23.3 Short-term Goals

This section will describe the short term goals of the Peer2Me framework.

23.3.1 Optimizing Network

In our version of Peer2Me, only OBEX, described in Section 11.3.1, is implemented as the
Bluetooth transportation protocol. This is a fool-proof method providing good flexibility and
stability. This is somewhat on the cost of performance. While OBEX is a good method for
sending some type of dataobjects, might RFCOMM have better performance when transport-
ing large files and data structures. The best thing would be to implement both protocols,
using the most appropriate at all times.

As a Bluetooth unit may have implemented several channels used for data transportation,
using as many of these as possible would increase the availability and the total performance
of the unit. The main disadvantage when using all available channels is if the mobile phone
supports multitasking. The framework will then block the Bluetooth device for other appli-
cations, resulting in unwanted situations.

23.3.2 Configuration

To make the framework easier to optimize, it should be easier to configure. To have a central
point of configuration would be desired as there are several variables throughout the framework
which affects its behaviour. A simple solution to this would be to have a simple class, xml or
text file with a list of parameters, which is read from in the framework. The only alteration
would then just take place in the configuration-file. Of course a default configuration must be
an alternative at all times.

23.3.3 Scatternet

Scatternet is described in Section 8.5, is typically present if more than three nodes is available
in a network where two of them cannot connect directly to each other, only through a third
node. Since this new version of Peer2Me is based on a pure peer-to-peer model, adding
possibility for scatternets is not a difficult task. To achieve this, the nodes in the network
need a forwarding mechanism. A mechanism that can forward messages and function as a
relay. The Peer2Me framework can then act in accordance with Figure 8.5.

23.4. LONG-TERM GOALS 153

One big issue when creating a scatternet configuration, is the handling and delegation of
responsibility. One must decide which node should relay messages if more than one is present
and available. A best-practice in such scenarios would be to delegate by load. I.e. the node
with the fewer tasks should be responsible for forwarding the message.
If implementing messageforwarding, our version of Peer2Me is fully compliant to scatternet.

23.3.4 Mobile Agents

A mobile agent is a composition of software and data which is able to migrate from one
computing unit to another autonomously, and continue its execution on the destination unit.
A prerequisite to this is a scatternet configuration. Mobile agents have some advantages over
conventional agents as described in Mobile Agents: Are They a Good Idea? by Harrison et
al. [17]. Five of these advantages are given here:

• Move computation to data, reducing network load.

• Asynchronous execution on multiple heterogeneous network hosts.

• Dynamic adaptation - actions are dependent on the state of the host environment.

• Tolerant to network faults - able to operate without an active connection between client
and server.

• Flexible maintenance - to change an agent’s actions, only the source (rather than the
computation hosts) must be updated.

Mobile agents can be among others be applied in the following scenarios:

• Resource availability, discovery, monitoring.

• Information retrieval.

• Network management.

• Dynamic software deployment.

Peer2Me can be used for mobile agents if scatternet as in Section 23.3.3 is implemented. To
do this, one must create serialized objects which contains a state and then send the object
to a new device. On the destionation device, the object should be invoked and continue its
tasks.

23.4 Long-term Goals

This section will describe the long term goals of the Peer2Me framework.

23.4.1 Adopt new technology

Currently only Bluetooth is supported as a network medkum for Peer2Me, but as more tech-
nologies are introduced on mobile phones, an effort should be made to support these in
Peer2Me. As mentioned before, the network medium is modular and interchangeable. The
current Bluetooth module should also be kept up to date as the Bluetooth specification evolves
and is introduced in new versions on mobile phones.
It should also be possible to use two network mediums at the same time.

The JSR259 project by Java should also be monitored to see if Peer2Me can be made to
comply with the specification and/or utilize the concepts in the JSR82.

154 CHAPTER 23. SUMMARY

23.4.2 Up-to-Date

A long term goal that is inevitable, is the need to keep the framework up-to-date. When the
framework can benefit from at new Java version, new MIDP version etc., it is important that
the framework is updated as soon as possible.

23.4.3 Empirical Work and Applications

To evaluate the value of mobile collaborative applications on mobile phones it should be
conducted full scale end user testing. A full scale testing is only available with fully working
and popular application that are wide spread around and adopted by a large population. This
would be a sensible way to study how such applications affect the way humans collaborate
using mobile phones.

There should also be a focus on designing, developing and testing new applications that
seek to explore all sides of the framework.

Part VII

Appendix

155

APPENDIX A

Chat2Me Source Code

Listing A.1: Chat2Me source code

1 import javax.microedition.lcdui.Command;

2 import javax.microedition.lcdui.CommandListener;

3 import javax.microedition.lcdui.Display;

4 import javax.microedition.lcdui.Displayable;

5 import javax.microedition.lcdui.Form;

6 import javax.microedition.lcdui.List;

7 import javax.microedition.lcdui.TextField;

8 import javax.microedition.midlet.MIDlet;

9 import javax.microedition.midlet.MIDletStateChangeException;

10

11 import peer2me.framework.Framework;

12 import peer2me.framework.FrameworkSubscriber;

13 import peer2me.message.Message;

14 import peer2me.network.bluetooth.Bluetooth;

15 import peer2me.node.Node;

16 import peer2me.log.Log;

17 import peer2me.log.LogElementType;

18

19 public class Chat2Me extends MIDlet implements FrameworkSubscriber ,

20 CommandListener

21 {

22 private Framework framework;

23 private Display display;

24 private Form nickNameForm;

25 private Form writeForm;

26 private Command ok;

27 private Command send;

28 private Command search;

29 private Command exit;

30 private Command write;

31 private Command log;

32 private Command back;

33

34 private TextField nickName;

35 private TextField chatMessage;

36

37 private String nick;

38 private List dialog;

39

40 protected void startApp () throws MIDletStateChangeException

41 {

157

158 APPENDIX A. CHAT2ME SOURCE CODE

42 display = Display.getDisplay(this);

43 nickName = new TextField("Nickname","" ,20,TextField.ANY);

44 exit = new Command("Exit",Command.EXIT ,1);

45 ok = new Command("Ok",Command.OK ,1);

46 send = new Command("Send",Command.OK ,1);

47 search = new Command("Search", Command.ITEM ,1);

48 log = new Command("Log", Command.ITEM ,2);

49 back = new Command("Back", Command.BACK ,3);

50

51 nickNameForm = new Form("Chat");

52 nickNameForm.append("Enter nick:");

53 nickNameForm.append(nickName);

54 nickNameForm.setCommandListener(this);

55 nickNameForm.addCommand(ok);

56 nickNameForm.addCommand(exit);

57

58 chatMessage = new TextField("Message","" ,100, TextField.ANY);

59 writeForm = new Form("Chat");

60 writeForm.append(chatMessage);

61 writeForm.addCommand(send);

62 writeForm.setCommandListener(this);

63

64 write = new Command("Write",Command.OK ,0);

65 dialog = new List("Chat",List.IMPLICIT);

66 dialog.addCommand(write);

67 dialog.addCommand(search);

68 dialog.addCommand(exit);

69 dialog.setCommandListener(this);

70

71 framework = Framework.getInstance("MyGroup","Chat2Me",new Bluetooth (),this);

72 framework.initialize ();

73 dialog.addCommand(log);

74 display.setCurrent(nickNameForm);

75 }

76

77 protected void pauseApp (){}

78

79 protected void destroyApp(boolean arg0) throws MIDletStateChangeException

80 {

81 framework.clean ();

82 }

83

84 public void commandAction(Command cmd , Displayable arg1)

85 {

86 if(cmd == ok)

87 {

88 nick = nickName.getString ();

89 display.setCurrent(dialog);

90 }

91 else if(cmd == send)

92 {

93 Message message = new Message ();

94 message.addElement("message",chatMessage.getString ());

95 message.addElement("nick",nick);

96 message.addRecipients(framework.getAllNodes ());

97 framework.sendMessage(message);

98

99 dialog.append(nick + ": " + chatMessage.getString (),null);

100 display.setCurrent(dialog);

101 dialog.setSelectedIndex(dialog.size()-1,true);

102 }

103 else if(cmd == search)

104 {

105 framework.search ();

106 dialog.removeCommand(search);

107 }

108 else if(cmd == write)

109 {

110 display.setCurrent(writeForm);

159

111 }

112 else if(cmd == log)

113 {

114 List loglist = framework.getLog (). getElementsAsList ();

115 loglist.addCommand(back);

116 loglist.setCommandListener(this);

117 display.setCurrent(loglist);

118 }

119 else if(cmd == back)

120 {

121 display.setCurrent(dialog);

122 }

123 else if(cmd == exit)

124 {

125 framework.clean ();

126 this.notifyDestroyed ();

127 }

128 }

129

130 public void searchCompleted ()

131 {

132 display.setCurrent(dialog);

133 }

134

135 public void messageReceived(Message message)

136 {

137 String text = message.getString("message");

138 String from = message.getString("nick");

139 dialog.append(from + ":" + text ,null);

140 dialog.setSelectedIndex(dialog.size()-1,true);

141 }

142

143 public void nodeDiscovered(Node node)

144 {

145 dialog.append(node.getNodename () + " has joined",null);

146 try{ dialog.removeCommand(search); }

147 catch (Exception e){}

148 }

149

150 public void nodeLost(Node node)

151 {

152 dialog.append("+ " + node.getNodename () + " has left +",null);

153 }

154

155 public void messagePartReceived(int partNumber , int totalParts){}

156 }

160 APPENDIX A. CHAT2ME SOURCE CODE

APPENDIX B

File2Push Source Code

Listing B.1: File2Push.java

1 import java.util.Vector;

2

3 import javax.microedition.lcdui.Command;

4 import javax.microedition.lcdui.CommandListener;

5 import javax.microedition.lcdui.Display;

6 import javax.microedition.lcdui.Displayable;

7 import javax.microedition.lcdui.Form;

8 import javax.microedition.lcdui.List;

9 import javax.microedition.midlet.MIDlet;

10 import javax.microedition.midlet.MIDletStateChangeException;

11

12 import peer2me.framework.Framework;

13 import peer2me.framework.FrameworkSubscriber;

14 import peer2me.log.Log;

15 import peer2me.message.FileInfo;

16 import peer2me.message.Message;

17 import peer2me.network.bluetooth.Bluetooth;

18 import peer2me.node.Node;

19

20 public class File2Push extends MIDlet implements FrameworkSubscriber , CommandListener

21 {

22 private Framework framework;

23

24 private Display display;

25 private Displayable parent;

26

27 private List nodeList;

28

29 private Form mainForm;

30

31 private Vector nodesFound;

32

33 private Command search;

34 private Command showNodes;

35 private Command sendFile;

36 private Command log;

37 private Command exit;

38 private Command back;

39

40 private boolean addShowNodes = false;

41 private Node currentlySelectedNode = null;

161

162 APPENDIX B. FILE2PUSH SOURCE CODE

42

43 protected void startApp () throws MIDletStateChangeException

44 {

45 Log.getInstance (). showDate(false);

46 Log.getInstance (). showTime(false);

47 display = Display.getDisplay(this);

48

49 mainForm = new Form("Peer2Me Test");

50

51 parent = mainForm;

52

53 framework = Framework.getInstance("MyGroup","File2Push",new Bluetooth (),false ,this);

54 nodeList = new List("Nodes",List.IMPLICIT);

55 nodesFound = new Vector ();

56

57 search = new Command("Search",Command.OK ,1);

58 showNodes = new Command("Show Nodes",Command.OK ,1);

59

60 sendFile = new Command("Send file",Command.OK ,1);

61

62 log = new Command("Log",Command.OK ,1);

63 exit = new Command("Exit",Command.EXIT ,1);

64 back = new Command("Back",Command.BACK ,3);

65

66 mainForm.setCommandListener(this);

67

68 mainForm.addCommand(search);

69 mainForm.addCommand(back);

70 mainForm.addCommand(log);

71 mainForm.addCommand(exit);

72 display.setCurrent(mainForm);

73 framework.setframeworkSubscriber(this);

74 framework.initialize ();

75 framework.setReceivedFilesFolder("root1/temp/");

76 }

77

78 protected void pauseApp ()

79 {}

80

81 protected void destroyApp(boolean arg0) throws MIDletStateChangeException

82 {}

83

84 private void search ()

85 {

86 framework.search ();

87 }

88

89 private List showNodes ()

90 {

91 nodeList.deleteAll ();

92 Node[] nodes = framework.getAllNodes ();

93 for (int i = 0; i < nodes.length; i++)

94 {

95 if(nodes[i]. getAddress () != framework.getLocalNode (). getAddress ())

96 nodeList.append(nodes[i]. toString(),null);

97 }

98 nodeList.setCommandListener(this);

99 nodeList.addCommand(back);

100 nodeList.addCommand(sendFile);

101 return nodeList;

102 }

103

104 public void nodeDiscovered(Node node)

105 {

106 nodesFound.addElement(node);

107 mainForm.append("Found : "+node.getNodename () + "\n");

108 if(addShowNodes == false)

109 {

110 mainForm.addCommand(showNodes);

163

111 addShowNodes = true;

112 }

113 }

114

115 public void nodeLost(Node node)

116 {

117 nodesFound.removeElement(node);

118 mainForm.append("Lost node "+node.getNodename ()+ "at "+node.getAddress ());

119 }

120

121 public void commandAction(Command cmd , Displayable arg1)

122 {

123 if(cmd == search)

124 {

125 mainForm.append("Searching ...\n");

126 search ();

127 }

128 else if(cmd == showNodes)

129 display.setCurrent(showNodes ());

130 else if(cmd == log)

131 {

132 List list = framework.getLog (). getElementsAsList ();

133 list.addCommand(back);

134 list.setCommandListener(this);

135 display.setCurrent(list);

136 }

137 else if(cmd == back)

138 display.setCurrent(parent);

139 else if(cmd == exit)

140 {

141 framework.clean ();

142 this.notifyDestroyed ();

143 }

144 else if(cmd == sendFile)

145 {

146 currentlySelectedNode = (Node)nodesFound.elementAt(nodeList.getSelectedIndex ());

147 new LocalFileBrowser(this);

148 }

149 }

150

151 public void sendFile(String fullPath)

152 {

153 Message message = new Message ();

154 message.addFile("file1", fullPath);

155 message.addElement("file",true);

156 message.addRecipient(currentlySelectedNode);

157 mainForm.append("Sending\n");

158 framework.sendMessage(message);

159 }

160

161 public void messageReceived(Message message)

162 {

163 FileInfo receivedFile = message.getFile("file1");

164 String filename = receivedFile.getFileName ();

165 String fullPath = receivedFile.getFullPathToFile ();

166 long sizeInBytes = receivedFile.getFileSize ();

167 mainForm.append("A file has been received\nName: " + filename +

168 "\nFull path: " + fullPath + "\nSize (bytes): " + sizeInBytes);

169 }

170

171 public void messagePartReceived(String messageID , int part , int total)

172 {

173 int percent = (int)(((double)part/(double)total) * 100);

174 mainForm.deleteAll ();

175 mainForm.append("Received: " + percent + " %");

176 }

177

178 public Form getMainForm ()

179 {

164 APPENDIX B. FILE2PUSH SOURCE CODE

180 return mainForm;

181 }

182

183 public void searchCompleted ()

184 {

185 mainForm.append("Search completed");

186 }

187 }

Listing B.2: LocalFileBrowser.java

1 import java.util .*;

2 import java.io.*;

3 import javax.microedition.io.*;

4 import javax.microedition.io.file .*;

5 import javax.microedition.midlet .*;

6 import javax.microedition.lcdui .*;

7

8 import peer2me.log.Log;

9 import peer2me.log.LogElementType;

10

11 /**

12 * Demonstration MIDlet for File Connection API. This MIDlet implements simple

13 * file browser for the filesystem avaliable to the J2ME applications.

14 *

15 */

16 public class LocalFileBrowser implements CommandListener

17 {

18

19 private String currDirName;

20

21 private Command view = new Command("View", Command.ITEM , 1);

22 private Command back = new Command("Back", Command.BACK , 2);

23 private Command exit = new Command("Exit", Command.EXIT , 3);

24

25 private Image dirIcon , fileIcon;

26 private Image [] iconList;

27 private File2Push midlet;

28

29 /* special string denotes upper directory */

30 private final static String UP_DIRECTORY = "..";

31

32 /* special string that denotes apper directory accessible by this browser.

33 * this virtual directory contains all roots.

34 */

35 private final static String MEGA_ROOT = "/";

36

37 /* separator string as defined by FC specification */

38 private final static String SEP_STR = "/";

39

40 /* separator character as defined by FC specification */

41 private final static char SEP = ’/’;

42

43 public LocalFileBrowser(File2Push midlet)

44 {

45 this.midlet = midlet;

46 currDirName = MEGA_ROOT;

47 try {

48 dirIcon = Image.createImage("/icons/dir.png");

49 } catch (IOException e) {

50 dirIcon = null;

51 }

52 try {

53 fileIcon = Image.createImage("/icons/file.png");

54 } catch (IOException e) {

55 fileIcon = null;

56 }

57 iconList = new Image [] { fileIcon , dirIcon };

58 try

165

59 {

60 showCurrDir ();

61 } catch (SecurityException e) {

62 Alert alert = new Alert("Error",

63 "You are not authorized to access the restricted API",

64 null , AlertType.ERROR);

65 alert.setTimeout(Alert.FOREVER);

66 Form form = new Form("Cannot access FileConnection");

67 form.append(new StringItem(null ,

68 "You cannot run this MIDlet with the current permissions. "

69 + "Sign the MIDlet suite , or run it in a different security domain"));

70 form.addCommand(exit);

71 form.setCommandListener(this);

72 Display.getDisplay(midlet). setCurrent(alert , form);

73 } catch (Exception e) {

74 e.printStackTrace ();

75 }

76 }

77

78 public void commandAction(Command c, Displayable d) {

79 if (c == view)

80 {

81 List curr = (List)d;

82 final String currFile = curr.getString(curr.getSelectedIndex ());

83 new Thread(new Runnable () {

84 public void run() {

85 if (currFile.endsWith(SEP_STR) || currFile.equals(UP_DIRECTORY)) {

86 traverseDirectory(currFile);

87 } else {

88 String fullPath = currDirName + currFile;

89 Log.getInstance (). addElement(LogElementType.INFORMATION ,

90 "Selected file: " + fullPath);

91 midlet.sendFile(fullPath);

92 }

93 }

94 }). start ();

95 }else if (c == back) {

96 showCurrDir ();

97 } else if (c == exit)

98 {

99 Display.getDisplay(midlet). setCurrent(midlet.getMainForm ());

100 }

101 }

102

103 /**

104 * Show file list in the current directory .

105 */

106 void showCurrDir () {

107 final LocalFileBrowser fileBrowser = this;

108 new Thread(new Runnable () {

109 public void run() {

110 Enumeration e;

111 FileConnection currDir = null;

112 List browser;

113 try {

114 if (MEGA_ROOT.equals(currDirName)) {

115 e = FileSystemRegistry.listRoots ();

116 browser = new List(currDirName , List.IMPLICIT);

117 } else {

118 currDir = (FileConnection)Connector.open("file :// localhost/" +

119 currDirName);

120 e = currDir.list ();

121 browser = new List(currDirName , List.IMPLICIT);

122 // not root - draw UP_DIRECTORY

123 browser.append(UP_DIRECTORY , dirIcon);

124 }

125

126 while (e.hasMoreElements ()) {

127 String fileName = (String)e.nextElement ();

166 APPENDIX B. FILE2PUSH SOURCE CODE

128 if (fileName.charAt(fileName.length ()-1) == SEP) {

129 // This is directory

130 browser.append(fileName , dirIcon);

131 } else {

132 // this is regular file

133 browser.append(fileName , fileIcon);

134 }

135 }

136

137 browser.setSelectCommand(view);

138 browser.addCommand(exit);

139 browser.setCommandListener(fileBrowser);

140

141 if (currDir != null) {

142 currDir.close ();

143 }

144 Display.getDisplay(midlet). setCurrent(browser);

145 } catch (IOException ioe) {

146 ioe.printStackTrace ();

147 }

148 }

149 }). start ();

150 }

151

152 void traverseDirectory(String fileName) {

153 /* In case of directory just change the current directory

154 * and show it

155 */

156 if (currDirName.equals(MEGA_ROOT)) {

157 if (fileName.equals(UP_DIRECTORY)) {

158 // can not go up from MEGA_ROOT

159 return;

160 }

161 currDirName = fileName;

162 } else if (fileName.equals(UP_DIRECTORY)) {

163 // Go up one directory

164 // TODO use setFileConnection when implemented

165 int i = currDirName.lastIndexOf(SEP , currDirName.length () -2);

166 if (i != -1) {

167 currDirName = currDirName.substring (0, i+1);

168 } else {

169 currDirName = MEGA_ROOT;

170 }

171 } else {

172 currDirName = currDirName + fileName;

173 }

174 showCurrDir ();

175 }

APPENDIX C

ComplexMessageDemo Source Code

Listing C.1: ComplexMessageDemo source code

1 import java.util.Vector;

2

3 import javax.microedition.lcdui.Command;

4 import javax.microedition.lcdui.CommandListener;

5 import javax.microedition.lcdui.Display;

6 import javax.microedition.lcdui.Displayable;

7 import javax.microedition.lcdui.Form;

8 import javax.microedition.lcdui.List;

9 import javax.microedition.midlet.MIDlet;

10 import javax.microedition.midlet.MIDletStateChangeException;

11

12 import peer2me.framework.Framework;

13 import peer2me.framework.FrameworkSubscriber;

14 import peer2me.log.Log;

15 import peer2me.message.FileInfo;

16 import peer2me.message.Message;

17 import peer2me.network.bluetooth.Bluetooth;

18 import peer2me.node.Node;

19

20 public class ComplexMessageDemo extends MIDlet implements FrameworkSubscriber , CommandListener

21 {

22 private Framework framework;

23

24 private Display display;

25 private Displayable parent;

26

27 private List nodeList;

28

29 private Form mainForm;

30

31 private Vector nodesFound;

32

33 private Command search;

34 private Command showNodes;

35 private Command send;

36 private Command log;

37 private Command exit;

38 private Command back;

39

40 private boolean addShowNodes = false;

41

167

168 APPENDIX C. COMPLEXMESSAGEDEMO SOURCE CODE

42 private String file1 = "root1/images/christmas.jpg";

43 private String file2 = "root1/images/matrix.jpg";

44

45 protected void startApp () throws MIDletStateChangeException

46 {

47 Log.getInstance (). showDate(false);

48 Log.getInstance (). showTime(false);

49 display = Display.getDisplay(this);

50

51 mainForm = new Form("Peer2Me Test");

52

53 parent = mainForm;

54

55 framework = Framework.getInstance("MyGroup","Complex",new Bluetooth (),this);

56 nodeList = new List("Nodes",List.IMPLICIT);

57 nodesFound = new Vector ();

58

59 search = new Command("Search",Command.OK ,1);

60 showNodes = new Command("Show Nodes",Command.OK ,1);

61

62 log = new Command("Log",Command.OK ,1);

63 exit = new Command("Exit",Command.EXIT ,1);

64 back = new Command("Back",Command.BACK ,3);

65 send = new Command("Send",Command.OK ,1);

66

67 mainForm.setCommandListener(this);

68

69 mainForm.addCommand(search);

70 mainForm.addCommand(back);

71 mainForm.addCommand(log);

72 mainForm.addCommand(exit);

73 display.setCurrent(mainForm);

74 framework.setframeworkSubscriber(this);

75 framework.initialize ();

76 framework.setReceivedFilesFolder("root1/temp/");

77 }

78

79 protected void pauseApp ()

80 {}

81

82 protected void destroyApp(boolean arg0) throws MIDletStateChangeException

83 {}

84

85 private void search ()

86 {

87 framework.search ();

88 }

89

90 private List showNodes ()

91 {

92 nodeList.deleteAll ();

93 Node[] nodes = framework.getAllNodes ();

94 for (int i = 0; i < nodes.length; i++)

95 {

96 if(nodes[i]. getAddress () != framework.getLocalNode (). getAddress ())

97 nodeList.append(nodes[i]. toString(),null);

98 }

99 nodeList.setCommandListener(this);

100 nodeList.addCommand(back);

101 nodeList.addCommand(send);

102 return nodeList;

103 }

104

105 public void nodeDiscovered(Node node)

106 {

107 nodesFound.addElement(node);

108 mainForm.append("Found : "+node.getNodename () + "\n");

109 if(addShowNodes == false)

110 {

169

111 mainForm.addCommand(showNodes);

112 addShowNodes = true;

113 }

114 }

115

116 public void nodeLost(Node node)

117 {

118 nodesFound.removeElement(node);

119 mainForm.append("Lost node "+node.getNodename ()+ "at "+node.getAddress ());

120 }

121

122 public void commandAction(Command cmd , Displayable arg1)

123 {

124 if(cmd == search)

125 {

126 mainForm.append("Searching ...\n");

127 search ();

128 }

129 else if(cmd == showNodes)

130 display.setCurrent(showNodes ());

131 else if(cmd == log)

132 {

133 List list = framework.getLog (). getElementsAsList("Loggen");

134 list.addCommand(back);

135 list.setCommandListener(this);

136 display.setCurrent(list);

137 }

138 else if(cmd == back)

139 display.setCurrent(parent);

140 else if(cmd == exit)

141 {

142 framework.clean ();

143 this.notifyDestroyed ();

144 }

145 else if(cmd == send)

146 {

147 sendComplexMessage ();

148 }

149 }

150

151 public void sendComplexMessage ()

152 {

153 Message message = new Message ();

154 message.addFile("file1", file1);

155 message.addFile("file2", file2);

156 message.addElement("summertime",true);

157 message.addElement("country","Norway");

158 message.addElement("pi" ,3.14);

159 message.addElement("age" ,25);

160 message.addElement("achar",’x’);

161 short value = 2;

162 message.addElement("ashort",value);

163 long largenumber = 922337000;

164 message.addElement("longnumber",largenumber);

165 message.addSerializedObject("info",makeStuffObject ());

166 message.addRecipients(framework.getAllNodes ());

167 framework.sendMessage(message);

168 mainForm.append("Sending\n");

169 }

170

171 public void messageReceived(Message message)

172 {

173 String outPut ="";

174 boolean containFiles = message.getBoolean("file");

175 if(containFiles)

176 {

177 FileInfo receivedFile1 = message.getFile("file1");

178 String filename1 = receivedFile1.getFileName ();

179 String fullPath1 = receivedFile1.getFullPathToFile ();

170 APPENDIX C. COMPLEXMESSAGEDEMO SOURCE CODE

180 long sizeInBytes1 = receivedFile1.getFileSize ();

181

182 FileInfo receivedFile2 = message.getFile("file2");

183 String filename2 = receivedFile2.getFileName ();

184 String fullPath2 = receivedFile2.getFullPathToFile ();

185 long sizeInBytes2 = receivedFile2.getFileSize ();

186

187 String country = message.getString("country");

188 double pi = message.getDouble("pi");

189 int age = message.getInt("age");

190 char charValue = message.getChar("achar");

191 short shortValue = message.getShort("ashort");

192 long longValue = message.getLong("longnumber");

193 MyObject myObject = (MyObject)message.getSerializedObject("info");

194 MyObject myObject2 = myObject.getMyObject ();

195

196 outPut += "\nFile1\nName: " + filename1 +

197 "\nFull path: " + fullPath1 +

198 "\nSize (bytes): " + sizeInBytes1 +

199 "\nFile2\nName: " + filename2 +

200 "\nFull path: " + fullPath2 +

201 "\nSize (bytes): " + sizeInBytes2 +

202 "\nCountry: " + country + "\npi: " + pi +

203 "\nage: " + age +

204 "\ncharValue: " + charValue +

205 "\nshortValue: " + shortValue +

206 "\nlongValue: " + longValue +

207 "\MyObject 1:\ nName: " + myObject.getName () +

208 "\nIntValue: " + myObject.getIntValue () +

209 "\ndoubleValue: " + myObject.doubleValue +

210 "\MyObject 2:\ nName: " + myObject2.getName () +

211 "\nIntValue: " + myObject2.getIntValue () +

212 "\ndoubleValue: " + myObject2.doubleValue;

213 mainForm.append(outPut);

214 }

215 }

216

217 public void messagePartReceived(String messageID , int part , int total)

218 {

219 int percent = (int)(((double)part/(double)total) * 100);

220 mainForm.deleteAll ();

221 mainForm.append("Received: " + percent + " %");

222 }

223

224 public void searchCompleted ()

225 {

226 mainForm.append("Search completed");

227 }

228

229 private Information makeStuffObject ()

230 {

231 Information s = new Information ();

232 s.setDoubleValue (7.89);

233 s.setName("Kim");

234 s.setIntValue (30);

235

236 Information s2 = new Information ();

237 s2.setDoubleValue (14.9);

238 s2.setName("Tommy");

239 s2.setIntValue (25);

240 s.setInformation(s2);

241 return s;

242 }

243 }

APPENDIX D

Contents of Zip File

• Applications

– Chat2Me
– File2Push

• Javadoc

• PDF

– This Masterthesis
– Our Depthstudy

• Peer2Me JAR file

• Source code

171

172 APPENDIX D. CONTENTS OF ZIP FILE

Glossary

Best practice A common way of doing things regarded as a good method. 74
Bluetooth an industrial specification for wireless personal area networks

(PANs)
3

GSM Global System for Mobile Communications 3

IrDA Infrared Data Association 3

J2ME Java 2 Micro Edition 3

MANET Mobile Ad Hoc Network 3
MIDP Mobile Information Device Profile. Set of Java APIs that is

generally implemented on the Connected Limited Device Con-
figuration (CLDC)

43

MOWAHS MObile Work Across Heterogeneous Systems 5
Multihop Reaching outer nodes starting in center and jumping from node

to node until destination is reached.
38

PDA Personal digital assistant 3

Symbian OS An operating system developed by Symbian found on many
mobile phones in different versions.

39

WLAN Wireless Local Area Network that uses radio waves as its carrier 3

173

174 APPENDIX D. CONTENTS OF ZIP FILE

Bibliography

[1] Sony Ericsson Mobile Communication AB. Java docs tools. Retrieved January 27th,
2006, from http://developer.sonyericsson.com/site/global/docstools/java/p_
java.jsp., 2006.

[2] Victor R. Basili. Experimental software engineering issues: Critical assessment and future
directions. The Experimental Paradigm, 1992.

[3] Len Bass, Paul Clements, and Rick Kazman. Software in Practice, Second Edition.
Addison Wesley, 2004.

[4] BEDD. BeddTMbringing people together. Retrieved November 2th, 2005, from http:
//www.bedd.com/about.html., 2005.

[5] Tommy Bjørnsg̊ard and Kim Petter Saxlund. Evaluation of peer2me. Technical report,
Norwegian University of Science and Technology, 2005.

[6] Mitch Blaser. Industrial-strength security for zigbee: The case for public-key cryptogra-
phy. 2005.

[7] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern Oriented Software Architecture. Wiley, John Sons, Incorporated, 1996.

[8] Peter H. Carstensen and Kjeld Schmidt. Computer supported cooperative work: New
challenges to systems of design. Handbook of Human Factors, 2002.

[9] Datacomm Research Company. Using mimo-ofdm technology to boost wireless lan per-
formance today. Technical report, Datacomm Research Company, 2005.

[10] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed System: Concepts
and Design. Pearson: Addison Wesley, 2001.

[11] Sony Ericsson. Part one: Using irda with the obex protocol to cre-
ate a client application 259: Ad hoc networking api. Retrieved April
24th, 2006, from http://developer.sonyericsson.com/site/global/techsupport/
tipstrickscode/java/p_part1_usingirda_obexprotocol.jsp., 2005.

[12] George H. Forman and John Zahorjan. The challenges of mobile computing. Technical
report, University of Washington, 1994.

[13] The Eclipse Foundation. What is eclipse? Retrieved January 26th, 2005, from http:
//www.eclipse.org/org/., 2005.

[14] Open Source Technology Group. Blue cove. Retrieved Desember 7th, 2005, from http:
//sourceforge.net/projects/bluecove/., 2005.

[15] Open Source Technology Group. Eclipseme. Retrieved January 26th, 2005, from http:
//sourceforge.net/projects/eclipseme/., 2005.

175

http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp
http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp
http://www.bedd.com/about.html
http://www.bedd.com/about.html
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_part1_usingirda_obexprotocol.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_part1_usingirda_obexprotocol.jsp
http://www.eclipse.org/org/
http://www.eclipse.org/org/
http://sourceforge.net/projects/bluecove/
http://sourceforge.net/projects/bluecove/
http://sourceforge.net/projects/eclipseme/
http://sourceforge.net/projects/eclipseme/

176 BIBLIOGRAPHY

[16] Open Source Technology Group. Texlipse. Retrieved January 26th, 2005, from http:
//sourceforge.net/projects/texlipse/., 2005.

[17] Colin G. Harrison, David M. Chess, and Aaron Kershenbaum. Mobile Agents: Are they
a good idea? IBM Research Division, 1995.

[18] Ben Hui. Connecting pc and phone with java bluetooth api part 1. Retrieved Novem-
ber 2th, 2005, from http://www.benhui.net/modules.php?name=Bluetooth&page=
Connect_PC_Phone_Part_1.html., 2005.

[19] Team in a Box Ltd. Eclipse metrics plugin. Retrieved January 26th, 2005, from http:
//www.teaminabox.co.uk/downloads/metrics/., 2004.

[20] Cisco Systems Inc. Osi model. Website: http://www.cisco.com/univercd/cc/td/doc/
cisintwk/ito_doc/introint.htm% bibnodot., 2006.

[21] Sun Microsoystems Inc. Java 2 platform, micro edition (j2me) datasheet. Retrieved Mars
11th, 2006, from http://java.sun.com/j2me/docs/j2me-ds.pdf., 2002.

[22] Sun Microsoystems Inc. Java 2 platform, micro edition (j2me). Retrieved November
25th, 2005, from http://java.sun.com/j2me/., 2005.

[23] Sun Microsoystems Inc. Javadoc tool. Retrieved May 24th, 2006, from http://java.
sun.com/j2se/javadoc/., 2006.

[24] Sun Microsystems Inc. Sun java webpage. Website: http://java.sun.com/., 2006.

[25] Lars Kirkhus and Anders R. Sveen. An examination of mobile devices for spontaneous
collaboration. Technical report, The Norwegian University of Science and Technology
(NTNU), 2003.

[26] Lars Kirkhus and Anders R. Sveen. Mowahs - mobile collaboration framework. Technical
report, The Norwegian University of Science and Technology (NTNU), 2004.

[27] Gerd Kortuem, Jay Schneider, Dustin Preuitt, Thaddeus G. C. Thompson, Stephen
Fickas, and Zary Segall. When peer-to-peer comes face-to-face: Collaborative peer-to-
peer computing in mobile ad hoc networks. Technical report, Department of Computer
and Information Science, University of Oregon, 2001.

[28] Adam Laurie and Ben Laurie. Serious flaws in bluetooth security lead to disclosure of
personal data. Technical report, A.L. Digital Ltd, 2003.

[29] L.J.Bannon. The context of cscw. Report of CoTech Working Group 4, 1991-1992.

[30] Carl-Henrik Wolf Lund and Michael Sars Norum. A framework for mobile collaborative
applications on mobile phones. Technical report, Norwegian University of Science and
Technology, 2004.

[31] Carl-Henrik Wolf Lund and Michael Sars Norum. The peer2me framework, a framework
for mobile collaboration on mobile phones. Master’s thesis, NTNU, 2005.

[32] Qusay H. Mahmoud. Part ii: The java apis for bluetooth wireless technology. 2003.

[33] Nico Maibaum and Thomas Mundt. Jxta: A technology facilitating mobile peer-to-peer
networks. Technical report, University of Rostock; Department of Computer Science,
Germany, 2002.

[34] Sun Microsystems. Bluetooth sig selects wimedia alliance ultra-wideband technology
for high speed bluetooth R© applications. Retrieved April 24th, 2006, from http://www.
j2medev.com/api/btapi/javax/obex/HeaderSet.html., 2004.

[35] Sun Microsystems. Jsr 259: Ad hoc networking api. Retrieved December 8th, 2005, from
http://www.jcp.org/en/jsr/detail?id=259., 2005.

[36] Sun Microsystems. Sun java wireless toolkit. Retrieved January 26th, 2005, from http:
//java.sun.com/products/sjwtoolkit/., 2006.

[37] Ian Goldberg Nikita Borisov and David Wagner. Intercepting mobile communications:
The insecurity of 802.11. Technical report, University of California, Berkeley, 2001.

http://sourceforge.net/projects/texlipse/
http://sourceforge.net/projects/texlipse/
http://www.benhui.net/modules.php?name=Bluetooth&page=Connect_PC_Phone_Part_1.html
http://www.benhui.net/modules.php?name=Bluetooth&page=Connect_PC_Phone_Part_1.html
http://www.teaminabox.co.uk/downloads/metrics/
http://www.teaminabox.co.uk/downloads/metrics/
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introint.htm
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introint.htm
http://java.sun.com/j2me/docs/j2me-ds.pdf
http://java.sun.com/j2me/
http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc/
http://java.sun.com/
http://www.j2medev.com/api/btapi/javax/obex/HeaderSet.html
http://www.j2medev.com/api/btapi/javax/obex/HeaderSet.html
http://www.jcp.org/en/jsr/detail?id=259
http://java.sun.com/products/sjwtoolkit/
http://java.sun.com/products/sjwtoolkit/

BIBLIOGRAPHY 177

[38] University of Tromsø. Open-obex. Retrieved February 24th, 2006, from http://www.
ravioli.pasta.cs.uit.no/open-obex., 2005.

[39] Christian Schenk. About miktex. Retrieved January 26th, 2005, from http://www.
miktex.org/about.html., 2006.

[40] SIG. The official bluetooth website. Retrieved November 26th, 2005, from http://www.
bluetooth.com/., 2005.

[41] Bluetooth SIG. Interface headerset. Retrieved May 24th, 2006, from http://
bluetooth.com/Bluetooth/Press/SIG/BLUETOOTH_SIG_SELECTS_WIMEDIA_ALLIANCE_
ULTRAWIDEBAND_TECHNOLOGY_FOR_HIGH_SPEED_BLUETOOTH_APPLICATION.htmbnodot.,
2006.

[42] Wikipedia. Mobile ad-hoc network. Retrieved October 7th, 2005, from http://en.
wikipedia.org/wiki/Mobile_ad-hoc_network., 2005.

[43] Wikipedia. Open mobile alliance. Retrieved November 20th, 2005, from http://en.
wikipedia.org/wiki/Open_Mobile_Alliance., 2005.

[44] Wikipedia. Peer-to-peer. Retrieved September 25th, 2005, from http://en.wikipedia.
org/wiki/P2p., 2005.

[45] Wikipedia. Personal area network. Retrieved October 7th, 2005, from http://en.
wikipedia.org/wiki/Personal_area_network., 2005.

[46] Wikipedia. Syncml. Retrieved November 20th, 2005, from http://en.wikipedia.org/
wiki/SyncML., 2005.

http://www.ravioli.pasta.cs.uit.no/open-obex
http://www.ravioli.pasta.cs.uit.no/open-obex
http://www.miktex.org/about.html
http://www.miktex.org/about.html
http://www.bluetooth.com/
http://www.bluetooth.com/
http://bluetooth.com/Bluetooth/Press/SIG/BLUETOOTH_SIG_SELECTS_WIMEDIA_ALLIANCE_ULTRAWIDEBAND_TECHNOLOGY_FOR_HIGH_SPEED_BLUETOOTH_APPLICATION.htm
http://bluetooth.com/Bluetooth/Press/SIG/BLUETOOTH_SIG_SELECTS_WIMEDIA_ALLIANCE_ULTRAWIDEBAND_TECHNOLOGY_FOR_HIGH_SPEED_BLUETOOTH_APPLICATION.htm
http://bluetooth.com/Bluetooth/Press/SIG/BLUETOOTH_SIG_SELECTS_WIMEDIA_ALLIANCE_ULTRAWIDEBAND_TECHNOLOGY_FOR_HIGH_SPEED_BLUETOOTH_APPLICATION.htm
http://en.wikipedia.org/wiki/Mobile_ad-hoc_network
http://en.wikipedia.org/wiki/Mobile_ad-hoc_network
http://en.wikipedia.org/wiki/Open_Mobile_Alliance
http://en.wikipedia.org/wiki/Open_Mobile_Alliance
http://en.wikipedia.org/wiki/P2p
http://en.wikipedia.org/wiki/P2p
http://en.wikipedia.org/wiki/Personal_area_network
http://en.wikipedia.org/wiki/Personal_area_network
http://en.wikipedia.org/wiki/SyncML
http://en.wikipedia.org/wiki/SyncML

	List of Tables
	List of Figures
	I Introduction
	Motivation
	Problem definition

	Project Context
	Readers Guide
	Chapter Description

	II Research Methods
	Research Questions
	Research Questions

	Research Methods
	Research
	Design
	Implementation
	Testing
	Evaluation

	Development Tools and Software
	Development Tools
	Eclipse With Plugins
	MiKTeX
	Concurrent Version System

	Emulators
	Sun Wireless Toolkit
	Sony Ericsson SDK

	III Prestudy
	The History of Peer2Me
	MOWAHS
	Work by Kirkhus and Sveen
	Spectre

	Work by Lund and Norum
	Framework Prototype
	Peer2Me, first version

	Our depth study

	Central Concepts
	Peer-to-Peer
	Mobile P2P Networks
	Mobile Ad Hoc Networks (MANET)
	Piconet
	Scatternet

	Communication and Collaboration
	Groupware and Computer Supported Cooperative Work

	State of the Art
	Bluecove
	Umbrella.Net
	BEDD
	Other projects
	JXTA
	JSR82 259
	OBEX
	SyncML

	Summary

	Technology
	Mobile Phones
	Java 2 Micro Edition
	J2ME architecture
	Optional packages

	Wireless network technologies
	Bluetooth
	Wireless Local Area Network
	ZigBee
	Radio Frequency IDentification
	Wireless USB
	Wireless Firewire

	Software Architecture
	Stakeholders
	Quality of a System
	Quality Scenarios
	Quality Attributes

	Architectural Tactics
	Modifiability Tactics
	Usability Tactics
	Performance Tactics
	Availability Tactics
	Security Tactics
	Testability Tactics

	Design Patterns
	Behavioural patterns
	Observer pattern

	Creational patterns
	Singleton Pattern

	Structural Patterns
	Facade Pattern

	Architectural Pattern
	Layered Architecture Pattern

	IV Redesign of Architecture
	Introduction
	Requirements
	Functional Requirements
	Quality requirements
	Modifiability
	Usability
	Testability
	Availability

	Architecture Design Decisions
	A Pure P2P Model
	Layered Software Structure
	Communication protocol
	Messages
	Detecting Node loss

	Design Overview
	Domain concepts
	High level general process scenarios
	Peer2Me and Java
	Peer2Me Package Overview
	The Framework package
	Class: Framework
	Interface: FrameworkSubscriber
	Class Diagram

	The Session package
	Class: Session
	Class Diagram

	The Service package
	Class: Service
	Class: HexBuilder
	Class Diagram

	The Group Package
	Class: Group
	Class Diagram

	The Node package
	Class: Node
	Class Diagram

	The Network package
	Abstract Class: Network
	Abstract Class: NetworkNode
	Class: NetworkTimer
	Class Diagram

	The Bluetooth package
	Class: Bluetooth
	Class: BluetoothListener
	Class: BluetoothConnectionHandler
	Class: BluetoothNode
	Class: BluetoothObjectPush
	Class: BluetoothPingListener
	Class BluetoothPingConnectionHandler
	Class BluetoothSearcher
	Class: InstanceOfRemoteDevice
	Class: MessageQueueProcessor
	Class: Peer2MeHeaderSet
	Class: PingQueueProcessor
	Class Diagrams

	The Message Package
	Class: Message
	Class: MessagePart
	Abstract Class: FileObject
	Class: SendFileObject
	Class: ReceivedFileObject
	Class: FileInfo
	Interface: Serializable
	Class: SendableNodeInfo
	Class ObjectOutputStream
	Class ObjectInputStream
	Class LinkedMessageList
	Class LinkedPingRecipientsList
	Class Diagrams

	The Exception package
	FileNotFoundException
	FrameworkNotInitializedException
	GroupNotFoundException
	NodeNotFoundException
	LocalDeviceNotFoundException
	HexConversionException
	InvalidKeyException
	UnknownKeyException
	Class Diagram

	The Log package
	Class: Log
	Class: LogElement
	Class: LogElementDate
	Class: LogElementType
	Class Diagram

	The Util package
	Class: TextUtil
	Class: FileHandler
	Class Diagram

	V Applications
	Introduction
	The Applications
	Chat2Me
	Walkthrough

	File2Push
	Walkthrough

	ComplexMessageDemo
	Walkthrough

	VI Evaluation
	Testing
	Functional Requirements Results
	Quality Requirements Results

	Comparison of Old and New Peer2Me
	Statistical Comparison
	Functional Requirements Comparison
	Differences that the Application Developer Experience

	Problems
	Emulators vs Mobile Phones
	Performance
	Graphical User Interface
	Exception Handling and Debugging

	Understanding Bluetooth Limitations
	Master vs. Slave
	Number of Nodes
	Interference
	Security Issues

	Answers to Research Questions
	Summary
	Conclusion
	Further Work
	Short-term Goals
	Optimizing Network
	Configuration
	Scatternet
	Mobile Agents

	Long-term Goals
	Adopt new technology
	Up-to-Date
	Empirical Work and Applications

	VII Appendix
	Chat2Me Source Code
	File2Push Source Code

	ComplexMessageDemo Source Code
	Contents of Zip File
	Glossary
	Bibliography

