
Developing an analysis technique for
identification of wave structures in MATS
data

Andreas Fjeldstad

Master of Science

Supervisor: Patrick Joseph Espy, IFY

Department of Physics

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

This thesis presents a method for analyzing data gathered during the MATS
mission. The MATS mission is a Swedish satellite mission which aims to
improve our understanding of gravity waves in the mesosphere and their
influence on the atmosphere. The MATS satellite will be launched in 2019,
and observations will mainly be done by imaging the limb of the atmosphere.

The development of a technique for analyzing such data resulted in a
model which returns wave characteristics of waves identified within data sets
similar to what is expected from the MATS mission. The model was tested
with both synthetic data and more realistic data from a forward model made
to simulate MATS data. The synthetic data was made to simulate gravity
waves in the mesosphere, and was mainly used during the development of
the model.

The model developed treats and filters the data, and returns wave char-
acteristics of waves present within the data set. The results presented in this
thesis show that the model often mistakes noise and side lobes for waves,
leading to an output not consistent with the expected results when synthetic
data is used. However, the model was able to find the wave characteristics of
data accepted as wave peaks, leading to the conclusion that the problems and
inaccuracies in the output are from the identification of waves, and not from
the calculations of the wave characteristics. Thus, further work with filtering
and identifying waves in data fields resembling MATS data is needed.

i

Sammendrag

I denne oppgaven presenteres det en metode for å analysere data fra MATS-
oppdraget. MATS-oppdraget er et svensk satellittoppdrag som har som mål
å bedre v̊ar forst̊aelse av gravitasjonsbølger i mesosfæren og deres p̊avirkning
p̊a atmosfæren. MATS-satellitten skal skytes opp i løpet av 2019, og ob-
servasjonene vil hovedsaklig gjøres ved å ta bilder av deler av atmosfæren.
Utviklingen av en teknikk for å analysere slike data resulterte i en mod-
ell som returnerer bølgeegenskapene til bølger som er identifisert i datasett
med bølger lagd for å etterligne gravitasjonsbølger. Modellen ble testet med
b̊ade syntetiske data og realistiske data fra en modell utviklet for å etterligne
MATS-dataene. Syntetiske data ble laget slik at den best mulig skulle et-
terligne gravitasjonsbølger i mesosfæren, og det var hovedsaklig disse dataene
som ble analysert under utvikling av modellen. Modellen behandler og fil-
trerer data, og returnerer bølgeegenskaper fra bølger som finnes i dataset-
tene. Resultatene som presenteres i denne oppgaven viser at modellen ofte
tar feil av støy og bølger, noe som fører til at resultatene fra modellen ikke
er som forventet med dataene den behandler. Likevel klarte modellen å
beregne bølgeegenskapene til dataene som ble registrert som bølger, noe som
leder til konklusjonen at feilene og unøyaktighetene i dataene modellen re-
turnerer er grunnet feil i identifiseringen av bølger, og ikke fra beregningene
av bølgeegenskapene. Videre arbeid med modellen vil derfor best̊a av å bedre
modellens evne til å skille mellom støy og bølger.

iii

Preface

This work is a continuation of the work done in my specialization project,
which was carried out during the autumn of 2017. Most of the work included
in this thesis was carried out during the spring of 2018.

I would like to express my gratitude to Professor Patrick Espy for great
help and guidance in the writing of this thesis, and for the insightful discus-
sions and explanations of the nature of gravity waves and concepts of signal
processing.

Andreas Fjeldstad
June 2018
Trondheim

v

Contents

Abstract i

Sammendrag iii

Preface v

Contents vii

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction 1

2 Theory 3
2.1 The atmosphere . 3
2.2 Gravity waves . 5
2.3 Effects of gravity waves in the atmosphere 6
2.4 The MATS mission . 7
2.5 Wave properties . 10

3 Methods 15
3.1 Sampling and readying data 15
3.2 Filtering data fields and identifying peaks 19
3.3 Identification of wave properties 21
3.4 Synthetic data . 22
3.5 Data from forward model . 24

4 Results 25
4.1 Results from data treatment 25
4.2 Results with synthetic data 29

4.2.1 Horizontal analysis . 30
4.2.2 Vertical analysis . 31

4.3 Results from forward model 36

vii

5 Discussion 39
5.1 Data treatment . 39
5.2 Results with synthetic data 40
5.3 Results with data from the forward model 41
5.4 Further work . 42

6 Conclusion 43

References 45

A Code Listing 47

List of Figures

2.1 Temperature profile of the homosphere for Bear Lake in January. 4
2.2 Mass oscillating in x- and z-direction. 5
2.3 Mountain wave with airflow at three different altitudes. 6
2.4 Drawings of the MATS satellite. 8
2.5 Airglow shown over Australia. 9
2.6 A wave in frequency domain and time domain, and the same

wave with time shift. 11
2.7 A wave propagating across multiple altitudes, illustrating how

the phase develops. 12

3.1 Illustration of an apodization function affecting a signal. . . . 16
3.2 Two-dimensional waves and their symmetry in Fourier space. . 18
3.3 Two signals in time domain, one unfiltered and one filtered. . 20
3.4 Synthetic wave provided by the model. 22

4.1 Result of a wave being windowed. 25
4.2 Amplitude plot of wave transformed to Fourier Space. 26
4.3 Amplitude plot of a filtered wave. 27
4.4 Amplitude plot of wave with the second filter implementation. 28
4.5 Amplitude plot of wave with the third filter implementation. . 29
4.6 Amplitude plot of wave with a horizontal wavelength of 20 km. 30
4.7 Amplitude plot of wave with a horizontal wavelength of 53 km. 31
4.8 Phase of a wave with horizontal wavelength 20 km plotted

with respect to altitude. 32
4.9 Horizontal wavelength of a wave with horizontal wavelength

20 km plotted with respect to altitude. 32
4.10 Phase of a wave with horizontal wavelength 53 km plotted

with respect to altitude. 33
4.11 Horizontal wavelength of a wave with horizontal wavelength

53 km plotted with respect to altitude. 34
4.12 Phase of two waves plotted with respect to altitude. 35
4.13 Wavelength of two waves plotted with respect to altitude. . . . 35
4.14 Phase of waves from forward model plotted with respect to

altitude. 36
4.15 Horizontal wavelength of waves from forward model plotted

with respect to altitude. 37

ix

List of Tables

3.1 Wave parameters of synthetic waves. 22
3.2 Parameters used to analyze the data from synthetic waves. . . 23
3.3 Parameters used to analyze data from the forward model. . . . 24

xi

Abbreviations

MATS = Mesopheric Airglow/Aerosol Tomography and Spectroscopy

DALR = Dry Adiabatic Lapse Rate

DFT = Discrete Fourier Transform

FFT = Fast Fourier Transform

FWHM = Full Width Half Maximum

HWHM = Half Width Half Maximum

FIR = Finite Impulse Response

xiii

1 Introduction

The MATS mission is a Swedish satellite mission which aims to improve our
understanding of gravity waves in the mesosphere and their influence on the
atmosphere. MATS is an acronym for Mesospheric Airglow/Aerosol Tomog-
raphy and Spectroscopy. Gravity waves are internal mechanical waves that
exist throughout the atmosphere, and is a source of dynamic coupling be-
tween different layers of the atmosphere. The mesosphere is often viewed
as a transition region between space and the atmosphere, and with the aim
to understand the atmosphere as a whole, we need to obtain a greater un-
derstanding of the mechanics of this transition region and its coupling to
atmospheric conditions below and above. This mission will be able to pro-
vide a global scale mapping of gravity waves, which can be used to further
develop atmospheric global scale models and weather forecast models. The
satellite will be launched in 2019, and the mission is planned to last for two
years.

Prior to launch methods for analyzing and interpreting data gathered by
the satellite must be developed. Members of the collaboration group from
Chalmers University of Technology in Gothenburg and Stockholm University
have developed a model for simulating realistic gravity waves in the meso-
sphere. The goal of this project is to develop a model able to analyze and
interpret data gathered during the MATS mission. The model, whose input
is data containing possible wave structures, aims to have an output with
discovered wave characteristics of these waves. A method used during devel-
opment of this model is to have synthetic data as input and develop means
of analyzing this data, before testing the model with realistic data provided
by the forward model mentioned above.

This thesis gives an introduction to gravity waves and the MATS mission.
Theory used when developing the model is presented, then techniques and
methods used to develop the model are presented. Results from the devel-
opment of the model are shown, both with synthetic data and data from the
forward model. Further, the resulting model is discussed, based on theory
and aims for the project.

1

2 Theory

To develop a method or model for analyzing data gathered from the MATS
mission, some theory to base such a model on is needed. The theoretical
foundation of the MATS mission is gravity waves and how these waves affect
the surrounding atmosphere. The theory includes a short introduction of
the atmosphere, with focus on the mesosphere, which is the atmospheric
part of interest in the MATS mission. Furthermore, gravity waves and the
MATS mission is explained and elaborated upon, before theory used when
developing the model is presented and explained.

2.1 The atmosphere

The atmosphere consists of several layers, or spheres, divided according to
their temperature profile. The different layers and their temperature change
in vertical direction are shown in figure 2.1, as a plot of temperature with
respect to height. As can be seen from this figure, the layers are divided based
on the sign of the temperature gradient, Γ, which is the rate of decrease of
temperature with height, called the lapse rate. It can be represented as

Γ = −dT
dz
. (2.1)

The thermodynamic change in temperature of a mass of dry air as it un-
dergoes adiabatic changes in pressure associated with changes in altitude is
called the dry adiabatic lapse rate (DALR) and can be approximated to 9.8
K/km [1]. If a parcel of air is displaced upwards in an atmosphere where Γ
is less than the DALR, the parcel will be denser than its surroundings. It
will tend to fall back towards its original altitude, and we say that the atmo-
sphere is stable. The atmosphere consists of a mixture of ideal gases, where
nitrogen and oxygen are dominant by volume, but minor constituents such as
water vapor, ozone and carbon dioxide have huge impact on the atmosphere
and its dynamics.

The troposphere, stratosphere and mesosphere are together called the
homosphere, and is composed of mostly nitrogen and oxygen. Of particular
interest in this project is the mesosphere, as this is the layer where the
satellite will gather its data. The lower part of the mesosphere is located at
a height of approximately 50 km above Earth’s surface. The upper boundary
is called the mesopause, and is located at a height of approximately 100 km
above Earth’s surface. The altitude limits of the mesosphere depend on

3

CHAPTER 2. THEORY

Figure 2.1: The temperature (in Kelvin) in the lowest 120 km of the atmosphere.
The layers of the homosphere, based on their temperature profile in the vertical,
are shown with their respective pause. The model used is NRLMSISE-00 [2]. The
data obtained is from Bear Lake, US (44◦N) in January.

season, and will thus vary through the year. As can be seen in figure 2.1
the temperature gradient is negative in the mesosphere. One of the reasons
the MATS mission will be important is because the mesosphere has been
found to be difficult to study. This is due to weather balloons not being able
to fly high enough to provide in situ measurements, and satellites orbiting
above this layer. This means that sounding rockets are the only means of
performing direct observations, but such observational flights are both brief
and infrequent. Waves originating from lower parts of the atmosphere are
able to grow to large amplitudes and deposit energy and momentum, affecting
among others global wind patterns. One of the main dynamic processes in the
mesosphere is due to a type of atmospheric wave called internal atmospheric
gravity wave, or gravity wave for short.

4

CHAPTER 2. THEORY

2.2 Gravity waves

Atmospheric gravity waves are mechanical waves that may occur internally
in the atmosphere or in the transition between two media. These waves have
been subject to intense research since the 1960s, due to their contributions
to atmospheric structure, variability and circulation [3]. Gravity waves that
occur within a medium are called internal gravity waves, and gravity waves
that occur at an interface are called surface gravity waves. Gravity waves
are common in Earth’s atmosphere as they are lightly damped and can be
produced by a variety of sources [4]. These waves can be generated from
e.g. thunderstorms, mountains, convection and shear, to mention some. One
of the most important sources of gravity waves is topography. Topographic
waves are often called mountain waves or lee waves. When air blows towards
a large topographic object (e.g. a mountain range), the air is pushed to
higher altitudes. When a parcel of dense air is moved into a region of less
dense air, gravity will pull the parcel of heavier air downwards. The parcel
may then overshoot, and since buoyancy will push parcels lighter than their
surroundings upwards, the parcel will be pushed back to higher altitudes.
This movement is similar to a mass attached to a spring, oscillating in both
x- and z-direction, as illustrated in figure 2.2.

Figure 2.2: A mass attached to a spring. The mass oscillates in the same manner
as a parcel of air may oscillate. The movement can move the perturbations to
adjacent parcels of air. Fg represents gravity force, and is directed in negative
z-direction. Fb represents buoyancy force, and is directed in positive z-direction.

A motion as described above can push layers of air surrounding the par-
cel, which in vertical direction results in the wave propagating to higher or
lower altitude, as illustrated in figure 2.3. In time, the wave will break and

5

CHAPTER 2. THEORY

deposit momentum and energy into its surrounding atmosphere. Movement
in horizontal direction moves the perturbations to parcels of air adjacent in
horizontal direction, and allows the wave to propagate away from its source.

Mountain
range

z3

z2

z1

z

x

Figure 2.3: An illustration of a mountain wave, an internal gravity wave that may
form when airflow blows over a mountain range. Each line represents a particular
streamline of the airflow, at different altitudes z1, z2 and z3. The arrows indicate
the direction of the airflow.

2.3 Effects of gravity waves in the atmosphere

Gravity waves are recognized for their role in transporting energy and mo-
mentum to different parts of the atmosphere. In addition, the waves influence
the mean circulation, temperature and density profiles of the atmosphere and
contribute to turbulence and mixing. Especially in the mesosphere, waves
may propagate to such large amplitudes they will affect the mean atmo-
spheric state. The spatial resolution needed to model effects of gravity waves
on larger scale circulation is overwhelmingly fine, requiring the waves to be
parametrized. The waves influencing the circulation in the atmosphere may
have horizontal wavelengths ranging from tens to thousands of kilometers.
Vertically, wavelengths may range substantially due to wind shear among
other things. In the stratosphere, waves with vertical wavelengths as small
as 1-2 km may be important, and waves with periods as short as 10 minutes
are able to carry significant momentum flux vertically. Sources of these waves
may be processes that are poorly resolved and parametrized [3].

An acknowledgment regarding global model studies is that in order to
describe gravity waves through parameterization, efforts to understand and
observe climatology of such waves are needed, and gravity wave climatology

6

CHAPTER 2. THEORY

is thus an area of active research [3]. In this context, climatology refers to
variations in characteristics of gravity waves such as phase speed and wave-
length, and temporal and geographical variations in activity. Guidelines
to input parameters describing sources and estimation of wave dissipation
as a function of height are important for parameterization of these waves.
Currently, model studies of gravity waves are often idealized and poorly con-
strained by observations. The evidence for global variations in sources of
gravity wave activity is lacking, but the importance of sources such as topog-
raphy and convection are evident, and thus sources must vary seasonally and
geographically. An important goal of future observational gravity wave stud-
ies is to detect variations between gravity wave activity and climatological
patterns. A means of separating variations due to background atmosphere
and variations due to gravity wave sources can then be found by combin-
ing observations and modeling tools. This can help determine whether a
monthly mean of gravity wave activity represents constant, small amplitude
wave activity or large outbursts of such activities. Knowledge of generation
mechanics and their resulting wave characteristics is needed to provide an
accurate description of gravity wave effects in global models [3].

The observational method which holds the most promise for observing
geographical and temporal coverage needed to understand gravity wave vari-
ability is satellite observations [3].

2.4 The MATS mission

MATS is short for Mesospheric Airglow/Aerosol Tomography and Spec-
troscopy, and is a Swedish satellite mission which aims to improve our un-
derstanding of gravity waves in the mesosphere. The satellite’s orbit enables
it to provide global scale mapping of gravity waves in the region of inter-
est, namely the mesosphere. The mission will thus provide contributions to
understanding the climatology of gravity waves in the mesosphere and map-
ping of sources of such waves in more detail than previous observations. As
a result, the mission may contribute to making global climate models and
weather forecast models more precise in the future. The satellite will be
launched in 2019, and will orbit in a sun-synchronous orbit 600 km above
Earth’s surface using optical remote sensing to observe gravity waves. The
mission will last for two years. The satellite has a mass of about 50 kg, and
its dimensions is 60 × 70 × 85 cm. The spacecraft is based on a spacecraft
concept called InnoSat. InnoSat is a small, low cost satellite platform and is
intended for scientific research missions in Low Earth Orbit, meaning orbits
in an altitude of 160 - 2000 km.

7

CHAPTER 2. THEORY

On board the satellite are two scientific instruments, a limb imager and a
nadir imager. The field of view for the limb imager is 250 km in the horizontal
and 60 km in the vertical, but may be less depending on operational mode.
The satellite, with it’s scientific equipment, is shown in figure 2.4. The
mission aims to do three dimensional reconstruction of gravity waves by
performing a tomographic analysis of the images. Observations will be done
mainly by imaging the limb of the atmosphere, and the viewing direction is
in the track of the satellite orbit. The imaging will be done at six different
wavelengths; two in UV (between 270-300 nm) and four in IR (between 760-
780 nm) [5]. To investigate atmospheric waves, the satellite will be imaging
structures in noctilucent clouds, which are clouds that form at an altitude of
around 80 km, in addition to variation in light emitted by oxygen molecules
at an altitude of around 100 km, so called airglow.

Figure 2.4: Two figures showing different drawings of the MATS satellite. The
image to the left shows the scientific instruments on board the satellite, while the
image to the right is an early illustration of the satellite.

Airglow is a result of sunlight interacting with molecules in the atmo-
sphere, and can be divided into dayglow and nightglow, depending on whether
it occurs during daytime or nighttime. Since the emission from airglow is
weak, it is easiest to detect at night, when the far more dominant sunlight is
absent. Such nightglow can be seen as a thin, green shell in figure 2.5. This
optical radiation is emitted by excited atoms, molecules or ions which are
generated in a variety of production and excitation processes during the day
when sunlight deposits energy into the atmosphere [6]. The largest portion
of the chemical energy stored in the upper part of the atmosphere is carried
by oxygen atoms. These atoms eventually participate in chemical reactions
leading to emission of radiation, called chemiluminescence. These processes
continue throughout the night, and produce nightglow in a 10-20 km thick
layer at an altitude of approximately 90 km [6]. Excess energy is carried
away by the products of the reaction

8

CHAPTER 2. THEORY

O + O +M → O∗2 + M, (2.2)

where O is atomic oxygen, O∗2 is a newly formed O2 molecule with internal
energy, and M represents a third body, which in the mesopause may be
any of the major atmospheric components N2, O2 or O. Energy may be
released, either through radiative relaxation after the above reaction or by
other reactions, and can be observed as nightglow. The system of interest in
this mission is the O2 A-band, which is one of the lowest excited states [6].

Figure 2.5: An image of Earth at night, taken from ISS [7]. The red light on the
ground is from wildfire in Australia, while airglow is shown as a thin, green layer
in the atmosphere.

9

CHAPTER 2. THEORY

2.5 Wave properties

The data from the satellite will provide the first three dimensional recon-
struction of gravity waves in the upper mesosphere [5]. Methods for analyz-
ing data generated by the satellite are necessary, and a mean of automatically
identifying and extracting wave properties from this data is thus needed.

This will be done by developing a model whose input is MATS data and
output is prospective wave properties. A method of analyzing this data is
with the Fourier transform in two dimensions. The input in the analysis
will be points sampled from data gathered by the satellite. The Fourier
transform of a complex function g of two independent variables, x and y,
will be represented here by F{g} and is defined as

F{g} =

+∞¨

−∞

g(x, y) exp[−j2π(fXx+ fY y)] dx dy. (2.3)

The transform is itself a complex-valued function of two independent vari-
ables, fX and fY [8].

When in Fourier domain, the amplitude, phase and wavelength of the
waves can be extracted from the data and used to identify prospective gravity
waves within the data. The gathered data points will be run through a model
consisting of several steps to determine whether the sampled data contains
wave characteristics.

The amplitude of the Fourier transform of each data point can be defined
by

A =
√

Re2 + Im2, (2.4)

where ”Re” and ”Im” are the real and imaginary part, respectively, of a
complex number. Such a complex number can be represented by

z = a+ b · j,

where a and b are real numbers and j is a solution to the equation x2 = −1.
The phase is given by

φ = arctan

(
Im

Re

)
. (2.5)

A one-dimensional wave as the one in figure 2.6 shows how the real and
imaginary part of a wave in Fourier space can describe the phase of a wave.
Note in the figure the change in amplitude in Fourier space as the wave is

10

CHAPTER 2. THEORY

0

g(t-t')

t

0

g(t)

t

Im

Re

H(f)

f

f

Im

Re

H(f)

f

f

A
√2

- A√2

A
√2

A
√2

A A

0

Figure 2.6: A one-dimensional wave shown in both time domain (left) and fre-
quency domain (right). The second wave is equal to the first, but time shifted by
a constant t′. The figure shows how time shifting results in a change in the phase
angle, as can be seen from the relationship in equation (2.5).

time shifted. However, time shifting does not change the total magnitude of
the Fourier transform [9].

When a one-dimensional wave g(t) is shifted by a constant t′, the Fourier
transform becomes

+∞ˆ

−∞

g(t− t′) exp[−j2πfT t] dt = H(f) exp[−j2πfT t′]. (2.6)

By Euler’s formula [10], this can be written in the form

H(f) exp[−j2πfT t′] = H(f)[cos (2πfT t
′)− j sin (2πfT t

′)],

and when combining this with equation (2.4), the magnitude, or amplitude,

11

CHAPTER 2. THEORY

is given as

|H(f)[cos (2πfT t
′)− j sin (2πfT t

′)]|

=
√
H2(f)[cos2(2πfT t′) + sin2(2πfT t′)]

=
√
H2(f), (2.7)

where the relationship cos2 x + sin2 x = 1 and the definition of a complex
number j as the solution of the equation x2 = −1, is used.

The fact that the amplitude of the wave does not change because of time
shifting makes the amplitude a reasonable property to use for filtering wave
structures when analyzing the data.

The phase can be used to identify waves propagating across several al-
titudes. The phase in a wave will change in an orderly fashion, meaning it
will change in a linear, quadratic or other mathematically easily described
manner, while noise will have completely random phases. This is illustrated
in figure 2.7, where the phase is represented by the blue points. The phase
shifts towards right as the wave propagates in z-direction, showing how phase
can progress with altitude.

z1

z2

z3

z4

Figure 2.7: A one-dimensional wave propagating across multiple altitudes zn.
The blue points represent the phase, and show how it shifts towards right.

12

CHAPTER 2. THEORY

This change, or development, in phase is calculated with polynomial re-
gression. Regression analysis is a statistical tool used to compute the re-
lationship between values in a set of data. In a second degree polynomial
regression, a function describing this relationship is modeled using multiple
linear regression, and can be described by the equation

Y = β0 + β1x+ β2x
2, (2.8)

where βn are called the regression coefficients and are constants. Estimation
of the coefficients is carried out by the method of least squares. Lastly, the
model checks if peaks at different altitudes have roughly equal wavelengths,
meaning

λz1 ≈ λz2 ,

where z1 and z2 are two different altitudes. Equal wavelengths at different
altitudes, within a margin of error, indicate that the same wave exists across
different altitudes. The wavenumber

~kh = ~kx + ~ky, (2.9)

is a vector in the horizontal direction, where ~kx and ~ky describe vectors
∈ {0,...,2π} of length N , where N is the number of sample points, and the
vectors represent the directions î and ĵ respectively. This means that

|kh| =
√
kx(u)2 + ky(v)2, (2.10)

where u and v is the first and second coordinate, respectively, of a point in
Fourier space, and |kh| is the distance from this point to the origin. The
wavelength is then found by

λh =
2π

|kh|
· L, (2.11)

where L is the scale length between each point in the Fourier space and real
space.

13

3 Methods

This section describes how input data is processed by the analysis model, in
addition to describing the two different modes available in the model.

3.1 Sampling and readying data

The relationship

n =
view

grid size
= number of samples (3.1)

gives the number of sample points in each direction, where view is the field of
view of the MATS satellite and grid size is the resolution. The view depends
on operational mode of the satellite, but is chosen to be 250× 250× 60 km
during the development of the model. The grid size during development is
5 × 5 × 0.2 km. The three dimensional data gathered will be divided into
two dimensional horizontal ”slices” at each altitude, and an analysis will be
performed on each slice. A discrete Fourier transform (DFT) is performed on
the sampled, sliced MATS data. The DFT in two dimensions implemented
in the model is of type fast Fourier transform (FFT) and can be defined as

Akl =
M−1∑
m=0

N−1∑
n=0

amn exp
{
− 2πi

(mk
M

+
nl

N

)}
, (3.2)

k = 0, ...,M − 1; l = 0, ..., N − 1.

Here M and N describe a two-dimensional matrix of size M ×N [11]. FFT
is an algorithm which calculates the DFT and is optimized with respect to
computational speed. FFT is fastest when the length of the transform is
a power of two, so the model ensures that this condition is met by finding
the nearest power of two larger than the signal length, and using this as the
length of the FFT. The transform will be zero padded, meaning that the
lengths M and N will be larger than the length of the input data in the
model by a factor of 10. Zero padding is a computationally efficient method
of interpolating a signal, as zero padding makes the spectrum look smoother.
The FFT can also be described in terms of frequency bins, where the size of
the frequency bin is inversely proportional to the number of points, including
zeroes, transformed. The resolution of the FFT will be affected by using an
apodization function, or window function, with a size equal to the original
signal’s length. Signal resolution is understood to be the ability to distinguish

15

CHAPTER 3. METHODS

between peaks. However, zero padding will not change the resolution of the
signal, as the resolution is related only to the number of samples, i.e. the
length of the signal [9].

Applying a window function is often called windowing, and is done by
multiplying the time signal with a finite-length window with an amplitude
that changes gradually and smoothly towards zero at the edges. Windowing
has several advantages and areas of application to it. The FFT algorithm
assumes the signal has infinite extension and is periodic. Of course, a real
signal is not infinite, and there is no guarantee that the signal is periodic
outside of the sampled part of the time signal. For the FFT, the two end-
points of the signal are interpreted as though they were connected together.
If, for example, the measured signal is a sine wave that is not an integer
number of periods, the signal will become truncated, since the endpoints are
discontinuous. Truncated signals can lead to spectral leakage, but can be
avoided by windowing the signal, as can be seen from figure 3.1.

Figure 3.1: An illustration of how applying a window function to a signal affects
the signal. The green lines are the apodization function, while the black line
illustrates a signal.

The apodization function applied to the input data in the model is the
Hamming function. The Hamming function with length N in one dimension
is given by

w(n) = 0.54 + 0.46 cos
πn

N − 1
, n ε [0, N − 1]. (3.3)

This function is optimized to minimize the height of the nearest side lobe, but
results in a wider main peak. The Hamming window does not reach zero, as
can be seen from the above equation, leading to a small discontinuity in the
signal. A box-windowed transform is a sinc-function, which has side lobes

16

CHAPTER 3. METHODS

that are -13 dB that of the main peak, and which fall off at -6 dB/octave,
creating a ripple throughout the transform. While the Hamming window
increases the FWHM by a factor of 1.3, it reduces the size of the first side
lobe to -43 dB that of the main peak, while the fall off is still -6 dB/octave
[12].

The two dimensional Hamming window is produced by finding the square
root of the outer product of two vectors containing the window function in
x- and y-direction, which can be written as

W (x, y) =
√
~u⊗ ~v, (3.4)

where ~u and ~v is a vector describing the Hamming window in x- and y-
direction respectively, and W is the Hamming window in two dimensions.

Since the transform is symmetric, as exemplified in figure 3.2, one can
analyze only parts of the data field without loss of information, thus greatly
reducing computational cost and time needed. A removal of the second and
third quadrant of the transformed data field is performed, leading to only
the first and fourth quadrant being analyzed, as these quadrants contain
all information needed to perform an analysis of the data. This reduces
the number of calculations needed significantly. For example, a data set
of size 256 × 256 contains 65536 data points, while the shrunken data field
of 128 × 256 consists of half the number of data points, namely 32768. A
simplified illustration of how a two dimensional data field may be represented
in Fourier space, without noise and with two different waves present in the
data, is shown in figure 3.2. This illustration is idealized, but highlights
the symmetry present when FFT is performed, and shows how removing
two neighbouring quadrants still preserves all data needed to identify waves
present in the field.

17

CHAPTER 3. METHODS

1.2.

3. 4.

(0,0)
x1-x2 x2

-x1

y1

y2

-y1

-y2

(x2, y2)

(x1, -y1)

(-x1, y1)

(-x2, -y2)

y

x

Figure 3.2: Two-dimensional Fourier space, with circles depicting two-
dimensional waves. Notice how the blue and black waves are symmetric with
respect to the origin. The number in each corner represents the quadrant.

Full width at half maximum (FWHM) is the width of a spectrum curve
measured between the points in which the amplitude value is half of the
maximum amplitude of the curve. The distance, in number of bins, to the
FWHM in Fourier space can be found by the relationship

∆fFWHM

∆fs
, (3.5)

where ∆fFWHM is the distance to FWHM in units [bins/m] and ∆fs is the
sampling distance of the FFT with units [1/m]. ∆fFWHM is given by the
equation

∆fFWHM =
1.30

wdata

, (3.6)

with wdata as the length of the data field of the data sampled, which is also
called view. ∆fs is given by the equation

∆fs =
1

2∆x

M/2
, (3.7)

where ∆x is the sampling distance and M is the length of the FFT in either
direction. Half width at half maximum (HWHM) is the width from the center
of a peak to the side of the peak at an amplitude value of half the maximum
amplitude, and is thus half of the FWHM of the peak.

18

CHAPTER 3. METHODS

3.2 Filtering data fields and identifying peaks

Digital filtering is the realization of the convolution integral in discrete form
[9]. By convention, a filter is represented as h(t). If x(t) is the input signal,
and y(t) is the output signal, the filtering procedure can be described as

y(t) = x(t) ∗ h(t). (3.8)

Since the sampled signal is of finite length N , the filter design approach used
in the model is termed a Finite Impulse Response (FIR) filter. A realization
of digital filtering is achieved by performing the discrete convolution oper-
ation with the sampled input waveform x(t), as seen in equation (3.8). By
using the convolution theorem [13], the filtering operation in Fourier space
will be

F{x ∗ h} = F{x} · F{h}. (3.9)

A median filter hm is applied to the treated data of the first and fourth
quadrant. Such a filter runs through all points of the treated data and
replaces each point with the median of the neighbouring points, where the
number of neighbouring points considered is as a ”window” of certain size
surrounding the data point in question. This window is symmetric about the
data point treated. This filter is used to remove spikes from the data. As
windowed data has a FWHM, such spikes can never represent real data, and
is therefore always noise, and thus unwanted when analyzing the data set.

An average filter matrix with size equal to that of hm is made, based on
the values of hm. Average filters, ha, are used to highlight long-term trends
and smooth out short-term fluctuations. A type of average filter, called
moving average filter, is used in the model. This filter uses a neighbourhood
of points in the same manner as a median filter, calculates the average of these
data points and applies this to the data point in the center of the window.
Average filters are commonly used to reduce random, white noise, because
these filters produce the lowest noise for a given edge sharpness. As the size
of the window increases, the noise becomes lower. However, the edges of the
signal become less sharp, thus providing a trade-off between sharpness and
noise-reduction.

The output y(n) from the filtering operation, including both filters ap-
plied, will be

y(n) = x(n)− yma(n), (3.10)

where x(n) is the original signal, and yma(n) is the output after applying the
median and then average filter. Negative amplitude values as a result of the
subtraction are set to zero. When yma is subtracted from x, the resulting

19

CHAPTER 3. METHODS

peaks will be of smaller amplitude, but the difference in amplitude between
the peaks of the signal yma(n) and the original signal x(n) is greater than
the difference between the noise in these signals, leading to the peaks being
easier to identify after the subtraction in equation (3.10).

An example of how filtering a noisy signal may change the output is seen
in figure 3.3, when a median filter hm is applied to remove the spikes, and
an average filter ha is used to smooth out noise.

A

t
t1 t2

Figure 3.3: Two signals in the time domain. Red represents a noisy signal, and
blue represents the same signal, but filtered. Notice how the spike at t1 is filtered
out, and the peak with maximum amplitude at t2 has a lower amplitude after
filtering.

A maximum filter is applied to the filtered data to identify wave peaks.
This filter uses a window in the same manner as the prior filters. The filter
finds the maximum value of the data points inside the window, and applies
this to the data point in the center of the window. The filter matrix is then
compared to the input data, and points where the input data is equal to
the filter data is returned as local maxima, which are interpreted as wave
peaks. But the spike at t1 in figure 3.3 highlights why using an amplitude
threshold to decide whether the data contains wave peaks is not enough. If
the model is unable to filter out spikes or other noise, the model could accept
such maximums as wave peaks, and thus start analyzing these data points.
To avoid such mistakes and separate wave peaks from random peaks in the
data, the model needs another prerequisite before accepting data points as

20

CHAPTER 3. METHODS

wave peaks.
Since the data is windowed before it is filtered, all peaks containing wave

structures that are present in the data have the same width at half maxi-
mum, namely the FWHM, described by equation (3.5). This trait is used
to separate wave peaks and noise, thus becoming the second prerequisite the
model uses to identify wave peaks. After the data is processed and filtered,
the model will try to calculate wave properties in the peaks confirmed to
represent wave structures.

3.3 Identification of wave properties

The model must be able to find several different wave properties before being
able to decide whether the input data contains wave structures, as stated in
section 2.5. When filtering the transformed input data, the amplitude of
the data, described by equation (2.5), is used. The abs()-function in Python
returns the magnitude when the number is complex, and is thus used to find
the amplitude at each data point in the processed data [14].

After the data is filtered by the methods described in section 3.2, the
phase of the wave peaks are found. Since the phase of a complex number
is defined only in the interval [−π, π], the phase is unwrapped to show the
development of the phase across the peaks. This means that discontinuities
larger than π between two points in the phase data are changed to their 2π
complement [15]. The phase is plotted against altitudes, so that the phase of
waves developing across several altitudes are easily visible to the user. The
phase is further analyzed with linear regression, described by equation (2.8).
This gives both visual and mathematical representation of how the phase of
the identified waves develops with altitude.

For each peak assumed to be a wave, the wavelength at the top of the
peak is found by the method shown in equation (2.11). The wavelengths are
plotted with a margin of error of ±HWHM, to be compared at each altitude.
As stated in section 2.5, this gives the possibility to see whether a wave exists
across multiple altitudes.

When the analysis is completed, one is able to decide whether the ana-
lyzed data contains wave structures or not, based on the output of the model.
Waves identified in the data set at different altitudes, with phases developing
from one altitude to the next, and with wavelength approximately equal at
each altitude, within a margin of error, indicate the same wave propagates
across multiple altitudes.

21

CHAPTER 3. METHODS

3.4 Synthetic data

When the model for analyzing data was developed, a synthetic wave was
used as input. This wave was defined as

Ψz(x, y) = A cos

(
2πx

λx
+

2πy

λy
+

2πz

λz

)
, (3.11)

where A is the amplitude, λx = λy is the wavelength in the horizontal direc-
tions, λz is the vertical wavelength and the phase constant of the wave, and
the wave is monochromatic. Such a wave is demonstrated in figure 3.4. The
values chosen to best simulate a gravity wave are presented in table 3.1.

Table 3.1: The wave parameters and their values for the wave used during the
development of the model. The values are chosen to best represent a gravity wave.

Parameter Sign Value Unit
Amplitude A 3 Rayleigh [R]
Hor. wavelength λx,y 28284 meters [m]
Ver. wavelength λz 35000 meters [m]

The horizontal wavelength was decided using data from a study on wave
characteristics from mesospheric gravity waves observed near equatorial and
low-middle latitude stations [16], and the amplitude is typical for wave pa-
rameters in oxygen airglow.

Figure 3.4: A synthetic wave provided by the model, with values as in table 3.1.

22

CHAPTER 3. METHODS

When developing the model, a synthetic wave with known values and
parameters removes a possible uncertainty, which is the input of the model.
Having information about the input makes the interpretation of the model’s
output more manageable, as one can anticipate the output and thus decide
if the model’s analysis of the data is correct. Lastly, noise is added to the
input wave to test if the model manages to filter out unwanted data. The
noise is random samples from a normal distribution with mean = 0 and
standard deviation = 1.

The grid size, or sampling distance, of the synthetic data is found from
equation (3.1) and is presented in table 3.2. The values of view and grid
size are both in horizontal direction, and would differ if analyzing in vertical
direction is preferred. From the Nyquist sampling theorem, we know that a
grid size of 5 km is sufficient for sampling a wave with a wavelength known
to be 20 km [17]. Zero padding and ensuring the transform is a power of
two combined renders the length of the FFT to be 512 in both horizontal
dimensions. This means that the data field analyzed is of size 256×512 in x-
and y-direction respectively. Since the wave is monochromatic, the phase will
be constant across found peaks, and is easily identified. However, analyzing
a monochromatic wave is not representative for the expected input data of
the MATS mission. The model thus needs to be tested with more realistic
input data.

Table 3.2: The view, grid size and number of sample points n used when analyzing
synthetic data.

Parameter Value Unit
view 250 kilometers [km]
grid size 5 kilometers [km]
n 50 integer

23

CHAPTER 3. METHODS

3.5 Data from forward model

To test the model with more realistic input data, the model examined data
provided from a forward model developed by Anqi Li of Chalmers University
of Technology [18].

The data provided by the forward model is a three dimensional matrix of
nightglow volume emission rate in units [photons cm−3 s−1]. The number of
samples in the 3D matrix is 145× 200× 160 in x-, y- and z-direction respec-
tively. The view is 400× 1440× 80 km in x-, y- and z-direction respectively.
The grid resolution, size of data field and number of sample points needed
to analyze the data are presented in table 3.3. Both the grid size and field of
view is in x-direction in the horizontal plane, and thus the number of sam-
ples would differ if y- or z-direction is preferred. By the Nyquist sample rate,
waves with wavelength less than approximately 5 km will not be sufficiently
sampled [17].

Table 3.3: The view, grid size and number of sample points n used in the forward
model.

Parameter Value Unit
view 400 kilometers [km]
grid size 2.759 kilometers [km]
n 145 integer

The model is made to analyze the data to examine whether it is able to
identify wave properties in data resembling the MATS data fields gathered
by the satellite. Zero padding and ensuring the transform is a power of two
combined renders the length of the FFT to be 2048 in both horizontal di-
mensions. This means that the data field analyzed at each altitude is of size
1024 × 2048 in x- and y-direction respectively. According to the parame-
ters provided with the model, the data set contains waves with horizontal
wavelength 53 km, and a background wind in horizontal direction.

24

4 Results

4.1 Results from data treatment

The technique developed for analyzing MATS data is a model developed in
the programming language Python 3.6. The code of the model is attached
in appendix A. Synthetic data was used to develop a method for treating
and identifying data in horizontal direction. When analyzing at several alti-
tudes, meaning the input data is three dimensional, this horizontal analysis
is performed at each altitude. The input data is transformed and analyzed,
and the data returned from each horizontal analysis is the prospective wave
characteristics within the data. The result of the windowing of a wave can
be seen in figure 4.1. This wave has the same wave parameters as the wave
in figure 3.4, but has been windowed as described in section 3.1.

Figure 4.1: A wave with horizontal wavelength 20 km, after it has been windowed.

Figure 4.2 shows a magnitude plot of the transformed wave provided by
the model and shown in figure 3.4. The plot shown in this figure is from
when the wave has been sampled and windowed before being transformed,
but not filtered after the transformation. The side lobes, resulting from
the Hamming window, have approximately equal amplitudes, except for the
distorted peak on the right side of the main peak. The amplitude of the side
lobes is approximately 3/8 of the amplitude of the main peak, located at
kx ≈ π/2, ky ≈ 2π/3.

25

CHAPTER 4. RESULTS

Figure 4.2: The resulting amplitude plot after the wave is transformed to Fourier
space. The wave is windowed, but unfiltered.

Figure 4.3 shows the effect filtering as described in section 3.2 has on the
transformed signal. This is the same signal as in figure 4.2. The amplitude
of all peaks is reduced compared to before filtering. The amplitude of the
side lobes is approximately 1/3 of the amplitude of the peak located at kx ≈
π/2, ky ≈ 2π/3, except for the spike at the bottom left corner. The red cross
shows the location of a wave peak identified during the analysis.

26

CHAPTER 4. RESULTS

Figure 4.3: The resulting amplitude plot after the wave is transformed and
filtered as described in section 3.2. The red cross mark the location of a peak
identified as a wave peak during the analysis.

Two other methods for implementing the filters were also tested. The
second method was by subtracting the average filter ya from the median
filter ym, to see whether this successfully removed spikes and smoothed out
the noise. The result is shown in figure 4.4. The noise peaks and side lobes
have small amplitudes compared to the large peak. However, the top of the
main peak is distorted and full of spikes, instead of being a smooth peak.
The side lobes and noise peaks are small in amplitude, but also they have
spikes on top of their peaks. The analysis was not able to find any wave
peaks when this implementation was used.

27

CHAPTER 4. RESULTS

Figure 4.4: The resulting amplitude plot after the wave is transformed and
filtered with ym − ya, where ym is the output from the median filter and ya is the
output from the average filter.

Also the third method for implementing the filters was with subtraction,
as the filter in figure 4.3. However, the implementation varied slightly. The
wave is filtered with ym − ya, where ym is the output from the median filter
and ya is the output from the average filter, and the filter is run through point
by point. The difference in amplitude of these two outputs is found, and if
the difference between the two is small, the amplitude value from the original
signal is kept, but if the difference is large, the value from the filtered array
is kept. The amplitude of the side lobes and noise peaks is approximately
3/10 of the amplitude of the largest peak. The resulting output after this
implementation is shown in figure 4.5.

28

CHAPTER 4. RESULTS

Figure 4.5: The resulting amplitude plot after the wave is transformed and
filtered. The filter compares two arrays and keeps the most fitting values from
both arrays at different coordinates. The red crosses mark the location of points
identified as wave peaks during the analysis.

4.2 Results with synthetic data

The FWHM of the synthetic wave is calculated as described in equations
(3.5) - (3.7), with values from table 3.2 and the length of the FFT, which is
256 in x-direction. The result is a FWHM of 13.312 bins, and thus a HWHM
of 6.656 bins. The results from the analysis of synthetic data are from input
waves with two different horizontal wavelengths, namely 20 km and 53 km.
20 km is the result when the values from table 3.1 is used, with the equation

1

λh
=

√
1

λ2
x

+
1

λ2
y

,

derived from equation (2.9). The wavelength 53 km is the horizontal wave-
length of the input wave in the forward model, according to the parameters
provided in the model. Using the above equation gives λx and λy to be
λx,y = 74953 meter. The waves with horizontal wavelength 20 km have a
vertical wavelength as in table 3.1, while the waves with horizontal wave-
length 53 km have a vertical wavelength of 20 km.

29

CHAPTER 4. RESULTS

4.2.1 Horizontal analysis

Figure 4.6 shows an amplitude plot of the wave with wavelength 20 km, and
one peak is identified as a wave peak in the plot. In figure 4.7 the wave has a
wavelength of 53 km, and the amplitude plot shows that the model identified
one peak as a wave peak.

Figure 4.6: Amplitude plot with an input wave with horizontal wavelength 20
km. The red cross at the bottom of the peak marks center of the peak identified
as a wave peak during analysis. The small peaks are either due to noise or side
lobes from the FFT.

The waves present in figure 4.6 and 4.7 have both been processed as de-
scribed in sections 3.1 and 3.2, and their wave characteristics were calculated
as described in section 3.3 .

30

CHAPTER 4. RESULTS

Figure 4.7: Amplitude plot with an input wave with horizontal wavelength 53
km. The red cross at the bottom of the peak marks center of the peak identified
as a wave peak during analysis. The small peaks are either due to noise or side
lobes from the FFT.

4.2.2 Vertical analysis

Data with a synthetic wave was also used to test the model’s ability to
analyze data sets with data from several altitudes. To best simulate the
forward model, the altitudes chosen were the same as in this model, namely
altitudes ranging from 70 km to 150 km. The output from the model is a plot
of the phase of waves identified, with a second degree polynomial regression
of the development of this phase, and a plot of the wavelengths of the waves
identified, with a margin of error of ±HWHM. Thus, the regression is of the
form

y(x) = ax2 + bx+ c, (4.1)

where a, b and c are all constants, as described in section 2.5.
Figure 4.8 and 4.9 show the output plots when the data set analyzed

includes a wave with horizontal wavelength of 20 km at each altitude. The
regression of the phase plot in figure 4.8 gives the equation

y = 0.18x− 12.14. (4.2)

31

CHAPTER 4. RESULTS

Note that the regression is not in terms of π, as the y-axis in figure 4.8 is.
Also, the regression starts at an altitude of 0, while the plot starts at an
altitude of 70 km.

Figure 4.8: The phase of an identified wave within the data set plotted with
respect to altitude. The plot shows one wave, with its corresponding average and
a second degree polynomial fit of the average of the wave.

Figure 4.9: The horizontal wavelength of the waves found at each altitude dur-
ing analysis. The waves had a horizontal wavelength of 20 km at each altitude
according to this plot. The blue dots is the horizontal wavelength of the waves,
while the green lines is the HWHM of the waves peak.

32

CHAPTER 4. RESULTS

Figure 4.10 and 4.11 show the output from the model developed when the
input at each altitude was a wave with horizontal wavelength 53 km. The
regression in figure 4.8 gives the equation

y = 0.31x− 22.05. (4.3)

Also here, the regression is not in terms of π, as in the figure, and it starts
at an altitude of 0, not 70 km as in the figure.

Figure 4.10: The phase of an identified wave within the data set, plotted with
respect to altitude. The plot shows one wave, with its corresponding average and
a second degree polynomial fit of the average of the wave.

33

CHAPTER 4. RESULTS

Figure 4.11: The horizontal wavelength of the waves found at each altitude
during analysis. The waves found at each altitude have a horizontal wavelength
of 53 km according to this plot. The blue dots is the horizontal wavelength of the
waves, while the green lines is the HWHM of the waves peak.

However, with the same input data as above, the model sometimes iden-
tifies several waves within the data set. The resulting output in this case can
be seen in figure 4.12 and 4.13. Here the input at each altitude was a wave
with horizontal wavelength 53 km. The result from the regression analysis
in figure 4.12 is

y1 = 0.31x− 21.89 (4.4)

and
y2 = −0.89x+ 61.52, (4.5)

where y1 and y2 describe wave 1 and wave 2 respectively.

34

CHAPTER 4. RESULTS

Figure 4.12: Phase plotted with respect to altitude of the waves identified within
the data set. The plot shows two waves, with their corresponding average and a
second degree polynomial fit of the average of the waves.

As can be seen from figure 4.13, the model identifies one wave with hori-
zontal wavelength λh ≈ 53 km, and another wave with horizontal wavelength
λh ≈ 18 km. The second wave is not present at all altitudes.

Figure 4.13: The horizontal wavelengths of the waves identified within the data
set. One wave is present at all altitudes and has a horizontal wavelength of ap-
proximately 53 km, while another wave is present at most altitudes and has a
horizontal wavelength of approximately 18 km. The blue dots is the horizontal
wavelength of the waves, while the green lines is the HWHM of the waves peak.

35

CHAPTER 4. RESULTS

4.3 Results from forward model

The model also analyzed data from the forward model in section 3.5. The
FWHM was calculated with the values from table 3.2 and with the length of
the FFT as 1024 in x-direction. The result was a FWHM of 18.36 bins, and
thus a HWHM of 9.18 bins. The resulting output from this analysis can be
seen in figure 4.14 and 4.15. The regression analysis of the phases in figure
4.14 gives the following equations:

y1 = −0.01x2 + 0.52x− 7.69 (4.6)

and
y2 = −0.06x2 + 9.25x− 350.84. (4.7)

As earlier, note that the regression is not in terms of π, as the y-axis in figure
4.14 is, and that the altitudes in the figure start at 70 km.

Figure 4.14: The phase of the waves identified within the data set from the
forward model. The plot shows two waves, with their corresponding average and
a second degree polynomial fit of the average of the waves.

36

CHAPTER 4. RESULTS

Figure 4.15: The wavelength of the waves identified within the data set from the
forward model. The blue dots is the horizontal wavelength of the waves, while the
green lines is the HWHM of the waves peak.

As can be seen from the above figures, the model identifies two waves, y1

and y2. y1 is a wave with horizontal wavelength λh ≈ 9 km, and it exists on
altitudes ranging from 70 to 85.5 km. The second wave, y2, is a wave with
horizontal wavelength λh ≈ 19 km, and it propagates from an altitude of 83
km to an altitude of 92.5 km, according to the results from the analysis.

37

5 Discussion

If the model developed is to be considered successful, it should be able to
find and calculate the wave characteristics of verified waves within the data
set. The model should also be able to filter out most peaks that are not a
result of gravity waves in the data set, to reduce data analyzed and simplify
the output data of the model.

5.1 Data treatment

Windowing the data greatly reduced the side lobes of the main peak in
Fourier space, and is thus a necessary step in treating the data. The result
of this windowing process, as seen in figure 4.1, is in accordance with the
expected result, illustrated in figure 3.1. The Hamming window seems to be
a good window function to use, and results in a large and wide main peak,
which is identified with help of the FWHM of the Hamming window. The
zero padding of the signal is a computationally efficient way of interpolat-
ing the signal, and could be even higher than the current zero padding of
10 times the signal’s length. However, a longer zero padding means a larger
FFT length, and the trade off between resolution and computing power needs
to be considered, and a zero padding of 10 times the signal’s length is there-
fore kept. Analyzing only the first and fourth quadrant greatly reduces the
number of points which need to be analyzed, while also removing the poten-
tial problem occurring since every wave produces two waves in Fourier space
which are symmetric with respect to the origin. If the whole data field, with
all four quadrants, was to be analyzed, the model would identify each wave
twice, interpreting it as if two waves are present in the data. Thus, ana-
lyzing only the first and fourth quadrant omits this problem and is another
advantage of performing this reduction of the data field.

When developing a method for filtering the data, several methods for
implementing the filters were tested and discarded. Figure 4.3 shows the im-
plementation used in the model. The main peak is larger than the side lobes
and noise by a factor of approximately 3, and the model was able to identify
this peak as a wave peak. The two other methods of implementing the filters
in section 4.1 also resulted in a distinct main peak. However, the method
used in figure 4.5 led to the model consistently accepting noise peaks and
side lobes as peaks resulting from a wave. Figure 4.4 shows that this method
for implementing the filters leads to a distorted peak full of spikes, and the
model thus was not able to identify any peaks as wave peaks. The reason

39

CHAPTER 5. DISCUSSION

why the implementation used in figure 4.5 led to the model accepting random
peaks as wave peaks is unknown to the author of this thesis. However, the
author is led to believe that this method of implementing the filters holds
the most potential for reducing noise compared to wave peaks, as the main
peak is smooth and clean of spikes, and the ratio between the main peak and
other peaks was the highest of all the filter implementations tested.

5.2 Results with synthetic data

The data returned at each altitude was reduced to only being the wavelength
and phase of the peaks identified as wave peaks. If the data set would be
analyzed as a 3D matrix, meaning the treated and transformed data at each
altitude would be returned, the model would need more computing power.
When a data set as the one from the forward model in section 3.5 is analyzed,
the model would have 1024 × 2048 × 160 data points to analyze if the data
is treated and transformed, and then returned to be analyzed. This means
less data needs to be stored when the analysis is performed at each altitude,
while all the necessary data still is returned. Figure 4.6 and 4.7 show how the
model successfully identifies the right peak as a wave peak when waves with
different horizontal wavelengths are present in the data set analyzed. These
plots are in accordance with the theory in section 2.5. Figure 4.7 shows that
the model is able to identify a wave peak despite the large spike at the center
of the wave peak not being filtered out.

However, the model sometimes identifies peaks as wave peaks even though
they are a result of noise or side lobes of the main peak. This indicates
that the identification of wave peaks is not good enough. This may be due
to either the data set not being sufficiently filtered, or the accuracy of the
second prerequisite, namely the check of FWHM, is too poor. In section 4.2
the FWHM of the waves within the synthetic data set is stated as FHWM
= 13.312 bins, and the HWHM is stated as HWHM = 6.656 bins. However,
when in Fourier space, the distance is discrete, meaning the HWHM needs
to be in integers, and thus the HWHM = 7 bins. This rounding introduces
an uncertainty in the calculation of HWHM that may lead to mistakes when
identifying wave peaks. The errors are most likely due to a combination of
the above procedures. In the horizontal analysis, the phase of the accepted
peaks is returned along with the wavelength of these peaks. These values
are then compared with the returned values from other altitudes in a vertical
analysis, to see whether the identified waves propagate to other altitudes.

Figure 4.9, 4.11 and 4.13 show that the model can successfully calculate
the wavelengths of the peaks identified within the data set. The wavelengths

40

CHAPTER 5. DISCUSSION

plotted in figure 4.9 indicate that a wave with horizontal wavelength 20
km was identified at each altitude, and figure 4.11 indicates that a wave
with horizontal wavelength 53 km was identified at each altitude. These
figures, with a constant horizontal wavelength with respect to altitude are
both known to be correct. The two waves identified and plotted in figure
4.13 show that the model is able to find the wavelengths of each wave when
there are multiple waves identified within the data set. The figure shows a
wave present at all altitudes with a horizontal wavelength of approximately
53 km. However, it also shows that the model identified a wave present at
most altitudes, with a horizontal wavelength of approximately 18 km. If the
wavelength calculated of the latter wave is correct is not known, however,
such a wave was not present in the data set the model was tasked to analyze.

Figure 4.8, 4.10 and 4.12 show the phase of the identified waves. The
slope of the phase in figure 4.8 and figure 4.10 shows that the phase increases
with 2π every 35 km and 20 km respectively. This is consistent with the
vertical wavelength of each of the waves present within the input data, and
thus verifies the model’s ability to find the phase of the identified waves. In
figure 4.12, the slope of the phase increases with 2π every 20 km in wave
1, which is in accordance with the phase in figure 4.10, which has the same
input data. However, the phase of wave 2 is hard to verify whether is correct
or not.

The figures in section 4.2.2 indicate that the model is able to successfully
calculate the wavelength and phase across the peak of identified wave peaks,
thus showing that the techniques for identifying these wave characteristics
are sufficient. However, the model often accepts non-wave peaks as peaks
resulting from a wave, adding uncertainty to the output data of the model.

5.3 Results with data from the forward model

The resulting output after the model analyzed the data set from the forward
model shows that the wave identifies two waves, as can be seen in figure
4.14 and 4.15. However, this is wrong according to the parameters provided
with the model, as there should only be one wave present, with a horizontal
wavelength of 53 km. With the inaccuracies in the model analysis, which
are evident from the results of the synthetic data, it is difficult to conclude
with why these errors occur in the results. The model consistently identifies
and returns the wave characteristics shown in figure 4.14 and 4.15, which
indicates that the errors are not in the identification of peaks. However,
the results from the synthetic data show that the model is able to correctly
calculate the wave characteristics of the accepted wave peaks. This means

41

CHAPTER 5. DISCUSSION

that identifying the cause of the errors is not possible in the current iteration
of the model. One thing to note, which can be seen from the regression
analysis of the phase of the waves in equation (4.6) and (4.7), is that the
slope of the phases curves slightly. This is also visible in wave 2 in 4.14,
and is a result of background wind shifting the waves within the data set. A
steeper curve indicates higher wind velocities, which means that the curve
can be used to measure background wind within a data set.

5.4 Further work

Considering that the workload of a person using this model can be greatly
reduced if the model is more successful at filtering out noise and other peaks
in the data, the process of identifying wave peaks should be addressed when
further developing this model. A possible way of doing this is by working
with the last filter implementation, as this is the implementation that should
hold the most potential. There may also be a number of other filters suitable
for filtering data such as the expected MATS data, and deciding whether the
filters used in this model are the most efficient could be further worked with.
Investigating the effects of the edge handling by the filters is also possible,
but this should not be a huge problem in the current iteration of the model.

The current regression analysis of the phase could be improved upon, as
the current implementation with a second degree polynomial regression is
only used to describe the phase, not analyze it. Also, the plotting of the
phase with respect to altitude is manually corrected, and thus needs to be
addressed.

Lastly, an important improvement to the model would be to develop how
the model searches through wave peaks within the data. In the current
iteration, the model uses a binary search with a predetermined number of
peaks as a goal and stops when the set number of peaks wanted is met.
However, since the number of waves present within the data set is not known
in beforehand, this method of searching for peaks is not ideal. A better way
of searching through the data would be to find the peak of largest amplitude
and store the information needed of this peak, then remove the peak from
the data set. Continue to search through the data set and remove peaks
iteratively until either the root mean square is reached or a large number of
peaks are found at once, meaning the noise peaks and side lobes are reached.
This method ensures that all peaks containing wave characteristics are found
within the data set.

42

6 Conclusion

In this thesis an analysis technique for identification of wave structures in
MATS data was developed. This resulted in a model which takes three
dimensional data fields as input and analyze the data at each altitude. The
model treats and filters the data, and returns wave characteristics of waves
present within the data set. The results presented in this thesis show that the
model often mistakes noise and side lobes for waves, leading to an output not
consistent with the expected results when synthetic data is used. However,
the model was able to find the wave characteristics of data accepted as wave
peaks, leading to the conclusion that the problems and inaccuracies in the
output are from the identification of waves, and not from the calculations of
the wave characteristics. Thus, when further working with this model, the
identification of gravity waves in noisy data sets needs to be improved. If
the model is able to consistently separate wave peaks from noise, the model
would be able to return the wave characteristics needed to decide whether
gravity waves exist within the analyzed data. Another possible improvement
would be to refine the method used when searching for wave peaks, and to
develop a method for searching through data without setting prerequisites
would be preferable.

The model developed during this project generally seems like a good ap-
proach for recognizing and analyzing wave structures within data sets. With
further development, the model will hopefully be capable of being used dur-
ing the MATS mission to successfully analyze data gathered by the satellite.
If successful, this mission may further the development of global climate
models and weather forecast models, both of which will be important in a
possible future with more frequent extreme weather and climate change.

43

Bibliography

[1] D. G. Andrews, An introduction to atmospheric physics, 2nd ed. The
Edinburgh Building, Cambridge CB2 8RU, UK: Cambridge university
press, 2010.

[2] J. Picone, A. Hedin, D. P. Drob, and A. Aikin, “Nrlmsise-00 empirical
model of the atmosphere: Statistical comparisons and scientific issues,”
Journal of Geophysical Research: Space Physics, vol. 107, no. A12, 2002.

[3] D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects
in the middle atmosphere,” Reviews of geophysics, vol. 41, no. 1, 2003.

[4] R. B. Smith, A. D. Nugent, C. G. Kruse, D. C. Fritts, J. D. Doyle, S. D.
Eckermann, M. J. Taylor, A. Dörnbrack, M. Uddstrom, W. Cooper,
et al., “Stratospheric gravity wave fluxes and scales during deepwave,”
Journal of the Atmospheric Sciences, vol. 73, no. 7, pp. 2851–2869, 2016.

[5] S. U. Department of meteorology, “Mats - the next swedish research
satellite.”

[6] J. Stegman, Spectroscopic and kinetic studies of atmospheric oxygen
emissions. PhD thesis, Stockholm University, 1991.

[7] NASA, “Astronaut photo of airglow,” 2011.

[8] J. W. Goodman, Introduction to Fourier Optics. McGraw-Hill Book
Company, 1968.

[9] E. O. Brigham and E. O. Brigham, The fast Fourier transform and its
applications, vol. 1. prentice Hall Englewood Cliffs, NJ, 1988.

[10] “Euler formulas. encyclopedia of mathematics,” 2014.

[11] SciPy, “Discrete fourier transform (numpy.fft),” 2018.

[12] F. J. Harris, “On the use of windows for harmonic analysis with the
discrete fourier transform,” Proceedings of the IEEE, vol. 66, pp. 51–83,
Jan 1978.

[13] E. W. Weisstein, “Convolution theorem.”

[14] “Built-in functions - python 3.6.5 documentation,” 2018.

[15] SciPy, “numpy.unwrap,” 2018.

45

BIBLIOGRAPHY

[16] C. Wrasse, T. Nakamura, H. Takahashi, A. Medeiros, M. J. Taylor,
D. Gobbi, C. Denardini, J. Fechine, R. Buriti, A. Salatun, et al., “Meso-
spheric gravity waves observed near equatorial and low middle latitude
stations: wave characteristics and reverse ray tracing results,” in An-
nales Geophysicae, vol. 24, pp. 3229–3240, 2006.

[17] J. G. Proakis and D. G. Manolakis, Digital signal processing, fourth
edition. Pearson Education, 2014.

[18] A. Li, “A 3d-model for o2 airglow perturbations induced by gravity
waves in the upper mesosphere,” Master’s thesis, 2017. 50.

46

A Code Listing

main.py

1 # Import the necessary functions and packages

2 from generatehorizontal import my_inputwave, transform,

windowing # , makeSpectrum↪→

3 from analysis_functions import find_phase, amp_filtering,

find_quadrants, binary_search, find_wavelengths,

peakcomparing

↪→

↪→

4 from plotting import plotphase, plotamplitude, plotwave,

plotwavelengths, plotphase_onealt # , plotthewave↪→

5 from inputdata import windowing3d, syntdata3d, loaddata

6 from analysis_altitude import analyze_each_alt

7 import numpy as np

8

9 # set mode either to True if you want to use a dataset in 3D,

or False if you want a wave generated↪→

10 # from this model, but only analyzed at one altitude

11 mode = True

12

13 if mode:

14 # Use 3D dataset - define data, sampling dist and

datalength, x and y↪→

15 print('This is a three-dimensional data set')

16 # The next two lines gives input data from a model by

Anqi Li of Chalmers university↪→

17 # wave, datalengthy, datalengthx, sampling_pointsy,

sampling_pointsx, sampling_distx_int, sampling_distx

\

↪→

↪→

18 # = loaddata()

19 # The next line gives synthetic input data in 3

dimensions↪→

20 wave, xx, yy, datalengthx, sampling_distx_int, samplepoints

= syntdata3d()↪→

21

22 # The code below run an analysis in z_n, where n is the

number of altitudes↪→

23

47

APPENDIX A. CODE LISTING

24 # Windowing the data, before transforming it

25 windowed_data, window_width = windowing3d(wave,

datalengthx, sampling_distx_int) # window width in x

direction

↪→

↪→

26

27 # analysis at each altitude performs FFT, reducing to two

quadrants, filtering, detecting peaks and returning

the

↪→

↪→

28 # phase and wavelengths of this data

29 number_of_peaks = 20 # Maximum number of peaks the model

will look for↪→

30 phasedata, wavelengths, average, lengthwavepeaks,

lenwindow\↪→

31 = analyze_each_alt(windowed_data, number_of_peaks,

window_width, sampling_distx_int)↪→

32

33 if len(phasedata) > 0:

34 plotphase(phasedata, average)

35 plotwavelengths(wavelengths, lenwindow)

36 else:

37 print('No waves were found')

38 else:

39 # Synthetic data analyzed at one altitude.

40 print('This is from a synthetic wave, in horizontal plane')

41 wave, x, y, datalength, sampling_dist, samplepoints =

my_inputwave() # generating data↪→

42 # windowing the wave

43 windowed_wave, window_width = windowing(wave, datalength,

sampling_dist)↪→

44

45 # F, xf, yf = makeSpectrum(windowed_wave, sampling_dist,

sampling_dist) # only used to examine other FFT

functions

↪→

↪→

46 window_func = transform(windowed_wave) # transforming the

wave to Fourier space↪→

47 print('the shape of the Fourier transform is ' +

str(np.shape(window_func)))↪→

48

49 # After FFT, using only 1. and 4. quadrant because of

symmetry↪→

50 quadrant = find_quadrants(window_func)

48

APPENDIX A. CODE LISTING

51 print('window width: ' + str(window_width))

52 filtered_wave = amp_filtering(quadrant) # performing a

filtering procedure↪→

53 print(np.shape(filtered_wave))

54 number_of_peaks = 20 # Use this to set how many peaks we

want to find↪→

55 # Finding peaks (local maximas) within the data set

56 peaks, xpeak_placement, ypeak_placement, xpeak_limit_left,

xpeak_limit_right, zvalue, \↪→

57 zvalue_leftlim, zvalue_rightlim,

zvalue_leftlim_boundary, zvalue_rightlim_boundary \↪→

58 = binary_search(number_of_peaks, filtered_wave,

window_width)↪→

59 # checking the HWHM of the peaks found

60 compared_peaks, xcoor, ycoor, lengthwavepeaks \

61 = peakcomparing(zvalue, xpeak_limit_right,

xpeak_limit_left, zvalue_leftlim, zvalue_rightlim,↪→

62 zvalue_leftlim_boundary,

zvalue_rightlim_boundary,

ypeak_placement, quadrant,

xpeak_placement)

↪→

↪→

↪→

63 # print(compared_peaks)

64 phases = find_phase(compared_peaks)

65

66 # plotting input wave, amplitude, phase

67 plotwave(windowed_wave, datalength, datalength,

samplepoints, samplepoints, mode)↪→

68 plotamplitude(filtered_wave, xcoor, ycoor, mode)

69 plotphase_onealt(phases)

70 wavelength, lengthofwindow = find_wavelengths(xcoor, ycoor,

quadrant, sampling_dist, window_width)↪→

71 print('wavelength +- hwhm (both in meters): ' +

str(wavelength) + ' +- ' + str(lengthofwindow))↪→

49

APPENDIX A. CODE LISTING

analysis altitude.py

1 def analyze_each_alt(windowed_data, number_of_peaks,

window_width, sampling_distx):↪→

2 # A function that takes 3D data as input and analyzes at

each altitude↪→

3 from generatehorizontal import transform

4 from analysis_functions import find_quadrants,

amp_filtering, binary_search, peakcomparing,

find_phase, \

↪→

↪→

5 find_wavelengths, phases_altitude

6 import numpy as np

7

8 shape = np.shape(windowed_data)

9 wavepresent = []

10 phasedata = []

11 wavelengths = []

12 xcoor_vec = []

13 ycoor_vec = []

14 altitudes = []

15 lengthwavepeaks = []

16 lenwindow = 0

17 print('window width: ' + str(window_width))

18

19 # Perform a FFT2 at each altitude to transform data to

prepare for analyzes, then performing analyzes↪→

20 for z in range(shape[2]):

21 transformed_data = transform(windowed_data[:, :, z]) #

alt = 70 + 0.5*z↪→

22

23 # perform analyzes at this altitude

24 half_datafield = find_quadrants(transformed_data)

25 filtered_data = amp_filtering(half_datafield)

26 peaks, xpeak_placement, ypeak_placement,

xpeak_limit_left, xpeak_limit_right, zvalue,

zvalue_leftlim, \

↪→

↪→

27 zvalue_rightlim, zvalue_leftlim_boundary,

zvalue_rightlim_boundary \↪→

28 = binary_search(number_of_peaks, filtered_data,

window_width)↪→

50

APPENDIX A. CODE LISTING

29

30 compared_peaks, xcoor, ycoor, lengthwavepeaks = \

31 peakcomparing(zvalue, xpeak_limit_right,

xpeak_limit_left, zvalue_leftlim,

zvalue_rightlim,

↪→

↪→

32 zvalue_leftlim_boundary,

zvalue_rightlim_boundary,↪→

33 ypeak_placement, half_datafield,

xpeak_placement)↪→

34

35 phasedata.append(find_phase(compared_peaks))

36 altitudes.append(z)

37 wavelengths.append(np.array(find_wavelengths(xcoor,

ycoor, half_datafield, sampling_distx,

window_width)[0]))

↪→

↪→

38 if len(xcoor) > 0: # if there is a wave present at

this altitude↪→

39 for iterator in range(len(xcoor)):

40 wavepresent.append(z)

41 xcoor_vec.append(xcoor[iterator])

42 ycoor_vec.append(ycoor[iterator])

43 lenwindow = find_wavelengths(xcoor, ycoor,

half_datafield, sampling_distx, window_width)[1]↪→

44

45 phases_unwrapped, average_phase =

phases_altitude(phasedata, window_width, xcoor_vec,

ycoor_vec)

↪→

↪→

46

47 return phases_unwrapped, wavelengths, average_phase,

lengthwavepeaks, lenwindow↪→

51

APPENDIX A. CODE LISTING

analysis functions.py

1 def amp_filtering(input_wave):

2 import scipy as sp

3 import numpy as np

4 from scipy import signal

5 from scipy import ndimage

6

7 # filter the wave to only keep peaks

8 # first create a median filter, then an average filter

9 # median filter

10 median_filter = sp.signal.medfilt2d(abs(input_wave),

kernel_size=5)↪→

11

12 # average filter

13 average_filter = sp.ndimage.uniform_filter(median_filter,

size=5)↪→

14

15 filtered_array = np.subtract(abs(input_wave),

average_filter) # element wise subtraction↪→

16 # the following lines are when the third filter

implementation are used, but are not successful at the

moment

↪→

↪→

17 # testfilter = np.empty(shape=np.shape(input_wave))

18 # y, x = np.shape(testfilter)

19 # counter1 = 0

20 # counter2 = 0

21 # for yit in range(y): # should prob. take this away, as

it doesn't work↪→

22 # for xit in range(x):

23 # if filtered_array[yit, xit] <=

abs(input_wave[yit, xit])*0.1:↪→

24 # testfilter[yit, xit] = abs(input_wave[yit,

xit])↪→

25 # counter1 += 1

26 # else:

27 # testfilter[yit, xit] = average_filter[yit,

xit]↪→

28 # counter2 += 1

52

APPENDIX A. CODE LISTING

29 # --------------------------------------- end of third

implementation↪→

30

31 filtered_array2 = np.clip(filtered_array, a_min=0,

a_max=None) # setting all negative values to zero↪→

32

33 return filtered_array2

34

35

36 def find_quadrants(input_wave): # changing to only use 1. and

4. quadrant↪→

37 import numpy as np

38 f, g = np.shape(input_wave)

39 halflen = int(g/2) # the windowed function is power of 2,

and will thus always be int when divided by 2↪→

40 quadrants = input_wave[:, halflen:]

41

42 return quadrants

43

44

45 def identify_peaks(filtered_wave, threshold_multiplier,

window_width):↪→

46 # find the max of each peak, then using half-width to

identify as wave peaks↪→

47 import numpy as np

48 # import scipy

49 import scipy.ndimage as ndimage

50 import scipy.ndimage.filters as filters

51

52 f, g = np.shape(filtered_wave)

53 halfwidth = round(window_width)/2

54 halfwidth_int = int(round(halfwidth))

55

56 # For finding the peaks, with help of a maximum filter

57 max_value = np.max(filtered_wave)

58 neighborhood_size = 5 # 2*int(round(window_width))

59 threshold = max_value*threshold_multiplier # threshold

multiplier <= 1↪→

60 data_max = filters.maximum_filter(filtered_wave,

neighborhood_size)↪→

61 maxima = (filtered_wave == data_max)

53

APPENDIX A. CODE LISTING

62 data_min = filters.minimum_filter(filtered_wave,

neighborhood_size)↪→

63 diff = ((data_max - data_min) > threshold)

64 maxima[diff == 0] = 0

65

66 labeled, num_objects = ndimage.label(maxima)

67 peaks = np.array(ndimage.center_of_mass(filtered_wave,

labeled, range(1, num_objects + 1)))↪→

68

69 # finding the points at half maximum amplitude

70 xpeak_placement = [] # placement of the center of peak

71 ypeak_placement = [] # placement of the center of peak

72 xpeak_xvalues_left = [] # vector for position inside left

HWHM value↪→

73 xpeak_xvalues_right = [] # vector for position inside

right HWHM value↪→

74 xpeak_xvalues_left_boundary = [] # vectors for position

outside left HWHM value↪→

75 xpeak_xvalues_right_boundary = [] # vectors for position

outside right HWHM value↪→

76 if np.shape(peaks) != (0,):

77 ii, jj = np.shape(peaks)

78 for i in range(ii):

79 ypeak_placement.append(int(peaks[i, 0]))

80 xpeak_placement.append(int(peaks[i, 1]))

81

82 for itlim in range(len(xpeak_placement)): # Checking if

the waves will have values outside the data field↪→

83 if halfwidth_int+2 > xpeak_placement[itlim]: # if the

center of the peak is lower than the value of

width of

↪→

↪→

84 # the peak, the wave will have values outside the

datafield↪→

85 xpeak_xvalues_right.append(xpeak_placement[itlim] +

(halfwidth_int-1))↪→

86 xpeak_xvalues_left.append(0)

87

xpeak_xvalues_right_boundary.append(xpeak_placement[itlim]

+ (halfwidth_int + 1))

↪→

↪→

88 xpeak_xvalues_left_boundary.append(0)

89

54

APPENDIX A. CODE LISTING

90 elif g-halfwidth_int-2 < xpeak_placement[itlim]: # if

the center of the peak is right of the value of

width of

↪→

↪→

91 # the peak, the wave will have values outside the

datafield↪→

92 xpeak_xvalues_left.append(xpeak_placement[itlim] -

(halfwidth_int-1))↪→

93 xpeak_xvalues_right.append(g-1)

94

xpeak_xvalues_left_boundary.append(xpeak_placement[itlim]

- (halfwidth_int+1))

↪→

↪→

95 xpeak_xvalues_right_boundary.append(g - 1)

96

97 else:

98 xpeak_xvalues_right.append(xpeak_placement[itlim] +

(halfwidth_int-1))↪→

99 xpeak_xvalues_left.append(xpeak_placement[itlim] -

(halfwidth_int-1))↪→

100

xpeak_xvalues_right_boundary.append(xpeak_placement[itlim]

+ (halfwidth_int+1))

↪→

↪→

101

xpeak_xvalues_left_boundary.append(xpeak_placement[itlim]

- (halfwidth_int+1))

↪→

↪→

102

103 # Identifying the wave peaks and removing the noise peaks

with fwhm↪→

104 zvalue = [] # amplitude value of the center of peak

105 zvalue_leftlim = [] # amplitude value for left HWHM value

- 1 positon↪→

106 zvalue_rightlim = [] # amplitude value for right HWHM

value - 1 positon↪→

107 zvalue_leftlim_boundary = [] # amplitude value for

position outside left HWHM value↪→

108 zvalue_rightlim_boundary = [] # amplitude value for right

HWHM value + 1 positon↪→

109

110 peaks_checked = []

111

112 for iterator in range(len(xpeak_placement)):

55

APPENDIX A. CODE LISTING

113 zvalue.append(filtered_wave[ypeak_placement[iterator],

xpeak_placement[iterator]] / 2)↪→

114

zvalue_leftlim.append(filtered_wave[ypeak_placement[iterator],

xpeak_xvalues_left[iterator]])

↪→

↪→

115

zvalue_rightlim.append(filtered_wave[ypeak_placement[iterator],

xpeak_xvalues_right[iterator]])

↪→

↪→

116 zvalue_rightlim_boundary.append\

117 (filtered_wave[ypeak_placement[iterator],

xpeak_xvalues_right_boundary[iterator]])↪→

118 zvalue_leftlim_boundary.append\

119 (filtered_wave[ypeak_placement[iterator],

xpeak_xvalues_left_boundary[iterator]])↪→

120

121 return peaks_checked, xpeak_placement, ypeak_placement,

xpeak_xvalues_left, xpeak_xvalues_right, zvalue, \↪→

122 zvalue_leftlim, zvalue_rightlim,

zvalue_leftlim_boundary, zvalue_rightlim_boundary↪→

123

124

125 # Check if the peaks found has a hwhm that coincides with

window function↪→

126 def peakcomparing(zvalue, xpeak_xvalues_right,

xpeak_xvalues_left, zvalue_leftlim, zvalue_rightlim,↪→

127 zvalue_leftlim_boundary,

zvalue_rightlim_boundary,

ypeak_placement, unfiltered_wave,

xpeak_placement):

↪→

↪→

↪→

128 import numpy as np

129 longestwave = [] # storing the length of the waves found

130 peaks_checked = []

131 peak_coor_x = []

132 peak_coor_y = []

133 lengthwavepeaks = 0

134 if len(zvalue) > 0: # Using the length of the longest

peak to find the values of the peak matrix↪→

135 for l in range(len(zvalue)):

136 longestwave.append(abs(xpeak_xvalues_right[l] -

xpeak_xvalues_left[l]))↪→

137 lengthwavepeaks = max(longestwave)

56

APPENDIX A. CODE LISTING

138 peaks_checked = np.empty((0, lengthwavepeaks),

dtype=complex) # the peaks checked to↪→

139 peak_check = [] # temporary vector to store peaks to

check for HWHM↪→

140 for m in range(len(zvalue)):

141 if zvalue_leftlim[m] >= zvalue[m]*0.95 and

zvalue_rightlim[m] >= zvalue[m]*0.95:↪→

142 if zvalue_leftlim_boundary[m] <= zvalue[m]*1.05

and zvalue_rightlim_boundary[m] <=

zvalue[m]*1.05:

↪→

↪→

143 for n in range(xpeak_xvalues_left[m],

xpeak_xvalues_right[m]):↪→

144 peak_check.append(unfiltered_wave

145 [ypeak_placement[m],

n])↪→

146 peak_coor_x.append(xpeak_placement[m])

147 peak_coor_y.append(ypeak_placement[m])

148 peaks_checked = np.vstack((peaks_checked,

peak_check)) # if check is positive,

add to a matrix

↪→

↪→

149 peak_check = []

150 peaks_checked = np.array(peaks_checked)

151

152 return peaks_checked, peak_coor_x, peak_coor_y,

lengthwavepeaks↪→

153

154

155 # perform a binary search with respect to amplitude, starting

from the top and working down↪→

156 def binary_search(peaks_wanted, filtered_wave, window_width):

157 peak_vec = []

158 xpeak_placement_vec = []

159 ypeak_placement_vec = []

160 xpeak_zvalues_left = []

161 xpeak_zvalues_right = []

162 zvalue = []

163 zvalue_leftlim = []

164 zvalue_rightlim = []

165 zvalue_leftlim_boundary = []

166 zvalue_rightlim_boundary = []

167 top = 1

57

APPENDIX A. CODE LISTING

168 end = 0

169 found = False

170

171 while top-end >= 0.01 and not found:

172 searchpoint = (top + end)/2

173 peak_vec, xpeak_placement_vec, ypeak_placement_vec,

xpeak_zvalues_left, xpeak_zvalues_right, zvalue, \↪→

174 zvalue_leftlim, zvalue_rightlim,

zvalue_leftlim_boundary,

zvalue_rightlim_boundary \

↪→

↪→

175 = identify_peaks(filtered_wave, searchpoint,

window_width)↪→

176 if len(xpeak_placement_vec) == peaks_wanted:

177 found = True

178 else:

179 if len(xpeak_placement_vec) > peaks_wanted:

180 end = searchpoint

181 else:

182 top = searchpoint

183

184 return peak_vec, xpeak_placement_vec, ypeak_placement_vec,

xpeak_zvalues_left, xpeak_zvalues_right, zvalue, \↪→

185 zvalue_leftlim, zvalue_rightlim,

zvalue_leftlim_boundary, zvalue_rightlim_boundary↪→

186

187

188 def find_wavelengths(peaktops_x, peaktops_y, waveplane,

grid_size, windowwidth):↪→

189 import numpy as np

190 # checking if 2 peaks at different z have wavelength_1

approx. equal to wavelength_2 (within FWHM/2)↪→

191 # wavelength lambda = scale*2pi/sqrt(k_x[x]^2 +

k_y[y]^2), where [x,y] are coordinates of the point of

max amp

↪→

↪→

192 peaks_y_wavelength = peaktops_y

193 lam = [] # wavelengths lambda

194 f, g = np.shape(waveplane)

195 window_length = 2*grid_size*np.pi/(np.sqrt(windowwidth**2))

196 g1 = g

197 f1 = f

198 if f > g:

58

APPENDIX A. CODE LISTING

199 f1 = g1

200 for k in range(len(peaktops_y)):

201 peaks_y_wavelength[k] = abs(peaks_y_wavelength[k] -

g1)↪→

202 # print(peaks_y_wavelength)

203 k_x = np.linspace(0, np.pi, g1, endpoint=False)

204 k_y = np.linspace(0, np.pi, f1, endpoint=False)

205

206 for i in range(len(peaktops_x)):

207 lam.append(2*grid_size*np.pi /

208 (np.sqrt(k_x[peaktops_x[i]]**2 +

209 k_y[peaks_y_wavelength[i]]**2)))

210 return lam, window_length

211

212

213 def find_phase(peaks):

214 # this function is to find and analyze the phase

215 import cmath

216 import numpy as np

217

218 f, g = np.shape(peaks)

219 peakphase = np.zeros((f, g))

220 # peakphase_unwrapped = np.zeros((f, g))

221 for x in range(f):

222 for y in range(g):

223 peakphase[x, y] = cmath.phase(peaks[x, y])

224

225 return peakphase

226

227

228 def phases_altitude(phasematrix, window_width, xcoor, ycoor):

229 import numpy as np

230 length = window_width/2 # length of each array peak

231 halflen = int(round(length))

232 print('halflen: ' + str(halflen))

233 # wavephasesunwrapped = []

234 phasescorrected = []

235 average = []

236 if len(xcoor) > 0:

237 # finding the coordinates of each unique wave peak,

and if two peaks are within window_width,↪→

59

APPENDIX A. CODE LISTING

238 # then count them as one

239 unique_xcoor = list(set(xcoor))

240 unique_ycoor = list(set(ycoor))

241 verified_xcoor = [unique_xcoor[0]]

242 verified_ycoor = [unique_ycoor[0]]

243

244 for qx in range(1, len(unique_xcoor)):

245 if not unique_xcoor[qx-1] + halflen >

unique_xcoor[qx] > unique_xcoor[qx-1]-halflen:↪→

246 verified_xcoor.append(unique_xcoor[qx])

247 for rx in range(1, len(unique_ycoor)):

248 if not unique_ycoor[rx-1] + halflen >

unique_ycoor[rx] > unique_ycoor[rx-1]-halflen:↪→

249 verified_ycoor.append(unique_ycoor[rx])

250 print('coordinates in x: ' + str(unique_xcoor))

251 print('coordinates in y: ' + str(unique_ycoor))

252 print('unique coordinates in x: ' +

str(verified_xcoor))↪→

253 print('unique coordinates in y: ' +

str(verified_ycoor))↪→

254

255 wavephases = [[] for p in range(len(verified_xcoor))]

256 phase = [[] for q in range(len(verified_xcoor))]

257 wavephasesunwrapped = [[] for r in

range(len(verified_xcoor))]↪→

258 counter = 0

259 average = [[] for s in range(len(verified_xcoor))]

260 # finding the phases of these waves, with help of the

coordinates↪→

261 for i in range(len(phasematrix)):

262 altitude_array = phasematrix[i]

263 m, n = np.shape(altitude_array)

264 for mi in range(m):

265 for mx in range(len(verified_xcoor)):

266 for my in range(len(verified_ycoor)):

267 if int(xcoor[counter] + halflen) >

int(verified_xcoor[mx]) >

int(xcoor[counter] - halflen) and \

↪→

↪→

60

APPENDIX A. CODE LISTING

268 int(ycoor[counter] + halflen) >

int(verified_ycoor[my]) >

int(ycoor[counter] -

halflen):

↪→

↪→

↪→

269

wavephases[mx].append(altitude_array[mi])↪→

270

271 counter += 1

272

273 for it in range(len(wavephases)):

274 phase[it] = np.concatenate(wavephases[it]).ravel()

275

276 for t in range(len(phase)):

277 wavephasesunwrapped[t] = np.unwrap(phase[t]) # ,

discont=np.pi/2)↪→

278

279 phasescorrected = 0.5*np.array(wavephasesunwrapped)

280

281 def runningmean(x, N):

282 return np.convolve(x, np.ones((N,)) / N,

mode='valid')[(N - 1):]↪→

283

284 for m in range(len(phasescorrected)):

285 average[m] = runningmean(phasescorrected[m], 8)

286

287 return phasescorrected, average

61

APPENDIX A. CODE LISTING

generatehorizontal.py

1 # this script generates a synthetic wave in my_inputwave(),

while windowing and transform performs windowing and FFT

in

↪→

↪→

2 # the horizontal plane. shift_bit_length makes sure the

length of FFT is power of 2, while makeSpectrum(...) is

another

↪→

↪→

3 # function to transform the wave (but not used).

4

5

6 def my_inputwave(): # SCRIPT FOR GENERATING INPUT TO THE

CODE↪→

7 # including necessary functions

8 from math import pi

9 import numpy as np

10 datalength = 250000

11 dist = 5000

12 # Since the grid view is 250 km horizontal, 60 km

vertical, and the resolution is 5*5*0,2 km↪→

13 # we get 250 km / 5 km = 50 => number of samplepoints in

the horizontal↪→

14 # Number of samplepoints:

15 samplepoints = int(datalength / dist)

16 # dist = sample spacing: m per spacing

17

18 # making some noise to the input signal

19 noise = np.random.normal(0, 1, samplepoints)

20

21 # defining a function describing a wave

22 def f(a, b):

23 return amp * np.sin(2*pi*(a/lam) + 2*pi*(b/lam) + phi +

noise)↪→

24

25 # generating a wave to have a synthetic input for testing

26 amp = 3 # amplitude in R

27 phi = 35 # vertical wavelength in km

28 lam = 28284 # in meters

62

APPENDIX A. CODE LISTING

29 x = np.linspace(0, datalength, samplepoints,

endpoint=False) # evenly spaced values within given

interval,

↪→

↪→

30 y = np.linspace(0, datalength, samplepoints,

endpoint=False) # # start, stop, number of samples↪→

31 xx, yy = np.meshgrid(x, y) # makes the vectors into a

matrix↪→

32 psi = f(x[np.newaxis, :], y[:, np.newaxis])

33

34 return psi, xx, yy, datalength, dist, samplepoints

35

36

37 def windowing(input_wave, datalength, dist):

38 import numpy as np

39 # Perform hamming in 2D

40 m, n = np.shape(input_wave)

41 hy = np.hamming(m)

42 hx = np.hamming(n)

43 ham2d = np.sqrt(np.outer(hy, hx))

44 windowed_wave = input_wave * ham2d

45 fftlen = shift_bit_length(10*m)

46 del_f_fwhm = 1.30/datalength

47 del_f_sample = (1/(2*dist))/(fftlen/2)

48 fwhm_window = del_f_fwhm/del_f_sample

49 return windowed_wave, fwhm_window

50

51

52 def transform(input_wave):

53 import numpy as np

54 # finding the sizes of the inputs, to make a FFT of

correct size↪→

55 wavey, wavex = np.shape(input_wave)

56 nwavex = shift_bit_length(10 * wavex)

57 nwavey = shift_bit_length(10 * wavey)

58

59 # Performing a 2D FFT of the models input

60 psi_transformed = np.fft.fftshift(np.fft.fft2(input_wave,

s=[nwavey, nwavex]))↪→

61

62 return psi_transformed

63

63

APPENDIX A. CODE LISTING

64

65 def shift_bit_length(x): # to find smallest power of 2

greater than x↪→

66 # taken from https://tinyurl.com/ybv7gnbg

67 return 1 << (x-1).bit_length()

68

69

70 def makeSpectrum(E, dx, dy, upsample=10):

71 import numpy as np

72 import numpy.fft as fft

73

74 zeropadded = np.array(E.shape) * upsample

75

76 F = fft.fftshift(fft.fft2(E, zeropadded)) / E.size

77 xf = fft.fftshift(fft.fftfreq(zeropadded[1], d=dx))

78 yf = fft.fftshift(fft.fftfreq(zeropadded[0], d=dy))

79 return F, xf, yf

64

APPENDIX A. CODE LISTING

inputdata.py

1 # This is 3D data. loaddata() reads from data provided by

Anqi Li, while syntdata3d() is the same wave as generated

in

↪→

↪→

2 # only one height, but in 3 dimensions. Transform3d and

windowing3d performs a FFT and windowing respectively, in

3D

↪→

↪→

3

4

5 def loaddata():

6 import numpy as np

7 data = np.load('Vat_Pertur_t.npy', mmap_mode='r')

8 # parameters = np.load('wave_para.npy') # uncomment if

the parameters in the data set are wanted↪→

9 yview, xview, zview, n = np.shape(data)

10 datalengthy = 1440000

11 datalengthx = 400000

12 print('the number of data points in the input data is: ' +

str(xview) + ' in x-dir and ' + str(yview) +↪→

13 ' in y-dir, at ' + str(zview) + ' altitudes z_n, and

we have ' + str(n) + ' set of this data')↪→

14 dataset = np.zeros(shape=(yview, xview, zview))

15 # Make data to a 3d matrix

16 for z in range(zview):

17 dataset[:, :, z] = data[:, :, z, 0]

18 sampling_dist_x = datalengthx / xview

19 sampling_dist_xint = int(round(sampling_dist_x))

20 # print(parameters) # uncomment if the parameters in the

data set are wanted↪→

21

22 return dataset, datalengthy, datalengthx, yview, xview,

sampling_dist_xint, sampling_dist_x↪→

23

24

25 def windowing3d(input_data, datalengthx, sampling_dist):

26 import numpy as np

27 from generatehorizontal import windowing

28 # takes 3d data and applies a window to it

29 yview, xview, zview = np.shape(input_data)

65

APPENDIX A. CODE LISTING

30 windowed_data = np.empty(shape=[yview, xview, zview])

31 window_width = 0

32 for i in range(zview):

33 windowed_data[:, :, i], window_width =

windowing(input_data[:, :, i], datalengthx,

sampling_dist)

↪→

↪→

34 print(str(np.shape(windowed_data)) + ' is the shape of the

windowed array')↪→

35

36 return windowed_data, window_width

37

38

39 def syntdata3d():

40 # including necessary functions

41 from math import pi

42 import numpy as np

43 datalength = 250000

44 dist = 5000

45 # Since the grid view is 250 km horizontal, 60 km

vertical, and the resolution is 5*5*0,2 km↪→

46 # we get 250 km / 5 km = 50 => number of samplepoints in

the horizontal↪→

47 # Number of samplepoints:

48 samplepoints = int(datalength / dist)

49 # dist = sample spacing: m per bin

50

51 # making some noise to the input signal

52 noise = np.random.normal(0, 1, samplepoints)

53

54 # defining a function describing a wave

55 def f(xvec, yvec, zvec):

56 return amp * np.cos(2*pi*(xvec/lam) + 2*pi*(yvec/lam) +

2*pi*(zvec/lamz) + noise)↪→

57

58 # generating a wave to have a synthetic input for testing

59 amp = 3 # amplitude in R

60 lamz = 20 # vertical wavelength in km = phase

61 lam = 74953 # in meters

62 x = np.linspace(0, datalength, samplepoints,

endpoint=False) # evenly spaced values within given

interval,

↪→

↪→

66

APPENDIX A. CODE LISTING

63 y = np.linspace(0, datalength, samplepoints,

endpoint=False) # # start, stop, number of samples↪→

64 psiz = np.empty(shape=[samplepoints, samplepoints, 160])

65 xx, yy = np.meshgrid(x, y) # makes the vectors into a

matrix↪→

66 for z in range(160):

67 psiz[:, :, z] = f(x[np.newaxis, :], y[:, np.newaxis],

z)↪→

68 print(np.shape(psiz))

69 return psiz, xx, yy, datalength, dist, samplepoints

67

APPENDIX A. CODE LISTING

plotting.py

1 # This script is for plotting the different wave

characteristics, spectrums or waves. Plotwave is for

plotting the input

↪→

↪→

2 # wave in 2D (horizontal plane), while plotamplitude plots

the amplitude of the transformed (and filtered) input.↪→

3 # Plotphase plots the development of the phase with respect

to altitude, while plotwavelengths plots the wavelengths↪→

4 # with respect to altitude. Plotphaseonealt plots the phase

of a peak at one altitude, and is only used in !mode.↪→

5 # Plotthewave plots the wave, but is only used with the

alternative generate function makeSpectrum↪→

6

7

8 def plotwave(genwave, datalengthy, datalengthx, samplepointsx,

samplepointsy, mode):↪→

9 # this function is to plot the generated wave, fft, and

phase↪→

10 import numpy as np

11 import matplotlib.pyplot as plt

12 from mpl_toolkits.mplot3d import Axes3D

13

14 if mode: # values for x and y from Anqis thesis (result

plot)↪→

15 x = np.linspace(-200, 200, samplepointsx) # evenly

spaced values within given interval,↪→

16 y = np.linspace(-670, 770, samplepointsy) # # start,

stop, number of samples↪→

17 x, y = np.meshgrid(x, y) # makes the vectors into a

matrix↪→

18

19 else:

20 x = np.linspace(0, datalengthx, samplepointsx) #

evenly spaced values within given interval,↪→

21 y = np.linspace(0, datalengthy, samplepointsy) # #

start, stop, number of samples↪→

22 x, y = np.meshgrid(x, y) # makes the vectors into a

matrix↪→

23

68

APPENDIX A. CODE LISTING

24 # plot the generated wave: genwave

25 fig = plt.figure()

26 ax = Axes3D(fig)

27 ax.plot_surface(x/1000, y/1000, genwave)

28 ax.tick_params(axis='both', which='major', labelsize=16)

29 plt.title('The wave input', fontsize=22)

30 plt.xlabel('x [km]', fontsize=20)

31 plt.ylabel('y [km]', fontsize=20)

32 plt.show()

33

34 return 0

35

36

37 def plotamplitude(filtered_wave, xpeak_placement,

ypeak_placement, mode):↪→

38 import numpy as np

39 import matplotlib.pyplot as plt

40 from mpl_toolkits.mplot3d import Axes3D

41 import matplotlib.ticker as tck

42 # making vectors to place the peaks in the plot of the

filtered wave↪→

43 xpeak_values = []

44 ypeak_values = []

45

46 f, g = np.shape(filtered_wave)

47 if mode:

48 g1 = g

49 if f > g:

50 for k in range(len(ypeak_placement)):

51 ypeak_placement[k] = abs(ypeak_placement[k] +

g1)↪→

52

53 xx = np.linspace(-np.pi, np.pi, g)

54 yy = np.linspace(-np.pi, np.pi, f)

55 for xi in range(len(xpeak_placement)):

56 xpeak_values.append(xx[xpeak_placement[xi]])

57 ypeak_values.append(yy[ypeak_placement[xi]])

58

59 # plot the filtered wave

60 xx, yy = np.meshgrid(xx, yy)

61 fig = plt.figure()

69

APPENDIX A. CODE LISTING

62 ax = Axes3D(fig)

63 ax.xaxis.set_major_formatter(tck.FormatStrFormatter('%g

π'))↪→

64 ax.xaxis.set_major_locator(tck.MultipleLocator(base=1.0))

using this and line above to get pi on x-axis↪→

65 ax.yaxis.set_major_formatter(tck.FormatStrFormatter('%g

π'))↪→

66 ax.yaxis.set_major_locator(tck.MultipleLocator(base=1.0))

using this and line above to get pi on y-axis↪→

67 ax.plot_surface(xx, yy, filtered_wave)

68 ax.plot(xpeak_values, ypeak_values, 'r+')

69

70 plt.title('Plot of the filtered FFT of the wave, 1st and

4th quadrant only', fontsize=16)↪→

71 plt.xlabel('k_x', fontsize=14)

72 plt.ylabel('k_y', fontsize=14)

73 plt.show()

74 return 0

75

76

77 def plotphase(phases, average):

78 import numpy as np

79 import matplotlib.pyplot as plt

80 import matplotlib.ticker as tck

81 wave1 = np.array(phases[0])

82 average1 = np.array(average[0])

83 wave2 = []

84 average2 = []

85 altvectorwave2 = []

86 altvectorave2 = []

87 y2 = []

88

89 # plot the phase

90 ax = plt.subplot()

91 ax.yaxis.set_major_formatter(tck.FormatStrFormatter('%g

π'))↪→

92 ax.yaxis.set_major_locator(tck.MultipleLocator(base=1.0))

using this and line above to get pi on axis↪→

93

94 altvectorwave1 = np.linspace(70, 150, len(wave1),

endpoint=False)↪→

70

APPENDIX A. CODE LISTING

95 altvectorave1 = np.linspace(70, 150, len(average1),

endpoint=False)↪→

96

97 # perform a polynomial regression:

98 firstpoly = np.polyfit(altvectorave1, average1, deg=2,

full=True)↪→

99

100 def y1(x1):

101 return firstpoly[0][0]*x1**2 + firstpoly[0][1]*x1 +

firstpoly[0][2]↪→

102

103 print('mathematical description of first waves phase: ' +

str(firstpoly[0]))↪→

104

105 y1z = y1(altvectorwave1)

106

107 if len(phases) > 1:

108 wave2 = np.array(phases[1])

109 average2 = np.array(average[1])

110 altvectorwave2 = np.linspace(70, 150, len(wave2))

111 altvectorave2 = np.linspace(70, 150, len(average2))

112 # perform a polynomial regression

113 secondpoly = np.polyfit(altvectorave2, average2, deg=2,

full=True)↪→

114

115 def y2(x2):

116 return secondpoly[0][0] * x2 ** 2 +

secondpoly[0][1] * x2 + secondpoly[0][2]↪→

117

118 print('mathematical description of second waves phase:

' + str(secondpoly[0]))↪→

119

120 plt.plot(altvectorwave1, wave1 / np.pi, label=' wave 1')

121 plt.plot(altvectorave1, average1 / np.pi, color='red',

label='average wave 1')↪→

122 plt.plot(altvectorwave1, y1z / np.pi, label='2. deg.

poly.fit wave 1')↪→

123 if len(phases) > 1:

124 y2z = y2(altvectorwave2)

125 plt.plot(altvectorwave2, wave2 / np.pi, label='wave 2')

71

APPENDIX A. CODE LISTING

126 plt.plot(altvectorave2, average2 / np.pi,

color='green', label='average wave 2')↪→

127 plt.plot(altvectorwave2, y2z / np.pi, label='2. deg.

poly.fit wave 2')↪→

128 ax.tick_params(axis='both', which='major', labelsize=20)

129 plt.xlabel('Altitude in km', fontsize=22)

130 plt.ylabel('\u03C6(z)', fontsize=22)

131 plt.legend(fontsize=20)

132 plt.title('Plot of the phase of the waves found',

fontsize=26)↪→

133 plt.show()

134

135 return 0

136

137

138 def plotwavelengths(wavelengths, window_length):

139 import numpy as np

140 import matplotlib.pyplot as plt

141

142 half_window_length = window_length/2

143 print('window length of wavelength ' +

str(half_window_length))↪→

144 length = len(wavelengths)

145

146 zvec = np.linspace(70, 150, length, endpoint=False)

147 ax = plt.subplot()

148 for xe, ye in zip(zvec, wavelengths):

149 ax.plot([xe] * len(ye), ye/1000, 'o')

150 ax.errorbar([xe] * len(ye), ye/1000,

yerr=half_window_length/1000, fmt='o', ecolor='g')↪→

151 ax.tick_params(axis='both', which='major', labelsize=20)

152 plt.title('Plot of the wavelengths', fontsize=26)

153 plt.xlabel('Altitude in km', fontsize=22)

154 plt.ylabel('Wavelength in km', fontsize=22)

155 plt.show()

156 return 0

157

158

159 def plotphase_onealt(phases):

160 import numpy as np

161 import matplotlib.pyplot as plt

72

APPENDIX A. CODE LISTING

162 import matplotlib.ticker as tck

163

164 # plot the phase

165 ax = plt.subplot()

166 ax.yaxis.set_major_formatter(tck.FormatStrFormatter('%g

π'))↪→

167 ax.yaxis.set_major_locator(tck.MultipleLocator(base=1.0))

using this and line above to get pi on axis↪→

168 m, n = np.shape(phases)

169 xphase = np.linspace(0, n, n, endpoint=False)

170 for l in range(m):

171 ax.plot(xphase, phases[l, :] / np.pi, 'o')

172 plt.title('Plot of the phase of the waves found',

fontsize=16)↪→

173 plt.show()

174 return 0

175

176

177 def plotthewave(F, xf, yf):

178 # import numpy as np

179 import matplotlib.pyplot as plt

180 from mpl_toolkits.mplot3d import Axes3D

181 # x = np.linspace(-np.pi, np.pi, len(xf)) / np.pi

182 # y = np.linspace(-np.pi, np.pi, len(yf)) / np.pi

183 # x, y = np.meshgrid(xf, yf)

184 fig = plt.figure()

185 ax = Axes3D(fig)

186 ax.plot_surface(xf, yf, F)

187 plt.title('The wave input with alternate transform',

fontsize=16)↪→

188 plt.xlabel('x', fontsize=14)

189 plt.ylabel('y', fontsize=14)

190 plt.show()

191 return 0

73

