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Problem Description
The use of medical images for diagnostics, treatment planning and surgical guidance is constantly
increasing. A wide range of 3D imaging modalities is now available, e.g. Ultrasound, MRI, CT, PET
and SPECT. Often, two or more imaging modalities are used to acquire volume data from the same
object or scene. In order to better be able to compare all the information contained in such image
volumes they have to be brought into spatial correspondence with each other. That way both
similarities and differences can be detected. Differences can be caused by several factors,
including varying characteristics of the imaging modalities used and spatial differences because of
tissue growth, aneurisms and movements. The process of finding this spatial correspondence
between two images is known as registration, and can be performed iteratively, transforming one
image, while keeping the other image in a fixed position. A similarity measure is used to measure
the spatial correspondence between the images, and will change from iteration to iteration. An
optimizer will also have to be employed in order to guide the transformations in the direction of
greatest similarity. The process halts when the optimizer is unable to find a transformation that
increases the similarity measure any more.

The student will in this project develop a software module that makes it possible to register
preoperative MRI data to intraoperative 3D ultrasound images. This module will be integrated with
CustusX, a software system for image guided surgery developed at SINTEF. In order to optimize
the spatial correspondence between them, various similarity measures and optimization schemes
will be investigated as well. The registration procedure should be fully automated, i.e. not employ
carefully selected marker points in the images. However, a manual translation into a good starting
position may be acceptable. Finally, to ensure a stabile and reliable system the registration
module will have to be tested thoroughly and the results obtained from the module must be
validated.
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Abstract

This master-thesis considers implementation of automated multimodal volume-to-volume
registration of images, in order to provide neurosurgeons with valuable information for plan-
ning and intraoperative guidance. Focus has been on medical images from magnetic resonance
(MR) and ultrasound (US) for use in surgical guidance. Prototype implementations for MRI-
to-US registration have been proposed, and tested, using registration methods available in the
Insight Toolkit (ITK). Mattes’ Mutual Information has been the similarity metric, based on
angio-graphic volumes that have not been preprocessed from both modalities. Only rigid trans-
formations have been studied, and both types of Gradient Descent and Evolutionary optimizers
have been examined.

The applications have been tested on clinical data from relevant surgical operations. The
best results were obtained using an evolutional (1+1) optimizer for translational transformations
only. This application was both fast and accurate. The other applications, using types of
Gradient Descent optimizers, has proved to be significantly slower, inaccurate and more difficult
to parameterize.

It has been experienced that registration of angio-graphic volumes are easier to accomplish
than registration of volumes of other weightings, due to their more similar characteristics. Angio-
graphic images are also readily evaluated using volume renderings, but other methods should
be constructed to provide a less subjective measure of success for the registration procedures.

The obtained results indicate that automatic volume-to-volume registration of angio-graphic
images from MRI and US, using Mattes’ Mutual Information and an Evolutionary Optimizer,
should be feasible for the neuronavigational system considered here, with sufficient accuracy.
Further development include parameter-tuning of the applications, to possibly achieve increased
accuracy. Additionally, a non-rigid registration application should be developed, to account for
local deformations during surgery. Development of additional tools for performing accurate
validation of registration results should be developed as well.
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Multimodal Volume-to-Volume Registration

Part I

Introduction

The work in this thesis builds upon the work done last semester in the course TDT 4725, Image
Processing - Depth study, where I studied the current state-of-the-art in volume-to-volume
registration. The emphasis for that thesis was on useful concepts and methods in multimodal
registration of medical images used both for planning and during neurosurgery.

In the first part I will at first describe the overall goal of the project. In chapters 2 to 4 I
sum up the main findings from my survey on the current state of the art in medical imaging
registration. This will also lead to an outline of the rest of the work in this project. This part
is not meant as a complete survey, merely a short introduction to the key issues in the field.
For a more thorough presentation of the field of medical image registration, please see my in-
depth-study report (available from SINTEF Med Tech), or the literature listed in the References
section. This part will also present the methods that, in my in-depth-study, was found suitable
for solving the problem definition, which will be presented shortly.
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Multimodal Volume-to-Volume Registration

1 Problem Definition

Before a typical neurosurgical operation, MRI volumes of the patient’s head are acquired in
different modes. Different modes of MRI emphasize different aspects of the physiological and
anatomical nature of the patient, in order to reveal as much information as possible. These
images have to be combined mentally by the neurosurgeon in the process of planning an optimal
surgical procedure. The most significant MRI data set is selected as a master, and used as a
basis for subsequent surgical guidance.

During surgery, but before the dura mater1 is opened, a free-hand US scan of the brain is per-
formed, and the scan is resampled and compounded into a 3D image data set. This procedure is
repeated after opening the dura, and may be performed several times during surgery, generating
a series of 3D data sets. These data sets contain updated information on the structures of the
brain, in the areas reached by the US scan, which may help the neurosurgeon in monitoring and
optimizing the surgical procedure.

In order to provide the neurosurgeon with as much information as possible in planning the
surgical operation, the different preoperative MRI volumes should be registered, resulting in
multi-informational MRI volumes. When the planning is finished, and the surgical procedure
starts, it is still advantageous to extract information from several sources. In order to combine
the information from the preoperative master MRI volume with the subsequent intraoperative
US volume, a registration procedure of the volumes should be performed. The resulting volume
from this procedure is a pseudo-MRI volume, incorporating information of spatial deformations
observed from the US volumes. The registration procedure for the preoperative MRI volumes
and the registration procedure for the master MRI volume (or pseudo MRI volume later on) with
the subsequent US volumes, may differ substantially, as there usually is no good single algorithm
for all registration problems. Note that the registration of the subsequent US volumes may or
may not be a multimodal registration step, according to whether the US volume is registered
directly to the pseudo MRI volume or to the preceding US volume, respectively. If the latter is
the case, the resulting transformation of the registration process should be applied to the MRI
volume later on as well.

The overall goal of this project is to propose, and implement, a set of fully automated volume-to-
volume registration algorithms that will perform step number two (2) of the following registra-
tion system: 1)Registration of different preoperative MRI volumes, 2)registration of a selected
preoperative master MRI volume to the initial US volume, and 3)registration of each of the
subsequent US volumes with the pseudo MRI volume, which may include registration of the last
obtained US volume to the preceding US volume.

The last step, or the last two, should enable a set of subsequent warpings to the master MRI
volume. Harg had the exact same problem definition for his assignment last year. I therefore
adopt his easily understood schematic description of the registration steps in Figure 1 [8][9].

1A tough membrane surrounding and protecting the brain.
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Figure 1: Schematic representation of the registration pro-
cess. Images are firstly acquired, then they are registered
according to the problem definition. In the end the sur-
geon utilizes the images for planning and surgical guid-
ance. (Figure adapted from [8][9]. )
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Multimodal Volume-to-Volume Registration

2 Background

This chapter starts out, presenting the history and development of the field of registration,
before a more thorough description of the registration system defined in chapter 1 is given in
chapter 2.2. This chapter will briefly discuss the three separate steps of the registration system,
as well as point out the main differences of the two imaging-modalities that should be registered.

2.1 The Field of Registration

The last decades have seen remarkable development in medical imaging technology. Numerous
imaging modalities are currently available, and images obtained from these provide useful in-
formation in planning and guidance of surgical procedures. Utilization of medical images has
opened up new areas of applications, and new methods are continuously developed. Especially
in neurosurgery, accurate and up-to-date information is critical, so methods for extracting im-
portant information from multiple images, combining this information, and finally presenting
the results to the surgeon is of significant importance.

Huge investments within universities and industry have been made in order to invent and develop
the technology needed to acquire images from multiple imaging modalities. The use of medical
images in healthcare is constantly increasing, and a wide range of imaging modalities is now
available, including CT, MRI, US, PET and SPECT. A substantial amount of computing is
needed in order to present the images in preferable ways for diagnosis, treatment planning and
surgical guidance. After processing the images from raw signals to 2D or 3D images, a variety of
enhancement and processing techniques can be applied to the images to emphasize and present
useful information to doctors and specialists. This includes segmentation of special tissues of
interest, such as cancerous tissues and aneurisms2, and presenting them to an interpreter for
analysis. Sometimes however, we have two images of the same scene and want to find a spatial
correspondence of them. This will give us most information out of both images, detecting
both similarities and differences. Differences can be caused by several factors, including varying
characteristics of different imaging modalities and spatial differences because of tissue growth
and movement. The process of finding this spatial correspondence between two images is known
as registration.

For diagnosis and preoperative planning it has been common to use a high resolution imaging
modality, such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI). This
way the surgeon gets a good view and understanding of the internal structures and anatomy, en-
abling him or her to find the best possible approach for a given surgical procedure. This reduces
the possibility of failure during operation which can be fatal for the patient [12]. Preoperative
image volumes can also be used during surgery. By aligning an image to the patient in physical
space, surgical tools can be overlaid to the image using stereotactic systems employing tracker
tools. This way, the surgical tools can be positioned relative to the image volume within a nav-
igation system, giving the surgeon a 3D quasi-real-time view of the operation [2]. As indicated,
this is a truth with modifications, as the preoperative image does not provide information of the
actual spatial relationship of the tissues. During neurosurgical intervention, the brain tissues
will shift and warp with respect to the skull, mainly due to tumor resection, cerebrospinal fluid
drainage, hemorrhage or even the use of diuretics [27] [24] [22]. The use of stereotactic systems
based on preoperative images certainly enable previously inhibiting procedures [34], but the

2Swelling or ballooning of a blood vessel
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real-time feeling can as indicated be quite misleading. Because of the inaccuracy of utilization
of preoperative images for surgical guidance, the need for more updated imagery arises.

Updated images can be obtained using some sort of intraoperative imaging modality, and both
CT [21], MRI [22] and Ultrasound (US) [7] [18] has been proposed. The two former provide the
best image quality, but sadly, they suffer from the biggest drawbacks as well. Intraoperative
use of CT will expose both the patient, but especially the clinical personnel, for large doses of
radiation, possibly causing serious illness on a long-term basis. MRI however does not suffer
from this drawback, but will on the other hand involve large investments as specially equipped
operating rooms would be necessary. These rooms would require a sterile draped magnet, in
which the surgeon could perform operations. Also the cost of running such an operation room
would be significant [7] [17]. Expectations regarding MRI-based neuronavigation systems are
significant, but such a system will not be common and widespread until prices become more
reasonable. US has not been dedicated much attention until recently, probably owing to a
historical common perception of limited image quality. The SonoWand system developed by
Gronningsaeter et al. [7] [14] is a notable exception, as it uses US data directly, as opposed to
updating an image with better resolution, for surgical guidance.

US has also been used for surgical guidance indirectly, updating a preoperative image (CT or
MRI), by using its data to accommodate for brain shifts during surgery. This way both initial
anatomical information and the updated structural data from the US images is incorporated in
a common virtual image. This was done by Bucholz et al. [1], however, only in two dimensions
(2D). Peters et al. [25][4][5][6] developed a similar 3D navigation system, but had to settle with
a semi-automatic solution using manually selected homologous points in the image volumes for
alignment. Their application includes real-time compounding and updating of an intraoperative
US volume, subsequently registered with the preoperative MRI volume. The latter system
is the most promising system in the area today, as a similar fully automatic system has not
been reported. A fully automatic MRI-US system would be preferable, but requires much
research still. Such a system would require what is known as a multimodal non-rigid registration
procedure, which is quite complex and has many degrees of freedom, at least for MRI-US
registration.

Algorithms for a complete registration procedure are needed. Successfully implemented, these
algorithms will result in better utilization of the broad range of medical images available in
planning and guidance of surgery today.

2.2 The Registration System

As indicated in chapter 1 the registration problem can be separated into three different parts:

1. Registration of different preoperative MRI volumes

2. Registration of a selected preoperative master MRI volume to the initial US volume

3. Registration of each of the subsequent US volumes with the pseudo MRI volume, which
may include registration of the last obtained US volume to the preceding US volume.

The last two steps will produce ”pseudo-MRI” volume that contains information of both the
master MRI volume and subsequent US volumes. It will still have the characteristics of a MRI
volume, as the most recent US volume information is extracted and used to alter the MRI
volume to account for changes during surgery.
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Even though the three steps are closely related to each other, they are most easily handled
separately. The different MRI weightings such as T1, T2 and MR Angio have notable differ-
ences, but they are of similar resolution, visual quality and visualize nearly the same amount
of information. Images of corresponding slices from two different MRI volumes can be seen in
figure 2. The first step is the most straight-forward step, and was actually solved satisfactory
by Harg last year [9]. For that reason, I will not present algorithms for this step in this report.

(a) Normal T1 weighted MRI. (b) T1 weighted MRI with contrast fluid.

Figure 2: Corresponding slices from two MRI volumes
of the same patient. Contrast fluid is used to highlight
the tumor in the center of the image (Courtesy of SINTEF
MedTech)

Step two of the registration system is probably the most difficult step of the three. The reg-
istration of MRI and US volumes face several difficulties not present in the first step. Being
a multimodal registration step, an integration of two different imaging technologies is needed.
Ultrasound has a lower spatial resolution than MRI, is burdened with more noise, and has a
drastically reduced field of view (figure 3). Additionally the information available in US visu-
alize mainly tissue boundaries, whereas MRI mainly contains information about tissue types.
In the case of angio-graphic images from the two modalities, the mentioned differences are less
pronounced. Such images contain information of the walls of the blood vessels, which appear
in a similar manner in both modalities. However, US Angio images still suffer from a limited
field-of-view, lower signal-to-noise ratio and a lower spatial resolution. The blood vessels also
appear ”thicker” in the ultrasound image than in MRI, which is also a characteristic due to the
image acquisition process. This can also be seen in figure 3. Step two may for the mentioned
reasons be most easily solved using angio-graphic images. This assumption is also utilized in
my methods later on in the report.

The result of step two is an MRI volume which is aligned with the first ultrasound volume,
obtained before surgery. Step three can be performed, either by registering each subsequent
US volume to the most current pseudo-MRI, like step two including a non-rigid transformation
to account for local perturbations cause by surgery, or by registering each US volume to the
previous one. This second method is beneficial, because the pseudo-MRI may be successively
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(a) MR Angio. (b) US Angio.

Figure 3: 3D renderings of angio-graphic volumes. Both
the different field of view, and thickness is evident. (Cour-
tesy of SINTEF MedTech)

updated with the resulting transformation from the non-rigid US to US registration. This
approach will also require an additional registration application for this last transformation.
However, unimodal registration of US volumes is more likely to succeed than successive non-
rigid multimodal registration steps.
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3 Registration Components

The goal of any registration application is to find a spatial correspondence of two images; i.e. we
search for a ”transformation” that transforms the moving image as close as possible into, and
with respect to, the fixed image. A registration application consists of several building blocks,
working together to produce this transformation. I will now present a brief introduction of those
crucial design choices that will have to be made: Type of transform, similarity basis and metric,
optimization scheme and interpolation method. A schematic description of a typical registration
system can be seen in figure 4.

Figure 4: Schematic description of a traditional registra-
tion procedure.
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3.1 Transform

The transformation of the moving image is a transformation using a transformation matrix.
The nature of this matrix itself will therefore have significant impact on the result, and thus
on how we should be searching for it. What type of matrix we want to employ depends on the
application, especially on the complexity and differences of the images we want to register. The
choice also depends on the desired accuracy of the application, as more degrees of freedom are
needed for more accurate transformations.

The types of transformations can be divided in two broad categories: Rigid and Non-Rigid.
For rigid transformations the same matrix is applied to all pixels in an image. This most
often include translation and rotation, but can also include scaling and shear-transformations
for what is known as affine transforms, and the resulting image will look very similar to the
starting image.

However, if the registration process involves local deformation, we will have to employ a non-
rigid transformation to find a deformation model that likely resembles the natural deformation of
tissues. This generally involves a higher degree of freedom, which corresponds to the number of
elements in the resulting transformation matrix, or deformation field. A higher degree of freedom
implies more parameters to be found, generally making the process more time-consuming. The
non-rigid registration process is also more susceptible to noise. A lessen the noise impact on
the deformation field, and ensure a smooth changing transformation, dampening schemes are
usually employed. A common way to smooth the deformation field is to describe it in terms of
parametric cubic curves, such as B-splines or NURBS, or more precisely, their control points.
Other useful non-rigid transforms include the use of mechanically, optical or elastic based models
for the stretching of the deformation field.

Rigid transforms will probably perform well on registration problems where nearly no defor-
mation on the image volumes exists. Such convenience is not always the situation in real life.
Actually, most tissues are far from rigid and can deform considerably. For brain images, the
skull will usually keep the tissues in place, but when the dura mater is opened the deformation
will occur for brain images as well. The advantages of rigid transforms however, are that they
are easy to understand and usually computationally inexpensive. As mentioned, non-rigid trans-
formation models all seek to measure or compensate for a smooth deformation of the depicted
tissues, by constraining the allowable transformation according to a predefined model.

It is not uncommon to employ an approach using both rigid and non-rigid transforms in a
sequence. Rigid transforms will often be better at finding a good general alignment of the two
images, using a small amount of time, and can consequently be used to align the two images
globally before employing a non-rigid approach. Both classes of registration transforms will
therefore be interesting in any registration problem.

3.2 Similarity Measure

In order to find the right transformation parameters, we have to have a way to measure similarity
between the two images that we perform registration on. First of all we have to choose which
information to measure on. The most obvious property is the voxel intensity values. Other
features can be extracted from the voxel intensity values, and examples are edges and ridges of
structures in the image. Voxel intensity values or features extracted from these, are denoted as
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the similarity basis, while the choice of how to use the information is defined as the similarity
metrics. Metrics are therefore algorithms that measure the degree of spatial correspondence
of different images, with respect to the similarity basis. The performance of the metrics, and
hence the choice of which metric to employ, heavily depends on the basis. A possible solution
to a registration problem can be to use both voxel intensities and features together as a basis,
in order to utilize as much information as possible. Segmentation can also be employed to find
physical objects, such as various tissues or blood vessels, and do a registration to align the
segmented parts.

Voxel intensity-based similarity measures range from plain and simple to fairly complex. Most
of these measures will work best in a unimodal environment, as most of them try to map
intensities on a one-to-one basis. If we want to register images from different modalities, a more
intricate approach often has to be considered; imaging modalities tend to represent structures
in different ways and with different intensities. Several different metrics exist, and many of
them can handle unimodal registration. However, complex methods like correlation ratio (CR)
and mutual information (MI), has a greater potential in multimodal registration, as they on
the other hand try to find the best statistical intensity-to-intensity ratio. Also by extracting
features a multimodal registration procedure is most likely to be successful, as we can try to
extract information to make the basis of the two images more similar.

3.3 Optimizer

The similarity measures discussed above compute a measure of degree of spatial correspondence
between two images. This measure is used as a cost function in an optimization procedure, in
order to minimize or maximize the similarity measure of two images. An optimization algorithm
is an iterative process taking a series of guesses on how to alter transformation parameters,
starting from an initial position. Progression towards an optimal registration is then achieved
by seeking transformations that decreases the cost function until the cost function converges into
an optimal minimal value. For a given current estimate of the cost function the optimization
algorithm then makes another estimate of the transformation, evaluates the cost function again,
and continues until no transformation can be found that results in a better estimate of the cost
function. The starting position however, has to be sufficiently close the optimal solution for the
algorithm to converge to the optimal solution; the starting position has to be within what is
known as the capture range. The starting position is optimally retrieved automatically, but can
also be specified with simple user interaction [10] [11].

A problem for optimization algorithms is that they can converge into an incorrect solution,
called a local optimum. An optimization procedure has as many degrees of freedom as the
transformation in the registration procedure. This can be seen as a hyper- or parameter-space
containing all possible values for the cost function. The dimensionality of the parameter-space
can range from six dimensions for rigid body registration to hundreds or thousands for free-
form deformation transformations. If we think of this parameter-space as a multi-dimensional
landscape, the lowest point in a valley will correspond to a (possible local) optimal solution of
the registration problem. The job for the optimizer now consists in finding the parameters for a
transformation to this position. The only way of overcoming incorrect solutions is to initialize
the algorithm close enough to the correct solution, thus avoiding getting stuck in a non-correct
minimum[11]. Additionally, searching through the entire parameter-space is tremendously time-
consuming, reinforcing the importance of a good initial estimate of the registration process [11]
[3].
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The categories of optimizers is parted into optimization techniques that base their choices on
cost values only, and those which also incorporate cost value derivatives into computation [3]
[26]. Additionally, all optimization schemes employ some sort of voxel interpolation technique,
which will be discussed in chapter 3.4. Choosing the best optimization scheme is a somewhat
empirically based decision; one should use what gives the best results for the current application,
as different optimizers could work better than others, depending on given situations [20].

3.4 Interpolation

When the optimizer computes transformation parameters, and transforms an image accordingly,
this implies some sort of interpolation of the image; the transform will rarely map the voxel
locations of one grid directly onto that of the other. This will cause a smoothening of the
image. Interpolation can also introduce small minima in parameter-space, hence affecting the
performance of the optimizer.

The most simple interpolation algorithm is nearest neighbor interpolation (NN), which simply
uses the intensity value from the voxel closest to the new position. This interpolation technique
is very fast, but also very inaccurate. It also has a tendency to introduce small local minima
in parameter-space, altering the conditions for subsequent optimization [26]. Trilinear interpo-
lation (TLI) makes use of intensity values from the nearest eight voxels, linearly interpolating
between the nearest two voxels in all directions, thus calculating a weighted intensity value.
This interpolation technique reduces aliasing effects, hence giving smoother transitions than
NN. Trilinear interpolation is considered both accurate and fast enough in most registration
procedures [26] [31]. Tricubic interpolation (TCI) makes use of intensity values from as much as
the 64 closest voxels, each contributing to the intensity value for the new point. The weighting
for this method is controlled by a cubic polynomial function of the distance to the voxels. This
interpolation technique reduces aliasing effects in an even higher degree than trilinear interpo-
lation. Tricubic interpolation is therefore the most accurate interpolation technique, but suffers
from being very slow as intensities from 64 voxels have to be considered [26]. It is also possible
to use trilinear and tricubic interpolation in combination, in the way that the former is used
for computing similarity measures, while the latter is used for the actual transformation of the
moving image [26].

A possible way of overcoming the smoothening of the image and introduction of artifacts caused
by interpolation is a hierarchical approach. The images are therefore subsampled to a pyramid-
set of images before the procedure starts. The process then starts by performing a registration
on the images at the lowest resolution. The transformation solution obtained at this resolution,
is then used as the starting estimate for registration at the next higher resolution. [32] This step
is repeated until we reach the highest resolution. This approach is currently considered standard
in medical image registration [11] [15]. Example images for a multi-resolution approach can be
seen in Figure 5.

Choosing the best interpolation method remains, however, a balancing act between computa-
tional cost and correctness. The choice of interpolation technique should be considered thor-
oughly, in order to avoid perturbing the parameter-space while doing so within reasonable time.
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Figure 5: Successively downsampled MRI images. (Cour-
tesy of SINTEF MedTech)
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4 Promising Methods

This chapter summarizes the experience drawn from my in-depth-study, regarding ideas and
algorithms and methods to solve the three registration procedures defined in chapter 1. I will
also discuss the work done by Harg [9] during the last year, and propose possible enhancements
to his methods. Different approaches will also be discussed, either based on previous reports, or
as combinations of these. Arguments for choosing different methods are also presented, as well
as possible problems and deficiencies. Optimizers will not be thoroughly discussed, as a choice
among them, as mentioned in chapter 3.3, highly rely on experience in the field.

4.1 Preoperative 3D MRI Registration

For this problem, Harg explored a solution employing only translational transformations with
Mutual Information, MI, as similarity metric. A gradient descent optimizer using trilinear inter-
polation, was employed to find the optimal solution. This registration method performed well
and gave consistent results for subsequent executions [9]. No changes are needed for this proce-
dure, but different approaches can be tested for comparison of stability, speed and computational
expense.

Only translational transformations are believed to be sufficient for this task, as MRI volumes of
different weightings are believed to have a rotational offset of zero [9]. Manual initialization is
also believed to be unnecessary, as the different weightings of MRI are believed to be very close
to be aligned automatically. MRI data is usually of high spatial resolution and contains little
noise. Different MRI modes have slightly different characteristics, but they generally visualize
the same anatomical structures. It is therefore possible to utilize most of the information
available in the image, in a registration process. As Harg’s results indicate, a procedure that
uses intensity values only, should be feasible in registration of different modes of MRI. Both
Correlation Ratio, CR, and Normalized Mutual Information, NMI, are untried in this project,
and because of their proposed stability and performance, they should be optimal candidates for
further investigation [28]. However, NMI, which is the overlap-invariant version of MI has more
computational work than MI. On the other hand, NMI could possibly converge to a minimum
more quickly because of its more sophisticated approach.

4.2 Preoperative 3D MRI to Intraoperative 3D US Registration

The most important, and difficult, step of the registration process, is the registration of a
master MRI volume to subsequent US volumes. In order to do so, both rigid and non-rigid
transformations must be considered. After obtaining a global, rigid transformation that takes
the two volumes into alignment, a non-rigid procedure should be applied. This step will obtain
the deformation field that is used to perturb the MRI master volume subsequently. This is
not straight-forward, since several difficulties are related to multimodal MRI to US registration.
While MRI volumes have a high resolution, and therefore a high level of detail, US volumes have
a much more moderate level of detail. MRI pictures different tissues with different intensity
values, and have an appealingly low level of noise. US on the other hand, visualize tissue
boundaries only, and include a significant amount of noise. Also the field of view is different, i.e.
MRI volumes are cubic, while US volumes have a conical shape. The mentioned rigid and non-
rigid registration parts are related, but do not have to use the same algorithms. The last part
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is definitely the most complicated, as no successful automatic non-rigid MRI-US registration
procedure has yet been reported.

The rigid part has been performed by Letteboer et al. [15] with promising results, by maximiz-
ing the Normalized Mutual Information, NMI, of the gradient magnitude for the two volumes.
This approach was adopted and tried by Harg [9] with an evolutionary optimizer (EVO) using
trilinear interpolation. Because of incompatibilities with the similarity metric and the opti-
mizer, with respect to a transform having six degrees of freedom (translation and rotation),
only translations were incorporated into this procedure. This process might therefore have been
under-constrained, since the coordinate systems of the two volumes could possibly be un-aligned
at initialization. The results of this transformation also support this theory, as reliability of the
registration process proved to be somewhat mixed; repeated execution returned inconsistent
results. A remedy for this registration scheme could be to incorporate rotations for the trans-
formation, possibly in combination with another optimizer. Harg also mentions a possibility for
using an anisotropic diffusion filter on the images in order to preserve edges in a stricter way
[9].

As an attempt to incorporate rotations into the transformations, Harg employed a specialized
Mutual Information, MI, metric called Mattes MI, instead of NMI. Mattes’ MI is also considered
to be faster than the original MI metric. The original EVO optimizer was also replaced by a
specialized gradient descent optimizer, which is designed to suit rotational transformations well.
However, this approach proved to be even more erratic and unstable, as it returned different
results in consecutive runs with the same parameters. This configuration may have to exchange
the optimizer as it does not seem to work well in the given environment. Anisotropic diffusion
filtering should also possibly be considered for this procedure [9].

For both of Harg’s approaches, a few modifications of the procedure seemed to give better
results. Angio volumes were easier to use in the registration process, and it is a fair assumption
that a transformation found for this mode would also give similar results for the other modes.
Using US volumes as a master, also seemed to improve the registration results. However, the
best enhancement to this multimodal MRI to US registration, would be to manually initialize
the registration procedure, by means of globally aligning the two images before the registration
procedure starts. This way the parameters of the optimizer can be set more strictly, as no
long steps will have to be considered, and the probability of finding the optimal transformation
will increase. Both technicians at SINTEF Med Tech and clinicians at St Olavs Hospital in
Trondheim, have indicated that this is tolerable, and even desirable [9].

Other approaches for the rigid multimodal step can be the bivariate version of the correlation
ratio, that uses both the gradient and intensity information from MRI, which has been suc-
cessfully used for this purpose by Roche et al. [30] [29]. Incorporating edge information from
the MRI volume is done to try and get more similar information from the two modalities, and
is therefore tailor made for registration of MRI and US. Also the approach taken by Lloret et
al. [19] is promising, using multilocal creaseness feature for both images as a basis for a simple
cross-correlation coefficient, CCC, as a similarity metric. However, no accuracy-measures exist
for this similarity metric. Rotational transformations should in any case be accounted for.

Procedures for the non-rigid part, have also been reported by the above mentioned scientists,
but none have been successfully implemented. Roche et al. [30] [29] make the assumption of
disregarding spatial differences between the preoperative MRI volume and the intraoperative US
volume acquired before start of surgery. They focus on tracking local deformations between the
subsequent US volumes. By doing so, important information could be lost, and the procedure
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must be used carefully. Lloret et al. [19] suggest to simply using their algorithm for rigid
transformations on non-rigid transformations as well. What is known, is that these methods
will have to expand the degrees of freedom of the transformation, by incorporating a non-rigid
transformation.

4.3 Intraoperative 3D US Registration

A way of overcoming the problem related to multimodal MRI to US registration, is to perform
unimodal US registration on successive US volumes. Registration of the preoperative MRI
volume with the first intraoperative US volume will provide a global alignment, and possibly
also a small local deformation. Each subsequent US volume should then be registered to the
previous volume, in order to obtain transformation parameters that can be used to perturb the
MRI volume as well. This will make the registration process more manageable, and possibly
more accurate, because the registration will be on images from the same modality; i.e. unimodal
registration.

Pennec et al. [23] use characteristics of US to form their approach for segmentation of subsequent
US volumes. The sound pulse scattering caused by inhomogenities in the tissue (speckle), is
considered to be quite consistent over time. Their approach concentrate on matching those high-
valued voxel intensities in the volumes, and for this they propose using the simple Sum Squared
Difference, SSD. Their approach also includes using a free form deformation field, smoothened
by the use of a Gaussian weighting at each position, and a Levenberg-Marquardt optimizer.

Letteboer et al. [16] [15] proposes to find a B-spline-smoothened free form deformation field
using Normalized Mutual Information, NMI. B-splines are used to avoid unnatural warpings,
in order to achieve a smooth transition in the image. The use of B-splines can also be used
in a hierarchical approach, by using a larger grid-density of control points for higher image
resolution.

The success of the mentioned approaches is not guaranteed as they are not widely tested, but
they may be the methods needed in order to successfully carry out the last step of the multimodal
MRI to US registration.
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5 Reader’s Guide

Harg implemented phase I of the registration system satisfactory last year[9]. For that reason,
I will not present algorithms for this step in this report. Because of the magnitude of the
registration system and the time-constraints, methods for phase III were not finished in time to
be presented in this report. Phase II on the other hand, has been thoroughly investigated, and
a discussion of and prototype implementations for this step is the topic of parts II and III.

Each prototype should be evaluated for stability and reliability, speed and successfulness or
accuracy. Speed and accuracy can be readily measured, while successfulness had to be somewhat
more subjectively measured. Registration methods are often compared to a gold standard, which
is based on manual selection of a number of homologous points in both data sets. Since SINTEF
MedTech currently does not possess the equipment needed to perform manual registration, such
as that needed here, other evaluation methods will be used. The prototypes were tested on
three different data sets, and a presentation on those will be given in part IV. The results from
the evaluation is the topic of part V, and the results are further discussed in part VI.

Part VII describes the future work to be done in order to realize the proposed registration
procedures. This part also concludes the report.

The intended audience for the report is anyone with general knowledge in computer science
and image processing, and an interest in medical image registration. However, it could be
advantageous to read my in-depth-study before reading this report, as it discusses the building
blocks of a registration system in more detail. Numerous references to other literature are
included to enable the reader to seek out further information, while this report is nonetheless
intended to be self-contained and comprehensible, using my in-depth-study as a supplement,
without the use of secondary literature.
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Part II

Discussion of Methods

In this part, methods that will be used to implement registration phase II, which has been my
main focus, be discussed. Characteristics of the data for the different weightings of the imaging
modalities will be accounted for, together with previous reports on successful registration ap-
plication for the problem. Part III will subsequently present concrete registration algorithms,
based on the information and assumptions made in this part.

21





Multimodal Volume-to-Volume Registration

6 Phase II - MRI-to-3DUS Registration

Phase II should, as stated in chapter 2.2, do registration of a selected preoperative master MRI
volume to the initial US volume. This phase is assumed to be only a rigid transformation, since
it is assumed that little or no deformation is taking place between the acquisition of the MRI
volumes and the initial US volume. If there however are signs of any local deformation of the
tissues, a non-rigid registration algorithm should be considered. A study of the acquisition of
the image volumes shows that the preoperative MRI volumes are acquired at most 24 hours
before the surgical operation. It is therefore a fair assumption to believe that little or no local
deformation occurs between the acquisitions of the volumes. For that reason, my focus will be
on rigid transformations only.

Letteboer et al. [15] reports promising results by maximization of the Normalized Mutual In-
formation, NMI, of the gradient magnitude for the two volumes. This approach was adopted
and tried by Harg [9] with an evolutionary optimizer (EVO) using trilinear interpolation, with
average results.

Roche et al. [30] [29] proposes a bivariate version of the correlation ratio, BCR, that uses both
the gradient and intensity information from MRI, which has been successfully implemented.
Incorporating edge information from the MRI volume is done to try and get more similar
information from the two modalities, and is therefore tailor made for registration of MRI and
US.

Also the approach taken by Lloret et al. [19] is promising, using multilocal creaseness feature
for both images as a basis for a simple cross-correlation coefficient, CCC, as a similarity metric.
However, no accuracy-measures exist for this similarity metric.

6.1 Transform

As stated above, only rigid transformations will be considered. Studies of the image volumes
show that little or no rotational offset is apparent between volumes from the two imaging modali-
ties. For that reason, rotational components might be discarded in the registration applications.
However, rotations are incorporated into one of the applications, to possess a solution if the
mentioned assumption should turn out to be wrong.

6.2 Similarity measure

The three similarity measures mentioned above (NMI/MI, BCR and CCC) are good candidates
to be used in the registration application, since they all have been reported to perform well in
the given environment. However, no comparisons of the methods have been reported, and it is
therefore difficult to say which is most promising. All three use a differential similarity basis,
like gradient or ridge/valley operator, to extract image features prior to registration. However,
the similarity measures that are already implemented by available toolkits will be explored first.

The reason for using features as the similarity basis, is to make the modalities more similar. As
mentioned in chapter 2.2 US visualize mainly tissue boundaries, whereas MRI mainly contains
information about tissue types. As an effect, the intensities in an MRI volume are more or less
uniform in areas of uniform tissue, while the same areas in US volumes mainly has very low
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values and speckle. By using a gradient magnitude filter on the MRI volume, this will emphasize
tissue boundaries, while the areas of uniform intensity will be given low values, thus making it
more similar to the US volume.

Angio-graphic images, however, are more similar in their representation for the two modalities,
with the exception that the blood vessels appear ”thicker” in the ultrasound volume than in
case is for the MRI volume. A possible solution could be to blur the volumes by convolution
of a Gaussian, or simply leave the volumes unchanged. The last alternative is the fastest, as
no preprocessing of the images will have to be performed. Both gradient magnitude filtering,
convolution with a Gaussian and no preprocessing should be examined to find the best solution.

6.3 Optimizer

The Insight Toolkit Software Guide [13] (see chapter 7.1) and the authors of the papers pre-
senting the three successful methods described above, suggests an evolutionary and gradient
descent optimizers for both NMI/MI and CC, while a Newtonian gradient descent optimizer
should be used for BCR. However, Harg reports that gradient descent optimizers were more
difficult to parameterize than the evolutionary optimizer. Both should however be examined for
comparison.

The most common method used to interpolate voxel values at non-grid positions when calculat-
ing metric is linear interpolation. This technique is considered both accurate and fast enough
in most registration procedures [13].

6.4 Other issues

Harg [9] reports that Angio volumes were easier to use in the registration process, and it is a
fair assumption that a transformation found for this mode would also give similar results for the
other modes. Using US volumes as a master, also seemed to improve the registration results.
These two observations will be adopted in my registration procedures as well.

The best enhancement to the multimodal MRI to US registration, would be to manually initialize
the registration procedure, by means of globally aligning the two images before the registration
procedure starts. This way the parameters of the optimizer can be set more strictly, as no long
steps will have to be considered, and the probability of finding the optimal transformation will
increase. However, this will only make the registration procedures semi-automatic, and will
therefore not be considered any further.

A multi-resolution, as described in chapter 3.4 setup should be considered, as this could be a
possible speed-up for the applications. However, the choice of optimizer may affect the usefulness
of the multi-resolution procedure. At least, this is the case for the evolutionary optimizer, which
will be described in further detail in chapter 8.2.3. This optimizer smoothes the parameter space
as the levels of the pyramide images, because of its multinormally distributed parameter change
vector, and its Gaussian’s covariance matrix based on previous success and failure. The multi-
resolution approach is therefore not needed for this optimizer. The application may even become
too slow for practical purposes with a multi-resolution approach.
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Part III

Implementation

This part describes how the discussed methods from the previous part are implemented. This
includes a presentation of the frameworks and software libraries that will be used. Parameters
and other issues for the specific methods that are used in the prototype implementations are will
described in detail in chapter 8. Finally, a summing-up on the computer platform and hardware,
used for implementation and testing, as well as software availability, will be given in chapter 9.
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7 Frameworks and Libraries

This chapter will focus on the frameworks and software libraries that are used to build the reg-
istration system. The only software library used in the registration system is the Insight Toolkit
(ITK), a widely recognized software library in medical image processing and analysis. ITK will
be described in chapter 7.1. To visualize image volumes prior to and after registration, SINTEF
MedTechs CustusX were used. This visualization- and navigationsystem will be presented in
chapter 7.2.

7.1 Insight Toolkit - ITK

The Insight Toolkit, ITK3, is an open-source software toolkit for performing registration and
segmentation. ITK is implemented in C++ and is a cross-platform, using the CMake4 build
environment to manage the compilation process. In addition, an automated wrapping pro-
cess generates interfaces between C++ and interpreted programming languages such as Tcl,
Java, and Python. This enables developers to create software using a variety of programming
languages. ITK’s C++ implementation style is referred to as generic programming (i.e., us-
ing templated code). Such C++ templating means that the code is highly efficient, and that
many software problems are discovered at compile-time, rather than at run-time during program
execution.

Because ITK is an open-source project, developers from around the world can use, debug, main-
tain, and extend the software, free of charge. ITK uses a model of software development referred
to as extreme programming. The key features of extreme programming are communication and
testing. Communication among the members of the ITK community is what helps manage the
rapid evolution of the software. In ITK, an extensive testing process is in place that measures
the quality on a daily basis, which in turn keeps the software stable.

The toolkit provides extensive support for the different data and file formats used in medical
imaging, but is capable of processing other data types. The toolkit is organized around a data-
flow architecture, which means that the data is represented using data objects which are in
turn processed by process objects (filters). Data objects and process objects are connected
together into pipelines, which are capable of processing the data in pieces according to a user-
specified memory limit set on the pipeline. A command/observer design pattern is used for
event processing, to extract important facts and figures from the iterative registration process.
This way the parameters of the registration process can be changed during registration.

ITK is managed by the Insight Software Consortium, ISC, a non-profit organization set up to
manage the development process of the participants. Sponsors and participants include the
US National Library of Medicine of the National Institutes of Health, GE Corporate R&D,
Kitware Inc, Insightful, University of North Carolina, University of Tennessee, and University
of Pennsylvania.

3See: http://www.itk.org
4See: http://www.cmake.org
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7.2 CustusX

We have developed a 3D navigation system for intraoperative use during minimally invasive
surgical procedures. The system can also be used for planning the surgical procedure. This nav-
igations system is called CustusX. CustusX’s main features are to visualize 3D ultrasound data
integrated with preoperative acquired CT (computed tomography or X-ray) or MR (magnetic
resonance) images. With a positioning sensor attached to the surgical tools it is possible to
track the position and orientation of the tools and let the tools control the visualizations. This
means that e.g. corresponding CT and ultrasound slices are shown according to the position
of the surgical tool. The 3D visualization is based on VTK. The registration and segmentation
routines implemented are based on ITK.

CustusX is a visualization- and navigationsystem based on principles from navigation, 3D visu-
alization and advanced processing of medical images. Surgical instruments may be controlled
during operations by visualizing them in the image volumes. With a positioning sensor attached
to the surgical tools it is possible to track the position and orientation of the tools and let the
tools control the visualizations. In this way, the surgeons can see the instruments in relation
to the anatomy of the patient. Several image volumes may also be visualized contemporary for
manual inspection, as well as applying rotation and zooming operations on them.

The system is built on both ITK, as mentioned above, and the Visualization Toolkit, VTK5.
VTK is an open source, freely available software system for 3D computer graphics, image pro-
cessing, and visualization used by thousands of researchers and developers around the world, in
the same manner as ITK.

The navigation system is developed at SINTEF MedTech in close collaboration with surgeons
and radiologists at St. Olavs Hospital (Trondheim University Hospital).

5See: http://public.kitware.com/VTK/
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8 Registration Methods

This chapter describes the specific implementation of the prototype registration applications, as
discussed in chapter 6. All components that have been used are available from ITK libraries.
This has been done, rather than developing new components, to ensure a full exploration of the
already available components. This approach also eases the job of revisiting the constructed
applications. Also worth mentioning, is that none of the applications make use of a hierarchical
approach as described earlier in chapter 3.4. Because of the modularity of the ITK-components,
this feature could easily be added later. Additionally, all applications will be designed to use
angio-graphic input-volumes.
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8.1 RegApp4

The first application presented for registering MRI to 3DUS will be implemented by combining
the specific algorithms described below. To keep it as simple as possible only translations will
be accounted for. This is also a good approach, as initial studies of typical data sets show
little apparent rotational offset and deformation between the MRI volumes and the first US
volume. If there, after rigid registration has been accomplished, is evidence that deformations are
occurring, a non-rigid extension should be made to this program. A multi-resolution approach
is not implemented, but because of the modulability of the program this feature can be added
later on, possibly speeding up the application.

8.1.1 Translation Transform

The translation transform is probably one of the simplest, yet one of the most useful transform.
It gives the registration 3 degrees-of-freedom, and is provided by:

itk::TranslationTransform<TScalarType = double, NDimensions = 3>,

templated over the data type for the transformation calculations and the number of dimensions.
Translations also have the advantage of being fast to compute and having parameters that are
easy to interpret in that the result is a translation in x-, y- and z-direction.

8.1.2 Mattes’ Mutual Information Metric

The original Mutual Information Metric selects new spatial samples for every iteration of the
registration process, in order to compute the mutual information value. Mattes’ MI on the other
hand, uses only one spatial sample set for the whole registration process instead of using new
samples every iteration. Mattes MI’ is therefore considered to be faster than the original MI
metric. Additionally, the use of a single sample set results in a much smoother cost function,
and hence allows the use of more intelligent optimizers. Another noticeable difference is that
pre-normalization of the images is not necessary, as the metric rescales internally when building
up the discrete density functions. Pre-normalization of the images is a time-consuming process,
additionally making Mattes’ MI more preferable. Using the mentioned set of intensity values,
Mattes’ MI computes the marginal and joint probability density functions (PDFs) and evaluates
them at discrete positions, bins, which are uniformly spread within the dynamic range of the
images. Entropy values are then computed by summing over the bins. Mattes’ MI is provided
from ITK by:

itk::MattesMutualInformationImageToImageMetric<TFixedImage, TMovingImage>,

templated over the image types of the input images. The metric only has two parameters that
need to be set, the number of spatial samples and the number of bins to be used for the PDFs.
The number of spatial samples to be used depends on the detail in the image, and should be at
least 1 percent of the image voxels[13]. However, experience is the best way of finding suitable
values for both parameters. Further, it is important to note that Mattes’ MI computes the
negative mutual information, and hence the cost function will have to be minimized by the
optimizer.
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8.1.3 Gradient Descent Optimizer

The optimizer used is a variant of gradient descent that attempts to prevent it from taking steps
that are too large. At each iteration this optimizer will take a step along the direction of the
Mattes’ MI metric derivate. The initial length of the step is defined by the user. Each time
the direction of the derivate abruptly changes, the optimizer assumes that a local extrema has
been passed and reacts by reducing the step length by a half until a minimal step length or the
maximum number of iterations is reached. The optimizer is provided by:

itk::RegularStepGradientDescentOptimizer.

Three values has to be set for the optimizer; maximum (initial) step length, emphminimum step
length and the emphmaximum number of iterations. The upper step length boundary should
be set so that the method accommodates reasonably large translations, but not much too large,
to avoid the optimizer searching too wide an area in parameter space. The lower step length
boundary should be set as small as the preferred accuracy. Setting it to low however, will likely
make the procedure run much longer (until it runs out of iterations) without achieving more
than hopping back an forth a very small distance. Additionally, when using the Mattes’ MI
metric, the optimizer should always be set to minimize the metric cost function.

8.1.4 Linear Interpolation

The method used to interpolate voxel values at non-grid positions when calculating metric is
provided by:

itk::LinearInterpolateImageFunction<TImageType, TCoordType=double>,

templated over the image type and the pixel types. As mentioned in chapter 3.4, linear inter-
polation is considered both accurate and fast enough in most registration procedures.

8.1.5 Filters

In addition to no preprocessing of the input images, both gradient magnitude filtering and
Gaussian blur filtering will be tested in order to find the best possible solution. The gradient
magnitude filter can improve the matching of the MRI and US images, by making them look
more similar. This filter is provided by:

itk::GradientMagnitudeRecursiveGaussianImageFilter<TInputImageType, TOutputImageType>,

templated over the input image type and the output image type of the filter. The filter computes
the gradient magnitude by convolving the image with a recursive approximation of the Gaussian.
The standard deviation for the Gaussian is a parameter that will have to be set, which results
in a varying degree of edge smearing.

Because US-angio images seems ticker than the case is for MR-angio images, it should also be
investigated a blurring of the images to make them more similar. This is provided by:

itk::DiscreteGaussianImageFilter<TInputImageType, TOutputImageType>,

also templated over the input image type and the output image type of the filter. This filter
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performs Gaussian blurring by separable convolution of an image and a discrete Gaussian kernel.
The standard deviation for the Gaussian is also a parameter that will have to be set for this
filter, which results in a varying degree blurring.

As mentioned, it should also be investigated how well the registration is without any prepro-
cessing of the input images, as this approach is believed to work best for angio-graphic input
images.
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8.2 RegApp5

The application that is presented in this chapter differ little from the one described above.
Actually, the only difference is that the gradient descent optimizer is replaced by an evolutionary
(1+1) optimizer. Because of the optimizer, the application will probably not benefit much from
a multi-resolution approach as suggested for the previous application.

8.2.1 Translation Transform

The transform for this application will be the same translation transform, as described in chapter
8.1.1.

8.2.2 Mattes’ Mutual Information Metric

The metric for this application will be Mattes’ Mutual Information, as described in chapter
8.1.2.

8.2.3 Evolutionary Optimizer

Evolutionary optimizers try, as suggested by their name, to mimic the mechanisms of natural
evolution, applying evolution-like rules to the iterative process of searching for the optimum.
Evolutionary algorithms are therefore naturally well-suited for optimizing the Mutual Informa-
tion metric, given its random and noisy behavior. The optimizer is provided by:

itk::OnePlusOneEvolutionaryOptimizer.

This optimizer is based on testing random variations of parameters, and ITK provide a random
number generator to aid this by:

itk::Statistics::NormalVariateGenerator,

The generator generates values from a normal distribution. By successively changing the esti-
mated transformation coefficient, the search proceeds towards the optimum value of the parame-
ter space. At each iteration, one ”child” of the current transformation coefficients is generated by
mutating the ”parent”. Then, the next generation (next parent) is chosen as the transformation
coefficients resulting in the best metric value of the current parent and child.

The optimizer takes three parameters; an initial search radius, the maximum number of it-
erations, and a minimal value of ǫ, the Frobenius norm of the covariance matrix. The last
parameter decides how much the covariance matrix should be changed at each iteration, when
a child that is more or less fit is found, ensuring that the next step will continue in the right
direction. The initial search radius should be set high enough for the optimizer to find the path
toward the wanted translational offset. ǫ should be set so high that it has a realistic chance of
interrupting the registration process on the grounds of too little progress per iteration. Again,
the Mattes’ MI metric value should be minimized.
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8.2.4 Linear Interpolation

The optimizer for this application will be linear interpolation, as described in chapter 8.1.4.

8.2.5 Filters

Also for this application, both gradient magnitude filtering, Gaussian blur filtering and no
filtering should be tested for comparison. These filters are described in refchFilters.

34



Multimodal Volume-to-Volume Registration 8.3 RegApp6

8.3 RegApp6

The last application is designed to also incorporate rotations into the transformation, and will
be tested in the same manner as the others. However, if there is any sign of rotational offset
on the MRI volumes and the initial US volume, the application can be applied on the volume
resulting from the applications that not incorporate rotations into the transformation.

8.3.1 Rigid Transform

ITK provides a rigid transformation with translation and rotation (6 degrees-of-freedom) by:

itk::VersorRigid3DTransform<TScalarType = double>,

templated over the data type for the transformation calculations. Because of the increased
complexity of the transform, it also gives the registration application a greater parameter space
to search for the optimal transformation.

8.3.2 Mattes’ Mutual Information Metric

The metric for this application will be Mattes’ Mutual Information, as described in chapter
8.1.2.

8.3.3 Specialized Gradient Descent Optimizer

The parameter space of the transform for this application is not a vector space as it is for only
translational coefficients. The rotational coefficients introduce versor-components, which does
not suit standard gradient descent algorithms well. A specialized optimizer designed for this
situation is provided by:

itk::VersorRigid3DTransformOptimizer,

which uses versor composition for updating the rotational coefficient, and vector addition for
updating the translational coefficients.

As for the regular step gradient optimizer, the maximum (initial) step length, minimum step
length and the maximum number of iterations should be set. Further, the optimizer will have
to scale the rotational and translational values, as they default have a widely different scaling -
e.g. a change of 1.0 mm in translation will affect the result much less than a change of 1.0 in one
of the versor components. The rule of thumb given by the ITK authors for setting the scales is
to set the three rotational scales to 1.0, and the translational scales to 1/(10 ∗

√
X2 + Y 2 + Z2),

where X , Y and Z are the dimensions of the input images in physical units. Again, we are using
Mattes’ MI metric, which should be minimized.

8.3.4 Linear interpolation

The optimizer for this application will be linear interpolation, as described in chapter 8.1.4.
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8.3.5 Filters

Also for this application, both gradient magnitude filtering, Gaussian blur filtering and no
filtering should be tested for comparison. These filters are described in refchFilters.
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9 Platforms and Availability

This chapter presents the platform used for developing, executing and testing the registration
applications presented in chapter 8. As will be pointed out, even though the software was
developed on a Microsoft Windows platform, it should work equally well on other platforms
such as Mac OS X and GNU/Linux.

9.1 Microsoft Windows XP

The software was developed on a Microsoft Windows platform, which currently is at version
XP. The environment used to construct and compile the source code, with ITK included, was
Microsoft Visual Studio 2003 (cl-compiler). The computer had an AMD Athlon 64 3000+
(2.0GHZ) processor, and 512 MB DDR RAM. The execution-time of my applications could
therefore be considerably reduced using a more powerful computer, as this only is an average
computer in today’s standards. At least, this would be a likely assumption with an increase in
memory, as the image volumes make use of a significant amount.

9.2 Mac OS X

A computer running on Mac OS X, currently at version 10.4, was used to visualize the results
of the registration procedures. Since the operating system vendor is also the supplier of the
computer hardware, the Mac platform has earned a reputation for highly optimized perfor-
mance. This is especially true in image processing, and was partly the reason for the choice of
visualization-equipment.

9.3 Software Availability

Both Microsoft Windows, Mac OS X and GNU/Linux are supported by ITK, using CMake for
configuration. No other libraries was used, and for that reason the application should compile on
any of the mentioned platforms, without modifications. The registration algorithms currently
available in ITK represent the most common and widely used ones. For that reason, my focus
has been on the already existing algorithms, rather than developing others. This will also ensure
that revisiting the applications later would be easier.
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Part IV

Data Sets

The three data sets used to test and assess the prototype applications discussed in chapter 8
is presented in this part of the report. As we will se, both resolution, voxel sizes, number of
volumes and type of surgical operation vary for the data sets. However, they all include angio-
graphic volumes for both MRI and US (acquired before the opening of the dura mater; i.e.
no/little local deformation), which has been decided to be the input type to the applications.
Nevertheless, for visual presentation-purposes, tissue-volumes are also included.
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10 Presentation of Data Sets

This section presents the data sets that is used to test and evaluate the registration algorithms
presented in chapter 8. They are all from real surgical operations, and made available in
MetaHeader/Raw format, exported from the SonoWand ultrasound navigation system. The
pre-operative MRI volumes are imported into the system prior to the surgical operation, from
the DI-COM series acquired by the MRI scanner. Subsequently, the SonoWand system has been
used to reconstruct the acquired ultrasound scan into a 3D representation. The entire collection
of volumes for a single surgical procedure has then been exported with a common representation,
using the same file format, bit-depth, voxel-spacing and physical extent for all the volumes.

The file names are created using a time-stamp notation, representing when they were first
imported/acquired in the navigation system, using a format like this: YYYYMMDDTHH-
MMSS.mha/raw, e.g.: texttt20060221T094807.mha. The volumes will in the following be re-
ferred to using a descriptive name. Appendix A includes a table showing names and descriptive
names.

Harg used both Tumor 1 (see 10.1) and Aneurism 1 (see 10.3) to test his algorithms last year. He
also used a data set called Tumor 2, but because that set does not include angio-graphic images,
that data set has been replaced by another data set. As an attempt not to cause confusion,
the new set will be known as Tumor 3. Additionally, since my focus has been on phase II of
the registration system, no presentation of volumes acquired after the surgical procedure has
started will be presented. Here follows, a presentation of the above-mentioned data sets.

10.1 Tumor 1

The data set known as Tumor 1 consists of seven (7) MRI volumes, and three (3) US volumes of
a patient with a brain tumor. The first three volumes contain fMRI6 data overlaid onto a T1-
weighted MRI (included separately as the seventh volume), where the responding fMRI areas are
given maximum intensity (255). The three fMRI volumes represent the following stimulations,
respectively: Finger movement, language and tongue movement. The fourth volume is a T2
weighted MRI volume. A 3D rendering of the fMRI and the T2 MRI is included in figure 6.
The fifth volume is a T1 weighted MRI volume. The sixth image is a MR-Angio (MRA)volume,
which has the greatest interest, since my algorithm is based on angio-graphic input images. This
volume is seen in 3D together with the MRI T2 volume in figure 7. The seventh volume is, as
mentioned, the underlay for the fMRI, i.e. a T1 weighted MRI with contrast fluid.

The first US volume is a US tissue (UST#1) volume. The last two volumes are US-Angio
(USA#1 and USA#2) volumes, acquired before opening the dura mater. The angio-graphic
US volumes is as mentioned most interesting for this report. A 3D rendering of angio-graphic
volumes from both modalities is included in figure 8.

This data set has a resolution of 290x290x196 (approx. 16.5 million) voxels and a voxel size
of 0.4 mm, for both MRI and US volumes. Also worth mentioning, is that this data set is
MRI-mastered, which means that the field-of-view is decided by the MRI images.

6functionalMRI - an MRI modality where a contrast fluid is used to determine the areas of the brain that are
most active during specific stimulations
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Figure 6: Volume renderings of fMRI (orange MRI T1
with white fMRI tongue response overlay) and MRI T2
(blue)
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Figure 7: Volume renderings of MRI T2 (blue) and MRA
(red)
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Figure 8: Volume renderings of MRA (pink) and USA #1
(red)
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10.2 Tumor 3

This data set is also from a patient with a tumor. It consists of five (5) MRI-volumes, and one
(1) US volume. The first two volumes are MRI-T1 and MRI-T2, respectively. The third volume
is a MR-Angio volume, while volume four and five are fMRI volumes, representing language and
tongue movement. Figure 9 shows a combined 3D rendering of the different MRI weightings.
The last volume of the data set is an angio-graphic US volume, and the angio-graphic volumes
from both modalities are rendered in figure 10.

The resolution of this data set is 355x355x271 (approx. 34.2 million) voxels, for both MRI and
US volumes. This makes this data set the one with the greatest resolution of the three presented.
The voxel size is the same as for tumor 1, 0.4 mm. However, this data set is US-mastered.

Figure 9: Volume renderings of fMRI Language response
(blue), MRI T1 (red) and MRI T2 (yellow)
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Figure 10: Volume renderings of MRA (red) and USA
(green)
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10.3 Aneurism 1

Aneurism 1 contains only two (2) MRI volumes, and one (1) US volume, and represent a patient
with an aneurism in one of the principal cerebral arteries. The MRI volumes are a T1 weighted
MRI volume and an MR-Angio (MRA) volume , respectively, and is presented as a 3D rendering
in figure 11.

The only US volume is also an angio-graphic (USA) volume. A presentation of the angio-graphic
volumes from both modalities is given in figure 12. This data set, however, is US-mastered.

This data set is the one with the smallest resolution of the three presented, more specifically,
203x203x103 (approx. 4.2 million) voxels, for both MRI and US volumes. A peculiarity of this
data set, is that the voxel size varies in the different directions. That is, 0.39, 0.39 and 0.5 mm
for x, y and z directions, respectively.

Figure 11: Volume renderings of MRI T1 (blue) and MRA
(red)
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Figure 12: Volume renderings of MRA (red) and USA (yel-
low)
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Part V

Results

In this part the results of the registration applications discussed in chapter 8, applied on the data
sets presented in the previous part, is presented as 3D renderings. A set of parameter settings for
each registration is also presented, along with the 3D renderings. The 3D renderings will display
both situation before registration, after transformation of the moving volume, and a combined
view of both. Additionally, a second view for all registrations, enabling an opportunity to
discover any potential displacement in other directions, can be found in appendix B. Note, that
no manual initialization has been performed for the registrations.

To simplify the visual inspection of the results, the different volumes have been given color
coding. First of all, the fixed volume is rendered green. The moving image, before registration,
is rendered as red, while other colors are given for the moved image after registration. RegApp4
is rendered blue, RegApp5 is rendered grey, and RegApp6 is given the color yellow.

The 3D renderings presented in this part will be the principal source for interpretation and
discussion of the results, in the subsequent part VI. Thus, in this part, the presented registration
results will represent typical results, which will give an indication of how well the applications
may perform. How reliable the different registration application is, is therefore postponed until
the subsequent evaluation part.

49





Multimodal Volume-to-Volume Registration

11 Tests and Methods

To test the registration applications, several tests on the data sets presented in the previous part
has been conducted. These tests are listed in table 1. As Harg [9] suggests, the US volumes are
always kept as the fixed volume. Additionally, no preprocessing of none of the input volumes has
been performed. The next chapters will present the results from these registration executions.

Reg.no. Reg.app Fixed volume Moving volume

1 4 Tumor 1 USA#1 Tumor1 MRA
2 5 Tumor 1 USA#1 Tumor1 MRA

3 4 Tumor 3 USA Tumor3 MRA
4 5 Tumor 3 USA Tumor3 MRA

5 4 Aneurism 1 USA Aneurism 1 MRA
6 5 Aneurism 1 USA Aneurism 1 MRA
7 6 Aneurism 1 USA Aneurism 1 MRA

Table 1: Registrations that should be performed
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12 Tumor 1 Registration Results

Data set Tumor 1 has been used to test RegApp4 and RegApp5, which allow for translational
transformation only; i.e. 3 degrees-of-freedom. The results for RegApp4 and RegApp5 are
presented in chapters 12.1 and 12.2, respectively.

12.1 Registration #1

The first registration that has been performed, is between the volumes USA #1 (fixed) and
MRA (moving), using RegApp4. The parameters for this registration is presented in table 2.
The resulting translation-parameters, along with the metric value and number of iterations used,
is presented in table 3. As we can se, the greatest translation takes place in the z-direction.

Figures 13 through 15 show 3D renderings of the image volumes, both before and after regis-
tration as well as a combined view.

Figure 13: Registration #1 - View 1 before registration -
MRA (red) and USA #1 (green)
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Figure 14: Registration #1 - View 1 after registration -
MRA (blue) and USA #1 (green)

Parameter Value

Test number 01 43
Max iterations 50
Min step length 0.1
Max step length 5
Spatial samples 50000
Histogram bins 128

Table 2: Parameters used for registration #1 - Tumor 1
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Figure 15: Registration #1 - View 1 combined - MRA
before (red), MRA after (blue) and USA #1 (green)

Parameter Value

Test number 01 43
X translation -2.58385
Y translation 1.75104
Z translation -9.32404
Metric value -0.0299424
Iterations used 10

Table 3: Resulting transform and values for registration #1 - Tumor 1
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12.2 Registration #2

This registration has been performed between the volumes USA #1 (fixed) and MRA (moving),
using RegApp5. The parameters for this registration is presented in table 4. The resulting
translation-parameters, along with the metric value and number of iterations used, is presented
in table 5. As we can see, the resulting translation is very similar to the one presented for
RegApp4 in the previous chapter.

Figures 16 through 18 show 3D renderings of the registration process.

Figure 16: Registration #2 - View 1 before registration -
MRA (red) and USA #1 (green)
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Figure 17: Registration #2 - View 1 after registration -
MRA (grey) and USA #1 (green)

Parameter Value

Test number 02 47
Max iterations 50
Initial radius 1.0
Minimum epsilon 0.015
Spatial samples 50000
Histogram bins 128

Table 4: Parameters used for registration #2 - Tumor 1
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Figure 18: Registration #2 - View 1 combined - MRA
before (red), MRA after (grey) and USA #1 (green)

Parameter Value

Test number 02 47
X translation -2.00232
Y translation -0.821251
Z translation -8.29955
Metric value -0.030154
Iterations used 50

Table 5: Resulting transform and values for registration #2 - Tumor 1
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13 Tumor 3 Registration Results

Data set Tumor 3 has also been used to test RegApp4 and RegApp5. Renderings of the resulting
volumes are presented in the following chapters.

13.1 Registration #3

The first registration that has been performed for Tumor 3, is between the volumes USA (fixed)
and MRA (moving), using RegApp4. The parameters for this registration is presented in table
6. The resulting translation-parameters, along with the metric value and number of iterations
used, is presented in table 7. For this registration, the greatest translation is along the x-axis.

Figures 19 through 21 show 3D renderings of the image volumes, both before and after regis-
tration as well as a combined view.

Figure 19: Registration #3 - View 1 before registration -
MRA (red) and USA (green)
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Figure 20: Registration #3 - View 1 after registration -
MRA (blue) and USA (green)

Parameter Value

Test number 03 02
Max iterations 50
Min step length 0.1
Max step length 5
Spatial samples 50000
Histogram bins 128

Table 6: Parameters used for registration #3 - Tumor 3
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Figure 21: Registration #3 - View 1 combined - MRA
before (red), MRA after (blue) and USA (green)

Parameter Value

Test number 03 02
X translation -5.09559
Y translation -0.15675
Z translation 1.3554
Metric value -0.0255
Iterations used 15

Table 7: Resulting transform and values for registration #3 - Tumor 3

61



13 TUMOR 3 REGISTRATION RESULTS Multimodal Volume-to-Volume Registration

13.2 Registration #4

Registration 4 has also been performed between the volumes USA (fixed) and MRA (moving)
for Tumor 3, using RegApp5. The parameters for this registration is presented in table 8. The
resulting translation-parameters, along with the metric value and number of iterations used,
is presented in table 9. If we compare to the translation that was found for registration #3,
the resulting translation in the x-direction differs with about 2 mm. This is also notable, by a
manual comparison of the renderings.

Figures 22 through 24 show 3D renderings of the registration process.

Figure 22: Registration #4 - View 1 before registration -
MRA (red) and USA (green)
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Figure 23: Registration #4 - View 1 after registration -
MRA (grey) and USA (green)

Parameter Value

Test number 04 02
Max iterations 50
Initial radius 1.0
Minimum epsilon 0.015
Spatial samples 50000
Histogram bins 128

Table 8: Parameters used for registration #4 - Tumor 3
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Figure 24: Registration #4 - View 1 combined - MRA
before (red), MRA after (grey) and USA (green)

Parameter Value

Test number 04 02
X translation -2.95599
Y translation -0.6468
Z translation 2.44463
Metric value -0.031617
Iterations used 50

Table 9: Resulting transform and values for registration #4 - Tumor 3
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14 Aneurism 1 Registration Results

Data set Aneurism 1 has been used to test all three applications. RegApp6 has 6 degrees-of-
freedom, as it incorporates rotations as well as translations. The results for RegApp4, RegApp5
and RegApp6 are presented in chapters 14.1, 14.2 and 14.3, respectively.

14.1 Registration #5

The results of the registration between the volumes USA (fixed) and MRA (moving) on Aneurism
1, using RegApp4, is presented in this chapter. The parameters for this registration is presented
in table 10. The resulting translation-parameters, along with the metric value and number of
iterations used, is presented in table 11. For this registration, the greatest translation is along
the x-axis.

Figures 25 through 27 show 3D renderings of the image volumes, both before and after regis-
tration as well as a combined view.

Figure 25: Registration #5 - View 1 before registration -
MRA (red) and USA (green)
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Figure 26: Registration #5 - View 1 after registration -
MRA (blue) and USA (green)

Parameter Value

Test number 05 02
Max iterations 50
Min step length 0.1
Max step length 5
Spatial samples 50000
Histogram bins 128

Table 10: Parameters used for registration #5 - Aneurism 1
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Figure 27: Registration #5 - View 1 combined - MRA
before (red), MRA after (blue) and USA (green)

Parameter Value

Test number 05 02
X translation 4.76304
Y translation -2.40139
Z translation -1.18243
Metric value -0.02567
Iterations used 13

Table 11: Resulting transform and values for registration #5 - Aneurism 1
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14.2 Registration #6

Registration 6 has also been performed between the volumes USA (fixed) and MRA (moving) for
Aneurism 1, but now with RegApp5. The parameters for this registration is presented in table
12. The resulting translation-parameters, along with the metric value and number of iterations
used, is presented in table 13. The difference in translation values, compared to registration #5
is less than, or about, 1 mm in all directions.

Figures 28 through 30 show 3D renderings of the registration process.

Figure 28: Registration #6 - View 1 before registration -
MRA (red) and USA (green)
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Figure 29: Registration #6 - View 1 after registration -
MRA (grey) and USA (green)

Parameter Value

Test number 06 02
Max iterations 50
Initial radius 1.0
Minimum epsilon 0.015
Spatial samples 50000
Histogram bins 128

Table 12: Parameters used for registration #6 - Aneurism 1
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Figure 30: Registration #6 - View 1 combined - MRA
before (red), MRA after (grey) and USA (green)

Parameter Value

Test number 06 02
X translation 3.44712
Y translation -1.34058
Z translation -1.69735
Metric value -0.0226275
Iterations used 50

Table 13: Resulting transform and values for registration #6 - Aneurism 1
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14.3 Registration #7

The only registration that has been performed for RegApp6, is between the volumes USA (fixed)
and MRA (moving) for Aneurism 1. The parameters for this registration is presented in table
14. The resulting translation-parameters, along with the metric value and number of iterations
used, is presented in table 15. As we can se, the rotational values for this registration are almost
neglectable.

Figures 31 through 33 show 3D renderings of the image volumes, both before and after regis-
tration as well as a combined view.

Figure 31: Registration #7 - View 1 before registration -
MRA (red) and USA (green)
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Figure 32: Registration #7 - View 1 after registration -
MRA (yellow) and USA (green)

Parameter Value

Test number 07 46
Max iterations 50
Min step length 0.1
Max step length 5
Spatial samples 50000
Histogram bins 128

Table 14: Parameters used for registration #7 - Aneurism 1
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Figure 33: Registration #7 - View 1 combined - MRA
before (red), MRA after (yellow) and USA (green)

Parameter Value

Test number 07 46
X translation 3.66902
Y translation -1.96558
Z translation -1.37951
versor rotation (0.0628226, -0.05273, -0.0083284)
Metric value -0.1257314
Iterations used 36

Table 15: Resulting transform and values for registration #7 - Aneurism 1
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Part VI

Discussion of Results

The results presented in the previous chapter are examples of successful registrations, at least
from a subjective point of view. However, the applications differed in their performance, in
both accuracy, performance, stability and reliability. These issues will be discussed in the
following chapters. As we will se, some of the measures will be have to interpreted manually
and subjectively, hence not making all of the them equally easily measured. Chapter 15 will
discuss the stability, reliability and repeatability of the prototype applications. Performance,
in terms of speed or execution times, is the topic of chapter 16, while a discussion on different
measures of success is postponed to chapter 17. This chapter will also account for the goodness
of the measures, used to evaluate the registration results acquired from the different registration
methods.

This part will lead up to thoughts on improvements on the implementations and necessary future
work, and a final conclusion, in part VII.
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15 Stability and Reliability

The results presented in chapters 12 to 14 represented how well the applications can be. How-
ever, not all applications performed equally well. Each registration application will therefore be
discussed and handled separately, with a presentation on their behavior regarding stability and
reliability. The reasons for some of the algorithms’ problems will be addressed as well. Execu-
tions with RegApp5 showed that registration with no preprocessing at all on the input images,
gave the most stable results. This knowledge was therefore incorporated into the other regis-
tration applications as well, with a slight improvement in stability. The use of un-preprocessed
input images also lowers the execution times, but this will not be discussed until chapter 16.

15.1 RegApp4

Even though RegApp4 was not the hardest to control, the reliability and stability of the results
was somewhat mixed. The application returned many good results, but equally many poor
results. A visual inspection of the results showed that the algorithm had a tendency of finding
local minima in the wrong direction, even for consecutive runs with the same parameters. The
application also converged fast towards an optimal value; i.e. got stuck. Nothing seemed to
help on guiding the registration application in the right direction, and the best remedy seemed
to be to use a minimal step length of 0.1, instead of skipping back and forth below the voxel
size. The maximum step length had to be set as high as 5.0, especially for the data set Tumor
1 which had an apparent z-translation of about 10 mm, in order to be able to find the right
translational coefficient.

By setting the spatial samples as high as 50 000, the application seemed to be a little more
stable, but not sufficient to be considered a candidate for real-life applications. Un-preprocessed
images seemed to be the best choice for all the applications, but neither that, nor an increase
of the number of histogram bins (128), made the application fully reliable. In any case, the
number of histogram bins is considered to have little impact on the calculations, as long as it
is kept above a reasonable value of about 30. The best conceivable enhancement seems to be
to transform it into RegApp5. That is, the only difference between RegApp4 and RegApp5 is
that the gradient descent optimizer has been replaced by an evolutionary (1+1) optimizer for
the latter.

15.2 RegApp5

Evidently the gradient descent optimizer has been difficult to parameterize. By exchanging
the optimizer by an evolutionary (1+1) optimizer, the stability and reliability problems of
the RegApp4 seems to be solved. This application rarely misses on finding a seemingly good
transformation for any of the data sets. After a fine-tune on the parameters, there has been no
need to adjust them at all, for any of the data sets. Taking into consideration that the distance,
calculated as the length of the resulting transformation vector, varies from about 4 mm for
tumor 3 to about 11 mm for tumor 1, this application seems to be a very flexible one.

The standard deviation of each of the translation components varies from 0.6 to 1.2 for transla-
tion components with a mean of 0 to 10, respectively. These measures has been calculated on
the basis of 20 consecutive runs with the same parameters for a given data set. Figure 34 shows
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such a diagram calculated from 20 consecutive runs on tumor 1. In appendix D similar tables
for the other two data sets, utilizing RegApp5, is given. The parameters for the testing were the
same as they were for registration #2, registration #4 and registration #6, presented in part
V, which can be seen for instance in table 12. Technicians at SINTEF MedTech indicated that
these results were good and sufficient.

The spatial samples had to be set as high as 50 000 for this application as well, in order to
achieve stable results. An initial radius of 1.0 seemed to provide stable results, given an ǫ value
of about 0.015. However, further investigation on parameter tuning could be performed, in
order to get an even more stable application. Especially the ǫ value should be more tested, as
the algorithm, roughly speaking, ran out of iterations every time.

15.3 RegApp6

The RegApp6 registration has been the most difficult application to parameterize. It has been
even more erratic than RegApp4. Some descent results has been achieved, but mainly, the
resulting translation parameters has been in different directions. The number of spatial samples
has been as high as 200 000, to ensure a statistically sound estimation of the metric, but still the
resulting transformation has been very mixed. Results for this application was therefore only
presented for the smallest data set, Aneurism1. The number of histogram bins has been set to
128, which should be sufficient. The maximum step length has to be about 5.0, to prevent the
optimizer to search too small an area.

A possible solution to the problematic behavior of this application would be a manual initial-
ization. This way the bounds of the optimizer could be set much stricter, hence reducing the
search area. Additionally, the application could be used on the results from RegApp5 as a good
initial transformation, if there is evidence of a rotational offset. However, an initial inspection
of the volumes show little signs of misalignment of the coordinate axes of the volumes. At the
moment, an application that incorporates rotations does not seem necessary for this step.
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Figure 34: Standard deviations for Registration #2
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16 Performance

Registration of 3D images is a computationally expensive task, including repeated calculations
of the similarity metric and transformation coefficients, and interpolations of off-grid positions.
However, the use of angio-graphic images without any preprocessing steps is time-saving. Ad-
ditionally, no normalization of the volumes is needed when Mattes’ Mutual Information is used,
as this metric rescales internally. This metric also picks its sample points once, and not every
iteration, which is an economic approach. A possible incorporation of rotations also slows down
the registration, as the parameter space grows dramatically from 3 to 6 degrees-of-freedom. If
there is not any signs of a rotational offset, such methods should be avoided.

None of my methods incorporate a hierarchical approach, which may slow down the registration
procedure. This is due to the construction of the image-pyramide prior to registration. However,
this could be gained with a faster convergence to the optimum.

As mentioned in part IV, the test data sets range from a total number of voxels of 4.2 to 34.2
million. This is also noticeable on the applications, as larger data sets increase the running times.
Volumes should therefore be kept as small as possible, without loosing important information.
All execution times for this chapter includes the reading in of the fixed and moving image, and
the writing of the transformed moving image. The characteristics of the computer used for the
registration procedures was given in chapter 9.

16.1 RegApp4

This application, along with RegApp5 did not have the performance-drawback of incorporat-
ing rotations. Actually, no additional and time-consuming operations were performed. The
execution times for this operation varied from 15 to 20 minutes depending on the size of the
input-volumes. However, it is believed that this figure could drop a bit, if the testing was to be
performed on a high-end computer. Especially, the amount of memory has a bigger potential.

16.2 RegApp5

As mentioned in the previous chapter, this application was the most reliable and stabile one
of the three applications that was tested. Not only that, it was also the fastest application.
Execution times varied from 3 to 9 minutes, depending on the volume-sizes of the input volumes.
The reading and writing of the images was the most time-consuming part, as the registration
itself was done in seconds. If the input volumes are kept small and the computer is replaced,
the execution times of this application has real potential of approaching very appealing figures.
Because of the fact that RegApp4 and RegApp5 are equal, except from the optimizer, this shows
that the evolutionary (1+1) optimizer is preferable.

16.3 RegApp6

As mentioned earlier, RegApp6 incorporate rotations into the transformation, which yields a
significantly increased parameter space for the optimizer. It has also been proved that types
of gradient descent optimizer are relatively slow, at least compared to the evolutionary (1+1)
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optimizer. This is also reflected by the execution times for this application. A typical regis-
tration procedure lasted for about 25-30 minutes, and that was for the smallest data set. This
demonstrates that rotational components should not be used, unless a study of the data sets
indicate a rotational misalignment. It is worth mentioning that all the applications’ execution
times possibly could be somewhat reduced, if parallelism was built into both the registration
hardware and software. Especially, this could be utilized in the point sampler function, as no
sampled point in the moving image depends on any other voxel in the moving image.
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17 Measures of Success

Volume-to-volume registration is not an easily manageable problem. It is actually ill-posed,
meaning that no obvious result exists. This considerably complicates the task of measuring the
successfulness of registration results. The question is, how does one decide whether a particular
registration was successful, or how close it came to the true registration? And likewise, how can
a set of registration results be compared, and one decided to be the best? This is a problem in
registration evaluation, as an objective measure of success would be preferable in this setting.

A similarity measure is an objective measure, but the use of this to measure success would
just give the same result as the registration itself. A different similarity measure than the one
used in the registration process, would possibly measure the degree of successfulness differently,
but the question then is; why was not this similarity measure used in the registration process
itself? Another aspect of this, is that the optimal similarity measure value does not necessarily
correspond to an optimal registration. This indicates that a measure that is independent of the
registration process should preferably be used for measuring success.

This chapter presents the way that success was measured for this report. Additionally, other
ways of measuring success is given.

17.1 Use of ”Gold Standard”

The common way of measuring success is to compare a resulting registration to a known correct
transformation, a gold standard, and was introduced by West et al. [33]. This correct transfor-
mation can be obtained by a careful manual selection of homogenous points in the volumes. The
resulting transformation of the volumes with respect to the selected points, defines an optimal
transformation. Any transformation obtained by automatic algorithms, without the use of such
points, can therefore be compared to the golden standard. This will give both an objective and
independent measure of success for the automatic registration [33].

The number of points used to obtain the golden standard must exceed the degree of freedom
(DOF) of the transformation used in the registration process. Only translations would require
3 points, the use of rotations as well would require 6 points, and so on [33]. Additionally, the
points would have to be collinear in order to restrict the transformation in the intended way.
The use of a gold standard has one requirement though, a navigation system with support for
choosing points in the two volumes must exist.

17.2 Manual Inspection by Experts

If there is no available system for calculating a gold standard, other ways of measuring success
must be employed. Because the registration process’ goal is to facilitate the use of multiple
imaging modalities in neurosurgical guidance, a way to measure success would be to ask trained
clinicians of their opinion of obtained results. This is a highly subjective approach, but they
could verify if the images are well enough aligned to be used during surgery. This approach
was employed by Harg in his master assignment [9], and will be adopted in this one as well .
A navigation system with the ability to rotate, zoom and cut out cross planes in the images,
is however preferable in order to obtain reasonable opinions from the experts, but this was not
accessible for Harg [9]. Angio-graphic volumes, however, have high visual quality and are more
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easily evaluated than the case is for tissue volumes.

To get an evaluation of the 3D renderings presented in V, they was presented to 4 neurosurgeons,
as well as 6 researchers at SINTEF MedTech. They were asked to rate the registrations with
either not sufficient, possibly sufficient or sufficient, for clinical purposes. The questionnaire-
form is presented in appendix C. Note also that the view presented in appendix B was not
presented at that time. The results of the questionnaire are included in table 16.

Reg.no. Overall Clinicians Researchers

N P S N P S N P S

1 6 4 0 2 2 0 4 2 0
2 0 3 7 0 1 3 0 2 4

3 1 6 3 0 2 2 1 4 1
4 0 2 8 0 1 3 0 1 5

5 1 7 2 0 3 1 1 4 1
6 0 4 6 0 0 4 0 4 2
7 1 7 2 0 3 1 1 4 1

Table 16: Result of the evaluation by clinicians and researchers. Number of responses
per registration no. and option (N = Not sufficient, P = Possible sufficient, S =
Sufficient).

What we can conclude from the results, is that all the tests for RegApp5, registrations number
2, 4 and 6, was successfully registered. Actually, none of the participants felt that any of the
tests for RegApp5 was not sufficient to be used for clinical purposes. Registration #4 was the
registration that was considered the overall best, but registration #6 was regarded especially
well by the clinicians. However, a cross-sectional cutting plane would ease the evaluation process
additionally, in the way that a cut through the blood vessel renderings could be performed.
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Part VII

Conclusion

Throughout this report, various approaches for future improvement has been mentioned. These
will be commented in this final part of the report. Finally, a conclusion of the work done in this
report is given, summarizing the results and experiences that has been achieved.
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18 Future Work

Even though the results of RegApp5 is promising, much work remains, in order to possess the
registration system that was described in chapter 2.2. The most difficult part of the registration
system has yet not been solved. Additionally, in order to be able to test promising applications,
proper equipment must become available. Nevertheless, the methods that has been developed
should be further investigated, in order to achieve a possible increase in usability. These topics
will be commented upon below.

18.1 Phase III of the Registration System

Last year, Harg developed an adequate registration application for phase I [9]. With my contri-
bution to phase II, only phase III remains unaddressed. A non-rigid extension to the US-to-MRI
registration is, perhaps, the most difficult one as well. Little literature exists, and for that reason
it will be a tremendous challenge. Nevertheless, with phase III incorporated, medical imaging
modalities will be better utilized, in order to help neurosurgeons perform clinical operations.

18.2 Tools for Software Evaluation

To ensure stability and reliability of the applications, they will have to be thoroughly tested.
Currently, there exists no system available at SINTEF MedTech to perform evaluation with the
use of gold standards. The existence of such a system is highly desirable, and should optimally
be implemented as soon as possible. This way, the value of the registration algorithms could
more easily be determined. The approach using experts’ opinions, is not optimally adjusted for
either, as no method currently exists to obtain a cross-section view of the volumes. Preferably,
this should also be part of the navigation system as soon as possible, to aid inspection of the
results.

18.3 Further Testing of RegApp5

RegApp5 should be further investigated, in order to verify, and enhance, both the stability and
quickness of the application. Fully elaborated, RegApp5 should be incorporated into CustusX
(see chapter 7.2), to be used intraoperatively.
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19 Conclusion

The goal of this thesis was to propose, and implement methods for solving registration of a
preoperative MRI volume, with an intraoperative US volume, acquired before the start of an
operation. Solutions based on Mattes’ Mutual Information have been implemented, along with
a variety of optimization techniques and transformations. Further, all of the applications used
angio-graphic volumes that was not preprocessed with any filter as input-volumes.

These applications have been tested on clinical data from relevant surgical operations. One
of the solutions, using an evolutionary (1+1) optimizer while discarding rotational movement,
has proven to be both stable, reliable, fast and accurate. A very similar application using
a regular step gradient descent optimizer proved to be more unreliable and slow. However,
the most unreliable application considered rotational transformations as well. This application
employed a type of gradient descent optimizer as well. The applications that were based on
such optimizers, also proved to be significantly slower than the one based on the evolutionary
optimizer. The gradient descent-based optimizers were very hard to parameterize, and produced
inconsistent results for subsequent executions with the same parameters.

The application based on the evolutionary optimizer, achieved very good evaluation results,
through a visual inspection, by clinicians and researchers, of 3D renderings of the registrations.
The results was said to be sufficiently accurate to be used in clinical applications, for all test
sets of MRI-to-US registration.
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Part VIII

Appendix

A File names and descriptive names

This appendix describes the relationship between file names and descriptive names, for the
image volumes used for testing the applications described in this report.

Descriptive name File name

fMRI-Finger w/contrast 20041006T160127.mha
fMRI-Sentence w/contrast 20041006T160309.mha
fMRI-Tongue w/contrast 20041006T160445.mha
MRI-T2 20041006T160749.mha
MRI-T1 20041006T161007.mha
MRA (Angio) 20041006T161259.mha
MRI-T1 w/contrast 20041006T161642.mha
UST (Tissue) 20041007T110127.mha
USA (Angio) #1 20041007T110555.mha
USA #2 20041007T110944.mha

Table 17: Tumor 1 - Corresponding descriptions and file names

Descriptive name File name

MRI-T1 20060220T082000.mha
MRI-T2 20060220T082119.mha
MRA 20060220T082249.mha
fMRI-Sentence w/contrast 20060220T083027.mha
fMRI-Tongue w/contrast 20060220T083255.mha
USA (Angio) 20060220T104218.mha

Table 18: Tumor 3 - Corresponding descriptions and file names

Descriptive name File name

MRI-T1 20050126T091032.mha
MRA (Angio) 20050126T091242.mha
USA (Angio) 20050126T105634.mha

Table 19: Aneurism 1 - Corresponding descriptions and file names
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B Additional Views of Results

As stated earlier in the report, renderings of additional views has been acquired. Here follows
a presentation of them, from registration #1 to registration #7. Tables of parameters and
resulting translation is found in part V.

B.1 Registration #1 - View 2

Figures 35 through 37 show 3D renderings of view 2 for registration #1. The parameters for
this registration is presented in table 2. The resulting translation-parameters, along with the
metric value and number of iterations used, is presented in table 3. Both tables are found in
chapter 12.1.

Figure 35: Registration #1 - View 2 before registration -
MRA (red) and USA #1 (green)
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Figure 36: Registration #1 - View 2 after registration -
MRA (blue) and USA #1 (green)
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Multimodal Volume-to-Volume Registration B.1 Registration #1 - View 2

Figure 37: Registration #1 - View 2 combined - MRA
before (red), MRA after (blue) and USA #1 (green)
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B.2 Registration #2 - View 2

Figures 38 through 40 show 3D renderings of view 2 for registration #2. The parameters for
this registration is presented in table 4. The resulting translation-parameters, along with the
metric value and number of iterations used, is presented in table 5. Both tables are found in
chapter 12.2.

Figure 38: Registration #2 - View 2 before registration -
MRA (red) and USA #1 (green)
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Multimodal Volume-to-Volume Registration B.2 Registration #2 - View 2

Figure 39: Registration #2 - View 2 after registration -
MRA (grey) and USA #1 (green)
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Figure 40: Registration #2 - View 2 combined - MRA
before (red), MRA after (grey) and USA #1 (green)
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B.3 Registration #3 - View 2

Figures 41 through 43 show 3D renderings of view 2 for registration #3. The parameters for
this registration is presented in table 6. The resulting translation-parameters, along with the
metric value and number of iterations used, is presented in table 7. Both tables are found in
chapter 13.1.

Figure 41: Registration #3 - View 2 before registration -
MRA (red) and USA (green)
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Figure 42: Registration #3 - View 2 after registration -
MRA (blue) and USA (green)
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Multimodal Volume-to-Volume Registration B.3 Registration #3 - View 2

Figure 43: Registration #3 - View 2 combined - MRA
before (red), MRA after (blue) and USA (green)
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B.4 Registration #4 - View 2

Figures 44 through 46 show 3D renderings of view 2 for registration #4. The parameters for
this registration is presented in table 8. The resulting translation-parameters, along with the
metric value and number of iterations used, is presented in table 9. Both tables are found in
chapter 13.2.

Figure 44: Registration #4 - View 2 before registration -
MRA (red) and USA (green)
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Multimodal Volume-to-Volume Registration B.4 Registration #4 - View 2

Figure 45: Registration #4 - View 2 after registration -
MRA (grey) and USA (green)
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Figure 46: Registration #4 - View 2 combined - MRA
before (red), MRA after (grey) and USA (green)
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B.5 Registration #5 - View 2

Figures 47 through 49 show 3D renderings of view 2 for registration #5. The parameters for
this registration is presented in table 10. The resulting translation-parameters, along with the
metric value and number of iterations used, is presented in table 11. Both tables are found in
chapter 14.1.

Figure 47: Registration #5 - View 2 before registration -
MRA (red) and USA (green)
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Figure 48: Registration #5 - View 2 after registration -
MRA (blue) and USA (green)
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Multimodal Volume-to-Volume Registration B.5 Registration #5 - View 2

Figure 49: Registration #5 - View 2 combined - MRA
before (red), MRA after (blue) and USA (green)
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B.6 Registration #6 - View 2

Figures 50 through 52 show 3D renderings of view 2 for registration #6. The parameters for
this registration is presented in table 12. The resulting translation-parameters, along with the
metric value and number of iterations used, is presented in table 13. Both tables are found in
chapter 14.2.

Figure 50: Registration #6 - View 2 before registration -
MRA (red) and USA (green)
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Figure 51: Registration #6 - View 2 after registration -
MRA (grey) and USA (green)
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Figure 52: Registration #6 - View 2 combined - MRA
before (red), MRA after (grey) and USA (green)
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B.7 Registration #7 - View 2

Figures 53 through 55 show 3D renderings of view 2 for registration #7. The parameters for
this registration is presented in table 14. The resulting translation-parameters, along with the
metric value and number of iterations used, is presented in table 15. Both tables are found in
chapter 14.3.

Figure 53: Registration #7 - View 2 before registration -
MRA (red) and USA (green)
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Figure 54: Registration #7 - View 2 after registration -
MRA (yellow) and USA (green)

116



Multimodal Volume-to-Volume Registration B.7 Registration #7 - View 2

Figure 55: Registration #7 - View 2 combined - MRA
before (red), MRA after (yellow) and USA (green)
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C Questionnaire

This appendix presents the questionnaire used to evaluate the registration results.
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Figure 56: Questionnaire - Page 1
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Figure 57: Questionnaire - Page 2
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Figure 58: Questionnaire - Page 3
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D Calculations on Consistency

This appendix presents calculations of standard deviations for continuous registrations, of reg-
istration #4 and registration #5, in figures 59 60, respectively.
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Figure 59: Standard deviations for Registration #4
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Figure 60: Standard deviations for Registration #4
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