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Abstract

Melatonin is a promising neuroprotective agent after perinatal hypoxic-ischemic (HI) brain

injury. We used in-vivo 1H magnetic resonance spectroscopy to investigate effects of mela-

tonin treatment on brain metabolism after HI. Postnatal day 7 Sprague-Dawley rats with uni-

lateral HI brain injury were treated with either melatonin 10 mg/kg dissolved in phosphate-

buffered saline (PBS) with 5% dimethyl sulfoxide (DMSO) or vehicle (5% DMSO and/or

PBS) directly and at 6 hours after HI. 1H MR spectra from the thalamus in the ipsilateral and

contralateral hemisphere were acquired 1 day after HI. Our results showed that injured ani-

mals had a distinct metabolic profile in the ipsilateral thalamus compared to sham with low

concentrations of total creatine, choline, N-acetyl aspartate (NAA), and high concentrations

of lipids. A majority of the melatonin-treated animals had a metabolic profile characterized

by higher total creatine, choline, NAA and lower lipid levels than other HI animals. When

comparing absolute concentrations, melatonin treatment resulted in higher glutamine levels

and lower lipid concentrations compared to DMSO treatment as well as higher macromole-

cule levels compared to PBS treatment day 1 after HI. DMSO treated animals had lower

concentrations of glucose, creatine, phosphocholine and macromolecules compared to

sham animals. In conclusion, the neuroprotective effects of melatonin were reflected in a

more favorable metabolic profile including reduced lipid levels that likely represents reduced

cell injury. Neuroprotective effects may also be related to the influence of melatonin on gluta-

mate/glutamine metabolism. The modulatory effects of the solvent DMSO on cerebral

energy metabolism might have masked additional beneficial effects of melatonin.

PLOS ONE | https://doi.org/10.1371/journal.pone.0185202 September 21, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Berger HR, Nyman AKG, Morken TS,

Vettukattil R, Brubakk A-M, Widerøe M (2017)

Early metabolite changes after melatonin treatment

in neonatal rats with hypoxic-ischemic brain injury

studied by in-vivo 1H MR spectroscopy. PLoS ONE

12(9): e0185202. https://doi.org/10.1371/journal.

pone.0185202

Editor: Olivier Baud, Hopital Robert Debre, FRANCE

Received: May 25, 2017

Accepted: September 7, 2017

Published: September 21, 2017

Copyright: © 2017 Berger et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The work was financially supported by a

grant from the Medical Faculty at the Norwegian

University of Science and Technology (NTNU).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0185202
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185202&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185202&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185202&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185202&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185202&domain=pdf&date_stamp=2017-09-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185202&domain=pdf&date_stamp=2017-09-21
https://doi.org/10.1371/journal.pone.0185202
https://doi.org/10.1371/journal.pone.0185202
http://creativecommons.org/licenses/by/4.0/


Introduction

Perinatal hypoxia-ischemia (HI) is a common cause of neonatal mortality and chronic neuro-

developmental disabilities, and is therefore a major health problem [1]. Reduced oxygen and

glucose supply to the brain initiates an energy failure, release of excitatory amino acids into the

synaptic cleft (glutamate excitotoxicity) and generation of reactive oxygen species leading to

early cell death or necrosis. Re-oxygenation of the tissue after HI temporarily results in a resto-

ration of energy reserves but also contributes to further oxidative stress to and from the mito-

chondria. The subsequent secondary energy failure after 6–48 hours is followed by a delayed

injury cascade which is characteristic for HI in the neonatal brain with inflammation, apopto-

sis and delayed cell death [2].

The current treatment of infants with hypoxic-ischemic encephalopathy is supportive care

and therapeutic hypothermia. A meta-analysis showed beneficial effects after therapeutic

hypothermia in term or late preterm infants (� 35 gestational weeks) with moderate-to-severe

HI injuries [3]. However, its efficacy is limited in the presence of inflammation [4] and it is not

used in premature infants. Therefore, there is an urgent need for other treatments, of which

melatonin is one of the most promising agents [5]. Melatonin is an endogenous neurohor-

mone that freely crosses the placenta and blood-brain barrier, and it has been shown to be neu-

roprotective after neonatal HI injury in preclinical and clinical studies [5, 6]. The protective

mechanisms of melatonin are multiple and putatively related to its anti-oxidative, anti-excito-

toxic and anti-inflammatory properties. Melatonin and its metabolites are both direct free rad-

ical scavengers as well as indirect anti-oxidants by modulating pro- and anti-oxidative enzyme

activity [7]. It has several protective effects on mitochondria, leading to increased ATP produc-

tion and reduced oxidative stress [8]. Furthermore, the receptor-dependent anti-excitotoxic

effects of melatonin limit the excessive calcium influx and, thereby, subsequent production of

free radicals [9]. Further melatoninergic neuroprotection is achieved by the suppression of

inflammatory processes after HI, for example the inhibition of NFκB activation [10] or the

reduction of microglial density [11].
1H magnetic resonance spectroscopy (MRS) non-invasively provides information about

several pathophysiological processes involved in HI simultaneously, and has proven to be a

valuable prognostic biomarker in clinical neuroprotection trials [12]. Especially metabolic

changes after HI in the deep gray matter are the most definite because of the high metabolic

rate and the increased vulnerability for HI injury in these brain regions [1]. To date, the effect

of melatonin treatment shortly after HI on metabolite concentrations obtained from 1H MRS

in the deep gray matter is unknown.

The purpose of this study was to characterize the effects of early melatonin treatment on

cerebral metabolism during the secondary energy failure. Based on the known effects of mela-

tonin, we hypothesized that melatonin treatment after HI induces early beneficial metabolic

changes related to energy metabolism, excitotoxic neurotransmission and anti-oxidant levels.

With the use of absolute concentrations and multivariate analyses we show the potential in

analyzing whole metabolic profiles as well as single metabolites. This provides information

about the underlying metabolic processes and enables assessment of early treatment effects.

Materials and methods

Materials

Animals and drugs. Sprague-Dawley rats were bred in the Comparative Medicine Core

Facility at the Norwegian University of Science and Technology in Trondheim. Dams and

their pups were kept on a 12:12 hour light-dark cycle with food and water ad libitum. All
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animal experiments were performed according to European Union and Norwegian regulations

and guidelines for animal experimentation and approved by the Norwegian authority on ani-

mal welfare (permit number: 4975).

Melatonin and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (St. Louis,

MA / Irvine, UK), isoflurane from Baxter Medication Delivery (Oslo, Norway), bupivacain

from AstraZenica (Oslo, Norway) and phosphate-buffered saline (PBS) from Fisher Scientific

(Oslo, Norway).

Methods

Hypoxia-ischemia and experimental groups. The Vannucci model [13] for neonatal HI

was used. In short, seven-day-old (P7) rat pups of both sexes (mean weight 15.9 g, SD 1.9 g)

were anesthetized with isoflurane, their right carotid artery was identified and thermo-cauter-

ized and, after a 2 hour recovery period, they were exposed to hypoxia (8% oxygen) for 105

minutes. Sham-operated littermates underwent the same procedure except for right carotid

artery cauterization and hypoxia. The pups were randomly assigned to either HI (n = 30) or

sham (n = 18) and one of three different treatment conditions before surgery. Directly after

HI, they received an intraperitoneal injection with either (1) a 4 mg/ml solution of melatonin

(MEL, 10 mg/kg) dissolved in PBS with 5% DMSO (HI+MEL n = 11, sham+MEL n = 6), (2)

PBS with 5% DMSO (HI+DMSO n = 11, sham+DMSO n = 6) or (3) only PBS (HI+PBS n = 8,

sham+PBS n = 6). Melatonin is only slightly soluble in saline therefore the solvent DMSO was

used. All animals received a second injection 6 hours after the hypoxia.

In-vivo 1H MRS: Acquisition. In-vivo 1H MRS was performed on the day (15–24 hours)

after HI on a 7T magnet (Bruker BioSpec 70/20, Bruker BioSpin, Ettlingen, Germany) using a

86 mm volume resonator for radio frequency transmission and a phased array mouse head

surface coil for reception. During scanning the animals were anesthetized with isoflurane (3%

induction, 1.5% maintenance) in a mixture of oxygen and air. They were placed in a prone

position on a water-heated bed. The heads of the rats were fixated using a nose mask and styro-

foam. The respiration and oxygen saturation were monitored.

Before 1H MRS acquisition, a first- and second-order shim was performed using FASTMAP

procedure (Bruker BioSpin). A single voxel of 2.5 x 2.5 x 2.5 mm3 was placed in the thalamus

of the right (ipsilateral to the lesion) and left (contralateral to the lesion) hemisphere using a

T2-weighted image as reference. A point-resolved spatially localized spectroscopy (PRESS)

sequence with water suppression using variable pulse power and optimized relaxation delays

(VAPOR) was acquired; echo time (TE) 15 ms, repetition time (TR) 2500 ms, bandwidth 50

kHz, 2048 complex points, 128 averages, spectral resolution 0.98 Hz/pts. The use of a short

echo time allows quantification of lipid concentrations. However, a disadvantage was that the

lactate peak could not be reliably identified. Since the water signal was chosen as an internal

standard for metabolite quantification a scan without water suppression for each spectroscopy

voxel was obtained with the same parameters as the scans with water suppression (4 averages).

The T2 relaxation time of brain water in the voxel was measured in a sample of both sham and

HI animals (TE = 15, 45, 75, 105, 135, 165, 195, 225 ms, TR 5000 ms, rapid acquisition with

relaxation enhancement (RARE) factor 2). Based on the assumption that the voxel only con-

tained grey matter, a mono-exponential T2 curve fitting of the water signal provided correction

factors for the attenuation of the MR-visible water signal.

In-vivo 1H MRS: Analysis. Metabolite concentrations were quantified using LCModel

[14]. Eddy current corrections were applied and the unsuppressed water signal was used as an

internal reference for water scaling. The P7 rat brain has a water concentration of 87.7% which

corresponds to 48.7M (48674 mM) [15]. It has been reported that the brain water content only
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increases with 2% 24 hours after severe HI brain injury caused by 3 hours of hypoxia [16].

Because of the shorter hypoxia period in our study versus that of Mujsce et al. (1990) and the

variability in lesion size in the Vannucci model, we used the same water concentration in all

animals. This may lead to an underestimation of the metabolite concentration up to 2% in the

severely injured animals. Due to differences in the T2 relaxation of water, different correction

factors (ATTH2O) were applied based on the extent of injury as assessed on T2-weighted

images. Finally, the concentrations were exported to Microsoft Excel and corrected for the

number of scans and the total receiver gain, as this is not done automatically for Bruker data in

LCModel (correction factor 0.03125).

Six spectra with a signal-to-noise ratio (SNR) < 3 or/and a linewidth of> 0.05 ppm were

excluded (ipsilateral thalamus of 1 Sham+PBS, 2 Sham+MEL, 1 HI+MEL and bilaterally of 1

HI+PBS). One pup was in a poor clinical condition and scanning was terminated before the
1H MRS acquisition (HI+PBS). One spectrum of the contralateral thalamus is missing due to

technical problems (HI+DMSO). In the end, we included 42 spectra of the ipsilateral thalamus

(5 Sham+PBS, 6 Sham+DMSO, 4 Sham+MEL, 6 HI+PBS, 11 HI+DMSO, 10 HI+MEL) and 45

spectra of the contralateral thalamus (6 Sham+PBS, 6 Sham+DMSO, 6 Sham+MEL, 6 HI

+PBS, 10 HI+DMSO, 11 HI+MEL) in the final analyses. The spectra had an overall SNR of 7

and a linewidth of 0.026 ppm. An example of a 1H MR spectrum of the ipsilateral thalamus is

shown in Fig 1.

Statistical analysis. We used Principal Component Analysis (PCA) to explore and visual-

ize how a set of metabolites from one subject varied from others [17]. In the score plot of prin-

ciple component (PC) 1 and 2, which describe most of the variation, samples with a similar

metabolic profile will cluster, while the corresponding loading profile displays the importance

of each variable within the PC. PCA was performed in R (R Core Team, 2016, R: A language

and environment for statistical computing. R Foundation for Statistical Computing, Vienna,

Austria). Univariate statistical analyses were performed in SPSS (version 22.0; IBM, Chicago,

IL). The metabolite concentrations were not normally distributed. A Kruskal Wallis test with

Mann-Whitney U tests for pairwise comparisons was therefore used to test for differences in

metabolite concentrations between the different groups within each hemisphere. All p-values

were corrected by the false discovery rate control method (Benjamini & Hochberg’s method)

with p< 0.05 as a reference level of significance. The magnitude of the metabolite changes

between the treatment groups in the sham animals were much smaller than those compared to

HI. Therefore, the sham animals were considered as one group when the HI animals were

compared to the sham animals.

Results

Different metabolic profiles of the ipsilateral thalamus in HI and sham-

operated animals

The PCA showed a clear separation between the metabolic profile of HI and sham animals

(Fig 2a). The corresponding loading plot of PC 1, which described 82% of the variation,

showed that the distinction between HI and sham is mainly due to higher levels of lipids and

lower concentrations of NAA, total choline, and total creatine (Cr) in the HI animals (Fig 2b).

When comparing absolute concentrations, HI animals had lower concentrations of phospho-

creatine (PCr) and total creatine versus sham animals (Fig 3, S1 Table). In addition, the HI ani-

mals had reduced concentrations of the osmolytes taurine and myo-inositol as well as lower

levels of the neurotransmitter GABA compared to sham animals. However, the levels of the

neurotransmitters glutamate and glutamine in HI animals treated with DMSO or PBS were

similar to sham. The levels of NAA, total choline and macromolecules, metabolites that are

Melatonin after neonatal asphyxia: MRS study
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thought to reflect cell integrity, were lower in HI animals versus sham animals while lipids

were higher (Fig 3, S1 Table).

The 1H spectra were obtained between 15 and 24 hours after the end of hypoxia. There

were no significant correlations between metabolite concentrations and time after HI except

for the combined glutamine+glutamate concentration in HI+DMSO/PBS animals, which was

negatively correlated with time after HI (r -0.587, p 0.013).

Metabolic changes after melatonin treatment in the ipsilateral thalamus

The PCA showed a separation of HI animals with mild and severe injury along the PC 1 where

a more favorable metabolic profile was reflected in higher levels of total creatine, choline and

Fig 1. 1H spectrum of the ipsilateral thalamus. Acquired 1H spectrum of the ipsilateral thalamus of an

animal exposed to HI. Cr, creatine; DMSO, dimethyl sulfoxide; Gln, glutamine; Glu, glutamate; GPC,

glycerophosphocholine; GSH, glutathione; Ins, myo-inositol; NAA, N-acetyl aspartate; PCh, phosphocoline;

PCr, phosphocreatine; Tau, taurine.

https://doi.org/10.1371/journal.pone.0185202.g001

Fig 2. Metabolic profiles of the ipsilateral thalamus of HI and sham animals 1 day after HI. (a) The PCA score plot shows the

metabolic profiles of all animals. The HI animals were separated from the sham animals with the corresponding loading plot of PC 1 (b)

showing the metabolic alterations that caused this separation. The shaded area is drawn based on visual inspection and is meant to highlight

the separation between the groups. Glx, glutamine+glutamate; GPC glycerophosphocholine; HI, hypoxia-ischemia; NAA, N-acetyl

aspartate; NAAG, N-acetyl aspartyl glutamate; MM, macromolecules; Lip, lipids; PC, principle component; PCA, principle component

analysis; PCh, phosphocholine; PCr, phosphocreatine; ppm, parts per million.

https://doi.org/10.1371/journal.pone.0185202.g002
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Fig 3. Metabolite concentrations in the ipsilateral thalamus within 1 day after HI. Concentrations of (a) energy

metabolites, (b) neurotransmitters, (c) anti-oxidants and osmolytes, (d) metabolites representing cell injury/viability and (e)

lipids and macromolecules in HI animals exposed to PBS, DMSO or melatonin (MEL) treatment and sham animals (here

presented as one group). Results are presented as mean ± SEM. * significant differences between groups. GPC

glycerophosphocholine; HI, hypoxia-ischemia; Lip, lipids; MM, macromolecules; NAA, N-acetyl aspartate; ppm, parts per

million; sham, sham-operated.

https://doi.org/10.1371/journal.pone.0185202.g003
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NAA, and lower levels of lipids (Fig 4). More HI animals treated with melatonin had a favor-

able metabolic profile (6 out of 10) compared to DMSO (2 out of 11) and PBS (1 out of 6). The

HI animals treated with melatonin had a higher absolute concentration of glutamine and a

lower amount of lipids at 0.9 and 1.3 ppm than HI+DMSO animals. Furthermore, HI+MEL

animals had a higher concentration of macromolecules at 1.4 ppm compared to HI+PBS ani-

mals as well as lower glutamate levels compared to sham animals. HI+MEL animals had also a

lower ratio of glutamate over glutamine (mean 1.7, SEM 0.1) compared to HI+DMSO (mean

2.4, SEM 0.2 p< 0.001), HI+PBS (mean 2.5, SEM 0.3 p 0.027) and sham animals (mean 2.5,

SEM 0.1, p< 0.001). In addition, HI+DMSO and HI+PBS animals had reduced levels of aspar-

tate and glycerophosphocholine (GPC) whereas these concentrations were similar to sham in

HI+MEL animals (Fig 3).

Although there were no major alterations in the metabolic profiles of sham animals after

treatment, the ones treated with melatonin had lower glutathione concentrations (mean 1.48,

SEM 0.13) compared to sham animals treated with DMSO (mean 2.17, SEM 0.25, p 0.033) or

PBS (mean 2.51, SEM 0.10, p 0.014).

Metabolic effects of DMSO in the ipsilateral thalamus

DMSO was detectable at 2.74 ppm in the 1H MR spectra of all animals treated with DMSO or

melatonin. HI animals treated with DMSO had lower concentrations of glucose, creatine,

phosphocholine and macromolecules at 1.7 ppm compared to sham animals whereas these

concentrations were not different from sham in HI+MEL or HI+PBS animals (Fig 3, S2

Table). In addition, HI+DMSO and HI+MEL animals had lower glutathione levels compared

to sham. Sham animals given DMSO (mean 1.54, SEM 0.10, p 0.011) or melatonin (mean 1.50,

Fig 4. Metabolic profiles of the ipsilateral thalamus of HI animals after 2 treatment injections. (a) The metabolic profiles of the HI

animals treated with either melatonin (10 mg/kg) dissolved in PBS with 5% DMSO (MEL), PBS with 5% DMSO (DMSO) or only PBS (PBS)

are displayed in the PCA score plot. The shaded area marks the animals treated with melatonin with higher levels of energy metabolites,

neurotransmitters and macromolecules as shown in (b). (b) The corresponding loading plot shows the metabolic alterations related to the

separation along PC 1. Glx, glutamine+glutamate; GPC glycerophosphocholine; HI, hypoxia-ischemia; NAA, N-acetyl aspartate; NAAG, N-

acetyl aspartyl glutamate; MM, macromolecules; Lip, lipids; PC, principle component; PCA, principle component analysis; PCh,

phosphocholine; PCr, phosphocreatine; ppm, parts per million.

https://doi.org/10.1371/journal.pone.0185202.g004
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SEM 0.07, p 0.014) had lower levels of GABA than those treated with PBS (mean 2.23, SEM

0.20).

Metabolite changes in the contralateral thalamus

The metabolic changes in the contralateral thalamus were of a smaller magnitude compared to

the ipsilateral hemisphere and there was not a clear separation between the metabolic profiles

of the HI and sham groups (Fig 5). However, an effect of HI was visible as higher concentra-

tions of creatine and lipids at 0.9, 1.3 and 2.0 ppm in the HI+DMSO and HI+MEL animals

compared to sham, with similar trends seen in HI+PBS. In addition, the NAA concentration

was lower in HI+PBS than in sham animals. HI+DMSO and HI+MEL animals had higher glu-

tamine concentrations compared to sham as well as lower concentrations of glutathione com-

pared to HI+PBS animals. Furthermore, the concentration of taurine was higher in HI

+DMSO and HI+PBS animals compared to sham animals whereas the concentration of myo-

inositol was lower in HI+MEL animals compared to sham animals. There were no differences

between HI+MEL and HI+DMSO animals.

Like in the ipsilateral thalamus, the sham animals treated with melatonin had lower gluta-

thione concentrations (mean 1.75, SEM 0.22) compared to sham animals treated with PBS

(mean 2.48, SEM 0.13, p 0.025). Sham animals treated with DMSO (mean 1.57, SEM 0.08, p
0.025) or melatonin (mean 1.52, SEM 0.04, p 0.004) had lower levels of GABA than those

treated with PBS (mean 2.07, SEM 0.13). Moreover, the sham animals treated with DMSO had

lower levels of PCr (mean 4.74, SEM 0.23, p 0.018) compared to the ones treated with PBS

(mean 3.63, SEM 0.23).

Discussion

Altered metabolism in the thalamus after neonatal hypoxia-ischemia

The use of metabolomics enables studies of key processes of cerebral metabolism that are

affected during the evolving injury cascade after neonatal HI, including energy metabolism,

neurotransmission, and osmolyte and anti-oxidant levels. The reduction of free choline and

phosphocholine in the ipsilateral thalamus of HI animals compared to sham as found in this

study points towards a decreased cellularity and/or apoptosis [18] since these metabolites are

phospholipid metabolism intermediates and are involved in the synthesis and breakdown of

cell membranes [19]. The finding of reduced PCr and total creatine in the ipsilateral thalamus

following HI probably reflects the continuing loss or degradation of creatine as a consequence

of brain cell injury [20]. However, a compensatory increase of (total) creatine was seen in the

HI animals in the contralateral thalamus. In addition, the HI animals had lower levels of NAA

and NAAG, metabolites that are mainly present in neurons but also in oligodendroglia pro-

genitors [21]. A reduction of these metabolites after HI has also been reported by others [22,

23] and has been associated with reduced neuronal viability, function and density [19].

The metabolite changes related to cell damage and impaired energy metabolism found in

the present study were accompanied by metabolic alterations presumably representing differ-

ent pathological processes contributing to final brain injury. Decreased concentrations of glu-

tathione and taurine may indicate a reduced anti-oxidant defense in the injured neonatal

brains 1 day after HI [24, 25]. Taurine also functions as an osmolyte. Thus, the decreased con-

centrations of taurine and myo-inositol in the ipsilateral thalamus found in the present study

may reflect an impaired water homeostasis in response to osmotic stress after HI. We did not

find changes in glutamine and glutamate levels in the ipsilateral thalamus of HI+PBS/DMSO

compared to sham animals. This corresponds well with other studies showing normalization

of glutamine and glutamate levels during the first hours after HI [26, 27]. Moreover, the
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Fig 5. Metabolite concentrations in the contralateral thalamus within 1 day after HI. Concentrations of (a) energy

metabolites, (b) neurotransmitters, (c) anti-oxidants and osmolytes, (d) metabolites representing cell injury/viability and (e)

lipids and macromolecules in HI animals exposed to PBS, DMSO or melatonin (MEL) treatment and sham animals (here

presented as one group). Results are presented as mean ± SEM. * significant differences between groups. GPC

glycerophosphocholine; HI, hypoxia-ischemia; Lip, lipids; MM, macromolecules; NAA, N-acetyl aspartate; ppm, parts per

million; sham, sham-operated.

https://doi.org/10.1371/journal.pone.0185202.g005
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concentration of the neurotransmitter GABA was decreased in the ipsilateral thalamus of the

HI animals in the present study. This is in agreement with findings by others [23, 28] and

might suggest a specific vulnerability of GABAergic neurons to HI.

Changes in lipid and macromolecule concentrations after HI

The advantage of using a short echo time is the possibility to reliably quantify lipid concentra-

tions. Important findings in this study were the increased lipid levels in the ipsilateral and con-

tralateral thalamus and the decreased macromolecule levels in the ipsilateral thalamus after HI.

Although the precise underlying substrates are not well known, an increased amount of lipids

is, like choline, considered a sign of membrane degradation with release of fatty acids [29].

The largest increase in lipid peaks was observed at 1.3 ppm which arise from methylene groups

(-CH2) in mobile fatty acids. In the parietotemporal area, this peak has been positively corre-

lated with apoptotic and necrotic cell death and a loss of mitochondrial membrane potential at

1 day after HI in neonatal rats [30]. Furthermore, it is suggested that the macromolecule reso-

nances represent cytosolic proteins that can be liberated after cell injury. In perinatal hypoxia-

ischemia, macromolecular synthesis has been described as a differentiating factor between

necrosis and apoptosis with a decreased synthesis in necrosis and an increased synthesis in

apoptosis [31]. The reduced levels of macromolecules 1 day after HI might be explained by a

reduced synthesis of macromolecules in the early hours after HI due to necrosis combined

with an elevated degradation of liberated cytosolic proteins because of cell injury.

Treatment effects: Melatonin

Within a day after HI, the majority of the HI animals treated with 2 injections of melatonin

had a metabolic profile in the ipsilateral thalamus that was more similar to sham and charac-

terized by higher levels of total creatine, choline and NAA, and lower levels of lipids than most

of the vehicle-treated HI animals. When we compared absolute metabolite concentrations,

melatonin treated animals showed signs of less cell injury compared to DMSO and PBS treated

animals reflected in lower concentration of lipids and higher concentration of macromolecules

in the ipsilateral thalamus. These findings are in agreement with other preclinical studies that

have shown neuroprotection with melatonin treatment after HI [6]. However, it contrasts our

previous findings at 1 hour after HI where no effects of melatonin on neuronal or glial mito-

chondrial metabolism were observed [32]. Different brain regions, a longer interval between

melatonin treatment after HI and the time-point of evaluation, as well as 2 treatment injections

instead of 1 are potential factors that may explain the different outcome in our previous report.

Based on this, it is conceivable that either the therapeutic window of melatonin treatment is

longer than 1 hour or that multiple doses are necessary for neuroprotection.

The mechanisms behind melatoninergic neuroprotection are not completely clear. Our

data suggest that melatonin plays a role in the regulation of (excitatory) neurotransmitter levels

as shown by the increased glutamine levels among HI+MEL animals and the lower glutamate-

glutamine ratio compared to HI+PBS, HI+DMSO and sham animals in the ipsilateral thala-

mus. Although we do not have information about cellular compartmentalization, the increased

glutamine in the thalamus of HI+MEL animals possibly indicate that the ATP-dependent syn-

thesis of glutamine from glutamate in astrocytes is highly active. This might contribute to the

neuroprotective effects of melatonin through the normalization of excitatory neurotransmitter

levels in the synapse and/or the supply of glutamine that can be used as an alternative energy

substrate for mitochondria [33]. The lower amount of glutamate in HI+MEL compared to

sham animals in the ipsilateral thalamus might be beneficial by decreasing seizure activity or

limiting cerebral energy consumption for neurotransmission. Whether this modulation of
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neurotransmitter concentrations is the direct result of melatonin acting on synaptic proteins

or caused by an upstream mechanism remains an interesting question for further study. Fur-

ther, it is not possible to exclude an effect of the solvent DMSO, since the glutamate concentra-

tions in HI+DMSO and HI+MEL are similar and we previously reported a reduced transfer of

glutamine from astrocytes to neurons leading to less glutamate in HI+DMSO animals [32].

Treatment effects: DMSO

The presence of DMSO in the 1H MR spectra and the metabolic changes observed in the ani-

mals treated with DMSO suggest that DMSO affects cerebral metabolism. It is still a topic of

debate whether DMSO is neurotoxic or neuroprotective for the brain [34, 35]. In this study,

DMSO treatment resulted in reduced PCr and GABA concentrations in sham animals as well

as decreased levels of glucose and creatine in HI animals. This may reflect toxic effects of

DMSO on energy metabolism and neurotransmitter synthesis, possibly by its detrimental

effects on mitochondrial integrity and function [32, 36]. The reduced levels of glutathione in

HI animals after DMSO treatment might either be attributed to its perceived anti-oxidative

properties [34] and, consequently, a reduced need for glutathione production, or to a dimin-

ished anti-oxidant defense with DMSO treatment. Our findings stress the importance of

including appropriate controls groups when performing metabolic studies.

Strengths and limitations

A strength of the present study is the use of single metabolite concentrations to characterize

the effects of melatonin treatment after neonatal HI. Previous studies have mostly utilized

ratios such as NAA/lactate or NAA/Cr as prognostic MRS biomarkers for treatment response

without absolute quantification of individual metabolites [37, 38]. This approach is susceptible

to misinterpretation because the denominator (often creatine) is altered following HI as found

in the present study and also reported by others [18, 39]. However, our study has several possi-

ble limitations. First, the 1H spectra were obtained from the thalamus, an area that is known to

be severely injured in this animal model, which made it challenging to acquire spectra from

the ipsilateral thalamus with a good signal-to-noise ratio. Despite this, the model spectra in

LCModel were able to quantify the metabolite peaks with an estimated standard deviation

of� 50%SD in most of the metabolites and� 25%SD in the central metabolites (e.g. creatine,

choline, glutamine, glutamate, glutathione, taurine). Second, the 1H spectra were acquired

between 15 and 24 hours after HI. During this period, rapid metabolic changes related to a sec-

ondary energy failure occur and this might have influenced the results. However, except for

the correlation between the glutamate+glutamine concentration and the time after HI, we did

not find any correlation for the other metabolites. Finally, the poor solubility of melatonin

required the use of the solvent DMSO. Unfortunately, there is evidence that DMSO itself mod-

ulates cerebral metabolism [40]. To account for this, HI and sham control groups treated with

DMSO were included in the study. More work is needed to develop parenteral melatonin for-

mulations without biologically active solvents, to simplify interpretation of results and help

transition into clinical studies.

Conclusion and clinical implications
1H MRS in the thalamus within 1 day after HI identified distinct metabolic profiles in injured

versus non-injured animals. The reduced levels of creatine, NAA and choline, and the

increased levels of lipids in the injured animals might reflect impaired energy metabolism,

membrane degeneration and neuronal cell death. Animals treated with melatonin showed low

lipid concentrations indicating reduced cell death as well as a potential beneficial increase in
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glutamine. However, the effects of melatonin might be partly influenced by modulatory effects

of the solvent DMSO. The need for the identification of a nontoxic solvent for melatonin is

essential before melatonin can be utilized in clinical practice. Further studies should optimize

the melatonin treatment regimen by evaluating the therapeutic plasma concentration leading

to significant neuroprotection as well as the best administration route. Based on the present

study, a dosage higher than 10 mg/kg with multiple administrations during the first 24 hours,

and probably a prolonged duration of treatment are needed to achieve maximum benefit of

melatonin treatment.
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groups were evaluated using a Kruskal Wallis test with Mann-Whitney U tests for pairwise
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control method. � Significant differences between HI and sham animals. § Significant differ-
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