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Retinopathy of prematurity: inflammation,
choroidal degeneration, and novel
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Abstract: Retinopathy of prematurity (ROP) is an important cause of childhood blindness globally, and the incidence is
rising. The disease is characterized by initial arrested retinal vascularization followed by neovascularization and ensuing
retinal detachment causing permanent visual loss. Although neovascularization can be effectively treated via retinal
laser ablation, it is unknown which children are at risk of entering this vision-threatening phase of the disease. Laser
ablation may itself induce visual field deficits, and there is therefore a need to identify targets for novel and less
destructive treatments of ROP. Inflammation is considered a key contributor to the pathogenesis of ROP. A large
proportion of preterm infants with ROP will have residual visual loss linked to loss of photoreceptor (PR) and the
integrity of the retinal pigment epithelium (RPE) in the macular region. Recent studies using animal models of ROP
suggest that choroidal degeneration may be associated with a loss of integrity of the outer retina, a phenomenon so
far largely undescribed in ROP pathogenesis. In this review, we highlight inflammatory and neuron-derived factors
related to ROP progression, as well, potential targets for new treatment strategies. We also introduce choroidal
degeneration as a significant cause of residual visual loss following ROP. We propose that ROP should no longer be
considered an inner retinal vasculopathy only, but also a disease of choroidal degeneration affecting both retinal
pigment epithelium and photoreceptor integrity.
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Background
Retinopathy of prematurity (ROP) represents an important
cause of childhood blindness worldwide [1, 2]. In high-
income countries, ROP-associated blindness incidence has
been reported to be lower than 10% of extremely preterm
born children; however, in low- and particularly middle-
income countries, the incidence is greater than 40% with
increasing survival of infants born preterm and limited
fundoscopic follow-up evaluation [3–5].
ROP is considered a multifactorial disease, and its

pathogenesis has been extensively studied in humans
and in several animal models. In premature infants, the
development of ROP proceeds with an initial phase of
retinal microvascular degeneration [6, 7] associated with

an arrest in progressive vascularization of the peripheral
retina. These vascular changes result in retinal ischemia
which predisposes to abnormal intravitreal neovasculari-
zation leading to its most significant sequelae retinal de-
tachment and permanent visual loss. Even though
pathological neovascularization in ROP may be prevented
with treatment limiting tissue ischemia (laser ablation of
the retina) and/or hypersecretion of VEGF (intravitreal in-
jection of anti-VEGF), still a clear understanding of the
mechanisms implicated in the progression of ROP from
phase 1 to phase 2 is needed to develop new therapeutic
alternatives. So far, several risk factors in the initial phase
of ROP have been discussed [8, 9]. For instance other than
prematurity, growth restriction is in addition to hyperoxia,
an established risk-factor for ROP development [10, 11].
According to this, the WINROP tool (weight, insulin-like
growth factor I, neonatal, retinopathy of prematurity)
based on neonatal growth and measurements of levels of
insulin-like growth factor-1 (IGF-1) has recently been
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developed as a prognostic marker [12]. On the other hand,
it is known that premature neonates are susceptible to
infection because of immature immune system. Inflam-
mation has been shown to play an important role in the
development of normal and pathological angiogenesis
in the retina [13–16]. Interestingly, in the last 5 years, a
series of epidemiological studies have supported the hy-
pothesis that neonatal inflammation is a key modulator
in the development and progression of ROP [17–19]. In
the ELGAN study cohort, inflammatory stimuli such as
bacteria in the placenta [20] and late bacteremia [21]
were risk factors for developing ROP. Moreover, systemic
inflammation in neonates has been shown to perturb ret-
inal vessel development and to induce pathological fea-
tures of ROP in animal models [22, 23]. Inflammatory
factors such as cytokines, chemokines, hypoxia-inducible
factors, hormones, nitric oxide, growth factors, or in-
flammatory cells such as leucocytes, monocytes, or
macrophages/microglia are implicated in the control of
angiogenesis and/or play a detrimental role in the devel-
oping vasculature [24, 25]. Furthermore, the influence of
inflammation in the regulation of neuron-derived signal-
ing molecules that causes endothelial cell injury during
ROP has recently been highlighted. Notably, the beneficial
or detrimental effect of all these components may depend
on the time of action, duration, concentrations, and target
tissue.
The retina is essentially an outgrowth of the brain

where neural and vascular tissue develops in close prox-
imity during fetal and neonatal life [26]. It is therefore
conceivable that pathological processes that occur in the
developing retina also can occur in the brain. An ex-
ample of this is the augmented inflammatory response
associated with retinal and preterm brain injury during
hypoxia-ischemia [27, 28]. Therefore, in addition to the
risk of a poor visual outcome, infants with ROP are at
increased risk of dysfunctions associated with non-visual
disabilities such as brain damage [29], physical and cog-
nitive impairment at 5 years [30, 31], below-grade-level
academic performance at 8 years [32], and lower health-
related quality of life at 10 years of age [33]. In fact, ap-
proximately 55% of children with ROP sustain long-term
neurodevelopmental disabilities [34]. These studies suggest
a shared etiology of visual and non-visual developmental
disabilities in preterm born children. Consequently,
expanding the knowledge of ROP pathogenesis has the
potential to contribute to preventing both the pathological
vascularization and the risk of retinal detachment in ROP,
as well as the complications and diseases that are associ-
ated with ROP.
An enigma on long-term outcome following ROP has

been the residual visual loss that may occur in patients
regardless of regression of neovascular changes. Indeed,
there are indications that ROP affects the late-maturing

central retina with long-term deficits in photoreceptor-
functioning [35, 36]. The choroid supplies the central
outer retina with oxygen and nutrients, and deficits in
choroidal maturation could participate in visual deficits
following ROP [35]. Knowledge on how choroidal de-
generation influences the integrity of the retinal pigment
epithelium (RPE) and photoreceptor layers might be
important in understanding the long-term damages fol-
lowing ROP, such as residual visual loss.
The present review addresses established concepts as

well as emerging evidence implicating inflammation in
the pathogenesis of ROP, the detection of choroidal de-
generation and possible consequences in ROP, and some
promising therapeutic strategies for this disorder.

Inflammatory factors in ROP
The role of inflammation in ROP has been poorly investi-
gated. Recent evidences suggested that prenatal, perinatal,
and postnatal inflammation might contribute to a gradual
increase in the risk for ROP [17]. Cytokines and chemo-
kines are small proteins secreted by immune cells that
play a central role in distinct inflammatory processes in-
cluding the progression of ROP. Current evidences about
the role of these inflammatory factors in the development
of ROP will be discussed in the following section.

Cytokines
Both the fetus and the preterm newborn are capable of
mounting a significant inflammatory response [37], often
linked to maternal infection transmitted to the preterm
infant [38, 39]. The inflammatory response is a highly
regulated process, where an elevated concentration of one
cytokine often is associated with elevated levels of others
(21). Cytokines such as IL-1β, TNF-α, and IL-6 act as
primary initiators of inflammation following infection
or tissue damage [40], although both pro- and anti-
inflammatory properties have been observed [41]. These
initiators of inflammation can mediate cytokine receptor
activation, which leads to downstream upregulation of ef-
fector molecules such as chemokines (e.g., IL-8, RANTES)
and adhesion molecules (e.g., ICAM-1) [42]. Interestingly,
IL-1β and TNF-α produced by retinal microglia cells
following exposure to hypoxia have been associated
with deleterious effects in the retina [43]. In the oxygen-
induced retinopathy (OIR) model, IL-1β has been indir-
ectly associated to retinal microvascular degeneration
[44]; while in the choroid, it is directly responsible for the
involution of the choroidal blood vessels that results in a
hypoxic sub-retina and consequently loss of RPE and
photoreceptor integrity [45].
IL-10 and IL-4, on the other hand, tend to be viewed

as anti-inflammatory cytokines [41], capable of pro-
tecting the developing brain and possibly retina against
ongoing inflammation. Although, a study showed that
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IL-10 can be implicated in promoting pathological
angiogenesis in an OIR mice model [46], conversely, in
vitro, IL-10 inhibits expression of TNF-α, MIP-1a, and
RANTES in microglial cells [47]. Furthermore, in preg-
nant rats exposed to systemic inflammation, IL-10
treatment reduced the occurrence of brain damage in
their newborn pups [48]. Infants with an IL-10 high-
producer allele were less likely to have white matter
damage on ultrasound and a trend (albeit not significant)
towards a lower prevalence of severe ROP [49]. On the
other hand, no differences in blood IL-4 concentration
were found between infants with ROP and controls in
cord blood [50] or vitreous [13]; however, elevated vitre-
ous IL-4 concentrations have been detected in patients
with diabetic retinopathy [51].

Chemokines
Chemokines induce chemotaxis and regulate movements
of immune cells such as microglia to sites of inflamma-
tion. Chemokines of special interest for ROP patho-
physiology are IL-8, RANTES, monocyte chemotactic
protein 1 (MCP-1), and interferon-inducible T-cell α
chemoattractant (I-TAC).
IL-8 is implicated in both inflammation and neovascu-

larization pathological in the eye [52]. In humans, higher
serum concentration of IL-8 right after birth was associ-
ated with later ROP deemed “in need of treatment” [53],
whereas in rats, increased levels of an IL-8 homologue
were detected during the peak of pathological neovascu-
larization in a model of ROP [54].
RANTES plays an important role in innate immunity,

which is particularly critical to the newborn until ac-
quired immunity is developed. The role of RANTES in
ROP development is not known; however, it has been
found that the concentration of RANTES in the vitreous
of eyes with vasoproliferative severe ROP tends to be
low [13], and a lower serum level was detected in infants
who later developed severe ROP [14, 55]. These data sug-
gest that RANTES might play an important protective
role during ROP, which warrants further investigation.
MCP-1 can attract a variety of immune cells and is

expressed in a wide range of tissues including neurons,
astrocytes, and activated microglia of the brain and neu-
roretina [56]. MCP-1 has the ability to disrupt the blood-
brain barrier and is thought to contribute to the pathogen-
esis of multiple neurodegenerative diseases [56]. Preterm
infants who later developed ROP tended to have higher
cord serum concentrations of MCP-1 than both healthy
preterm peers and infants born at term [57]. Among new-
borns who weighed < 1000 g, those who received/needed
oxygen for more than 6 h had higher MCP-1 concentra-
tions in blood collected on day 3 than their peers who re-
ceived oxygen for a shorter amount of time (even after
adjusting for potential confounders) [58]. In addition,

several studies documented elevated levels of MCP-1 in
the vitreous humor of patients with retinopathy [59, 60],
and in animal models, MCP-1 was shown to be involved
in the induction of the retinal neovascularization possibly
by modulating or attracting macrophages/microglia dur-
ing the ischemic phase of retinopathy [61, 62].

Growth factors
Vascular endothelial growth factor (VEGF) and insulin-
like growth factor-1 (IGF-1) have long been considered
some of the main actors in the pathogenesis of ROP.
However, recent research data suggest that neurotrophins,
matrix metalloproteinases, HIFs, erythropoietin (EPO),
placental growth factor (PlGF), basic fibroblast growth
factors, angiopoietins, and thyroid-stimulating hormone
(TSH) also play a significant role in the progression of
ROP. Some of these evidences will be discussed below.

Neurotrophins: brain-derived neurotrophic factor and
neurotropin 4
Neurotrophins belong to a family of growth factors that
promote neuronal survival and differentiation both in
the central and peripheral nervous systems [63]. Infants
who developed severe ROP tended to have lower serum
concentrations of neurotrophin-4 and brain-derived
neurotrophic factor (BDNF) during the first 3 weeks of
life than those who did not develop severe ROP [14]. In
the same study cohort, specific gene variations of BDNF
were associated with threshold ROP [64]. In a separate
small study, 16 infants who developed ROP had lower
BDNF concentrations than 7 who did not develop ROP
on postnatal day 60 [65].

Metalloproteinases
The matrix metalloproteinases (MMP-1 and MMP-9),
which are responsible for cleaving protein in the extra-
cellular matrix, are important in fetal development, in-
flammatory responses, and angiogenesis [66, 67]. Factors
that are implicated in preterm diseases such as reactive
oxygen species (ROS), growth factors, and various cyto-
kines initiate MMP transcription [68] thereby making me-
talloproteinases (MMPs) biomarkers of interest for ROP.
Systemic inhibition of MMPs in mice reduced neovascu-
larization in an OIR model, while increased concentra-
tions of proteases in the retina (MMPs included) have
been associated with the active phase of retinopathy [69].

HIF1-α and HIF2-α
HIFs are transcription factors that stimulate the release
of a wide variety of growth factors such as members of
the VEGF family, angiopoietins, and EPO. The α-subunits
of HIF-1 and HIF-2 are of special interest in ROP patho-
genesis since they are suppressed during hyperoxia (ROP
phase 1) and upregulated by tissue hypoxia (ROP phase 2)
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[66, 70]. In mice, prevention of HIF-1α degradation in the
hyperoxic phase 1 might prevent hyperoxia-related vessel
loss [71], whereas drug-induced reduction of HIF-1 during
the neovascular phase (phase 2) appears to reduce retinal
neovascularization [72].

VEGF and its receptors (VEGFR 1 and 2)
VEGF is a sub-family of growth factors involved in the
developing retinal vasculature. The active role of VEGF
in ROP pathogenesis seems well established and is sup-
ported by both clinical studies [73, 74], and the benefits
of intravitreal anti-VEGF injections during the neovas-
cular phase of ROP [75]. While suppressed during the
hyperoxic phase 1 in ROP development, high VEGF
levels in phase 2 disturb normal vascularization. VEGF
production is stimulated by hypoxia-induced transcrip-
tion factors such as HIF-1α and HIF-2α, but both oxy-
gen treatment and systemic diseases such as respiratory
distress trigger VEGF production [76].
Although the role of VEGF is established in both ROP

development and treatment, the role of VEGF receptors
(VEGFR 1 and 2) is less clear. VEGFRs promote the dif-
ferentiation of endothelial cells, are important in angio-
genesis, and their expression is increased by hypoxia and
potentiated by VEGF [77]. In a small study measuring
plasma levels of VEGF and VEGF-receptor 1 and 2, only
VEGFR2 was elevated in ROP patients (severe ROP was
not analyzed separately) [78]. In another study, ROP was
associated with an increase in VEGF and VEGF-R2 ex-
pression and blood vessel growth [79]. Conversely, in a
model of OIR in rats, a VEGF-R2 inhibitor reduced in-
travitreal neovascularization [80].

Erythropoietin
EPO has multiple functions in the fetus and the newborn
and was originally viewed as a hematopoietic hormone ex-
clusively stimulating the production of erythrocytes [81].
Since then, other important functions of EPO have been
identified i.e., related to the development of the brain, ret-
ina, cardiovascular [82], and gastrointestinal systems [83].
In preterm newborns, recombinant human EPO (rh-EPO)
is used to reduce transfusion requirements [84] and ap-
pears to attenuate the risk of brain damage [85, 86], ap-
parently through anti-inflammatory, anti-excitatory, and
neuroproliferative pathways [87, 88]. Among preterm new-
born, those who have elevated concentrations of endogen-
ous EPO are more likely than others to have elevated
concentrations of inflammation-related proteins in concur-
rent blood specimens [89]. Elevated EPO concentrations in
the blood of infants born before gestation week 28 were as-
sociated with a variety of morbidities including ROP and
respiratory problems occurring later [90]. It is possible that
EPO plays a direct role in stimulating angiogenesis and

is consistent with high EPO concentrations before
ROP-associated neovascularization occurs [17, 21, 91].
EPO and its receptors are present in the retina, but

the role of EPO in ROP pathogenesis remains to be clari-
fied [84]. Meta-analyses report an increased risk of severe
ROP with EPO-treatment [84]. Like VEGF, EPO is a po-
tent angiogenic factor, and its production is induced by
HIFs. It is conceivable that EPO plays different roles in the
different phases of ROP development [92]. For instance,
low concentrations of EPO in phase 1 contribute to a stop
in angiogenesis, while elevated levels in phase 2 enhance
pathological neovascularization. The concentration of
EPO in the vitreous is correlated with that of VEGF and is
elevated in the vasoproliferative phase of ROP [73].

Insulin-like growth factor 1
Insulin-like growth factor (IGF-1) is a hormone important
for fetal growth, including healthy retinal angiogenesis
[93]. IGF-1 is also probably necessary for normal VEGF
function [94]. Importantly, the placenta and amniotic fluid
are the main sources of IGF-1 during development in
utero, such that after birth, IGF-1 levels decrease pre-
cipitously in premature infants [95, 96]. Inflammation
is another factor that may further reduce the preterm
newborn’s limited IGF-1 production [97]. Low systemic
serum IGF-1 concentration is a risk factor of ROP de-
velopment and is a biomarker that identifies infants at
risk weeks before disease manifests [98]. Low IGF-1 serum
levels are associated with retinal vessel growth delay,
which is directly correlated with the severity of ROP [96];
interestingly, IGF-1 binding protein (IGFB3) was also
found to be decreased in premature infants and may
also contribute to retinal vessel depletion [96].

Placental growth factor
Placental growth factor (PlGF) is a protein in the vascular
growth factor family and is upregulated in pathological
angiogenesis. It is, presumably, an important cofactor for
retinal neovascularization, but PlGF also plays a role in
recruiting immune cells [99, 100]. Unlike its siblings in
the VEGF-family, PlGF is downregulated during hyp-
oxia and exerts an anti-apoptotic effect during hyper-
oxia. PIGF is therefore suggested to be important
during the aberrant neovascular phase of ROP [101]. In
a mouse retinopathy model, PlGF deficiency reduces
pathological vascular leakage [102]. To add to this com-
plexity, PlGF expression is increased upon treatment
with anti-VEGF (bevacizumab) [99].

Basic fibroblast growth factor (bFGF / FGF-2)
Basic fibroblast growth factor (bFGF) is a potent stimulant
of neuronal and endothelial proliferation and is expressed
during vascular [103] and retinal [104] development. Akin
to PlGF, expression of bFGF was downregulated when
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VEGF increases in cultured cells [105] and in mice with
retinopathy [106]. Results from studies on bFGF are con-
flicting. A tendency of lower concentrations of bFGF was
found in the vitreous of infants undergoing vitrectomy
due to severe ROP compared to infants undergoing vitrec-
tomy at term due to congenital cataract [13]. Increased
retinal bFGF expression was detected in a mouse model of
OIR [106], and retinal neuroprotective effects of bFGF are
detected in various animal models [107, 108]. Still, other
studies have reported that bFGF does not contribute to ei-
ther the preservation of a healthy retina or to pathological
neovascularization in animal models [109].

Angiopoietin 1 and 2
Ang1 and Ang2, vascular growth factors important both
in fetal life and after birth, remodel the developing vas-
culature and contribute to vessel stability. Both are li-
gands of the Tie2 receptor, although in an agonist (Ang1)
and antagonistic fashion (Ang2). When Tie2 and VEGF
were inhibited together, retinal angiogenesis was more
efficiently suppressed than with VEGF inhibition alone
[110]. Whereas Ang1 promotes vascular maturation
and stability, Ang2 works to initiate neovascularization
[110, 111]. The concentration of Ang1 and Ang2 is nega-
tively correlated in the vitreous of eyes with severe ROP,
where Ang2 concentration was significantly increased
[112]. These findings set the balance between Ang1 and
Ang2 in ROP pathogenesis.

Thyroid-stimulating hormone
Thyroid function is essential for brain [113] and retinal
[114] development. An association is found between
neonatal hypothyroidism in preterm born children and
poor neurodevelopmental outcome at 3 months and vis-
ual problems at 6 months [115]. However, in line with
unclear definition of hypothyroidism in preterm infants,
low T4 is not consistently associated with altered cogni-
tive function compared to their euthyroid peers at age 7
[116]. When it comes to thyroid function and ROP
pathogenesis, prophylactic supplementation of thyroid
hormone has not reduced ROP prevalence [117]. Further
on, hyperthyrotropin was associated with brain damage
when occurring together with an inflammatory reaction
[118], and it appears to contribute to both the onset and
outcome of the inflammatory process [119]. Yet, both
TSH and the thyroid function could be of interest in
future ROP research.

Semaphorins and ROP
The influence of neuron-derived signaling molecules on
endothelial cell injury during ROP has recently been
highlighted [44, 120, 121]. Classic neuronal guidance cues
and their receptors, particularly class III semaphorins
[122], a large family of conserved proteins originally

implicated in axonal guidance, could act as repulsive mol-
ecules in the hypoxic area of the retina during retinopathy,
thus hindering normal vascularization and contributing to
the formation of abnormal vascular tufts [120]. The patho-
logical mechanism that involve semaphorins in ROP is ini-
tiated when the resting microglia cells become activated
in the ischemic areas of the retina and trigger the secre-
tion of pro-inflammatory cytokines, particularly IL-1 that
stimulate the production of pro-apoptotic/repulsive factor
Semaphorin3A (Sema3A) specifically in retinal ganglion
neurons [44, 120]. Augmentation of Sema3A in areas of
ischemia then contributes to the vascular decay and forms
a chemical barrier that repels neo-vessels towards the
vitreous. Conversely, IL-1 receptor antagonist [44] or
silencing Sema3A expression enhances normal vascular
regeneration within the ischemic retina, thereby pre-
serving neuroretinal function and diminishing aberrant
pre-retinal neovascularization. Therefore, overcoming
the chemical barrier erected by Sema3A accelerates the
vascular regeneration of neural tissues, which restores
metabolic supply, improves retinal function, and reduces
the risk for abnormal intra-vitreal neovascularization.
In a similar manner to Sema3A, Wei et al. [123] re-

cently showed that absence of neuronal Nrf2, a major
stress-response transcription factor responsible for cell-
intrinsic cytoprotective function, results in Sema6A in-
duction in hypoxic/ischemic retinal ganglion cells that
diminished normal revascularization into the avascular
zones in the inner retina from ROP animals. Interestingly,
lentiviral-mediated delivery of Sema6A small hairpin RNA
(shRNA) abrogated the defective retinal revascularization
in Nrf2-deficient mice. Importantly, pharmacologic Nrf2
activation promotes reparative angiogenesis and suppresses
pathologic neovascularization [123]. These findings reveal
a unique function of Nrf2 in reprogramming ischemic tis-
sue towards neurovascular repair via Sema6A regulation,
providing a potential therapeutic strategy for ischemic
retinal diseases.
Other studies have also highlighted the anti-angiogenic

properties of semaphorins. Fukushima [124] found that
Sema3E expressed in retinal neurons guides normal and
pathological vessels through its receptor Plexin-D1. In the
OIR model, increased PlexinD1 expression in neovessels
prevents VEGF-induced disoriented projections of endo-
thelial filopodia. Of greater therapeutic significance, intra-
vitreal administration of Sema3E suppressed pathological
neovascularization, while preserving the desired regener-
ation of the retinal vasculature into ischemic retinal areas.
The same effect occurs with the intravitreal administration
of Sema3C. Yang [125] demonstrated that Sema3C
acting through the receptors Neuropilin-1 and Plex-
inD1, which are strongly expressed on vascular tufts,
induced VE-cadherin internalization and abrogated
VEGF-induced activation of the kinases AKT, FAK,
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and p38MAPK. This resulted in a disrupted endothe-
lial tip cell formation and cell–cell contacts that inhib-
ited the formation of pathological pre-retinal vascular
tufts during OIR. All these findings suggest that sema-
phorins are potential targets to be explored in the
clinic setting to prevent ROP.

Choroidal degeneration in ROP
At present, the inner retina has been considered the
primary region affected in human ROP and animal
models. However, it is known that dysfunction of the
outer retina occur in a number of older children
formerly afflicted with ROP [126–129]. Hence, with
increasing survival of extremely premature neonates
(at risk of ROP) [130], an insidious recognition of
progressive outer retinal dysfunctions [126, 127] is
being observed in former ROP patients, requiring
follow-up beyond childhood [131, 132], as recently
reviewed [133].
In recent years, several clinical and animal studies

have reported extensive choroidal vascular degeneration
associated with ROP development. Because choroidal
vasculature is the exclusive source of oxygen and nutrients
to the photoreceptors and RPE cells, it has been proposed
that involution of the choroid may be associated with re-
sidual visual loss following ROP [35], as it leads to marked
sub-retinal hypoxia [45]. In support of this inference, we
have demonstrated that choroidal degeneration which oc-
curs in the first postnatal week during OIR is followed
weeks later by a loss in RPE integrity and a degeneration
of photoreceptors [45]. Consistent with these observa-
tions, a number of recent clinical studies in older children
and young adults revealed using optical coherence tom-
ography a > 25% choroidal thinning in former ROP pa-
tients [132, 134–137]; importantly, this choroidal
thinning is first detected in the human newborn [137],
as documented in animal models of ROP [35]. Hence
the vasculopathy seen in ROP affects not only the inner
retina but also the choroid—important for RPE and
photoreceptor integrity.
The mechanism of choroidal involution in ROP has

been poorly explored. Shao et al. [35] demonstrated that
a sustained degeneration of the choroid in different ani-
mal models of ROP is largely through the actions of the
electrophile 15-deoxy-12,14-PGJ2 (15d-PGJ2), a nonen-
zymatic product of prostaglandin D2 (PGD2) that pro-
vokes apoptotic death in endothelial cells by inducing
oxidant stress. Importantly, choroidal circulation in new-
born animals is significantly controlled by high local
levels of prostaglandin D2 (PGD2) [138, 139], which, in
turn, curtails the autoregulation of choroidal blood flow
in response to hyperoxic exposure, resulting in in-
creased oxygenation of the outer retina [140]. Notably,
a high density of PGD2 receptors is found in the choroid

[141, 142]. The ensuing oxidative environment, as that
seen in the immature subject [143, 144], facilitates the
nonenzymatic conversion of PGD2 into 15d-PGJ2
[145], which participates in redox cell signaling [125, 146]
and is cytotoxic to endothelial cells under high concentra-
tions [147].
Zhou et al. recently [45] explored the role of IL-1β on

choroidal involution and consequently on sub-retinal
dysfunction in a ROP model in rodents. In this study,
IL-1β was abundantly expressed in the sub-retina of OIR
animals and was associated with an early-sustained invo-
lution of the choroid, which leads to a markedly hypoxic
sub-retina and a progressive loss of RPE and photore-
ceptors. Early neonatal treatment with IL-1 receptor an-
tagonist preserved choroid, prevented outer retinal
hypoxia, and significantly blunted RPE and photorecep-
tor loss associated with OIR. These observations suggest
a critical role for IL-1β (known to trigger prostaglandin
synthase expression) in inducing choroidal degeneration
and long-term sub- and outer- retinal disorder following
OIR/ROP.
Interestingly, it has been noted that choriocapillary in-

volution associated with OIR remains sustained into
young adulthood, contrary to inner retinal revasculariza-
tion that occurs in the middle of the second postnatal
week. An additional mechanism may also involve VEGF
which is increased in the inner retina during pathological
neovascularization, but decreased in the choroids of rats
subjected to OIR [35]. Accordingly, choroidal vasculature
in preterm newborns continues to develop after exposure
to lower oxygen levels [135]; however, high oxygen level
exposition leads to less VEGF expression by RPE cells that
may contribute to slowing choroidal development
resulting in thinner choroid. A recent clinical study has
proposed that the time of oxygen exposure is one of
the most relevant and negative predictor for choroidal
thickness in ROP patients [148]. Concordantly, persist-
ent thin choroid in children with a history of ROP may
also reflect a delay in choroidal development. Collect-
ively, these findings highlight the importance and rele-
vance not only of the retinal vasculature but also of
that of the choroid as a possible contributor to adverse
outcome of ROP.
In line with this concept, it should be pointed out that

ROP patients are notorious to developing myopia later
in life. Hence, choroid thinning may contribute. Yet in
this context, the dioptric change in axial length is altered
by a few millimeters [149], whereas thinning of the chor-
oid in humans with ROP is in the range of less than
100 μm; hence, the choroidal contribution to myopia in
ROP cannot be simply attributed to axial length changes,
scleral growth, and dioptric shift of the outer laminal
membrane should also be accounted for myopic changes
in ROP [150].
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Current and potential therapeutics in ROP
Current treatment strategies—laser ablation and anti-VEGF
therapy
As mentioned earlier, peripheral retinal ablation by con-
ventional laser therapy has for many years been the gold
standard of ROP treatment. Despite the fact that laser
ablation substantially helps prevent blindness, it has
moderate effects in eyes with posterior ROP [151], as it
may permanently reduce the visual field in addition to
inducing myopia [152]. Hence, the development of
preventive and less destructive therapies for ROP is de-
sirable. Accordingly, the potential use of anti-VEGF
therapy in ROP has been proposed. The anti-VEGF
bevacizumab was approved in 2004 by the FDA for
treatment of metastatic colorectal cancer. Bevacizumab
was shown to inhibit tumor angiogenesis and extend
patients’ lives by about 5 months when given intraven-
ously as a combination treatment along with standard
chemotherapy drugs [153, 154]. Off-label use of beva-
cizumab for ocular neovascular diseases started shortly
thereafter. In eyes with ROP, it was found to suppress
pathological neovascularization in phase 2 and an RCT
reported in 2011 benefit from bevacizumab injections
compared with laser therapy in eyes with the most
posterior ROP (in zone 1). Several clinical studies have
documented the use of bevacizumab, ranibizumab, pegap-
tanib, and recently aflibercept as a therapy for the treat-
ment of ROP [75, 155, 156]. A generally favorable
outcome has been detected in the majority of the reports;
however, in some of the studies, adverse effects such as
endophthalmitis, hemorrhage, retinal detachment, and
cataract were also reported [75, 155, 157]. Intravitreal in-
jections of anti-VEGF are by many ophthalmologists con-
sidered the primary treatment in eyes with posterior ROP
[158, 159]. The main advantages of anti-VEGF therapy
over the use of laser include (a) easier administration
under topical anesthesia [160–163], (b) less distortion of
macula in posterior ROP [160], and (c) preservation of the
peripheral retina that allows continuous vascularization of
the retina and prevents the peripheral visual field defects
of laser ablation [155]. Concerns have, however, been
raised regarding the possible ocular and systemic effects
of anti-VEGF in the premature infants [164]. Possible dis-
advantages during the use of anti-VEGF in the clinic or
animals models include (a) systemic complications after
intravitreal injections [155], (b) delayed vascularization of
retina [160], (c) VEGF blockade alone cannot completely
eliminate pathological angiogenesis, suggesting that other
factors could be involved [165], and (d) the suppression of
VEGF in the eye can affect the survival and/or the func-
tion of non-vascular cells including neurons [166], Muller
cells [167], cilliary body [168], RPE cells, choriocapillaris,
and photoreceptors [169]; this aspect is particularly rele-
vant to the developing neonate in phase of troubling

follow-up results in patients treated with bevacizumab
[170]. Therefore, systematic research to maximize ef-
fectiveness while minimizing side effects of anti-VEGF
therapy in ROP is still needed, as dose, duration of
action, and molecular entity of anti-VEGF need to be
considered.

Potential preventive strategies
Some promising preventive approaches such as supple-
mentation with IGF-1 and omega-3 fatty acids to prevent
vascular injury in phase 1 ROP will be discussed below.
Likewise, future therapies such as stem cell transplant-
ation and gene therapies may be part of new strategies to
treat ROP as well as targeted modulations of the inflam-
matory response in the preterm born infant.

Serum IGF-1
Consistent with the evidence that IGF-1 is as strong as
predictor of ROP [98], Löfqvist, C. et al. proposed an al-
gorithm named WINROP (weight, insulin-like growth
factor I, neonatal, retinopathy of prematurity) in which
IGF-I values can be used to screen for infants who might
be at risk of ROP [12]. Using serial weight and IGF-1 mea-
surements in a cohort of 50 premature babies, WINROP
predicted all infants who later developed ROP by a mean
age of 10 weeks [171]; but in other studies, prediction was
not perfect, still requiring routine ophthalmologic evalu-
ation based on current standards [172].
Nonetheless, IGF-1 supplementation has begun to be

explored in premature babies at risk of ROP. Evidence
to support such a trial has been backed by the following
observations. Breast feeding increases serum IGF-1 [173];
this may be due to high levels of IGF-1 in human
milk and/or to the presence of specific proteolysis of
IGF/IGFBP-2 complexes that increase the bioavail-
ability of IGF-1 [174]. In other studies, early fresh-frozen
plasma transfusion, as a source of exogenous IGF-1, in-
creased the serum levels of IGF-1 in premature infants
and decreased the risk of ROP [175, 176]. Likewise, ad-
ministration of rhIGF-1 in mice attenuated OIR [177]. Re-
cently, a randomized, multicenter (phase IIb) clinical trial
of continuous infusion of rhIGF-1 has been launched to
address whether maintaining normal physiological levels
of IGF-1 may prevent ROP (and other neonatal complica-
tions) in premature infants (NCT01096784).

Omega-3 supplements
Polyunsaturated fatty acids (PUFAs) such as docosahex-
aenoic acid (DHA) and arachidonic acid are fundamental
structural components of neuronal and endothelial cells
[178] and are required to maintain optimal retinal func-
tions. Connor et al. [179] demonstrated that dietary
omega-3 fatty acids protect against pathologic neovascu-
larization in a mouse model of ROP. The protective
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effect of omega-3-PUFAs and their bioactive metabolites
was mediated, in part, through suppression of the
pro-inflammatory cytokine tumor necrosis factor-alpha
(TNF-α) present in a subset of microglia that were closely
associated with retinal vessels. These findings suggested
the possibility that omega-3 fatty acid supplementation to
premature infants may be of benefit in preventing ROP.
In this regard, a recent meta-analysis showed that
LCPUFA supplementation of infant formulas improves
infants’ visual acuity up to 12 months of age [180].
However, the impact of fortification of infant formula
or breast-feeding mothers supplemented with omega-3
fatty acids to treat ROP needs further study. Currently,
the University of California is conducting a trial to sup-
plement very low birth weight infants with omega-3
PUFAs for the prevention of ROP (NCT02486042).

Future therapies
Stem cell therapy
Stem cells provide an attractive therapeutic approach in
treating ischemic retinopathies including ROP, due to its
potential in tissue regeneration. Several groups have
shown that different populations of stem cells could
promote vascular repair in OIR model [181–183]. For
instance, myeloid progenitors were able to migrate to
the retinal avascular areas, differentiate into microglia,
and participate in the reduction of vasoobliteration and
neovascularization in OIR-transplanted animals [181].
Furthermore, bone marrow-derived stem cells targeted
retinal astrocytes and promoted or inhibited retinal angio-
genesis [182]. Another candidate in cell-based therapy for
ROP is endothelial progenitor cells (EPCs) [184]. Inter-
estingly, EPCs derived from human peripheral blood

Fig. 1 Summary of the current inflammatory and neuronal-derived factors involved in the pathogenesis of ROP. At birth, premature infants are
deficient in factors essential for healthy blood vessel development. When premature infants are exposed to excess supplemental oxygen, the
latter contributes to retinal and choroidal vascular obliteration due to oxidant stress, suppression of oxygen-regulated pro-angiogenic factors,
and an excessive production of pro-inflammatory factors. Because of the vascular dropout, a compensatory, albeit aberrant and destructive,
neovascularization occurs, driven by hypoxia-induced angiogenic factors. Some of the current therapeutic interventions rely on invasive procedures,
such as laser photocoagulation, whereby affected areas of the retina are cauterized. Other treatments, including anti-VEGF therapy, as well as IGF-1 and
omega-3, are currently being more thoroughly evaluated. In addition, the development of anti-inflammatory drugs as well as, future regenerative
therapeutic interventions involving stem cells are also being explored and considered for the treatment of ROP
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(injected intravitreally) were found to incorporate in the
resident vasculature and promote tube formation—
essential for vascular remodeling in ischemic regions
[185]. However, the benefits of EPCs remain controversial
since they have also been shown to contribute to patho-
logical neovascularization in humans [186, 187].

Gene therapy
Gene therapy may be a possible treatment option for pa-
tients with ROP. Viral vectors can be used to transport
therapeutic material to cells of the retina [188]. Adenovirus
(Ad), adeno-associated virus (AAV), and lentivirus are most
commonly used for retinal transgene delivery [189]. In this
regard, a recent study showed that sub-retinal injection of
an AAV carrying any of a variety of antiangiogenic
genes including endostatin, pigment epithelium-derived
factor (PEDF), and tissue inhibitor of metalloprotein-
ases 3 (TIMP3) was able to significantly inhibit patho-
logical neovascularization in the ROP model [190]. Thus,
gene therapy-mediated regulation of cytokines and growth
factors involved in ROP is a potential albeit at present far-
fetching approach in premature babies.

Conclusion
The search for biomarkers to identify children at risk of
vision-threatening ROP has led to identification of sev-
eral promising indicators related to inflammation and
angiogenesis. Although many of the harmful effects of
pre- and postnatal inflammation are known, there is a
lack of validated markers that can help identify children
at-risk of ROP. The two-phase development of ROP un-
derscores the importance of assessing biomarker con-
centrations over time when studying ROP pathogenesis,
since a specific biomarker can exert opposing outcomes
depending on the disease phase. Less destructive tissue-
preserving therapies (than current laser ablation) are being
explored, and include IGF-1, PUFAs, and potentially stem
cell therapy, as well as, modulation of factors involved in
neuronal guidance of vasculature and inflammation. In
the overall context of ROP, the role of choroid degener-
ation in ROP also needs to be accounted for (Fig. 1). Al-
though it is clear that a large body of our knowledge on
the molecular aspects of the pathogenesis of ROP stems
from animal models with OIR, yet OIR does not fully re-
flect the complex human condition of ROP. This empha-
sizes the added importance of epidemiological studies
with an unbiased molecular dimension.
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