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Abstract: In the paper, Scanning Electron Microscopy (SEM), Energy-dispersive X-ray Spectroscopy
(EDS), X-ray Photoelectron Spectroscopy (XPS), and Glow Discharge Optical Emission Spectroscopy
(GDOES) analyses of calcium- and phosphorus-enriched coatings obtained on commercial purity
(CP) Titanium Grade 2 by plasma electrolytic oxidation (PEO), known also as micro arc oxidation
(MAO), in electrolytes based on concentrated phosphoric acid with calcium nitrate tetrahydrate,
are presented. The preliminary studies were performed in electrolytes containing 10, 300, and
600 g/L of calcium nitrate tetrahydrate, whereas for the main research the solution contained 500 g/L
of the same hydrated salt. It was found that non-porous coatings, with very small amounts of
calcium and phosphorus in them, were formed in the solution with 10 g/L Ca(NO3)2·4H2O, whereas
the other coatings, fabricated in the consecutive electrolytes containing from 300 up to 650 g/L
Ca(NO3)2·4H2O, were porous. Based on the GDOES data, it was also found that the obtained porous
PEO coating may be divided into three sub-layers: the first, top, porous layer was the thinnest;
the second, semi-porous layer was about 12 times thicker than the first; and the third, transition
sub-layer was about 10 times thicker than the first. Based on the recorded XPS spectra, it was possible
to state that the top 10-nm layer of porous PEO coatings included chemical compounds containing
titanium (Ti4+), calcium (Ca2+), as well as phosphorus and oxygen (PO4

3− and/or HPO4
2− and/or

H2PO4
−, and/or P2O7

4−).

Keywords: CP Titanium Grade 2; plasma electrolytic oxidation (PEO); micro arc oxidation (MAO);
calcium nitrate tetrahydrate; SEM; EDS; XPS; GDOES

1. Introduction

Nowadays, light metals such as titanium [1–4], niobium [5–9], tantalum [10–15], and their
alloys [16–22], after electrochemical treatment (electropolishing and/or plasma electrolytic oxidation),
may be used as biomaterials (implant materials) because of their mechanical properties [23–27],
good corrosion resistance [28–31] in body fluids, and osteointegration [32–34]. The electropolishing
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processes, such as standard electropolishing (EP) [35–39], magnetoelectropolishing (MEP) [40–43],
high-current density electropolishing (HDEP) [44–46], and high-voltage electropolishing
(HVEP) [47], allow for the formation of nano-layers on a metal surface, which may consist of
metal phosphates/sulfates with additives originating from solution [39] studied for chemical
composition [48–52] and surface hydration [53,54], as well as for mechanical properties [24]. To obtain
porous micro-layers as coatings on light metals and alloys, plasma electrolytic oxidation (PEO), known
also in the literature as micro arc oxidation (MAO) [1–4,7–22], should be used.

The main advantage of the PEO process is the formation of porous coatings which are enriched
in ions originating from the electrolyte used [55]. This is a very important characteristic, because
the biomaterials’ top layers (in this case the PEO coating) act as transition layers between bone
structure and metal, and they should mimic the bone tissue. Therefore, the coatings’ bone-like
structure should be non-stoichiometric and enriched mainly in calcium (Ca2+) and phosphorus
(H2PO4

−, HPO4
2−, PO4

3−). It should be noted that in biological apatites, the Ca2+ ions may be
substituted by other ions, e.g., Mg2+, Sr2+, Na+, K+, Si4+, whereas PO4

3− groups may be substituted
by CO3

2− [56,57]. It is also possible to find in the literature a chemical formula of bone, i.e.,
Ca8.3(PO4)4.3(CO3)x(HPO4)y(OH)3, where x + y ≈ 1.7, knowing that x increases and y decreases
with age [56]. Additionally, it may be stated that other chemical elements may be used in substitution
of the calcium Ca2+ ions. These ions, among others, may be bactericidal copper (Cu2+, Cu+) [22,58–62]
or silver (Ag+) [63–66]. In addition, it was determined that the roughness parameters [67,68] may be
used to describe the porosity of the top surface of porous coatings, i.e., the higher the voltage used in
the PEO process, the higher the roughness will be [19,61], which may be explained by the fact that for
large pores, a high surface roughness is recorded.

In the present paper, new porous coatings enriched in calcium and phosphorus and obtained in
an electrolyte based on concentrated phosphoric 85% H3PO4 acid and calcium nitrate tetrahydrate
Ca(NO3)2·4H2O under DC voltage conditions, with and without pulsation, is presented. Analysis
of the available literature shows that most commonly used electrolytes containing calcium ions,
which may be used in PEO treatments of titanium and its alloys, contain in themselves inter alia
calcium dihydrohypophosphite [34], calcium acetate hydrate [69], disodium hydrogen phosphate [70],
Ca-β-glycerophosphate [71], calcium acetate [72], and tricalcium phosphate [73].

2. Method

The plasma electrolytic oxidation (micro arc oxidation) process was used for the treatment of
samples of commercial purity (CP) Titanium Grade 2 with dimensions of 10 mm × 10 mm × 2 mm.
The plasma electrolytic oxidation (PEO) during the preliminary studies was performed with an average
voltage of 450 ± 46 V, and pulsation at a frequency of 300 Hz during 3 min of treatment by using
a three-phase transformer with six diodes of Greatz Bridge in electrolytes containing 10, 300, and
600 g/L of calcium nitrate tetrahydrate dissolved in 1000 mL concentrated 85% analytically pure
H3PO4 (98 g/mole). The main studies were performed at 500 VDC, 575 VDC, 650 VDC voltages without
any pulsation by using a commercial DC power supply PWR 1600 H, Multi Range DC Power Supply
1600 W, 0–650 V/0–8 A. The electrolyte, used in the main studies, consisted of a concentrated 85%
analytically pure H3PO4 (98 g/mole) acid, 1000 mL, with 500 g of calcium nitrate Ca(NO3)2·4H2O
dissolved in it.

A scanning electron microscope Quanta 250 FEI (Field Electron and Iron Company, Hillsboro, OR,
USA) with Low Vacuum and ESEM mode and a field emission cathode, as well as an Energy-dispercive
X-ray Spectroscopy (EDS, Silicon Drift Detectors: Keith Thompson, Thermo Fisher Scientific, Madison,
WI, USA), system in a Noran System Six with nitrogen-free silicon drift detector, were used.

The Glow Discharge Optical Emission Spectroscopy (GDOES) measurements on PEO-oxidized
titanium samples were performed on a Horiba Scientific GD Profiler 2 instrument (HORIBA Scientific,
Palaiseau, France) using radio frequency (RF) asynchronous pulse generator under the plasma
conditions (pressure: 700 Pa, power: 40 W, frequency: 3000 Hz, duty cycle: 0.25, anode diameter:
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4 mm). The GDOES signals of calcium (423 nm), phosphorus (178 nm), oxygen (130 nm), nitrogen
(149 nm), hydrogen (122 nm), and titanium (365 nm) were measured [74–76].

The X-ray Photoelectron Spectroscopy (XPS) measurements on studied samples’ surfaces were
performed by means of a SCIENCE SES 2002 instrument (SCIENTA AB, ScientaOmicron, Uppsala,
Sweden) using a monochromatic (Gammadata-Scienta) Al Kα (hν = 1486.6 eV) X-ray source (18.7 mA,
13.02 kV). Scan analyses were carried out with an analysis area of 1 × 3 mm and a pass energy of
500 eV with the energy step 0.2 eV and step time 200 ms. The binding energy of the spectrometer was
calibrated by the position of the Fermi level on a clean metallic sample. The power supplies were
stable and of high accuracy. The experiments were carried out in an ultra-high vacuum system with
a base pressure of about 6 × 10−8 Pa. The XPS spectra were recorded in normal emission. For the XPS
analyses, CasaXPS 2.3.14 software (Shirley background type) [77], with the help of XPS tables [78],
was used. All the binding energy values presented in this paper were charge corrected to C 1s at
284.8 eV.

3. Results

In Figure 1, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications
as well as the EDS spectrum (e) of the porous coating formed on CP Titanium Grade 2 after PEO
treatment at a voltage of 450 V with a pulsation of 300 Hz after 3 min in an electrolyte containing
10 g of calcium nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated 85% phosphoric
acid H3PO4, are presented. The obtained surface is not porous with small islands within a dozen
of micrometers, which contain phosphorus (ca. 0.5 at %) and calcium (ca. 0.1 at %) compounds,
resulting in a calcium-to-phosphorus Ca/P ratio equal to ca. 0.2. However, the EDS analysis shows
that the amount of calcium in most places, besides the mentioned islands, is null.
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10,000×. 
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treatment at a voltage of 450 V with a pulsation of 300 Hz after 3 min in an electrolyte containing 300 
g of calcium nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid H3PO4, 
are presented. The obtained coatings are porous and contain calcium (3.7 ± 0.6 at %; median: 3.8 at %, 
range: 1.9 at %), phosphorus (45 ± 0.9 at %; median: 45.1 at %, range: 2.7 at %), and titanium (51.2 ± 1.3 
at %; median: 51.1 at %, range: 3.8 at %), which may have originated both from coatings as well as 
from the matrix. Based on the EDS data, calcium-to-phosphorus Ca/P ratios equal to 0.08 ± 0.01 
(median: 0.09, range: 0.04) were found. 
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Figure 1. Scanning Electron Microscopy (SEM) pictures (a–d) and Energy-dispersive X-ray Spectroscopy
(EDS) spectrum (e) of the porous coating formed on commercial purity (CP) Titanium Grade 2 after
Plasma Electrolytic Oxidation (PEO) treatment at a voltage of 450 V in 10 g Ca(NO3)2·4H2O in 1000 mL
H3PO4 electrolyte. Magnifications: (a) 500×, (b) 1000×, (c) 5000×, (d) 10,000×.

In Figure 2, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications
as well as the EDS spectrum (e) of the porous coating formed on CP Titanium Grade 2 after PEO
treatment at a voltage of 450 V with a pulsation of 300 Hz after 3 min in an electrolyte containing
300 g of calcium nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid
H3PO4, are presented. The obtained coatings are porous and contain calcium (3.7 ± 0.6 at %; median:
3.8 at %, range: 1.9 at %), phosphorus (45 ± 0.9 at %; median: 45.1 at %, range: 2.7 at %), and titanium
(51.2 ± 1.3 at %; median: 51.1 at %, range: 3.8 at %), which may have originated both from coatings
as well as from the matrix. Based on the EDS data, calcium-to-phosphorus Ca/P ratios equal to
0.08 ± 0.01 (median: 0.09, range: 0.04) were found.

Metals 2017, 7, 354  4 of 17 

 

(e)

Figure 1. Scanning Electron Microscopy (SEM) pictures (a–d) and Energy-dispersive X-ray 
Spectroscopy (EDS) spectrum (e) of the porous coating formed on commercial purity (CP) Titanium 
Grade 2 after Plasma Electrolytic Oxidation (PEO) treatment at a voltage of 450 V in 10 g 
Ca(NO3)2·4H2O in 1000 mL H3PO4 electrolyte. Magnifications: (a) 500×, (b) 1000×, (c) 5000×, (d) 
10,000×. 

In Figure 2, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications as 
well as the EDS spectrum (e) of the porous coating formed on CP Titanium Grade 2 after PEO 
treatment at a voltage of 450 V with a pulsation of 300 Hz after 3 min in an electrolyte containing 300 
g of calcium nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid H3PO4, 
are presented. The obtained coatings are porous and contain calcium (3.7 ± 0.6 at %; median: 3.8 at %, 
range: 1.9 at %), phosphorus (45 ± 0.9 at %; median: 45.1 at %, range: 2.7 at %), and titanium (51.2 ± 1.3 
at %; median: 51.1 at %, range: 3.8 at %), which may have originated both from coatings as well as 
from the matrix. Based on the EDS data, calcium-to-phosphorus Ca/P ratios equal to 0.08 ± 0.01 
(median: 0.09, range: 0.04) were found. 

(a) (b)

(c) (d)

Figure 2. Cont.



Metals 2017, 7, 354 5 of 17
Metals 2017, 7, 354  5 of 17 

 

 
(e)

Figure 2. SEM pictures (a–d) and EDS spectrum (e) of the porous coating formed on CP Titanium 
Grade 2 after PEO treatment at voltage of 450 V in 300 g Ca(NO3)2·4H2O in 1000 mL H3PO4 
electrolyte. Magnifications: (a) 500×, (b) 1000×, (c) 5000×, (d) 10,000×. 

In Figure 3, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications as 
well as the EDS spectrum (e) of the porous coating formed on CP Titanium Grade 2 after PEO 
treatment at a voltage of 450 V with a pulsation of 300 Hz after 3 min in an electrolyte containing 600 
g of calcium nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid H3PO4, 
are presented. The obtained coatings are porous and contain calcium (7.4 ± 0.6 at %; median: 7.6 at %, 
range: 1.7 at %), phosphorus (51.8 ± 1.5 at %; median: 51.9 at %, range: 3.3 at %), and titanium (40.7 ± 
2.0 at %; median: 40.1 at %, range: 4.6 at %), which may have originated both from the coatings as 
well as from the matrix. Based on the EDS data, calcium-to-phosphorus Ca/P ratios equal to 0.15 ± 
0.01 (median: 0.15, range: 0.03) were found. The decreasing amount of titanium from the EDS 
analysis indicates that with increasing amount of calcium nitrate tetrahydrate from 10 g/L up to 600 
g/L in the electrolyte, an increase in the coating thickness is observed. In addition, it was found that 
the ratio Ca/P can be expressed as Ca/P = 2.4 × 10−4 × x, where x (g/L) is the amount of calcium nitrate 
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Figure 2. SEM pictures (a–d) and EDS spectrum (e) of the porous coating formed on CP Titanium
Grade 2 after PEO treatment at voltage of 450 V in 300 g Ca(NO3)2·4H2O in 1000 mL H3PO4 electrolyte.
Magnifications: (a) 500×, (b) 1000×, (c) 5000×, (d) 10,000×.

In Figure 3, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications
as well as the EDS spectrum (e) of the porous coating formed on CP Titanium Grade 2 after PEO
treatment at a voltage of 450 V with a pulsation of 300 Hz after 3 min in an electrolyte containing
600 g of calcium nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid
H3PO4, are presented. The obtained coatings are porous and contain calcium (7.4 ± 0.6 at %; median:
7.6 at %, range: 1.7 at %), phosphorus (51.8 ± 1.5 at %; median: 51.9 at %, range: 3.3 at %), and titanium
(40.7 ± 2.0 at %; median: 40.1 at %, range: 4.6 at %), which may have originated both from the coatings
as well as from the matrix. Based on the EDS data, calcium-to-phosphorus Ca/P ratios equal to
0.15 ± 0.01 (median: 0.15, range: 0.03) were found. The decreasing amount of titanium from the EDS
analysis indicates that with increasing amount of calcium nitrate tetrahydrate from 10 g/L up to
600 g/L in the electrolyte, an increase in the coating thickness is observed. In addition, it was found
that the ratio Ca/P can be expressed as Ca/P = 2.4 × 10−4 × x, where x (g/L) is the amount of calcium
nitrate tetrahydrate in the electrolyte.

Metals 2017, 7, 354  5 of 17 

 

 
(e)

Figure 2. SEM pictures (a–d) and EDS spectrum (e) of the porous coating formed on CP Titanium 
Grade 2 after PEO treatment at voltage of 450 V in 300 g Ca(NO3)2·4H2O in 1000 mL H3PO4 
electrolyte. Magnifications: (a) 500×, (b) 1000×, (c) 5000×, (d) 10,000×. 

In Figure 3, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications as 
well as the EDS spectrum (e) of the porous coating formed on CP Titanium Grade 2 after PEO 
treatment at a voltage of 450 V with a pulsation of 300 Hz after 3 min in an electrolyte containing 600 
g of calcium nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid H3PO4, 
are presented. The obtained coatings are porous and contain calcium (7.4 ± 0.6 at %; median: 7.6 at %, 
range: 1.7 at %), phosphorus (51.8 ± 1.5 at %; median: 51.9 at %, range: 3.3 at %), and titanium (40.7 ± 
2.0 at %; median: 40.1 at %, range: 4.6 at %), which may have originated both from the coatings as 
well as from the matrix. Based on the EDS data, calcium-to-phosphorus Ca/P ratios equal to 0.15 ± 
0.01 (median: 0.15, range: 0.03) were found. The decreasing amount of titanium from the EDS 
analysis indicates that with increasing amount of calcium nitrate tetrahydrate from 10 g/L up to 600 
g/L in the electrolyte, an increase in the coating thickness is observed. In addition, it was found that 
the ratio Ca/P can be expressed as Ca/P = 2.4 × 10−4 × x, where x (g/L) is the amount of calcium nitrate 
tetrahydrate in the electrolyte. 

(a) (b)

(c) (d)

Figure 3. Cont.



Metals 2017, 7, 354 6 of 17
Metals 2017, 7, 354  6 of 17 

 

 
(e)

Figure 3. SEM pictures (a–d) and EDS spectrum (e) of the porous coating formed on CP Titanium 
Grade 2 after PEO treatment at a voltage of 450 V in 600 g Ca(NO3)2·4H2O in 1000 mL H3PO4 
electrolyte. Magnifications: (a) 500×, (b) 1000×, (c) 5000×, (d) 10,000×. 

In Figure 4, the GDOES signals with their derivates of calcium (a), phosphorus (b), oxygen (c), 
hydrogen (d), carbon (e), nitrogen (f), and titanium (g) of the porous coating formed on CP Titanium 
Grade 2 after PEO treatment at a voltage of 450 V in 10 g, 300 g, and 600 g Ca(NO3)2·4H2O in 1000 mL 
H3PO4 electrolytes, are presented. At first glance, it can be observed that the thickest porous coating 
enriched with calcium, phosphorus, and oxygen was obtained with the PEO treatment in an 
electrolyte containing 600 g/L of calcium nitrate tetrahydrate. As it was presented in the EDS results 
(Figure 1) with the coating/layer obtained from the solution with 10 g/L Ca(NO3)2·4H2O, the GDOES 
signals of oxygen, carbon, and nitrogen may suggest that the formed surface layer consists of organic 
contaminations with very small amounts of calcium-phosphate-titanium compounds. It is worth 
noting [19,22] that the obtained coatings may be divided into three sub-layers, i.e., the first one with 
open and organically contaminated pores; the second semi-porous one, which has a different 
thickness dependent on calcium nitrate tetrahydrate amount in the electrolyte used; and the third 
transition sub-layer. The thicknesses of the first sub-layer for all obtained layers/coatings are about 
the same and correspond to 40 s of GDOES sputtering time. For the sample treated in the electrolyte 
with 10 g/L Ca(NO3)2·4H2O, only the two sub-layers (the first and third) were found, while for the 
next two treatments, i.e., with 300 g/L and 600 g/L of Ca(NO3)2·4H2O, all three sub-layers were 
recorded. It has to be noted that the second sub-layer has a different thickness, and depends on the 
electrolyte used. The higher the amount of calcium nitrate tetrahydrate in the solution, the thicker 
the second/third sub-layer will be, i.e., corresponding with 360 s/350 s and 510 s/400 s of sputtering 
time for 300 and 600 g/L of Ca(NO3)2·4H2O, respectively. Based on carbon and hydrogen GDOES 
signals and their derivates, it is possible to determine the point at which the porosity decreases 
down to null. They are observed as the local maxima in carbon and hydrogen signals, what may be 
explained as organic contaminations from air. Thus, it has to be inferred that all pores are connected 
together and the end of porosity is located inside the third-transitional layer of PEO coating. That 
place/dimple may be used e.g., for drug delivery. All of the sub-layers are enriched in calcium, 
phosphorus, oxygen, and small amounts of nitrogen and titanium. Taking into account the fact that 
calcium nitrate tetrahydrate Ca(NO3)2·4H2O and phosphoric acid H3PO4 were used for the PEO 
treatment of the electrolyte, it should be noted that the coatings are built of titanium (Ti4+), calcium 
(Ca2+), and phosphate (PO43−) and/or hydrogen phosphate (HPO42−) and/or dihydrogen phosphate 
(H2PO4−) and/or pyrophosphates (P2O74−). 

In Figure 5, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications as 
well as the EDS spectrum (e) of the porous coating formed on CP Titanium Grade 2 after PEO 
treatment at a voltage of 450 VDC without any pulsation after 3 min in an electrolyte containing 500 g 
of calcium nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid H3PO4, 
are presented. The obtained coatings are porous with “volcano pores”, which contain calcium (8.8 ± 
0.3 at %; median: 8.8 at %, range: 1.5 at %), phosphorus (49.9 ± 0.9 at %; median: 50.6 at %, range: 4.1 
at %), and titanium (40.5 ± 1.2 at %; median: 40.7 at %, range: 5.2 at %), and may have originated both 
from the coatings as well as from the matrix. Based on the EDS data, a calcium-to-phosphorus Ca/P 
ratio equal to 0.18 ± 0.01 (median: 0.18, range: 0.01) was found. Therefore, it follows that with using 
DC voltage (450 VDC) without any pulsation and an electrolyte with a smaller amount (500 g/L) of 

Figure 3. SEM pictures (a–d) and EDS spectrum (e) of the porous coating formed on CP Titanium Grade
2 after PEO treatment at a voltage of 450 V in 600 g Ca(NO3)2·4H2O in 1000 mL H3PO4 electrolyte.
Magnifications: (a) 500×, (b) 1000×, (c) 5000×, (d) 10,000×.

In Figure 4, the GDOES signals with their derivates of calcium (a), phosphorus (b), oxygen (c),
hydrogen (d), carbon (e), nitrogen (f), and titanium (g) of the porous coating formed on CP Titanium
Grade 2 after PEO treatment at a voltage of 450 V in 10 g, 300 g, and 600 g Ca(NO3)2·4H2O in
1000 mL H3PO4 electrolytes, are presented. At first glance, it can be observed that the thickest porous
coating enriched with calcium, phosphorus, and oxygen was obtained with the PEO treatment in
an electrolyte containing 600 g/L of calcium nitrate tetrahydrate. As it was presented in the EDS
results (Figure 1) with the coating/layer obtained from the solution with 10 g/L Ca(NO3)2·4H2O,
the GDOES signals of oxygen, carbon, and nitrogen may suggest that the formed surface layer consists
of organic contaminations with very small amounts of calcium-phosphate-titanium compounds. It is
worth noting [19,22] that the obtained coatings may be divided into three sub-layers, i.e., the first one
with open and organically contaminated pores; the second semi-porous one, which has a different
thickness dependent on calcium nitrate tetrahydrate amount in the electrolyte used; and the third
transition sub-layer. The thicknesses of the first sub-layer for all obtained layers/coatings are about
the same and correspond to 40 s of GDOES sputtering time. For the sample treated in the electrolyte
with 10 g/L Ca(NO3)2·4H2O, only the two sub-layers (the first and third) were found, while for
the next two treatments, i.e., with 300 g/L and 600 g/L of Ca(NO3)2·4H2O, all three sub-layers were
recorded. It has to be noted that the second sub-layer has a different thickness, and depends on
the electrolyte used. The higher the amount of calcium nitrate tetrahydrate in the solution, the thicker
the second/third sub-layer will be, i.e., corresponding with 360 s/350 s and 510 s/400 s of sputtering
time for 300 and 600 g/L of Ca(NO3)2·4H2O, respectively. Based on carbon and hydrogen GDOES
signals and their derivates, it is possible to determine the point at which the porosity decreases
down to null. They are observed as the local maxima in carbon and hydrogen signals, what may
be explained as organic contaminations from air. Thus, it has to be inferred that all pores are
connected together and the end of porosity is located inside the third-transitional layer of PEO
coating. That place/dimple may be used e.g., for drug delivery. All of the sub-layers are enriched
in calcium, phosphorus, oxygen, and small amounts of nitrogen and titanium. Taking into account
the fact that calcium nitrate tetrahydrate Ca(NO3)2·4H2O and phosphoric acid H3PO4 were used for
the PEO treatment of the electrolyte, it should be noted that the coatings are built of titanium (Ti4+),
calcium (Ca2+), and phosphate (PO4

3−) and/or hydrogen phosphate (HPO4
2−) and/or dihydrogen

phosphate (H2PO4
−) and/or pyrophosphates (P2O7

4−).
In Figure 5, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications

as well as the EDS spectrum (e) of the porous coating formed on CP Titanium Grade 2 after PEO
treatment at a voltage of 450 VDC without any pulsation after 3 min in an electrolyte containing 500 g of
calcium nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid H3PO4, are
presented. The obtained coatings are porous with “volcano pores”, which contain calcium (8.8 ± 0.3 at
%; median: 8.8 at %, range: 1.5 at %), phosphorus (49.9 ± 0.9 at %; median: 50.6 at %, range: 4.1 at %),
and titanium (40.5 ± 1.2 at %; median: 40.7 at %, range: 5.2 at %), and may have originated both from
the coatings as well as from the matrix. Based on the EDS data, a calcium-to-phosphorus Ca/P ratio
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equal to 0.18 ± 0.01 (median: 0.18, range: 0.01) was found. Therefore, it follows that with using DC
voltage (450 VDC) without any pulsation and an electrolyte with a smaller amount (500 g/L) of calcium
nitrate tetrahydrate, it is possible to obtain more calcium in coatings than it was using the three-phase
transformer with six diodes of Greatz Bridge and the solution with 600 g/L of Ca(NO3)2·4H2O.

In Figure 6, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications
as well as the EDS spectrum (e) of the porous coating formed on CP Titanium Grade 2 after PEO
treatment at a voltage of 500 VDC without any pulsation after 3 min in an electrolyte containing 500 g of
calcium nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid H3PO4, are
presented. The obtained coatings are porous, and more “volcano pores” with bigger diameters were
found on them than on the coatings treated at 450 VDC. Based on the EDS results, it is possible to state
that the porous coatings contain calcium (11 ± 1.5 at %; median: 11 at %, range: 5.8 at %), phosphorus
(50.5 ± 1.0 at %; median: 50.4 at %, range: 3.4 at %), and titanium (38.5 ± 1.1 at %; median: 38.7 at %,
range: 4.3 at %). Calcium-to-phosphorus Ca/P ratios equal to 0.22 ± 0.03 (median: 0.22, range: 0.12)
were obtained. From the results, it seems that the PEO treatment at 500 VDC allows the formation of
coatings with higher amount of calcium compared to those described before. Therefore, the other two
higher potentials, i.e., 550 VDC and 650 VDC, were used in order to find even higher Ca/P ratios.

In Figure 7, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications
as well as the EDS spectrum (e) of the porous coating formed on Titanium Grade 2 after PEO treatment
at a voltage of 550 VDC without any pulsation after 3 min in an electrolyte containing 500 g of calcium
nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid H3PO4, are presented.
The obtained coatings are porous and look similar to those obtained after PEO treatment at 500 VDC.
The porous coatings formed at 550 VDC contain calcium (10 ± 0.7 at %; median: 10 at %, range: 2.4 at %),
phosphorus (53.6 ± 1.8 at %; median: 53.1 at %, range: 6.2 at %), and titanium (36.4 ± 1.8 at %; median:
36.6 at %, range: 5.6 at %). The calcium-to-phosphorus Ca/P ratios were found to be 0.9 ± 0.02
(median: 0.19, range: 0.05). From this, it follows that further increasing the voltage leads to a decrease
of the amount of calcium in the PEO coating.

In Figure 8, the SEM images with 500× (a), 1000× (b), 5000× (c), and 10,000× (d) magnifications as
well as the EDS spectrum (e) of the porous coating formed on CP Titanium Grade 2 after PEO treatment
at a voltage of 650 VDC without any pulsation after 3 min in an electrolyte containing 500 g of calcium
nitrate tetrahydrate Ca(NO3)2·4H2O in 1000 mL of concentrated phosphoric acid H3PO4, are presented.
The obtained coatings are porous but it should be noted that they exhibit the most developed area
among all of those surveyed, and look similar to those obtained after PEO treatment at 500 VDC.
The chemical composition of the formed PEO coating was as follows: calcium (9.8 ± 0.3 at %; median:
9.8 at %, range: 1.3 at %), phosphorus (50.1 ± 0.7 at %; median: 50.4 at %, range: 2.6 at %), and titanium
(40.1 ± 0.9 at %; median: 39.8 at %, range: 3.0 at %). The calcium-to-phosphorus Ca/P ratios were
found to be equal to 0.19 ± 0.01 (median: 0.2, range: 0.02). This confirms that further increasing voltage
up to 650 VDC results in a decrease of the amount of calcium in the formed PEO coating.

In Figure 9, XPS spectra of coatings formed on CP Titanium Grade 2 after PEO treatment at
voltages of 450 VDC, 500 VDC, and 650 VDC after 3 min in 500 g/L of Ca(NO3)2·4H2O in 1000 mL
H3PO4 electrolyte, are presented. The obtained XPS results clearly show that in the top layer (10 nm)
there is titanium (Ti4+), calcium (Ca2+), as well as phosphorus and oxygen with hydrogen, most
likely as PO4

3− and/or HPO4
2− and/or H2PO4

−, and/or P2O7
4− present, which is confirmed by

the binding energies, i.e., Ti 2p3/2 (460–460.4 eV), Ca 2p3/2 (347.4–347.7 eV), P 2p (133.9–134.4 eV),
and O 1s (531.5–531.6 eV). In addition, based on the peaks of oxygen O 1s and phosphorus P 2p,
the oxygen-to-phosphorus O/P ratios, which are within the range of 1.4–1.7, for all three coatings
were found. Taking into account the information from the EDS studies for DC voltages without
pulsation, which indicated that Ca/P ratios for all coatings were equal to ca. 0.2, one may conclude
that the obtained PEO coating compounds are not stoichiometric.
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Figure 8. SEM pictures (a–d) and EDS spectrum (e) of the porous coating formed on CP Titanium
Grade 2 after PEO treatment at a voltage of 650 VDC in 500 g Ca(NO3)2·4H2O in 1000 mL H3PO4
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Plasma electrolytic oxidation (micro arc oxidation) was developed on CP Titanium Grade 2 to
obtain porous, calcium- and phosphorus-enriched, coatings to be used as biocompatible surfaces as
well as for automotive and industrial catalysts. SEM, EDS, XPS, and GDOES techniques were used to
study the PEO coatings. In the experiments, two types of DC voltages, i.e., with and without pulsation,
were used to fabricate these PEO coatings. The preliminary studies were performed on samples, on
which the porous coatings were formed in electrolytes containing 10, 300, and 600 g/L of calcium
nitrate tetrahydrate with the use of a three-phase transformer with six diodes of Greatz Bridge. The
obtained results clearly show that the coating formed in the solution with 10 g/L Ca(NO3)2·4H2O is
not porous and that there are islands on it containing mainly calcium, phosphorus, and oxygen, for
which calcium-to-phosphate Ca/P ratio is equal to 0.2. The coatings obtained in electrolytes with 300
and 600 g/L calcium nitrate tetrahydrate are porous and their Ca/P ratios are equal to 0.08 and 0.15,
respectively. Based on the analysis of the GDOES results, one may conclude that the obtained PEO
coatings may be divided into sub-layers, i.e., the first layer with open sharp edges of pores (40 s of
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sputtering time), the second, semi-porous layer, enriched in calcium with thicknesses corresponding
to sputtering time from 360 s to 510 s, and the third transition layer (350–400 s). It was also found
that the higher the amount of calcium nitrate tetrahydrate in the solution, the thicker the second
and third sub-layers become. Based on the preliminary results, a new experimental plan of PEO
coatings fabrication in an electrolyte with 500 g/L Ca(NO3)2·4H2O with the use of a commercial
DC power supply was designed and conducted. It was found that all formed coatings were porous
and enriched in calcium and phosphorus, with a calcium-to-phosphorus ratio of about 0.2. The XPS
results showed that the top 10-nm layer consists mainly of compounds containing titanium (Ti4+),
calcium (Ca2+), as well as phosphorus and oxygen (PO4

3− and/or HPO4
2− and/or H2PO4

−,and/or
P2O7

4−). To summarize, it should be noted that the obtained PEO porous coatings, which are enriched
in calcium and phosphorus, may be used in the production of automotive and industrial catalysts and
as biocompatible surfaces.
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4. Conclusions

Calcium- and phosphorus-enriched PEO coatings on CP Titanium Grade 2, obtained in electrolytes
containing dissolved calcium nitrate tetrahydrate Ca(NO3)2·4H2O in concentrated 85% analytically
pure H3PO4 (98 g/mole) acid, may be characterized as follows:

(1) The coating obtained in the electrolyte with 10 g/L of calcium nitrate tetrahydrate in it at
450 ± 46 V with a pulsation of 300 Hz is not porous, whereas the coatings formed in the solutions
with 300 and 600 g/L Ca(NO3)2·4H2O are porous.

(2) The Ca/P ratio of the coatings, obtained by using a commercial DC power supply without
pulsation, at 450 V, in an electrolyte containing 500 g/L of Ca(NO3)2·4H2O, is equal to 0.18 ± 0.01,
which is slightly higher than that calculated for the coating formed at 450 ± 46 V with a pulsation
of 300 Hz (0.15 ± 0.01).

(3) In the PEO coatings, three different sub-layers may be distinguished, i.e., the first with open pores,
the second that is semi-porous and enriched in calcium, and the third, a transition sub-layer.

(4) The higher the amount of calcium nitrate tetrahydrate dissolved in an electrolyte, the thicker
the second and third sub-layers become.

(5) The top surface of the PEO coatings consists of titanium (Ti4+), calcium (Ca2+), as well as
phosphorus and oxygen (PO4

3− and/or HPO4
2− and/or H2PO4

−, and/or P2O7
4−).
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