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Abstract: Additive manufacturing (AM) offers the potential to economically produce customized
components with complex geometries in a shorter design-to-manufacture cycle. However, the basic
understanding of the fatigue behavior of these materials must be substantially improved at all scale
levels before the unique features of this rapidly developing technology can be used in critical load
bearing applications. This work aims to assess the fatigue strength of Ti–6Al–4V smooth and circular
notched samples produced by selective laser melting (SLM). Scanning Electron Microscopy (SEM)
was used to investigate the fracture surface of the broken samples in order to identify crack initiation
points and fracture mechanisms. Despite the observed fatigue strength reduction induced by circular
notched specimens compared to smooth specimens, notched samples showed a very low notch
sensitivity attributed both to hexagonal crystal lattice characteristics of tempered alpha prime grains
and to surface defects induced by the SLM process itself.

Keywords: additive manufacturing; circular notch; fatigue; selective laser melting (SLM);
titanium alloy

1. Introduction

Additive manufacturing (AM) is a process that allows a part to be built layer-by-layer by using
a combination of energy delivery and material deposition. Metallic parts are obtained starting from
powders that are melted by a laser or electron beam source. This results in a high sensitivity of material
properties to process parameters. According to source parameters, the material can experience different
thermal histories and thus different microstructures [1–4]. The microstructure of AM parts can be
highly anisotropic and can reach a density greater than 99.5% [5,6]. For example, columnar grains are
shown to grow epitaxially through the deposition layers due to cooling [5].

Compared to traditional shaping processes, AM offers different advantages such as a shorter
time-to market, a near-net-shape fabrication without the need of expensive molds and tools, a high
efficiency in material utilization, the possibility to directly produce geometries with a high level of
flexibility based on CAD models. On the other hand, AM parts suffer the presence of defects often
related to non-optimal scan parameters (unmolten particles, spherical entrapped gas bubbles, lack of
fusion) [7]. Among the AM processes, particular attention is paid to selective laser melting (SLM),
a Powder Bed Fusion-Laser (PBF-L) method [8,9]. The possibility to create structures with complex
geometries out of high performance materials has made SLM particularly interesting for aerospace and
biomedical industries, where titanium alloys—in particular Ti–6Al–4V—are widely used. Titanium
alloys are in fact characterized by excellent corrosion resistance, high specific strength, low density,
and low elastic modulus.
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Both in aerospace and biomedical applications, fatigue is the primary mechanism of rupture in
components such as turbine blades, hip prostheses, and mechanical heart valves [10–12]. For this
reason, the fatigue strength of additive manufactured parts is widely studied in literature. In their work
about High Cycle Fatigue (HCF) behavior of SLM-processed Ti–6Al–4V, Leuders et al. [13] found that
porosity acts as a strong stress raiser and leads to failure. In order to improve the fatigue strength of
titanium alloy Ti–6Al–4V manufactured by SLM, reduction of porosity was thus considered much more
important by authors than microstructure optimization. In a more recent work [14], Kasperovich and
Hausmann found a reduction in fatigue resistance of SLM processed TiAl6V4 compared to wrought
alloy due to a combination of the unfavorable martensitic microstructure, unmolten particles, pores,
and microcracks. Finally, they found that in order to restore the fatigue resistance of the conventionally
processed TiAl6V4, SLM-processed samples need to be subjected to Hot Isostatic Pressing (HIP), which
reduces porosity and surface machining which reduces surface roughness. As a matter of fact, for AM
parts that cannot be machined on all surfaces, the rough ‘as built’ surface should be considered as a
crack initiator in the fatigue design process, leading to their lower fatigue strength. Finally, in that
work, heat treatments were found not to provide a significant improvement to HCF strength.

Due to some specific design requirements, such as connecting different parts together and
repairing cracked or damaged structures, the majority of engineering components and structures
contain notches of different shapes. By their utility, notches are prone to crack nucleation due to the
intensified stress in their neighborhood. Nucleated crack(s) may propagate and lead to final failure of
the notched component. Hence, it is commonly attempted in design of notched components to prevent
or delay the crack nucleation from the notch edge [15–19]. For this aim, failure mechanisms in the
presence of notches should be deeply studied.

Examination of the state-of-the-art shows that fatigue assessment and quality assurance of
additively manufactured components cannot be performed accurately due to a lack of bespoke
methodologies allowing specific microstructural features as well as specific mechanical/cracking
behavior of additively manufactured materials to be modelled effectively. Therefore, owing to the
growing importance of additive manufacturing technologies, fundamental theoretical understanding
of fatigue properties and behavior of additively manufactured metals is a necessary step that must
be taken as a matter of urgency. In this challenging scenario, the problem is complicated by the fact
that, as far as components having complex geometries are concerned, no specific design criteria have
been proposed so far to take into account stress concentration phenomena arising from geometrical
discontinuities/features (here termed notches). Furthermore, no fatigue data generated by testing
additively manufactured notched metals can be found in the technical literature. This lack of
specific knowledge makes it difficult for industry to take full advantage of the unique features of
additive manufacturing, preventing this powerful technology from being injected effectively into
every-day manufacturing practices. In this context, this work aims to contribute to the fundamental
understanding of the mechanical/cracking behavior of additively manufactured Ti–6Al–4V specimens
weakened by circular notches and subject to fatigue loading.

2. Material, Geometries, and Experimental Procedure

The analyzed Ti–6Al–4V samples were produced by means of SLM by using optimized process
parameters that guaranteed a density greater than 99.7%. Scholars presented various methods of
surface treatment for AM components. Conventional surface preparation methods such as machining,
mechanical polishing, abrasive flow polishing, chemical milling, and electroplating have been
considered for treating the surface of AM components [20–25]. After samples production, specimens
were sandblasted at 6 bar using corundum sand with a mean grain size of 220 µm. They were then
stress relief heat-treated in non-controlled atmosphere (heating rate: 10.8 ◦C/min; holding time: 3 h at
650 ◦C; cooling rate: 2 ◦C/min) and after cutting off the base plate they were re-sandblasted at 6 bar
using corundum sand. All specimens were obtained by using a layer thickness of 60 µm. Figure 1
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shows the geometries of smooth and circular notched specimens. The radius at the notch is 5 mm
while the thickness of the samples is 3 mm.Metals 2017, 7, 291  3 of 9 

 

 
Figure 1. Geometries of smooth and circular notched specimens and built axis (Z) (dimensions in mm). 
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case of fatigue loading. The microstructure and the fracture surface of the samples were investigated 
by Optical Microscope and Environmental Scanning Electron Microscope (ESEM), respectively. 

Kroll’s Reagent (2 mL HF, 2 mL HNO3, 100 mL H2O) was used as metallographic etchant. The 
alpha prime and acicular alpha structures of titanium alloy will appear white after etching while 
intergranular beta structure and beta grains will be darkened. 

A numerical model under plain stress condition was carried out using a commercial numerical 
code in order to calculate the stress concentration factor, Kt. Young’s modulus and Poisson’s 
coefficient were set equal to 110 GPa and 0.34, respectively. By taking advantage of the double 
symmetry, only one-fourth of the specimen was modelled by using a mapped mesh (Figure 2a). 
Figure 2b shows the principal stress distribution in the notched specimen. 
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Figure 1. Geometries of smooth and circular notched specimens and built axis (Z) (dimensions in mm).

Fatigue tests were carried out by using a universal MTS machine (250 kN). All tests have been
carried out under load control, using a sinusoidal signal in uniaxial tension with a frequency of 10 Hz
and load ratio R = 0. The run out limit was set to 106 cycles. Two specimens were tested for each case
of fatigue loading. The microstructure and the fracture surface of the samples were investigated by
Optical Microscope and Environmental Scanning Electron Microscope (ESEM), respectively.

Kroll’s Reagent (2 mL HF, 2 mL HNO3, 100 mL H2O) was used as metallographic etchant.
The alpha prime and acicular alpha structures of titanium alloy will appear white after etching while
intergranular beta structure and beta grains will be darkened.

A numerical model under plain stress condition was carried out using a commercial numerical
code in order to calculate the stress concentration factor, Kt. Young’s modulus and Poisson’s coefficient
were set equal to 110 GPa and 0.34, respectively. By taking advantage of the double symmetry, only
one-fourth of the specimen was modelled by using a mapped mesh (Figure 2a). Figure 2b shows the
principal stress distribution in the notched specimen.
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3. Results

3.1. Fatigue Test Results

Results obtained from the statistical elaboration of fatigue test data for smooth and notched
samples are reported in Figures 3 and 4, respectively. Values of stress amplitude related to a survival
probability of 50%, the slope of the Wöhler curve, and the scatter index Tσ, which is the ratio between
the stress amplitudes corresponding to 10% and 90% of survival probability, are reported in the
above-cited figures. Specimens that survived over 1 million cycles are considered as run out and
marked up with an arrow. It can be noted that the difference between the Wöhler curves are related
only to the mean value of the stress amplitude at 1 × 106 cycles, but not to the scatter index Tσ.
The fatigue strength of double circular notched specimens at 1 million cycles was 213 MPa compared
to a value of 243 MPa related to the fatigue strength of smooth samples.
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3.2. Microstructure and Fractography

A preliminary microstructure investigation by means of OM showed an almost porosity-free
material. Some occasional porosity was found which dimension was less than 50 µm. OM and
ESEM micrographs are shown in Figure 5. The grains appear acicular with a prevalence of α’ plates
surrounded by a little percentage of β phase. In Figure 5a, the primary equiassic morphology of
β phase prior to the β→ α’ transformation can be also observed. In Figure 5b, the Al-reach black
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zones correspond to α’ phase, tempered by stress-relief heat treatment, while the white zones, reach
in vanadium, correspond to β phase. Such a microstructure is due to the high cooling rate that
characterizes the SLM process and the subsequent heat treatment below 800 ◦C.Metals 2017, 7, 291  5 of 9 
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Figure 5. Optical Microscope (a) and Environmental Scanning Electron Microscope (b) micrographs of
the analyzed material.

ESEM fractographs of the smooth and blunt circular notched specimens are shown in Figures 6
and 7, respectively. It is noted that fatigue cracks nucleate at the specimen surface both in smooth and
double V-notched specimens where severe intrusions (see Figure 6d), due to the roughness induced by
the process, act as crack initiation points (Figures 6d and 7). The fracture nucleates at one point at the
surface of the smooth sample (Figure 6d) and propagates towards the opposite edge covering almost
the entire cross section of the sample until the final rupture. The final fracture surface, characterized by
dimples (Figure 6c), was found to be inclined by about 45◦ with respect to the load direction (Figure 6a).
No porosity was observed on fracture surface of all samples. In a similar way, fatigue cracks nucleate
at both notch tips of the double circular notched sample. Thus, the final fracture surface appears in
between the two propagation zones and still inclined by about 45◦ with respect to the load direction.
Figure 7 shows a typical deep intrusion where a crack nucleated.
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Figure 7. ESEM fractographs of the double circular notched specimen (∆σ = 360 MPa, Cycles
Number = 64427).

Finally, despite the several detected high intrusions at the surface that act as easy crack nucleation
zones, it was found that fatigue cycles spent for crack nucleation were much higher than those spent
for crack propagation (Figure 8).
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Figure 8. Sample stiffness as a function of cycle number from a smooth and a circular notched sample,
both loaded with a nominal stress (σn) value of 360 MPa.

In Figure 8, the stiffness of both a smooth and a circular notched sample loaded with the same
nominal applied stress (σn = 360 MPa) was plotted against the cycles number. It is noted that the
stiffness of both samples remains constant for about 90% of the fatigue life. In particular, the crack
nucleation period was set equal to the number of cycles beyond which all the experimental points
fall down under the interpolation straight line shown in Figure 8. By analyzing all samples with this
procedure, it was found that the percentages of fatigue life spent for crack nucleation were 93% and
81% for the smooth and circular notched specimens, respectively.

4. Discussion

By using the obtained experimental data, the notch sensitivity has been calculated. The notch
sensitivity (q) is defined by Equation (1):

q =
K f − 1
Kt − 1

(1)
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where Kf is the fatigue notch factor (K f = ∆σsmooth
A /∆σV−nothc

A ) and Kt is the stress concentration factor
defined by maximum local stress to nominal stress ratio (Kt = σmax/σnom) [26]. The nominal stress
is defined as the mean stress across the reduced cross-section of the specimen in the presence of the
notch. In general, 0 ≤ q ≤ 1. When the theoretical stress concentration factor equals the fatigue notch
factor (i.e., Kf = Kt), q = 1. If the notch has no adverse effect on the fatigue limit (i.e., Kf = 1), q = 0.
By using the fatigue data obtained in this work, Kf = 1.141. Kt was found equal to 3.925 by a numerical
simulation. This results in a q value equal to 0.048.

A low notch sensitivity of the wrought Ti–6Al–4V alloy was already observed by Hosseini [26]. She
justified such alloy behavior through alpha Hexagonal Close Packed (HCP) crystal lattice characteristics.
Compared to cubic lattices, such as Face Central Cubic (FCC) or Body Central Cubic (BCC) lattice,
the slip planes in HCP lattice are all parallel to each other (planes (0001) in Miller-Bravais system).
The slip systems number for dislocations in a HCP lattice are thus very low if compared to those in a
Cubic Crystal (CC). Now, dislocations play a key role in the fatigue crack nucleation phase. It has been
revealed that after a large number of fatigue loading cycles, dislocations pile up and form structures
called Persistent Slip Bands (PSB). Such PSBs can be formed more easily in a crystal grain that has an
unfavorable orientation of its slip planes relative to the planes of maximum applied shear stresses
(Figure 9). Because of its few slip systems, for a HCP lattice, such unfavorable orientations are very
few. In this situation, many potential damage initiation sites occur within the volume of a smooth
specimen but, at the sharp notch, it is possible that almost no damage initiation site occurs in the small
region around the notch tip where the stress is near its peak value. Hence, considering the local notch
stress, the notched member can be more resistant to fatigue.
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Figure 9. Schematic representation of PSB formed in a crystal grain that has an unfavorable orientation
of its (0001) slip planes relative to the planes of maximum applied shear stresses.

In order to better understand the mechanism of crack nucleation in alpha phase, the fatigue test
of a specimen with a double circular notch was interrupted when its stiffness values started to fall
down. The resulting fatigue cracks were then observed by means of Electron Backscattered Diffraction
(EBSD) technique. Figure 10 shows SEM and EBSD micrographs of a fatigue crack and corresponding
alpha grain orientation at the initiation and propagation zones. It is observed how the basal slip planes
of the alpha grain at the crack initiation zone are oriented about 45◦ compared to the load direction.

As shown in Figures 6 and 7, fatigue cracks were observed to initiate on severe surface intrusions
due to the high roughness induced by the process itself. Such intrusions are covered by an oxide
layer which was formed during the stress-relief heat treatment and not cleaned up by the grinding
treatment. Now, the number of potential crack initiation intrusions is thought to be much higher in
smooth samples than in the sharp V-notch specimen where there is the possibility that no such critical
surface defects occur in the small region near the notch tip. It is thought that this effect and the alpha
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prime HCP lattice characteristics may justify the very low notch sensitivity of the SLM-processed
Ti–6Al–4V alloy observed by experiments. In fact, the surface roughness and imperfections will lead
to local surface stress concentrations which make the material exhibit reduced notch sensitivity with
respect to notches of higher orders of magnitude than roughness.
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5. Conclusions

The fatigue strength of Ti–6Al–4V circular notched samples produced by SLM was assessed.

• Results were compared with those corresponding to smooth samples and Scanning Electron
Microscopy was used to investigate the fracture surface of broken samples in order to identify
crack initiation points and fracture mechanisms.

• Despite the surface treatment and heat treatment of the AM samples, some defects due to
manufacturing process were observed on the fracture surface of the tested samples.

• Despite the fatigue specimens being weakened by the sharp circular notch, a very low notch
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of tempered alpha prime grains and to the high roughness detected on sample surfaces.
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