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Abstract
In this thesis, the theory of classical non-equilibrium thermodynamics is used as a tool for
the analysis of transport processes in ion exchange membranes, and for designing experiments
for the determination of coupling coefficients quantifying the degree of correlation between
transport of heat, mass, and charge under operation.

Chapter 1, along with appendix A, give a brief account of the theoretical derivations and
assumptions leading to the constitutive relations and an expression for the local entropy pro-
duction, which are later applied to the special cases considered in chapters 2 and 3.

Chapter 2, along with appendix B, address the case of coupled transport of water and charge
carriers across a selection of ion exchange membranes in a variety of aqueous alkali and alkali
earth chloride solutions. Appendix B covers the derivation of the regression model needed
for analyzing the measured data, which is also a generalization of previous work. It is gener-
ally found that the transference coefficient of water, defined as the average number of water
molecules transported per unit of elementary charge transferred, decreases in magnitude with
the size of the charge carrier. The sign of this coefficient indicates that for all membranes
considered, the net transfer of water is in the same direction as the transfer of charge carrier,
and correlations are confirmed between water transport and water content of the membranes,
and also between water transport and the mass-corrected solvation entropy in external so-
lution. The water permeability, defined as the volume flux of water per unit of pressure
difference across the membrane, was also calculated by using the regression model. Although
the errors in the permeability estimates are large, likely due to membrane deformation during
measurements, the permeability is significantly reduced as the valence of the charge carrier
is increased.

In chapter 3, we consider a non-isothermal cell in order to measure the thermoelectric prop-
erties of ion exchange membranes. A flow cell was designed and built specifically for these
experiments. In order to combat the phenomenon of temperature polarization, the cell poten-
tial is measured with membranes stacked together in order to increase the effective membrane
thickness. A non-linear model is developed in order to find the Seebeck coefficient, defined
as the ratio of cell potential to temperature difference in the stationary state, as a function
of the stack thickness. This model is then used for assessing the stack thickness required to
eliminate temperature polarization, and to extrapolate to limiting values. The measured val-
ues of the Seebeck coefficients are then combined with the water transference coefficients from
chapter 2 in order to calculate the transported entropies of the principal charge carriers in
each membrane. The results indicate that in both cases considered here, heat is transported
along with the charge carrier. The Thomson effect, which is a heat effect due to the temper-
ature dependence of the entropy transfer, was found to be insignificant for all experimental
conditions that were considered.

In chapter 4, we present conclusions and perspectives for further work, along with suggestions
for improving the experimental techniques. The results of chapter 3 are used for discussing
the possibility of enhancing the efficiency of salt power plants by using them as thermoelectric
generators. Estimates based on these results indicate that a 40 K temperature difference can
increase the cell potential in a typical salt power plant by up to 50 %.





Sammendrag

Dette masterprosjektet omfatter bruken av klassisk irreversibel termodynamikk for å anal-
ysere koplede transportprosesser i ionebyttermembraner, og utforming av eksperimenter der
målinger av koblingskoeffisientene som beskriver korrelasjonene mellom transport av varme,
masse, og ladning er ambisjonen.

Kapittel 1, sammen med appendiks A, gir en kortfattet oversikt over den teoretiske bak-
grunnen og de fysiske antagelsene som leder til de grunnleggende transportrelasjonene og et
uttrykk for den lokale entropiproduksjonen, som senere spesialiseres i kapittel 2 og 3.

Kapittel 2, sammen med appendiks B, tar for seg korrelasjonen mellom transport av vann
og ladningsbærere gjennom en håndfull ionebyttermembraner i et utvalg vandige alkalie- og
jordalkaliekloridløsninger. Appendiks B dekker utledningen av regresjonsmodellen som brukes
til å analysere eksperimentelle data. Vanntransporttallet, definert som det gjennomsnittlige
antall vannmolekyler transportert gjennom membranen per elementærladning, ble funnet å
korrelere negativt med størrelsen på ladningsbæreren. Transporttallets fortegn indikerer at
i alle tilfeller som ble undersøkt, ble vann i netto transportert i samme retning som den
dominerende ladningsbæreren. Det ble i tillegg funnet korrelasjoner mellom transporttallet
og både membranenes vanninnhold og massekorrigert solvatiseringsentropi i vandig løsning.
Vannpermeabiliteten, definert som det volum av vann transportert per flateareal og trykkdif-
feranseenhet, ble også beregnet ut fra regresjonsresultater. Usikkerhetene i permeabilitetene
er store, antageligvis grunnet deformasjon av membranene under trykkgradienten. Perme-
abiliteten ble funnet å bli signifikant redusert ved økende valens av ladningsbærer.

I kapittel 3 måles det termoelektriske potensialet over et lite utvalg membraner. Til dette
formål, ble en helt ny termocelle tegnet og konstruert. For å redusere effekten av temperatur-
polarisering i målingene, ble membranene stablet sammen i tykke stakker, slik at den effektive
membrantykkelsen ble økt. En modell ble konstruert for å finne Seebeck-koeffisienten, defin-
ert som forholdet mellom cellepotensial og temperaturforskjell ved stasjonær tilstand, som
funksjon av stakktykkelsen. Modellen ble brukt til å anslå hvor mange membraner som må
stables sammen for å gjøre temperaturpolariseringseffekten neglisjerbar, og til å ekstrapol-
ere til grenseverdier for den observerte Seebeck-koeffisienten. Disse målingene ble kombin-
ert med vanntransporttallene fra kapittel 2 for å beregne den transporterte entropien til de
dominerende ladningsbærerene i de forskjellige membranene. Resultatene indikere at i begge
tilfellene som ble undersøkt, transporteres varmen i samme retning som ladningsbæreren.
Thomsoneffekten, som er en varmeeffekt som følger av temperaturavhengigheten til entropi-
transporten, ble funnet å ikke være signifikant i noen av tilfellene som ble undersøkt.

I kapittel 4 gis konklusjoner felles for hele masterprosjektet, samt forslag til videre arbeid
og eksperimentelle forbedringer. Deriblant diskuteres mulighetene for å øke effektiviteten til
saltkraftverk ved å anvende kraftverket som en termoelektrisk generator. Resultatene indik-
erer at en temperaturforskjell på 40 K kan øke cellepotensialet i et saltkraftverk med opptil
50 %.
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Chapter 1
Introduction and General Theory

We give here the background and motivation for the master thesis work, along with some
general theory that will be applied in later chapters. Practical expressions for the entropy
production are derived from assumptions of energy and mass conservation, and the second
law of thermodynamics. Analogous expressions for the excess entropy production of two-
dimensional surfaces, derived in a similar manner, will be useful for analyzing interfaces
between bulk phases. A brief account of the statistical foundations of the theory, derived
from classical statistical mechanics, is relegated to appendix A.

1



2 CHAPTER 1. INTRODUCTION AND GENERAL THEORY

1.1 Background and Motivation
Among the principal instruments for meeting the growing international energy de-
mands and restraining greenhouse gas emissions is the energy efficiency improvement
of industrial processes [1, 2]. An investigation by Cullen and Allwood [3] indicates
that low-temperature applications of high quality energy sources, such as electricity
and fossil fuels, exhibits a loss of around 40 - 80 % of potentially useful energy in
the form of waste heat, with heat exchange processes being the worst off. Further
investigations [4] indicate that a substantial fraction (> 60 %) of this occurs as low-
grade waste heat at temperatures below 100◦C, with the largest share coming from
electrical power production. The higher end of these temperatures overlap with the
lower end of the temperature range of efficient waste heat harvesting processes such
as the Rankine cycle, and the exploitation of thermal gradients at lower temperatures
are mainly the domain of thermoelectric generators.

Thermoelectric phenomena are the macroscopic physical manifestations of statisti-
cal correlations between transport of heat and electric charge. The dynamical phe-
nomenon is the transfer of heat associated with the transport of charge carriers, known
as the Peltier effect. The reciprocal effect, which is the formation of an electric field
due to a gradient in temperature, is called the Seebeck effect. The Peltier effect has a
wide array of applications e.g. in heating and cooling, where temperature is regulated
carefully by controlling heat transfer by means of passing an electric current through
a thermoelectric system. The Seebeck effect can be used for extracting electrical work
from a temperature difference, using a thermal driving force for an electric current.

Solid-state semiconducting devices are traditionally dominant in applications of ther-
moelectricity. As thermoelectric generators, their efficiencies typically range from 5
to 8 % of the theoretical maximum demanded by the second law of thermodynamics,
and further development is largely restricted to expensive nanoscale-engineering [5].
This becomes one of the motivations for exploring a different concept for thermoelec-
tric generators – the ion exchange membrane. Such membranes are already being
used in the development of promising concepts in saline power production, where the
energy potential of mixing between sea water and brackish water is exploited in areas
such as estuaries, where the two aqueous solutions naturally meet. An interesting
question to pose in this context is whether the salt power plants can at the same
time be used as thermoelectric generators for extracting work from industrial waste
heat. To give a quantitative answer to this question, an account of the thermoelectric
properties of the ion exchange membranes in aqueous salt solutions is required.
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The degree to which electrical work can be extracted from a temperature difference
depends on the amount of heat transferred along with the charge carriers in the ther-
moelectric generator, called the heat of transfer of the relevant charge carrier. A large
heat of transfer means that the system can transport a large amount of heat down the
temperature gradient by driving the transport of charge carrier. This is a reversible
effect that competes with the irreversible Fourier type diffusive heat transport. The
loss of work by Joule heating is proportional to the electrical resistivity. An efficient
generator in the second law sense is therefore characterized by a low thermal conduc-
tivity, a high electrical conductivity, and charge carriers with large heats of transfer.
Reported values of the heats of transfer of ions in aqueous solution are typically two
orders of magnitude greater than that of electrons in solid state semiconductors [6],
and the thermal conductivities and fabrication costs of ion exchange membranes are
relatively low [7]. This gives the impression that the prospects for applications of ion
exchange membranes in aqueous electrolytes for thermoelectric power generation are
resoundingly favourable.

Although the ion exchange membrane may sound like a remarkably good fit for this
role so far, it is important to keep in mind that the membrane in aqueous solution con-
stitutes a multi-component system, with several degrees of freedom associated with
particle transport. In particular, it is important to keep in mind that the transport
of charge carriers through the system couples not only to the transfer of heat, but
also to the transport of other, neutral components. The transport of solvent along
with charge carriers in a membrane system is known as electroosmosis, and affects
the thermoelectric properties of the system because the solvent also carries heat. In
order to fully understand the operation of the system as a thermoelectric generator,
it is therefore important to also investigate this coupling effect, which is the subject
of chapter 2. Combining knowledge of this coupling effect with knowledge of the
thermoelectric potential of the system allows the estimation of the heats of transfer
of the ions in the membrane, which is the subject of chapter 3.

While we restrict our attention to ion exchange membranes in aqueous solutions of
chloride electrolytes in this thesis, the theoretical considerations will be of a general
nature with respect to the choice of cation. Experimentally, we will explore water
transport using several different cations, but will restrict our attention to sodium in
the thermoelectric measurements, as it is the dominant cation in salt power appli-
cations. An important question that we seek to answer is whether it is feasible to
improve the efficiency of salt power plants by creating temperature differences across
their working membranes, e.g. by means of routing waste heat into the plant, and
in which direction such a temperature gradient should be applied. Answering this
question can be taken to be the principal aim of this thesis. The answer, in light of
the theoretical and experimental results of the preceeding chapters, is proposed in
chapter 4.
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1.2 The Entropy Production
We identify the local entropy production as given by the linear force-flux relations and
general conservation laws. In this thesis, we are dealing with gradients in temperature
T , pressure P , and electrochemical potential µ̃. The systems include homogeneous
phases separated by surfaces. We will therefore treat couplings between the energy
flux Ju, and molar fluxes Jj of both ionic and neutral components. The notation
and methodology presented here follows closely that of the book by Kjelstrup and
Bedeaux [8]. In this work, we neglect viscous effects, electromagnetic polarization,
and magnetic fields. Central to the theory is the local equilibrium hypothesis, which
is the assumption that the system can be divided into microscopic volume elements
that can each be treated as an equilibrium system at all times.

1.2.1 Homogeneous Phases

The starting point of our analysis is the differential of the internal energy U

dU = TdS − PdV +
∑
j

µ̃jdNj (1.2.1)

with S the entropy, V the volume, and µ̃j and Nj the electrochemical potential and
number of particles of j, respectively. We rewrite this in terms of densities

V du+ udV = V Tds+ TsdV − PdV +
∑
j

µ̃jV dcj +
∑
j

µ̃jcjdV (1.2.2)

with s and u the entropy and internal energy densities, and cj the molar concentration
of j. Homogeneity of u implies

u = Ts− P +
∑
j

µ̃jcj (1.2.3)

such that subtracting udV from both sides of the equation, and dividing throughout
by V gives

du = Tds+
∑
j

µ̃jdcj (1.2.4)

which is the local form of (1.2.1). The local equilibrium hypothesis allows us to iden-
tify these local variables with the macroscopic equilibrium quantities. Rearranging
and dividing by an infinitesimal time interval dt gives

ds
dt = 1

T

du
dt −

∑
j

µ̃j
T

dcj
dt (1.2.5)

The time derivatives of the different densities can be expressed by local conservation
laws. Let Js be the entropy flux. Then,

d
dt

∫
Ω
sd3x =

∫
Ω
σd3x−

∮
∂Ω

Js · n̂d2x =
∫

Ω
(σ −∇ · Js) d3x (1.2.6)
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in words, the total change in entropy in any volume element is equal to the total
entropy production inside the element minus the total entropy flux out of it. The
local form of this conservation law is

ds
dt +∇ · Js = σ ≥ 0 (1.2.7)

where the inequality expressing the second law has been included. For reversible
processes, we have σ = 0, and entropy is conserved. For irreversible processes, σ > 0,
and the total entropy of an isolated system increases with time.

The total energy is conserved, with the local form of the conservation law

du
dt +∇ · Ju = 0 (1.2.8)

i.e. the total change in internal energy density is equal to minus the energy flux out
of the volume element. Finally, conservation of mass gives

dcj
dt +∇ · Jj =

∑
k

rkνkj (1.2.9)

which states that the total change in concentration of component j is minus the flux
out of the element, plus whatever amount of j is produced by all the chemical reactions
occuring with reaction rates rk and stoichiometric coefficients νkj . In the systems
considered here, we assume that no chemical reactions occur in the homogeneous
phases, and therefore rk = 0 for all k. Inserting (1.2.8) and (1.2.9) into (1.2.5) and
applying the product rule gives

ds
dt = −∇ ·

(
Ju −

∑
j Jjµ̃j

T

)
︸ ︷︷ ︸

Js

+ Ju · ∇
( 1
T

)
+
∑
j

Jj ·
(
−∇

(
µ̃j
T

))
︸ ︷︷ ︸

σ

(1.2.10)

where we have identified the entropy flux and the entropy production. We see that
the entropy production has the bilinear structure of euclidean dot products between
fluxes and their conjugate driving forces, as in (A.13). This form of the entropy
production is a fundamental starting point for analyzing homogeneous phases. We
note that the energy flux in an electrochemical system is

Ju = Jq + ψj = Jq +
∑
j∈{cc}

zjFψJj (1.2.11)

where {cc} is the set of charge carriers in the system, each with charge zjF , ψ the
electrostatic potential, and Jq the total heat flux. For deriving expressions defining
experimentally available quantities, it is most often more convenient to recast the
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entropy production into a form that uses the measurable heat flux J′q := Jq−
∑
j JjHj .

We write out the electrochemical potentials

∇µ̃j = ∇µj + zjF∇ψ (1.2.12)

where zj = 0 for neutral components. One can obtain the properly conjugated forces
by the following transformation

∇µj = ∇µj,T + ∂µj
∂T
∇T = ∇µj,T + T 2Sj∇

( 1
T

)
(1.2.13)

such that

∇
(
µj
T

)
= ∇µj,T

T
+ (µj + TSj)∇

( 1
T

)
= ∇µj,T

T
+Hj∇

( 1
T

)
(1.2.14)

with the result being that the second term from the chemical driving force cancels
the enthalpy terms in the heat flux. We define the electric current density

j =
∑
j

zjFJj (1.2.15)

then, the entropy production is

σ =
(
J′q + jψ

)
· ∇

( 1
T

)
+ j ·

(
−∇

(
ψ

T

))
+
∑
j

Jj ·
(
−∇µj,T

T

)
(1.2.16)

or, applying the product rule

σ = J′q · ∇
( 1
T

)
+ j ·

(
−∇ψ
T

)
+
∑
j

Jj ·
(
−∇µj,T

T

)
(1.2.17)

from which the conjugate flux-force pairs are easily identified. It is important to note
that the measurable cell potential is not a difference in ψ. The measurable poten-
tial must be that representing the total work required to move the charge carrier
involved in the electrode reactions, and will therefore also include its chemical poten-
tial. Rather than give an overly general treatment of this issue, we will obtain the
experimentally available potential explicitly for the special cases involved.

1.2.2 Surfaces

In the systems considered in this work, there occur surfaces separating the homoge-
neous phases, which have thicknesses much smaller than the extent of the surrounding
phases. The discrete nature of the surface calls for a slightly modified treatment, and
an expression for entropy production of the surface will be derived for easy identifi-
cation of the properly conjugated forces. We consider only transport normal to the
surfaces, assume that the surface is isotropic with respect to coordinates normal to
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the surface normal, and that the surfaces have no appreciable curvature. The entropy
balance is

d
dt

∫
Ω
sd3x =

∫
Ω

(σ −∇ · Js) d3x (1.2.18)

This time, the assumption of isotropy parallel to the surface allows the integration of
two degrees of freedom in exchange for a factor of the total membrane surface area
A. Furthermore, we define the one-dimensional integrals

ss :=
∫ δ

0
sdx σs :=

∫ δ

0
σdx (1.2.19)

which we call the entropy density per unit surface area, and the entropy production
per unit surface area, respectively. Letting δ → 0, these become excess quantities
of the dividing surface between two homogeneous phases, which is additional to the
entropy density in the bulk phases that meet at the surface. Finally, we apply the
fundamental theorem of calculus∫ δ

0

∂

∂x
Jsdx = Jo,is − J i,os (1.2.20)

which are the entropy fluxes out of the surface at point δ and into the surface at point
0. Scalar fluxes denote the flux components normal to the surface. The combined
second law and entropy balance becomes

dss
dt + Jo,is − J i,os = σs ≥ 0 (1.2.21)

Similar considerations of energy yield

dus
dt + Jo,iu − J i,ou = 0 (1.2.22)

and of mass
dΓj
dt + Jo,ij − J

i,o
j =

∑
k

rkνkj (1.2.23)

where Γj is the number of particles of j per unit surface area, also called the adsorption
of j. Furthermore, we introduce the change in Gibbs energy ∆nG

k due to process k,
which can be chemical reactions or phase changes at the surface

∆nG
k =

∑
j

µsj (T s) νkj (1.2.24)

The local internal energy differential is [8]

dss
dt = 1

T s
dus
dt −

∑
j

µ̃sj (T s)
T s

dΓj
dt (1.2.25)
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The use of a thermodynamic formulation for such a small system as a dividing surface
has been demonstrated to coincide with molecular dynamics results for as few as 8
particles [8], justifying its use here. Inserting (1.2.22) and (1.2.23) into (1.2.25) and
comparing terms with (1.2.21) gives

dss
dt = J i,ou

( 1
T s
− 1
T i,o

)
+ Jo,iu

( 1
T o,i
− 1
T s

)
+
∑
k

rk
(
−∆nG

k

T s

)

+
∑
j

J i,oj

 µ̃i,oj (
T i,o

)
T i,o

−
µ̃sj (T s)
T s

+
∑
j

Jo,ij

 µ̃sj (T s)
T s

−
µ̃o,ij

(
T o,i

)
T o,i


+ 1
T i,o

J i,ou −∑
j

J i,oj µ̃i,oj

(
T i,o

)
︸ ︷︷ ︸

Ji,os

− 1
T o,i

Jo,iu −∑
j

Jo,ij µ̃o,ij

(
T o,i

)
︸ ︷︷ ︸

Jo,is

(1.2.26)

where the entropy fluxes are clearly identified. An important remark here is that this
implies a linear coupling between rk and the reaction affinities, which only holds very
close to equilibrium. See e.g. [9] for a discussion. The entropy production is then
made up of the remaining terms. We introduce the difference notation from [8]

σs = J i,ou ∆i,s

( 1
T

)
+ Jo,iu ∆s,o

( 1
T

)
+
∑
k

rk
(
−∆nG

k

T s

)

+
∑
j

J i,oj

(
−∆i,s

(
µ̃j
T

))
+
∑
j

Jo,ij

(
−∆s,o

(
µ̃j
T

)) (1.2.27)

We would again like to have a form of the entropy production using the measurable
heat flux, as was derived for the homogeneous phases. The procedure is similar

∆i,s

(
µj
T

)
=
µsj (T s)
T s

−
µi,oj

(
T i,o

)
T i,o

−
µi,oj (T s)
T s

+
µi,oj (T s)
T s

= ∆i,sµj,T (T s)
T s

+
µi,oj (T s)
T s

−
µi,oj

(
T i,o

)
T i,o

(1.2.28)

To first order in the temperature difference between one of the homogeneous phases
and the surface, we have

µi,oj (T s)
T s

=
µi,oj

(
T i,o

)
T i,o

+ ∂

∂T

µi,oj
T

 ∣∣∣∣
T i,o

(
T s − T i,o

)
(1.2.29)

following the style of being first order in the temperature difference, we obtain by
approximating

(
T i,o

)2 ≈ T sT i,o
∂

∂T

µi,oj
T

 ∣∣∣∣
T i,o

= −
T i,oSi,oj

(
T i,o

)
+ µi,oj

(
T i,o

)
(T i,o)2 ≈ −

H i,o
j

(
T i,o

)
T sT i,o

(1.2.30)
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thus
∆i,s

(
µj
T

)
≈ ∆i,sµj,T (T s)

T s
+H i,o

j

(
T i,o

)
∆i,s

( 1
T

)
(1.2.31)

where the second term cancels with the enthalpy terms in J i,oq , analogously with how
the procedure went in the homogeneous phase. Similar arguments yield the same
result for Jo,iq , and the entropy production becomes

σs = J ′i,oq ∆i,s

( 1
T

)
+ J ′o,iq ∆s,o

( 1
T

)
+ j

(
−∆i,oψ

T s

)
+
∑
k

rk
(
−∆nG

k

T s

)

+
∑
j

J i,oj

(
−∆i,sµj,T (T s)

T s

)
+
∑
j

Jo,ij

(
−∆s,oµj,T (T s)

T s

) (1.2.32)

which is the form of the entropy production that will be used for surface contributions.





Chapter 2
Streaming Potential and Electroosmosis

A theoretical expression describing the electric cell potential of an isothermal cell with an
ion exchange membrane separating two half-cells of aqueous chloride solution with Ag/AgCl
electrodes in response to a pressure difference was derived in the framework of classical non-
equilibrium thermodynamics. A linear regression model was developed to fit time-dependent
cell potential data, with higher order correction terms than those used by previous workers.
Streaming potentials, water permeabilities, and water content were measured on membranes
in aqueous solutions of LiCl, NaCl, KCl, MgCl2, CaCl2, and BaCl2 at 0.03 mol/kg, and, addi-
tionally, NaCl at 0.10 and 0.60 mol/kg. The membranes used were Nafion 115, Neosepta
CMX and AMX, and Fumasep FKS-PET-75 and FAD-PET-75. Observed streaming po-
tentials were found in the range 60 - 260 µV/bar, which is in the lower end of typical results for
this type of membrane. Water transference coefficients were estimated by means of Saxen’s re-
lation, and range from 2 to 14 in magnitude. The sign of the water transference coefficient was
found to be positive for all cation exchange membranes, and negative for the anion exchange
membranes. This indicates that water is in each case transported in the same direction as
the charge carrier. Water permeabilities were estimated by regression on the time-dependent
cell potential, and was found to decrease with cation size in the cation exchange membranes.
The water content of the membranes ranged from 10 to 30 mass percent, and was found to
decrease with cation size in the cation exchange membranes, and was invariant with respect
to the type of cation in the anion exchange membranes. A correlation was confirmed between
the water content and the water transference coefficient in the Nafion 115 and Neosepta
CMX membranes. A positive correlation is presented between the average number of water
molecules transported with cations in the cation exchange membranes, and the Jones-Dole
viscosity B-coefficients, which hints at a possible connection between water transport and
structural bulk properties in external solution. Much of the data is subject to relatively large
errors, likely due to deformation of the membranes under the pressure difference. Suggestions
for improving the experimental techniques are proposed in chapter 4.

11
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2.1 Introduction

The coupling process between fluxes of ions and solvent in electrochemical membrane
systems is known as electroosmosis, which is a reversible transport phenomenon, in
contrast to irreversible diffusion processes. In all applications of such systems where
an electric current is used for extracting work, it is, for various reasons, important
to consider the magnitude and direction of this effect. It affects the potential for
moving charge carriers across the system, due to the additional work involved in the
co-transport of solvent. Solvent transfer also affects the composition profiles in the
membrane and in the external solution. The latter alteration gives a dynamical con-
tribution to the concentration potential of the cell, while the former can manifest
itself as a drying out of the membrane under operation, possibly leading to degrada-
tion of the membrane material.

Theoretical expressions for the design and interpretation of experiments are derived
here in the framework of classical non-equilibrium thermodynamics, and the theoret-
ical basis is grounded in works on thermodynamics such as Kjelstrup & Bedeaux [8]
and de Groot & Mazur [9], more fundamentally based on linear response theory in
classical non-equilibrium statistical mechanics [10]. The most important assumption
in the theory is the local equilibrium hypothesis, which allows at all times the unam-
biguous definition of thermodynamic variables in the mesoscopic volume elements of
the system.

We investigate in this work the electroosmotic transfer of water across ion exchange
membranes in aqueous chloride solutions by an indirect method. Rather than mea-
suring the amount of water transferred with electric currents directly, we measure
the potential for volume transfer in the system, and relate this to the electroosmotic
volume flux by means of an Onsager relation. This is done by measuring the electric
cell potential in response to a pressure gradient across the membrane, known as the
streaming potential of the cell. Notably, this particular Onsager relation, also known
as Saxen’s relation [9], was shown to hold experimentally by Brun and Vaula [11]. In
this, we demonstrate how analysis of the volume changes occuring with the passage
of an electric current can be used to estimate the mean number of water molecules
transferred per elementary unit of charge passing through the system, called the wa-
ter transference coefficient of the membrane.

The streaming potential method has been used previously by several workers, along
with attempts to connect results to structural properties, see e.g. [12, 13, 14, 15, 16,
17, 18]. The dynamical contribution to the cell potential due to volume transfer down
the pressure gradient was analyzed by Okada et al. [19], and we give a more general
treatment of this problem in appendix B. We show how it is also possible to obtain
the water permeability of the membrane by analyzing the time-dependent behaviour
of the open circuit electric cell potential under the influence of the pressure gradient,
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and give criteria for the validity of the regression model.

2.2 Theory

We consider an isothermal system of two chambers of aqueous metal chloride solu-
tion separated by an ion-exchange membrane. Each chamber has its own Ag/AgCl
electrode, and the system is initially in global equilibrium. At one instant, the sys-
tem is perturbed from equilibrium by an abrupt increase in pressure in one of the
chambers. We assume that, apart from the electrode reactions, no chemical reactions
occur in the system. We express fluxes within the rest frame of the membrane sur-
face, with positive direction of vectorial quantities counter-clockwise in figure 2.1. We
divide the system into three subsystems: the aqueous solution, the membrane, and
the electrodes along with the external electrical circuit. We will then sum together
the different contributions and analyze measurable quantities.

2.2.1 The Aqueous Solution

We treat the aqueous solution as a homogeneous and isotropic medium with no net
flux of water, such that there is no pressure gradient in the bulk solution. The entropy
production is then only due to fluxes of cations, JMz+ , and of chloride anions, JCl− .

∆φ

IEM

Ag/AgCl Ag/AgCl

MClzM (aq) MClzM (aq)

P1 P2

JMz+

JCl−

Jw

e− e−
Compartment 1 Compartment 2

Figure 2.1: Sketch of the system considered in this paper. Two compartments of electrolyte solution
are separated by an ion-exchange membrane, and kept at different pressures P1 and P2. The resulting
fluxes in cation, chloride, and water (JMz+ , JCl− , and Jw) are indicated. The flux directions indicated
are defined as the positive directions.
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The entropy production is

σsol = − 1
T

JMz+ · ∇µ̃Mz+ −
1
T

JCl− · ∇µ̃Cl− (2.2.1)

where T is the cell temperature, and µ̃i is the electrochemical potential of i, which
can be written as

µ̃i = µi + ziFψ (2.2.2)
where µi is the chemical potential of i, F is Faraday’s constant, and ψ is the local
electrostatic potential. The charge number zi is defined such that ziF is the total
charge of one mole of i. Since the system is isothermal, the chemical potentials are
understood to be evaluated at the cell temperature.

The entropy production is invariant under the following set of transformations

Je = JMz+

j = zFJMz+ − FJCl−

µe = µMz+ + zµCl−

φ = ψ − µCl−

F

(2.2.3)

where Je is the net flux of neutral electrolyte in the cell, j the electric current den-
sity, µe the chemical potential of the neutral electrolyte, z the valence number of the
cation, and φ the measurable electric potential. The chemical potential of the charge
carrier involved in the electrode reactions gives a measurable contribution to the mea-
sured electric potential difference between the electrodes. This is due to differences
in chemical potential of the charge carrier presenting an additional contribution to
the work required to move the particle. The measurable cell potential is therefore the
difference in φ, and not ψ. Making the transformations in (2.2.3) has the advantage
of yielding such measurable quantities. However, the flux of neutral electrolyte is
non-local, and has no physical meaning in each subsystem locally. We will therefore
use the locally valid form that we started out with to derive the relevant expressions,
and then use the transformations in (2.2.3) to find experimentally available quantities.

We confine our interest to one-dimensional transport along the axis x orthogonal to
the membrane and electrode surfaces. Applying the linear regression hypothesis [9]
gives the following set of equations[

JMz+

JCl−

]
= − 1

T

[
L++ L+−
L−+ L−−

] [
∂xµ̃Mz+

∂xµ̃Cl−

]
(2.2.4)

We use (2.2.3) to identify the electric current density

j = −F
T

(zL++ − L−+) ∂xµ̃Mz+ −
F

T
(zL+− − L−−) ∂xµ̃Cl−

= −Lψ+
T

∂xµMz+ −
Lψ−
T

∂xµCl− −
Lψψ
T

∂xψ

(2.2.5)
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where the new coefficients are

Lψ+ = F (zL++ − L−+) Lψ− = F (zL+− − L−−)

Lψψ = F 2
[
z2L++ + L−− + z (L−+ + L+−)

] (2.2.6)

which inherit the Onsager symmetry of the original coefficients. We show this for one
of the flux equations by writing out the electrochemical potentials

JMz+ = −L++
T

∂xµMz+ −
L+−
T

∂xµCl− −
1
T
F (zL++ − L+−)︸ ︷︷ ︸

L+ψ

∂xψ (2.2.7)

where we see that if L+− = L−+, then also L+ψ = Lψ+. The same relation can be
shown for L−ψ = Lψ−. We find from (2.2.5) the open circuit (zero current) electric
field

(∂xψ)j=0 = −Lψ+
Lψψ

∂xµMz+ −
Lψ−
Lψψ

∂xµCl− (2.2.8)

and we can identify the coefficients by exploiting the Onsager symmetries

zF
Lψ+
Lψψ

= zF
L+ψ
Lψψ

= zF

(
JM+

j

)
dµ=0

=: tMz+ (2.2.9)

where dµ = 0 means uniform composition in the bulk phase. The coefficient tMz+

is the transport number of the cation, and is defined as the fraction of the electric
charge transported in the system by the cation. Similarly, we find

−F Lψ−
Lψψ

= −F L−ψ
Lψψ

= −F
(
JCl−

j

)
dµ=0

=: tCl− (2.2.10)

the transport number of chloride. We have already assumed that these are the only
charge carriers in the solution, and therefore obtain from the definition of the electric
current density that

tMz+ + tCl− = 1 (2.2.11)

Using these relations, along with (2.2.3) to identify µe and φ, (2.2.8) becomes

(∂xφ)j=0 = − tMz+

zF
∂xµe (2.2.12)

We introduce the electrolyte activity model in order to obtain a more explicit com-
position dependence

∂xµe = ∂µe
∂me

∂xme = νRT

me

(
1 + ∂ ln (γe)

∂ ln (me)

)
∂xme = ΓνRT∂x ln (me) (2.2.13)

where me and γe are the molality and the mean molal activity coefficient of the
electrolyte, R the universal gas constant, and ν the total number of ions per molecule
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of neutral electrolyte. We have introduced the thermodynamic factor, Γ, in order to
ease the notation. (2.2.12) is then

(∂xφ)j=0 = −ΓνRTtMz+

zF
∂x ln (me) (2.2.14)

For the sake of integration, we parameterize φ and me as mutually independent
functions of position, such that

∂xφdx = dφ ∂x ln (me) dx = d ln (me) (2.2.15)

We will consider small concentration differences in this system. Neglecting the con-
centration dependence of Γ and tMz+ , integration of (2.2.14) is trivial, and the con-
tribution from compartment 1 is

∆1,`φ = −Γ (P1) νRTtMz+ (P1)
zF

ln
(
m`

m1

)
(2.2.16)

where we have introduced the difference notation ∆i,kf = fk−fi, and denoted by sub-
scripts 1 and ` the positions close to the electrode and close to the membrane surface
in compartment 1, respectively. We will denote by subscripts r and 2 the membrane
surface and electrode in compartment 2. Equivalently, integration of (2.2.14) over
compartment 2 gives

∆r,2φ = −Γ (P2) νRTtMz+ (P2)
zF

ln
(
m2
mr

)
(2.2.17)

Neglecting the pressure dependence of Γ and tMz+ , and taking m1 = m2 then adding
the two contributions gives a simple expression for the total contribution

∆φsol = ΓνRTtMz+

zF
ln
(
mr

m`

)
(2.2.18)

While we will seek to keep the composition profile as close as possible to uniform, this
contribution will be important in practice due to composition changes driven by the
pressure difference. This dynamical effect will be discussed in detail in section 2.2.5.

2.2.2 The Membrane

We treat the membrane as a homogeneous phase, separated from the two bulk aqueous
solutions by two membrane-solution interfaces. The treatment of the membrane bulk
is similar to that of the aqueous solution. Here, we also allow for a net flux of water
as a neutral component, by means of a hydrodynamical flow driven by the pressure
gradient, and through electroosmotic transfer along with the charge carriers. We
will denote by a bar any quantity evaluated in the membrane phase. The entropy
production is

σmem = −JMz+
∂xµ̃Mz+

T
− JCl−

∂xµ̃Cl−

T
− Jw

∂xµw
T

(2.2.19)
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where the subscript w refers to water. The corresponding flux equations follow pre-
dictably JMz+

JCl−

Jw

 = − 1
T

L++ L+− L+w
L−+ L−− L−w
Lw+ Lw− Lww


∂xµ̃Mz+

∂xµ̃Cl−

∂xµw

 (2.2.20)

Following the same procedure as for the aqueous solution, we identify the electric
current density

j = −Lψ+
T

∂xµMz+ −
Lψ−
T

∂xµCl− −
Lψw
T

∂xµw −
Lψψ
T

∂xψ (2.2.21)

with the coefficients defined similarly to those in the aqueous solution, and can by
the same procedure be shown to inherit the Onsager symmetries. The open circuit
electric field is then given by

(∂xψ)j=0 = −Lψ+

Lψψ
∂xµMz+ −

Lψ−

Lψψ
∂xµCl− −

Lψw

Lψψ
∂xµw (2.2.22)

and we find the ionic transport numbers in the membrane phase

zF
Lψ+

Lψψ
= zF

L+ψ

Lψψ
= zF

(
JMz+

j

)
dµ=0

=: tMz+

−F Lψ−
Lψψ

= −F L−ψ
Lψψ

= −F
(
JCl−

j

)
dµ=0

=: tCl−

(2.2.23)

and the transference coefficient of water

F
Lψw

Lψψ
= F

Lwψ

Lψψ
= F

(
Jw
j

)
dµ=0

=: tw (2.2.24)

Similarly to the situation in the aqueous solution, the ionic transport numbers are
subject to the constraint that their sum equals unity. Using this constraint along
with (2.2.3), we find the measurable electric potential

(∂xφ)j=0 = − tMz+

zF
∂xµe −

tw
F
∂xµw (2.2.25)

Before proceeding to integrate this equation, we note that the flux equation for water
gives

∂xµw = −`w+

`ww
∂xµMz+ −

`w−

`ww
∂xµCl− −

T

`ww
(Jw)j=0 (2.2.26)

where the open circuit coefficients are

`ij := Lij −
LiψLψj

Lψψ
(2.2.27)



18 CHAPTER 2. STREAMING POTENTIAL AND ELECTROOSMOSIS

We now use that water is in excess compared to the electrolyte, such that each moving
volume element is dominated by water flux, and the solvated ions are carried along.
This allows us to set

`w+

`ww
= `+w

`ww
=
(
JMz+

Jw

)
j=0,dµ=0

= Mwme

`w−

`ww
= `−w

`ww
=
(
JCl−

Jw

)
j=0,dµ=0

= zMwme

(2.2.28)

where Mw is the molar mass of water. Furthermore, we assume that the open circuit
water flux is mainly driven by the gradient in pressure, such that

(Jw)j=0 ≈ −
`ww
T
V w∂xP (2.2.29)

with V w the molar volume of water in the membrane. Using the relations (2.2.3), we
find

∂xµw = −Mwme∂xµe + V w∂xP (2.2.30)

also, we rewrite the gradient in the chemical potential of electrolyte

∂xµe = ∂µe
∂me

∂xme + ∂µe
∂P

∂xP = ΓνRT
me

∂xme + V e∂xP (2.2.31)

such that (2.2.25) becomes

(∂xφ)j=0 =− 1
F

((
tMz+

z
−Mwmetw

)
V e + twV w

)
∂xP

− ΓνRT
F

(
tMz+

zme
−Mwtw

)
∂xme

(2.2.32)

We make the approximation (mr −m`) ≈ m̂ ln(mr/m`), with m̂ the mean molality,
and define the apparent transference coefficient of the electrolyte

ta := tMz+

z
−Mwm̂tw ta := tMz+

z
(2.2.33)

We follow again the procedure of parameterizing the profiles in electric potential,
pressure, and composition as explicit functions of position only, such that

∂xφdx = dφ ∂xPdx = dP ∂xmedx = dme (2.2.34)

We neglect second derivatives of the chemical potentials, and assume that tMz+ and
tw are constant over the concentration range. Integration over the membrane gives

∆φ′mem = − 1
F

(
taV e + twV w

)
∆P − ΓνRT

F
ta ln

(
mr

m`

)
(2.2.35)
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where we see that the potential difference over the membrane has one term similar
to the contribution from the aqueous solution, being logarithmic in the concentration
difference. It occurs here with the opposite sign, and with the membrane value of
the cationic transport number instead. The coupling to water transport is taken
into account by the apparent transference coefficient, which will be discussed in more
detail in section 2.2.5. Next comes the question of the membrane phase molar volumes
and thermodynamic factor. We will now show that we can replace these quantities
with those in aqueous solution, by adding the membrane surface contributions to the
electric potential. Assuming a continuous temperature profile, the temperature is
constant over the surface. The steady state entropy production of one such surface is

σsurf = −JMz+
∆i,oµ̃Mz+

T
− JCl−

∆i,oµ̃Cl−

T
− Jw

∆i,oµw
T

(2.2.36)

Following the standard prescription for the flux equations, as was done for the bulk
phase, we can again find the electric current density through the surface

j = −
Lsψ+
T

∆i,oµMz+ −
Lsψ−
T

∆i,oµCl− −
Lsψw
T

∆i,oµw −
Lsψψ
T

∆i,oψ (2.2.37)

In the exact same manner as for the bulk phase, we find the transference coefficients
of the different components at the surface. Continuity of the fluxes demands that
these transport numbers are the same as in the membrane bulk, i.e. that there is no
accumulation of water or charge at the surfaces in the steady state. The open circuit
electric potential across the surface is

(∆i,oψ)j=0 = − tMz+

zF
∆i,oµMz+ + tCl−

F
∆i,oµCl− −

tw
F

∆i,oµw (2.2.38)

then, subtracting the difference in the chemical potential of chloride gives the measur-
able potential. It is worth noting that if the surface is in equilibrium with the aqueous
solution, then all these contributions vanish. Identifying the electrolyte chemical po-
tential and decomposing it to a composition and a pressure term, and also making the
same volume flux argument as in (2.2.28), we obtain at the surface in compartment
1 (

∆i,oφ
(1)
)
j=0

= −νRT
zF

ta
(
Γ− Γ

)
lnm` −

P1
F

(
ta
(
V e − Ve

)
+ tw

(
V w − Vw

))
(2.2.39)

similarly, we obtain the jump across the surface in compartment 2(
∆i,oφ

(2)
)
j=0

= νRT

zF
ta
(
Γ− Γ

)
lnmr + P2

F

(
ta
(
V e − Ve

)
+ tw

(
V w − Vw

))
(2.2.40)

then, approximating the activity jumps with differences in thermodynamic factors,
and adding the two contributions gives

∆φsurf = νRT

zF
ta
(
Γ− Γ

)
ln
(
mr

m`

)
+ ∆P

F

(
ta
(
V e − Ve

)
+ tw

(
V w − Vw

))
(2.2.41)
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Then, adding this to (2.2.35) gives the total membrane contribution. We define the
streaming potential of the membrane

βmem := − 1
F

(taVe + twVw) (2.2.42)

such that
∆φmem = βmem∆P − ΓνRT

F
ta ln

(
mr

m`

)
(2.2.43)

which is the same expression as in (2.2.35), but with the partial molar volumes and
thermodynamic factors of the membrane phase replaced by those in aqueous solution.
An important result here is that this expression is exactly the same whether the
membrane surface is in equilibrium with the aqueous solution or not. The often-
invoked assumption that the surface is in equilibrium with the external solution is
therefore superfluous in the steady state case.

2.2.3 The Electrodes

The electrode surfaces host the chemical reactions needed to change charge carrier
from chloride in solution to electron in the external circuit. We model this as adsorp-
tion of charge carriers to the electrode surface, with a chemical reaction transforming
the electrode materials. The entropy production is

σel = −J iCl−
∆i,sµ̃Cl−

T
− Joe−

∆s,oµ̃e−

T
− rc∆nG

T
(2.2.44)

where subscript e− pertains to electrons, rc is the rate of the chemical reaction, and
∆nG is the change in Gibbs energy due to exchange of neutral components in the
chemical reaction. The reaction rate is determined by the electric current

rc = j/F (2.2.45)

while the fluxes of charge carrier are what make up the electric current

J iCl− = Joe− = −j/F (2.2.46)

which means that there is only one independent flux-force pair in the entropy pro-
duction. The electrochemical potentials are

∆i,sµ̃Cl− = ∆i,sµCl− − F∆i,sψ = −F∆i,sφ

∆s,oµ̃e− = ∆s,oµe− − F∆s,oψ = −F∆s,oφ
(2.2.47)

The entropy production is then

σel = − j
T

(
∆i,oφ+ ∆nG

F

)
(2.2.48)
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from which we observe that reversible conditions (σel = 0) for j = 0. The linear
flux-force relation gives

(∆i,oφ)j=0 = −∆nG

F
(2.2.49)

We can now use this equation to assess the electrode contribution to the cell potential.
For each Faraday of positive charge transferred from compartment 1 to 2 through the
membrane, we have the reaction

Ag + Cl− → AgCl + e− (2.2.50)
compensating for the loss of positive charge in compartment 1, allowing negative
charge to be carried by means of the electron from compartment 1 to 2 through the
external circuit, with the opposite reaction occuring in compartment 2. The Gibbs
energy change due to neutral components in compartment 1 is

∆nG
(1) = µ

(1)
AgCl (P1)− µ(1)

Ag (P1) (2.2.51)
and in compartment 2

∆nG
(2) = µ

(2)
Ag (P2)− µ(2)

AgCl (P2) (2.2.52)
we distinguish the chemical potentials at each electrode in order to take into account
that the electrode surfaces can be slightly different, giving rise to a bias potential. We
denote mean values between electrodes by a hat

µ̂i := µ
(1)
i + µ

(2)
i

2 (2.2.53)

and the deviation parameters

εi := µ̂i − µ(1)
i = µ

(2)
i − µ̂i (2.2.54)

The total Gibbs energy change is then, to first order in the pressure difference

∆nG =
(
V̂Ag − V̂AgCl

)
∆P + 2 (εAg − εAgCl) + 2

(
V ε

Ag − V ε
AgCl

)
∆P (2.2.55)

where the V ε
i is the deviation in molar volume. We will take the electrode materials

to be incompressible, such that the volume deviation vanishes. Then
∆nG = (VAg − VAgCl) ∆P + ∆nGbias (2.2.56)

with ∆nGbias = 2 (εAg − εAgCl) being the Gibbs energy of the electrode bias. We
define the electrode streaming potential

βel := VAgCl − VAg

F
(2.2.57)

The electrode contribution to the cell potential is

∆φel = −∆nG

F
= βel∆P + ∆φbias (2.2.58)

which gives a measurable contribution to the observed streaming potential, and a bias
term that we have assumed to be pressure-independent, such that it can be subtracted
by a baseline measurement.
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2.2.4 The Total Cell Potential

We now add up the contributions to the observed cell potential. Adding together
(2.2.18), (2.2.43), and (2.2.58) gives

∆φ = βobs∆P − ΓνRT
F

(ta − ta) ln
(
mr

m`

)
+ ∆φbias (2.2.59)

with βobs = βmem+βel. For small molality differences, we can make the approximation
mr −m` ≈ m` ln (mr/m`). The relative error of this approximation as a function of
m` with mr constant is shown graphically for the neighborhoods of 0.03 mol/kg and
0.6 mol/kg in figure 2.2. We make the observation that the approximation is a better
one for higher salt concentrations, and that the approximated term is still negligible
at lower concentrations. This means that unless the accuracy of an experiment is
better than a relative error of the order 1 %, this approximation can always be made.

The streaming potential of interest is βmem, which is a material property of the mem-
brane. The observed streaming potential is the sum of the membrane and electrode
contributions, such that for a given observed value, we find βmem = βobs − βel. Once
the streaming potential has been determined experimentally, knowledge of the molar
volumes and the ionic transport number yields the water transference coefficient

tw = Fβmem + tMz+Ve/z

Mwm̂Ve − Vw
(2.2.60)

Determination of this water transference coefficient will be the main goal of the
streaming potential measurements in this work.

2.2.5 Time Dependence of the Electric Potential

While the electrode bias can be eliminated by a baseline measurement, and the first
term in (2.2.59) should be observed as a simple jump in the observed potential dif-
ference as the pressure is applied, we expect the pressure difference to drive elec-
troneutral mass fluxes through the membrane as time passes. This will alter the
compositions of the electrolyte solutions close to the membrane surfaces, and lead
to measurable, time-dependent alterations to the observed cell potential. Assuming
that the streaming potential, pressure difference, and electrode bias remains con-
stant throughout the measurements, the only time dependence lies in the composi-
tion changes driven by the pressure difference. Since the transient period between the
initial equilibrium and the steady state is strongly non-equilibrium, we will apply a
model with which we can find the streaming potential by extrapolation. In appendix
B, we derive a differential equation describing the time evolution of the composition
changes, and expand the analytical solution of the form

∆φ = a+ b
√
t+ ct3/2 + dt5/2 +O

((
VwJw

√
t/D

)7
)

(2.2.61)
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with t the time, and De the diffusion coefficient of the electrolyte in the aqueous
solution. Fitting this model to the experimental data allows the estimation of the
initial jump in cell potential, as well as other parameters characterizing the time
evolution. The first two terms of the model coincide with the simple model used
by Okada et al [19], while the higher order terms are included in case the diffusion
processes approach a time scale comparable to the fluxes driven by the pressure
difference. All coefficients are in each case checked for statistical significance, and
any superfluous terms are discarded. For more details on the statistical treatment of
the measurements, see appendix B.
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Figure 2.2: Plots of the relative error of the approximation (mr −m`) ≈ m` ln (mr/m`) as a function
of m` with mr held constant at 0.03 mol/kg (top) and 0.6 mol/kg (bottom).
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2.2.6 Volume Flux and Water Permeability

The volume flux in the system is JV = VeJe + VwJw + ∆Velj/F . We approximate
that most of the open circuit volume flux in the system consists of water, and we
obtain an approximate expression for the volume flux by multiplying (2.2.29) by Vw
and integrating

(JV)j=0 ≈ VwJw = −`ww
Td

V 2
w∆P = −Lp∆P (2.2.62)

where Lp is the water permeability of the membrane. Knowledge of the volume
flux in response to a pressure difference under open circuit conditions thus allows
estimation of the permeability. Using the linear model described in (2.2.61) to fit the
time-dependent data, it is possible to estimate the permeability from the regression
coefficients. In particular, we find from the coefficient b

Lp =
√
πDeFb

4ΓνRT (ta − ta) ∆P =
√
πDezFb

4ΓνRT (tMz+ + zMwm̂tw − tMz+) ∆P (2.2.63)

Diffusion coefficients and transport numbers in aqueous solution are generally well
investigated in the literature. Knowledge of the ionic transport numbers in the mem-
brane can be combined with the streaming potential estimate of the water transference
coefficient to estimate the permeability.

2.2.7 Partial Molar Volume of Electrolyte and Dielectric Permittiv-
ity

In order to estimate the molar volume Ve of the electrolytes at low concentrations, we
employ the well-known Debye-Hückel result (see e.g. [20]) for the activity coefficients
of ions

ln(γi) = − z2
iA
√
wm√

2 +Ba
√
wm

(2.2.64)

where
B = F

√
ρW

εRT/2 A = Fe

8πεRT B w =
∑
i

νiz
2
i

where ε is the bulk dielectric permittivity of the solution, R is the gas constant, e
is the elementary charge, ρW the mass density of pure water, νi the stoichiometric
coefficient of species i in the electrolyte, m the molality, and a is a size parameter,
acting as the lower spatial integration limit for the linearized Poisson-Boltzmann
equation leading up to the expression. We assume here that no degree of ion-ion
association occurs, and that the electrolytes are fully dissociated. The parameter a is
purely empirical, and is interpreted as the distance of closest approach of ions. The
total activity coefficient of the electrolyte is obtained by

ln(γ) =
∑
i

νi ln(γi) = − Aw
3
2
√
m√

2 +Ba
√
wm

(2.2.65)
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while the pressure derivatives of A and B are

∂PB = F

√
ρW

2εRT

[
∂PVW

VW
− ∂P ln(ε)

]
∂PA =

F 2e
√
ρW

8
√

2π(εRT ) 3
2

[
∂PVW

VW
− 3∂P ln(ε)

] (2.2.66)

in which the ratio of the volume derivative and the volume is recognized as the
isothermal compressibility of water. The second bracketed term is also available in
literature by studying permittivity data at different pressures. Assuming that the
size parameter does not vary appreciably with pressure for the relevant experimental
conditions, the excess molar volume of the electrolyte can then be estimated by

V E
e = RT∂P ln(γ) = RT

aw2 (A∂PB −B∂PA)m−
√

2w 3
2∂PA

√
m

(
√

2 +Ba
√
wm)2 (2.2.67)

and the molar volume of the electrolyte in solution is then estimated as

Ve = V 0
e + V E

e (2.2.68)

where V 0
e is the molar volume at infinite dilution, obtained by extrapolating activ-

ity coefficient data. For estimating the dielectric permittivity, we use an empirical
equation [21]

ε = εW − ρWε0δεm̂ (2.2.69)

where δε is an empirical fitting parameter, εW is the permittivity of pure water, and
ε0 is the permittivity of vacuum.

2.3 Experimental
The apparatus and experimental methods used were similar to that in a previous
work by Barragán et al [22], and a sketch of the apparatus is given in figure 2.3. The
cell consists of two glass chambers with an internal volume of approximately 125 cm3

each, connected by a threaded joint where the membrane was inserted between two
plane O-rings. The effective area of an undeformed membrane was 2.27 ± 0.02 cm2.
Each chamber has two inlets, one through which Ag/AgCl electrodes were inserted,
and another for pressure control. The low-pressure chamber was maintained at atmo-
spheric pressure by means of a capillary tube. The inlet of the high-pressure chamber
was connected to a bottle of pure pressurized air delivered byPraxair through a sin-
gle stage regulator from Air Liquide. The pressure difference was measured using
a Cecomp Electronics DPG1000B15PSIG-5 digital pressure gauge with a reso-
lution of 68.9 Pa (0.01 PSI). The cell voltage was measured with a HP 34401 high
resolution multimeter. The entire cell was immersed in a thermostatted bath kept at
25.0± 0.1 ◦C using a Techne RB-12A refrigerated bath with Thermo Scientific
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Figure 2.3: A sketch of the apparatus used for measuring the streaming potentials. The membrane
sample is locked in a threaded ring joint (1), separating the two chambers of electrolyte solution.
Each chamber is equipped with an Ag/AgCl electrode (2), connected to a voltmeter (3). The pressure
is regulated by a series of valves (4) connecting one half-cell to a cylinder of compressed air, and
is monitored by a manometer (5). The pressure is maintained at ambient in the other half-cell by
means of a capillary tube (6).

Haake AC150 heated immersion circulator.

The salt solutions were prepared by weighing appropriate amounts of salt (all Merck
analytical grade) for 1 kg of solvent using a high precision Sartorius balance (±0.1
mg) and then dissolving in 1 kg of distilled water. The membranes were pretreated by
immersion in the appropriate salt solution at least 48 hours prior to the experiments.

For each measurement series, the electric potential was measured for 6 minutes prior
to the application of the pressure gradient. The pressure pulse was prepared by
closing the valve at the cell inlet and building up the desired air pressure using the
pressure reducer. The gradient was then applied by opening the valve, and the time
dependence of the potential was recorded for 3 minutes, after which the pressure was
immediately released by opening a valve connecting the high-pressure cell chamber
to the atmosphere. The potential was then measured for another 460 seconds before
the measurement was terminated. This procedure was for each membrane-electrolyte
combination repeated twice at pressure differences of approximately 1 bar, 0.8 bar
and 0.6 bar, in that order.

In addition to measuring streaming potentials, the solvent uptake of the different
membranes in different salt solutions was also measured. Both the membrane samples
used for the streaming potential experiments, and new, unused membrane samples
were equilibriated in appropriate salt solutions and weighed once per day until a
stable weight was found for at least 3 consecutive days. The samples were then dried
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in vacuo at 25◦C with activated silica as dessicant. The dried samples were then
weighed over the course of several days until a stable weight was found. The solvent
uptake was then calculated as the relative mass difference between the wet and dry
membranes.

2.4 Results and Discussion

A typical regression result for the streaming potential is plotted in figure 2.4. The ob-
served streaming potentials as calculated by extrapolation are given in table 2.2. The
normality and homoscedasticity of the deviations from the fitted curve are demon-
strated in figure 2.5. The regression interval was chosen from quantitative criteria
on the normality and homoscedasticity of the errors. See appendix B for details. An
example of a plot of the observed initial jump in electric potential versus the applied
pressure difference is given in figure 2.6. The streaming potential was for each case
calculated as the slope of the least squares simple linear fit of initial jump in electric
potential as a function of the applied pressure difference.
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Figure 2.4: The experimentally observed electric potential between the Ag/AgCl electrodes over
the course of an experiment using the Nafion 115 cation-exchange membrane in 0.03 mol/kg LiCl
solution, plotted against the square root of time. The transient period between equilibrium and
steady state is indicated by the blue lines, and the fitted regression curve is plotted in red. The
applied pressure difference in the plotted experiment was approximately 1 bar.

For calculating the molar volumes of the electrolytes at 0.03 mol/kg, a water com-
pressibility of 0.45248 GPa−1 [23] was used. The pressure derivative of the permit-
tivity was estimated by taking finite differences of permittivity data as a function of
pressure [24] and interpolating. The value used is ∂P ln(ε) = 0.52645 GPa−1. This
value was taken to be approximately the same for all the electrolytes under investiga-
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Figure 2.5: Top: Deviations from the fitted regression curve in the regression interval after the
transient period plotted in figure 2.4. Bottom: A histogram showing the frequencies of the observed
deviations from the fitted regression curve.

tion. The dielectric permittivity of pure water was taken to be 693.8 pF/m [25], and
the permittivities of the salt solutions were calculated according to equation (2.2.69).
The excess molar volumes were calculated according to equation (2.2.67), using ex-
trapolated data from [26]. Empirical data gathered from literature, along with the
resulting estimates are given in table 2.1.

For calculating the electrode contribution to the observed streaming potential, molar
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Figure 2.6: Absolute values of observed streaming potentials plotted against pressure applied over
the Nafion 115 cation-exchange membrane in 0.03 mol/kg LiCl solution. The black and red dashed
lines indicate 95% confidence and prediction bounds, respectively. The observed points lie along
a straight line within their error bounds, and the regression result contains the origin within the
confidence bounds.

masses of 107.8682 g/mol and 143.321 g/mol [25] were used for Ag and AgCl, respec-
tively. The densities used were respectively 10.49 g/cm3 [25] and 5.589 g/cm3 [29].
These values yield molar volumes of 10.283 cm3/mol for Ag and 25.643 cm3/mol for
AgCl. Together, this gives an electrode contribution of βel = 15.920 µV/bar, which
is taken to be the same in all experiments. The molar volume of water was taken to
be approximately the same as in pure water, and therefore estimated by the ratio of
a molar mass of 18.0153 g/mol [25] and a pure water density of 997.047 kg/m3 [25],
giving an estimated molar volume of 18.0686 cm3/mol. We take all membranes to
be perfectly selective at 0.03 mol/kg concentration for all electrolytes, and, in light

Table 2.1: Molar volumes at infinite dilution, Debye-Hückel size parameters, permittivity fitting pa-
rameters, and estimated permittivities and molar volumes at 0.03 mol/kg for the relevant electrolytes.

Electrolyte V 0
e [26] a[27] δε[28] ε Ve

(cm3/mol) (pm) (dm3/mol) (pF/m) (cm3/mol)
LiCl 17.1 432 13.3 690.3 17.6
NaCl 16.6 397 11.0 690.9 17.1
KCl 26.8 363 9.4 691.3 27.3
MgCl2 15.3 502 24.0 687.5 17.3
CaCl2 18.5 473 27.2 686.6 20.5
BaCl2 23.9 445 22.8 687.8 25.9
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Table 2.2: Membrane streaming potentials and water transference coefficients for different combina-
tions of membrane and electrolyte at molality 0.03 mol/kg. Missing values are either pending for
measurement or temporarily under revision due to severe lack of precision in raw data.

Nafion 115 Neosepta CMX
Electrolyte βmem (µV/bar) tw βmem (µV/bar) tw
LiCl -280 ± 10 14.0 ± 0.5 -129 ± 20 5.9 ± 1.1
NaCl -207 ± 56 10.1 ± 3.0 -102 ± 8 4.5 ± 0.4
KCl -121 ± 7 4.9 ± 0.4 -90 ± 18 3.3 ± 1.0
MgCl2 -241 ± 8 12.4 ± 0.4 - -
CaCl2 -193 ± 19 9.7 ± 1.0 - -
BaCl2 -119 ± 10 5.6 ± 0.5 - -

Fumasep FKS Fumasep FAD
LiCl -141 ± 21 6.6 ± 1.1 - -
NaCl -90 ± 9 3.9 ± 0.5 52 ± 18 -2.8 ± 1.0
KCl -97 ± 14 3.7 ± 0.7 97 ± 23 -5.2 ± 1.2
MgCl2 -169 ± 7 8.5 ± 0.4 68 ± 49 -3.6 ± 2.6
CaCl2 - - 45 ± 16 -2.4 ± 0.9
BaCl2 -119 ± 5 5.6 ± 0.3 59 ± 58 -3.2 ± 3.1

Neosepta AMX
LiCl 64 ± 4 -3.4 ± 0.2
NaCl - -
KCl - -
MgCl2 - -
CaCl2 54 ± 21 -2.9 ± 1.1
BaCl2 - -

of transport number data by Zlotorowicz et al.[30], we also take the FKS and FAD
membranes to be perfectly selective also at elevated concentrations of NaCl, introduc-
ing an error that is found negligible a posterori in all cases. Unless stated otherwise,
all errors are reported as 95 % confidence, under the assumption of normally dis-
tributed residuals. Normality is in every case confirmed at the 5 % level by means of
an Anderson-Darling test.

We observe that all streaming potentials are in the range 60− 260 µV/bar, which is
just below the lower range of values reported for Flemion S [32], which are found in
the range 0.3 − 1 mV/bar, and 3 orders of magnitude smaller than values reported
for Cyclopore filtration membranes [33]. The magnitudes of the water transference
coefficients found in these experiments are typical. To the precision in these exper-
iments, we cannot conclude that tw of the anion exchange membranes change with
cation. For the cation exchange membranes, we observe a tendency for tw to decrease
with cation size. A plot of tw against the ratio of the cationic charge number to the
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Table 2.3: Streaming potentials and water transference coefficients of the Fumasep membranes
for different molalities of NaCl. The molar volumes at 0.10 and 0.60 mol/kg were obtained by
interpolating experimental data by Dunn [31]. The streaming potentials are given in µV/bar.

me Ve FKS FAD
(mol/kg) (cm3/mol) βmem tw βmem tw

0.03 17.1 -90 ± 9 3.9 ± 0.5 52 ± 18 -2.8 ± 1.0
0.10 17.4 -78 ± 17 3.2 ± 0.9 92 ± 11 -4.9 ± 0.6
0.60 18.0 -97 ± 14 4.2 ± 0.7 150 ± 92 -8.1 ± 4.9

crystallographic radii of the cations is given in figure 2.7. This ratio is an estimate of
the magnitude of the local electric potential due to the electric field of the cationic
monopole at the distance of closest approach, and thus indicates the depth of the po-
tential well of the solvating water molecules. We observe that there are two different
trends – one for the monovalent cations, and one for the divalent cations. For each
separate trend, we see a monotonous increase with the charge-radius ratio. Xie and
Okada [13] found that tw increases with the size of the cation in Nafion membranes,
likely due to a size exclusion effect pumping the water along with the ions. This effect
becomes more appreciable when the volume of the cation is made up of hydrophobic
groups, contrary to our situation in these experiments. The strong tendency of tw in
table 2.2 to decrease with ion size suggests that the ion-dipole interaction dominates
the water transport in these cases.

The aqueous solution cation transport numbers, tMz+ , were found by interpolating
experimental data found in the literature. Data was found for LiCl, NaCl and KCl
[34]; CaCl2 [35]; MgCl2 [36] and BaCl2 [37]. Diffusion coefficients were found by inter-
polation of data from [36, 38, 39, 40, 41, 42, 43, 44], and thermodynamic factors were
estimated by finite differences on interpolation of activity data from [25]. All data
are given in tables 2.4 and 2.5. Water permeabilities were estimated using equation
(2.2.63), and data for different electrolytes and different concentrations are given in
tables 2.6 and 2.7, respectively.

The measured water content for all membranes in different electrolyte solutions are
given in tables 2.8 and 2.9. Although the error in much of the data is sizeable, the
numbers indicate that the water content of the anion exchange membranes is insen-
sitive to the type of cation in the solution, while the water content of the cation
exchange membranes seems to decrease with increasing cation size and charge. For
the cation exchange membranes, there appears to be a correlation between the water
content and the water transference coefficient. Due to the large error in the FKS data,
however, only the correlations for the Nafion 115 and Neosepta CMX membranes
are significant, and a plot is shown in figure 2.8. Such correlations have been found
previously by other workers, see e.g. [17], and suggest that part of the water trans-



32 CHAPTER 2. STREAMING POTENTIAL AND ELECTROOSMOSIS

2

4

6

8

10

12

14

16

5 10 15 20 25 30

Li+

Na+

K+

Na+

Li+

Ba2+

Ca2+
Mg2+

t w

z/r
(
nm−1

)

Nafion 115
Fumasep FKS PET-75

Neosepta CMX

Figure 2.7: Plot of water transference coefficients against the ratio of cationic charge numbers, z,
and the crystallographic radii at coordination number 6, r.

Table 2.4: Aqueous solution transport numbers, diffusion coefficients, and thermodynamic factors
obtained by interpolating literature data at 0.03 mol/kg and 25◦C.

Electrolyte tMz+ De (10−9 m2/s) Γ
LiCl 0.324 1.29 0.942
NaCl 0.389 1.52 0.937
KCl 0.490 1.89 0.932
MgCl2 0.380 1.10 0.864
CaCl2 0.419 1.15 0.853
BaCl2 0.430 1.21 0.836

Table 2.5: Aqueous solution transport numbers, diffusion coefficients and thermodynamic factors of
NaCl obtained by interpolating literature data at different concentrations and 25◦C.

Molality tMz+ De(10−9m2/s) Γ
0.03 0.389 1.52 0.937
0.10 0.386 1.48 0.922
0.60 0.376 1.47 0.939
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Table 2.6: Water permeabilities Lp at 0.03 mol/kg, calculated from diffusion slopes using values from
table 2.4 and assuming zero electrolyte flux and perfect ionic selectivity. The values are all given in
units of nm s−1 bar−1.

Electrolyte Nafion 115 Neosepta CMX Fumasep FKS
LiCl 6.3 ± 0.4 7 ± 15 6.3 ± 1.2
NaCl 7.0 ± 1.6 0.9 ± 0.9 3.4 ± 1.6
KCl 4.2 ± 1.2 2.1 ± 1.4 2.3 ± 0.6
MgCl2 1.9 ± 0.9 - 1.6 ± 1.0
CaCl2 6.2 ± 5.4 - -
BaCl2 1.9 ± 1.9 - 1.0 ± 1.3

Fumasep FAD Neosepta AMX
LiCl - 1.6 ± 3.0
NaCl 9.5 ± 4.7 -
KCl 9.1 ± 1.6 -
MgCl2 11.5 ± 7.6 -
CaCl2 12.2 ± 4.1 1.1 ± 2.3
BaCl2 17.0 ± 4.2 -

Table 2.7: Water permeabilities calculated for different concentrations of NaCl. The values are all
given in units of nm s−1 bar−1.

Molality Fumasep FKS Fumasep FAD
0.03 3.4 ± 1.6 9.5 ± 4.7
0.10 2.6 ± 0.1 6.1 ± 1.1
0.60 2.6 ± 0.7 6.3 ± 3.7
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Table 2.8: Measured water content in mass percent for unused membranes immersed in 0.03 mol/kg
aqueous salt solutions.

Electrolyte Nafion 115 Neosepta CMX Fumasep FKS
LiCl 19.2 ± 0.4 23.7 ± 0.6 17.7 ± 1.4
NaCl 16.8 ± 0.4 21.3 ± 0.5 17.7 ± 0.8
KCl 9.2 ± 1.3 20.5 ± 0.4 14.1 ± 1.1
MgCl2 15.3 ± 0.4 19.6 ± 0.6 17.4 ± 1.3
CaCl2 14.4 ± 0.5 19.8 ± 1.0 15.6 ± 2.1
BaCl2 10.3 ± 0.7 14.2 ± 0.6 14.1 ± 2.7

Fumasep FAD Neosepta AMX
LiCl 23.5 ± 2.1 16.2 ± 0.6
NaCl 22.3 ± 0.5 17.2 ± 0.7
KCl 24.5 ± 1.4 14.6 ± 0.8
MgCl2 25.5 ± 2.1 16.9 ± 1.0
CaCl2 26.7 ± 1.1 16.9 ± 1.4
BaCl2 24.3 ± 1.5 15.8 ± 1.0

port is bulk transport of loosely bound water in the membrane, which is additional to
that transported by electrostriction due to the ion-dipole interaction. Interestingly,
the water content of the FAD membrane appears to decrease with concentration of
NaCl, though the effect is small.

The water content of membranes that were used for streaming potential measure-
ments, and thus exposed to a pressure difference of approximately 1 bar, is given
in table 2.10. The deformation of the membranes made removal of surface solution
from the wet membranes less reliable, and caused some increase in the error. We can
see, however, that the general tendency is for the water content to decrease in all
membranes after deformation. This is possibly an effect of structural collapse in the
membrane, such that it can accomodate only a smaller volume of water than prior to
the deformation. Since the correlation between water content and water transport is
positive, it is possible that this effect serves to shift our estimates for the water trans-
ference coefficients to a lower value than the true value of the undeformed membrane.
If this is true, then we expect that the water transference coefficients of the cation
exchange membranes are underestimated by a value of up to around 1, according to
the correlations given in figure 2.8.

An interesting connection can be made to the effect of the ions on the solvent struc-
ture. An empirical measure of the ion-solvent interaction is the B-coefficient of the
Jones-Dole equation. For details, see the original paper [45], or e.g. [46]. It was shown
by Nightingale [47] that there exists a direct correlation between the B-coefficients
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Table 2.9: Measured water content in mass percent for unused membranes immersed in aqueous NaCl
at different concentrations.

Molality Fumasep FKS Fumasep FAD
0.03 17.7 ± 0.8 22.3 ± 0.5
0.10 18.8 ± 0.6 21.3 ± 0.7
0.60 17.0 ± 0.6 20.9 ± 0.7

Table 2.10: Measured water content in mass percent for membranes immersed in 0.03 mol/kg aqueous
salt solutions after exposure to a pressure difference of 1 bar.

Electrolyte Nafion 115 Neosepta CMX Fumasep FKS
LiCl 16.8 ± 0.9 22.0 ± 1.0 19.5 ± 2.7
NaCl 15.5 ± 1.2 18.5 ± 1.5 14.7 ± 1.8
KCl 10.1 ± 0.9 18.0 ± 0.9 14.9 ± 3.1
MgCl2 13.3 ± 1.1 16.5 ± 1.5 14.1 ± 2.4
CaCl2 14.4 ± 1.2 17.1 ± 1.2 15.7 ± 1.9
BaCl2 10.1 ± 0.6 16.5 ± 1.4 17.4 ± 4.8

Fumasep FAD Neosepta AMX
LiCl 22.2 ± 2.6 14.3 ± 1.6
NaCl 21.9 ± 2.6 13.3 ± 2.0
KCl 21.0 ± 3.4 13.7 ± 2.0
MgCl2 18.7 ± 1.7 12.9 ± 1.5
CaCl2 19.9 ± 2.6 13.4 ± 2.2
BaCl2 21.0 ± 1.0 15.0 ± 1.4
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Figure 2.8: Plot of water transference coefficients against water content of the cation exchange
membranes, obtained by changing the cation of a 0.03 mol/kg aqueous chloride solution. The black
and red dashed lines indicate 95 % confidence and prediction, respectively.

and the mass-corrected partial entropy of solvation. The average number of water
molecules transported per ion is ztw. In figure 2.9, we show a strong correlation be-
tween ztw and the B-coefficients. We observe that the water transport through the
membrane is correlated with the effect of the cation on the solvent structure in free
solution. For Nafion 115, the correlation is not monotonous, which may be due to
an effect of the ion in the membrane structure. The fixed charge groups are monova-
lent, which means that a divalent cation requires the proximity of two such groups to
achieve electroneutral conditions. It is possible that this strong monopole interaction
between a divalent cation and two sulfonic acid groups strains the polymer structure
so as to alter the water transport properties of the membrane. This hypothesis is
supported by the trend in water permeability in table 2.6. We observe that, apart
from the highly uncertain estimate in calcium chloride solution, the permeability is
significantly lower in solution with divalent cations than with monovalent cations.
This indicates that the divalent cations strain the membrane structure such that the
nanopores are more constricted. The correlation also further supports the hypothe-
sis that the water transport is dominated by ion-dipole interactions, rather than the
pumping effect seen with hydrophobic cations.

The water transport through the FKS membrane appears to be insensitive to the
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Figure 2.9: Plot of the product of cation valence number and water transference coefficient against
the Jones-Dole B-coefficients of the cations in aqueous solution.

concentration of NaCl in the range 0.03 - 0.60 mol/kg, while that of the FAD mem-
brane increases in magnitude with the concentration. This is contrary to findings
by Trivijitkasem and Østvold [18], who found for all membranes they investigated
that the magnitude of tw either decreased with or was insensitive to electrolyte con-
centration. The permeabilities of both membranes appear to be insensitive to the
concentration, though the estimates are quite uncertain. Several of the streaming po-
tential measurements suffer from large errors, which is due to observed perturbations
to the cell potential after application of the pressure difference. These perturbations
are postulated to occur due to mechanical deformation of the membrane. Interest-
ing investigations have been made on the viscoelastic response of such membranes to
a pressure gradient [48], which may lead to interesting results relevant for applica-
tions of non-isobaric membrane systems. Previously mentioned workers applying the
streaming potential method have used a perforated support plate for their measure-
ments to avoid deformation. Investigations on finite size effects of the perforations
have not yet been performed to a satisfactory degree, however, and we suggest a
completely different method in chapter 4.





Chapter 3
Seebeck Effect and Transported Entropy

A theoretical expression describing the measured electric potential difference over an ion
exchange membrane in contact with a nonisothermal aqueous metal chloride solution with
Ag/AgCl electrodes was derived in the framework of classical non-equilibrium thermodynam-
ics. The expression includes the effects of temperature polarization, Thomson effect, and
concentration polarization. The effect of stacking membranes together to diminish the polar-
ization effects is discussed, and an empirical model is applied. A thermocell was designed and
built for measuring the Seebeck coefficient of ion exchange membranes experimentally. The
Seebeck coefficient was measured for the FuMA-Tech FKS-PET-75 and FAD-PET-75
membranes in sodium chloride solutions with molalities 0.03, 0.1, and 0.6 mol/kg, with tem-
perature differences spanning from -20 to 20 Kelvin, and with membranes stacked together in
numbers ranging from 1 to 20. The arithmetic mean temperature of the cell was kept at 25
◦C. A regression model was used to fit the observed Seebeck coefficient of the total system as
a function of the membrane stack thickness. In both cases, the Seebeck coefficient converged
towards a limiting value with increasing thickness, suggesting that the polarization effects
vanish. The Seebeck coefficient of the two membranes were found to range from 1.41 to 0.98
mV/K, and 0.56 to 0.48 mV/K for the FKS and FAD membranes in stacks of 20, as the
NaCl concentration was increased. From the experimental data, estimates of the transported
entropies of the ions in the membranes were obtained. The Thomson effect was found to be
insignificant in all cases. A theoretical bound for the Seebeck coefficient, given by the second
law of thermodynamics, is also discussed. A figure of merit of a thermoelectric generator is
derived and related directly to the second law efficiency. The transported entropy of Na+ in
the FKS membrane was found to be insensitive to the composition of the aqueous solution,
and remains around 300 J/mol K. The transported entropy of Cl− in the FAD membrane
appears to increase with salt concentration, ranging from 250 to 600 J/mol K. The errors
are, however, large, due to large errors in the estimates of the water transference coefficients.
More accurate methods for determining the water transference coefficients are needed in order
to obtain better estimates of the transported entropies.

39
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3.1 Introduction

A complete description of a non-isothermal system with electric currents includes
considerations of the coupling of heat and charge transfer, known as the Peltier ef-
fect. Even isothermal systems can become non-isothermal under operation due to this
effect, which carries heat along with or in the opposite direction of the electric flux.
This coupling allows the extraction of electrical work from non-isothermal systems,
by allowing the temperature gradient to act as a driving force for the electric cur-
rent, an effect known in the literature as the Seebeck effect. The Peltier and Seebeck
effects are mutually reciprocal, and are related by an Onsager relation in the local
equilibrium theory.

Notable experimental work on the thermoelectric potential of ion exchange mem-
branes was done by a Japanese group [6, 49, 50, 51, 52, 53]. Although parts of their
theory could have been more transparent regarding the physical origin of the potential
that is being measured, their results do provide valuable insight. They demonstrated
that the potential was dependent on the flow rate in their cell, suggesting an effect of
the diffusion layers adjacent to the membrane. This was further investigated by Bar-
ragán et al. [54], who also investigated the effect of changing the mean temperature
of the cell [55]. More recent investigations have focused on the explicit application of
such systems to harvest waste heat, see e.g. [56, 57].

In the experiments presented here, we investigate the cell potential as the temperature
difference between the two compartments is varied, measuring the Seebeck coefficient
of the cell. We apply the Onsager reciprocity theorem to relate this to the Peltier
heat, quantified by the transported entropy of the charge carrier in the ion exchange
membrane. Agar [58] provided a review on the transported entropy of ions in aqueous
solutions, which are typically much larger than those of electrons and holes in con-
ventional semiconducting thermoelectric generators. Estimating and reporting the
transported entropies of ions in ion exchange membranes from Seebeck coefficients
appears to be the standard in the literature.

We develop here theoretical expressions describing the measurable cell potential of a
non-isothermal cell made up of two compartments with Ag/AgCl electrodes in aque-
ous chloride electrolyte, separated by an ion exchange membrane, in the framework
of non-equilibrium thermodynamics. We follow closely the conventions of workers
such as Kjelstrup & Bedeaux [8], and de Groot & Mazur [9]. The theoretical con-
siderations are somewhat general with respect to choice of cation, and we restrict
experiments to the case of NaCl, which is the most relevant for non-isothermal salt
power applications. See chapter 4 for more details on this particular application.
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3.2 Theory
We consider an electrochemical cell, where two compartments of an aqueous chloride
solution are separated by an ion exchange membrane. Each compartment has its
own Ag/AgCl electrode, and the electrodes are connected through an outer circuit by
means of metallic conductors. The system is nonisothermal, and there will therefore
be a net heat conduction through the membrane. The membrane also allows for
transfer of ions and solvent. A sketch of the system is given in figure 3.1. The
temperatures close to the electrodes in compartment 1 and 2 are T1 and T2, and
the corresponding temperatures close to the membrane surfaces are T` and Tr. We
define positive fluxes to be counter-clockwise in figure 3.1, using the rest frame of the
membrane as reference. We will divide the cell into distinct sub-systems, treating the
aqueous solution, the membrane, and the electrodes with external circuit separately,
and finally sum their contributions to obtain an expression for the total cell potential.

∆φ

IEM

Ag/AgCl Ag/AgCl

MClzM (aq) MClzM (aq)

T1 T2

T` Tr

Ju

JMz+

JCl−

Jw

e− e−
Compartment 1 Compartment 2

Figure 3.1: Sketch of the system considered in this work. The system is assumed to have mirror
symmetry with respect to membrane plane before the application of a temperature gradient. The
temperature difference T2 − T1 acts as a driving force for fluxes of energy, cations, chloride, and
water, denoted Ju, JMz+ , JCl− , and Jw, respectively. Charge transfer is facilitated by reactions at
the electrodes, which are at electric potentials φ1 and φ2. The temperatures T` and Tr close to the
membrane are also indicated.
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3.2.1 The Aqueous Solution

We treat the electrolyte solution as a continuum where fluxes of energy, Ju, cation,
JMz+ , and chloride, JCl− occur. With this, we assume that there is no net flux of water
in the bulk solution. We give the entropy production, σ, in terms of the conjugate
flux-force pairs

σ = Ju · ∇
( 1
T

)
− JMz+ · ∇

(
µ̃Mz+

T

)
− JCl− · ∇

(
µ̃Cl−

T

)
(3.2.1)

where µ̃i is the electrochemical potential of i, defined as

µ̃i := µi + ziFψ (3.2.2)

with µi the chemical potential, F Faraday’s constant, and ψ the electrostatic poten-
tial. The charge number zi, is defined such that zie is the charge of a particle of i,
with e the charge of a proton (i.e. the elementary charge unit). The linear flux-force
relations prescribed by the linear regression hypothesis are

Ju = Luu∇
( 1
T

)
− Lu+∇

(
µ̃Mz+

T

)
− Lu−∇

(
µ̃Cl−

T

)
JMz+ = L+u∇

( 1
T

)
− L++∇

(
µ̃Mz+

T

)
− L+−∇

(
µ̃Cl−

T

)
JCl− = L−u∇

( 1
T

)
− L−+∇

(
µ̃Mz+

T

)
− L−−∇

(
µ̃Cl−

T

) (3.2.3)

where we have used scalar conductivities under the assumption that the solution is
sufficiently isotropic. A connection can be made to the Kedem-Katchalsky formula-
tion, which instead includes the net flux of neutral electrolyte, Je, and the electric
current density, j. This, however, requires the introduction of constraints from the
global properties of the system. In our case, the electrodes are reversible to the chlo-
ride anion, and the net electrolyte flux can only occur with net flux of cation through
the membrane. The transformations are, therefore,

Je = JMz+

j = zFJMz+ − FJCl−

µe = µMz+ + zµCl−

φ = ψ − µCl−/F

(3.2.4)

where µe is the chemical potential of the electrolyte MClz, z is the valence number of
the cation, and φ is the measurable electric cell potential. This formulation has the
disadvantage of using a non-local electrolyte flux, which complicates local treatment.
It does, however, include measurable quantities, such as µe and φ. We will use the
formulation with electrochemical potentials in order to derive the local contributions
to the cell potential, and use the relations (3.2.4) to reformulate the expressions in
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terms of measurable quantities.

We now restrict our attention to one-dimensional transport along the axis x orthog-
onal to the membrane surfaces, such that (3.2.3) becomes Ju

JMz+

JCl−

 =

Luu Lu+ Lu−
L+u L++ L+−
L−u L−+ L−−


 ∂x (1/T )
−∂x (µ̃Mz+/T )
−∂x (µ̃Cl−/T )

 (3.2.5)

We use (3.2.4) to find the electric current density in terms of the flux equations for
the ion fluxes

j = Lψu∂x

( 1
T

)
− Lψ+∂

(
µMz+

T

)
− Lψ−∂x

(
µCl−

T

)
− Lψψ∂x

(
ψ

T

)
(3.2.6)

where we have used the relations for j and ψ in (3.2.4), and defined the coefficients

Lψu = F (zL+u − L−u) Lψ+ = F (zL++ − L−+)

Lψ− = F (zL+− − L−−) Lψψ = F 2
(
z2L++ + L−−

)
− zF (L−+ + L+−)

(3.2.7)
for which the Onsager symmetry Lψj = Ljψ also holds if it holds for the original coef-
ficients. This can for instance be shown by rewriting one of the other flux equations,
say

Ju = Luu∂x

( 1
T

)
− Lu+∂x

(
µMz+

T

)
− Lu−∂x

(
µCl−

T

)
− F (zLu+ − Lu−)︸ ︷︷ ︸

Luψ

∂x

(
ψ

T

)
(3.2.8)

where we see that if Lu+ = L+u and Lu− = L−u, then Luψ = Lψu. The same
can easily be shown for the remaining cross coefficients. Imposing the open circuit
condition, j = 0, we find from (3.2.6)(

∂x

(
ψ

T

))
j=0

= Lψu
Lψψ

∂x

( 1
T

)
− Lψ+
Lψψ

∂x

(
µMz+

T

)
− Lψ−
Lψψ

∂x

(
µCl−

T

)
(3.2.9)

from which we can now exploit the symmetries among the coefficients to identify the
ionic transport numbers

zF
Lψ+
Lψψ

= zF
L+ψ
Lψψ

= zF

(
JMz+

j

)
dT=0,dµ=0

=: tMz+

−F Lψ−
Lψψ

= −F L−ψ
Lψψ

= −F
(
JCl−

j

)
dT=0,dµ=0

=: tCl−

(3.2.10)

which are linearly dependent through the definition of the electric current density,
such that

tMz+ + tCl− = 1 (3.2.11)
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The energy flux can be expressed as

Ju = J ′q +HMz+JMz+ +HCl−JCl− + jψ (3.2.12)

where J ′q is the measurable heat flux, and Hi is the partial molar enthalpy of i, such
that the three first terms give the total heat flux. The fourth term is the electrical
work contribution to the energy transfer. We express the measurable heat flux in
terms of entropy

J ′q = TJs − TSMz+JMz+ − TSCl−JCl−

= T [(S∗Mz+ − SMz+) JMz+ + (S∗Cl− − SCl−) JCl− ]
(3.2.13)

where Si is the partial molar entropy of i, and we have introduced the transported
entropy S∗i of i to represent the contribution of i to the total entropy transfer. Using
that µi = Hi − TSi, we obtain

Ju = (TS∗Mz+ + µMz+) JMz+ + (TS∗Cl− + µCl−) JCl− + jψ (3.2.14)

such that, by the Onsager symmetry

F
Lψu
Lψψ

= F

(
Ju
j

)
dT=0,dµ=0

= tMz+

z
(TS∗Mz+ + µMz+)− tCl− (TS∗Cl− + µCl−) + Fψ

(3.2.15)
and (3.2.9) becomes(

∂x

(
ψ

T

))
j=0

= tMz+

zF

[
(TS∗Mz+ + µMz+) ∂x

( 1
T

)
− ∂x

(
µMz+

T

)]
− tCl−

F

[
(TS∗Cl− + µCl−) ∂x

( 1
T

)
− ∂x

(
µCl−

T

)]
+ ψ∂x

( 1
T

)
(3.2.16)

we use that

ψ∂x

( 1
T

)
= ∂x

(
ψ

T

)
− 1
T
∂xψ and ∂x

(
µi
T

)
= µi∂x

( 1
T

)
+ 1
T
∂xµi (3.2.17)

so that (3.2.16) can be rewritten to

(∂xψ)j=0 = − tMz+

zF
[S∗Mz+∂xT + ∂xµMz+ ] + tCl−

F
[S∗Cl−∂xT + ∂xµCl− ] (3.2.18)

subtracting ∂xµCl−/F from both sides, and applying (3.2.4) and (3.2.11), we obtain
the measurable potential

(∂xφ)j=0 = − 1
F

[
tMz+

z
S∗Mz+ − tCl−S

∗
Cl−

]
∂xT −

tMz+

zF
∂xµe (3.2.19)

and the temperature dependence of the chemical potential can be separated from the
composition dependence to first order as

∂xµe = ∂xµe,T + ∂µe
∂T

∂xT = ∂xµe,T − Se∂xT (3.2.20)
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where the subscript T indicates that the chemical potential is evaluated at the tem-
perature around which the expansion is taken. We employ the activity model for the
composition dependence of the chemical potential

∂xµe,T = ∂µe,T
∂ae,T

∂xae,T = νRT0∂x ln (ae,T ) (3.2.21)

where R is the universal gas constant, ae,T the isothermal activity of the electrolyte, ν
the number of ions per molecule of electrolyte, and T0 the temperature from which the
temperature dependence is expanded. The activity can be expressed as the product
γeme, where γe is the mean molal activity coefficient, and me is the molality of the
electrolyte. The gradient in electric potential can finally be expressed as

(∂xφ)j=0 = 1
F

[
tMz+

z
(Se − S∗Mz+) + tCl−S

∗
Cl−

]
∂xT −

νRT0tMz+

zF
∂x ln (ae,T ) (3.2.22)

Before proceeding to integrate (3.2.22), we make explicit the temperature dependence
of the entropies

Si (T ) = Si
(
T̂
)

+
∫ T

T̂

cp,i
T

dT = Si
(
T̂
)

+ cp,i ln
(
T

T̂

)
S∗i (T ) = S∗i

(
T̂
)

+
∫ T

T̂

τi
T
dT = S∗i

(
T̂
)

+ τi ln
(
T

T̂

) (3.2.23)

where cp,i and τi are the partial molar heat capacity, and the Thomson coefficient of i,
respectively. We have here neglected the temperature dependence of these quantities
in performing the integration in (3.2.23), and have introduced the mean temperature
of the cell, T̂ = (T1 + T2)/2. We will neglect the composition dependence of the
transported entropies and transport numbers. We take the steady state profiles in
composition, temperature, and electric potential to be explicit functions of position
only, and form the integration measures

∂xφdx = dφ ∂xTdx = dT ∂x ln (ae,T )dx = d ln (ae,T )
(3.2.24)

In order to ease notation, we define the partial Seebeck coefficient of the solution,
and its corresponding Thomson coefficient

ηsol
S = 1

F

[
tMz+

z
(Se − S∗Mz+) + tCl−S

∗
Cl−

]
τ sol = 1

F

[
tMz+

z
(cp,e − τMz+) + tCl−τCl−

] (3.2.25)

Unless otherwise stated, all quantities are evaluated at temperature T̂ . The integral
of (3.2.22) over compartment 1 is then∫ φ`

φ1
dφ = ∆1,`φ =

∫ T`

T1

[
ηsol

S + τ sol ln
(
T

T̂

)]
dT −

∫ a`e(T1)

a1
e(T1)

νRT1tMz+

zFae,T
dae,T

=
[
ηsol

S + τ solf (T1, T`)
]

∆1,`T −
νRT1tMz+

zF
ln
(
a`e (T1)
a1

e (T1)

) (3.2.26)
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Figure 3.2: Plot of the function f defined in (3.2.27) as a function of the temperature difference when
the mean temperature is kept constant equal to 298.15 K.

where we have introduced the difference notation, ∆j,kF = Fk−Fj , and the function

f (Tj , Tk) =
Tk ln

(
Tk/T̂

)
− Tj ln

(
Tj/T̂

)
Tk − Tj

− 1 (3.2.27)

A plot of the function f is given in figure 3.2. We observe that for a mean tempera-
ture of 298.15 K, the order of magnitude of f remains at 10−4 up to a temperature
difference of about 40 K. Thomson coefficients in aqueous solution are typically on
the same order of magnitude as their corresponding Seebeck coefficients [8, 58], and
we therefore expect the nonlinear dependence of the cell potential on the temperature
difference to be important at the third or fourth decimal.

Equivalently, we perform the integration over compartment 2, expanding the chemical
potential around the temperature T2

∆r,2φ =
[
ηsol

S + τ solf (Tr, T2)
]

∆r,2T −
νRT2tMz+

zF
ln
(
a2

e (T2)
are (T2)

)
(3.2.28)

The total contribution from the aqueous solution is obtained by adding (3.2.26) and
(3.2.28)

∆φsol = ηsol
S (∆1,`T + ∆r,2T ) + τ sol [f (T1, T`) ∆1,`T + f (Tr, T2) ∆r,2T ]

− νRtMz+

zF

[
T1 ln

(
a`e (T1)
a1

e (T1)

)
+ T2 ln

(
a2

e (T2)
are (T2)

)]
(3.2.29)

which is a sum of a thermoelectric contribution, represented by the Seebeck coeffi-
cient, and two isothermal Nernstian potentials due to nonuniform composition profiles
between the electrodes and the membrane surfaces.
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3.2.2 The Membrane

The treatment of the homogeneous phase is very similar to that of the aqueous so-
lution. A principal difference is that, in the membrane, electroosmotic transport of
water as a neutral component may occur. Let the subscript w denote quantities per-
taining to water, and denote by a bar all quantities evaluated in the membrane phase.
The flux-force relations are

Ju
JMz+

JCl−

Jw

 =


Luu Lu+ Lu− Luw
L+u L++ L+− L+w
L−u L−+ L−− L−w
Lwu Lw+ Lw− Lww




∂x (1/T )
−∂x (µ̃Mz+/T )
−∂x (µ̃Cl−/T )
−∂x (µw/T )

 (3.2.30)

Again, we can identify the electric current density

j = Lψu∂x

( 1
T

)
− Lψ+∂x

(
µMz+

T

)
− Lψ−∂x

(
µCl−

T

)
− Lψw∂x

(
µw
T

)
− Lψψ∂x

(
ψ

T

)
(3.2.31)

where Lψw = F (zL+w − L−w), and the remaining coefficients are defined exactly as
in (3.2.7). The open circuit condition gives(
∂x

(
ψ

T

))
j=0

= Lψu

Lψψ
∂x

( 1
T

)
− Lψ+

Lψψ
∂x

(
µMz+

T

)
− Lψ−

Lψψ
∂x

(
µCl−

T

)
− Lψw

Lψψ
∂x

(
µw
T

)
(3.2.32)

The ionic transport numbers are found in the same manner as in the aqueous solution,

zF
Lψ+

Lψψ
= zF

L+ψ

Lψψ
= zF

(
JMz+

j

)
dT=0,dµ=0

=: tMz+

−F Lψ−
Lψψ

= −F L−ψ
Lψψ

= −F
(
JCl−

j

)
dT=0,dµ=0

=: tCl−

(3.2.33)

and, similarly, the water transference coefficient

F
Lψw

Lψψ
= F

Lwψ

Lψψ
=
(
Jw
j

)
dT=0,dµ=0

=: tw (3.2.34)

The energy balance proceeds in a manner similar to that of the aqueous solution.
The energy flux is

Ju =
(
TS
∗
Mz+ + µMz+

)
JMz+ +

(
TS
∗
Cl− + µCl−

)
JCl− + µwJw + jψ (3.2.35)

where we have neglected the transported entropy of neutral water, as the electroos-
motic water transport is a reversible effect which should not contribute to the entropy
production. See e.g. [8] for a discussion on this. The electric field strength is

(∂xψ)j=0 = − tMz+

zF

[
S
∗
Mz+∂xT + ∂xµMz+

]
+ tCl−

F

[
S
∗
Cl−∂xT + ∂xµCl−

]
− tw
F
∂xµw

(3.2.36)
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Subtracting ∂xµCl−/F from both sides and using that tMz+ + tCl− = 1, and identifying
the chemical potential of electrolyte, this becomes

(∂xφ)j=0 = − 1
F

[
tMz+

z
S
∗
Mz+ − tCl−S

∗
Cl−

]
∂xT −

tMz+

zF
∂xµe −

tw
F
∂xµw (3.2.37)

Using (3.2.20) and (3.2.21), this is

(∂xφ)j=0 = 1
F

[
tMz+

z

(
Se − S

∗
Mz+

)
+ tCl−S

∗
Cl− + twSw

]
∂xT

− νRT0tMz+

zF
∂x ln (ae,T )− RT0tw

F
∂x ln (aw,T )

(3.2.38)

where aw,T is the isothermal activity of water. We define the Seebeck and Thomson
coefficients

η‘mem
S := 1

F

[
tMz+

z

(
Se − S

∗
Mz+

)
+ tCl−S

∗
Cl− + twSw

]

τ ‘mem := 1
F

[
tMz+

z
(cp,e − τMz+) + tCl−τCl− + twcp,w

] (3.2.39)

We choose to expand the temperature around the mean temperature, T̂ . More ped-
agogically, this can be obtained by expanding around both T` and Tr, and taking
the symmetric combination of the two expansions, assuming that T̂ is also the mean
temperature of Tr and T`. Upon constructing the integration measures as in (3.2.24),
integration of (3.2.38) leaves

∆φ′mem =
[
η‘mem

S + τ ‘memf (T`, Tr)
]

∆`,rT

− νRT̂ tMz+

zF
ln

are
(
T̂
)

a`e

(
T̂
)
− RT̂ tw

F
ln

arw
(
T̂
)

a`w

(
T̂
)
 (3.2.40)

We will now show that adding to this the electric potential jumps at the interfaces
between aqueous solution and bulk membrane will eliminate membrane phase state
variables in favour of those in aqueous solution, while the kinetic variables, such as the
transported entropies, will remain specific to the membrane. Assuming that there is
no jump in temperature at the interface in the steady state, the steady state entropy
production of one such interface is

σsurf = −JMz+
∆i,oµ̃Mz+

T
− JCl−

∆i,oµ̃Cl−

T
− Jw

∆i,oµw
T

(3.2.41)

where we note that all driving forces are zero if the interface is in equilibrium with
the external solution, and there will be no net contribution to the electric potential.
Rather than assume that the interfaces are in equilibrium with the solution, we derive
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an expression for the steady state contribution. From the same arguments as in the
bulk phase, we obtain the electric current density through the interface

j = −
Lsψ+
T

∆i,oµMz+ −
Lsψ−
T

∆i,oµCl− −
Lsψw
T

∆i,oµw −
Lsψψ
T

∆i,oψ (3.2.42)

The transference coefficients and transport numbers derived from these coefficients
must, by the steady state constraint that there is no accumulation of charge or water
at the interfaces, be equal to the membrane bulk phase coefficients. The open circuit
electric potential jump is therefore

(∆i,oψ)j=0 = − tMz+

zF
∆i,oµMz+ + tCl−

F
∆i,oµCl− −

tw
F

∆i,oµw (3.2.43)

Correcting for the chemical potential of chloride, and identifying the electrolyte chem-
ical potential, the jump in measurable electric potential is

(∆i,oφ)j=0 = − tMz+

zF
∆i,oµe −

tw
F

∆i,oµw (3.2.44)

Made explicit in compartment 1, expanding the chemical potentials around T̂

∆φ(1)
surf =− tMz+

zF

[(
H
`
e −H`

e

)
− T`

(
S
`
e − S`e

)
+ (cp,e − cp,e)

(
T` − T̂ − T` ln

(
T`/T̂

))]
− tw
F

[(
H
`
w −H`

w

)
− T`

(
S
`
e − S`e

)
+ (cp,w − cp,w)

(
T` − T̂ − T` ln

(
T`/T̂

))]
(3.2.45)

and similarly for the interface in compartment 2

∆φ(2)
surf = tMz+

zF

[(
H
r
e −Hr

e

)
− Tr

(
S
r
e − Sre

)
+ (cp,e − cp,e)

(
Tr − T̂ − Tr ln

(
Tr/T̂

))]
+ tw
F

[(
H
r
w −Hr

w

)
− Tr

(
S
r
e − Sre

)
+ (cp,w − cp,w)

(
Tr − T̂ − Tr ln

(
Tr/T̂

))]
(3.2.46)

We now introduce activities again by noticing that e.g.

H
`
e −H`

e − T`
(
S
`
e − S`e

)
≈ µ`e − µ`e −

(
T` − T̂

) (
Se − Se

)
(3.2.47)

and similarly for the remaining terms. We have neglected the composition depen-
dence of the entropies, as we expect these variations to be small. Adding the two
contributions then gives the measurable contribution to the electric potential

tMz+

zF

{[(
Se − Se

)
+ (cp,e − cp,e) f (T`, Tr)

]
∆`,rT + νRT̂

[
ln
(
are
a`e

)
− ln

(
are
a`e

)]}
+ tw
F

{[(
Sw − Sw

)
+ (cp,w − cp,w) f (T`, Tr)

]
∆`,rT +RT̂

[
ln
(
arw
a`w

)
− ln

(
arw
a`w

)]}
(3.2.48)
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where activities are evaluated at temperature T̂ . One may notice that adding this
to the bulk contribution in (3.2.40) simply replaces membrane phase thermodynamic
entropies and activities with those in aqueous solution. We therefore define new
coefficients

ηmem
S := 1

F

[
tMz+

z

(
Se − S

∗
Mz+

)
+ tCl−S

∗
Cl− + twSw

]

τmem := 1
F

[
tMz+

z
(cp,e − τMz+) + tCl−τCl− + twcp,w

] (3.2.49)

the total contribution from the membrane and its interfaces is

∆φmem = [ηmem
S + τmemf (T`, Tr)] ∆`,rT −

νRT̂ tMz+

zF
ln
(
are
a`e

)
− RT̂ tw

F
ln
(
arw
a`w

)
(3.2.50)

which remains the same under steady state conditions, regardless of whether or not
the membrane surfaces are in equilibrium with the external solution.

3.2.3 The Electrodes and External Circuit

We have thus far described the membrane and the aqueous solution, and have ref-
erenced the electrodes at each subsystem through the relations (3.2.4). We will now
describe the contributions due to the chemical reactions at the electrode surfaces, and
any contribution that may occur in the external circuit. We assume again a contin-
uous steady state temperature profile. At the electrode surfaces, the charge carrier
changes from chloride in aqueous solution, to electrons in metallic silver. This can
be described as transport of chloride (i, s) into the layer of silver chloride, a chemical
reaction transforming metallic silver to silver chloride, and transport of electrons out
of the silver chloride layer into the metallic silver (s, o). The entropy production is

σchem = −J iCl−
∆i,sµ̃Cl−

T
− Joe−

∆s,oµ̃e−

T
− rc∆nG

T
(3.2.51)

with rc the chemical reaction rate, ∆nG the Gibbs energy contribution of silver and
silver chloride in the electrode reaction, and Je− the electron flux. We take the
reaction rate to be constrained by the electric current

rc = j/F (3.2.52)

and the other fluxes are those making up the electric current

J iCl− = Joe− = −j/F (3.2.53)

and the electrochemical potentials are

∆i,sµ̃Cl− = ∆i,sµCl− − F∆i,sψ = −F∆i,sφ

∆s,oµ̃e− = ∆s,oµe− − F∆s,oψ = −F∆s,oφ
(3.2.54)



3.2. THEORY 51

there is thus only one independent flux-force pair in the entropy production

σchem = − j
T

(
∆i,oφ+ ∆nG

F

)
(3.2.55)

then, the linear flux-force relation gives

(∆i,oφ)j=0 = −∆nG

F
(3.2.56)

which is the Nernst equation from equilibrium thermodynamics. We can now use
this relation to find the electrode contribution to the measurable electric potential.
In compartment 1, the transference of 1 Faraday of positive charge from compartment
1 to 2 through the membrane is compensated by the reaction

Cl− + Ag→ AgCl + e− (3.2.57)

while the opposite reaction occurs at the electrode in compartment 2. The reaction
Gibbs energy contribution from the neutral components in compartment 1 is

∆nG
(1) = µ

(1)
AgCl (T1)− µ(1)

Ag (T1) (3.2.58)

and in compartment 2

∆nG
(2) = µ

(2)
Ag (T2)− µ(2)

AgCl (T2) (3.2.59)

We use the superscripts to distinguish the states of the electrode materials at the
different electrodes. The reason for this distinction is the practical challenge of making
the electrodes similar enough that their structural differences do not give rise to a
measurable difference in electric potential, known in the literature as a bias potential.
We will assume that these differences are small, and use mean values at temperature
T̂ as reference

µ̂i := µ
(1)
i + µ

(2)
i

2 (3.2.60)

then,
µ

(1)
i = µ̂i − εi
µ

(2)
i = µ̂i + εi

(3.2.61)

with εi = µ
(2)
i − µ̂i = µ̂i − µ(1)

i introduced as the deviation parameter between the
electrodes. Adding together the Gibbs energies of the two electrode reactions, and
using the mean chemical potentials and their temperature dependencies, we obtain

∆nG =
[
ŜAgCl − ŜAg + (ĉp,AgCl − ĉp,Ag) f (T1, T2)

]
∆1,2T + ∆nGbias (3.2.62)

where we have to second order in the temperature difference

∆nGbias = 2ε+ 1
4
∂2ε

∂T 2

∣∣∣∣
T=T̂

(∆1,2T )2 with ε = εAg − εAgCl (3.2.63)
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which gives rise to the measurable bias potential of the electrodes

∆φbias = −∆nGbias
F

(3.2.64)

The total contribution from the electrode reactions is then

∆φchem = 1
F

[
ŜAg − ŜAgCl + (ĉp,Ag − ĉp,AgCl) f (T1, T2)

]
∆1,2T + ∆φbias (3.2.65)

An important note is that the bias will generally depend on the temperature dif-
ference, due to the second order term which corresponds to deviations in the heat
capacities. It is therefore important that the differences between the electrodes are
small, so as not to give a significant thermoelectric contribution. We will assume
that if the isothermal bias potential is small, then its influence on the thermoelectric
potential is negligible.

The silver electrodes are connected to the external circuit via platinum wires. As-
suming local equilibrium at the silver-platinum interfaces gives

F (∆φjun)j=0 = ±
(
µ̃

(Ag)
e− − µ̃

(Pt)
e−
)

= 0 (3.2.66)

so that the junctions do not contribute to the cell potential. We also assume that
all equipment in the external circuit is kept at room temperature, such that we need
only consider thermoelectric effects in the platinum wires. The entropy production
in such a wire is

σw = Ju∂x

( 1
T

)
− Je−∂x

(
µ̃e−

T

)
(3.2.67)

We have

Ju =
(
TS
∗(Pt)
e− + µe−

)
Je− + jψ Je− = −j/F µ̃e− = µe− − Fψ

(3.2.68)
which gives

F

(
∂x

(
ψ

T

))
j=0

= −
(
Ju
Je−

)
dT=0

∂x

( 1
T

)
+ ∂x

(
µe−

T

)
(3.2.69)

evaluating the energy flux gives(
Ju
Je−

)
dT=0

= −F
(
Ju
j

)
dT=0

= TS
∗(Pt)
e− + µe− − Fψ (3.2.70)

which makes (3.2.69)

F (∂xψ)j=0 = −T
(
TS
∗(Pt)
e− + µe−

)
∂x

( 1
T

)
+ T∂x

(
µe−

T

)
= S

∗(Pt)
e− ∂xT + ∂xµe−

(3.2.71)
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the measurable potential is obtained by subtracting ∂xµe−/F from the electrostatic
potential, thus

(∂xφ)j=0 =
S
∗(Pt)
e−

F
∂xT (3.2.72)

Integrating by the standard procedure from T2 to T1 gives

∆φext = − 1
F

[
S
∗(Pt)
e− + τ

(Pt)
e− f (T1, T2)

]
∆1,2T (3.2.73)

the total contribution from the electrodes and the external circuit is then obtained
by adding (3.2.65) and (3.2.73). We define the coefficients

ηel
S = 1

F

[
ŜAg − ŜAgCl − S∗(Pt)

e−
]

τ el = 1
F

[
ĉp,Ag − ĉp,AgCl − τ (Pt)

e−
] (3.2.74)

then,

∆φel =
[
ηel

S + τ elf (T1, T2)
]

∆1,2T + ∆φbias (3.2.75)

is the contribution of the electrodes and external circuit to the measurable cell po-
tential.

3.2.4 The Total Cell Potential

We will now gather all the terms contributing to the total cell potential, and investi-
gate some limits. The total cell potential is found by adding (3.2.29), (3.2.50), and
(3.2.75)

∆φ = ηsol
S (∆1,`T + ∆r,2T ) + τ sol [f (T1, T`) ∆1,`T + f (Tr, T2) ∆r,2T ]

+ [ηmem
S + τmemf (T`, Tr)] ∆`,rT +

[
ηel

S + τ elf (T1, T2)
]

∆1,2T

− νR

zF

tMz+

[
T1 ln

(
a`e (T1)
a1

e (T1)

)
+ T2 ln

(
a2

e (T2)
are (T2)

)]
+ tMz+ T̂ ln

are
(
T̂
)

a`e

(
T̂
)


− RT̂ tw
F

ln

arw
(
T̂
)

a`w

(
T̂
)
+ ∆φbias

(3.2.76)



54 CHAPTER 3. SEEBECK EFFECT AND TRANSPORTED ENTROPY

One limit of interest is the compartment-wise isothermal limit, where T` → T1, and
Tr → T2. The expression reduces to

∆φ = [ηmem
S + τmemf (T1, T2)] ∆1,2T +

[
ηel

S + τ elf (T1, T2)
]

∆1,2T

− νR

zF

tMz+

[
T1 ln

(
a`e (T1)
a1

e (T1)

)
+ T2 ln

(
a2

e (T2)
are (T2)

)]
+ tMz+ T̂ ln

are
(
T̂
)

a`e

(
T̂
)


− RT̂ tw
F

ln

arw
(
T̂
)

a`w

(
T̂
)
+ ∆φbias

(3.2.77)
Taking the isothermal limit, T1 → T̂ and T2 → T̂ , the thermoelectric potentials
vanish, and we are left with

∆φ = −νRT̂
zF

(tMz+ − tMz+) ln

are
(
T̂
)

a`e

(
T̂
)
− RT̂ tw

F
ln

arw
(
T̂
)

a`w

(
T̂
)
+ ∆φbias (3.2.78)

which is just the standard isothermal concentration potential of a membrane system.
Taking the limit of uniform composition, only the electrode bias remains. If, instead
of the isothermal limit, we take uniform composition, we have

∆φ =
[
ηmem

S + ηel
S +

(
τmem + τ el

)
f (T1, T2)

]
∆1,2T + ∆φbias

(
∆1,2T, T̂

)
(3.2.79)

We will discuss conditions for the both the compartment-wise isothermal limit and
the limit of uniform composition in section 3.2.5. Further assuming that all Thomson
effects can be neglected, this reduces to

∆φ =
(
ηmem

S + ηel
S

)
∆1,2T + ∆φbias (3.2.80)

which is an assumption that can be checked by checking whether the observed po-
tential deviates significantly from a straight line as a function of the temperature
difference. This will be discussed in further detail in section 3.2.6.

3.2.5 Temperature Polarization

In our full expression (3.2.76) for the total cell potential, the thermoelectric contribu-
tions stem from both an effect due to transport across the membrane, and for trans-
port through the external solution. In taking the compartment-wise isothermal limit
to obtain (3.2.77), the solutions terms are neglected, and the temperature difference
across the membrane is assumed to be sufficiently close to the temperature difference
between the bulk solutions. In practice, however, the typical situation is that diffusion
layers formed close to the membrane surface have significantly non-uniform temper-
ature profiles. This gives measurable alterations to the observed electric potential,
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as it provides thermoelectric potentials in the diffusion layers as well as across the
membrane proper, and also alters the thermoelectric potential over the membrane by
altering the temperature difference across the membrane itself. This effect is com-
monly known as temperature polarization in the literature [54]. An example of how a
steady state temperature profile may look like is illustrated in figure 3.3.

The experimental difficulties associated with measuring the temperatures T` and Tr,
without disturbing the transport processes, call for a more practical approach. We
introduce the mean temperature gradients in solution and membrane

∂s
xT = ∆1,`T + ∆r,2T

ds
∂m
x T = ∆`,rT

dm
(3.2.81)

where ds is two times the mean thickness of the diffusion layers, and dm is the thickness
of the membrane. The total temperature difference can then be expressed as

∆T := ∆1,2T = ∂s
xTds + ∂m

x Tdm (3.2.82)

Neglecting the Thomson effect, and the dependence of the composition profiles in the
diffusion layers on the temperature difference, the observed Seebeck coefficient of the
system is

ηobs
S = ∆φ

∆T ∝
ηsol

S ∂s
xTds + ηmem

S ∂m
x Tdm

∂s
xTds + ∂m

x Tdm
= ηsol

S

1 + ρdm
ds

+
ηmem

S ρdm
ds

1 + ρdm
ds

(3.2.83)

ds/2 ds/2dm

1 ` Membrane r 2

Figure 3.3: An illustration of a possible combination of temperature and composition profile in
the system. The dashed lines indicate the diffusion layers ` and r, and the solid lines indicate the
membrane-solution interfaces. The solid curve indicates the temperature profile, and the dotted
curve the electrolyte concentration.
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where ρ is the ratio of the mean temperature gradient in the membrane to the mean
temperature gradient in the diffusion layers. We see that the dependence on the ratio
dm/ds is such that, provided that ρ is independent of this ratio, only the membrane
contribution remains when this ratio is large enough. Experimentally, we will increase
the membrane thickness by stacking membranes together. We will then assume that
the effective membrane thickness is

dm = nd (3.2.84)

where d is the thickness of a single membrane, and n is the number of membranes
stacked together. We furthermore assume that the ratio d/ds is independent of the
number of membranes in the stack, and define the parameter

r := ρ
d

ds
(3.2.85)

The model for the observed Seebeck coefficient is then

ηobs
S ∝ ηsol

S

1 + nr
+ ηmem

S

1 + 1
nr

(3.2.86)

We will use this model to analyze the dependence of the observed Seebeck coefficient
on the number of stacked membranes. As a generalization, we may assume that r is
not constant, but varies slowly with n. In this case, we may expand about n = 1

r(n) ≈ r(1) + ∂r

∂n

∣∣∣∣
n=1

(n− 1) (3.2.87)

in which case we define the coefficients

a := ∂r

∂n

∣∣∣∣
n=1

b := r(1)− ∂r

∂n

∣∣∣∣
n=1

(3.2.88)

so that (3.2.86) becomes

ηobs
S ∝ ηsol

S

1 + bn+ an2 + ηmem
S

1 + 1
bn+an2

(3.2.89)

we will use this model to check whether a is significant, and revert to (3.2.86) if it is
not. The purpose of this model is to assess whether enough membranes are stacked
together such that the effect of temperature polarization may be neglected.

3.2.6 Concentration and Temperature Dependence

When deriving the full expression for the observed cell potential, we neglected the
composition dependence of the entropies, arguing that the composition profile of the
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cell does not deviate much from uniform. However, if measurements taken at signifi-
cantly different overall electrolyte concentrations are to be compared, this dependence
can no longer be neglected. In order to assess the concentration dependence of the ob-
served potential, we neglect the composition dependence of the transported entropies
of the ions, and assume the following concentration dependence for the partial molar
entropies of neutral components

Se ∝ −νR
(

ln (ae) + ∂ ln (γe)
∂ ln (T )

)
Sw ∝ −R

(
ln (aw) + ∂ ln (yw)

∂ ln (T )

)
(3.2.90)

where ai is the activity of i, which can be found from tabulated data in the litera-
ture. Neglecting the contribution from the aqueous solution, and the concentration
dependence of the heat capacities, we obtain

ηobs
S ∝ −νRtMz+

zF
(ln (ae) + ξe)−

Rtw
F

(ln (aw) + ξw) (3.2.91)

where ξi are the logarithmic temperature derivatives of the activity coefficients, i.e.
the second terms in the brackets of (3.2.90). Since the prefactor to the electrolyte
activity term consists of strictly positive quantities, we expect that increasing the
electrolyte activity leads to a more negative Seebeck coefficient. However, the trans-
ference coefficient of water may take any sign, and is typically on the order of unity
or greater. The effect of changing the water activity thus depends on the direction
of electroosmotic water transfer. For anion-exchange membranes, we expect the first
term to be small if the membrane is highly selective. We expect that both transport
numbers may vary with the electrolyte concentration, and the observed Seebeck co-
efficient therefore has a nonlinear activity dependence in general.

Since the activities are typically well-known in the literature, then tMz+ and tw are
typically the only unknown quantities in (3.2.91). Therefore, measuring the Seebeck
coefficient at different electrolyte concentrations can allow the estimation of the trans-
ference coefficients. If the transference coefficient of water is measured by a different
method, e.g. by measuring the streaming potential of the membrane, then this is a
possible method for measuring the cationic transport number. We will, however, not
assume that the transported entropies are independent of electrolyte concentration,
and use (3.2.90) to evaluate the thermodynamic entropies at different concentrations
in order to calculate the transported entropies.

As for the dependence of the Seebeck coefficient on the mean temperature of the
system, we again neglect the effect of temperature polarization, and the tempera-
ture dependence of the electrode bias, and draw out the T̂ -dependence, keeping all
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temperature differences in the system the same

ηobs
S ∝

(
τmem + τ el

)T2 ln
(
T2/T̂

)
− T1 ln

(
T1/T̂

)
T2 − T1

− 1


− T̂

T2 − T1

[
ΓνR
zF

(tMz+ − tMz+) ln
(
mr

m`

)
+ αwRtw

F
ln
(
cr
c`

)] (3.2.92)

We can further assume that the experimental conditions where temperature polar-
ization may be neglected are the same for which the composition difference can also
be neglected, thus we can neglect the second term as well. We may expand the
logarithms

Ti ln
(
Ti

T̂

)
= Ti − T̂ + 1

2Ti

(
T̂ − Ti

)2
+O

((
T̂ − Ti

)3
)

(3.2.93)

then,
T2 ln

(
T2/T̂

)
− T1 ln

(
T1/T̂

)
T2 − T1

− 1 ≈ 1
2

(
1− T̂ 2

T1T2

)
(3.2.94)

so that what determines the dependence of the Seebeck coefficient on the mean tem-
perature is the relative deviation of the arithmetic mean temperature from the geo-
metric mean. We may expect a small quadratic dependence on T̂ for a given temper-
ature difference. With a mean temperature around room temperature, this term is
on the order of 10−4, and its absolute value increases when the mean temperature is
decreased. However, if the Thomson effect is sufficiently large, we may compare ex-
periments taken at different mean temperatures to estimate the Thomson coefficients.

If the Thomson effect cannot be neglected, then (3.2.79) becomes, in light of (3.2.94)

∆φ =
[
ηmem

S + ηel
S + 1

2
(
τmem + τ el

)]
∆T + T̂ 2

2
(
τmem + τ el

)
∆ 1
T

+ ∆φbias (3.2.95)

which means that the linear coefficient in ∆T is not the total Seebeck coefficient,
but a combination of the Seebeck and Thomson coefficients. This is not a problem,
however, as we can extend the model to include a linear term in the difference of
inverse temperature. In this extended model, we may obtain estimates of both the
Seebeck and Thomson coefficients. If the inverse temperature term is found to be
insignificant, then we can also neglect the contribution of the Thomson coefficients
to the ∆T -term, and use the simpler model in (3.2.80).

3.2.7 Entropy Production and Second Law Efficiency

In order to quantify the second law efficiency of the membrane as a thermoelectric
generator, we will express the second law in terms of measurable quantities. Assuming
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that there is no concentration difference across the membrane, the entropy production
in the membrane can be written as

σmem = J ′q∂x

( 1
T

)
− j

T
∂xφ ≥ 0 (3.2.96)

with the corresponding flux equations[
J ′q
j

]
= − 1

T

[
Lqq Lqφ
Lφq Lφφ

] [
∂x ln (T )
∂xφ

]
(3.2.97)

We will express the coefficients in terms of measurable quantities. From the analysis
in the membrane phase, neglecting the Thomson effect, it can be concluded that

Lφq

Lφφ
= Lqφ

Lφφ
= −Tηmem

S (3.2.98)

we also identify the Ohm’s law ionic conductivity, which can be measured under
isothermal conditions

κ := −
(

j

∂xφ

)
dT=0

= Lφφ
T

(3.2.99)

and the short-circuit thermal conductivity, which can be measured when the cell is
short-circuited

λ := −
(
J ′q
∂xT

)
dφ=0

= Lqq
T 2 (3.2.100)

The second law demands that the determinant of the conductivity matrix is nonneg-
ative. This means, using Lqφ = Lφq, that

Lqq

Lφφ
≥
(
Lqφ

Lφφ

)2

(3.2.101)

which means that the absolute value of the Seebeck coefficient has an upper bound
given in terms of the ionic and thermal conductivities

|ηmem
S | ≤

√
λ

Tκ
(3.2.102)

where equality minimizes the entropy production. The coupling of heat and charge
transfer reduces the amount of lost work in the system, by performing work on the ions
in order to transfer heat. A practical quantity for assessing the second law efficiency
of the system is obtained by normalizing (3.2.102), called the figure of merit, F

F := κ

λ
(ηmem

S )2 ≤ 1
T

(3.2.103)
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which is nonnegative due to second law constraints on λ and κ, and because ηmem
S is

an observable quantity and therefore real. One can thus assess how close the system
is to achieving maximum efficiency by calculating the number TF for a given oper-
ating temperature. No values for F will be reported in this thesis, as the thermal
conducitvity will not be measured. We wish to express the important point of spec-
ifying under which conditions the conductivities are measured. Occasionally, figures
of merit are reported in the literature [59] which appear to violate (3.2.103), but this
is most likely due to disregard of experimental specification.

3.3 Experimental

3.3.1 Apparatus

A polycarbonate cell was designed specifically for the experiments, with cell units ac-
cording to the drawings in figure 3.4. See appendix C for larger figures. Membranes
were squeezed between two such unit cells, each having its own inlet and outlet to
allow for tangential flow of solution. Each cell unit also had three ports to accomo-

Figure 3.4: Sketch of the cell unit designed for the thermoelectric measurements. The membrane
sample is squeezed between two such modules, through which solution is pumped horizontally. There
are additionally three openings to accomodate electrodes, temperature sensors and pressure control.
All measurements are in millimeters. For a larger version of this figure, see appendix C.
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Figure 3.5: Sketch of the experimental setup for thermoelectric measurements. Solutions are ther-
mostatted and pumped through the thermocell by means of thermostatted reservoirs and pumps.
Electrodes (1) are connected via a voltmeter (2) to measure the cell potential, and the temperature
is monitored by means of thermocouples (3) connected to their own compensated voltmeters (4).
Excess pressure is relieved close to the cell inlets by means of tubing (5) back into the reservoirs.

date an electrode, a temperature sensor, and pressure control. The ends of the cell
units were capped with polycarbonate walls. All sensor and control equipment was
fitted with glass tubing of 8mm outer diameter, and were mounted into the cell units
using appropriately dimensioned fittings from Swagelok. The compartment volume
is approximately 35 mL, and the exposed membrane area was approximately 8.8 cm2.
A sketch of the experimental setup is given in figure 3.5.

The temperature sensors used were K-type precision fine wire thermocouples from
Omega, immersed in glycerol in glass tubing for stability. The thermocouples were
calibrated by immersion in a manually stirred ice bath until readings were stable.
Magnetic stirring was avoided in due to electromagnetic induction effects disrupting
the thermocouple readings. The solution reservoirs were a Grant ecocool LT 100
and a Grant R2 with complementary pump heads and thermostatting spirals. Pres-
sure between chambers was equalized by allowing flow of excess solution back to the
reservoirs at the cell inlets, and the reservoirs were kept at the same height to within
centimeter precision. The flow in each pressure relief loop was measured to approxi-
mately 2 L/min each, such that specifications from Grant imply a tangential flow of
15 L/min at the membranes, which translates to an average velocity of 28 cm/s. All
temperature and potential measurements were recorded using an Agilent 34970A
data acquisition unit with a 34901A module.
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3.3.2 Electrodes and Electrolyte

The electrodes were prepared by winding 40× 10× 0.5 mm3 plates of polished, pure
Ag onto Pt wires, activating the Ag surface by immersion in a 3 molar solution of
HNO3, and depositing a fine layer of AgCl by immersing the electrodes in a 1 molar
solution of HCl, and sending small electric currents (≈ 1 µA) against a Pt reference
electrode for at least 5 hours. The electrodes were then stored in a dark 0.01 molar
solution of HCl with grains of AgCl for at least 3 days before use. The bias of the
electrodes was measured by immersing them in aqueous 0.03 mol/kg solution of NaCl
at room temperature. If the bias exceeded 100 µV, the electrodes were refreshed.
Refreshing of electrodes was done by immersion in conc. NH3 for at least 2 hours, to
remove the old chloride layer, and the silver was polished again. A new layer of AgCl
was deposited by the same procedure as with new electrodes.

The solutions were prepared by weighing of distilled water, and adding the appro-
priate amount of salt. The electrical conductivity of the pure water did not exceed
1.5 µS/cm, and the salt used was AnalaR NORMAPUR NaCl from VWR Chem-
icals. The salt was weighed to a worst case accuracy of 0.02 %, using a Pioneer
PA214C analytical balance.

3.3.3 Membranes

The membranes tested in the experiments were Fumasep FKS PET-75 and Fu-
masep FAD PET-75 reinforced homogeneous ion exchange membranes from FuMA-
Tech, both with thicknesses of 75±5 µm according to specifications. The FKS cation
exchange membranes were delivered in H+-form, and the FAD anion exchange mem-
branes in Cl−-form. The FKS membranes were converted to Na+-form by mounting
them in the thermocell under isothermal conditions, and driving an electric current
through the membranes using a HP 6181B DC current source at 25◦C. The current
was driven through the membranes in both directions, using the circuit given in figure
3.6. The switching of the current direction was facilitated by using a simple MT2-
relay controlled by an Arduino Uno microcontroller, and the current was monitored
using a Fluke 117 true RMS multimeter, and observed to be stable throughout the
treatment process.

All membranes were pre-treated by immersion in the solution for which the measure-
ments were to be made, and degassed using a Branson 3510 ultrasound bath. The
membranes were stored in closed containers kept at 25 ± 1◦C in a Fermaks oven.
For the first week of pre-treatment, the solution in each container was changed every
2 days, from which point the solution was changed once per week.
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Figure 3.6: The circuit used for electro-treatment of cation exchange membranes. A current source
(1) drives an electric current through the electrochemical cell (4). The direction of the current is
controlled by opening and closing the sets (2) and (3) of mechanical switches.

3.3.4 Measurement Procedures

The measurements were performed by squeezing the membrane stack between two cell
units, and letting the system relax under conditions as close as possible to isothermal,
until a stable voltage was read between the electrodes. Great care was taken to elim-
inate the any bubbles formed between the layers in the stack, as they would severely
disrupt the measurements. The temperature gradients were applied by changing the
thermostat settings on the reservoirs, and measurements were taken with temperature
differences of 10 and 20 K in both directions. Whenever a stable voltage was reached,
one such measurement series was taken over at least 15 minutes, before changing the
temperature difference again. The time required to reach a stable voltage was typi-
cally between 15 minutes to several hours, depending on the type of membrane and
stack size. For each case, an isothermal measurement series was taken to eliminate
any isothermal bias in the system.

These measurement procedures were carried out for membrane stacks consisting of
1-10 membranes at 0.03 mol/kg concentration, and with 20 membranes at 0.03, 0.1,
and 0.6 mol/kg concentration. All membrane samples were cut from the same pro-
duction batch from FuMA-Tech, and the samples in each stack was selected pseudo-
randomly from the entire population. Between each measurement, the cell and reser-
voirs were disassembled and thoroughly cleaned with distilled water. The electrodes
were stored in dark 0.01 molar HCl with AgCl grains, and were short-circuited during
storage to eliminate bias.

3.4 Results and Discussion

For all measurement series scanning over the range of temperature differences, the
model (3.2.95) was applied using linear least squares. In all cases considered here,
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Figure 3.7: Plot of the observed electric potential difference ∆φ against the applied temperature
difference ∆T over a stack of 20 FKS cation exchange membranes (top), and a stack of 20 FAD anion
exchange membranes (bottom) in 0.6 mol/kg aqueous NaCl solution.

the Thomson effect was found to be insignificant, and the observed potential followed
a straight line as a function of the temperature difference. The problem of numerical
singularity of the covariance matrix of the full model was treated by a singular value
decomposition of the information matrix. As examples, plots of the observed potential
against the temperature difference for stacks of 20 FKS cation exchange membranes
and 20 FAD anion exchange membranes in 0.6 mol/kg solution are given in fig 3.7.
The lack of significance of the Thomson effect was expected, as Thomson coefficients
are typically on the same order of magnitude as the Seebeck coefficients, and thus
the product τf is expected to be four orders of magnitude smaller than ηS.

A nonlinear regression algorithm was written to fit the observed Seebeck coefficient
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Figure 3.8: Plots of the observed Seebeck coefficients against the stack thickness of FKS (top) and
FAD (bottom) membranes in 0.03 mol/kg solution of NaCl. The dashed lines indicate 95 % confidence
estimated by residual resampling.

as a function of membrane stack thickness for both types of membranes. Plots of the
observed values along with the least squares fitted model are given in figure 3.8. We
observe that, in both cases, convergence to within experimental error occurs beyond
a stack size of 10, and larger stacks are required to sufficiently eliminate the polariza-
tion effects. The limits of the fitted models as n → ∞ can be taken as estimates of
ηmem

S + ηel
S , though at the cost of a large extrapolation uncertainty. This uncertainty

can be reduced by adding more data points in the region beyond 10 membranes,
where the model approaches convergence to within experimental errors.

The observed values are comparable to results on membranes studied in the litera-
ture, having the same order of magnitude as e.g. the Flemion S cation exchange
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Table 3.1: Activity coefficients of aqueous NaCl interpolated from data by Truesdell [60], and their
estimated logarithmic temperature derivatives at 25◦C, ξNaCl, along with water activities at 25◦C
estimated from osmotic coefficients [61]. The error in the water activity was calculated to be in all
cases negligible.

Molality (mol/kg)
T (◦C) 0.03 0.10 0.60
15 0.854 ± 0.002 0.781 ± 0.001 0.671 ± 0.001
25 0.851 ± 0.001 0.778 ± 0.001 0.676 ± 0.001
38 0.849 ± 0.001 0.774 ± 0.001 0.669 ± 0.001
50 0.845 ± 0.001 0.770 ± 0.001 0.671 ± 0.001
ξNaCl -0.082 ± 0.005 -0.116 ± 0.005 0.013 ± 0.005
aw 0.999 0.997 0.980

membrane [53]. Most of the previous experimental work was done using calomel elec-
trodes kept at equal temperatures, with a temperature difference across a salt bridge.
Their idea appears to have been to neglect the thermoelectric contribution of the salt
bridge, assessing that the junction potential did not exceed 0.1 mV. The reported
value of 0.261 mV/K for the Seebeck coefficient of Flemion S in 0.1 mol/kg NaCl is
a factor 4 smaller than that found for the FKS membrane, and the activity depen-
dence appears to be logarithmic, as predicted in this work as well as by the authors
[53]. Similarly, the Seebeck coefficient of the Ionics 61 CZL 386 cation exchange
membrane extrapolated to infinite stirring rate in 1 mol/m3 NaCl was reported to
be 0.66 mV/K by Barragán et al [54], who also reported a logarithmic concentration
dependence in this limit. We interpret the limit of infinite stirring rate reported by
Barragán et al to be equivalent to our own limit of infinite membrane thickness, as
in both cases the limit means that the effects of the diffusion layers vanish, while the
temperature difference across the membrane is maximized.

As for the concentration dependence of the Seebeck coefficients, activity coefficients
at different temperatures and molalities were obtained by Truesdell [60]. The activ-
ity data were interpolated using a quadratic linear regression model of the activity
coefficients as functions of the logarithm of the molality in the neighborhood of the
molalities of interest. The interpolated data were then further interpolated as the
logarithm of the activity coefficients as functions of the logarithm of the absolute
temperature, and the slope was estimated by a finite difference. Interpolated data
are given in table 3.1.

Using values of 42.6 J/K mol and 96.1 J/K mol for SAg and SAgCl, respectively [25],
neglecting the transported entropy of electrons in platinum gives ηel

S = −0.545 mV/K,
which is common to all experiments. The fact that the Seebeck coefficients of both
membranes approach a positive value in the limit n → 0 indicates that ηsol

S is large
and positive. Since the dependence of the cell potential on the activity difference in
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NaCl is proportional to the cationic transport number, and the water activity does
not change very much in comparison, we expect the anion exchange membrane to be
far less sensitive to concentration polarization than the cation exchange membrane.
Therefore, the similar rates of change in thermoelectric potential as a function of
effective membrane thickness indicates that the dominant effect must be temperature
polarization. This indicates that, for the sake of this analysis, we may neglect the
effect of concentration polarization on the cell potential.

Using values of 86 and 118 J/mol K for S∗Na+ and S∗Cl− , respectively, which were re-
ported for an NaCl concentration of 10 mol/m3 [8], and a value of 0.389 for tNa+ [34],
along with data given in table 3.1, we obtain ηsol

S ≈ 0.61 mV/K. This is indeed posi-
tive, and greater in magnitude than the electrode contribution. The results indicate
that this contribution is slightly larger in the present experiments, in the neighbor-
hood of 1 mV/K. This is smaller than the calculated Seebeck coefficient of the FKS
membrane, and greater than that of the FAD membrane. This can be taken to explain
the two different trends in the observed Seebeck coefficient as the effective membrane
thickness is increased – increasing the FKS thickness increases the thermoelectric po-
tential because the membrane contribution is stronger than that from the solution.
The trend is opposite for the FAD membrane because its contribution is weaker than
that of solution. Since tw < 0 for the FAD membrane, water is transported in the
same direction as the anions carrying the current. In this context, this means that
less work is required to drive Cl− through the membrane, as co-transport of water
occurs down the temperature gradient. This contributes to making the thermoelec-
tric potential smaller. For the FKS membrane, on the other hand, co-transport of
water occurs against the temperature gradient, which increases the thermoelectric
potential. We conclude that at least 20 membranes should be used for this particular
apparatus in order to obtain reasonably accurate results for ηmem

S . Halseid [62] used
stacks of 55 Nafion membranes for his apparatus, while Felborg concluded from a
subsequent investigation that the optimal number of such membranes lies somewhere
between 10 and 45 [63].

In figure 3.9, we give plots of the estimated membrane contributions to the Seebeck
coefficient against the concentration dependent terms of SNaCl. We see that the con-
tribution from the FKS membrane follows approximately a straight line, while that of
the FAD membrane deviates somewhat. As previously discussed, the concentration
dependence of the FAD contribution is expected to be mainly through changes in
water activitiy, but it is the salt concentration that is most relevant for applications.
Deviations from a straight line indicate changes in the transport numbers and/or the
transported entropies. Since the FKS membrane contribution is reasonably close to
a straight line, we conclude that the cationic transport number and the transported
entropy of Na+ in the FKS membrane are insensitive to the concentration changes.
The dominant effect is therefore the change in molar entropy of NaCl. For the FAD
membrane, the water transference coefficient varies a lot with concentration. The
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Table 3.2: Observed Seebeck coefficients ηobs
S at different concentrations with stacks of 20 membranes,

and estimates η∞S from extrapolation to an infinite membrane thickness at 0.03 mol/kg. We also
report the corresponding membrane Seebeck coefficients, ηmem

S .
FKS FAD

m (mol/kg) ηobs
S (mV/K) ηmem

S (mV/K) ηobs
S (mV/K) ηmem

S (mV/K)
0.03 0.86 ± 0.02 1.41 ± 0.02 0.015 ± 0.002 0.560 ± 0.002
0.10 0.67 ± 0.02 1.22 ± 0.02 -0.003 ± 0.002 0.542 ± 0.002
0.60 0.43 ± 0.01 0.98 ± 0.01 -0.063 ± 0.006 0.482 ± 0.006

η∞S (mV/K) ηmem
S (mV/K) η∞S (mV/K) ηmem

S (mV/K)
0.03 0.90 ± 0.02 1.45 ± 0.02 -0.004 ± 0.008 0.541 ± 0.008

deviation from a straight line indicates this, and also that the transported entropy of
Cl− in the FAD membrane has a significant concentration dependence. The relative
insensitivity of the Seebeck coefficient of the FAD membrane to the concentration
indicates, however, that these two effects are compensating. While the increase in
magnitude of tw with concentration indicates an increase in the work gained due to
co-transport of water down the temperature gradient, the transported entropy of the
Cl− ions should also increase at a similar rate.

In all cases, we neglect the temperature dependence of the water activity, and estimate
the transported entropies as

S
∗
Na+ = S0

NaCl − 2R (ln (aNaCl) + ξNaCl) + tw
(
S0

w −R ln (aw)
)
− Fηmem

S

S
∗
Cl− = Fηmem

S − tw
(
S0

w −R ln (aw)
) (3.4.1)

for perfectly selective FKS and FAD membranes, respectively. The superscript 0 de-
notes standard state entropies. For these, we obtain from [25] values of S0

NaCl = 115.5
J/mol K and S0

w = 69.95 J/mol K, using 1 mol/kg as standard state for NaCl.
The water transference coefficients were obtained by streaming potential measure-
ments (not yet published). Water transference coefficients and estimated transported
entropies are given in table 3.3. The magnitudes of the water transference coeffi-
cients indicate that, for each ion transported through the membrane, several water
molecules are transferred on average. This means that a lot of work is gained or lost
due to co-transport of water, depending on the direction of transport with respect to
the temperature gradient. The estimates of the transported entropies are therefore
highly sensitive to errors in the numerical values of tw. Since the errors in present
estimates of tw are large, then so are the errors in the estimates of the transported
entropies. In order to improve estimates of the transported entropy, more precise
methods for measuring the transference coefficients are required.

The apparent trend is that the transported entropy of Na+ in the FKS membrane is
insensitive to the composition of the aqueous solution, while the transported entropy
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Figure 3.9: Plots of the observed Seebeck coefficients against the logarithm of electrolyte activity and
the correction factor ξNaCl for stacks of 20 FKS (top) and FAD (bottom) membranes. The dashed
lines indicate 95 % confidence.
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Table 3.3: Water transference coefficients and estimated transported entropies of the charge carriers
in ideally selective Fumasep FKS PET-75 and FAD PET-75 ion exchange membranes.

FKS FAD
m (mol/kg) tw S

∗
Na+ (J/mol K) tw S

∗
Cl− (J/mol K)

0.03 3.9 ± 0.5 314 ± 35 -2.8 ± 1.0 251 ± 70
0.10 3.2 ± 0.9 266 ± 63 -4.9 ± 0.6 396 ± 42
0.60 4.2 ± 0.7 330 ± 49 -8.1 ± 4.9 608 ± 344

tw S
∗(∞)
Na+ (J/mol K) tw S

∗(∞)
Cl− (J/mol K)

0.03 3.9 ± 0.5 310 ± 35 -2.8 ± 1.0 249 ± 70

of Cl− in the FAD membrane appears to increase for higher salt concentrations. The
error in tw dominates in all cases, and the Seebeck coefficients should be used to
obtain new estimates of the transported entropies as soon as more accurate tw data
is available. Ottøy [64] reported a transported entropy of 195 ± 14 J/mol K for
protons in the Nafion 117 cation exchange membrane, which is about 50 % lower
than has been found for Na+ in the FKS membrane. Interestingly, Feldborg reported
a transported entropy of Na+ in Nafion 117 of 691 ± 2 J/mol K [63]. This is a
very large value, and is likely connected to the large water transference coefficient of
9.2± 0.3 that was reported.

In both cases by Ottøy and Feldborg, the Thomson coefficient was found to be very
similar in magnitude to the transported entropy, and we can expect the same be-
haviour for the FKS and FAD membranes. However, the data obtained in these
experiments are generally too noisy to determine the Thomson coefficients, with the
exception of the measurements made for the FAD membrane at 0.03 mol/kg. A plot
of the observed Seebeck coefficient against the function f is given in figure 3.10. From
this data, we obtain τmem + τ el = −1.30± 0.44 mV/K. Taking values of cp,Ag = 25.4
J/mol K, cp,AgCl = 50.8 J/mol K, and cp,w = 75.3 J/mol K [25], and neglecting the
Thomson coefficient of electrons in platinum, this gives an estimate of τCl− = 111±86
J/mol K, which is also a very uncertain number. It has, however, the expected order
of magnitude. Application of noise reduction techniques and extending the measure-
ments to larger temperature differences can improve such measurements drastically.
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Figure 3.10: Plot of the observed Seebeck coefficient of a stack of 20 Fumasep FAD-PET-75 anion
exchange membranes in 0.03 mol/kg NaCl solution, against the logarithmic temperature function f ,
defined in equation (3.2.27).





Chapter 4
Conclusions and Future Perspectives

We conclude the thesis by summarizing the conclusions that can be made from the measure-
ments and discussions in previous chapters, and also give pointers and suggestions for further
work. In particular, we give suggestions for improvement of the experimental techniques,
and also provide a sketch of a possible application in isothermal salt power generation. We
show that the results in chapter 3 indicate that the electrical work retrieved by a salt power
plant can be substantially increased by applying a temperature gradient in the correct di-
rection. As an example, the Seebeck coefficient is estimated for a concentration cell with
concentrations 0.03 and 0.60 mol/kg, with temperatures of 40◦C and 0◦C, respectively. It
was found that the cell potential is increased by up to 50 % compared to the isothermal case.

73
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4.1 Streaming Potential Measurements

The measurement of streaming potentials across membranes in aqueous alkali and al-
kali earth metal chlorides at 0.03 mol/kg allowed the estimation of water transference
coefficients by means of Saxen’s relation. The streaming potentials were found to be
in the lower range of typical values found in earlier literature, and the water transfer-
ence coefficients were found to be in the approximate range 3 - 14 in absolute value.
In the cation exchange membranes, a tendency was found for the water transference
coefficient to decrease with cation size, indicating that the principal mode of water
transport is due to ion-dipole attraction. The water transport through the anion ex-
change membranes appears to be insensitive to the type of cation in solution, which
supports the idea that the co-ion does not play a significant role in water transport.
The sign of the coefficient was found to be positive for all cation exchange membranes,
and negative for the anion exchange membranes, which indicates that water is in all
cases transported in the direction of the principal charge carrier. The coefficient of
the Fumasep FAD-PET-75 anion exchange membrane was found to increase sig-
nificantly in magnitude with concentration of NaCl from 0.03 to 0.60 mol/kg, while
that of the Fumasep FKS-PET-75 cation exchange membrane did not change sig-
nificantly.

For all membranes, the water content was measured after equilibriation in the differ-
ent salt solutions. The measurements were made both on new, unused membranes,
and also on membranes that were used for streaming potential measurements, and
thus deformed by the pressure difference. A general tendency for the water content
to decrease after deformation was found, indicating possible structural collapse re-
ducing the amount of water that can be accomodated in the matrix. A correlation
was found between the water content of unused cation exchange membranes and their
water transference coefficients. This suggests that part of the water transport is due
to loosely bound water in the membrane matrix, and it is possible that the deforma-
tion leads to an underestimate of the true water transference coefficient by a value up
to approximately 1. The water content of cation exchange membranes was found to
decrease with cation size, indicating a volume exclusion effect. No particular correla-
tion was found between cation type and water content of anion exchange membranes.

Water permeabilities were calculated from the time-dependent behaviour of the cell
potential under the influence of the pressure difference. This property is sensitive
to membrane deformations, and it is likely that an improved technique is required
for measuring this property in the less elastic membranes. The results do, however,
indicate that the permeability of cation exchange membranes tend to decrease as
the cationic charge is increased, which is likely due to a structural effect of high-
valence cations associating to several fixed charge groups in the membrane matrix at
a time. The permeability of the Fumasep FAD-PET-75 anion exchange membrane
was found to significantly increase with cation size and charge, though it is likely that
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IEMP1 P2

Figure 4.1: Suggested cell design concept for inducing a tangential pressure gradient in membrane
samples.

these membranes were strongly affected by the pressure difference, and more reliable
measurements with a different technique are needed. No significant concentration
dependence of the permeabilities of the Fumasep FKS-PET-75 and FAD-PET-75
membranes could be found for NaCl solutions from 0.03 to 0.60 mol/kg.

A correlation was found between the total number of water molecules transported per
cation in the cation exchange membranes, and the Jones-Dole viscosity B-coefficients
of the respective aqueous cations. The B-coefficients are known to correlate with the
mass-corrected entropy of solvation in aqueous solution, indicating that the structural
effect of the ion on the water pseudolattice correlates with the principal mode of wa-
ter transport through these membranes. We suggest that this correlation is due to
the ion-dipole interaction which is determined by the size and charge of the ion. The
water transference coefficients were found to monotonously decrease with ion size for
a given ion valence.

The streaming potentials were measured with a large error, at best a relative error on
the order of 10 %. Occasionally, a measurement would be completely useless due to
obvious membrane deformation disrupting the cell potential. While previous workers
have used perforated support plates to minimize this effect, we suggest here a slightly
different approach. A cell can be designed in such a way that the pressure gradient
lies tangentially in the membrane structure, in order to minimize deformation. This
cell design is inspired by the work of Scatchard et al [65], who used membranes as
ribbons separating two chambers. A sketch of the suggested concept is given in figure
4.1.
Modelling the membrane as an isotropic medium with a diagonal pressure tensor,
this essentially two-dimensional transport problem gives the same result for the total
electric potential difference over the membrane, though dynamical contributions will
be affected by the larger effective thickness due to the longer mean path through
the material sample. Further work can e.g. relax the assumption of isotropy and/or
investigate the functioning of such a cell experimentally. Such a design eliminates the
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need for possibly disruptive support plates, and allows more freedom in the choice of
exposed membrane area and length of tangential part. It also allows the application
of tangential flow to reduce the effects of the diffusion layer as desired.

4.2 Thermoelectric Potential Measurements

Transported entropies of Na+ and Cl− in respectively the Fumasep FKS-PET-
75 and FAD-PET-75 ion exchange membranes were calculated from measurements
of their thermoelectric potentials in aqueous NaCl solution at 0.03, 0.10, and 0.60
mol/kg. It was found that stacking membranes together to increase the effective
membrane thickness changed the observed Seebeck coefficient of the thermocell to
converge to some limiting value. This value was interpreted as the sum of the mem-
brane and electrode contributions to the total Seebeck coefficient, allowing us to
neglect the effects of the diffusion layers. Calculation of the transported entropies
requires knowledge about the water transference coefficients, and the currently esti-
mated values of the entropies suffer from large errors due to the large errors in the
measurements of the water transference coefficients. The Seebeck coefficients are,
however, precise to the order of 1 %, and obtaining more precise measurements of the
transference coefficients will therefore allow more precise estimates of the transported
entropies.

For the experimental conditions considered here, no significant Thomson effect could
be measured. An order of magnitude estimate suggests that the precision of the
current measurements is one order of magnitude smaller than the expected precision
required to measure the Thomson effect. It has thus been demonstrated experimen-
tally that the Thomson effect operates on a relative scale smaller than 1 % compared
to the first order Seebeck effect. The theoretical derivations in this thesis will be
useful for future work with improved experimental techniques to increase the preci-
sion. It should be noted that more precise experimental work should probably neither
neglect the transported entropy of electrons in external circuit, nor assume that the
membranes are perfectly selective.

Although the errors in the transported entropy estimates are large, there are some
general tendencies that can be deduced. The transported entropy of Na+ in the FKS
membrane appears to be insensitive to the concentration of electrolyte in the aque-
ous solution, remaining at a value around 300 J/mol K for all concentrations. The
transported entropy of Cl− in the FAD membrane, however, increases significantly
with electrolyte concentration. Although the error in the water transference coeffi-
cient at 0.60 mol/kg is very large, and no real conclusion can be made on this value,
the difference between transported entropies at 0.03 and 0.10 mol/kg is significant.
The transported entropies of both ions in their respective membranes are definitely
positive, which indicates that heat is in both cases transported along with the charge
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carrier.

For improving future measurements on Seebeck coefficients, we suggest incremental
improvements to the design developed in this project. An optimized flow pattern
will probably lead to faster convergence of the Seebeck coefficient with respect to
stack thickness, as it leads to more efficient mixing in the diffusion layers. Using
thermocouples and electrodes with similar response times can allow the measurement
of instantaneous Seebeck coefficients, which would lead to less noisy results than the
practice of taking averages of the temperature difference and electric potential over
an extended period of time. An important issue is the shielding of the thermocouples
from viscous noise due to the flow in each compartment. This was done by encap-
sulating the thermocouples in glass tubes filled with glycerol, which did shield the
thermocouples from noise, but also delayed their response. The averaging technique
allowed the accurate determination of the steady state temperatures over extended
periods of time, but bounded the variance estimates from below by the oscillatory
behaviour of the thermostats. An improved technique would manage to obtain both
shielding and fast response at the same time, such that the thermostatting oscillations
could be eliminated in the calculations, and noise would be significantly reduced. A
simple improvement for measuring Thomson coefficients is to simply extend the con-
sidered temperature differences to larger values, which will increase the significance
of the Thomson effect.

4.3 Combining Salt Power and Waste Heat Harvesting
We now give what we consider to be the most important result in this thesis – the
implications of the experimental results on applications in salt power. The calculated
contribution of the membrane to the Seebeck effect is in both cases, FKS and FAD,
positive, meaning that the electric potential increases on the hot side of both mem-
branes. In both cases, the Seebeck coefficient also decreases with concentration, with
the FKS membrane having the greatest concentration dependence. For a possible
application, we consider a non-isothermal concentration cell, which might be realized
in practice as a combined salt power plant and waste heat harvester. Whenever there
is a concentration difference across such a membrane, the electric potential increases
on the side with the lowest concentration of electrolyte. Therefore, a net increase in
efficiency would be obtained by heating the brackish water, and keeping the more
saline sea water at a lower temperature. A sketch of this suggestion is given in figure
4.2.
An estimate of the FKS-contribution to the thermoelectric potential would be

ηFKS
S =

(
T2 − T̂

)
S

(2)
NaCl −

(
T1 − T̂

)
S

(1)
NaCl

F∆T + twS
0
w −

S
∗
Na+

F
(4.3.1)

where we have used that the transported entropy of the sodium ions is insensitive to
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Figure 4.2: Suggestion for use of waste heat to improve the efficiency of a saline power plant.

the concentration gradient, and neglected the concentration dependence of Sw. Sup-
pose we have a sea water temperature of 0◦C, and we heat the brackish reservoir to
a temperature of 40◦C. If we use NaCl molalities of 0.03 mol/kg for brackish water,
and 0.60 mol/kg for sea water, and use tw = 3.8, which is the average value over the
concentration interval, we obtain a numerical value of around 1.15 mV/K. Since the
FAD membrane was shown not to depend much on the electrolyte concentration, we
apply a value of 0.5 mV/K for its contribution, giving a total of 1.65 mV/K. To top
it off, both membranes contribute to maintain the concentration gradient through
the electroosmotic transport of water from the sea water to the brackish reservoir,
boosting the amount of work obtainable from the mixing potential even further. In
this case, the total boost to the cell potential is 66 mV, which is added to the isother-
mal cell potential of approximately 142 mV, a nearly 50 % increase! Further work
should attempt the explicit measurement of the nonisothermal concentration cell as
a function of the temperature difference.

In a real salt power plant, several such membrane pairs separating sea water and
brackish waters are put in series [8]. Maintaining such a temperature gradient by
heating the brackish reservoir supplying all the brackish chambers in the power plant,
the total thermoelectric power is boosted by a factor equal to the number of pairs in
series. Supposing we have 20 such pairs in series, the total thermoelectric potential
of the special case considered here would reach upwards of 33 mV/K, giving a total
of 1.32 V boost for a 40 K temperature difference. These results indicate that the
combination of salt power and harvesting of low-grade waste heat is feasible, given
that the waste heat can easily be directed to the freshwater reservoir of the power
plant.



List of Symbols

Symbol Units Explanation
U J Internal energy
T K Temperature
S J K−1 Entropy
P Pa Pressure
V m3 Volume
µ̃j J mol−1 Electrochemical potential
Nj mol Molar number
u J m−3 Internal energy density
s J K−1 m−3 Entropy density
c mol m−3 Concentration
Js J m−2K−1s−1 Entropy flux
σ J m−3K−1s−1 Entropy production
Ju J m−2s−1 Energy flux
J mol m−2s−1 Molar flux
r mol m−2 s−1 Reaction rate
νj - Stoichiometric coefficient
µj J mol−1 Chemical potential
ψ J C−1 Electric potential
F C mol−1 Faraday constant
z - Charge/valence number
Hj J mol−1 Partial molar enthalpy
Sj J mol−1 K−1 Partial molar entropy
j C m−2 s−1 Electric current density
Γ mol m−2 Adsorption
G J mol−1 Molar Gibbs energy
φ J C−1 Total electric potential
Lij , `ij Varies Generalized conductivity
tj - Transference coefficient
ν - Electrolyte ion degrees of freedom
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List of Symbols (cont.)

Symbol Units Explanation
R J mol−1 K−1 Universal gas constant
mj mol kg−1 Molality
γj - Activity coefficient
αj - Thermodynamic factor
Vj m3 mol−1 Partial molar volume
Mj kg mol−1 Molar mass
β J C−1 Pa−1 Streaming potential
εj J mol−1 Chemical potential deviation
t s Time
Lp m s−1 Pa−1 Water permeability
Dj m2 s−1 Diffusion coefficient
ε F m−1 Dielectric permittivity
e C Elementary charge
ρj kg m−3 Mass density
a m Debye-Hückel size parameter
S∗j J mol−1 K−1 Transported entropy
cp,j J mol−1 K−1 Isobaric heat capacity
τj J mol−1 K−1 Thomson coefficient
ηS J C−1 K−1 Seebeck coefficient
aj mol kg−1 Activity
d m Membrane thickness
ξj - Activity temperature coefficient
κ S Electric conductivity
λ J m−1 s−1 K−1 Thermal conductivity
F K−1 Figure of merit
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Appendix A
Microscopic Foundations of the Theory

Consider a system in statistical equilibrium, i.e. a state where all ensemble aver-
ages are constant, and the dynamical behaviour is due to fluctuations around the
equilibrium state. We consider the classical, non-relativistic regime without external
magnetic fields or coriolis forces. Let a be a vector containing the values of all state
variables of the system, and define their fluctuations α := a − 〈a〉, where brackets
denote ensemble averages. Following Boltzmann’s principle, the distribution function
to second order in α is

fα(α) =
√

|A|
(2πkB)n exp

(
− 1

2kB
αTAα

)
(A.1)

i.e. a multivariate Gaussian with covariance matrix kBA−1, where A satisfies [9]

∆S = S(α)− S(0) = −1
2α

TAα+O(α3) (A.2)

which means that A is a tensor containing the second derivatives of the entropy
S with respect to the fluctuations. Since the entropy function is concave in the
neighborhood of equilibrium, A is positive definite. The definiteness of A can also
be noted as a sufficient condition for the integrability of fα. By Schwarz’ theorem on
the symmetry of mixed derivatives, A is also symmetric. In this treatment, we will
consider stationary states, and thus neglect inertia effects or fluctuations of fluxes.
For discussions on e.g. heat inertia, see [66] and [67]. We define the fluxes Jj and
their conjugate driving forces Xj

Jj := dαj
dt Xj := ∂∆S

∂αj
= −

∑
i

Ajiαi (A.3)

From the time-reversal symmetry of the Hamiltonian dynamics of the microscopic
system, one can prove that the system obeys detailed balance. For an elegant proof,
see [68]. Let W (α′; t|α) be the probability of finding the system in state α′ at time
t, given that it was initially in state α. Since the state variables under consideration
are even with respect to microscopic time reversal, detailed balance then means that

fα(α)W (α′; t|α) = fα(α′)W (α; t|α′) (A.4)
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this property is also known as microscopic reversibility. We now introduce the con-
ditional mean values

Xj = −
∑
i

Ajiαi = −
∑
i

Aji

∫
α′iW (α′i; t|αi)dα′i (A.5)

The most important assumption imposed on the theoretical foundations is then the
linear regression hypothesis, which reads

dαj
dt =: Jj =

∑
i

LjiXi (A.6)

i.e. the fluxes are expanded to first order in all the thermodynamical driving forces,
where the conductivity tensor L satisfies [9]

L = − 1
kB

lim
∆t→0

1
∆t

∫∫
∆α′αTfα(α)W (α′; ∆t|αj)dα′dα (A.7)

where ∆α′ := α′ − α. In other words, the elements of L are correlation functions
between the fluxes and fluctuations. One such example is the correlation between a
temperature fluctuation and the heat flux, which is essentially the thermal conductiv-
ity of the system. Relabelling the integration variables in (A.7) and imposing (A.4),
it is straightforward to show that

L = LT i.e. Lij = Lji (A.8)

which are the famous Onsager reciprocal relations. These relations will be used for
deriving experimental expressions for various transport coefficients. It follows trivially
that

L = 1
2 (L + LT) =: Ls (A.9)

and since for stationary processes, we impose translation symmetry along the time
axis

〈ααT〉 = 〈α′α′T〉 (A.10)

such that for an arbitrary vector x

xTLx = xTLsx = − 1
kB

lim
∆t→0

1
2∆tx

T 〈∆α′αT +α∆α′T
〉

x

= − 1
kB

lim
∆t→0

1
2∆tx

T 〈∆α′αT +α∆α′T +ααT −α′α′T
〉

x

= 1
kB

lim
∆t→0

1
2∆tx

T
〈(

∆α′
)2〉x ≥ 0

(A.11)

so that L is also restricted to be positive definite. In accordance with the local
equilibrium hypothesis, the local mean entropy production must be positive, and thus
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the determinant of L and all its principal minors must also be positive. Considering
single and pairwise flux-force pairs, we obtain the restrictions

∀ i Lii ≥ 0 ∀ i ∀ j LiiLjj ≥ LijLji = (Lij)2 = (Lji)2 (A.12)

which are useful for deriving bounds on the coupling coefficients imposed by the sec-
ond law and the local equilibrium hypothesis. The entropy production σ is obtained
by taking the time derivative of the local entropy fluctuation

σ = d∆S
dt = −αTAdα

dt =
∑
j

Jj ·Xj = XTLX ≥ 0 (A.13)

where the last equality was used to demonstrate that the positive-definiteness of L
was in fact a statement of the second law. The second to last equality gives the
ubiquitous bilinear form of the entropy production as the sum over the dot prod-
ucts between all fluxes with their conjugate driving forces. The intuitive notion that
the system is indifferent as to whether a driving force in the system arises due to
an equilibrium fluctuation or an external perturbation is the physical content of the
fluctuation-dissipation theorem, see e.g. [10]. Applying this theorem, we confirm that
all relations derived here, which govern the system’s response to its equilibrium fluc-
tuations, are also valid for external perturbations, and thus yields a strong framework
for a general transport theory. Of course, these relations are only valid for pertur-
bations to weakly non-equilibrium states. A stronger theory is obtained by invoking
the local equilibrium hypothesis, which supposes that the system can be divided into
small volume elements, each acting as an equilibrium system. This allows the lo-
cal equilibrium theory to describe systems in strongly non-equilibrium global states,
given that small enough volume elements may be chosen. For a discussion on tests
of the validity of the theory by means of molecular dynamics simulations, see [8, 66].

To summarize this section, we have

• The linear force-flux relations, Jj = ∑
i LjiXi.

• The reciprocal relations, Lij = Lji.

• Positivity of diagonal elements, Lii ≥ 0.

• Constraints on off-diagonal elements, LiiLjj ≥ LijLji.

• The bilinear form of the entropy production, σ = ∑
j Jj ·Xj .





Appendix B
Streaming Potential Regression Model

B.1 Analytical Solution
In order to develop a model for fitting the time-dependent streaming potential data,
we need to consider the dynamics of the electrolyte flux through the membrane. Our
starting point is the set of flux equations describing flux of water, electrolyte, and
electric current in the electrolyte solution. Eliminating the electric potential difference
and the chemical potential of water, the electrolyte flux Je at zero electric current
and temperature T is

Je = −Λee
T
∇µe + `ew

`ww
Jw (B.1.1)

with µe the chemical potential of electrolyte, Jw the water flux, and

`ij = Lij −
LiφLφj
Lφφ

, Λij = `ij −
`iw`wj
`ww

(B.1.2)

with Lij being the generalized conductivities of the full set of flux equations, as
prescribed by the linear regression hypothesis. For the first term, we use that

∇µe = ∂µe
∂c
∇c = νRT

c

(
1 + ∂ ln (γ)

∂ ln (c)

)
∇c (B.1.3)

where c is the electrolyte concentration, R the universal gas constant, γ the mean
activity coefficient, and ν the number of ions per molecule of electrolyte. We then
assign the diffusion coefficient

D = νΛeeR

c

(
1 + ∂ ln (γ)

∂ ln (c)

)
(B.1.4)

and also obtain from the flux equations that

`ew
`ww

=
( Je

Jw

)
j=0
≈ Vwc (B.1.5)

where the last approximation is due to the water making up most of the volume in
the system, so that flux of water is essentially the flux of volume, so that electrolyte is
dragged along in proportion to its concentration. We set the volume flux JV = VwJw.
The electrolyte flux is then

Je = −D∇c+ cJV (B.1.6)
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We now assume that neither the molar volume of water nor the diffusion coefficient
vary throughout the system, and that the concentration of water changes negligibly
compared to that of electrolyte. Conservation of mass gives then

∇ · JV = −Vw
∂cw
∂t
≈ 0, ∇ · Je + ∂c

∂t
= 0 (B.1.7)

Taking the divergence of (B.1.6) then gives

∂c

∂t
+ JV · ∇c = D∇2c (B.1.8)

which we confine to one dimension
∂c

∂t
+ JV

∂c

∂x
= D

∂2c

∂x2 (B.1.9)

with the membrane surface at the origin. Assuming that the system begins initially
at a uniform concentration c0, the initial condition to the equation becomes

c(0, x) = c0 (B.1.10)

while the continuity of the electrolyte flux gives the boundary condition

∂c

∂x

∣∣∣∣
x=0

= cJV − Je
D

(B.1.11)

and we finally establish the other boundary condition by requiring that the concen-
tration far away from the membrane surface remains constant, i.e.

lim
x→±∞

c(t, x) = c0 (B.1.12)

Furthermore, we simplify by rescaling to dimensionless form

X := JV

4Dx, τ := J2
V

4Dt, C := c

c0
, J := Je

c0JV
(B.1.13)

and the problem reads
∂C

∂τ
+ ∂C

∂X
= 1

4
∂2C

∂X2

C(0, X) = 1
lim

X→±∞
C(τ,X) = 1

1
4
∂C

∂X

∣∣∣∣
X=0

= C − J

(B.1.14)

To solve this equation, we apply a Laplace transform with respect to T . Letting s be
the independent variable in Laplace space, we obtain

sLC − 1 + ∂LC
∂X

= 1
4
∂2LC
∂X2 (B.1.15)
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which has the general solution

LC(s,X) = 1
s

+ C1 exp
(
2
(
1 +
√

1 + s
)
X
)

+ C2 exp
(
2
(
1−
√

1 + s
)
X
)

(B.1.16)

Depending on whether the surface is oriented towards the negative or positive X-
direction, the boundary condition at infinity gives that the respective divergent term
must vanish. We treat the case where C1 = 0. Applying the boundary condition at
the membrane surface gives

C2 = 2 LJ − s
−1

1 +
√

1 + s
= 2
s2 (1− sLJ)

(
1−
√

1 + s
)

(B.1.17)

such that the solution at X = 0 is

LC(s, 0) = 1
s

+ 2
s2 (1− sLJ)

(
1−
√

1 + s
)

(B.1.18)

while the result for the opposite membrane surface is

LC(s, 0) = 1
s

+ 2
s2 (1− sLJ)

(
1 +
√

1 + s
)

(B.1.19)

We will assume that there is no open circuit electrolyte flux. Then, LJ = 0. Taking
the inverse transform of the two solutions gives

C±(t) = (1 + 2τ)
(

1∓ 2√
π

∫ √τ
0
e−s

2ds
)
∓ 2√

π

√
τe−τ (B.1.20)

Where the subscripts + and − denote the values at the membrane surface in com-
partment 2 and 1, respectively. In the regression models, we will be interested in the
prefactor A := JV/2

√
D to the dimensionful time t.

B.2 Linear Regression Model
We begin by expanding the exponential functions in the expression for the concen-
tration profile ∫ √τ

0
e−s

2ds =
∫ √τ

0

∞∑
n=0

(−1)n s
2n

n! ds =
∞∑
n=0

(−1)n
2n+ 1

τ
2n+1

2

n! (B.2.1)

After a bit of algebra, expansion of (B.1.20) gives

C± = 1 + 2τ ∓ 4√
π

(
√
τ +

∞∑
n=0

(−1)n
(2n+ 1)(2n+ 3)

τ
2n+3

2

(n+ 1)!

)
(B.2.2)

Rewriting
C+
C−

= C+ − C−
C−

+ 1 (B.2.3)
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we can make the expansion

ln
(
C+
C−

)
= ln

(
C+ − C−
C−

+ 1
)

=
∞∑
k=1

(−1)k+1

k

[
C+ − C−
C−

]k
(B.2.4)

which converges when the bracketed term has an absolute value lower than unity,
which will always be the case with the appropriate choice of reference frame. Inserting
(B.2.2), we obtain

ln
(
C+
C−

)
=
∞∑
k=1

(−1)k+1

k

 − 8√
π

(√
τ +∑∞

n=0
(−1)n

(2n+1)(2n+3)
τ

2n+3
2

(n+1)!

)
1 + 2τ + 4√

π

(√
τ +∑∞

n=0
(−1)n

(2n+1)(2n+3)
τ

2n+3
2

(n+1)!

)

k

(B.2.5)

We can then apply the expansion

1
1− x =

∞∑
`=0

x` (B.2.6)

for

x = −2τ − 4√
π

(
√
τ +

∞∑
n=0

(−1)n
(2n+ 1)(2n+ 3)

τ
2n+3

2

(n+ 1)!

)
< 1 (B.2.7)

where it can be shown that the inequality holds because the concentration is non-
negative. We thus obtain

ln
(
C+
C−

)
=
∞∑
k=1

(−1)k
k

(
8√
π

(
√
τ +

∞∑
n=0

(−1)n
(2n+ 1)(2n+ 3)

τ
2n+3

2

(n+ 1)!

))k
×

 ∞∑
`=0

(
−2τ − 4√

π

(
√
τ +

∞∑
n=0

(−1)n
(2n+ 1)(2n+ 3)

τ
2n+3

2

(n+ 1)!

))`k (B.2.8)

which is the basic expression from which polynomial expressions in time can be ex-
tracted, by appropriate truncation of the sums and neglection of terms of higher
order than is needed. By inspection, one can observe that the lowest order term is
proportional to the square root of time. This is the successful simple linear model
used by Okada et al. [19]. The square root model works very well for a wide array
of membranes. For some membranes, however, the pressure response is significantly
non-linear with respect to the square root of time. This problem can hopefully be
solved by including higher order terms from the above expansion. The time-dependent
perturbation to the electric potential is

(∆φ)t = − (ta − ta) ΓνRT
F

ln
(
C+
C−

)
(B.2.9)
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The first few terms of the Taylor series around τ = 0 are

ln
(
C+
C−

)
≈ − 8√

π

√
τ − 1

3
√
π

(128
π
− 40

)
A3t

3
2 − 1

3
√
π

(
80− 640

π
− 24576

5π2

)
A5t

5
2

= a1A
√
t+ a2A

3t
3
2 + a3A

5t
5
2

(B.2.10)
where we observe that the coefficients for integer powers vanish. The first term repro-
duces the result obtained by Okada et al [19]. We have introduced a parameter A such
that τ = A2t, where t is the physical time. To this order in time, a straightforward
linear model is then

∆φ = Aα+ ε (B.2.11)

where ∆φ is a vector containing the observed potential, ε are the errors, the deviations
from the model. Also

A =


1
√
t1 t

3
2
1 t

5
2
1

1
√
t2 t

3
2
2 t

5
2
2

...
...

...
...

1
√
tN t

3
2
N t

5
2
N

 α =


α0
α1
α2
α3

 (B.2.12)

where the αi are coefficients related to the above expressions in a straightforward
manner. The columns of A tend to be numerically close to linear dependence, so
that the numerical properties are notoriously bad. This problem can be alleviated by
transformations. We transform the problem to the unit interval by the rescaling

y :=
∣∣∣∣∣∣√t

∣∣∣∣∣∣−1

∞

√
t = γ−1√t (B.2.13)

where || · ||∞ is the supremum-norm, taken to equal the maximum. Assigning

M := − (ta − ta) ΓνRT
F

(B.2.14)

we obtain the theoretical expression for the electric potential in terms of y

∆φ = a0 + γMA
(
a1y + a2A

2γ2y3 + a3A
4γ4y5

)
(B.2.15)

and we can now identify the monomial coefficients α′i in y as rescaled versions of the
ai

α′0 = a0

α′1 = γMAa1

α′2 = γ3MA3a2

α′3 = γ5MA5a3

(B.2.16)



96 APPENDIX B. STREAMING POTENTIAL REGRESSION MODEL

We now set up the continuous inner product

〈f(y), g(y)〉 :=
∫ 1

0
f(y)g(y)dy (B.2.17)

and we say that two functions are orthogonal iff their inner product vanishes. We can
now orthonormalize our constrained basis with respect to this inner product, such
that our basis polynomials P ′n(y) satisfy

〈P ′n(y), P ′k(y)〉 = δnk (B.2.18)

By Gram-Schmidt orthonormalization, we obtain the set

P ′0(y) = 1

P ′1(y) =
√

12
(
y − 1

2

)
P ′2(y) =

√
7

3
(
10y3 − 9y + 2

)
P ′3(y) = 1191

38

(
y5 − 100

81 y
3 + 25

63y −
32
567

)
(B.2.19)

We can then set up the matrix and the corresponding coefficients

A′ =


P ′0 P ′1(y1) P ′2(y1) P ′3(y1)
P ′0 P ′1(y2) P ′2(y2) P ′3(y2)
...

...
...

...
P ′0 P ′1(yN ) P ′2(yN ) P ′3(yN )

 α′′ =


α′′0
α′′1
α′′2
α′′3

 (B.2.20)

We then wish to find the α′′ which minimizes

||ε||2 =
∣∣∣∣∆φ− A′α′′

∣∣∣∣2 (B.2.21)

the optimal least squares result gives the coefficient vector related to the orthogonal
projection of ∆φ onto the columns of A′

α̂′′ =
(
A′TA′

)−1
A′T∆φ (B.2.22)

where the projection onto the orthogonal completement yields an estimate for the
errors, the residuals

ε̂ = ∆φ− A′α̂′′ (B.2.23)

which can be made independent by calculating them instead in a leave-one-out fashion

ε̂′i = ε̂i

Si
√

1− hii
(B.2.24)
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where Si is an estimate of the regression standard deviation excluding data point
i, and hii is the ith diagonal element of the projection matrix A′ (A′TA′)−1 A′. The
regression mean square error is

S2 = ε̂Tε̂

N − dfR
(B.2.25)

where dfR is the number of regression degrees of freedom, i.e. the rank of A′. Finally,
the covariance matrix of the coefficients is

Cov
(
α̂′′
)

=
(
A′TA′

)−1
A′TA′

(
A′TA′

)−1 ̂Var (∆φ) = S2
(
A′TA′

)−1
(B.2.26)

which is expected to be close to diagonal due to the orthogonal basis used. The
monomial coefficients are related to the orthonormalized coefficients by an upper
triangular matrix

α′ = Tα′′, T =


1 −

√
3 2

√
7

3 −375
212

0
√

12 −3
√

7 4863
391

0 0 10
√

7
3 −10873

281
0 0 0 1191

38

 (B.2.27)

If the independent residuals can be shown to be distributed according to a student
t-distribution, then it can be shown that α′′ is multinormally distrubuted. Since we
are using an orthonormalized basis, we expect the covariance matrix to be close to
diagonalized, and we argue that we can to a good approximation factorize the dis-
tribution of α′′ into a product of univariate distributions for each coefficient. The
estimates are therefore statistically independent, and can be used to obtain indepen-
dent estimates of the generally unknown factors ofM . One should be aware, however,
that this constitutes a nonlinear set of equations where uniqueness is an unresolved
issue that should be approached with care. If such a method is employed, variance
estimates are most easily found by a bootstrapping method, such as pseudorandom
residual resampling.

B.3 Choosing the Regression Interval
Another problem arising in the data treatment is how to choose the interval for the
regression. The physical considerations on which the advection-diffusion equation
is based are valid for short time scales. A too long regression interval might force
the regression model to account for effects not covered by the simplified model, and
therefore give erroneous estimates. On the other hand, starting the interval too early
might lead to inclusion of points where the system has not yet reached steady state,
and an overall too short regression interval leads to unreliable and imprecise esti-
mates. The correct interval should therefore begin a short time after application of
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the pressure gradient, and then go on for a period long enough to provide precise
results, but short enough that we still have confidence in the applied model.

To decide on the first point of the regression interval, we start with the exact moment
the pressure is applied as the first candidate. The linear model is then fitted up until
the moment the pressure is relieved. The residuals are calculated, and we observe the
differences

∆̂εi = ε̂i+1 − ε̂i (B.3.1)

and form the criterion that the first difference should be smaller than the variance of
the remaining residual differences. If this criterion is not met, we increment the initial
regression point and repeat the procedure until the criterion is satisfied. We are thus
saying that the most abrupt changes in potential, characterized by very large residual
differences, are excluded from the interval. We identify these points as belonging to
the transient period where the theory is not applicable, and the linear model has
a very bad fit where these points are included. We now fix the initial point to the
first which satisfied the difference criterion, and apply a similar procedure to find the
end point. We begin with the last point before the pressure is relieved as the first
candidate, and then fit the linear model. We then calculate the streaming potential
by extrapolating to the initial time when the pressure was applied (not the initial
regression point). We then repeat this procedure for all possible end points until we
reach a minimum interval length. We want the calculated streaming potential to be
as independent as possible of the choice of end point. We therefore calculate the
differences

∆ (∆φ)i = ∆φi+1 −∆φi (B.3.2)

where the ith value is the value calculated with i more points in the regression inter-
val than the minimum interval length. The criterion for accepting the end point is
as follows: we locate the first interval for which the sum of the absolute values of 4
consequtive differences is smaller than the standard deviation of the later points. If
the next 4 consequtive points fulfill the same criterion, then the 4th point of the first
interval is chosen as the candidate end point. Once this criterion is fulfilled, we impose
yet another criterion - goodness of fit. Once a point has been found which satisfies
both the aforementoned difference criterion and the criterion that the distribution of
residuals is not significantly different from normal according to the Anderson-Darling
goodness-of-fit test, this point is finally accepted as the regression end point. The
rationale for this choice is that this end point is in the middle of an interval where
the estimated streaming potential is insensitive to the choice of end point, while at
the same time the model has a good fit in that the residuals represent normally dis-
tributed noise.

We summarize how the regression interval was chosen. We choose the first point
deemed not to be a part of the transient period as the initial point, and we choose
the end point such that the estimated streaming potential is insensitive to the choice,
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and that the residuals are significantly normal.

B.4 Choice of Model Order
Adding more fitting parameters always gives a better fit, whether the parameters
belong in the actual model or not. If the deterministic effects modeled by the higher
order terms are insignificant in the presence of the lower order terms, the model
is at risk of overfitting the data. It is therefore often desirable to choose a more
parsimonious model to ensure that the estimates are of the highest possible quality,
and insensitive to the noise present in the physical system. The Runge phenomenon
is also more pronounced for higher order polynomials, so that careless application of
higher order models can lead to wildly inaccurate extrapolation results. We therefore
implement the fitting procedure for models of all 3 orders in time, and compare the
successful models to one another. We choose our model according to the Akaike
Information Criterion, which is, for normally distributed residuals [69]

N ln
(
ε̂Tε̂

N

)
+ 2dfR (B.4.1)

where the first term is the logarithm of the maximum likelihood estimate of the
regression variance, and the second term is simply the number of parameters in the
model. While the first term is smaller for any model with better fit to the data, the
second term is added as a punishment for having more parameters. The criterion for
best model is then to have the lowest value of this sum. This criterion can be shown
to be asymptotically optimal, given the assumptions we have made on the residuals,
see e.g. [69] for a discussion. We add this functionality because for many membranes,
the simple model used by Okada et al in their work is sufficient, and adding more
parameters is only of detriment in such a situation.

B.5 Variance Estimation and Robustness
Once the model satisfying the aforementioned criteria has been found, we simulate
new data by drawing at random with replacement from the residuals, and adding
them to the fitted values. The best model is then refitted to the simulated data
to gain a new estimate of the regression coefficients, which are then used to gain a
new estimate of the streaming potential. The bootstrapping algorithm is repeated
until a satisfactory number of estimates are made, and the mean and variance are
calculated as the sample mean and variance of the bootstrap samples. The mean
value estimated from the bootstrapping procedure is taken to be the best estimate
of the streaming potential, and the variance is added to the experimental error. A
low bootstrap variance indicates that the chosen model gives a robust estimate of the
streaming potential.





Appendix C
Thermocell Design

101



102 APPENDIX C. THERMOCELL DESIGN


