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Abstract 

 

In the Norwegian hard rock tunnelling history, drill and blast has mainly been used as 

the excavation method. At the Follo Line Project, which will be the longest railway 

tunnel in Scandinavia when it opens in 2021, tunnel boring machines have been 

applied. Before and during construction of a tunnel project, a correct prediction of 

penetration rate is important, and the choice of the most accurate prediction model is 

crucial. To find the most accurate model, the penetration rates will be predicted by 

several models and further compared with the actual penetration rate achieved at the 

Follo Line Project. This is the main scope of the thesis. 

 

The prediction models used are listed below: 

 

•   NTNU model by Bruland (2000) •   NTNU model by Macias (2016) 

•   CSM model by Rostami (1997) •   MCSM model by Yagiz (2002) 

•   Gehring model by Gehring (1995) •   Alpine model by Wilfing (2016) 

•   Qtbm model by Barton (2000) 

•   Model by Hassanpour et al. (2011) 

•   Model by Yagiz (2008) 

•   Model by Farrokh et al. (2012) 

 

The performance prediction models will be fed with collected geological data from 

site, found both by laboratory testing and field inspections. The company has already 

collected most of the geological data, but the candidate will collect the remaining 

data. Calculation of geological parameters like ks-tot and Q-values will be necessary. 

 

Due to difficulties with geological inspections on a double-shielded TBM, methods 

like face inspections, cross-passage inspections and OTV-analyses will be performed 

to gain information about the input parameters. Laboratory tests will be performed to 

find UCS-values, DRI-values, mineralogical compositions, brittleness values and 

densities. In addition to the geological parameters, machine data will be downloaded. 

 

As a secondary scope, machine- and geological data will be compiled and presented. 

In addition, sensitivity analyses of the input parameters will be performed to 

determine the most influential parameters, both in reality and in the models. The 

outcome of these investigations will be analyzed to evaluate the suitability of the 

models at this project. 
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Abstract 

In the Norwegian hard rock tunnelling history, drill and blast has mainly been used as 

excavation method. At the Follo Line Project, which will be the longest railway tunnel in 

Scandinavia when it opens in 2021, tunnel boring machines have been applied. Before and 

during construction of a tunnel project, a correct prediction of penetration rate is important, 

and the choice of the most accurate prediction model is crucial. The overall purpose of this 

thesis is to compare existing performance prediction models with the aim of finding the most 

accurate model for hard rock tunnel boring based on data collected at the Follo Line Project. 

To detect the most accurate model, the penetration rates have been calculated by using several 

models and further compared with the actual penetration rate achieved at the Follo Line 

Project. The prediction models used are listed below:  

•   NTNU model by Bruland (2000) •   NTNU model by Macias (2016) 

•   CSM model by Rostami (1997) •   MCSM model by Yagiz (2002) 

•   Gehring model by Gehring (1995) •   Alpine model by Wilfing (2016) 

•   Qtbm model by Barton (2000) •   Model by Yagiz (2008) 

•   Model by Hassanpour et al. (2011) •   Model by Farrokh et al. (2012) 

 

In general, most of the performance prediction models show promising results compared to 

the achieved penetration rate. The NTNU models and the Alpine model turned out to be the 

most accurate ones. If conservative results are sought for, the MCSM-model and the model by 

Yagiz show promising results. 

One of the secondary scopes was to determine the most influential parameters, both related to 

the achieved and the predicted penetration rate. A sensitivity analysis of the various 

parameters has been performed for this purpose. The outcome of this analysis shows that the 

applied cutter thrust, rock mass fracturing and uniaxial compressive strength are the most 

influential parameters on the penetration rate, both in reality and in the models. 

To strengthen the accuracy and reliability of the predictions, it is recommended to use more 

than one prediction model in the calculations. Thus, the sources of error connected to the 

models will be limited. The Follo Line Project is a well-suited project to compare hard rock 

prediction models due to the varying geology throughout the tunnel alignment. 
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Sammendrag 

I norsk tunnelhistorie har konvensjonell drivemåte tradisjonelt vært den ledende metoden. 

Follobaneprosjektet, som vil bli den lengste jernbanetunnelen i Skandinavia når den åpner i 

2021, er imidlertid drevet med tunnelboremaskiner. Nøyaktig estimering av inndrift er viktig 

både før og under bygging av et tunnelprosjekt, og i så måte er det avgjørende å velge den 

mest presise estimeringsmodellen. Hovedformålet med denne oppgaven er derfor å finne den 

mest presise estimeringsmodellen for inndrift basert på data samlet på Follobaneprosjektet. 

Dette har blitt gjort ved å sammenligne estimert inndrift fra flere inndriftsmodeller med den 

faktisk oppnådde inndriften på Follobaneprosjektet. 

Inndriftsmodellene som har blitt benyttet er: 

•   NTNU-modellen av Bruland (2000) •   NTNU-modellen av Macias (2016) 

•   CSM-modellen av Rostami (1997) •   MCSM-modellen av Yagiz (2002) 

•   Gehring-modellen av Gehring (1995) •   Alpine-modellen av Wilfing (2016) 

•   Qtbm-modellen av Barton (2000) •   Modellen av Yagiz (2008) 

•   Modellen av Hassanpour et al. (2011) •   Modellen av Farrokh et al. (2012) 

 

Generelt viser de fleste inndriftsmodellene lovende resultater i forhold til den oppnådde 

inndriften på Follobanen. Begge NTNU modellene og Alpine-modellen viste seg imidlertid å 

være de mest nøyaktige. Hvis konservative resultater er ønskelig, viser MCSM-modellen og 

Yagiz sin modell lovende resultater. 

Ett av sekundærformålene med oppgaven var å fastslå de mest innflytelsesrike input-

parameterne, både i forhold til oppnådd og estimert inndrift. I den sammenheng har det blitt 

utført en følsomhetsanalyse av de forskjellige parameterne. Utfallet av denne analysen viste at 

benyttet matekraft, oppsprekkingsgrad og trykkfasthet var de mest innflytelsesrike 

parameterne som påvirket inndriften. Dette gjelder både i forhold til oppnådd og estimert 

inndrift. 

For å styrke troverdigheten og nøyaktigheten til inndriftsestimeringen, anbefales det å benytte 

mer enn én inndriftsmodell i beregningene. På den måten vil feil og mangler knyttet til 

modellene bli begrenset. Alt i alt er Follobaneprosjektet et velegnet prosjekt for å 

sammenligne inndriftsmodeller for harde bergforhold. 



 

IV 

 

 



 

V 

 

Preface 

 

This thesis is written as a part of my Master`s Thesis in Engineering Geology at the 

Department of Geoscience and Petroleum, the Norwegian University of Science and 

Technology (NTNU). The study has been carried out during the fall of 2017 and spring of 

2018 at the Follo Line Project. 

The topic of the study is prediction of penetration rates in TBM tunneling. Hard rock tunnel 

boring became interesting for me during the course TGB4190 – Engineering Geology of 

Rocks, Advance Course at NTNU. When the opportunity to work and write at the Follo Line 

Project arose, I couldn’t miss it, especially not when the tunnels are excavated by tunnel 

boring machines. 

The results are a product of my own work and are not affected by any of the contractor`s nor 

client`s perspective. In some aspects of the thesis (e.g. structure or presentation style), I have 

been inspired by an unpublished examination work which focus on the same topic. Due to a 

contractor`s wish, the origin of the work will stay undisclosed. 

The main purpose of this thesis is to find the superior hard rock prediction model based on 

collected data at the Follo Line Project. The thesis is done in cooperation with Bane NOR and 

I have been located at the Åsland site during the whole writing period. 

 

 

Oslo, 15.05.2018 

 

Joakim Navestad Hansen 
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Strike      Orientation of the planes of weakness 

TBM      Tunnel Boring Machine 

UCS      Uniaxial Compression Strength 
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1  Introduction 

The aim of this chapter is to contextualize the thesis. The purpose, research objectives, scope 

and limitations will be introduced. 

 

1.1 General remarks 

The development of underground infrastructure has increased significantly during recent 

decades and the great demand of infrastructure projects is expected to continue to increase in 

the future. The need to excavate deeper and longer, especially in urban areas, is continuously 

growing, and building tunnels using tunnel boring machines (TBM) is an important method 

employed by the tunneling industry (Macias, 2016). 

Using TBMs as an excavation method leads to high investments and geological risks (Macias, 

2016). Therefore, accurate performance predictions are of major importance in order to 

control risk and avoid delays. Several performance prediction models are made to calculate 

penetration rates and cutter consumptions. The various models require different input 

parameters, including both geological- and machine related parameters. As output, the net 

penetration is predicted. Some of these prediction models are based on empirical data while 

others are numerical or analytical models (Macias, 2016). 

 

1.2 Purpose and objectives of the thesis 

The overall purpose of this thesis is to compare existing performance prediction models with 

the aim of finding a superior model for hard rock tunnel boring based on data collected from a 

selected tunnel section at the Follo Line Project. Both geological- and machine related data 

will be gathered to provide a good basis for all the prediction models. By comparing the 

predicted penetration rates towards the actual penetration rates achieved at the project, the 

accuracy of each performance prediction model can be determined. 
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Some secondary objectives are established, listed in the following: 

• To compile information about the geology in the project area. The information is 

compiled in templates and include information about rock mass fracturing, Q-values 

and laboratory test results. 

 

• To gather machine data connected to the performance, including weighted average 

values of cutter thrust, cutterhead velocity (RPM) and net penetration rate (NPR). 

 

• To determine the most influential parameters, both related to the achieved NPR and 

the predicted NPR. In that context, a sensitivity analysis will be performed. 

 

 

1.3 Scope and limitations 

The field data that has been acquired for this report is intended to support the objectives 

mentioned in Section 1.2. A broad variation of models has been investigated and several 

different input parameters have been obtained. Some of the models have been modified, and 

both original and updated versions were chosen. Table 1.1 present the prediction models 

investigated in this thesis. 

 

Table 1.1 – Performance prediction models investigated in this thesis. 

Performance prediction model Reference 

NTNU model 

Modified NTNU model 

Bruland (2000) 

Macias (2016) 

CSM model 

MCSM model 

Rostami (1997) 

Yagiz (2002) 

Gehring model  

Alpine model 

Gehring (1995) 

Wilfing (2016) 

Qtbm model Barton (2000) 

Model by Yagiz Yagiz (2008) 

Model by Hassanpour et al. Hassanpour et al. (2011) 

Model by Farrokh et al. Farrokh et al. (2012) 
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Naturally, some limitations are connected to such a big project when the available time on the 

project site is limited. There are in total four TBMs in operation at the Follo Line Project, 

which presents an immense potential in terms of data to be acquired. Due to this fact, it was 

necessary to establish some limitations in order to finish the research within the given 

timeframe. As a result, this report has been set to focus on one tunnel boring machine: 

Inbound north TBM number 1 (S980 – Euphemia). The tunnel section length in TBM 1 have 

been limited to 4.5 km of investigated tunnel. 

Some of the models predict more than the NPR only, which include analyses of utilization, 

weekly advance rates, cutter consumptions and specific cost estimates. These subjects have 

not been predicted in this thesis. The prediction of NPR is the only parameter all the 

prediction models calculate, and is therefore the only comparable parameter. 

 

1.4 Outline 

A summary of the content in each chapter are presented in Table 1.2. 

Table 1.2 – Summary of the content in each of the eight chapters in this thesis. 

Chapter Content 

Chapter 1: Introduction 
Background for the research carried out, purpose and 

objectives, scope and limitations 

Chapter 2: Background and theoretical framework 

Brief introduction to basic concepts and terminology 

related to hard rock tunnel boring. Information about the 

project 

Chapter 3: Hard rock prediction models 
Presentation of the different hard rock prediction 

models 

Chapter 4: Methodology 
Detailed descriptions of the methodologies used to 

acquire geological- and machine related data 

Chapter 5: Results 

Results obtained from field work, machine 

performance, calculated penetration rates and sensitivity 

analyses 

Chapter 6: Comparison and discussion 

Comparison of predicted penetration rates towards 

achieved penetration rates. Discussions regarding model 

behavior and influential parameters 

Chapter 7: Conclusion 
Conclusive remarks that address the objectives 

presented in Chapter 1.2 
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2  Background and theoretical framework 

In this chapter, fundamental theory related to tunnel boring in hard rock conditions is 

described in order to give a general insight into the field. Such theory includes a presentation 

of the tunnel boring machine types and their rock breaking mechanisms that influence on the 

performance predictions. In addition, a comparison of excavation methods is presented in 

order to enlighten the reasons for method choice. Finally, information about the Follo Line 

Project is presented. 

 

2.1  Hard Rock Tunnel Boring 

A tunnel boring machine is a machine used for full excavation of a tunnel. The basic elements 

of a TBM are the cutterhead, the cutterhead carrier, the machine frame, the gripper shoes and 

the driving equipment. At the cutterhead, several disc cutters are installed in order to 

propagate cracks when the cutterhead is rotated against the tunnel face (Macias, 2016). These 

cutter rings are not powered, but roll in concentric rings against the face (Bruland, 2000a).  

Hard rock conditions is a frequent used term that is vaguely defined. Eide’s (2016) thesis 

presented some rough limits of the term hard rock, which was originally presented in the 

NTNU prediction model (Bruland, 2000a). 

The definition included: 

• “The rock drillability expressed by the Drilling Rate Index (DRI) is in the range of 

approx. 20 to 80, roughly corresponding to a compressive strength in the range of 

approx. 350 MPa to 25 MPa. 

• The rock type has medium to low porosity, less than approximately 10 % (volumetric). 

• The rock mass degree of fracturing expressed by the average spacing between planes 

is larger than approx. 50 mm. 

• The rock will break as chips (by brittle failure) between the disc cutters. 

• The rock mass has a strength such that the excavated tunnel generally will need only 

light support in the form of rock bolts or shotcrete (except for weakness zones and 

other singular phenomena)” (Bruland, 2000a:7). 
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2.1.1  Brief history 

Excavation of tunnels with the use of TBMs is a widely used technique across the world. 

Boring for full-face excavation purposes began in the early 1880s and the first TBMs as we 

know them today originate from the 1950s. In the following decades, the TBM technology 

has significantly accelerated with the introduction of the rolling cutters (Macias, 2016). 

In Norway, TBMs were frequently used to excavate tunnels during the seventies and eighties. 

During this period, 258 kilometers of tunnel were excavated and most of the projects were 

related to hydro power development (Hansen, 1998). Due to the end of the great hydropower 

era in Norway, as well as a couple of unsuccessful TBM projects, TBM was an excavation 

method that was not actively used for over twenty years (Holtet & Grue, 2013). During these 

years, all the tunnels in Norway were excavated by drill and blast (D&B); an excavation 

method the Norwegian tunnel industry has a good reputation for. Efficient and safe 

excavation by D&B, in addition to the lack of awareness regarding the possibilities for TBMs, 

are believed to be the primary reasons for the lack of TBM-projects in Norway during this 

period (Berg, 2015).  

Despite this trend in the industry, three projects have since 2013 been excavated by TBMs: 

The Røssåga Hydropower Tunnel, the New Ulriken Railway Tunnel and the Follo Line 

Project. Based on this trend, it seems reasonable to expect that future projects will consider 

the use of TBMs as an excavation method. The three recent TBM projects may represent the 

start of a new tunnel boring era in Norway. 

The following timeline is based on a table published by Hansen (1998), and depicts the most 

influential TBM projects in the history of Norwegian tunnel excavation (Fig. 2.1). 

 

 

Figure 2.1 – Timeline of selected TBM projects in Norway. 
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2.1.2  Tunnel Boring Machines 

Several kinds of tunnel boring machines exist. The three main types of TBMs are 1) Gripper 

TBM, 2) Single Shield TBM and 3) Double Shield TBM. The choice of TBM is mainly 

determined by the expected rock mass conditions. The principle of how the TBMs are 

excavating are the same for all three types. The choice of the most suitable TBM is in general 

controlled by the investment costs, the rock mass conditions and the water inflow regulations 

(Barla & Pelizza, 2000). 

Barla & Pelizza (2000) presented advantages and disadvantages for each hard rock TBM type 

(Table 2.1). 

 

Table 2.1 – Advantages and disadvantages of different tunnel boring machines (Barla & Pelizza, 2000). 

Gripper TBM (open) Single Shield TBM Double Shield TBM 

Advantages 

Easy to operate 

Applicable only in hard rocks 

Flexibility of supports 

Construction cost 

Limited investment 

Application range more 

widespread than for open TBMs 

Safety 

Precast lining installation 

High performances 

Larger application range 

Safety 

Support and lining flexibility 

High performances 

Drive in difficult ground 

conditions 

Disadvantages 

Gripping in soft or unstable rock 

Support installation in unstable 

rock 

Two work phases 

Not applicable in weak ground 

Need of precast lining 

Higher initial investment 

Complex to operate 

Squeezing ground – risk of 

jamming 

High investment 

Complex to operate 

Higher maintenance costs 

Squeezing ground – risk of 

jamming 
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Information about these TBM types is briefly presented in the following subchapters. 

Gripper TBM 

The Gripper TBM is often described as an open TBM without any protective shield. As the 

name suggests, this TBM utilizes grippers in order to brace itself radially against the tunnel 

walls during excavation (Herrenkneckt, 2018a). As presented in Table 2.1, the Gripper TBM 

is often applied when drilling massive rock mass and when the water inflow regulations are 

flexible. The reason for this is the lack of a protective shield. The stand-up time needs to be 

sufficient in order to install the permanent rock support. If the TBM encounters zones with 

unfavorable rock mass conditions, pre-grouting and bolts can be added. In addition, post-

excavation support can be installed (Eide, 2014). 

The Gripper TBMs range from open with no shields, to open with partial shields in the roof or 

walls to protect the working crew. With their partial shields, the Gripper TBMs offer a 

diameter reduction compared to the closed shield types. This allows a flexible reaction to 

expanding rocks and prevents the machine from jamming. If necessary, the machine can be 

retracted completely (Herrenknecht, 2018a). 

Figure 2.2 shows an example of a Gripper TBM. 

 

Figure 2.2 – Example of a Gripper TBM, also called open TBM (Herrenknecht, 2018a). 
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Single Shield TBM 

The single shield TBM has a shield that prohibits the inside of the machine from being 

exposed to the surrounding ground. This shield extends from the cutterhead to the point where 

the tunnel lining is installed, and works as a protection for the crew. The tunnel lining consists 

of prefabricated concrete elements installed to form a complete ring around the tunnel 

perimeter. These TBMs are appropriate in cases where the majority of the rock mass is 

expected to be unfavorable with special regard to stability and water ingression (Maidl et al. 

2008).  

Unlike the Gripper TBM, the single shield TBM is not equipped with grippers. Instead, it 

pushes itself forward by several thrust cylinders that are braced axially against the previously 

built concrete lining (Herrenknecht, 2018b). These cylinders and concrete segments are 

visible in the illustration of a single shield TBM (Fig. 2.3). 

 

 

Figure 2.3 – Example of a Single Shield TBM (Herrenknecht, 2018b). 
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Double Shield TBM 

The Double Shield TBM operates as a hybrid of the two previously described TBM models. It 

has both the gripper feature of the Gripper TBM and the protective shield feature of the Single 

Shield TBM. Hence, it has two types of shields, one gripper shield and one front shield 

(Herrenknecht, 2018c). 

If the rock conditions allow it, the machine can utilize gripper shoes and propel itself forward 

in a similar fashion to the Gripper TBM. In this mode, concrete elements can be erected while 

the machine is boring. In cases when the rock conditions do not allow the grippers to brace 

themselves against the tunnel walls, the Double Shield TBM can switch to a single shield 

mode. In this mode, the thrust will be provided by the jacks braced against the previously 

built concrete elements. This mode does not allow to be installed during boring (Eide, 2014). 

An illustration of the Double Shield TBM are presented in Figure 2.4. 

 

 

Figure 2.4 – Example of a Double Shield TBM (Herrenknecht, 2018c). 
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2.2  Influential TBM elements 

In the following subchapters, the most important systems that influence the performance of 

the machines are presented. 

 

2.2.1  The rock breaking process  

 

“Hard rock tunnel boring leads the interaction between the rock mass and the machine, 

which is a process of great complexity. The tunneling system around the excavation process 

has a great relevance in the final goal of performance predictions for hard rock TBMs, which 

is the estimation of time and cost” (Macias, 2016:i).  

Macias (2016) points out that the excavation process is relevant for the performance 

prediction results. In order to predict the performance results, the rock breaking process is 

vital. The fragmentation process is similar regardless to the machine type, and is initiated 

when the cutterhead is rotated and force is applied against the tunnel face. From Figure 2.5, 

one can see that radial cracks will appear when thrust force is applied. This will cause rock 

fragments to loosen between the adjacent kerfs, which is a process called chipping. These 

chips are formed between the cutter edges or against existing planes of weaknesses in the rock 

mass (Macias, 2016). How these chips are formed can affect the performance of the TBM. 

By studying the shape of the chips, one can decide whether the chips are caused by tensile or 

shear failure. It seems to be a general agreement that tensile failure is the most likely type of 

failure, supported by Eide (2014). 

 

Figure 2.5 - Illustration of the rock breaking process (Bruland, 2000d). 
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2.2.2  The boring system 

The boring system is a collective name for the cutterhead and its installed disc cutters. The 

design of this system has a significant impact on the tunneling performance. Based on 

Bruland (2000d) and Hansen et al. (2017), some items related to the boring system can 

influence directly on the net penetration rate: 

 

• Larger cutter diameter permits the use of larger thrust forces. Smaller cutter diameter 

leads therefore to more efficient boring. Reduced cutter spacing the same.  

 

• The cutters should be placed in a double spiral starting from the center of the 

cutterhead to improve the efficiency. 

 

• Greater cutterhead stiffness reduces vibrations and is generally believed to give a 

better rate of penetration. 

 

• Lower cutterhead velocity (RPM) has a positive influence on the penetration rate. 

 

• The optimal cutter ring shape should be as narrow as possible. However, a cutter ring 

with a constant cross section thickness is preferred, which gives a more even 

penetration rate. 

 

2.2.3  The thrust- and clamping system 

As described in Chapter 2.1.2, different TBM types have different methods to propel the 

cutterhead forward. The forces are created either by the grippers against the walls or by 

bracing against the concrete lining. The applied thrust is of massive importance to the basic 

penetration rate (Bruland, 2000d). According to Bruland (2000a), a 15% increase of the thrust 

can lead to a 50% increased penetration rate. The applied thrust plays therefore a major role 

regarding the penetration rate. The exact influence of the applied thrust is presented in the 

results (Chapter 5).   
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Figure 2.6 illustrates the general importance of gross cutter thrust to the penetration rate. 

 

Figure 2.6 – General progress of a penetration test curve (Bruland, 2000a) 

 

2.2.4  Other systems 

In addition to the rock breaking process and the boring system, several other systems have an 

impact on the tunneling performance. Examples of these are the muck removal-, the rock 

support- and the backup system. According to their low significance on the basic penetration 

rate (more important on the advance rate), these systems are not described in detail. Works 

associated with these systems are typical time consuming and frequent. 

2.3  Comparison of excavation methods 

A large number of underground constructions excavated in hard rock conditions employ both 

the drill and blast (D&B) excavation and TBM methods. Both methods are widely and 

successfully used, although a few projects have been unsuccessful (Macias, 2016). Choosing 

the wrong method can potentially be catastrophic. There are several parameters which are of 

great importance when determining the excavation method. These are presented in Table 2.2 

(Macias & Bruland, 2014) 

Table 2.2 – Important parameters regarding excavation method choice (Macias & Bruland, 2014). 

Important parameters to evaluate when deciding excavation method 

Project design considerations 

Final purpose considerations 

Health, safety and working environment 

Advance rate 

Flexibility and risk 

Ground stability 

Costs 

Overbreak and tunnel profile quality 

Environmental disturbance 

Temporally access and implantation layout 

Contractual considerations in the choice of the 

excavation method  
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A list of advantages and disadvantages regarding excavation method is presented in Table 2.3 

(Macias and Bruland, 2014). Adjectives such as more or less, higher or lower, must be 

understood in a comparative context between the different excavation methods. 

Table 2.3 – Advantages and disadvantages with the two different excavation methods (Macias & Bruland, 2014) 

Drill and blast (D&B) Tunnel boring machine (TBM) 

Advantages 

• More flexible regarding geometry, 

radiuses and slopes. The geometry can fit 

every project type. 

• Shorted delivery time of equipment. More 

flexible for geology changes. 

• Less extensive pre-investigations are 

required. 

• No need for big financial investments in 

the beginning of the project. 

• Do not require big amount of electricity.  

 

• Higher stability in normal conditions 

because of circular profile and less 

damage to the surrounding rocks. 

• Favorable in water tunnels because of 

much lower frictional head loss. 

• All risk of handling and storing of 

explosives are avoided. 

• Rock support are installed from 

protected areas. 

• Normally higher advance rate and more 

favorable for longer tunnels. 

• Lower environmental disturbances. 

• Better work environments without gas 

emissions from blasting etc. 

• Several similar work operations. 

Disadvantages 

• More unstable due to possible blast-

induced fractures. 

• Higher frictional head loss. 

• Risk of handling and storing explosives. 

• Some of the rock support installed from 

unsupported work area. 

• Normally lower advance rates. 

• Higher environmental disturbance. 

• Bad work environments with gas 

emissions. 

• Harder to perform several work operations 

simultaneously. 

• Limitations regarding geometry, 

radiuses and slopes. 

• Circular geometry is not preferable for 

road tunnels, rock caverns etc. 

• Longer delivery time of equipment. 

• More sensitive to geology changes. 

• Extensive geological pre-investigations 

• Requires finance in the beginning of 

the project, which can lead to negative 

cash flows. 

• Demands high mobilization, which 

requires more electricity.  
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2.4  The Follo Line Project 

This subchapter will provide information specifically about the Follo Line Project. 

Descriptions about the project area, the tunnel boring machines in use and the geology along 

the tunnel alignment will be presented. 

 

2.4.1  Project description 

The Follo Line Project is currently the largest onshore infrastructure project in Norway and 

will be the longest railway tunnel in Scandinavia when it opens in 2021. The Follo Line 

stretches between the cities of Oslo and Ski and will reduce the travelling time from 22 to 11 

minutes (Fig. 2.7). The project is owned by Bane NOR, and the contractor is a joint venture of 

Acciona and Ghella (AGJV). 

22 km of railway tracks are being built in two separate tunnels with a length of 20 km each, 

making a total excavation length of more than 40 km tunnel. Close to the cities, the tunnel is 

mainly excavated by drill and blast (D&B). In sensitive areas, mechanical splitting (D&S) is 

used as an excavation method. The rest of the tunnel is excavated by four TBMs. Figure 2.7 

shows where the different excavation methods are used at the Follo Line Project. 

 

Figure 2.7 –  Excavation methods. The red and orange line displays the Follo Line. The red, solid lines illustrate 

the parts excavated by blasting and splitting, while the orange dotted line shows the part that will be excavated 

by TBMs. Notice the orange dot, illustrating where the main rig area is located (Bane NOR, 2018a). 
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2.4.1.1  Tunnel boring machines 

Two Double Shield TBMs originate from the rig area at Åsland and move outwards towards 

the north and south, respectively (Fig. 2.8). All four machines were installed and assembled in 

a large underground cavern at Åsland site area early 2017, and the first machine is scheduled 

to achieve breakthrough autumn 2018. This machine excavates the inbound north tunnel 

(TBM 1), which is the tunnel in scope in this thesis. Cross passages are excavated every 500 

meters to make it possible for evacuation in emergency situations. The rock is supported by 

concrete lining consisting of several segments produced at site, made up of 1.8 m wide rings. 

 

The technical specifications are listed in Table 2.4. 

Table 2.4 – Technical TBM specifications (Hansen et al., 2017).  

Technical TBM specifications 

Number of TBMs 

Rock support 

TBM diameter 

Cutter diameter 

Number of cutters 

Max. recommended thrust 

Max. applied thrust 

Cutterhead power 

Cutterhead velocity 

Max. overload torque 

Total length 

Total weight 

4 

Waterproof concrete lining 

9.96 m 

19 inch (483 mm) 

71 

315 kN/cutter 

(315 kN/cutter * 71) +3200 (drag) = 25 565 kN 

13 VFD motors * 350 kW = 4 550 kW 

11 115 kNm at 3.67 RPM 

16 672 kNm at 3.67 RPM 

150 m 

2 300 metric ton 

Åsland rig area 

Figure 2.8 – Two TBMs are operating in each direction from Åsland rig area (Bane NOR, 2018b). 
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The tunnel boring machines operating at the Follo Line Project are illustrated in Figure 2.9. 

 

 

Figure 2.9 – The four tunnel boring machines operating at the Follo Line Project. Clockwise from the upper 

right corner: TBM 1 – Euphemia, TBM 2 – Ellisiv, TBM 4 – Anna, TBM 3 – Magda (Bane NOR, 2018a). 
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2.4.2  Geology 

The geology in the project area is highly decisive for the machine performance. In the 

following subchapters, a general regional scope of the geology will first be presented. Then, 

the most important information about the local geological variations obtained from the pre-

investigations will be presented.  

 

2.4.2.1  Regional geology 

Based on information from the Geological Survey of Norway (Graversen, 1984), the 

geological conditions along the tunnel alignment are compiled in an internal geological report 

(Bane NOR, 2018a). According to this report, the rocks in the project area consist 

predominantly of Precambrian gneisses.  

The Precambrian gneisses that occur in the project area are described in Table 2.5. They are 

divided into three main groups: 

• Tonalitic to granitic gneiss,  

• Quartz-feldspathic gneiss and  

• Biotitic augen gneiss.  

Appendix A illustrate a profile of the whole tunnel alignment, where the present rock types 

and weakness zones are illustrated. In addition, fracture information and joint rosettes are 

added to the profile.  

In addition to the main groups of rocks, several generations of intrusions occur. Parts of the 

older intrusions still have the character of diabase while others have been transformed into 

amphibolite and folded into the gneisses. These amphibolite dykes make up a larger portion of 

the project area than the Permian intrusives. The youngest Permian intrusives are both dykes 

and sills which follow both weak layers in the foliation and along weakness zones. One such 

special intrusion is a 20-30 m thick rhomb porphyry dyke that can be followed from Ekeberg 

southward over a distance of about 15 km. 

The geological profile is illustrated in Appendix A.  
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Table 2.5 – Typical characteristics for the Precambrian gneisses present in the project area (Bane NOR, 

2018a). 

Typical characteristics for the Precambrian Gneisses 

 

Tonalitic to granitic gneiss 

 

Tonalitic gneiss consists of about 30% quartz, 40% feldspar, 

20% biotite, and various accessorial minerals, including 

chlorite and muscovite. Granitic gneiss contains about 30% 

quarts, 65% feldspar, 5% biotite plus, accessorial minerals. 

Tonalitic gneiss has a dark color while granitic gneiss is 

lighter gray. The reason for the color differences is in the 

variation in content of dark micas. 

 

Quartz-feldspathic gneiss 

 

Quartz-feldspar rich gneiss is termed supracrustal gneiss 

because relict sedimentary structures are present. This 

lithology typically contains 40% quartz, 50% feldspars of 

different variations. Dark micas (biotite) are the dominating 

dark mineral, but a number of other minerals occur 

accessorial. 

 

Biotitic augen gneiss 

 

Biotite rich augen gneiss contains 25% quartz, 60% feldspar, 

10% biotite and garnet. The lithology is described as 

homogeneous and grey, with 2-4 cm long eyes of feldspar and 

in some places with several cm large garnet minerals. The 

foliation is well developed. 
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2.4.2.2  Pre-investigations 

When using TBMs as an excavation method, comprehensive geological pre-investigations are 

needed. As presented in Chapter 2.2, the TBMs are sensitive to changing geological 

condition, which may affect the achieved penetration rates. 

From autumn of 2007 until 2012, geologists from the Norwegian National Rail 

Administration (NNRA) and Multiconsult executed extensive pre-investigations in the project 

area. Seismic refraction surveys, resistivity measurements, core drillings, drilling of 

groundwater wells and geotechnical drillings have been executed.  

 

Lithology 

The rock types presented in the previous subchapter are confirmed by the pre-investigations. 

The different gneisses are hard to distinguish, and the investigations indicate the following 

distribution:  

North Stretch: 

• Gneiss: 86,13 % 

• Amphibolite: 9,57 % 

South Stretch: 

• Gneiss: 80,46 % 

• Amphibolite: 8,94 % 

 

Fracturing 

The fracture investigations show two main joint sets which run through the entire tunnel 

alignment. 

 

1. One joint set typically has an E-W oriented strike with steep dip.  

2. The second joint set, have N-S oriented strike with a westward dip of 35°-90°. This joint 

set follows the foliation. 

 

A few joint sets have been observed that do not fit the definition of a joint set, due to uneven 

distribution. Hence, these are referred to as sub-horizontal joints. The average joint spacing 

varies along the tunnel alignment from 0.8 m – 1.0 m for the E-W joint sets. For the N-S joint 

sets the average joint spacing varies from 0.5 m – 1.1 m. 
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Intact rock properties 

Laboratory investigation of rock samples have been carried out and the results from these 

investigations are presented in the following (Fig. 2.10 to 2.13). Table 2.6 classifies the 

various categories with related values.  

In general, the geology in the entire project area is represented by low DRI- and CLI values, 

very high UCS values and relatively high quartz content. This classification is based on the 

ISRM standards presented in Table 2.6. The results related to the specific area in scope are 

presented in Chapter 5. 

Figure 2.10 illustrates a histogram for DRI along the tunnel alignment. 

 

Figure 2.10 – Histogram for DRI along the tunnel alignment (Bane NOR, 2018a). 

 

Figure 2.11 illustrates a histogram for CLI along the tunnel alignment. 

 

Figure 2.11 – Histogram for CLI along the tunnel alignment (Bane NOR, 2018a). 
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Figure 2.12 illustrates a histogram for UCS along the tunnel alignment. 

 

Figure 2.12 - Histogram for UCS along the tunnel alignment (Bane NOR, 2018a). 

Figure 2.13 illustrates a histogram for quartz content along the tunnel alignment. 

 

Figure 2.13 – Histogram for quartz content along the tunnel alignment (Bane NOR, 2018a). 

 

Table 2.6 – Classification of DRI, CLI and UCS based on standards by ISRM (1998). 

Category DRI CLI UCS (MPa) 

Extremely low 

Very low 

Low 

Medium 

High 

Very high 

Extremely high 

≤ 25 

26 – 32 

33 – 42 

43 – 57 

58 – 69 

70 – 82 

≥ 83 

< 5 

5.0 – 5.9 

6.0 – 7.9 

8.0 – 14.9 

15 – 34 

35 – 74 

≥ 75 

0.25 – 1 

1 – 5 

5 – 25 

25 – 50 

50 – 100 

100 – 250 

> 250 
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3  Hard rock prediction models 

In this chapter, several prediction models will be presented. This presentation includes 

information about the model’s origin and their methods to calculate penetration rate. All the 

models alone are sufficient to estimate the penetration rate in hard rock conditions. Most of 

the information about the models comes from Wilfing (2016) and Macias (2016), along with 

other articles referred to in the specific chapters. 

 

3.1  The NTNU model 

The NTNU model originated from the Norwegian University of Science and Technology, and 

was first published in the 1970s (NTH, 1976). Several revisions have been done since, 

including the versions by Bruland (2000) and Macias (2016). 

The NTNU model calculates performance predictions and cutter life assessments based upon 

empirical data from more than 300 km of tunnel from 40 different tunnel projects. In 

particular the model is based upon the intensive hydropower development in Norway during 

the 1970s and 1980s, where TBMs had a great impact (Jakobsen & Arntsen, 2014). 

Among other empirical prediction models, the NTNU prediction model has good merits, and 

is widely accepted in the industry (Macias, 2016). The model retains its credibility by 

frequently being updated with additions obtained from new projects. The most well-known 

version of the NTNU model originate from Bruland (2000) and will be presented first, and 

then the revision by Macias (2016). 

  



Chapter 3: Hard rock prediction models 

 

 

24 

 

3.1.1  The NTNU model by Bruland 

The net penetration rate (NPR) is defined as the advancement speed of the TBM while the 

cutterhead rotates with thrust against the face, expressed in meters per hour (Bruland, 2000). 

Bruland (2000b) has presented the following factors as influential on net penetration rate 

(Table 3.1). 

 

Table 3.1 – Machine and rock parameters influencing the net penetration rate (Bruland, 2000b) 

Geological parameters Machine parameters 

Fracture frequency 

Fracture orientation 

Drilling rate index (DRI) 

Porosity 

Gross average cutter thrust 

Cutterhead velocity (RPM) 

TBM diameter 

Cutter spacing, shape and size 

 

Rock mass fracturing 

Starting with the geological parameters, the frequency and the orientation of the fractures are 

described by the fracturing factor (ks). Rock mass fracturing is according to Bruland (2000b) 

the most important penetration rate parameter for tunnel boring. The less the distance between 

the fractures is, the greater is the influence it has on the penetration rate. Different types of 

fractures are described below: 

• Joints (Sp): Continuous joints which can be followed all around the tunnel profile. 

They can be filled with clay or weak minerals, or they can be open just like bedding 

joints in granite (Bruland, 2000b). 

 

• Fissures (St): Non-continuous joints which only can be followed partly around the 

tunnel profile. Such joints are typical fillings, joints of low shear strength or bedding 

plane fissures (Bruland, 2000b). 

 

• Homogenous Rock Mass (Class 0): Massive rock without joints or fissures, typically 

found in intrusive dikes, sills and batholites. If the filled joints have high shear 

strength, they may be characterized as a homogenous rock mass (Bruland, 2000b). 
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For practical use while mapping in the tunnel, Bruland (2000b) has systematically divided the 

fractures into classes which are described by an associating distance between the weakness 

planes (Table 3.2).  

Table 3.2 – Fracture classes with distance between the planes of weakness (Bruland, 2000b) 

 

Angle of orientation (𝛂) 

In addition to the distances between the weakness planes, orientation to the tunnel axis also 

affect the rock mass fracturing factor (ks), and hence the rate of penetration. The orientation of 

fractures relative to the tunnel axis is defined by the angle α. This angle is calculated by 

Equation 3.1.  

 

 α = arcsin∗ (sinαf ∗ sin⁡(αt −⁡αs)) (3.1) 

 

where 

𝛼   angle between the planes of weakness and the tunnel axis [º] 

𝛼𝑓   dip angle of the planes of weakness [º] 

𝛼𝑡   tunnel direction [º] 

𝛼𝑠  strike angle of the planes of weakness [º]  

Fracture class            

(Joints = Sp / Fissures = St) 
Distance between planes of weakness [cm] 

O 

O-I 

I- 

I 

II 

III 

IV 

- 

160 

80 

40 

20 

10 

5 

- 

- 

90 

80 

40 

20 

10 
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Bruland (2000b) presented how the fracturing factor (ks) depends on the α-angle and the 

fracture class, fissures and joints respectively (Fig. 3.1). A higher fracturing factor (ks) will 

lead to a higher net penetration rate. 

From the curves, one can observe: 

• The weakness planes that are oriented at an angle of ~60° to the tunnel axis give the 

highest fracturing factor (ks) for most of the fracture classes. In situations with very 

low distance between the planes of weakness (fissure class IV), 90° is the optimal 

angle for a high fracturing factor (ks).  

 

• Smaller distances between the weakness planes leads to a higher fracturing factor (ks). 

 

 

Figure 3.1 – Fracturing factor (Bruland, (2000b). 
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When there are more than one set of fractures present in a rock mass, the orientation angle 

and the degree of fracturing must be calculated for each set. To calculate the fracturing factor, 

the individual sets are combined into a total fracturing factor, ks-tot. (Eq. 3.2). 

 ks−tot =⁡∑ksi − (n − 1) ∗ 0,36

n

i=1

 (3.2) 

 

where 

ks-tot   total fracturing factor [-] 

ksi   fracturing factor for set no. I [-] 

n    number of fracturing sets [-] 

 

Drilling rate index (DRI) 

The drilling rate index (DRI) is one of the geological parameters accounted for in the model, 

due to good correlations with field data regarding penetration rate from a number of TBM 

projects (Zare & Bruland, 2012). Bruland (2000b) has presented three curves representing 

different fracturing factors (Fig. 3.2). The curves show the relationship between DRI and the 

correction factor for DRI of the rock (kDRI). 

 

Figure 3.2 – Correlation between drilling rate index (DRI) and correction factor (kDRI), Bruland (2000b). 
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Porosity 

When the rock mass has a porosity of more than approximately 2% (volumetric), it is believed 

to have a significant impact on the rate of penetration (Macias, 2016). Figure 3.3 presents the 

correlation between the rock porosity and the correction factor for porosity of the rock (kpor) 

(Bruland, 2000b). The porosity of hard rocks is typically less than 2%, and it is expected that 

the correction factor for porosity (kpor) equals 1.0. 

Figure 3.3 – Correlation between porosity and the correction factor (kpor) (Bruland, 2000b). 

It is easily believed that the porosity was accounted for in the DRI, but the porosity’s 

influence on the DRI is negligible for porosities less than 10-12 % (Bruland, 2000b). Porosity 

has therefore been included as an independent parameter in the NTNU model. 

By multiplying the correction factors (kDRI and kpor) with the total fracturing factor (ks-tot), the 

equivalent fracturing factor can be found (Eq. 3.3). 

 

 kekv =⁡ks−tot ∗ ⁡kDRI ∗ ⁡kpor (3.3) 

where 

𝑘𝑒𝑘𝑣     equivalent fracturing factor [-] 

𝑘𝑠−𝑡𝑜𝑡     total fracturing factor [-] 

𝑘𝐷𝑅𝐼    correction factor for DRI of the rock [-] 

𝑘𝑝𝑜𝑟    correction factor for porosity of the rock [-]  
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Gross average cutter thrust 

In the NTNU-model, the gross average cutter thrust is defined as the total cutterhead thrust 

divided by the number of cutters. The thrust has a significant influence on the penetration rate. 

Higher thrust leads to a more efficient energy transfer from the cutterhead to the rock mass, 

which gives a deeper penetration (Bruland, 2000d). However, there are several factors 

limiting the applied thrust, as described by Macias (2016): 

• Bad steel quality of the cutters. 

• High machine vibration level and high instantaneous cutter loads during boring 

through highly fractured rock or marked single joints (MJS). 

• Installed cutterhead power (torque) may limit the applicable thrust at high penetration 

rates or when boring in fractured rock. This is usually not a problem in modern TBMs. 

• Boring in sharp curves or at steep gradients. 

Figure 3.4 shows the gross average thrust per cutter as a function of TBM and cutter diameter. 

Figure 3.4 – Recommended maximum gross average thrust per cutter. The upper limit indicated boring in 

homogenous rock mass, the lower limit indicates boring in medium to very fractured rock (Bruland, 2000b). 

 

The NTNU model is the only model using gross thrust as input parameter. The model does 

already account for the friction generated by the shield, which means that the measured 

friction not have to be subtracted.  
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Cutterhead velocity (RPM) 

The cutterhead velocity (RPM) is measured as the number of revolutions per minute 

(rev/min), and can be determined from the cutter- and TBM diameter (Fig. 3.5). The NTNU 

model assumes that the rolling velocity of the outer gauge cutter has approximately the same 

value as the velocity of the cutterhead (RPM) (Bruland, 2000d). The potential of error in this 

assumption is great due to limited amount of field data (Bruland 2000d). A correction factor 

for the RPM has been added in the latest model version (Section 3.1.2). 

Figure 3.5 – Relation between cutterhead velocity (RPM) and TBM diameter. 

 

Cutter diameter 

For hard rock applications, Macias (2016) states that the most used cutter disc diameter 

nowadays is 19 inches (483 mm). This diameter is also the standard in the NTNU model. 

Over the recent years, cutter diameters have varied between 15,5 inches (394 mm) to 19-20 

inches (~500 mm). A larger cutter diameter increases the contact between the cutter ring and 

the rock, which will demand a greater thrust to induce crack forming rock stresses (Bruland, 

2000d). 
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Number of cutters on the cutterhead 

The number of cutters can be determined by the cutter- and TBM diameter (Fig. 3.6). 

Experience shows that the number of cutters for tunnelling in extremely hard rock conditions 

correspond to an average cutter spacing of 70 mm (Bruland, 2000d). 

 

Figure 3.6 – Relation between normal number of cutters and TBM diameter. 

 

Average cutter spacing 

To calculate the average cutter spacing, the radius of the cutterhead is divided by the number 

of cutters. Bruland (2000d) shows that there is a linear relationship between the average cutter 

spacing and the penetration rate, where a reduction in cutter spacing increases the penetration 

rate. This does not apply if one operates with more than one cutter on each cutter track in the 

outermost tracks (Bruland 2000d). 

 

Basic penetration rate 

According to Bruland (2000d), the basic penetration rate is defined as the advancement of the 

TBM per revolution. This can be calculated with respect to the equivalent thrust per cutter 

(Mekv), the critical cutter thrust (M1) and the penetration coefficient (b). The equivalent thrust 

is given by the correction factors for cutter diameter and spacing to the applied cutter thrust. 

The critical cutter thrust is calculated from Figure 3.7 and the penetration coefficient from 

Figure 3.8. 
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The basic penetration rate is calculated in Equation 3.4. 

 
io = (

Mekv

M1
)
b

 (3.4) 

where 

𝑖𝑜  basic penetration rate [mm/rev] 

𝑀𝑒𝑘𝑣  equivalent cutter thrust [kN/cutter] 

𝑀1   critical cutter thrust (necessary to achieve 1 mm/rev) [kN/cutter] 

𝑏    penetration coefficient [-] 

Figure 3.7 – Critical thrust as a function of the equivalent fracturing factor. 

 

Figure 3.8 – Penetration coefficient as a function of the equivalent fracturing factor. 
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Basic net penetration rate 

The basic net penetration rate can be calculated from Equation 3.5 (Bruland, 2000b). 

 

 
Io =⁡ io ∗ RPM ∗ (

60

1000
) (3.5) 

where 

𝐼𝑜  basic net penetration rate [m/h] 

𝑖𝑜   basic penetration rate [mm/rev] 

𝑅𝑃𝑀  cutterhead velocity [rev/min] 

 

Figure 3.9 shows a flowchart of the procedure described above. The drillability, rock mass 

boreability, TBM operation and TBM specifications form the basis for calculating the basic 

net penetration rate. 

 

Figure 3.9 – Performance prediction flowchart generated by the latest version of the NTNU model (Macias, 

2016). 
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3.1.2  The NTNU model by Macias 

Macias (2016) revised the NTNU model. The update includes data from new projects, which 

increases the empirical basis of the data. 

The following factors that impact on the penetration rate have either been revised or extended:  

• Standard number of cutters. 

• Cutter diameter. 

• Installed cutterhead power. 

• Recommended applied gross cutter thrust. 

• Cutterhead velocity (RPM). 

• Intervals for calculating DRI. 

• Fracture classes, inclusion for rock masses with low degree of fracturing. 

• Graph for estimating the rock mass fracturing factor (ks). 

• The DRI correction factor (kDRI). 

• The penetration coefficient (b) and the basic penetration (i0). 

• RPM impact on the penetration rate and corresponding correction factor (krpm). 

 

Rock mass fracturing 

Macias (2016) updated the fracture classification, classifying both joints and fissures as 

“fractures” (Table 3.3). 

Table 3.3 – Fracture classes defined by the spacing between planes of weakness (Macias, 2016) 

Fracture 

class (Sf) 

Average spacing between 

fractures af (cm) 
Range class (cm) Degree of fracturing 

0 

1 

2 

3 

4 

5 

6 

7 

∞ 

320 

160 

80 

40 

20 

10 

5 

480 

240 

120 

60 

30 

15 

7.5 

4 

∞ 

480 

240 

120 

60 

Non-fractured 

Extremely low 

Very low 

Low 

Medium 

High 

Very high 

Extremely high 

30 

15 

7.5 
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The equivalent fracturing factor (kekv) is calculated in a similar manner as earlier (Eq. 3.3), 

using the fracturing factor (ks) determined from Figure 3.10 and Figure 3.11. 

 

Figure 3.10 – Rock mass fracturing factor (ks) as a function of the angle between the tunnel axis and the 

fractures (Macias, 2016). 

Figure 3.11 – Rock mass fracturing factor (ks) as a function of the angle between the tunnel axis and the 

fractures (for detailed calculations of rock masses with low degrees of fracturing) (Macias, 2016).  
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Basic net penetration rate 

With the exception of an added correction factor for applied cutterhead velocity (RPM), the 

calculation of the basic net penetration rate in this version is similar to the calculation 

described in Equation 3.5. The updated formula is presented in Equation 3.6. 

 
Io =⁡ io ∗ RPM ∗ (

60

1000
) ∗ ⁡kRPM 

 

(3.6) 

where 

𝐼𝑜   basic net penetration rate [m/h] 

𝑖𝑜    basic penetration rate [mm/rev] 

𝑅𝑃𝑀    cutterhead velocity [rev/min] 

𝑘𝑅𝑃𝑀    correction factor for applied cutterhead rpm [-] 

 

Macias (2016) found a correlation between the relative RPM and a correction factor for the 

applied cutterhead RPM (Fig. 3.12). This correction factor is based on limited amount of 

empirical data and Macias (2016) recommend using this correlation with caution. 

 

Figure 3.12 – Correction factor for cutterhead velocity (rpm) illustrating where it differs from the recommended 

value (Macias, 2016). 
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3.1.3  Advantages and disadvantages 

The NTNU model by Bruland (2000) and the modified NTNU model by Macias (2016) have 

both advantages and disadvantages regarding the prediction of penetration rates. Pros and 

cons regarding these two models are presented in the following: 

 

The NTNU model by Bruland: 

+ Accounting for both rock mass and TBM parameters (Farrokh et. al., 2012). 

+ Relying on a wide range of empirical data (Farrokh et. al., 2012). 

+ Fracturing of rock mass is of major importance (Wilfing, 2016). 

- Rely on outdated data, which may reduce their potential for performance prediction 

 (Macias, 2016). 

- Some of the parameters are commonly not determinable outside of Norway (e.g. cutter 

 life index CLI) (Wilfing, 2016). 

- The model does not cover the entire range of rock mass types that occur in nature, 

 e.g. issues regarding degrees of fracturing, rock-breaking processes and influence of 

 groundwater or rock mass stress on boreability (Macias, 2016). 

 

 

The NTNU model by Macias: 

+ Same as pros described regarding the NTNU model by Bruland (2000). 

+ More field data from recent tunnel projects implemented in the empirical database, 

 which led to updates, revisions and extensions (Macias, 2016). 

- Same cons described regarding the NTNU model by Bruland (2000). 

- More data from actual tunnelling projects are required in order to verify the influence 

 of the corrosion on the rock`s abrasion rates (Macias, 2016). 
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3.2  The Colorado School of Mines (CSM) model 

The Colorado School of Mines (CSM) model was first published in 1977 by Ozdemir et.al. 

The model was designed to be an analytical penetration prediction model based on performing 

laboratory tests at the Earth Mechanics Institute in Golden, Colorado. Results from these tests 

have been compared with TBM field data in order to include practical findings. In 1997, 

Rostami updated the original model and created the most established version of the model. He 

revised several formulas and gathered new data with constant cross-section cutters (Wilfing, 

2016). 

 

The philosophy behind this model is to first start from the individual cutter forces acting on 

the rock mass, then determine the overall cutterhead thrust- and power requirements to obtain 

the maximum rate of penetration (Rostami & Ozdemir, 1993). By comparing these estimated 

values with the installed machine parameters, the maximum obtainable rate of penetration will 

be achieved (Yagiz et al., 2012). 

 

 

3.2.1  The CMS model by Rostami 

 

To find the total force per cutter (Eq. 3.9), the angle and pressure of the contact area need to 

be calculated from Equation 3.7 and Equation 3.8. 

 
Φ =⁡cos−1 ∗ (

R − P

R
) (3.7) 

 

where 

Φ    angle of contact [rad] 

R    cutter radius [mm] 

P    penetration rate [mm/rev]  
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P0 = C ∗ √
S ∗ σu2 ∗ σt

Φ ∗ √R ∗ T

3

 (3.8) 

where 

P0   pressure of contact area [MPa] 

C   cutting coefficient (approx. 2.12) [-] 

S    spacing of cutters [mm] 

σu    uniaxial compressive strength [MPa] 

σt    brazilian tensile strength [MPa] 

T    cutter tip width [mm] 

 

 
Ft = (

T ∗ R ∗ Φ ∗ P0

(1 + Ψ) ∗ 1000
) 

 

(3.9) 

where 

𝐹𝑡    total thrust per cutter [kN/cutter] 

𝛹   stress distribution factor (usually between 0.2 to -0.2) [-] 

 

When knowing the total force, the normal- and rolling force can be calculated from Equations 

3.10 and 3.11. 

 
Fn =⁡Ft ∗ cos(

Φ

2
) (3.10) 

 

 
Fr =⁡Ft ∗ sin(

Φ

2
) (3.11) 

 

where 

𝐹𝑛    normal thrust per cutter [kN/cutter] 

𝐹𝑟    rolling thrust per cutter [kN/cutter]  
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As mentioned, the model is based on comparing estimated thrust- and power requirements 

with machine values. To estimate these values, the following steps have to be performed: 

 Th∗ =⁡∑Fn

N

1

≈ N ∗⁡Fn (3.12) 

 

 

Tq∗ =⁡∑Fr

N

1

≈ 0,3 ∗ D ∗ N ∗⁡Fr (3.13) 

 

 
RPM = ⁡

V

π ∗ D
 (3.14) 

 

 P∗ =⁡
π

30
∗ Tq∗ ∗ RPM (3.15) 

 

where 

𝑇ℎ∗    total thrust requirement [kN] 

𝑇𝑞∗   total torque requirement [kNm] 

D    TBM diameter [m] 

N    number of cutters [-] 

RPM    rotational speed [rev/min] 

V    linear velocity limit of the cutters [-]   

   (160 m/min for 482 mm diameter cutter) 

P*    power requirement [kW] 

 

The penetration rate can be found by adjusting the penetration parameter in Equation 3.7 until 

one of the requirements have been reached. This is considered as the maximum penetration 

per revolution that is possible to achieve with the present rock and machine parameters (Yagiz 

et. al, 2012). 
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3.2.2  The MCSM model by Yagiz 

In 2002, Yagiz introduced new aspects to the CSM model, known as the modified CSM 

model (MCSM). This model calculates the rate of penetration using a brittleness index (BI), 

the distance between weakness planes (Fs) and the angle between the weakness planes (α). 

According to Yagiz (2009), one can predict the brittleness index using density-, UCS- and 

BTS values (Eq. 3.16). In an ideal situation, one would perform a laboratory test to find this 

parameter. 

 

 BIP = (0.198 ∗ σu) − (2.174 ∗ σt) + (0.913 ∗ ρ) − 3.807 (3.16) 

 

where 

𝐵𝐼𝑃   predicted brittleness [kN/mm] 

𝜌   density [kN/m3] 

𝜎𝑢    uniaxial compressive strength [MPa] 

𝜎𝑡    brazilian tensile strength [MPa] 

 

The penetration rate from the MCSM model can be calculated from Equation 3.17. 

 

ROP = 0.272 + (0.027 ∗ BIp) − (0.225 ∗ Fs) + (0.437 ∗ log(α)) + (0.097 ∗ CSMROP) (3.17) 

 

where 

ROP    rate of penetration [m/h] 

CSMROP   result from CSM-model [m/h] 

𝐵𝐼𝑃    predicted brittleness [kN/mm] 

𝐹𝑠    distance between planes of weakness [m] 

𝛼    angle between the plane of weakness and TBM driven 

   direction [°] 
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3.2.3  Advantages and disadvantages 

The Colorado School of Mines (CSM) model, as well as the modified model (MCSM), have 

both advantages and disadvantages regarding the prediction of penetration rates. Pros and 

cons regarding these two models are presented in the following: 

 

CSM model by Rostami: 

+ Accounts for both rock mass and TBM parameters (Farrokh et. al., 2012). 

+ Relies on good database (Farrokh et. al., 2012). 

+ Good estimations for massive rock conditions where the rock strength has the greatest 

 impact on the rate of penetration (Yagiz, 2012). 

- Several parameters and complex relationships (Farrokh et. al., 2012). 

- Bad predictions for heavily fractured rock mass conditions (Farrokh et. al., 2012). 

- No parameters which describe the rock mass fracturing are included (Rostami, 1997). 

 

MCSM model by Yagiz: 

+ Same pros as described regarding the CSM model. 

+ Based on a database obtained from several mechanical tunnelling projects, which takes 

 rock mass fracturing into account (Yagiz, 2012). 

- Needs to perform punch penetration tests to determine brittleness index (BI), which is 

 commonly not used in European rock mechanic laboratories (Wilfing, 2016). 
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3.3  The Gehring model 

The Gehring model was first published by Karlheinz Gehring in 1995 and has since been 

updated several times. The model is based on empirical data with data gathered from four 

projects: two in South-Africa and two in South-Korea (Brino et al., 2015). From these 

analyses, a number of correction factors have been created and later implemented in the 

formula. The correction factors take rock mass properties, as well as cutterhead types and 

geometries, into consideration. 

In 2016, Wilfing compared the Gehring model and the CSM model with the results from 30 

penetration tests and geological mapping at two tunnel projects. It was found that the model 

needed to be updated. The updates included incorporations of a critical y-axis offset, as well 

as correcting factors for rock toughness and discontinuous pattern result. The result was a new 

prognosis tool called the “Alpine model”, which is based on the existing Gehring model 

(Wilfing, 2016). The acquisition of the original version of the model by Gehring (1995) has 

not been successful. Therefore, the model by Wilfing (2016) has been used to describe both 

the model by Gehring and Wilfing. 

 

3.3.1  The Gehring model by Gehring 

To calculate the penetration rate (which represents the maximum penetration for a given 

normal force per cutter), Equation 3.18 needs to be followed (Wilfing, 2016). 

 

 
p = ⁡

FN
σu

∗ ki 

 

(3.18) 

where 

p    penetration rate [mm/rev] 

𝐹𝑁    net thrust per cutter [kN/cutter] 

𝜎𝑢   uniaxial compressive strength [MPa] 

ki    correction factors [-] 
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The ki parameter from Equation 3.18 includes the following correction factors: 

k0    basic penetration [-] 

k1    specific failure energy [-] 

k2    rock mass fabric [-] 

k3    state of stress in rock mass [-] 

k4    cutter diameters ≠ 432 mm (17”) [-] 

k5    cutter spacing ≠ 80 mm [-] 

 

These six factors are described in the following (Wilfing, 2016): 

 

k0 =  basic penetration 

To generalize a more complicated formula presented by Gehring in 1995, the basic 

penetration factor is set to 4.0 for machines with a certain setup of 17” (432 mm) cutters and 

80 mm spacing. Equation 3.19 shows how the basic penetration factor is calculated. The 

penetrating coefficient a = 800 and exponent b = 1 originates from different approaches, such 

as Gehring, Farmer, Sanio and NTH (Wilfing, 2016). 

 

 k0 = a ∗ σu
−b = 800 ∗⁡200−1 = 4.0 

 

(3.19) 

where 

k0    correction factor for basic penetration [-] 

a    penetration coefficient (=800) [-] 

b   penetration exponent (=1) [-] 

𝜎𝑢    uniaxial compressive strength (set to ~200 kN/c) [MPa] 

According to TBM experts at the Follo Line Project, a basic penetration factor of 4.0 is 

sufficient to use in the calculations, although the machine setup is different.  



Chapter 3: Hard rock prediction models 

 

45 

 

k1 =  specific failure energy 

Documented data shows that fracture energy (Wf) is a parameter that influences the 

penetration rate of rock masses. The fracture energy that is needed to cause failure of a 

specimen under uniaxial compression is called the specific failure energy (wf), and is of 

importance regarding the penetration of a rock. This is accounted for in the k1 correction 

factor, calculated by Equation 3.20 and 3.21. 

 

 
wf =⁡

Wf

σu
 

 

(3.20) 

 

where 

wf    specific failure energy [m3 10-6] 

Wf    failure energy [Nm] 

𝜎𝑢   uniaxial compressive strength [MPa] 

 

 

 k1 = 0,475 ∗ wf
−0,56

 

 

(3.21) 

 

where 

k1    correction factor for specific failure energy [-] 

wf   specific failure energy [m3 10-6]  
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k2 =  rock mass fabric 

The rock mass fabric is accounted for in the third correction factor. Spacing and orientation of 

schistosity, foliation, joints or other planes of weaknesses is considered as important 

regarding the rate of penetration (Gehring, 1995). Regarding the distances between the planes 

of weaknesses, only the distances smaller than 50 cm are expected to influence the penetration 

rate (Wilfing, 2016). 

The orientation is calculated by the dip angle, strike angle and tunnel direction, and is defined 

as the smallest angle between the tunnel axis and the discontinuity (Eq. 3.22). 

 

 α = sin−1(sin⁡αf ∗ sin⁡(αt − αs)) 

 

(3.22) 

where 

𝛼    smallest angle between tunnel axis and discontinuity [º] 

𝛼𝑓    dip angle discontinuity [º] 

𝛼𝑡    strike angle discontinuity [º] 

𝛼𝑠    tunnel direction [º] 

 

When the orientation and the spacing of the weakness planes are known, the k2 correction 

factor can be found from Table 3.4: 

 

Table 3.4 – Correction factor k2 depending on spacing and orientation of discontinuity relative to tunnel axis in 

terms of 𝛼-angle (Wilfing, 2016). 

Spacing of 

discontinuity 

Correction factor k2 at 𝛂  

0° 30° 60° 90° 

> 50 cm 

10 – 50 cm 

5 – 10 cm 

< 5 cm 

1.0 

1.2 

1.4 

1.7 

1.0 

1.3 

1.8 

2.3 

1.0 

1.6 

2.3 

3.0 

1.0 

1.3 

1.6 

2.0 
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k3 =  state of stress in rock mass 

This correction factor is especially important in projects with high horizontal stresses 

(Wilfing, 2016). Because of the relatively low overburden at the Follo Line Project, it is not 

expected that there will be any stress regime worth correcting for. 

 

k4 =  cutter diameters ≠ 432 mm (17”) 

When Gehring (1995) made his formula, he based his calculations on a machine setup of 432 

mm cutter diameter. To correct for deviating sizes, a linear correlation between cutter 

diameter and penetration rate was made (Eq. 3.23). 

 

 
k4 =⁡

430

dc
 

(3.23) 

where 

k4    correction factor for cutter diameters ≠ 432 mm [-] 

𝑑𝑐    cutter diameter [mm] 

 

k5 =  cutter spacing ≠ 80 mm 

For the same reason there exists a correction factor for cutter diameter, there also exists a 

correction factor for cutter spacing ≠ 80 mm. This is shown in Figure 3.13. 

 

Figure 3.13 – Correction factor k5 and cutter spacing as a function of drillabillity (Wilfing, 2016).  
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3.3.2  The Alpine model by Wilfing 

The Alpine model presented by Wilfing in 2016 is based on the already described model by 

Gehring (1995). Some revisions and extensions have been made, where the most important 

ones are presented in the following. The Alpine model formula (modified Gehring model) is 

presented in Equation 3.24, and the y-intercept BTS approach is presented in Equation 3.25. 

 

 
p = ⁡

FN − bBTS
σu

∗ k0 ∗ k2 ∗ ki + 3 
(3.24) 

 

 bBTS⁡3mm =⁡e⁡0.08⁡∗⁡σt+4.1 = y − interceptBTS⁡3mm 

 

(3.25) 

where 

p    penetration rate [mm/rev] 

FN   net thrust per cutter [kN/cutter] 

bBTS 3mm  y-intercept BTS approach at penetration 3 mm/rev [-] 

k0    correction factor for basic penetration (=4.0) [-] 

k2    correction factor for discontinuity pattern [-] 

ki    further correction factors for geotechnical/machine 

   parameters [-] 

𝜎𝑡    brazilian tensile strength [MPa] 

 

See Chapter 3.3.1 for detailed description of the correction factors.  

According to Wilfing (2016), it must be noted that the correction factor for the state of stress 

is not yet defined. The basic correction factor (k0) and correction factor for discontinuity 

pattern (k2) is implemented into the modified model, to prevent too steep gradients (Wilfing, 

2016). Wilfing (2016) demonstrates that the Alpine model strongly improves the version by 

Gehring, especially since the y-intercept is of major importance to reflect the actual relation 

between the applied force and resulting penetration. 
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3.3.3  Advantages and disadvantages 

The Gehring model and the Alpine model have both advantages and disadvantages regarding 

the prediction of penetration rates. Pros and cons regarding these models are presented in the 

following: 

 

The Gehring model by Gehring 

+ Accounts for both rock mass and TBM parameters (Farrokh et. al., 2012). 

+ Empirical origin leads to results close to the reality (Wilfing, 2016). 

+ Easy to determine the input parameters (Wilfing, 2016). 

+ Flexible revision potential because of the modular structure, where each correction 

 factor can be considered independent from one another (Wilfing, 2016). 

- Small data set for original regression analyses (Wilfing, 2016). 

- Based on literature and data from before 1995 (Wilfing, 2016). 

- Correction factors do not reflect actual conditions, since only one discontinuity system 

 is considered and the effect of intersecting systems in the penetration is neglected 

 (Wilfing, 2016). 

 

The Alpine model by Wilfing 

+ Same as pros described regarding the Gehring model. 

+ Bigger dataset and more empirical data for the analyses (Wilfing, 2016). 

+ Revision of correction factors that take the effect of intersection systems into 

 consideration (Wilfing, 2016). 

- Investigations are based on only one tunnel project with narrow range of rock types, 

 and must be validated by further data (Wilfing, 2016). 

- Low regression coefficient of the Brazilian tensile strength (Wilfing, 2016). 

- Still need for an extended determination table for proposed correction factors k2 

 (Wilfing, 2016). 



Chapter 3: Hard rock prediction models 

 

 

50 

 

3.4  The Qtbm model by Barton 

The Qtbm model by Barton (2000) is based on the already developed and well-known Q-

system for rock mass classification (Eq. 3.26). In Norway, the Q-system is widely used in drill 

& blast projects to classify rock masses with respect to stability of underground openings. 

Based on the estimations of six parameters, a Q-value can be estimated, where different Q-

values are related to different types of permanent support (NGI, 2015). 

 

 
Q = ⁡

RQD

Jn
∗ ⁡
Jr
Ja
∗ ⁡

Jw
SRF

 
(3.26) 

 

where 

RQD    degree of fracturing (rock mass designation) [%] 

𝐽𝑛   joint set number [-] 

𝐽𝑟    joint roughness number [-] 

𝐽𝑎    joint alteration number [-] 

𝐽𝑤    joint water reduction factor [-] 

SRF    stress reduction factor [-] 

 

When applying this Q-value to a TBM project, Barton (2000) had to modify the RQD to a 

tunnelling oriented direction (RQD0). The Q0-value is calculated from Equation 3.27. 

 

 
Q0 =⁡

RQD0
Jn

∗ ⁡
Jr
Ja
∗ ⁡

Jw
SRF

 
(3.27) 

 

The RQD0-parameter is assumed identical to RQD, which had to be mapped in the cross 

passages. The RQD-mappings done by OTV (Chapter 4.3.1.4) are directly transferrable to the 

correct RQD0-value.  
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In addition to the Q0-value, Barton (2000) has added other parameters when modifying the Q-

value to a QTBM model. One of these are the parameter called SIGMA, which is dependent on 

the joint inclination angle (β). When the inclination is unfavorable, SIGMAcm is applied (Eq. 

3.28). When the inclination is favorable, SIGMAtm is applied (Eq. 3.29).  

 

 SIGMAcm = 5γQc
1/3

, where⁡Qc =⁡Q0 ∗ ⁡
σc
100

 (3.28) 

where 

𝑆𝐼𝐺𝑀𝐴𝑐𝑚    rock mass strength with unfavorable inclination [MPa] 

γ    density [g/cm3] 

𝜎𝑐     uniaxial compressive strength [MPa] 

 

 
SIGMAtm = 5γQt

1/3
, where⁡Qt =⁡Q0 ∗ ⁡

I50
4

 
(3.29) 

where 

𝑆𝐼𝐺𝑀𝐴𝑡𝑚    rock mass strength with favorable inclination [MPa] 

γ    density [g/cm3] 

𝐼50    point load index [-] 

 

The final QTBM model is presented in Equation 3.30. 

 

 
QTBM = Q0 ∗ ⁡

SIGMA

F10
209⁄

∗ ⁡
20

CLI
∗ ⁡

q

20
∗
σθ
5

 
(3.30) 

where    

F    net thrust per cutter [tnf/cutter] 

CLI    cutter life index [-] 

q    quartz content [%] 

𝜎𝜃    biaxial stress on tunnel face [MPa] 
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According to Barton (2000), the net penetration rate (NPR) can be calculated using the QTBM-

value (Eq. 3.31): 

 

 NPR⁡ ≈ 5 ∗ QTBM
−1/5

 (3.31) 

where 

NPR    net penetration rate [m/h] 

 

 

3.4.1  Advantages and disadvantages 

The Qtbm model by Barton (2000) has both advantages and disadvantages regarding the 

prediction of penetration rates. Pros and cons regarding the model are presented in the 

following: 

 

+ Empirical origin based upon 145 TBM tunnels leads to results close to the reality 

 (Barton, 2000) 

+ Easy to determine most of the input parameters (Wilfing, 2016). 

+ The model is modified with respect to a TBM-excavated tunnel, e.g. introduction of 

 the RQD0-value (Barton, 2000). 

- Based on the Q-system which originally is made for classification of rock masses 

 excavated by drill & blast (NGI, 2015). 

- Fewer joints visible in tunnels excavated by TBM will influence the RQD-value. The 

 joint roughness number (Jr) and joint alteration number (Ja) will also be influenced, 

 which will have further influence on the Q-value (NGI, 2015). 

- Some of the parameters are commonly not determinable outside of Norway (e.g. cutter 

 life index CLI), or are not strictly defined (e.g. rock mass strength SIGMA) 

 (Wilfing, 2016) 

- It is not common to perform stress tests along the tunnel alignment. Calculations by 

 using the overburden are therefore necessary. 
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3.5  The prediction model by Yagiz 

Yagiz presented in 2008 a study that was attempted to develop a more accurate and practical 

predictive equation. This was especially adapted to jointed/faulted hard rock conditions. The 

formula is based on data from only one tunnel project; the Queens Water Tunnel in New 

York: 

 

ROP = 1.093 + 0.029 ∗ PSI − 0.003 ∗ UCS + 0.437 ∗ log(α) − 0.219 ∗ DPW (3.32) 

 

where 

 

PSI    peak slope index (Eq. 3.16) [kN/mm] 

UCS    uniaxial compressive strength [MPa] 

𝛼    smallest angle between tunnel axis and discontinuity [º] 

DPW   distance between planes of weakness [m] 

 

 

3.5.1  Advantages and disadvantages 

 

+ Easy to calculate and few lab tests need to be performed (Yagiz, 2008). 

+ The empirical obtained formula has a good correlation coefficient (r = 0.82). 

- No applied machine data included. 

- Equation was achieved based on only one project (Yagiz, 2008). 
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3.6  The prediction model by Hassanpour et al. 

In 2011, Hassanpour, Rostami and Zhao published “a new hard rock TBM performance 

prediction model for project planning” in the journal Tunnelling and Underground Space 

Technology. This new model is based on a database of actual machine performance from 

different hard rock TBM tunnelling projects. Relationships between different geological- and 

TBM operational parameters have been investigated and further analyzed using both single- 

and multi-variable regression techniques (Hassanpour et al., 2011). 

158 tunnel sections have been selected for the study, originating from three water conveyance 

tunnels in Iran as well as Manapouri Second Tailrace Tunnel. These tunnels have been 

constructed in different rock types including sedimentary, igneous and metamorphic rocks 

with a wide range of rock strengths (Hassanpour et al., 2011). 

Equations calculating the Field Penetration Index (FPI) and the Rate of Penetration (ROP) 

have been developed on an empirical basis. The equations are presented below (Eq. 3.33 and 

3.34). 

 

 FPI = ⁡ e((0.008∗UCS)+(0.015∗RQD)+1.384 (3.33) 

where 

FPI   field penetration index [kN/cutter/mm/rev] 

UCS   uniaxial compressive strength [MPa] 

RQD   degree of fracturing (rock quality designation) [MPa] 

 

 

Further, the rate of penetration (ROP) can be calculated from Equation 3.31. 

 

 
ROP =⁡

0.06 ∗ FN ∗ RPM

FPI
 

(3.34) 

where 

  ROP   rate of penetration [MPa] 

  FN   average disk cutter load [kN] 

  RPM   rotational speed [rev/min] 

  FPI   field penetration index [kN/cutter/mm/rev] 
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Hassanpour et al. (2011) presented a FPI chart that can be used for a quick estimation of FPI 

values in different rock conditions. The chart is presented in Figure 3.14. 

 

Figure 3.14 - Chart for estimating Field Penetration Index (FPI) based on rock mass properties derived from 

Equation 3.33. (Hassanpour et al., 2011). 

 

3.6.1  Advantages and disadvantages 

The model by Hassanpour et al. (2011) has both advantages and disadvantages regarding the 

prediction of penetration rates. Pros and cons regarding the model are presented in the 

following: 

+ Both single and multi-variable regression analyzes were used to develop empirical 

 equations (Hassanpour et al., 2011). 

+ Applicable at a wide range of geological conditions (Hassanpour et al. 2011). 

- Based on only four tunnel projects (Hassanpour et al. 2011). 

- The model must be applied with caution in highly fractured rock masses and water 

 sensitive rocks like marlstones and mudstones (Hassanpour et al. 2011).  
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3.7  The prediction model by Farrokh et al. 

Farrokh, Rostami and Laughton discuss the development of new models to support an 

improved level of predictive accuracy in penetration rate estimation (Farrokh et al. 2012). 

A new prediction model was generated based on data from more than 300 TBM projects, and 

contains several formulas calculating the rate of penetration. The results from these formulas 

were compared with actual projects, to ensure the model’s capability for predicting 

penetration rates (Farrokh et al., 2012). 

Farrokh et al. (2012) presented two methods to calculate the rate of penetration: 

• Regression analysis with PRev as the objective parameter. PRev is defined as the 

penetration rate per revolution (mm/rev).  

 

• Provide the PR directly. PR is defined as the penetration rate (m/h). 

The first method has been applied in this thesis, in which it gave the most promising results. 

Both methods include numerical codes for rock type (RTc) and rock quality designation 

(RQDc). The rock type categorization is presented in Table 3.5. 

 

Table 3.5 – Rock type categorization (RTc) in database, modified from Farrokh et al. (2012). 

Rock Type (RT) Code Numerical code (RTc) 

Claystone, mudstone, marl, slate, phyllite, argillite 

Sandstone, siltstone, conglomerate, quartzite 

Limestone, chalk, dolomite, marble 

Karstic Limestone 

Metamorphic rocks such as gneiss and schist 

Coarse igneous such as granite and diorite 

Fine volcanic such as basalt, tuff and andesite 

C 

S 

L 

K 

M 

G 

V 

5 

3 

3 

3 

2 

1 

2 
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The rock quality designation classification (RQDc) is presented in Table 3.6. 

Table 3.6 – RQD categorization (RQDc) in database (Farrokh et al. 2012). 

CFF Code Description Corresponding RQD range 

Less than 8 fractures/m 

8-12 fractures/m 

12-16 fractures/m 

S or 1 

M or 2 

H or 3 

Low frequency 

Medium frequency 

High frequency 

90 - 100 

60 - 90 

< 60 

 

PRev as the objective parameter 

Multivariable regression analyses with PRev as the objective parameter were performed using 

Minitab 16. By finding the PRev-value, one can easily find the PR by multiplying with the 

cutterhead velocity (RPM) of the TBM. The calculations are presented in Equations 3.35 and 

3.36. 

 

PRev = ⁡ e0.41⁡+(0.404∗D)−(0.027∗D
2)+(0.0691∗RTc)−(0.00431∗UCS)+(0.0902∗RQDc)+(0.000893∗Fn) (3.35) 

 

where 

  PRev   penetration rate per revolution [mm/rev] 

  D   tunnel diameter [mm] 

  RTc   rock type numerical code (Table 3.5) [-] 

  UCS   uniaxial compressive strength [MPa] 

  RQDc   rock quality designation numerical code (Table 3.6) [-] 

  Fn   disc cutter normal force [kN] 

 

 

 
PR =⁡

PRev ∗ RPM ∗ 60

1000
 

(3.36) 

where 

  PR   penetration rate [m/h] 

  RPM   rotational speed [rev/min] 
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PR directly 

The penetration rate (PR) can according to Farrokh et al. (2012) be calculated directly from 

Equation 3.36. 

 

 
PR = ⁡

Fn
0.186 ∗ RQDc

0.133 ∗ RTc
0.183 ∗ RPM0.363 ∗ D5.47 ∗ e(0.046∗D

2)

5.64 ∗ UCS0.248 ∗ e(1.58∗D)
 

(3.36) 

 

where 

  PR   penetration rate [m/h] 

  Fn   disc cutter normal force [kN] 

  RQDc   rock quality designation numerical code (Table 3.6) [-] 

  RTc   rock type numerical code (Table 3.5) [-] 

  RPM   rotational speed [rev/min] 

  D   tunnel diameter [m] 

 

 

3.7.1  Advantages and disadvantages 

The model by Farrokh et al. (2012) has both advantages and disadvantages regarding the 

prediction of penetration rates. Pros and cons regarding the model are presented in the 

following: 

+ Adequately distinguish between the ground conditions and job constraints that control 

 TBM performance, which other models do not include (Farrokh et al., 2012). 

+ A database of TBM field performance works as a subject to a statistical analysis, 

 which generates better accuracy than other models (Farrokh et al., 2012). 

- Despite that the model is based on data from more than 200 projects, the equation that 

predicts the NPR has a regression coefficient of 63%, which is rather low (Farrokh et 

al., 2012). 

- Due to the model’s limitations, it is strongly recommended to use this model in 

 combination with other models, especially in more complex project situations 

 (Farrokh et al., 2012).
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4  Methodology 

This chapter presents the research methodology used to obtain the results and acquire 

relevant field data. It describes how the field data was collected, processed and systemized, 

and hence gives the reader an understanding of how the input parameters regarding the 

prediction models have been carried out. Laboratory tests, field mappings and data analyses 

are performed from the inbound north tunnel (TBM 1). 

 

4.1  Literature studies 

Before starting to carry out results, a literature study was performed. The aim of this literature 

study was to obtain detailed knowledge about all the models, as well as information about 

tunnel boring in general. Excavation of tunnels with TBMs in Norway have in recent times 

been quite rare. Therefore, it was necessary to obtain a good insight in the different aspects of 

such a big project in order to carry out reasonable results. 

The literature studies have mainly been focused on existing articles from previous projects, 

such as The Ulriken tunnel project, the Røssåga tunnel project and the Koralm tunnel project.  

The main sources for the NTNU models, the MCSM model, the Alpine model and the Qtbm 

model have been used to gather information about these models. For the remaining models, 

journals, articles and websites have been of great help. 

Several databases have been used, especially the university database of NTNU, called Oria. 

In addition, Scopus and Science Direct (both from Elsevier) have been widely used. 

Tunnelling and Underground Space Technology, a journal in Science Direct, have been 

especially helpful. 
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4.2  Personal communication 

In addition to the literature studies, personal communication with workers at the Åsland site 

has been performed. The workers are key people in the project and possess knowledge of 

different topics. These people have been pointed out in Table 4.1. 

Table 4.1 – Colleagues who have been particularly important regarding this thesis. 

Name Profession 

Fredrikke Sofia Grønlund Syversen 

Bjørnar Gammelsæter 

Marcus Fritzøe Lawton 

Agnethe Hoff Finnøy 

Guro Isachsen 

Arnulf Hansen 

Thor Skjeggedal 

Artyom Andreev 

Assisting site manager / external supervisor 

Chief geologist 

Geologist 

Geologist 

Geologist 

Special advisor TBM 

Special advisor TBM 

Former student (MSc) 

 

4.3  Geological data 

Before starting the data collection, it was an advantage to know what kind of geological input 

parameters that was needed in order to calculate the penetration rates from the prediction 

models. This information is presented in Table 4.2 (Macias, 2016). 

Table 4.2 – Performance prediction models and their geological input parameters (Macias, 2016). 

Performance prediction model Geological input parameters Reference 

NTNU model  

Modified NTNU model 
DRI, porosity, rock mass fracturing,  

Bruland (2000) 

Macias (2016) 

CSM model 

MCSM model 

UCS, BTS, rock mass fracturing, 

brittleness, density 

Rostami (1997) 

Yagiz (2002) 

Gehring model 

Alpine model 

UCS, rock mass fracturing, BTS, 

abrasivity/breakability 

Gehring (1995) 

Wilfing (2016) 

Qtbm model 
Q-value, UCS, PLT, density, 

porosity, induced biaxial stress 
Barton (2000) 

Model by Yagiz UCS, brittleness, rock fracturing Yagiz (2008) 

Model by Hassanpour et al. UCS, RQD 
Hassanpour et al. 

(2011) 

Model by Farrokh et al. UCS, RQD Farrokh et al. (2012) 
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4.3.1  Field work 

Most of the geological data originate from mappings performed by Bane NORs geologists on 

site. In addition, the author has had the opportunity to perform own mappings during the 

period from August 2017 to April 2018, which was limited to some cross-passage mappings 

and OTV-analyses. According to Bruland (2000c), back-mapping of a TBM bored tunnel 

should consist of: 

• Continuous detailed mapping of rock mass fracturing. 

• Continuous and detailed mapping of rock type distribution. 

• Rock sampling and laboratory testing of rock properties. 

Due to the doubled-shielded TBMs at the Follo Line Project, back-mapping is rather difficult 

to perform. The tunnel is immediately lined with concrete elements after excavation, which 

leaves the geologist with few opportunities to map the rock surface. Because of this, face 

inspections, cross passage (CP) inspections, inspections in the escape tunnel and optical 

teleview (OTV) inspections have been performed. Macias (2016) pointed out that 

determination of the rock type, as well as identification of marked single joints, intrusions, 

mixed face, water and degree of fracturing, are the most important steps to follow up 

regarding the mapping.  

According to Bruland (2000c), the measurements recorded should represent the average of the 

tunnel sections in question. The sections may be subdivided for measurement purposes if 

changes in rock type or other factors dictate (Macias, 2016). The subdivisions are described in 

Chapter 4.5.1. Appendix B illustrates the CPs and the escape tunnel in relation to the sections. 

 

4.3.1.1  Face inspections 

Face inspections through the cutterhead have been (and are still being) performed, and gives a 

visual documentation of the geology at the tunnel face. One can roughly document whether 

the face is highly fractured or not, as well as making a visual overview of the rock type(s), 

weathering and possible mixed face conditions. The fractures are often challenging to map 

correctly through a cutterhead inspection, due to narrow workspace and relatively poor light 

conditions. In addition to the limited view through the cutterhead, there are only two 

dimensions visible at the tunnel face, which in combination with a non-functioning compass 

(reacting with the TBMs metals) makes it difficult to map the fractures accurately.  
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In this thesis, the face inspections are only used as a supplement to confirm or disconfirm 

assumptions regarding rock type and/or fractures (Fig. 4.1). As pointed out in Table 4.1, the 

rock type is not an input parameter to any of the performance prediction models. Figure 4.2a 

shows how the face mapping report provided by the geologists looks like. Figure 4.2b shows 

how it looks like when mapping through the cutterhead. 

  

Figure 4.1 – Example of a face inspection with different rock types and degree of fracturing. Notice the high 

fracture frequency in the amphibolite (marked in red). Photo: Bane NOR (2018). 

Figure 4.2 – Face inspection. a) Rock face mapping report, provided by geologists from contractor and company 

(15.01.2018). b) Inspection which indicates dark and narrow conditions (Bane NOR, 2018b). 

a) b) 
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4.3.1.2  Cross-passage (CP) inspections 

Between the inbound and the outbound tunnels, cross passages (CPs) are made. These are 

excavated a few hundred meters behind the TBMs by drill & blast, and leave the rock surface 

open for the geologists to perform mappings. This is one of few possibilities to map the rock 

mass in three dimensions, even though the CPs are not exactly in the tunnel trace. The CPs are 

mapped with the Q-system in order to find the type and quantity of rock support, in addition 

to make a documentation of the rock mass quality. The Q-system is described in Chapter 3.4. 

For more detailed information about the mapping procedure and the guidelines in rock 

support design decisions, see NGI’s handbook Using the Q-system (NGI, 2015).   

The cross-passage mappings are performed for documentation. In addition, the Qtbm-

performance prognosis model described in Chapter 3.4 is dependent on the Q-values acquired 

from the CPs. Figure 4.3 shows how the cross-passage mapping report provided by the 

geologists look like. Figure 4.4 illustrates how it can look like during mapping in the CPs. If 

there has been performed several mappings in the same CP, the average value of the three 

mappings closest to the tunnel are being used. During the first 2700 meters, mapping from an 

additional escape tunnel have been a supplement to the main data (Chapter 4.3.1.3). 

 

4.3.1.3  Escape tunnel inspections 

Before the TBMs started to excavate, a 2.7 km long escape tunnel was excavated northwards 

using D&B. At one point, the two north going tunnels are crossing each other, which makes it 

impossible to build a cross passage. Therefore, an escape tunnel was built. This tunnel is 

perfect for performing geological investigations and to collect RQD- and Q-values. Figure 4.5 

illustrates excavation of the face.  
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Figure 4.4 –  CP 40 from inside. 

Figure 4.3 –Cross passage mapping report. b) CP 40 from inside. c) Overbreak between 

gneiss and amphibolite in CP 40 (Bane NOR, 2018b). Photos taken by the author. 

Figure 4.5 –  Excavation of escape tunnel 
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4.3.1.4  Optical Teleview (OTV) inspections 

The back-mapping of the rock mass fracturing is on the Follo Line Project (EPC TBM) 

performed with optical televiewing (OTV). OTV is being used as a back-mapping method 

mainly because of double shielded and closed TBMs used at the project, which makes it 

impossible to perform a continuous mapping along the tunnel in a traditional way. For 

instance, this is important to establish a rock mass fracturing factor (ks-tot). In addition, other 

values like RQD and Q-values can be found with this method. This is especially helpful in 

tunnel sections where cross-passages are missing. 

An optical televiewer (OTV), also called an optical borehole imager, is according to Williams 

& Johnsen (2004) a tool used to generate a “continuous oriented 360 degrees image of the 

walls inside a predrilled borehole”. To obtain information on geological conditions ahead of 

the TBM drive, continuous probe drilling is performed. The probe holes are normally drilled 

to a length of about 40 meters, with an overlap of approximately 10 meters (Fig. 4.7). While 

these probe holes are drilled, measurement while drilling (MWD) are carried out. MWD data 

mainly gives information about weakness zones and water seepages, and is not suited for 

detailed fracture mapping. The instrument for televiewing has a compass and a gyro to keep 

track of borehole orientation. The result is a high-resolution picture where fractures and 

lithology can be mapped in detail (Bane NOR, 2018b). 

 

This high-resolution picture is illustrated in Figure 4.6. 

 

Figure 4.6 – High-resolution picture of probe drilled borehole generated from an optical televiewer (OTV). The 

fractures are mapped in WellCAD. The uppermost picture illustrates the bore hole in 3D, while the other 

illustrates the bore hole in 2D (Bane NOR, 2018b). 
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Figure 4.7 – Probe drillings (40 m) from a double shielded TBM. Approximately 10 meter overlap. Illustration 

modified from Bane NOR (2018b). 

The image file generated from the OTV is imported to a log composite software called 

WellCAD, where it processes the data. Fractures are defined manually along the image, and 

the software draws the best fitting sine wave (Fig. 4.6). Open fractures are often easy to 

detect, while closed fractures are more difficult to observe. When the fractures are marked, 

one can decide strike and dip of the weakness planes. Fracture spacing and angles, as well as 

RQD, are easy to obtain from the software. These parameters are important in almost all the 

performance prediction models described in Chapter 3. 

When all the fractures are defined, the software generates a pole plot. This can also be 

imported to another software, called Dips (Fig. 4.8). From this pole, one can group fractures 

into different fracture sets by allocating contour lines around the black dots in the plot. 

According to Bruland (2000c), the NTNU model, recommends using a maximum of three 

fracture sets when back-mapping is performed. 

Figure 4.8 – Two fracture sets imported to Dips from the OTV-analysis in WellCAD (Bane NOR, 2018b). 

Tunnel alignment 
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4.3.2  Laboratory tests 

There has been performed several laboratory tests at SINTEF’s laboratory located in 

Trondheim. Rock samples have been collected perpendicular to the tunnel alignment with a 

250 meter interval, and tested at the laboratory. 

The results are presented in Chapter 5.1, and detailed laboratory test reports and a summary 

template are presented in Appendix D. 

Table 4.3 shows the executed tests, what calculations the test results have been used for and 

which model the test results are included in. The procedures are based on well-known 

standards, and are therefore not described in detail. The related standards are presented in 

Table 4.3.  

Table 4.3 – Laboratory tests executed for this thesis. 

Test method Used to calculate Used in model Procedure standard 

Density (ρ) 

Density 

Brittleness value 

(S20) 

NTNU 

Qtbm 

MCSM 

Yagiz 

NTNU/SINTEF test   

(Dahl et al., 2012) 

Brittleness value 

(S20) 

Drilling Rate 

Index 
NTNU 

NTNU/SINTEF tests  

(Dahl et al., 2012) 

Sievers’J-value (SJ) 

Drilling Rate 

Index 

Cutter Life Index 

NTNU 

Qtbm 

NTNU/SINTEF tests 

 (Dahl et al., 2012) 

Abrasion Value 

Cutter Steel (AVS) 
Cutter Life Index Qtbm 

NTNU/SINTEF test  

(Dahl et al., 2012) 

Uniaxial 

Compressive 

Strength (UCS) 

Brazilian Tensile 

Strength 

CSM 

MCSM 

Gehring 

Alpine 

Qtbm 

Yagiz 

Hassanpour et al. 

Farrokh et al. 

ISRM (1978) 

Mineralogical 

composition (XRD) 

 

Quartz content 

 

Qtbm 
Chemical/Mineralogical  

Laboratory (Dahl, 2011) 
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In addition to UCS tests executed in the pre-investigation phase, new UCS values have been 

obtained for every 250th meter along the tunnel alignment. This has been performed to reflect 

the local variations within the tunnel alignment. Unfortunately, these UCS values are low and 

are assumed not to be representative for the present geology in the project. This assumption is 

based upon the big deviation from the results from the pre-investigations, and there is a 

common understanding of this among the geologists at site. The reasons for the low values are 

discussed in Chapter 6.4. 

To increase the reliability of the results, a combination of the results from the pre-

investigations and from the latest results have been made. The values from the pre-

investigations, which is assumed representative, have been adjusted up or down based upon 

the latest UCS-values. By doing so, the local variations will be included in the calculations. 

This is done by adding the deviation in percentage from the mean value of the latest UCS 

values to the pre-investigation value. This method has been confirmed and supported by the 

geologists at site. The method concept is exemplified in Table 4.4: 

 

Table 4.4 – Example of method used when UCS values have been calculated. 

Imaginary 

section 
1 2 3 4 

Average 

value: 

Results from pre-

investigation 

(MPa) 

 180 220   

Results from 

tests along the 

tunnel alignment 

(MPa) 

100 78 87 130 98.75 

Percentage 

deviation from 

the average value 

1.27% - 26.60% - 13.51% 31.66%  

Total calculated 

UCS (MPa) 

180 * 1.127% 

= 202.86 

180 / 1.266% 

= 142.86 

220 / 1.135% 

= 193.83 

220 * 1.317% 

= 289.74 
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In order to compensate for missing BTS-values, several correlations between UCS and BTS 

have been made. Correlations by Nilsen et al. (2000), Kahraman et al. (2012) and Altindag & 

Guney (2010) among others are frequently used. According to Nazir et al. (2013), the 

correlation formula by Altindag and Gunay (2010) shows the best correlation. The correlation 

is calculated to be 79% for “different rock types including limestone”. This formula has been 

used to calculate missing BTS-values.  

The formula by Altindag and Gunay (2010) is presented in Equation 4.9. 

 

 

 BTS = (UCS/12.38)(1.00/1.0725) (4.9) 

 

Possible errors connected to the use of correlation formulas are presented in Chapter 4.6.2 and 

discussed in Chapter 6.4.  
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4.4  Machine data 

In order to compare the calculated results with the actual situation, the machine data has to be 

acquired and systemized. The process regarding data download and data processing is 

described in detail below. The machine data include both how the machines operate and how 

they perform. The TBMs at the Follo Line Project have an electronic data logging system, 

where several sensors record various parameters every 10th second. Downloaded machine data 

are presented in Chapter 5.1. 

 

4.4.1  Data download 

4.4.1.1  Software and web application 

A software called PROCON II provided by Maidl Tunnelconsultants (MTC, 2018) treats the 

recorded parameters and make them available through a web application. From this web 

application, one can either download unprocessed data (raw format), or one can download 

processed and summarized data in reports. Specific parameters can also be monitored in real 

time through this application (Fig. 4.9). 

 

Figure 4.9 – Extraction from the web application provided by MTC (2018). The figure shows specific 

parameters monitored in real time for TBM 1 (ring 1500 to 1575, april 2017).  
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4.4.1.2  Data acquisition 

From the electronic data logging system, relevant data have been downloaded in a raw format. 

Some of the parameters have been directly relevant to the performance, while others have 

been irrelevant. However, the irrelevant parameters are relevant for the interpretation of the 

results, and is an important supplement. Both the performance data and the supplementary 

data have been listed in Table 4.5. 

 

Table 4.5 – Parameters downloaded from the software. The parameters are listed in the order that fit the 

filtering spreadsheet presented in Appendix F. Inspired by Andreev (2017). 

Parameter Data type Unit 

Date and time Supplementary data  

Stroke length 

Penetration rate 

Advance speed 

Cutterhead velocity (RPM) 

Torque 

Boring time 

Ring build time 

Chainage 

Remaining excavation 

Thrust 

Supplementary data 

Performance data 

Performance data 

Performance data 

Supplementary data 

Supplementary data 

Supplementary data 

Supplementary data 

Supplementary data 

mm 

mm/rev 

mm/min 

rev/min 

kNm 

h 

h 

m 

m 

kN Performance data 

 

The acquisition of the data parameters listed above has been performed with intervals of 25 

concrete lining rings. The web application does not support intervals by chainage or tunnel 

meters, only by defining ring numbers or dates. One ring has a width of 1.8 meters, which 

equals 45 meters for 25 rings. However, the lengths vary between 41 and 49 meters due to a 

flaw with the logging system. 

The acquired machine data are presented in Appendix F. For the inbound north tunnel (TBM 

1), data from ring number 3 – 2500 have been acquired, which equals approximately 4500 

meters of tunnel (Table 4.6). 
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4.4.2  Data processing 

After downloading machine data for the relevant tunnel chainages, the raw data was 

processed. The methodology described in this chapter is based on descriptions compiled in the 

doctoral thesis written by Macias (2016)- 

The main reason for processing data is to filter and then calculate the average values for the 

relevant machine performance parameters. Filtration is important in order to exclude data 

recordings that not represent an excavation phase (e.g. cutter inspections or other delays). The 

data logging system records 24/7. 

By using the standard reports of summarized data generated by the software, the workload 

could have been reduced significantly. It was established that such reports do not provide the 

required level of detail. In addition, these reports did not indicate how the automatic filtration 

are performed.  

 

The following filtering criteria have been set: 

1. Removal of penetration rates (mm/rev) that equal “0” 

By removing the penetration rates that equal “0”, one excludes the recorded data when the 

TBMs are standing still. The machine data are recorded every 10th second no matter if the 

machines are excavating or not (Fig. 4.11). 

 

2. Removal of cutter thrusts (kN/cutter) smaller or similar to “100” 

By removing cutter thrusts smaller or similar to “100”, one excludes values often related to 

either regripping phases or cutterhead movement towards the face without excavation. This 

filter will remove values from activities linked to other operations than excavation, that was 

not removed by the first filter. Macias (2016) states that such low cutter thrusts might be a 

result of excavation in high concentrated fault zones. It is important to mention that this 

criterion involves a risk of removing realistic values from the data set, hence there are 

discussions if the number is appropriate (Macias, 2016). 
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All the figures are generated with the templates presented in Appendix F. Remarks behind the 

filtering process based on Macias (2016) are presented in the following: 

 

 

Figure 4.10 – Unfiltered values of penetration rate and cutter thrust for a tunnel section generated from ring 

850 to ring 875 in the inbound north tunnel (TBM 1). 

 

 

Figure 4.11 – Filtered values of penetration rate and cutter thrust for the similar data from Figure 4.10. Filtered 

for “mm/rev > 0”, generated from ring 850 to ring 875 in the inbound north tunnel (TBM 1). 



Chapter 4: Methodology 

 

 

74 

 

Figure 4.10 shows the unfiltered distribution of values from advance speed (mm/min) and 

cutter thrust. The values are gathered from one of the tunnel sections of 45 meters (25 rings) 

in the inbound north tunnel (TBM 1). Below a cutter thrust of 50 kN, most values appear to be 

unrealistic. There is an accumulation of values concentrated around 80 kN/cutter, which is a 

result of forward movement of the cutterhead without any excavation taking place. Such 

accumulations have been observed for thrust levels varying from 40 – 170 kN/cutter. 

Figure 4.11 shows the same distribution of data as presented in Figure 4.10, filtered for 

“mm/rev > 0”, and shows atypical advance speed recordings around 25 kN/cutter. These are 

removed when the penetration rate is filtered for values that equal “0”. These recordings 

represent non-excavation periods (e.g. regripping). 

Figure 4.12 shows the same distribution of data presented earlier, where both filtering criteria 

earlier described have been applied. 

 

 

Figure 4.12 – Filtered values of penetration rate and cutter thrust for the similar data from Figure 4.10 and 

4.11. Filtered for both filter criteria presented earlier. 
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Inspired by Macias (2016), a systematic filtration table has been made (Table 4.6). This table 

presents the average values of the machine performance data presented in Table 4.5, in order 

to illustrate how the average values change between the filtering steps. The first criterion has 

been applied in step 2 and the second criterion has been applied in step number 3. Both filter 

mechanisms have simultaneously been applied in step 3 to 5, with variation in cutter thrust. 

 

Table 4.6 – Step by step filtration.  

Step 

no. 

Filtering 

criteria 

Thrust 

[kN/cutter] 

Penetration Rate 

[mm/rev] 

Advance Speed 

[mm/min] 

RPM 

[rev/min] 

1 

2 

3 

4 

5 

Unfiltered 

> 0 mm/rev 

> 50 kN/cutter 

> 100 kN/cutter 

> 150 kN/cutter 

156.92 

295.68 

296.16 

303.02 

303.94 

2.28 

4.80 

4.79 

4.67 

4.67 

21.41 

24.02 

24.03 

23.80 

23.84 

2.55 

5.07 

5.07 

5.11 

5.11 

 

The largest difference in averaged values appears between step 1 and step 2, where all the 

“zeros” have been removed. Most of the advance speed (mm/min) recordings below 50 

kN/cutter have been filtered away with the first filter criterion (step 2). This can be explained 

by the regripping phases where the penetration rate (mm/rev) is recorded as “0”-values. 

By applying step 4, significant differences in the averaged values occur. By applying step 5, 

almost no changes are observed. Therefore, cutter thrusts under 100 kN/cutter were set as the 

filtering criteria in this thesis. Andreev (2017) agrees that such criteria would be sufficient in 

most cases: 

“Observations show that the majority of advance speed values that are recorded during a 

forward movement of the cutterhead (without excavation taking place) are generated for 

thrust levels in the range of 60 – 100 kN/cutter” (Andreev, 2017:40)  

  



Chapter 4: Methodology 

 

 

76 

 

He also presented an example from a tunnel section that includes a weakness zone (Fig. 4.13). 

By analyzing the raw data from this zone, it has been confirmed that the recordings above 100 

kN/cutter represent actual excavation. This, together with earlier mentioned reasons, 

underlines that a removal of cutter thrust below or similar to 100 kN/cutter is appropriate. 

 

 

Figure 4.13 - Unfiltered values of penetration rate and cutter thrust for a tunnel section generated from ring 

1788 to ring 1814 in the inbound north tunnel (TBM 1). This includes a weakness zone. 

 

It is important to mention that the changes in average values can vary for different data sets, 

and each data set should be treated separately. A more detailed investigation in order to draw 

a conclusion is needed. A general recommendation is to use such filtering criterion with 

caution.   
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4.5  Data analyses 

Calculations of penetration rates from the prediction models and analyses of data have been 

systemized, calculated and analyzed. All the analyses are presented in the appendices. 

 

4.5.1  Tunnel section division 

In order to compare calculated penetration rates to the actual penetration rate, sufficient tunnel 

segments had to be chosen. Based on the available data from December 2017, a 4500-meter 

long segment in the inbound north tunnel (TBM 1) has been studied. 

For a more precise calculation of the different rates of penetration, the tunnel has been divided 

into sections. The division of these sections are based on the frequency of the laboratory tests, 

as well as other available geological data. As described in Chapter 4.3.2, the core sampled for 

the laboratory tests are taken out every 250th meter. Therefore, these sections are varying 

between 219 and 316 meters of length, due to geological variations based on the ks-tot values. 

The sections are presented in Table 4.7.  

The back-mapping shall ideally be performed every 10th meter. However, Bruland (2000c) 

states that: 

 

“Back-mapping in tunnels lined with concrete elements or shotcrete at the cutterhead 

is very difficult to perform with the purpose to establish a continuous geological 

model. In such tunnels the back-mapping must be improvised and done at points 

wherever the rock surface is available” (Bruland, 2000c:64). 

 

In order to meet this statement, continuous OTV-analysis and pointwise geological mappings 

have been performed (Chapter 4.3). 
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Table 4.7 shows how the tunnel sections are divided. 

Table 4.7 – Section divisions studied in this thesis. 

Section no. Chainage [m] Tunnel meters [m] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

11778 - 11559 

11559 - 11289 

11289 - 10973 

10973 - 10703 

10703 - 10472 

10472 - 10252 

10252 - 9982 

9982 - 9756 

9756 - 9530 

9530 - 9306 

9306 - 9080 

9080 - 8810 

8810 - 8584 

8584 - 8268 

8268 - 8043 

8043 - 7773 

7773 - 7548 

7548 - 7278 

219 

270 

316 

270 

231 

220 

270 

226 

226 

224 

226 

270 

225 

316 

225 

270 

225 

270 

Total 4500 

 

 

In Appendix B, an illustration of the northbound tunnels with connecting cross passages, 

escape tunnel and section division is presented. This is made to get an overview of the tunnels 

stretch towards Oslo. 

  



Chapter 4: Methodology 

 

79 

 

4.5.2  Prediction model calculations 

To calculate the theoretical penetration rates with the different prediction models, procedures 

described in Chapter 3 are used. Both the calculations and the resulting graphs are presented 

in the same spreadsheets, with different sheet numbers. These are presented in Appendix G.  

In addition to presenting one spreadsheet per prediction model, a final spreadsheet comparing 

the different results has been carried out (Appendix I). This includes the penetration rates 

calculated from averaged values for the whole tunnel alignment and the achieved NPR. The 

results are presented in Chapter 5.2.  

 

4.5.3  Mapping fractures 

The fracturing factor (ks-tot) linked to the NTNU model has been calculated with OTV-

analyses, and is based upon calculations by Bane NOR`s geologists. These analyses have 

given information about the fracture spacing and orientation, which further leads to different 

fracture classes. In addition, the number of fractures have been counted for each section, 

which together provides a RQD-value. The information about the fractures are presented in 

Appendix C. The percentage distribution of each fracture class is presented in Chapter 5.1. 

By mapping the fractures with OTV, a continuous representation of the fractures is obtained. 

The probe holes are overlapping and the results from the overlapping part closest to the tunnel 

are chosen as the most valid results. Therefore, the last part of probe hole 1 in Figure 4.14 has 

been removed for each case. “A” denotes the length of probe hole 1, which is the distance that 

the OTV fracturing factor actually represents. “B” denotes the distance after the overlapped 

area furthest away from the tunnel has been removed. The average of several “B-distances” 

comprises the total tunnel length analyzed with OTV.  
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Figure 4.14 gives an illustration of the two subsequent probe holes. 

 

Figure 4.14 – Two subsequent probe holes. Distance B is used to calculate average ks-tot for 45 m sections. 

Distance A is the actual length of the probe hole used to establish the ks-tot. (Andreev, 2017). 

 

4.5.4  Machine performance 

The machine performance data that has been downloaded are described in Chapter 4.4. The 

raw data for each 45 m have been averaged and presented in Appendix F. This includes values 

of thrust (kN), cutterhead velocity RPM (rev/min) basic penetration rate (mm/rev) and net 

penetration rate (mm/min).  

 

 

4.5.5  Frictional drag 

Both Herrenknecht (the TBM supplier) and the contractor agree with the calculation of TBM 

shield friction (drag). The drag force has to be deducted from the TBM propel system thrust 

(the gross total cutterhead thrust) in order to estimate the actual cutter thrust. Based on a drag 

test performed at the inbound north tunnel (TBM 1) in 2017, the company arrived at the 

following conclusion: 

Static front shield friction (6 400 kN) x Dynamic factor (0.5) = TBM shield drag 3 200 kN  

Several prediction models require the net thrust value as an input parameter. To calculate the 

net thrust, the applied thrust (gross) must be subtracted by 3200 kN. 
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4.5.6  Influential parameters 

To determine the most influential parameters, comparisons and sensitivity analyses have been 

performed. To fully understand model’s behavior, it is important to have knowledge about the 

input parameters. The most influential parameters have been found both regarding the 

achieved and predicted NPRs: 

 

Parameters influencing the achieved NPR 

Determining the parameters influencing the achieved NPR can be helpful to understand why 

some of the models give better results than others. To determine these parameters, a 

comparison between the specific parameter values and the achieved NPR have been 

performed. In addition to a visual graphical illustration of the two parameters, a coefficient of 

correlation (r2) have been calculated. By doing so, one can easily see the visual relationship 

between the parameters for each section, as well as determine the influence by a percentage 

number.  

The calculations are done in Appendix H1 and the results are presented in Chapter 5.3.1. 

 

Parameters influencing the predicted NPR 

The most influential parameters in the various models may not be the same parameters as in 

reality. To identify the parameters influencing the predicted NPR the most, a sensitivity 

analysis of each model has been performed. One can determine the most sensitive parameter 

by changing one parameter at the time in order to achieve the predicted NPR. This has been 

done by trial and error. The percentage difference between the calculated value and the 

original value defines the sensitivity of the parameter. A lower percentage value corresponds 

to a higher sensitivity, and thus, the parameter is of high importance in the model. The 

percentages have not been compared from one model to another, only within each model. 

In addition, the variation of parameter influence on the predicted NPR is presented for each 

model (Appendix H2). This has been done to illustrate that a parameter may be influential in 

other geological conditions, even if it is not influential in the present geological setting at this 

project. 

The calculations are done in Appendix H2 and the results are presented in Chapter 5.3.2. 
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4.6  Method uncertainties 

The methods described in Chapter 4 are related to a number of possible errors, which may 

influence the predicted results. The most influential errors are presented in the following 

subchapters. 

 

4.6.1  Field work 

The data acquired from the field work are related to some sources of error, especially due to 

the difficulties regarding the mapping in a circular TBM tunnel covered with segments. 

Further uncertainties regarding the penetration rates are discussed in Chapter 6.4. 

• It is difficult to distinguish between fractures induced from blasting and tectonic 

induced fractures when mapping in the CPs. The mapped Q-values and fracture 

information can therefore be wrong. However, educated and experienced geologists 

have performed the cross-passage mappings. 

 

• When processing the raw borehole images in WellCAD (Chapter 4.3.1.4), the user 

must define each individual fracture manually and assign the fractures to different sets. 

The degree of subjectivity may affect the reliability and accuracy of the obtained 

results. 

 

• The size of the drilled probe hole is a potential uncertainty. It can be difficult to know 

if observed fractures intercept with the actual tunnel cross section or not. In a worst-

case scenario, the borehole may be drilled parallel to a certain fracture set and will 

consequently not be recorded by the OTV. This is though highly unlikely. 

 

• When determining RQD from OTV-analyses, the values tend to be slightly higher than 

values gathered from regular mappings in CPs or the escape tunnel (Bane NOR, 

2018a). This may also affect the Q-values in section 13, 15 and 17, which have been 

mapped with OTV. 
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4.6.2  Laboratory tests 

The laboratory tests are all performed at the certified laboratory at SINTEF. The trademarked 

acronyms and terms Drilling Rate Index™, Cutter Life Index™ (DRI™ and CLI™) are 

unique for test results and calculated indices originates from the NTNU/SINTEF laboratory, 

and can only be obtained by testing samples at their reference laboratory (Dahl et al., 2012). 

It is important to treat the results from the laboratory testings with caution and vigilance. 

Small errors can have a large impact on the test results. The most decisive uncertainties 

regarding the execution of laboratory tests are: 

• According to the standard, UCS test samples shall be taken perpendicular to the 

foliation angle (ISRM, 1978). At the Follo Line Project, the samples takings are not 

always performed perpendicular, which may affect the UCS-values. For that reason, 

the gathered values are believed to be lower than it should be and therefore not 

representative for the rock mass along the tunnel alignment. This issue has partly been 

solved by implementing the UCS values from the pre-investigation phase, described in 

Chapter 4.3.2.  

 

• The correlation between BTS and UCS is found by a conversion formula, which has a 

correlation coefficient of 0.79 (Eq. 4.9). Such correlations shall be used with caution, 

and might not be as accurate as if a lab test was performed for each section. 

 

 

4.6.3  Data download and analyses 

There is a huge amount of data that is downloaded and analyzed. The organization and 

categorization of this data can potentially be a source of error. To reduce the risk for such 

uncertainties, actions such as double downloads, control calculations have been done. 

An accurate removal of values not representing excavation is hard perform. The filtering 

criterion must therefore be treated with caution. 
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5  Results 

In this chapter, the results of the work carried out will be presented. Compiled geological- 

and machine related data will be presented first. Then, the results gathered from the various 

models will be presented, which include predictions for the whole tunnel alignment and for 

each section. Lastly, an evaluation of the most influential parameters will be presented, both 

connected to the achieved NPR and to the predicted NPR. 

 

5.1  Compilation of data 

The fieldwork performed at the Follo Line Project are, as mentioned, limited to cross passage 

and OTV-inspections, as well as face inspections. As described in Chapter 4.3.1.1, the face 

inspections are only used as a supplement to confirm or disconfirm the other results. 

Laboratory tests are also executed, and a compilation of this data is presented in the 

following. A cumulated averaged graph is presented in their associated diagram. 

 

Rock mass fracturing 

Information about the fractures have mainly been collected from the OTV-analyses. This 

includes averaged fracture spacing and orientation, as well as some RQD-values. Most of the 

RQD-values are collected from the CPs and the escape tunnel. Chapter 4.3.1.2 and Chapter 

4.3.1.3 describe the methods in detail. All the results are presented in Appendix C. 
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The frequency of the different fracture sets has been presented in Figure 5.1. 

 

Figure 5.1 – Distribution of fracture classes throughout the whole tunnel length. The class division originates 

from the NTNU model by Bruland (2000). 

 

In addition to presenting the fracture classes, Bruland (2000) introduced a fracturing factor 

(ks-tot). The calculated fracturing factor is plotted for each section (Fig. 5.2). Both the fracture 

classes and the fracturing factor represent the overall fracturing trend, in which they are based 

on the spacing and orientation of the fractures.  

Figure 5.2 – Averaged total fracturing factor calculated for each section with a weighted average value of 0.77. 

0%

5%

10%

15%

20%

25%

30%

O O+ O-I I- I II III IV

D
is

tr
ib

u
ti

o
n

Fracture class

Fracture class distribution

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

F
ra

ct
u

ri
n

g
 f

a
ct

o
r 

(k
s-

to
t)

Section number

Total fracturing factor (ks-tot) per section

Fracturing factor Cumulated average

0.77



Chapter 5: Results 

 

87 

 

In addition to the NTNU model, information about the fractures are essential in the other 

prediction models. This information is typically related to spacing and orientation of the 

fractures, as well as the rock quality designation (RQD). 

The fracturing parameters are plotted with averaged values for each section and with a total 

cumulated average. Figures 5.3 to 5.5 illustrate the fracturing parameters. 

 

Figure 5.3 – Averaged RQD for each section with a weighted average value of 91.18 %. 

 

Figure 5.4 – Averaged fracture spacing for each section. Notice the total weighted average value of 77 cm.  
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Figure 5.5 – Averaged angles between fractures and TBM driven direction for each section. Notice the total 

weighted average value of 42.94 °. 

Q-values 

From the cross-passage (CP) inspections and inspections in the escape tunnel, parameters 

included in the Q-method have been collected. Due to missing cross-passages in section 13, 

15 and 17, the Q-values in these sections have been determined from OTV-analyses. All the 

results are presented in Appendix E. 

Figure 5.6 displays the averaged Q-values and the associated cumulated average. 

Figure 5.6 – Averaged Q-values for each section. Notice the total weighted average value of 21.16. 
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Laboratory tests 

Results from a representative selection of parameters obtained from the laboratory tests are 

presented in the following. Figure 5.7 shows the averaged DRI for each section and the 

associated cumulated average. 

 

Figure 5.7 - Averaged DRI-values for each section. Notice the total weighted average value of 46.44. 

 

Figure 5.8 shows the averaged CLI for each section and the associated cumulated average. 

 

Figure 5.8 – Averaged CLI-values for each section. Notice the total weighted average value of 7.16. 
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Figure 5.9 shows the averaged quartz content for each section and the cumulated average. 

 

Figure 5.9 - Averaged quartz content for each section. Notice the total weighted average value of 38.78 %. 

 

Figure 5.10 illustrates the averaged UCS values for each section and the cumulated average. 

 

 

Figure 5.10 - Averaged UCS values for each section. Notice the total weighted average value of 152.45 MPa.  
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Figure 5.11 illustrates the averaged BTS values for each section and the associated cumulated 

average. Because the BTS values are based on the UCS values, the trend of these are similar 

(Fig. 5.10),  

 

Figure 5.11 - Averaged BTS values for each section. Notice the total weighted average value of 10.38 MPa. 
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The data presented in this chapter are downloaded according to the methods described in 
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As pointed out in Table 4.7, the section lengths vary between 219 and 316 meters. The data in 
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discussed in Chapter 6.1. 

  

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B
ra

zi
li

a
n

 t
en

si
le

 s
tr

e
n

g
th

 (
M

P
a

)

Section number

BTS per section

Brazilian tensile strength Cumulated average

10.38 



Chapter 5: Results 

 

 

92 

 

Figures 5.12 to 5.14 illustrate the machine data and the associated cumulated averages.  

 

Figure 5.12 - Averaged cutter thrust for each section. Notice the total weighted average value of 298.86.MPa. 

 

 

 

Figure 5.13 – Averaged RPM for each section. Notice the total weighted average value of 5.08 rev/min. 
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Figure 5.14 – Averaged achieved NPR for each section. Notice the total weighted average value of 1.92 (m/h). 

 

The weighted averages of the downloaded machine data are presented in Table 5.1 with their 

related standard deviation. 

 

Table 5.1 – Weighted averages and standard deviations for the downloaded machine parameters. 
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5.2  Prediction model results 

This chapter presents the predicted NPRs from the different performance models. The results 

are presented in two different ways: 

• Weighted average over the complete 4.5 km long tunnel alignment. 

• Weighted average divided into 18 sections based on available data. 

All the models are presented with both gross- and net thrust values as input parameters. The 

gross thrust is the applied thrust downloaded from the logged machine data, while the net 

thrust is defined as the gross thrust minus frictional drag. The frictional drag is set to 3200 kN, 

which is described in Chapter 4.5.5. It is important to distinguish between the terms gross-/net 

penetration rate and gross-/net thrust. The differences are described in Table 5.2. 

 

Table 5.2 – Terms important to distinguish when the results are presented. 

Terms Definition 

Gross penetration rate (GPR) Penetration rate expressed in mm/rev 

Net penetration rate (NPR) Penetration rate expressed in m/h 

Gross thrust Applied thrust downloaded directly from the machine data 

Net thrust Gross thrust minus frictional drag 

 

The NTNU model is the only prediction model using gross thrust as input parameter when the 

penetration rates are predicted. All the other performance prediction models use net thrusts as 

input, except the Qtbm model and the model by Farrokh et al., where it is not stated whether 

gross or net thrust are used. Due to the different approaches of using thrust as input, the model 

calculations are presented in both ways. 

All the results regarding the model calculations are presented in Appendix G. 
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5.2.1  The NTNU model 

Results from the NTNU model by Bruland (2000) will be presented first. Thereafter, the 

results from the modified NTNU model by Macias (2016) will be presented. Information 

about these models are presented in Chapter 3.1. 

 

5.2.1.1  The NTNU model by Bruland 

The results calculated by this model are presented and compared to the achieved penetration 

rate in Figures 5.15 and 5.16. 

 

 

Figure 5.15 – Weighted average penetration rate over the complete 4.5 km tunnel calculated with the NTNU 

model by Bruland (2000). The results are compared to the achieved penetration rate (red line).  
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Figure 5.16 - Average penetration rates for each section calculated with the NTNU model by Bruland (2000). 

The results are compared to the achieved penetration rate (red line). 
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5.2.1.2  The NTNU model by Macias 

The results calculated by this model are presented and compared to the achieved penetration 

rate in Figures 5.17 and 5.18. 

 

 

Figure 5.17 – Weighted average penetration rates over the complete 4.5 km tunnel calculated with the NTNU 

model by Macias (2016). The results are compared to the achieved penetration rate (red line). 
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Figure 5.18 - Average penetration rates for each section calculated with the NTNU model by Macias (2016). 

The results are compared to the achieved penetration rate (red line). 
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5.2.2  The Colorado School of Mines (CSM) model 

Results from the CSM model by Rostami (1997) will be presented first. Thereafter, the results 

from the MCSM model by Yagiz (2002) will be presented. Information about these models 

are presented in Chapter 3.2. 

 

5.2.2.1  The CSM model by Rostami 

The results calculated by this model are presented and compared to the achieved penetration 

rate in Figures 5.19 and 5.20. 

 

 

Figure 5.19 – Weighted average penetration rate over the complete 4.5 km tunnel calculated with the CSM 

model by Rostami (1997). The results are compared to the achieved penetration rate (red line). 
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Figure 5.20 - Average penetration rates for each section calculated with the CSM model by Rostami (1997). The 

results are compared to the achieved penetration rate (red line). 
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5.2.2.2  The MCSM model by Yagiz 

The results calculated by this model are presented and compared to the achieved penetration 

rate in Figures 5.21 and 5.22. 

 

 

Figure 5.21 – Weighted average penetration rate over the complete 4.5 km tunnel calculated with the MCSM 

model by Yagiz (2002). The results are compared to the achieved penetration rate (red line). 

  

1.78 1.78

1.92

0.0

0.5

1.0

1.5

2.0

2.5

11778 - 7277

P
e
n

e
tr

a
ti

o
n

 
r
a
te

 (
m

/h
)

Chainage

The CSM model by Yagiz (2002)
Gross and net thrust

Predicted penetration rate (gross thrust) Predicted penetration rate (net thrust) Achieved penetration rate



Chapter 5: Results 

 

 

102 

 

 

Figure 5.22 - Average penetration rates for each section calculated with the MCSM model by Yagiz (2002). The 

results are compared to the achieved penetration rate (red line). 
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5.2.3  The Gehring model 

Results from the Gehring model by Gehring (1995) will be presented first. Thereafter, the 

results from the Alpine model by Wilfing (2016) will be presented. Information about these 

models are presented in Chapter 3.3. 

 

5.2.3.1  The Gehring model by Gehring 

The results calculated by this model are presented and compared to the achieved penetration 

rate in Figures 5.23 and 5.24. 

 

 

Figure 5.23 – Weighted average penetration rate over the complete 4.5 km tunnel calculated with the Gehring 

model by Gehring (1995). The results are compared to the achieved penetration rate (red line). 
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Figure 5.24 - Average penetration rates for each section calculated with the Gehring model by Gehring (1995). 

The results are compared to the achieved penetration rate (red line). 
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5.2.3.2  The Alpine model by Wilfing 

The results calculated by this model are presented and compared to the achieved penetration 

rate in Figures 5.25 and 5.26. 

 

 

Figure 5.25 – Weighted average penetration rate over the complete 4.5 km tunnel calculated with the Alpine 

model by Wilfing (2016). The results are compared to the achieved penetration rate (red line). 
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Figure 5.26 - Average penetration rates for each section calculated with the Alpine model by Wilfing (2016). 

The results are compared to the achieved penetration rate (red line). 
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5.2.4  The Qtbm model by Nick Barton 

Results from the Qtbm model by Barton (2000) will be presented in the following. Information 

about this model is presented in Chapter 3.4. 

The results calculated by this model are presented and compared to the achieved penetration 

rate in Figures 5.27 and 5.28. 

 

 

Figure 5.27 – Weighted average penetration rate over the complete 4.5 km tunnel calculated with the Qtbm model 

by Barton (2000). The results are compared to the achieved penetration rate (red line). 
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Figure 5.28 - Average penetration rates for each section calculated with the Qtbm model by Barton (2000). The 

results are compared to the achieved penetration rate (red line). 
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5.2.5  The prediction model by Yagiz 

Results from model by Yagiz (2008) will be presented in the following. Information about 

this model is presented in Chapter 3.5. 

The results calculated by this model are presented and compared to the achieved penetration 

rate in Figures 5.29 and 5.30. 

 

 

Figure 5.29 – Weighted average penetration rate over the complete 4.5 km tunnel calculated with the model by 

Yagiz (2008). The results are compared to the achieved penetration rate (red line). 
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Figure 5.30 - Average penetration rates for each section calculated with the model by Yagiz (2008). The results 

are compared to the achieved penetration rate (red line).  
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5.2.6  The model by Hassanpour et al. 

Results from the prediction model by Hassanpour et al. (2011) will be presented in the 

following. Information about this model is presented in Chapter 3.6. 

The results calculated by this model are presented and compared to the achieved penetration 

rate in Figures 5.31 and 5.32. 

 

 

Figure 5.31 – Weighted average penetration rate over the complete 4.5 km tunnel calculated with the prediction 

model by Hassanpour et al. (2011). The results are compared to the achieved penetration rate (red line). 
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Figure 5.32 - Average penetration rates for each section calculated with the model by Hassanpour et al. (2011). 

The results are compared to the achieved penetration rate (red line). 
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5.2.7  The model by Farrokh et al. 

Results from the prediction model by Farrokh t al. (2012) will be presented in the following. 

Information about this model is presented in Chapter 3.7. 

The results calculated by this model are presented and compared to the achieved penetration 

rate in Figures 5.33 and 5.34. 

 

 

Figure 5.33 – Weighted average penetration rate over the complete 4.5 km tunnel calculated with the prediction 

model by Farrokh et al. (2012). The results are compared to the achieved penetration rate (red line). 
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Figure 5.34 - Average penetration rates for each section calculated with the model by Farrokh et al. (2012). The 

results are compared to the achieved penetration rate (red line). 
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5.3  Influential parameters 

By comparing different input parameters with the penetration rate, one can get an insight of 

how influential these parameters are. Such comparison can be done in two ways: One can 

either compare the parameter’s influence on the achieved NPR, or one can compare the 

parameter’s influence with the predicted NPR. Both comparisons have been performed in 

order to fully understand how the parameters behave at the Follo Line Project. 

Chapter 5.3.1 presents relationships between parameters and the achieved NPR, and include 

both machine- and geological related parameters. If graphs are proportional or inverse 

proportional, it may represent a relationship. A coefficient of correlation (r2) for the whole 

tunnel length is included. The method is explained in detail in Chapter 4.5.6. 

Chapter 5.3.2 presents the most influencing parameters to the predicted NPR in each of the 

models. The sensitivity of each parameter is presented as a percentage change of the 

parameter in order to predict the same NPR as the achieved. The method is explained in detail 

in Chapter 4.5.6. 

The most influential parameters on the achieved and the predicted NPR are discussed in 

Chapter 6.3. Calculations and illustrations are presented in Appendix H2. 
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5.3.1  Parameters influencing the achieved NPR 

 

Applied cutter thrust 

Figure 5.35 presents the relationship between the applied cutter thrust and the achieved NPR. 

Notice the correlation coefficient of 0.2471. 

 

Figure 5.35 – Relationship between applied cutter thrust and achieved net penetration rate. 
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Cutterhead velocity 

Figure 5.36 shows the relationship between the applied RPM and achieved penetration rate. 

Notice the correlation coefficient of 0.0246. 

 

Figure 5.36 – Relationship between applied RPM and achieved net penetration rate. 
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Rock mass fracturing Factor 

In the NTNU model, the total rock mass fracturing factor (ks-tot) is an important parameter 

describing how the rock mass is fractured. This fracture information is important in several 

other prediction models as well, often only referred to as orientation of fractures and spacing 

between fractures. Figure 5.37 shows the relationship between the rock mass fracturing factor 

and the achieved penetration rate. Notice the correlation coefficient of 0.3938. 

 

Figure 5.37 - Relationship between total fracturing factor and achieved net penetration rate. 
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Drilling rate index 

Figure 5.38 shows the relationship between the DRI values and the achieved penetration rate. 

Notice the correlation coefficient of 0.024. 

 

Figure 5.38 - Relationship between DRI and achieved net penetration rate. 
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Cutter life index  

Figure 5.39 shows the relationship between the CLI values and the achieved penetration rate. 

Notice the correlation coefficient of 0.0641. 

 

Figure 5.39 - Relationship between CLI and achieved net penetration rate. 
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Quartz content 

Figure 5.40 shows the relationship between quartz content and the achieved penetration rate. 

Notice the correlation coefficient of 0.0197. 

 

Figure 5.40 - Relationship between quartz content and achieved net penetration rate. 
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Uniaxial compressive strength 

Figure 5.41 shows the relationship between the UCS-values and the achieved penetration rate. 

Notice the correlation coefficient of 0.2471. 

 

Figure 5.41 - Relationship between UCS-values and achieved net penetration rate. 
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5.3.2  Parameters influencing the predicted NPR 
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Figure 5.42 – Parameter influence in each of the models using gross thrust. The values represent the 

percentage change of the parameter that is needed to make the predicted and achieved NPR the same. 
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Figure 5.43 – Parameter influence in each of the models using net thrust. The values represent the 

percentage change of the parameter that is needed to make the predicted and achieved NPR the same. 
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6  Comparison and discussion 

This chapter discusses the results presented in Chapter 5. The first subchapter discusses the 

presentation methods and variation of the compiled data. Thereafter, a comparison between 

the predicted and the achieved NPR is performed with the aim of finding the superior model. 

Lastly, the various input parameters have been discussed in order to reveal the most 

influential parameters, both with respect to the achieved and the predicted NPR. 

 

6.1  Compilation of data 

One of the secondary scopes was to compile and present machine- and geology related data. 

The data have been compiled for 4.5 km of the outbound tunnel north (TBM 1) at the Follo 

Line Project. Geological data have been collected from Bane NOR`s geologists, as well as 

from field work during August 2017 to March 2018. 

The geological data have mainly been presented as bar charts with a cumulated average. This 

is done to illustrate the averaged development of the parameters throughout the tunnel 

alignment. The fracturing parameters are presented as averaged values for each section. The 

laboratory tests have been executed every 250th meter, which means that there are laboratory 

parameters from one test connected to each section. 

Regarding the machine data, each section consists of an averaged value from recordings every 

10th second. This data has been presented in box plots, due to the high amount of data (Fig. 

5.12 to 5.14). The upper and lower extremes are presented with a thin line. The middle line of 

the box represents the median value and the upper and lower lines of the box represent the 

first and the third quartile. Box plots are a good method to present the variation in the data set 

and the purpose is to show the variation within the sections. The standard deviations presented 

in Table 5.2 show relatively small deviations in the machine data (< 14%). 

As Figure 5.12 to 5.14 illustrate, the highest variations in the machine data seem to be present 

in section 1, 8, 11 and 16. This variation is most likely a result of the geological conditions 

encountered in these sections. Section 1 is represented by high CLI values, and very low 

quartz content. There are low RQD- and UCS values in section 8. Section 11 has low DRI 

values. Section 16 has low RQD values and very low Q-values. These geological deviations 

might be the reason why the TBM is driven with various applied cutter thrusts and cutterhead 

velocities. 



Chapter 6: Comparison and discussion 

 

 

126 

 

6.2  Comparison between predicted and achieved NPR 

The main objective of the thesis is to determine the accuracy of the performance prediction 

models in order to find the most suitable prediction model at the Follo Line Project. To meet 

this objective, the predicted NPR for each model has been compared to the achieved NPR for 

the complete 4.5 km of tunnel. 

Some models are either unclear or differ as to whether they use gross or net thrust values. To 

ensure an optimal comparison, all the calculations have been performed using both gross 

thrust and net thrust as input parameters (Chapter 5.2). The net thrust is defined as where the 

frictional forces are subtracted from the gross thrust. In the end, the final comparison using 

their related thrust have been performed. 

A weighted average of both the achieved and predicted NPR has been calculated for the 

complete 4.5 km long tunnel. The achieved NPR is calculated to 1.92 m/h, and the predicted 

NPRs are compared and discussed in the following: 

 

Gross thrust 

Calculations using gross thrust as input parameter are presented in Figure 6.1. The models 

predicting higher than the achieved NPR are the CSM-, the Gehring- the Alpine- and the Qtbm 

model. The Qtbm model stands out with a predicted NPR of 46.88% above the achieved NPR. 

The models by Hassanpour et al. and by Farrokh et al. predict lower NPRs than achieved, 

with 33.33% and 29.73% respectively. The remaining models predict values close to the 

achieved NPR (within 10%). 

Net thrust 

Calculations using net thrust as input parameter are presented in Figure 6.2. The same models 

as described above predict higher penetration rates than the achieved. The Qtbm model is still 

predicting very high NPR. The MCSM- and the Alpine model predict a NPR close to the 

achieved, with respectively 7.87% lower and 3.65% higher than the achieved. The NTNU 

models predict very close to the achieved NPR, whilst the model by Hassanpour et al. and the 

model by Farrokh et al. predict too low NPRs. The CSM-, MCSM model and the model by 

Yagiz (2008) predict the same NPR with gross and net thrust, because they do not include 

thrust as an input parameter in the calculations. 
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Figure 6.1 – Comparison between predicted penetration rates (using 

gross thrust) and achieved penetration rate. 
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Figure 6.2 – Comparison between predicted penetration rates (using net 

thrust) and achieved penetration rate. 
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As described in Chapter 3, some of the prediction models use gross thrust while other use net 

thrust. Two of the models, the Qtbm model and the model by Farrokh et al., have not stated 

whether they use gross or net thrust. For these two models, the net thrust values have been 

used, because net is the theoretical most correct approach. All deviations between predicted 

and achieved penetration rates by using the model’s related thrust input are presented in Table 

6.1. 

 

Table 6.1 – Deviations between predicted and achieved penetration rates. The red numbers represent values 

below achieved NPR, and the green values represent values above the achieved NPR. 

Performance prediction model 
Applied cutter thrust 

value input 
Deviation from achieved NPR 

NTNU model 

Modified NTNU model 

Gross 

Gross 

1.05 % 

0.00 % 

CSM model 

MCSM model 

Not included 

Not included 

8.85% 

7.87% 

Gehring model 

Alpine model 

Net 

Net 

23.44 % 

3.65 % 

Qtbm model Not stated (net) 46.88 % 

Model by Yagiz Not included 8.48 % 

Model by Hassanpour et al. Net 33.33 % 

Model by Farrokh et al. Not stated (net) 29.73 % 

 

The models that predict the closest NPR compared to the achieved NPR are both the original 

and the modified version of the NTNU model, as well as the Alpine model. In theory, the 

NTNU model calculates conservative results (~10% below the achieved NPR). Thus, the 

NTNU model predict too high penetration rates, and the Alpine model is the most accurate. 

The MCSM-model and the model by Yagiz show promising results if conservative results are 

sought for. 

Due to the results presented in Chapter 5.3.1, it is expected that the models including cutter 

thrust, fracture information and rock mass strength as input parameters give the most accurate 

results. Both the NTNU model, the Alpine model, the CSM model and the MCSM model do 

so.  

↓ 

↓ 

↓ 

↓ 

↓ 

↑ 

↑ 

↑ 

↑ 

- 
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6.3  Influential parameters and model behavior 

6.3.1  Parameters influencing the achieved NPR 

Several parameters have been presented together with achieved NPR (Chapter 5.3.1). To 

easily show how the parameters influence the actual achieved penetration rate. The parameter 

influence, both machine- and geology related, is discussed one by one in this subchapter. It is 

important to keep in mind that the achieved NPR is not only affected by the parameter 

focused on, meaning that each parameter might have an influence even if the correlation is 

bad. However, good correlation reflects a higher parameter influence on the achieved NPR. 

The visual relationship between the plotted graphs in Chapter 5.3.1 illustrates local variations. 

In addition, a coefficient of correlation (r2) over the whole tunnel length is added to the 

comparison. From the visual perspective, the applied cutter thrust, the rock mass fracturing 

and the UCS seems to have the best correlations with the achieved NPR, where peaks and 

troughs follow each other. From the correlation coefficients, the rock mass fracturing factor 

and the applied cutter thrust are by far the most influential parameters.  

Applied cutter thrust 

The applied cutter thrust is an input parameter in all the prediction models except the model 

by Yagiz. Because of the high number of models using cutter thrust, it believed to have a 

crucial impact on the penetration rate. Figure 5.35 presents the relationship between applied 

cutter thrust and the achieved NPR. It is observed a good correlation between the peaks and 

troughs, especially in the first 8 sections. The correlation of 0.2471 substantiate this. 

In theory, the achieved NPR will increase with increased cutter thrust in homogenous, no-

changing rock mass. In reality, the rock mass is changing with respect to the geological 

parameters, and thus in heterogeneous rock mass, the NPR is inverse proportional to the 

applied cutter thrust. Highly fractured rock conditions will for instance require lower cutter 

thrusts to achieve high penetration rates. If the NPR is lowered, the applied thrust will be 

adjusted up to maintain a continuous NPR. Both the geological- and the human factors are 

therefore decisive for the cutter thrust influence. 

To illustrate this, the correlation between the applied cutter thrust and the rock mass fracturing 

factor have been presented (Fig. 6.3). The correlation is good enough to prove that the 

parameters are inverse proportional, which means that the applied cutter thrust will be 

increased when the fracturing factor, and thus the NPR, is lowered. 
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Figure 6.3 – Correlation between applied cutter thrust and fracturing factor.  

 

Applied RPM 

Figure 5.36 presents the relationship between applied RPM and the achieved NPR. The 

correlation between the peaks and troughs is hard to observe, but in some sections, the 

achieved NPR is lowered when the RPM increases. According to Bruland (2000a), this is not 

to be expected. The cutterhead velocity (as well as the net penetration rate) is inverse 

proportional to the TBM diameter, which means that the graphs for achieved NPR and the 

RPM should follow each other. This correlation should ideally be more visible in the figure. 

The bad correlation is confirmed by the correlation coefficient of 0.0246. 

Rock mass fracturing factor 

The rock mass fracturing factor (ks-tot) is based on the spacing between the fractures and 

orientation between the fractures and the tunnel axis. The correlation to the achieved NPR is 

good in most of the sections, but relatively bad in section 15-18 (Fig. 5.37). As expected, the 

achieved NPR increases when the ks-tot value increases. According to Bruland (2000a), the 

rock mass fracturing is found to be the geological factor with the largest influence on the net 

penetration rate. This is confirmed by the high correlation of 0.3938. 

Drilling rate index 

The relationship between DRI and the achieved NPR is presented in Figure 5.38. Visually, the 

correlation does not look good. The achieved NPR is expected to increase with decreased DRI 

(Macias, 2016). This trend can be observed in the first 8 sections, but is missing in the 

remaining sections. A better correlation is expected. The DRI should according to Bruland 

(2000a) be well suited for the purpose since it is composed by the rock surface hardness. The 

coefficient of 0.024 represents a bad correlation. 
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Cutter life index and quartz content 

Figure 5.39 shows that the CLI values are inverse proportional with the achieved NPR. A low 

CLI occurs in hard rock conditions or with high penetration rates, which may explain why the 

CLI is low when the achieved NPR is high. Hard rock conditions mean that there may be a 

high amount of quartz present. Therefore, low CLI values is expected in areas with high 

quartz contents. Figure 5.40 shows that an increase in quartz content will increase the 

achieved NPR, which is the opposite of what to expect. However, increased quartz content 

will increase the probability of inducing brittle fracturing, which will increase the NPR. These 

relationships are complex. Respectively, the correlation coefficients are 0.064 and 0.0197. 

Uniaxial compressive strength 

In theory, higher rock mass strength will decrease the achieved NPR. In reality, this theory is 

illustrated in some sections (Figure 5.41). The correlation coefficient of 0.036 is lower than 

what to expect from the visual relationship. 

 

6.3.2  Parameters influencing the predicted NPR 

A sensitivity analysis has been performed for all the prediction models in order to detect 

which parameters that are influencing the predicted NPR the most. Back calculations give a 

percentage of how much the parameters need to be changed in order to get a correlation where 

the predicted and the achieved NPR coincides. The detailed method behind this analysis is 

described in Chapter 4.5.6.  

The parameters may behave differently in the model calculations than in reality, and it is 

important to detect the influence of the parameters in the models. Based on the discussions in 

subchapter 6.3.1, it is expected that the applied cutter thrust, the rock mass fracturing and the 

UCS will be most sensitive to changes in the sensitivity analysis. The parameter’s sensitivity 

is illustrated in Appendix H2 and will be discussed by using their related thrust value. 

The overall model behavior will be discussed in this subchapter, in addition to the discussion 

related to the parameter sensitivity. The sectionwise predictions presented in Chapter 5.3.2 is 

of importance to observe trends and to evaluate reasons behind the model’s behavior. The 

model’s behavior will be discussed by using their related thrust value as input parameter.  

In addition, the main sources of error connected to each model will be discussed. These are 

only the sources that directly influence the prediction of NPR, and not general weaknesses of 

the model. General weaknesses (and strengths) are presented in Chapter 3. 
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6.3.2.1  NTNU model by Bruland 

The NTNU model by Bruland (2000) is a conservative model, and calculates in theory 10% 

below the achieved NPR. The NTNU model uses gross thrust to calculate the NPR. 

By using gross thrust, the model calculated a total NPR of 1.90 m/h, which is 1.05% below 

the achieved NPR (Fig. 5.15). This result is less conservative than originally sought for using 

the NTNU model and is very close to the achieved NPR of 1.92 m/h. To predict the same 

NPR as the achieved, the following changes are needed (Fig. 5.42): 

• The gross thrust per cutter must be increased with 0.44% to 300.16 kN/cutter. 

• The total rock mass fracturing factor (ks-tot) must be increased with 3.90% to 0.8. 

• The DRI must be increased with 5.51% to 49.00. 

The sensitivity analysis shows that the applied thrust is the most sensitive parameter in this 

model. Only small changes are needed to reach the achieved NPR. Both the ks-tot-value of 0.8 

and a DRI value of 49 are realistic values, and show sensitive properties. These parameters 

are according to the graphs presented in Appendix H2 more sensitive with lower values, 

which may indicate that the rock mass in reality is more fractured than captured by the OTV-

analyses. Zoorabadi et al. (2012) states that the joint spacing has significantly more influence 

than the orientation. 

General model behavior 

Looking at the calculations for each section (Figure 5.16), the predicted and the achieved 

values have a good correlation, especially in the first four sections and in section 11. For the 

other sections, the predicted NPR is either too high or too low compared to the achieved NPR. 

The fracturing factor and DRI values do not show any deviating trends in these sections, and 

according to the sensitivity analysis, there is reasonable to believe that the high and low 

values are a result of the application of wrong cutter thrust values. 

Sources of error 

The model is associated with some disadvantages described in Chapter 3.1.3. The main source 

of error that directly influences on the prediction of NPR is the possibility of inaccurate 

readings of multiple graphs presented in the model, which may lead to wrong results in the 

end. Regression formulas would have improved the accuracy of the results significantly. 

Errors linked to the gathering of rock mass fracturing factor and the DRI value are presented 

in Chapter 6.4. 



Chapter 6: Comparison and discussion 

 

 

134 

 

6.3.2.2  NTNU model by Macias 

The NTNU model by Macias (2000) is very similar to the already described NTNU-model by 

Bruland (2000). It is conservative and complex, and uses gross thrust to calculate the NPR. 

When using gross thrust as input parameter in this model, the calculated total NPR was 1.92 

m/h, which is exactly the same as the achieved NPR (Fig. 5.17). This result is 10% less 

conservative than originally sought for using the NTNU model. Since the predicted NPR is 

the same as the achieved NPR, no changes in the parameters are needed. 

From the graphs presented in Appendix H2, the same observations as described in the NTNU 

model by Bruland are valid for this model. 

 

General model behavior 

The complexity in this model is of the same character as the model by Bruland (2000). The 

calculations for each section are also quite similar to the calculations performed with the 

“Bruland-model” (Fig. 5.18). The calculations are good, except for too high values in section 

7 and 8, and too low values in section 14-16. This is most likely caused by the application of 

the wrong cutter thrust. However, Figure 5.7 shows high DRI values in the last sections, 

which might lower the predicted NPR, due to the great influence of DRI in this model. 

 

Sources of error 

General weaknesses of this model are described in Chapter 3.1.3. As pointed out, the model is 

based on empirical data from projects using open TBMs and having smaller cross-sections. 

This empirical approach can influence on the results. 

The model is associated with the same main source of error as the model by Bruland (2000); 

inaccurate readings of graphs can influence the predicted NPR.  
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6.3.2.3  CSM model by Rostami 

The applied thrust is not included in the CSM model, which makes it unnecessary to 

distinguish between applied gross or net thrust. Using the model, a total NPR of 2.09 m/h was 

calculated, which is 8.85% above the achieved NPR (Fig. 5.19). This is high compared to the 

predictions done with the other models. 

The CSM model is earlier described in detailed in Chapter 3.2.1. To predict the same NPR as 

the achieved, the following changes are needed (Fig. 5.43): 

• The UCS must be increased with 11.52% to 170.02 MPa. 

• The BTS must be increased with 24.38% to 12.91 MPa. 

• The RPM must be increased with 7.54% to 5.48. 

The sensitivity analysis shows that the applied RPM is the most influential parameter. This 

parameter is most influential from 0.0 to 4.0 rev/min. After that point, the parameter is 

opposite proportional with the predicted NPR, and has a lower influence (Appendix H2). UCS 

and BTS show sensitive properties, with UCS as the most influential. Both parameters are 

most influential with low values (Appendix H2). The model could therefore have predicted 

better if the present strength parameters in the project area were lower. 

 

General model behavior 

Looking at the calculations for each section (Fig. 5.20), the predicted and the achieved values 

have a variated correlation. The predictions tend to be too high, except in sections 5 to 7. The 

low prediction in these sections may be a result of high UCS values (Fig. 5.10). On the other 

hand, very high prediction is present in section 8, which may be a result of low UCS values 

(Fig. 5.10). This behavior concludes that the theory from the trial and error method was 

correct. 

 

Sources of error 

The model is associated with some general weaknesses, described in Chapter 3.2.3. The main 

factors that might have a direct influence on the predicted NPR are connected to the execution 

of laboratory tests, which are further discussed in Chapter 6.4. The model is very complex 

with multiple calculations. Possible errors linked to the calculations are present.  
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6.3.2.4  MCSM model by Yagiz 

The applied cutter thrust is not included in the MCSM model. Using the model, a total NPR 

of 1.78 m/h was calculated, which is 7.87% below the achieved NPR (Fig. 5.21). This is a 

good prediction, especially when conservative results are sought for.  

To predict the same NPR as the achieved, the following changes are needed (Fig. 5.43): 

• The UCS must be increased with 16.43% to 177.50 MPa. 

• The predicted brittleness (BIp) must be increased with 18.10% to 33.51 kN/mm. 

• The result from the CSM model must be increased with 68.46% to 3.52 m/h. 

• The fracture orientation must be increased with 107.86% to 89.26°. 

• The fracture spacing must be decreased with 403.27% to 15.30 cm. 

The sensitivity analysis shows that UCS and the predicted brittleness are the most influential 

parameters. The result from the CSM model is based on multiple calculations and parameters. 

Therefore, it is hard to decide how much these parameters influence the NPR predicted from 

the MCSM model. The orientation and spacing of the fractures are not that influential. 

 

General model behavior 

Looking at the calculations for each section (Fig. 5.22), the predicted values are stable with 

small local variations. The correlation is good in the first sections. Towards the last sections, 

the predicted values are lower than expected, which might be due to lower predicted 

brittleness. Lower angles between the fractures and the TBM driven direction are present in 

the last sections as well (Fig. 5.5).  

 

Sources of error 

The general disadvantages of this model are presented in Chapter 3.2.3. The sources of error 

that directly influence the prediction of NPR are the same as for the CSM model. In addition, 

another source of error is connected to the formula used to predict the brittleness index (Eq. 

3.16). According to Yagiz (2009), predicted results reveal a good fitting with a regression 

coefficient of 0.94. This is a suitable tool when punch penetration test is not available, and the 

risk of errors is small (Wilfing, 2016). Errors related to mapping of fractures are further 

discussed in Chapter 6.4. 
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6.3.2.5  Gehring model by Gehring 

The Gehring model implements several correction factors to predict the NPR. One of the 

correction factors requires the thrust as an input parameter, and Gehring (1995) states that the 

net thrust values should be used.  

By using net thrust in the model, a total NPR of 2.79 m/h was calculated, which is 23.44% 

above the achieved NPR (Fig. 5.23). This is the second highest predicted NPR of all the 

models. To predict the same NPR as the achieved, the following changes are needed (Fig. 

5.43): 

• The net thrust per cutter must be decreased with 23.13% to 206.11 kN/cutter. 

• The UCS must be increased with 20.19% to 183.23 MPa. 

• The RPM must be decreased with 23.13% to 4.12 rev/min. 

The sensitivity analysis shows that the UCS is the most influential parameter, and requires the 

smallest changes in this model to reach the achieved NPR. Appendix H2 shows that the UCS 

is most influential with small values. The model could therefore have predicted better if the 

strength parameters present in the project area were lower. The applied net thrust and RPM 

are also very influential on the predicted NPR. The machine parameters are the only 

parameters that are adjustable in real life. 

General model behavior 

Visually speaking, the predicted and achieved values have a bad correlation for each section 

(Fig. 5.24). The predicted values are high, especially in section 8. The UCS value is very low 

in this section (Fig. 5.10), and with the sensitivity analysis in mind, this may be an 

explanation. The general high predicted NPR may be explained by overall low UCS values. 

Sources of error 

The model is associated with some disadvantages described in Chapter 3.3.3. The main source 

of error directly connected to the predicted NPR is in the correction factor for rock mass 

fabric (k2), where spacing and orientation of the fractures are considered. Spacing above 50 

cm will according to Gehring (1995) not influence the NPR. Compared to for instance the 

NTNU model, spacings up to 480 cm influence the NPR, which is considered a better 

approach (Macias, 2016). Errors linked to the execution of the UCS test are presented in 

Chapter 6.4. 
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6.3.2.6   Alpine model by Wilfing 

The Alpine model implements several correction factors to predict the NPR, just like the 

Gehring model. Wilfing (2016) states that the net thrust is used in the calculations.  

By using net thrust in the model, a total NPR of 1.99 m/h was calculated, which is 3.65% 

above the achieved NPR (Fig. 5.25). This is one of the predictions closest to the achieved 

NPR. To predict the same NPR as the achieved, the following changes are needed (Fig. 5.43): 

• The net thrust per cutter must be decreased with 3.17% to 246 kN/cutter. 

• The UCS must be increased with 7.23% to 163.47 MPa. 

• The BTS must be increased with 6.65% to 11.06 MPa. 

• The RPM must be decreased with 3.80% to 4.89 rev/min. 

• The fracturing factor (k2) must be decreased with 7.29% to 1.03. 

The sensitivity analysis shows that all the parameters are of great influence. The machine 

parameters have a slightly bigger influence than the geological parameters, with the applied 

net cutter thrust as the most sensitive parameter.  

 

General model behavior 

The predicted and achieved values have a quite good correlation, especially in the first six and 

the last five sections (Fig. 5.26). The predicted values in the remaining sections are a bit high, 

especially in section 8. The UCS and the BTS values are low in these sections (Fig. 5.10 and 

5.11), and with the sensitivity analysis in mind, this may be an explanation. It is reasonable to 

believe that the applied cutter thrust is the reason for the small deviations. The Alpine model 

has an overall better correlation for each section than the Gehring model. 

 

Sources of error 

General weaknesses of the model are described in Chapter 3.3.3. The sources of error 

discussed in the Gehring model have been corrected in this model. After the correction, a new 

source of error occurred: The newly incorporated y-intercept of BTS has a low regression 

coefficient, which might affect the result. In addition, the fracturing factor is according to 

Wilfing (2016) not fully developed and is connected to uncertain results. Errors linked to the 

execution of UCS and BTS values are presented in Chapter 6.4. 
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6.3.2.7  Qtbm model by Barton 

The Qtbm model is one of the models that does not states whether it uses gross or net thrust as 

input value. As earlier described, net thrust values are chosen for these models. 

By using net thrust in the model, a total NPR of 3.91 m/h was calculated, which is 46.88% 

above the achieved NPR (Fig. 5.27). This is the model predicting worst compared to the 

achieved NPR. To predict the same NPR as the achieved, the following changes are needed: 

• The gross thrust per cutter must be decreased with 21.16% to 209.49 kN/cutter. 

• The UCS must be increased with more than 32.700.000% to 5.000.000 MPa. 

• The CLI must be decreased with 582.55% to 1.05. 

• The Q-value must be increased with 322.02% to 89.30. 

• The biaxial stress must be increased with 584.78% to 31.50 MPa. 

The sensitivity analysis shows that the cutter thrust is by far the most influential parameter in 

this model, and it shows higher influence with increasing thrust (Appendix H2). The biaxial 

stress, CLI- and Q-values are not very sensitive, and the UCS has barely no influence at all, 

and show unrealistic values. Q-values, CLI-values, quartz content and induced biaxial stress 

are non-linear parameters, which reveals higher influence with lower values. If these values 

were lower, the Q-values would have been the most influential parameter (Appendix H2). 

Zoorobadi et al. (2012) confirms this. The model could therefore have predicted better if the 

present Q-values in the project area were lower. 

General model behavior  

The predicted and achieved values show a very bad correlation, where the predicted values 

are too high in all the sections (Fig. 5.28). The predicted values are the highest in section 1. 

This is likely due to low applied RPM values. Hassanpour et al (2016) addresses the same 

issue, there too high predictions seem to be common. 

Sources of error 

The model is associated with some general disadvantages described in Chapter 3.4.1. An 

example of an error that directly influence the predicted NPR is the calculation of the biaxial 

stress, which has not been tested along the tunnel, but calculated from the overburden. 

According to the sensitivity analysis, uncertainties related to the gathering of UCS- and 

biaxial stress values can be neglected in this model. Other errors linked to the execution of 

laboratory values and Q-values are presented in Chapter 6.4.  
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6.3.2.8  Model by Yagiz 

The model by Yagiz (2008) is based on a practical predictive equation especially for fractured 

hard rock conditions. Applied thrust is not included in the model. 

Using the model, a total NPR of 1.77 m/h was calculated, which is 8.48% below the achieved 

NPR (Fig. 5.29). To predict the same NPR as the achieved, the following changes are needed: 

• The UCS must be increased with more than 36.77% to 208.50 MPa. 

• The density must be increased with 21.55% to 3.33 g/cm3. 

• The fracture spacing must be decreased with 1095.39% to 0.06 mm. 

• The fracture orientation must be increased with 124.77% to 96.52º. 

The sensitivity analysis shows that the rock mass density is the most influential parameter in 

this model, followed by the UCS. The PSI parameter, which consists of both the density and 

the UCS, is therefore very sensitive. The fracture related parameters are not sensitive, 

especially not the fracture spacing. According to Yagiz (2008), the orientation of fractures 

should have been more influential. The explanation is illustrated in Appendix H2, where the 

fracture orientation is much more influential with low angles. The model could therefore have 

predicted better if the present angles between the fractures and the tunnel were lower.  

 

General model behavior 

The predicted and achieved values show good correlation, although the model does not reflect 

the local variations properly (Fig. 5.30). The predictions deviate most in section 1 and in the 

last five sections. This is related to high density- and UCS-values in section 1, and lower 

densities and compressive strengths in the last five sections. This is believed to be the reason 

because density and UCS are the two most influential parameters in this model. 

 

Sources of error 

The model is associated with some disadvantages described in Chapter 3.5.1. Machine 

parameters are excluded from the calculations, and seem to be the main source of error related 

to this model. Without adding any machine parameters, local variations are removed from the 

calculations, which are illustrated in Figure 5.30.  Errors linked to the execution of laboratory 

values and fracture information are presented in Chapter 6.4.  
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6.3.2.9  Model by Hassanpour et al. 

The model by Hassanpour et al. uses net thrust as input parameter.  

By using net thrust in the model, a total NPR of 1.70 m/h was calculated, which is 12.94 % 

below the achieved NPR (Fig. 5.31). This is a good prediction if a conservative approach is 

sought for. To predict the same NPR as the achieved, the following changes are needed: 

• The gross thrust per cutter must be increased with 12.99% to 337.69 kN/cutter. 

• The UCS must be decreased with 11.13% to 137.18 MPa. 

• The RPM must be increased with 12.98% to 5.74 rev/min. 

• The RQD must be decreased with 9.73% to 83.64%. 

The sensitivity analysis shows that the RQD is the most influential parameter, closely 

followed by the UCS. The machine parameters have the lowest influence on the predicted 

NPR, although all the parameters are influential. 

 

General model behavior 

For each section, the predicted and achieved NPR show varying correlations: In section 5 to 7 

and the last six sections, the predicted NPRs are too low. Section 8 shows a too high predicted 

NPR. Figure 5.10 illustrates high UCS values in section 5 to 7 and is believed to be the reason 

for the low predictions. Low RQD- and UCS-values are present in section 8, and is believed 

to be the reason for the high prediction (Fig. 5.3 and 5.10). These assumptions are supported 

by the sensitivity analysis.  

 

Sources of error 

The model is associated with some general disadvantages described in Chapter 3.6.1. One of 

the main sources of error is that the fracture orientation is missing in the model. According to 

Macias (2016), Yagiz (2008) and Wilfing (2016), the orientation of the fractures influences 

the net penetration rate, and should therefore be included in the model. Errors linked to the 

gathering of UCS- and RQD values are presented in Chapter 6.4.  



Chapter 6: Comparison and discussion 

 

 

142 

 

6.3.2.10 Model by Farrokh et al. 

For the same reason as for the Qtbm model, net thrust has been chosen as input parameter, in 

which Farrokh et al. (2012) do not state whether gross or net thrust should be applied. 

By using net thrust, a total NPR of 1.54 m/h was calculated, which is 29.73 % below the 

achieved NPR (Fig. 5.33). To predict the same NPR as the achieved, parameter changes are 

needed: 

• The gross thrust per cutter must be increased with 82.21% to 544.54 kN/cutter. 

• The UCS must be decreased with 50.12% to 101.55 MPa. 

• The RPM must be increased with 24.52% to 6.32 rev/min. 

The sensitivity analysis shows that the RPM is the most influential parameter, almost twice as 

sensitive as the UCS. An applied cutter thrust of 544.54 kN/cutter equals a total applied force 

of more than 38 000 kN. That is far beyond the TBM’s maximum thrust of 25 565 kN (Table 

2.4) and can be disregarded. 

 

General model behavior 

The predicted and achieved values show medium correlation. The predictions are in general 

too low, and may according to the sensitivity analysis be a result of too low RPM values. Low 

NPRs are predicted in section 5 to 7 in several models, also in the model by Farrokh et al. 

High UCS values are believed to be the reason for this (Fig. 5.10). As for the model by 

Hassanpour et al., section 8 shows high predicted NPR, due to low UCS and high RPM (Fig. 

5.13). 

 

Sources of error 

The model is associated with some disadvantages described in Chapter 3.7.1.  

Just like the model by Hassanpour et al, the model by Farrokh et al. does not account for the 

rock mass fracturing orientation. The RQD is included as a numerical code, which does not 

reflect the variations of RQD within the rock mass properly. Errors linked to the execution of 

UCS tests and the gathering of RQD values are presented in Chapter 6.4.  
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6.4  Sources of error  

The disadvantages related to the models are presented in Chapter 3 and uncertainties 

regarding the field work and laboratory tests are presented in Chapter 4.6. The errors 

presented in these chapters have a direct influence on the predicted NPR. Some errors are 

believed to have a higher influence on the results than others and require further discussion: 

One of the main sources of error is related to the acquisition of UCS values, which are 

influential in several prediction models, especially in the CSM model (Fig. 5.42). As 

described in Chapter 4.3.2, the UCS values are based on both the results from pre-

investigations and from rock samples tested along the tunnel alignment. As pointed out in the 

methodology, tests on samples taken along the tunnel resulted in low UCS values compared to 

the results from the pre-investigations. An overall agreement among the geologists concluded 

that the percentage variation in the results could be added to, or subtracted from, the results 

from the pre-investigations. By doing so, the local variations within each section would be 

taken into account. Figure 5.41 reveals a bad correlation between the UCS and achieved NPR, 

and the UCS might be affected by errors connected to this approach. Such errors increase the 

uncertainty in the results by the CSM and MCSM model. A more comprehensive basis of data 

would be appropriate to strengthen the statistical approach.  

The BTS values are based on a correlation formula from the UCS values. The BTS values will 

therefore be exposed to the same errors as described above. Altindag and Gunay (2010) found 

a strong correlation between UCS and BTS of the different rock types, with a R2 coefficient of 

0.79. Although the correlation is strong, it brings an uncertainty into the calculations. It is 

believed that the results would be more accurate if BTS tests were executed along the tunnel. 

As mentioned, samples to the laboratory tests are taken every 250th meter, which means there 

is a gap between the unique test results. The conducted values are therefore assumed 

applicable for at least a hundred meters on each side of the test area, referred to as sections. 

The sections are, as described in 4.5.1, divided into where these samples are taken, and one 

single test-value can represent a range of over 300 meters. These assumptions may give 

wrong results. To limit the possibility for errors by these assumptions, the sections have 

further been divided into where there is a clear change in geology, based on the variations of 

ks-tot values along the tunnel alignment (Appendix C). Ideally, laboratory tests should be taken 

more frequently to improve the accuracy of the results. This suggestion is also applicable to 

the mappings related to the cross passages (Q-values, RQD etc.), which ideally should have 

been performed much more frequently. Regarding the determination of most influential 
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parameters affecting the achieved NPR, a bigger basis of data would be to prefer. 18 values 

are few and brings an uncertainty into the regression coefficients presented in Chapter 5.3.1. 

It is important to avoid or minimize the errors connected to rock mass fracturing, as this is the 

most influential geological parameter (Chapter 5.3). To acquire information about the rock 

mass fracturing, it has been necessary to perform back-mapping with OTV-analyses. The 

degree of subjectivity when performing the OTV-analyses is most likely affecting the results. 

Working in WellCAD with OTV pictures is new for all the geologists at site, and it is 

especially challenging to define fractures in the same way for all analyses. Variations in 

picture quality makes the task more complicated. This can affect the fracture spacing, and 

thus, the results from the models that include the fracturing parameter. However, internal and 

external comparisons and cross-checking have shown that the lack of experience do not 

influence the determination of rock mass fracturing factor in a large extent.  

RQD values have been gathered from OTV analyses in section 13, 15 and 17. These show 

high values compared to the other sections, and are most likely a result of the errors discussed 

above. The averaging of values over longer sections might remove the local variations. 

Cutter thrust (kN/cutter) is an input parameter in almost all models, and is according to the 

sensitivity analyses the most influential parameter. All the machine data are logged every 10th 

second. In order to compare the machine data with the geological data, weighted averaged 

values for each section have been calculated, which means that local variations have been 

flattened. Such flattening has been necessary, but it is not representing the actual conditions 

and performances adequately. 

A constant frictional force of 3200 kN/cutter has been removed from the applied thrust values 

in order to calculate the net thrusts. In reality, the frictional drag forces are changing 

throughout the tunnel alignment. The execution of drag tests are expensive and time 

consuming, and have only been executed once. The frictional drag on a double shielded 

machine is bigger than for single shield TBMs. The NTNU model includes a frictional force 

corresponding to a single shield TBM in the calculations, which means that the predicted NPR 

with gross thrust should have been lower in this project (using a double shield TBM). This 

may explain why the predicted NPRs from the NTNU models are higher than the expected 

conservative predictions of 10% below the achieved. The differences in friction force between 

a single shield and a double shield TBM are hard to calculate it is still no agreement within 

the TBM tunnelling industry about the understanding of friction effect (Macias, 2016).
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7  Conclusion 

Conclusive remarks for the main- and secondary objectives will be presented in this chapter. 

The overall purpose of this thesis was to find the superior performance prediction model 

based on data collected at the Follo Line Project. This has been done by comparing the 

predicted results with the actual achieved penetration rate from the first 4.5 km of the 

outbound north tunnel (TBM 1). In general, most of the performance prediction models show 

promising results compared to the achieved NPR. The NTNU models and the Alpine model 

turned out to be the most accurate ones. If conservative results are sought for, the MCSM-

model and the model by Yagiz show promising results. The CSM-model and Qtbm model 

predicts too high values. 

In addition, three secondary objectives have been answered. Two of these was to collect and 

compile machine- and geological related data. In general, low DRI- and CLI-values, and very 

high UCS-values are present in the area. Local variations occur, and section 8 stands out with 

high predicted NPRs in every model. Low RQD- and UCS-values seem to be the explanation. 

The third secondary objective was to determine the most influential parameters, both related 

to the actual achieved NPR and to the predicted NPR. In reality, the applied cutter thrust, the 

rock mass fracturing and the uniaxial compressive strength are the most influential parameters 

based on comparisons with the achieved NPR. Based on the sensitivity analyses of the 

models, the same parameters are the most influential. 

Some parameters (e.g. Q- and UCS-values) show lower influence than expected. This is due 

to the parameter`s internal variation of influence, which shows higher influence with lower 

values. Therefore, the predictions with the Qtbm model may have been more accurate for lower 

Q-values. All the models except the CSM-model use information about the fractures as input 

parameters. The great influence of these parameters is most likely the reason why the CSM-

model predicts too high penetration rates.  

Accurate predictions are important both before and during construction. To strengthen the 

accuracy and reliability of the predictions, it is recommended to use more than one prediction 

model in the calculations. Thus, errors connected to the models will be limited. 

All the predictions and findings are project-specific in correlation with the Follo Line Project, 

and the final results may have been different in projects with other geological conditions.
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The calculations are presented in digital appendix H2. In addition, the variation of several 

parameter`s influence in each model is presented in the following: 

 

The NTNU models 
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The CSM model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MCSM model 

The parameters included in this model are also implemented in the result from the CSM 

model. By that reason, the influence of the parameters in this model are impossible to 

determine. 
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The Gehring model 
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The Wilfing model 
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The model by Yagiz 
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The model by Hassanpour et al.  
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The model by Farrokh et al.
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