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It is extremely important to maintain balance between convergence and diversity for many-objective evolutionary algorithms.
Usually, original BBO algorithm can guarantee convergence to the optimal solution given enough generations, and the
Biogeography/Complex (BBO/Complex) algorithm uses within-subsystem migration and cross-subsystem migration to preserve
the convergence and diversity of the population. However, as the number of objectives increases, the performance of the algorithm
decreases significantly. In this paper, a novel method to solve the many-objective optimization is called Hmp/BBO (Hybrid
Metropolis Biogeography/Complex Based Optimization). The new decomposition method is adopted and the PBI function is put
in place to improve the performance of the solution. On the within-subsystem migration the inferior migrated islands will not
be chosen unless they pass the Metropolis criterion. With this restriction, a uniform distribution Pareto set can be obtained. In
addition, through the above-mentioned method, algorithm running time is kept effectively. Experimental results on benchmark
functions demonstrate the superiority of the proposed algorithm in comparison with five state-of-the-art designs in terms of both
solutions to convergence and diversity.

1. Introduction

In the scientific research and engineering practice, multiple
objectives are usually needed to be optimized simultaneously.
Because of the conflict between multiple targets in multiob-
jective optimization, the performance improvement of one
subobjective may cause the performance of another subob-
jective to decrease. Only through the compromise method
can all objectives go as far as possible to attain optimal.
The set of all the optimal Pareto optimal solutions is known
as the Pareto set (PS) and their corresponding objectives
vector in the objective space is the Pareto Front (PF) [1]. The
purpose of many multiobjective optimization evolutionary
algorithms (MOEAs) is to determine a better approximation
of the PF and PS. Although Many MOEAs have effectively
solved multiobjective optimization problems (MOPs) with

only two or three objectives [2], the MOPs with more than
three objectives are too difficult to be solved by most already
existingMOEAs [3]. In the recent literature report, theMOPs
that have more than three objectives are often described as
many-objective optimizations (MaOPs) [4, 5].

Due to the fact that minimization and maximization
problem can be mutual transformation, without loss of
generality, this article mainly describes minimizing many-
objective problem and its related concepts MaOPs which can
be defined as follows:

Minimize 𝐹 (𝑥) = (𝑓1 (𝑥) , 𝑓2 (𝑥) ⋅ ⋅ ⋅ 𝑓𝑛 (𝑥))𝑇
Subject to 𝑥 ∈ Ω, (1)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 is the 𝑛-dimensional deci-
sion variable vector, Ω is the feasible search region, and
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𝐹 : Ω → 𝑅𝑛 consists of 𝑛 objective functions 𝑓𝑖(𝑥) (𝑖 =1, 2, . . . , 𝑛), 𝑛 > 3.
It is generally agreed that, evolutionary algorithms (EAs)

are well suited for MOPs, due to their population based
strategy for achieving an approximation to the PF. EAs
achieve a Pareto approximation set in MOPs via pursing
the entire PF and maximizing the diversity of solutions. The
fundamentally balanced convergence and diversity between
the EAs depend on the selection operator [6]. As far as we
know, the popular MOEAs, including Hypervolume Estima-
tion Algorithm for multiobjective optimization (HYPE) [7],
nondominated sorting genetic algorithm II (NSGAII) [8],
and grid-based evolutionary algorithm (GREA) [9], could
effectively deal with two or three objectives’ optimization
problems. However, there MOEAs are all confronted with
great difficulties in many-objective optimization. With the
increase of the objective space in size, the first problem is
almost all solutions to the original population becoming non-
dominated with one another, which is mainly caused by the
phenomenon called dominance resistance [10].This will result
in the selection pressure toward PF severely deteriorating
and considerably slowing down the evolutionary process.
This is primarily because most of EMO algorithms used
Pareto dominance as selection criteria. The other problem is
that the conflict between diversity and convergence becomes
deteriorated. This is mainly because most of the current
diversity operators (like crowding distance) prefer selecting
the dominance resistant solutions. The third problem is the
computational complexity and efficiency. With the increase
of the number of objectives, the complexity of the EMO
algorithm is significantly increased, and the efficiency of
the algorithm is substantially reduced. To tackle the above
problems, a lot of methods have been proposed [11, 12], which
can be roughly divided into mainly four categories:

(1) The dimensional reduction–based methods: by ana-
lyzing the relationship between objectives or using
feature selection techniques, this method reduces the
amount of objectives. In order to decrease the diffi-
culty of the original problem, this method attempts
to reduce those unimportant objectives. However,
the method assumes that the MaOPs have redundant
objectives. This assumption may restrict the appli-
cation of the dimensional reduction–based methods
[13].

(2) The relaxed Pareto-dominance-based methods: the
relaxed Pareto-dominance-based methods enhance
the selection pressure on the Pareto Front, such as the
methods of 𝛼-dominate [14] and 𝜀-dominate [15]. But
the main drawback of this method is that it involves
one or more parameters and these parameters are
difficult to choose.

(3) The indicator-based approaches: the indicator-based
method is not subject to the selection pressure
problem, since it is not depending on the Pareto-
dominance to push the population toward the PF.
However, it has also suffered from the curse of
dimensionality [16]. The current metrics available
to Hypervolume is probably the most popular one

that is employed for multiobjective search. However,
computation cost of the Hypervolume grows expo-
nentially with the number of objectives [17].

(4) The decomposition-based method: this method has
developed the decomposition strategy and the neigh-
borhood concept. As one of the popular algorithms,
many-objective evolutionary algorithm based on
decomposition (MOEA/D) was proposed by Zhang
and Li (2007) [18].The aggregation function is used to
compare the solutions and the uniform distribution
weight vectors preserving solution convergence and
diversity.

MOEA/D has a good convergence and diversity, with
low computational complexity, so as to get an effective
method. With the BBO/complex algorithm decomposition
option, each subsystem has multiobjectives and multiple
constraints [19]. It has more flexible decomposition options
compared to traditionalmethods founded on decomposition.
BBO/complex detailed explanations are introduced in Sec-
tion 2. Despite the advance in adapting MOEAs for leading
with MaOPs, very few have been recorded in the sense of
improving BBO/complex for solving MaOPs so as to balance
both convergence and diversity simultaneously. We present
a new algorithm, the hybrid Metropolis BBO/Complex
(Hmp/BBO) for many-objective optimization; Hmp/BBO,
under the basic framework of BBO/Complex algorithm,
improves the convergence and diversity in many-objective
optimization by introducing the decomposition strategy and
PBI aggregation function in MOEA/D.

Furthermore, selection in BBO/complex plays a major
role in the information exchange among subsystems. We
hope the useful information can be forwarded to the appro-
priate subsystems to improve them and will not mislead
other unsuitable subsystems. In the original version of
BBO/complex, the roulette wheel selection is based on the
emigration rates to select the emigration islands. On the stage
of within-subsystem migration, each SIV in an immigrating
island will have a chance to be replaced by SIV from an
emigrating island. However, it is not clear whether the new
emigration islands are suitable for these subsystems. During
the within-subsystem migration phase, some solutions with
high quality are easily found at initial search stages, and
they will be replaced easily by most current solutions. Con-
sequently various subsystems will be trapped at their local
convergence. The simulated annealing (SA) algorithm was
proposed by Kirkpatrick et al. [20] and Černý [21]. SA is an
intelligent algorithm based on probabilistic stochastic search
optimization. It has the capability of potential jumping, and
it can accept noninferior solution and inferior solution.
Therefore, it effectively avoids falling into the local minimum
solution and keeps solutions diversity.We are inspired here by
theMetropolis criterion of SA algorithm to solve the problem
posed above. Details about SA will be introduced in next
section.

On the other hand, when sharing information in the
subsystem, because there are numerous objectives and con-
straints, we need a new method to reduce the computation
time of the central processor.
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Figure 1: BBO/Complex formulation.

From discussion above, this paper mainly focuses on
the Hmp/BBO algorithm that promotes the performance of
convergence and diversity in many-objective optimization.
Our contributions to this topic are summarized as follows:

(1) We have designed a new framework of Hmp/BBO
algorithm for many-objective optimization.

(2) We have introduced PBI aggregation function to
improve the convergence and diversity forHmp/BBO.

(3) We have to adopt the Metropolis criterion to improve
the performance of exploration and exploitation.

(4) We have introduced a checking unit; this unit ensured
that the new islands are only generated within the
Hmp/BBO, so it has saved an additional amount of
CPU time.

The remainder of this paper is organized as follows: the
principles of BBO/Complex and SA are, respectively, covered
in Section 2.The hybridMetropolis BBO/Complex algorithm
(Hmp/BBO) is presented in Section 3. In Section 4, the
experimental studies are given to demonstrate the efficiency
of the proposed method as well as some discussions on
this paper. Finally, Section 5 concludes the paper and future
research directions are proposed.

2. BBO/Complex and Simulated Annealing

2.1. BBO/Complex. The biogeography-based optimization
algorithm is an inventive algorithm, introduced for the first
time in 2013, and according to [19] it provides competi-
tive optimization performance with NSGAII [8], differen-
tial evolution (DE) [22], ant colony optimization (ACO)
[23], and a lot of other algorithms. BBO/Complex extends
BBO algorithm system of multiple subsystems; each sub-
system contains multiobjectives and multiconstraints. The
BBO/complex framework comprises 𝑁 archipelagos, where𝑁 equals the number of subsystems. Each archipelago
appears to have a lot of islands. These islands represent can-
didate solutions to the problem. BBO/complex framework is
distinct from otherMOEA algorithms. It includes framework
and optimization algorithm, as showed in Figure 1. It provides
an efficient model for communication between subsystems

and provides a new way of migrating to share information
between within-subsystems and cross-subsystems.

The classical BBO/Complex algorithm proposed can be
described with the following algorithm:

(1) Initialize the control parameters: population size, stop
condition, and mutation probability. Initialization of
the population is initialized by randomly generated
individuals.

(2) Get the objective and constraints value similarity
levels between all pairs of subsystems.

(3) Obtain the rank of islands in each subsystem.
(4) Perform within-subsystem migration.
(5) Perform cross-subsystem migration.
(6) Mutation on each island.
(7) Replace the worst island in the population with the

generation’s good islands.
(8) If the termination condition is not met, go to step (3);

otherwise, terminate.

2.2. SimulatedAnnealingAlgorithm. Thealgorithm is built on
the metaheuristic technique of thermodynamics of material
annealing [24–26]. At the beginning of the process the
temperature rises and it is gradually cooled down to a
minimum.The objective is to minimize the cost function and
is expected to reach the lowest cost function for the freezing
temperature. When the process is there, the temperature
decreases and a new state is created. A simulated annealing
algorithm based on statistical mechanics is established. In
1953, [27] adopted the concept of Boltzmann’s probability
distribution.Thismeans that if a systemmaintains its thermal
equilibrium at temperature 𝑇, the probability distribution 𝑃
of its energy 𝐸 can be calculated by the following [27]:

𝑃 (𝐸) = −Δ𝐸𝑒𝐾𝐵𝑇 , (2)

where 𝐾𝐵 is Boltzmann’s constant. The difference in energyΔ𝐸 means the difference in cost function between the past
and current iterations, which can be determined as follows:

Δ𝐸 = 𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑜) . (3)

Forminimization problems,Δ𝐸 ⩽ 0means𝑓(𝑥𝑛) ⩽ 𝑓(𝑥𝑜), so
the new point is directly accepted. Otherwise, the Metropolis
criterion will be enabled to decide whether to accept or
reject 𝑥𝑜. For this case where Δ𝐸 > 0, the acceptance is
treated probabilistically according to the relation 𝑃 = 1/1 +𝑒(Δ𝐸/max(𝑇)). It can be seen that it is affected by the temperature
of the receiving process. For the maximum amplitude of 𝑇,
the acceptance probability is also selected to be a much worse
state too. This process will avoid falling into local optima. As
the temperature decreases, the algorithm accepts only states
which minimize the 𝐹0 cost. Thus, in the iterative process,
the temperature reduction way is one of the key parameters,
which is named as the cooling schedule. On the other hand,
once the iteration 𝑛 is complete, the next cycle will begin
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Output: population 𝑝
(1) Initialization all the parameters
(2) generating parent population, weighting vectors and neighborhood index set
(3) decomposition strategy
(4) while the termination condition is not met do
(5) calculate the nondominated ranking system in subsystem
(6) perform within-subsystem migration
(7) perform cross-subsystem migration
(8) perform mutation
(9) clear the duplicate solution
(10) replace the worst solutions with good islands
(11) end while
(12) return 𝑝

Algorithm 1: Hmp/BBO pseudocode.

with a smaller value. Therefore, the number of cycles in 𝐿
and the number of iterations 𝑁 per each cycle are crucial
settings. Large𝑁 and 𝐿 lead to better performance but with a
longer process time, and vice versa, for small𝑁 and 𝐿, based
on the need to choose a compromise between the quality
of the solution and the processing speed. The Metropolis
criterion can help the algorithm balance the performance of
exploration and exploitation.

3. The Hybrid Metropolis
BBO/Complex Algorithm

3.1. Framework of Proposed Algorithm. Hmp/BBO uses the
original BBO/complex framework but extends it to multiple
subsystems environments to accommodate many-objective
optimization problems. First, many-objective problems are
decomposed into multiple subsystems. Generally speaking,
there are two decomposition methods: one is built on the
system requirements and the other is based on the phys-
ical system; also the number of subsystems is set by the
user according to the decomposition strategy. The original
BBO/complex decomposes the problem based on system
requirements. Because the objective space dimension is
higher, we need to use the new decomposition method.
Afterwards, like Figure 2, a PBI aggregate function decompo-
sition method can enhance the convergence and diversity of
the algorithm when solving many-objective problems. With
the above step, Hmp/BBO migration is divided into two
categories: within-subsystem and cross-subsystem. During
the within-subsystemmigration phase, we enhance the prob-
ability of the solution and employ the Metropolis criterion
to make the algorithm jump out of local optimal. During the
cross-subsystemmigration stage, we adopt the roulette wheel
method to get best solution. Then we perform mutation and
clear the duplicate algorithm.

Our algorithm does not take into account constraints
problem. Constraints processing research questions will be
in the rest of the work. Algorithm 1 presents the general
framework of Hmp/BBO.

3.2. Generating Weighting Vectors. We set weight vectors
such that the optimal solutions of their subsystems are

Subsystem 1

Subsystem 2

Subsystem n

f(x1)

f(x2)Z∗

d1

d2

�휆1

�휆N

f(x)

PF

Cluster center

Xold island
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Figure 2: Illustration of decomposition strategy and PBI distance.

uniformly distributed along the PF. Most of the approaches
for generating weight vectors for different decomposition
strategies inMODE/D have been suggested [28]; we use Das’s
method in [29], with a predefined integer 𝐻 which controls
the divisions along each axis.The total number of such vectors
is 𝑁 = 𝐶𝑚−1𝐻+𝑚−1. Distributed reference points are 𝜆𝑘 =𝑥𝑘/𝐻, 𝑘 = 1, 2, . . . , 𝑚. Taking the three-dimension problem
as an example, there are 𝐶25 = 10 reference points.
3.3. Decomposition Strategy. The Hmp/BBO initialization
generates 𝑁𝑤 weight vectors; PBI aggregate function [30]
is employed to divide the weight vectors into a set of 𝐿 𝑠
(𝐶𝑂1, 𝐶𝑂2, . . . , 𝐶𝑂𝐿). Because the weight vectors uniformly
distribute in the objective space, the number of weight vectors
in one subsystem is approximate to Nw/L. Therefore, the
whole objective space is divided into 𝐿 𝑠 subsystems.

3.4. The Nondominated Ranking System (NDRS). NDRS was
introduced in [31] as the ranking system in themultiobjective
genetic algorithms (MOGA). It uses inconsecutive integers as
ranks to reflect the relative performance of each individual in
a population. Assume that we have a subsystem:𝑅𝑖 is the rank
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(1) Probabilistically choose the immigrating islands based on the NDRS.
(2) Use the Metropolis criterion based on emigration rates to select the emigrating island.
(3) each SIV in an immigration island will have a chance to be replaced by an SIV from an emigrating island.

Algorithm 2: Within-migration pseudocode.

(1) Randomly select 𝑘 indices from 𝐸(𝑖) (choose similar subsystem) and select 𝑘 immigrating islands based on
immigration rages from population 𝑝.

(2) Calculate Euclidean distance between the islands of neighboring subsystem
(3) Use the roulette wheel selection based on emigration rates to select the emigrating islands.
(4) each SIV in an immigration island will have a chance to be replaced by an SIV from an emigrating island.

Algorithm 3: Cross-migration pseudocode.

of the 𝑖th island, where a lower rank is better. If objective 𝑜1
of island 𝑖1 is better than 𝑜1 of 𝑖2, 𝑅𝑖2 = 𝑅𝑖2 + 1; if objective 𝑜1
of island 𝑖2 is better than 𝑜1 of 𝑖1, 𝑅𝑖1 = 𝑅𝑖1 + 1.
3.5. PBI Aggregate Function. In MOEA/D, several methods
have been proposed for decomposing MOPs into a single-
objective optimization subproblem, such as weighted sum
method, Tchebycheff method, and Penalty-based Bound-
ary Intersection (PBI) method, but it was shown that the
MOEA/D-PBI is only best for many-objective optimization
problem in [32]. This paper uses the PBI approach. A scalar
optimization function is defined as

Min 𝑔pbi𝑥𝜆, 𝑍∗ = 𝑑1 + 𝜃𝑑2
𝑑1 = 𝑧∗ − 𝐹𝑥𝑇𝜆|𝜆|
𝑑2 = 󵄨󵄨󵄨󵄨𝐹𝑥 − (𝑧∗ − 𝑑1𝜆)󵄨󵄨󵄨󵄨 .

(4)

In Figure 2, 𝑍∗ is the ideal point, 𝑑1 is the Euclidean
distance between origin point and the foot point drawn
from the solution to the reference direction, and 𝑑2 is the
perpendicular distance of the solution from the reference
direction. The 𝜃 value on the performance of Hmp/BBO is
present in Section 4.3.

3.6. Within-Subsystem Migration. Within-subsystem migra-
tion is mainly for information sharing; we need a new rapid
method for selection of immigration islands and emigration
islands. First, immigrating islands are selected based on
the NDRS. Afterward, emigrating islands are selected by
emigration rates, in order to further improve the algorithm’s
convergence speed, while avoiding falling into local optima.
Features (𝑛 SIVs) of the islands will not be directly substituted
with the new values that come from the probabilistically
selected original islands mentioned above. Instead, 𝑛 SIVs
of the islands are maintained in two temporary matrices
with size 𝑡1 × 𝑡2. Each row of the matrices represents one
individual. The old independent variables are used again if
and only if the modified individual exhibits lower solution

quality and does not comply with the Metropolis criterion.
The inferior migrated island will be selected only if they
pass the Metropolis criterion of SA. With this restriction
on the with-subsystem migration, the Hmp/BBO algorithm
can avoid falling into the local optimum. The algorithm is
described in Algorithm 2.

3.7. Cross-Subsystem Migration. During cross-system migra-
tion of the stage, it is desirable that the migration should be
chosen from a neighborhood subsystem as much as possible.
In Hmp/BBO, each island is uniquely specified by a weight
vector; each weight vector has been assigned based on the
Euclidean distance from a neighborhood. So we can select
islands from its neighboring subsystems by neighboring
index. First, we select islands between subsystems based
neighboring index set 𝐸(𝑖). Second, emigrating islands are
selected based on the PBI distance. Furthermore, we need to
eliminate those poor candidate islands to improve the algo-
rithm diversity between subsystems. The inferior migrated
island will not be selected unless it passes the roulette
wheel method. With this restriction on the cross-subsystem
migration, the Hmp/BBO algorithm’s diversity performance
can be enhanced. The algorithm is described in Algorithm 3.

3.8. Mutation Algorithm. In the Hmp/BBO, these events are
modeled as SIV mutation. The mutation rate 𝑚𝑖 can be
determined by the following number of species involved in
the probability 𝑝𝑖 to the following equation:

𝑚𝑖 = 𝑚max (1 − 𝑝𝑖𝑝max
) , (5)

where the 𝑚max and 𝑝max = max(𝑝𝑖) are a user-predefined
maximum mutation rate that 𝑚𝑖 can reach. The ISI is the
variable and function of SIV. The mutation processes are
described in Algorithm 4.

3.9. Clear the Duplicate Algorithm. Clear duplication will
increase the diversity of solutions and avoid duplication of
features on other islands. The algorithm can be described in
Algorithm 5.
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(1) for 𝑖 ← 1 to 𝑘 do{where L = number of islands}
(2) Calculate probability 𝑃𝑖 based on 𝜆𝑖 and 𝜇𝑖{by iterative method}
(3) Calculate mutation rate𝑚𝑖
(4) if rand < 𝑚𝑖 and 𝑖 ≥ 𝑅𝑚 then {𝑅𝑚 is a predefined mutation range}
(5) Replace 𝑛 SIVs vector of ISI𝑖 with a randomly generated 𝑛 SIVs vector
(6) end if
(7) end for

Algorithm 4: Mutation pseudocode.

Require: Check all 𝑛 SIVs on all ISI𝑖
(1) while there is a duplicated SIV do
(2) for 𝑖 ← 1 to 𝑙 do {where 𝑙 = number of islands}
(3) if any duplicated SIVs is detected then
(4) Replace the duplicated SIVs in ISI𝑖 with a randomly generated SIVs
(5) end if

Algorithm 5: Clear duplication pseudocode.

In conclusion, The Hmp/BBO would prove the perfor-
mance of convenience and diversity by introducing a new
framework for many-objective optimization. In addition,
the SA algorithm comes with only one individual, while
the Hmp/BBO is a population based algorithm. Instead of
running SA with only one island, it can be executed with
all islands in subsystems. Thus, internal searching loops 𝐿
of SA with each cycle of 𝑛 can be invalid in Hmp/BBO
without affecting the solution quality. This method will save
one significant amount of CPU time. By these methods, the
exploration and exploitation of the Hmp/BBO algorithm are
much improved. The Hmp/BBO framework is described in
Algorithm 6.

3.10. Computational Complexity of One Generation of
Hmp/BBO. In this section, we discuss the computational
complexity of the Hmp/BBO. For a population size 𝑁
and a problem of 𝑀 objectives, the major computational
costs are in steps (5), (6), and (7) of Algorithm 1. Step(5) is the computational complexity of NDRS; it requires𝑂(𝑁𝑀) computations. Computing of within-subsystem
(step (6)) needs 𝑂(𝐿𝑁12) computations, where 𝐿 is cycles
of Metropolis and 𝑁1 is generated by parents’ populations.
Cross-subsystem migration (step (7)) needs 𝑂(𝐿𝑁12𝑅)
computations and 𝑅 is equal to the number of subsystems.
So for 𝑀 objectives, reviewing all the above computations,
the overall complexity of one generation of Hmp/BBO is𝑂(𝑁𝑀+𝐿𝑁12+𝐿𝑁12𝑅).
4. Simulation Results

In this section, to prove the validity of Hmp/BBO, we com-
pare it with five state-of-the-art algorithms for comparisons,
including BBO/Complex, NSGAIII, MOEA/D-PBI, HYPE,

and GREA. NSGAIII is based on the Pareto dominance
relationship, but the maintenance of population diversity is
supported by the use of a group of uniformly distributed
reference points. MOEA/D-PBI is a representative of the
decomposition-based approach and keeps the diversity of
solutions using a series of predefined weight vectors. HYPE
is a Hypervolume-based evolutionary algorithm for many-
objective optimizations. GREA uses the NSGA-II framework
and introduces two concepts (grid dominance and grid
difference) and three grid-based standards, and a finesse
adjustment strategy. We describe the test questions used
in Section 4.1 and the quality indicators in Section 4.2.
Then we introduce five state-of-the-art algorithms that used
comparison and the corresponding parameter settings in
Section 4.3. Finally, the discussion results are in Section 4.4.

4.1. Test Problems. In checking to verify the proposed
algorithm, the well-known test functions definitions of
DTZ1–DTZ4 [33] functions and all of WFG test suite [34]
are listed in Table 1.We only consider DTLZ 1–4 problems for
DTLZ test suite, because the nature of DTLZ5 and DTLZ6’s
PFs is unclear beyond three objectives [35]. DTLZ1 is a liner
and multimodal function; DTLZ2 is a concave function;
DTLZ3 is concave and multimodal function; DTLZ4 is
concave and biased function, as summarized in Table 1.

4.2. Quality Indicators. In our empirical study, the following
three extensively used quality indicators are examined. The
first one can reflect the convergence of an algorithm. In the
second one and last one, the convergence and diversity of the
solutions can be recorded simultaneously.

(1) Generational Distance (GD). Let 𝑃 be the last series of
nondominated points in the objective space and 𝑃∗ be a set
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(1) Initialization with all the parameters. Initialization𝑁𝑤 weight vectors, 𝐶𝐿 are the center of the weight vectors cluster. 𝐿 𝑠 are the
number of subsystems and neighborhood set of weight vectors 𝐸(𝑖).

(2) Decomposition strategy
(3) for 𝑔 ← 1 to 𝐺 do {𝐺 = number of generations}
(4) Calculate the rank of islands in each subsystem (NDRS)
(5) Probabilistically select the immigrating islands based on the islands rank, probabilistically select the emigrating islands based

on the emigration rates.
(6) if 𝑔 = 1 then
(7) find the initial temperature 𝑇1
(8) else
(9) Update the temperature for the 𝑔th generation
(10) end if
(11) Save the vectors of all the populations (before migration) in matrix mm1 with size 𝑡1 ∗ 𝑡2 and their cost functions vector vv1

with length 𝑘.
(12) Do within-subsystem migration.
(13) Save the vectors of all the populations (after migration) in matrix mm2 with size 𝑡1 ∗ 𝑡2 and their cost functions in vector vv2

with length 𝑘.
(14) for 𝑖 ← 1 to 𝑘 do (𝑘 is number of islands)
(15) Calculate Δ𝐸 = 𝑉2(𝑖) − 𝑉1(𝑖)
(16) if Δ𝐸 > 0 then
(17) 𝑃(𝐸) = −Δ𝐸𝑒𝑇(𝑔)𝐾𝐵
(18) if 𝑃(𝐸) > rand then
(19) Accept mm2(I,1→n) vector of matrix mm2 as an updated population for ISI
(20) else
(21) Re-select the past mm1(I,1→n) vector of matrix mm1 as an updated population for ISI𝑖
(22) end if
(23) end if
(24) Randomly select 𝑘 indices from 𝐸(𝑖) and select 𝑘 immigrating islands based immigration rates.
(25) if𝑔pbi(𝑥new | 𝑤, 𝑧∗) ⩽ 𝑔pbi(𝑥 | 𝑤, 𝑧∗)
(26) save the best islands 𝑥new for emigrating
(27) else
(28) Save the vectors of all the populations (before mutation) in matrix mm3 with size 𝑡3 ∗ 𝑡4 and their cost functions in vector vv3

with length 𝑘
(29) Do cross-subsystem migration
(30) use the roulette wheel method to select population

with length 𝑘.
(31) Do mutation
(32) Do clear duplicated SIV
(33) if 𝑔 > 1 then
(34) Repalce the worst ISI with the good ISI saved in the elitism stage
(35) end if
(36) end for
(37) display the best islands
(38) end if
(39) end if
(40) end if
(41) Do mutation
(42) Do clear duplicated SIV
(43) if 𝑔 > 1 then
(44) Replace the worst ISI with the good ISI saved in the elitism stage
(45) end if
(46) end for
(47) Display the best islands.

Algorithm 6: Hybrid Metropolis Biogeography/Complex Based Optimization.
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Table 1: Test functions utilized in this experiment.

Name of function Characteristics
DTLZ1 Liner, multimodal
DTLZ2 Concave
DTLZ3 Concave, multimodal
DTLZ4 Concave, biased
WFG1 Mixed, Biased, scaled
WFG2 Convex, disconnected
WFG3 Linear, degenerate
WFG4 Concave, multimodal
WFG5 Concave, deceptive
WFG6 Concave, scaled
WFG7 Biased, scaled
WFG8 Biased, nonseparable
WFG9 Concave, scaled

of points evenly distributed over the actual PF. GD can only
reflect the performance of convergence for an algorithm; a
smaller value means better quality. Then GD is described as
follows:

GD (𝑃, 𝑃∗) = √∑𝑢∈𝑃 𝑑 (𝑢, 𝑃∗)
|𝑃| . (6)

(2) Inverted Generational Distance (IGD). Let 𝑃∗ be a set of
points uniformly sampled over the actual efficient front (EF),
and let 𝑃 be the set of solutions obtained by an algorithm.
IGD may be used to measure convergence and diversity in a
sense, and a smaller value means better quality. Then IGD is
described as follows:

IGD (𝑃, 𝑃∗) = ∑V∈𝑃∗ 𝑑 (V, 𝑃)|𝑃∗| . (7)

(3) Hypervolume (HV) Indicator. HV indicator can measure
both convergence and diversity of a solution set. The HV is
used for WFG test suite, and the larger the HV value is, the
better the solution’s quality for the PF is.ThenHV is described
as follows:

HV (𝐴, 𝑟) = Volume(⋃
𝑓∈𝐴

[𝑓1, 𝑟1] × ⋅ ⋅ ⋅ × [𝑓𝑚, 𝑟𝑚]) . (8)

𝑀 is the number of objectives. A is the set of nondominated
points obtained in the objective space by an algorithm. 𝑟 =(𝑟1, 𝑟2, . . . , 𝑟𝑚)𝑇 is a reference point in the objective space
which is dominated by all Pareto points.

4.3. Parameters Setting. The parameters for the six MOEAs
considered in this study are listed below.

(1) Population size: the population size 𝑁 used in this
study for Hmp/BBO is 91, 206, and 210 for three-,
four-, and five-objective problems, respectively. Fur-
thermore, the size of the NSGA-III population was
mildly adjusted as in the original NSGAIII study, that
is, 92, 212, and 276 for three-, four-, and five-objective
problems.

Table 2: Maximum number of fitness evaluation for different
function.

Function 𝑀 = 3 𝑀 = 4 𝑀 = 5
DTLZ1 36500 26400 12600
DTLZ2 22840 42500 73600
DTLZ3 92000 14600 220000
DTLZ4 54700 13200 220000
WFG1–9 36500 74300 157500

Table 3: Settings of grid division div in GREA.

Function 𝑀 = 3 𝑀 = 4 𝑀 = 5
DTLZ1 10 10 10
DTLZ2 10 10 9
DTLZ3 11 10 11
DTLZ4 10 10 7
WFG1 7 9 14
WFG2 18 17 16
WFG3 14 14 14
WFG4–9 10 10 11

(2) Stop condition: each algorithm runs 20 times inde-
pendently on each test question. All algorithms are
implemented on a 2.6GHz CPU desktop computer,
8 GB RAM, and Windows 10. The stop condition
of the algorithm is the maximum number of fitness
evaluations, as outlined in Table 2.

(3) Parameter setting in Hmp/BBO: set immigration rate
is 𝜆max = 1, emigration rate is 𝜇max = 1, max = 0.01,𝑡0 = 1000, 𝐾 = 0.9, and 𝑇end = 0.001, and penalty
parameter in PBI: 𝜃Hmp = 5, is also suggested in [18].
Neighborhood sizes𝑀Hmp = 20.

(4) Parameter setting in BBO/Complex: set immigration
rate is 𝜆max = 1, emigration rate is 𝜇max = 1, mutation
probability 𝑝 = 0.05, and the generation count 𝑔 =30.

(5) Reproduction operator setting: crossover probability𝑝𝑐 = 1, 𝜂𝑐 = 30 in NSGAIII.Themutation probability
is 𝑝𝑚 = 1/𝑉 and its distribution index 𝜂𝑚 = 30.

(6) Parameter setting in MOEA/D-PBI: neighborhood
size 𝑀MOEA/D = 20; probability used for selection in
neighborhood 𝛿 = 0.9. Penalty parameter 𝜃MOEA/D =5.

(7) The grid division (div) in GREA: Div is set according
to [9] as shown in Table 3.

(8) Number of points in Monte Carlo sampling: it is
placed at 1,000,000 to ensure accuracy.

4.4. Result and Discussion. In this section, the GD metrics
are used to compare the convergence capacity between the
proposedHmp/BBO and other five algorithms. Table 4 shows
the best, median, and worst GD values obtained by six
algorithms on DTLZ1 to DTLZ4 with different number of
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Table 4: Best, median, and worst GD values obtained by DTLZ1 to DTLZ4 with six algorithms by different number of objectives.

Functions 𝑚 Values Hmp/BBO BBO/Complex NSGAIII MOEA/D-PBI HYPE GREA

DTLZ1

3
Best 6.078e − 05 1.380𝑒 − 04 3.324𝑒 − 04 1.478𝑒 − 04 2.073𝑒 − 04 2.544𝑒 − 04

Median 1.032e − 04 1.650𝑒 − 04 6.749𝑒 − 04 1.652𝑒 − 04 5.546𝑒 − 04 3.132𝑒 − 04
Worst 2.218e − 04 5.833𝑒 − 03 6.129𝑒 − 03 7.634𝑒 − 03 7.333𝑒 − 03 8.326𝑒 − 03

4
Best 1.733e − 05 2.478𝑒 − 05 2.189𝑒 − 05 3.452𝑒 − 05 3.321𝑒 − 05 2.235𝑒 − 05

Median 2.348e − 05 2.742𝑒 − 05 2.689𝑒 − 05 3.874𝑒 − 05 3.981𝑒 − 05 4.035𝑒 − 05
Worst 2.426e − 05 2.859𝑒 − 05 3.056𝑒 − 05 7.723𝑒 − 05 5.885𝑒 − 05 5.126𝑒 − 05

5
Best 1.740𝑒 − 04 1.857𝑒 − 04 1.032e − 04 2.023𝑒 − 04 2.253𝑒 − 04 3.224𝑒 − 04

Median 2.304𝑒 − 04 2.006𝑒 − 04 1.112e − 04 2.635𝑒 − 04 3.867𝑒 − 04 4.325𝑒 − 04
Worst 2.941𝑒 − 04 2.506𝑒 − 04 1.688e − 04 3.227𝑒 − 04 4.954𝑒 − 04 5.532𝑒 − 04

DTLZ2

3
Best 7.130e − 05 1.231𝑒 − 04 1.326𝑒 − 04 1.154𝑒 − 04 1.632𝑒 − 04 3.184𝑒 − 04

Median 7.458e − 05 1.335𝑒 − 04 1.631𝑒 − 04 1.536𝑒 − 04 2.547𝑒 − 04 4.368𝑒 − 04
Worst 1.102e − 04 1.421𝑒 − 04 1.967𝑒 − 04 1.859𝑒 − 04 5.456𝑒 − 04 1.559𝑒 − 03

4
Best 2.682e − 05 4.819𝑒 − 05 7.765𝑒 − 05 8.132𝑒 − 05 8.569𝑒 − 05 9.142𝑒 − 05

Median 5.791e − 05 5.321𝑒 − 04 7.969𝑒 − 04 8.486𝑒 − 04 5.723𝑒 − 04 8.836𝑒 − 04
Worst 1.008e − 04 7.021𝑒 − 04 9.366𝑒 − 04 1.455𝑒 − 03 8.454𝑒 − 04 1.357𝑒 − 03

5
Best 8.613e − 05 8.621𝑒 − 05 8.752𝑒 − 05 9.123𝑒 − 05 9.439𝑒 − 05 9.783𝑒 − 05

Median 1.193e − 04 1.323𝑒 − 04 1.456𝑒 − 04 1.523𝑒 − 04 1.717𝑒 − 04 1.986𝑒 − 04
Worst 2.101e − 04 2.458𝑒 − 04 2.569𝑒 − 04 2.834𝑒 − 04 5.956𝑒 − 04 3.549𝑒 − 04

DTLZ3

3
Best 1.128e − 04 1.227𝑒 − 04 1.360𝑒 − 04 1.257𝑒 − 04 1.453𝑒 − 04 1.257𝑒 − 04

Median 1.402e − 04 1.411𝑒 − 04 1.587𝑒 − 04 1.605𝑒 − 04 1.742𝑒 − 04 1.926𝑒 − 04
Worst 2.597e − 04 2.625𝑒 − 04 2.767𝑒 − 04 2.858𝑒 − 04 2.903𝑒 − 04 2.759𝑒 − 04

4
Best 1.325e − 04 1.423𝑒 − 04 1.560𝑒 − 04 1.568𝑒 − 04 1.954𝑒 − 04 2.856𝑒 − 04

Median 1.589e − 04 1.621𝑒 − 04 1.897𝑒 − 04 2.225𝑒 − 04 2.273𝑒 − 04 3.863𝑒 − 04
Worst 1.759e − 04 1.791𝑒 − 04 1.969𝑒 − 04 3.851𝑒 − 04 5.956𝑒 − 04 6.989𝑒 − 04

5
Best 7.138𝑒 − 05 7.026e − 05 1.161𝑒 − 04 1.229𝑒 − 04 1.156𝑒 − 04 1.559𝑒 − 04

Median 1.090𝑒 − 04 1.014e − 04 1.363𝑒 − 04 1.454𝑒 − 04 1.557𝑒 − 04 1.852𝑒 − 04
Worst 2.599𝑒 − 04 2.423e − 04 2.567𝑒 − 04 2.859𝑒 − 04 2.456𝑒 − 04 2.558𝑒 − 04

DTLZ4

3
Best 1.434e − 05 1.450𝑒 − 05 1.354𝑒 − 04 1.625𝑒 − 04 1.457𝑒 − 04 1.590𝑒 − 04

Median 1.658e − 05 1.752𝑒 − 05 1.811𝑒 − 04 1.757𝑒 − 04 1.956𝑒 − 04 1.869𝑒 − 04
Worst 1.766e − 05 1.781𝑒 − 05 1.867𝑒 − 04 1.853𝑒 − 04 2.156𝑒 − 04 1.954𝑒 − 04

4
Best 1.524e − 05 1.556𝑒 − 05 1.667𝑒 − 05 1.659𝑒 − 05 1.853𝑒 − 05 1.771𝑒 − 05

Median 1.626e − 05 1.629𝑒 − 05 1.711𝑒 − 05 1.731𝑒 − 05 1.950𝑒 − 05 1.859𝑒 − 05
Worst 1.735e − 05 1.778𝑒 − 05 1.797𝑒 − 05 2.741𝑒 − 05 2.757𝑒 − 05 1.959𝑒 − 05

5
Best 1.786e − 05 1.801𝑒 − 05 1.862𝑒 − 05 1.859𝑒 − 05 1.856𝑒 − 05 1.853𝑒 − 05

Median 1.938e − 05 2.024𝑒 − 05 3.767𝑒 − 05 2.850𝑒 − 05 5.456𝑒 − 05 3.559𝑒 − 05
Worst 7.809e − 05 8.421𝑒 − 05 8.760𝑒 − 05 8.857𝑒 − 05 8.454𝑒 − 05 8.554𝑒 − 05

objectives, and the one that is significantly better than the
other is marked in bold face. Table 4 shows that all the test
functions of Hmp/BBO performed well, especially in the
DTLZ1 and DTLZ4 problems. Results of DTLZ test suite in
comparison to results of Hmp/BBO with other five MOEAs
in terms of IGD values on DTLZ test suite are presented
in Table 5. It shows both the mean and IGD values of over
20 independent runs for the six compared MOEAs, where
the best mean and standard deviation values are marked
in bold. Furthermore, Table 6 presents the average and
standard deviation of the Hypervolume over 20 independent
runs on WFG problems, where the best performance is
highlighted in bold. The quality of the solution sets obtained
by the six algorithms on all WFG test problems in terms of

Hypervolume was compared. From the experimental results
of DTLZ and WFG test problem, we find that Hmp/BBO
shows better performance than the other five algorithms.

Figure 3 shows the parallel coordinates of PF obtained by
Hmp/BBO and the other five MOEAs with the five-objective
of DTLZ1. This run is involved in the result closest to the
mean IGD value. A parallel coordinates system is a visual
representation of the overall performance of the algorithm
for high-dimensional space, where each row represents a
point in a high-dimensional space. If the lines on each object
on the graph are distributed in [0, 1], it is shown that the
convergence of the better algorithm, if the lines can be evenly
distributed in [0, 1], indicates that the distribution of the
algorithm is better. From this figure, it is found that the
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Figure 3: Parallel coordinates figure by six algorithms on the five-objective DTLZ1. (a) Hmp/BBO; (b) BBO/Complex; (c) NSGAIII; (d)
MOEA/D-PBI; (e) HYPE; (f) GREA.
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Table 5: Best, median, and worst IGD values obtained by DTLZ1 to DTLZ4 with six algorithms by different number of objectives.

Functions 𝑚 Hmp/BBO BBO/Complex NSGAIII MOEA/D-PBI HYPE GREA

DTLZ1

3
Best 3.114e − 04 3.380𝑒 − 04 3.424𝑒 − 04 4.274𝑒 − 04 4.071𝑒 − 04 4.644𝑒 − 04

Median 4.276e − 04 3.650𝑒 − 03 3.742𝑒 − 03 4.332𝑒 − 04 4.542𝑒 − 04 5.422𝑒 − 04
Worst 2.032e − 03 3.833𝑒 − 03 3.929𝑒 − 03 5.731𝑒 − 03 6.241𝑒 − 03 7.321𝑒 − 03

4
Best 1.873𝑒 − 04 1.978e − 05 1.789𝑒 − 04 1.884𝑒 − 04 1.981𝑒 − 04 2.014𝑒 − 04

Median 1.956𝑒 − 04 1.916e − 04 2.033𝑒 − 04 2.075𝑒 − 04 2.837𝑒 − 04 4.9233𝑒 − 04
Worst 2.126𝑒 − 04 2.054e − 04 3.126𝑒 − 04 3.071𝑒 − 04 3.985𝑒 − 04 5.126𝑒 − 04

5
Best 2.047e − 04 2.234𝑒 − 04 2.532𝑒 − 04 2.643𝑒 − 04 2.753𝑒 − 04 3.224𝑒 − 04

Median 2.273e − 04 2.301𝑒 − 03 2.611𝑒 − 03 2.831𝑒 − 04 3.817𝑒 − 04 4.125𝑒 − 04
Worst 3.162e − 04 2.706𝑒 − 03 2.754𝑒 − 03 2.927𝑒 − 03 3.914𝑒 − 04 4.512𝑒 − 04

DTLZ2

3
Best 3.209e − 04 5.201𝑒 − 04 3.371𝑒 − 04 3.694𝑒 − 04 3.732𝑒 − 04 3.984𝑒 − 04

Median 4.561e − 04 5.335𝑒 − 04 6.631𝑒 − 04 7.536𝑒 − 04 8.547𝑒 − 04 9.368𝑒 − 04
Worst 6.255e − 04 6.421𝑒 − 04 7.767𝑒 − 04 7.859𝑒 − 04 7.956𝑒 − 04 9.559𝑒 − 04

4
Best 4.682e − 05 5.717𝑒 − 05 6.765𝑒 − 05 7.732𝑒 − 05 8.579𝑒 − 05 9.742𝑒 − 05

Median 5.392e − 05 2.821𝑒 − 04 2.922𝑒 − 04 8.486𝑒 − 04 8.783𝑒 − 04 8.886𝑒 − 04
Worst 1.104e − 04 1.211𝑒 − 03 1.366𝑒 − 03 1.455𝑒 − 03 1.454𝑒 − 03 1.857𝑒 − 03

5
Best 8.613e − 05 1.621𝑒 − 04 1.752𝑒 − 04 2.123𝑒 − 04 2.432𝑒 − 04 5.783𝑒 − 04

Median 7.687e − 04 1.922𝑒 − 03 1.956𝑒 − 03 2.513𝑒 − 03 2.727𝑒 − 03 2.926𝑒 − 03
Worst 1.038e − 03 2.458𝑒 − 03 2.569𝑒 − 03 2.834𝑒 − 03 2.956𝑒 − 03 3.549𝑒 − 03

DTLZ3

3
Best 6.123e − 04 6.222𝑒 − 04 6.360𝑒 − 04 7.251𝑒 − 04 7.423𝑒 − 04 7.757𝑒 − 04

Median 1.587e − 03 1.616𝑒 − 03 1.784𝑒 − 03 1.905𝑒 − 03 1.942𝑒 − 03 1.926𝑒 − 02
Worst 3.929e − 03 4.695𝑒 − 03 7.555𝑒 − 03 2.858𝑒 − 02 2.903𝑒 − 02 3.359𝑒 − 02

4
Best 1.516e − 04 1.826𝑒 − 04 1.961𝑒 − 04 1.968𝑒 − 04 2.114𝑒 − 04 2.552𝑒 − 04

Median 1.782e − 04 1.922𝑒 − 04 2.117𝑒 − 04 2.221𝑒 − 04 2.371𝑒 − 04 2.661𝑒 − 04
Worst 1.951e − 04 1.993𝑒 − 04 2.762𝑒 − 04 2.852𝑒 − 04 2.952𝑒 − 04 2.989𝑒 − 04

5
Best 5.342𝑒 − 04 7.932𝑒 − 04 4.011e − 04 5.829𝑒 − 04 5.956𝑒 − 04 6.559𝑒 − 04

Median 1.137𝑒 − 03 1.514𝑒 − 03 1.113e − 03 1.154𝑒 − 03 1.157𝑒 − 03 1.252𝑒 − 03
Worst 1.574𝑒 − 03 2.423𝑒 − 03 1.537e − 03 1.859𝑒 − 03 1.956𝑒 − 03 2.151𝑒 − 03

DTLZ4

3
Best 9.243e − 05 1.420𝑒 − 04 1.554𝑒 − 04 1.835𝑒 − 04 1.957𝑒 − 04 1.992𝑒 − 04

Median 1.092e − 04 1.752𝑒 − 04 2.211𝑒 − 04 2.777𝑒 − 04 2.856𝑒 − 04 2.969𝑒 − 04
Worst 1.892e − 04 1.971𝑒 − 04 2.867𝑒 − 04 2.893𝑒 − 04 2.916𝑒 − 04 2.984𝑒 − 04

4
Best 1.231e − 05 1.526𝑒 − 05 1.667𝑒 − 05 1.669𝑒 − 05 1.543𝑒 − 05 1.541𝑒 − 05

Median 1.526e − 05 1.727𝑒 − 05 1.731𝑒 − 05 1.732𝑒 − 05 1.650𝑒 − 05 1.759𝑒 − 05
Worst 1.635e − 05 1.793𝑒 − 05 1.797𝑒 − 05 1.841𝑒 − 05 3.857𝑒 − 05 2.879𝑒 − 05

5
Best 1.336𝑒 − 04 1.701𝑒 − 04 1.852𝑒 − 04 1.179e − 05 2.346𝑒 − 05 2.353𝑒 − 05

Median 1.392𝑒 − 04 2.024𝑒 − 04 2.267𝑒 − 04 1.451e − 05 2.556𝑒 − 05 2.759𝑒 − 05
Worst 2.052𝑒 − 04 8.421𝑒 − 04 9.760𝑒 − 04 1.817e − 05 9.854𝑒 − 04 9.954𝑒 − 04

Hmp/BBO is slightly better in convergence and diversity
than BBO/Complex, NSGAIII, and MOEA/D-PBI. HYPE
and GREA are far away from the PF because the maximum
value of some objectives is much larger than 0.5. Obviously,
the solutions achieved by HYPE and GREA are worse than
the above four algorithms.

Performance scores are introduced to the global perfor-
mance of compared algorithms. For a problem test question,
suppose that there are 𝑆 algorithms al1, al2, . . . , al𝑆; let 𝛾𝑖𝑗 be 1,
if al𝑖 outperforms al𝑗 in terms of IGDmetric, and 0 otherwise.
This value indicates how many other algorithms are better
than al𝑖 on the problem test question. Therefore, the smaller

the value is, the better the algorithm is. Then, performance
score 𝑆(al𝑖) is determined as

𝑆 (al𝑖) = 𝑠∑
𝑗=1
𝑗 ̸=𝑖

𝛾𝑖𝑗. (9)

In Figure 4, the average performance scores for different
number of objectives and different test problems are briefly
summarized. Score of Hmp/BBO is smaller than other
algorithms in the corresponding number of objectives.
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Table 6: Average and standard deviation of the HV values on WFG1 to WFG9 with six algorithms by different number of objectives.

Functions 𝑚 Hmp/BBO BBO/Complex NSGAIII MOEA/D-PBI HYPE GREA

WFG1
3 4.232𝑒 − 01 4.806𝑒 − 01 5.138𝑒 − 01 4.821𝑒 − 01 5.385𝑒 − 01 7.235e − 01
4 4.611𝑒 − 01 3.252𝑒 − 01 4.054𝑒 − 01 4.458𝑒 − 01 6.141e − 01 5.326𝑒 − 01
5 5.340𝑒 − 01 4.587𝑒 − 01 5.032𝑒 − 01 5.023𝑒 − 01 5.953e − 01 5.224𝑒 − 01

WFG2
3 8.658𝑒 − 01 8.538𝑒 − 01 8.616𝑒 − 01 7.184𝑒 − 01 8.485𝑒 − 01 8.901e − 01
4 9.181𝑒 − 01 8.705𝑒 − 01 8.061𝑒 − 01 7.934𝑒 − 01 8.801𝑒 − 01 9.342e − 01
5 9.523e − 01 9.401𝑒 − 01 9.232𝑒 − 01 9.101𝑒 − 01 9.239𝑒 − 01 9.324𝑒 − 01

WFG3
3 8.032𝑒 − 01 8.127𝑒 − 01 8.311𝑒 − 01 9.102𝑒 − 01 9.333e − 01 9.202𝑒 − 01
4 8.926e − 01 8.422𝑒 − 01 7.552𝑒 − 01 7.456𝑒 − 01 8.014𝑒 − 01 8.716𝑒 − 01
5 9.337e − 01 8.323𝑒 − 01 8.001𝑒 − 01 7.123𝑒 − 01 8.326𝑒 − 01 7.007𝑒 − 01

WFG4
3 7.212𝑒 − 01 7.362𝑒 − 01 7.852𝑒 − 01 6.952𝑒 − 01 8.654𝑒 − 01 8.852e − 01
4 9.012e − 01 9.002𝑒 − 01 8.567𝑒 − 01 8.688𝑒 − 01 8.893𝑒 − 01 8.324𝑒 − 01
5 9.386e − 01 9.201𝑒 − 01 8.862𝑒 − 01 8.559𝑒 − 01 8.756𝑒 − 01 8.453𝑒 − 01

WFG5
3 6.331𝑒 − 01 6.433𝑒 − 01 6.321𝑒 − 01 6.512𝑒 − 01 6.213𝑒 − 01 6.790e − 01
4 6.823e − 01 6.522𝑒 − 01 6.247𝑒 − 01 5.955𝑒 − 01 5.896𝑒 − 01 6.001𝑒 − 01
5 6.743𝑒 − 01 6.801e − 01 6.363𝑒 − 01 6.442𝑒 − 01 6.782𝑒 − 01 6.553𝑒 − 01

WFG6
3 6.832𝑒 − 01 6.655𝑒 − 01 6.324𝑒 − 01 6.725𝑒 − 01 6.859e − 01 6.531𝑒 − 01
4 6.521e − 01 6.454𝑒 − 01 6.447𝑒 − 01 6.353𝑒 − 01 6.553𝑒 − 01 6.321𝑒 − 01
5 6.772e − 01 6.521𝑒 − 01 6.232𝑒 − 01 6.325𝑒 − 01 6.526𝑒 − 01 6.326𝑒 − 01

WFG7
3 7.137𝑒 − 01 7.150𝑒 − 01 7.254e − 01 7.025𝑒 − 01 6.957𝑒 − 01 7.012𝑒 − 01
4 7.024𝑒 − 01 7.536𝑒 − 01 7.237𝑒 − 01 7.558e − 01 7.001𝑒 − 01 7.121𝑒 − 01
5 7.874e − 01 7.321𝑒 − 01 6.969𝑒 − 01 7.051𝑒 − 01 7.326𝑒 − 01 7.353𝑒 − 01

WFG8
3 6.231e − 01 6.020𝑒 − 01 6.151𝑒 − 01 5.925𝑒 − 01 6.050𝑒 − 01 6.012𝑒 − 01
4 6.020𝑒 − 01 6.552e − 01 6.327𝑒 − 01 6.239𝑒 − 01 6.153𝑒 − 01 6.271𝑒 − 01
5 6.286e − 01 6.001𝑒 − 01 6.112𝑒 − 01 6.139𝑒 − 01 6.210𝑒 − 01 6.213𝑒 − 01

WFG9
3 6.144𝑒 − 01 6.235𝑒 − 01 6.312𝑒 − 01 6.121𝑒 − 01 6.352e − 01 6.124𝑒 − 01
4 6.441e − 01 6.348𝑒 − 01 6.320𝑒 − 01 6.259𝑒 − 01 6.404𝑒 − 01 6.472𝑒 − 01
5 6.281e − 01 6.101𝑒 − 01 6.161𝑒 − 01 6.254𝑒 − 01 6.056𝑒 − 01 6.113𝑒 − 01
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Figure 4: Average performance score over all test problems for
different number of objectives. The smaller the score, the better the
performance in the corresponding number of objectives.

5. Conclusions

In this paper, we propose a novel many-objective optimiza-
tion algorithm called Hmp/BBO. It addresses the problem of
a many-objective optimization which uses the mechanism of
adaptive hierarchical.The problem is decomposed into many
subsystems through PBI aggregate function. Through com-
bining the advantages of MOEA/D, Hmp/BBO is expected
to enhance the convergence ability and the valuable diversity
performance. As it can be seen in the results obtained in
Section 4, Hmp/BBO performance can be enhanced by PBI
aggregation function and the control the migration flow of𝑛 SIV between rich and poor islands. Within this process,
the old features will not always be overwritten by the newly
emigrated features from other islands. It has more flexible
decomposition optimization options compared to other five
state-of-the-art algorithms.

The future work will discuss the Hmp/BBO in terms of
objective number greater than five and in terms of solv-
ing constrained many-objective problems. The constrained
many-objective problems seem to be a new challenge for
MaOPs, and we try to extend our algorithm to solve them
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by combining constraint handling techniques. And also we
would want to apply Hmp/BBO to solve more real-world
problems.
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