
A Dual-Stream Deep Learning
Architecture for Action Recognition in
Salmon from Underwater Video.

Håkon Måløy

Master of Science in Computer Science

Supervisor: Agnar Aamodt, IDI
Co-supervisor: Ekrem Misimi, SINTEF Ocean

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

i

Problem Description

For this thesis I was given the following problem description:

SINTEF Ocean is leading a very interesting project, called Intelligent, aiming to
develop novel concepts for salmon behaviour prediction in net cages. The prediction
models are to be developed based on computer vision features and implementing
prediction models based on Convolutional Neural Networks (CNNs). The current
work in this MSc thesis is a continuation of the work that student, Håkon Måløy, has
done in during summer job internship 2016, and his project assignment in TDT4501
– Computer Science, Specialization Project. During the summer job, student Håkon
Måløy implemented a combination of CNNs in the role of feature extractor and used
the output of the fully connected layers as the features for the training of Suport
Vector Machines and generation of prediction models. In the project assignment
the student has carried out a comprehensive and structured literature review on the
use of CNN- and Recurrent Neural Network (RNN)-based architectures for human
Action Recognition and the most promising architectures that can be used as an
inspiration for Action Recognition for salmon in underwater videos.

In this MSc assignment, the student will carry on with the work based on the
findings from the project assignment. The focus will be on investigating a Dual-
Stream CNN approach to capture both spatial and motion data. One stream will
use grayscale images as inputs while the other will use Optical Flow as input. The
Optical Flow stream will also utilize 3D-Convolutions to further capture motion
features. The two streams will be combined and used as input to a RNN for sequence
processing before the final score is computed using e.g. a softmax layer.

ii

iii

Preface

This thesis was prepared during the spring of 2017 at the Norwegian Institute of
Science and Technology(NTNU), Faculty of Information Technology and Electrical
Engineering, Department of Computer Science. The thesis was accomplished in
cooperation with SINTEF Ocean AS.

I would like to thank my supervisors Ekrem Misimi, Agnar Aamodt and Bjørn Mag-
nus Mathisen for their guidance and clarifying discussions through the work with this
thesis. I would also like to thank my coworkers at the SINTEF Ocean Robotics Lab
for their help and encouraging words during the implementation phase of the thesis.
Lastly I would like to thank my family, and especially my Mother and Father for
their support and hours spent reading my sketches to provide constructive feedback.

Trondheim, June 2017
Håkon Måløy

iv

v

Abstract

Over half of the costs from breeding salmon in the Norwegian salmon farming
industry comes from feed usage[13]. Today the feeding process is largely a manual
labor, requiring an operator to monitor the amount of feed sinking to the bottom
of a breeding cage. When the amount of feed exceeds a certain threshold, the
feeding process is terminated. Automation of this process and using salmon motion
behavior instead of sinking feed to determine when to terminate feeding, could
greatly reduce costs both in through the labor needed and amount of feed wasted.

Resent developments in Human Action Recognition have shown that Deep
Learning approaches are well suited to perform Action Recognition[25, 31]. We
therefore examine the feasibility of using Deep Learning approaches to automate the
feeding process. We use 76 videos of salmon collected from within a breeding cage
during the month of November 2016. Using these videos for training, validation
and testing, we propose three approaches to automatically classify Feeding and
NonFeeding behavior in salmon. The three approaches are a Spatial Architecture, a
Spatial Recurrent Architecture and a Dual-Stream Architecture as seen in figure 1.

Our results show that all our proposed architectures are able to separate videos
of Feeding and NonFeeding salmon with high accuracy. We also find that the Dual-
Stream Architecture is the best performing architecture. It combines spatial and
temporal information through the use of a Spatial Stream, a novel Temporal Stream
and a Recurrent Neural Network (RNN). Our Dual-Stream Architecture is able
to accurately classify 80.0% all of our testing videos, presenting state-of-the-art
performance.

To the best of our knowledge, both our Temporal Stream and our Dual-Stream
Architecture are original and novel architectures, as is the application of Deep Learn-
ing inference models for the Salmon Activity Recognition domain in optimization
of feeding operation in Norwegian Aquaculture. We hope the results presented in
this thesis will contribute to achieve a higher sustainability in Norwegian salmon
aquaculture, optimize feeding operations, and consequently reduce potential waste.

Future work beyond the results presented in this thesis concerns research on un-
derstanding of what our the Deep Learning architecture have learned and visualizing
this learning process.

vi

(a) The Spatail Architecture. (b) The Spatail Recurrent Architecture.

(c) The Dual-Stream Architecture.

Figure 1: We propose three architecture to automatically classify Feeding and NonFeeding
videos of salmon.

vii

Sammendrag

Over halvparten av kostnadene i Norsk lakseoppdrett kommer fra fôrbruk[13]. I
dag er fôringsprosessen en manuell prosess, som krever en operatør som overvåker
mengden fôr som synker til bunnen av merden. Når mengden fôr overstiger en
forhåndsbestemt grense, blir fôringen avsluttet. Automatisering av denne prosessen
gjennom å bruke laksens bevegelsesmønstre for å avgjøre når fôringen skal avs-
luttes, kan redusere kostnader gjennom redusert tap av fôr og redusert behov for
arbeidskraft.

Nyere forskning i Human Action Recognition har vist at Deep Learning tilnær-
minger er godt egnet for å utføre Action Recgonition[25, 31]. Vi utforsker derfor
mulighetene for å bruke Deep Learning for å automatisere fôringsprosessen. Vi
bruker 76 videoer av laks, hentet fra en oppdretsmerd i November måned i 2016.
Ved å bruke disse videoene til trening, validering og testing produserer vi tre arkitek-
turer for å automatisk kunne klassifisere Spisende og IkkeSpisende oppførsel hos
laksen. Disse arkitekturene består i en Spatial Architecture, en Spatial Recurrent
Architecture og en Dual-Stream Architecture, som kan sees i figur 1.

Våre resultater viser at alle våre arkitekturer er i stand til å separere videoer
av Spisende og IkkeSpisende laks med stor nøyaktighet. Vi kommer også frem til
at vår Dual-Stream Architecture er den beste arkitekturen. Den kombinerer romlig
og tidsmessig informasjon gjennom å bruke en Spatial Stream og en ny og orginal
Temporal Stream sammen med et Recurrent Neural Network (RNN). Vår Dual-
Stream Architecture er i stand til å klassifisere 80.0% av alle våre testvideoer, noe
som tilsvarer en ny state-of-the-art.

Så vidt vi vet er både vår Temporal Stream og vår Dual-Stream Architecture
nyskapende og orginale arkitekturer, som tidligere ikke har vært utforsket. Vår
bruk av Deep Learning på Salmon Action Recognition domenet for optimering av
fôringsporsessen i norsk akvakultur er også ny. Vi håper at resultatene presentert i
denne oppgaven vil bidra til å oppnå større bærekraftighet i norsk oppdrettsnæring
og redusere fôrspill.

Videre arbeid med våre resultater vil bestå i å forske på å forstå hva våre
tilnærminger har lært gjennom visualisering av læringsprosessen.

viii

Contents

Problem Description i

Preface iii

Abstract v

Sammendrag vii

List of Figures 8

List of Tables 10

1 Introduction 13
1.1 Motivation . 13

1.1.1 SINTEF Ocean Intelligent Project 14
1.2 Hypotheses . 16
1.3 Structure of the Thesis . 18

2 Theory and Background 19
2.1 Deep Learning . 19

2.1.1 Historical Background . 19
2.1.2 Dataset splits . 21
2.1.3 Neural Networks . 22
2.1.4 Convolutional Neural Networks 28
2.1.5 Recurrent Neural Networks 31

2.2 Optical Flow . 35
2.3 Human Activity Recognition . 37

2.3.1 Action Recognition and Action Detection 37
2.4 The Salmon Activity Domain . 38

2.4.1 Salmon in Videos . 38
2.5 Previous Work . 40

ix

x CONTENTS

2.5.1 Systematic Literature Review 40
2.5.2 Proposing an architecture . 42

3 Method and Experiments 49
3.1 Deep Learning Development Platforms 49

3.1.1 TensorFlowTM . 49
3.1.2 TfLearn . 50

3.2 The Salmon Activity Recognition Dataset 50
3.2.1 Summer Internship Dataset 50
3.2.2 The Master’s Thesis Dataset 50

3.3 The Dual-Stream Approach . 54
3.4 Data Preparation . 55

3.4.1 Spatial Data . 55
3.4.2 Optical Flow Data . 55

3.5 The Spatial Stream . 58
3.5.1 Transfer Learning . 58
3.5.2 The Pretrained Model . 59
3.5.3 Using Every Frame . 60
3.5.4 Image Preprocessing . 61
3.5.5 Improving the VGG-16 Architecture 65
3.5.6 Data Augmentation . 67
3.5.7 The Final Spatial Stream . 69

3.6 Temporal Stream . 70
3.6.1 Capturing Temporal Information 70
3.6.2 Developing a 3D-Convolutional Network Architecture 71

3.7 Recurrent . 90
3.7.1 Spatial Recurrent Network 90
3.7.2 Dual-Stream Recurrent . 93
3.7.3 The Final Dual-Stream . 96

4 Testing and Analysis 99
4.1 Testing Dataset Overview . 100
4.2 Testing Procedure . 101
4.3 The Spatial Architecture . 103
4.4 The Spatial Recurrent Architecture 104
4.5 The Dual-Stream Architecture . 105
4.6 Analysis . 106

4.6.1 Testing the Hypotheses . 108
4.6.2 Test Video Analysis . 109
4.6.3 Dataset Split Analysis . 111
4.6.4 Representativeness of the Dataset 112

5 Conclusion and Future Work 113
5.1 Conclusion . 113
5.2 Future Work . 116

CONTENTS 1

Appendices 123

A Subsampling the Dataset 125

B List of Test Videos 127

C Dataset Availability 129

D Code Documentation 131

2 CONTENTS

List of Figures

1 We propose three architecture to automatically classify Feeding and
NonFeeding videos of salmon. vi

1.1 The figure shows the Twin-Stream architecture implemented during
the summer internship at SINTEF Ocean. The architecture uses two
AlexNet Convolutional Neural Networks (CNNs) to produce feature
vectors of the input. One AlexNet takes individual video frames
as input, while the other takes Optical Flow video frames as input.
The feature vectors were fed into separate Support Vector Machines
(SVMs) which produced outputs, which were then fed into a final
SVM for classification. 15

2.1 The figure shows a fully connected Neural Network with an input
layer, two hidden layers and an output layer. This network is of the
typical feed forward architecture, where all connections go forward
through the network. Each of the connections between the neurons
also have a weight W . Figure adapted from [30] 22

2.2 The three most commonly used activation functions in Deep Learning.
We see that the ReLU can not get saturated, thus the gradients do
not vanish. 24

2.3 A figure showing an overview of the Convolution Operation. The
activation map I ∗F is computed by sliding(or convolving) the filter
F over the input image I and computing the dot product between
the filter and its current location on the input image. Figure adapted
from [49]. 28

2.4 The figure shows an input image(a) and an example activation
map(b) from the first Convolutional layer in VGG-16[41]. The acti-
vation map is produced by performing the convolution operation over
the input image, using one of the 64 filters in the first Convolutional
layer. We see that this particular filter seems to act like an edge
detector. 29

3

4 LIST OF FIGURES

2.5 A figure showing the input volume(left) and an example output vol-
ume of neurons(right) in the first Convolutional layer. Each neuron
is only connected to a spatial region, called the neurons Receptive
Field, shown in red. Figure adapted from [30] 29

2.6 An illustration showing a 2× 2 MaxPooling with stride 2. Each max
is taken over a 2 × 2 square. The filter is then moved two squares
for the next computation. Figure adapted from [30]. 30

2.7 The pooling layer downsamples the volume in the spatial(224× 224)
dimension independently for each of the 64 depth slices of the volume.
The volume is pooled with a filter size of 2 × 2 and a stride of 2,
resulting in the spatial dimensions being halved. Note that the
volume depth is preserved. Figure adapted from [30]. 31

2.8 The figure shows a chunk of a RNN in the looped form(left) with
the inputs xt and outputs ht at time-step t. The loop allows the
network to pass information from one time-step to another. The
the unrolled form(right) shows the same network, but with each
time-step discretely visualized. 32

2.9 The figure shows a Bidirectional RNN with both the forward and
backward layers. This enables the network to use both past(xt−n)
and future(xt+n) inputs from the sequence to produce the current
output ht. 33

2.10 The Long Short-Term Memory (LSTM) takes the previous cell state,
Ct−1, the previous output, ht−1 and the current input, xt as input.
The cell state of the LSTM is then modified by the forget gate, ft,
and the input gate, it to produce the current cell state, Ct. The
output, ht of the LSTM is then produced by feeding the cell state
through a tanh activation and then the output gate ot. 35

2.11 The conversion from spatial image to Optical Flow using Gunner
Farneback’s algorithm on our videos of salmon. The direction and
magnitude corresponds to the hue and value planes respectively,
resulting in different colors for different directions of movement. . . . 36

2.12 The figure shows the difference between a sunny day and an overcast
day. In (a) the sunlight is reflected off of the salmon, producing
very bright areas in the frame. In (b) there is no direct sunlight and
therefore very few bright areas in the frame. 39

2.13 The Dual-Stream Network. This network uses two CNNs, one with
regular video frames as input and one with Optical Flow frames as
input. It then combines the feature vector outputs from the two
networks to produce sequences of feature vectors, which are then
used as input to a RNN. 43

LIST OF FIGURES 5

2.14 The 3D-Convolutional Dual-Stream Network. This network uses a
regular CNNs taking video frames as input and one 3D-Convolutional
Neural Network (3D-CNN), taking Optical Flow frames as input. It
then combines the feature vector outputs from the two networks to
produce sequences of feature vectors, which are then used as input
to a RNN. 44

2.15 The Multi-Stream 3D-Convolutional Network. This network uses
two regular CNNs and two 3D-CNNs. One of the regular CNNs
takes full video frames as input, while the other takes cropped still
frames, cropped around the action, as input. The 3D-Convolutional
Networks use a similar approach, but takes Optical Flow frames as
input instead. The Multi-Stream 3D-Convolutional Network then
combines the feature vector outputs from the four networks to pro-
duce sequences of feature vectors, which are then used as input to a
RNN. 45

2.16 The Full Motion Network. The network uses a Recurrent-CNN and a
3D-CNN. The feature vectors from the 3D-Convolutional vectors are
stacked to produce sequences of vectors which are used as input to
a RNN. The outputs from the Recurrent Convolutional Neural Net-
work (RCNN) and the RNN are then combined through a weighted
average to produce the final score. 46

3.1 An illustration showing the camera placement within a breeding cage.
The camera is looking in towards the center of the cage, recording the
salmon swimming in front of it. The recordings are then processed
into regular video and Optical Flow video. 51

3.2 The Dual-Stream approach takes sequences of high-level feature vec-
tors from both a Spatial Stream and a Temporal Stream as input to a
Recurrent Network to fully utilize the spatial and motion information
contained within videos over time. 55

3.3 Distribution of Optical Flow Hue values, in Feeding and NonFeeding
training videos for three different sampling rates. Since the Hue
values correspond to the direction of movement, it is clear that the
Feeding videos contain a lot more variation in the directions of move-
ment than the NonFeeding videos. It is also clear that this difference
is much more visible in the sampling rates using every frame or every
other frame than it is in the every 5th sampling rate. 57

3.4 Feeding and NonFeeding distributions sampled at every frame and
every other frame. The two distributions overlap almost perfectly,
indicating that the distribution is very similar for both sampling rates. 58

3.5 The VGG-16 architecture. Figure adapted from [5]. 60
3.6 The figure shows comparison between three models, trained with dif-

ferent sampling rates. The performance is shown using each model’s
prediction loss for the validation set. It is clear that using every
frame produces lower loss through most of the validation set, thus
using every frame gives better performance. 61

6 LIST OF FIGURES

3.7 Comparison between two frames captured at the same day, but at
different times of the day. The changes in light conditions are clearly
visible. 62

3.8 A comparison showing an input image and the resulting Specular
Removal image, processed using our Specular Removal Preprocessing
Strategy . 63

3.9 The figure shows the validation loss curves for three models, trained
using different preprocessing strategies. The Specular Removal Pre-
processing Strategy model has the lowest loss of all the models, while
the Zero-Center + Unit Variance has the highest loss. We therefore
conclude that the Specular Removal Preprocessing Strategy produces
the best performing models. 65

3.10 The figure shows the validation loss for the three proposed VGG-16
architecture improvements as well as the original VGG-16 architec-
ture. It is clear that using Batch Normalization layers through the
entire network deteriorates performance. We also see that the Batch-
Norm@AllFC and BatchNorm@End architectures both produce sim-
ilar loss and seem to outperform the original VGG-16 architecture.
We finally observe that the BatchNorm@AllFC architecture has fewer
spikes than the BatchNorm@End, thus leading us to conclude that
the BatchNorm@AllFC is the best architecture. 66

3.11 The figure shows the validation loss for six different models trained
with six different data augmentation policies. It is clear that the Flip
and the Flip+Blur policies produces the highest loss. It is also very
hard to separate the Blur and None policies, as they both seem to
outperform the other policies with similar margins. 68

3.12 The final improved VGG-16 architecture used in the Spatial Stream.
We use Batch Normalization layers before every fully connected layer
to improve model performance. 69

3.13 The transformation of 10 consecutive images into an image cube used
as input for the Temporal Stream. 70

3.14 The Multi-Stream Architecture. The convolutions and poolings are
shown in 3D, instead of 4D, to enhance visualization. 73

3.15 The Twin-Stream Architecture. The convolutions and poolings are
shown in 3D, instead of 4D, to enhance visualization. 75

3.16 The shortcut used in Residual Neural Networks. Figure adapted
from [20]. 76

3.17 The building blocks of our 3D-Residual Neural Networks. They
are the 3D-Convolutional equivalents to the original building blocks,
presented in [20] with the modifications from [21]. This enables them
to handle Spatio Temporal input, such as our input cubes, since they
can perform the convolution operation over both space and time. . . 79

LIST OF FIGURES 7

3.18 The figure shows the validation loss curves for four different 3D-
Residual Network architectures, using four different depths. The
101-layer network does not seem to converge and therefore produces
very poor loss curves. The 34-layer architecture seems to be the
optimal depth and produces the lowest loss. 79

3.19 The Long 3D-Residual Network architecture, here shown on the 34-
layer version. We add shortcut connections to each stack of building
blocks to ease model optimization during training. 81

3.20 The figure shows the validation loss for each 3D-Residual Network
architecture and their Long Residual counterparts. Only the 101-
layer architecture seems to benefit from the Long Residual expansion,
thus we do not explore this architecture further. 82

3.21 The figure shows the validation loss for 34-layer 3D-Residual Net-
works trained with two input dimensions(10Frames = 10× 224× 224
and 20Frames = 20 × 224 × 224). We see that using larger input
dimensions improves model performance. 83

3.22 The figure shows the validation loss for three 34-layer 3D-Residual
Networks using three different downsampling strategies. Type C has
the lowest loss valleys, but also the highest peaks. We also see that
the loss at the start and end of the plot is significantly higher for
Type C, thus the average performance is the worst. We also see that
Type A slightly outperforms Type B in most of the plot, indicating
that Type A is the best downsampling strategy. 85

3.23 The figure shows the validation loss for a regular 34-layer 3D-Residual
Network and a Keep Temporal Dimension 3D-Residual Network. We
see that the Keep Temporal Dimension network significantly outper-
forms the regular network through most of the plot, indicating that
the Keep Temporal Dimension network is the superior architecture. . 86

3.24 The final 3D-Residual Network Architecture. We use an input cube,
consisting of 20 consecutive stacked Optical Flow frames, the Type A
downsampling strategy and the Keep Temporal Dimension strategy
for retaining more temporal dimension through the network. 88

3.25 A comparison of the three 3D-Convolutional Network architectures
we have explored. The plot is smoothed to enhance visualization. . . 89

3.26 The Spatial RNN Architecture. We use stacks high-level feature
vectors from the final fully connected layer in our Spatial Stream to
create sequence inputs for the recurernt model. We also use a Batch
Normalization layer before the RNN to improve performance. 90

3.27 The validation loss for three Recurrent Architectures using Action
Snippets of length 10. We see that both the LSTM and the Bidi-
rectional LSTM outperform the Vanilla RNN. We also observe that
the Bidirectional LSTM seems to slightly outperform the LSTM
architecture. 91

8 LIST OF FIGURES

3.28 The validation loss curves for the Bidirectional LSTM and the LSTM
using Action Snippets of length 20(Lower is better). The LSTM
architecture outperforms the Bidirectional LSTM architecture with
a small margin. 92

3.29 The final Spatial RNN. It takes stacks of 20 high-level feature vectors
from the Spatial Stream as sequence input to the Recurrent Network,
which consists of a Batch Normalized LSTM RNN with 256 cells. . . 93

3.30 The Dual-Stream RNN. The network concatenates 20 high-level
feature vectors from both the Spatial Stream and the Temporal Stream
to produce a sequence of 20 feature vectors of size 4608 as input to
a RNN. 94

3.31 The validation loss for the LSTM and the Bidirectional LSTM Dual-
Stream RNNs using Action Snippets of lenght 400. We see that
the LSTM Dual-Stream RNN outperforms the Bidirectional LSTM
Network. 95

3.32 The final Dual-Stream Approach. It averages 20 high-level feature
vectors from final fully connected layer in the Spatial Stream to
produce one high-level average vector. 20 of these vectors are then
concatenated with 20 high-level feature vectors, using the 3D-Global
AvgPool in the Temporal Stream to produce a sequence of 20 input
vectors for the 256-cell, Batch Normalized LSTM Recurrent Network.
This corresponds to an Action Snippet length of 400 frames. 97

4.1 The three network architectures which will be compared in this chapter. 99
4.2 The loss of the three architectures for the entire testing set. Low loss

indicates very good predictions, while high loss indicates very poor
predictions. We see that the Dual-Stream architecture is very stable
through each video, as is indicated by the flat loss curve. This is also
somewhat observable when the it is wrongly classifying videos. This
indicates very similar predictions for the entire duration of each video.108

4.3 The seaweed floating in and out of view from Video 3. The seaweed
moves a quite a lot and covers large portions of the frame for long
durations. This could produce strange activations for the Spatial
Stream and very abnormal Optical Flow frames, thus also negatively
affecting the Temporal Stream. We believe that this is the reason for
the poor performance in Video 3 by all architectures. 110

D.1 A screenshot of the code running on one of the computers used in
this thesis. We see the early training stages of a 34-layer 3D-Residual
Network. 132

List of Tables

2.1 The final selection of included articles along with their study IDs,
authors and publish year. 41

2.2 Ranking of the proposed architectures based on The Architectural
Requirements. The weights for each Architectural Requirements are
shown in bold. 47

3.1 The table shows the three dataset splits with their respective amounts
of frames and percentage of the total amount of data used in this
thesis. 53

3.2 The final average validation accuracies for the three preprocessing
strategies. 64

3.3 The final average validation accuracies for the four VGG-16 architec-
tures. 66

3.4 The average validation accuracies for the data augmentation policies. 68
3.5 Architectures for 2D-ResNets. Building blocks are shown with (in-

put, output) number of filters and the numbers of blocks stacked in
each stack. Downsampling is performed by conv3_1, conv4_1, and
conv5_1 with a stride of 2. Table adapted from [20]. 78

3.6 The average validation accuracies for both our regular and long 3D-
residual networks. 80

3.7 The average validation accuracies for the two input cube dimensions. 83
3.8 The average validation accuracies for the three downsampling strate-

gies. 84
3.9 The output sizes of the different layers in our 3D-Residual Networks.

Downsampling is performed in layers conv1, maxPool, conv3_1,
conv4_1 and conv5_1. 86

3.10 The average validation accuracies for the Original and the Keep
Temporal Dimension 3D-residual networks. 86

9

10 LIST OF TABLES

3.11 The figure shows the validation loss for the three proposed 3D-
Convolutional Network architectures. We see that the 3D-Residual
Network significantly outperforms the other models. 89

3.12 The average validation accuracies for the three Spatial RNNs. 92
3.13 The average validation accuracies for the two Dual-Stream RNN

architectures. 94

4.1 The distribution for the number of videos and number of frames in
our testing dataset. 100

4.2 Overview of the testing videos showing video ID, video class and
number of frames. 101

4.3 Testing results for the Spatial Architecture 103
4.4 Testing results for the Spatial Recurrent Architecture 104
4.5 Testing results for the Dual-Stream Architecture 105
4.6 A comparison of the test results between the Spatial Architecture,

the Spatial Recurrent Architecture and the Dual-Stream Architecture
using Performance Measure 2. 106

4.7 A comparison of the test results between the Spatial Architecture,
the Spatial Recurrent Architecture and the Dual-Stream Architecture
using Performance Measure 4. 106

4.8 A comparison of the test results between the Spatial Architecture,
the Spatial Recurrent Architecture and the Dual-Stream Architecture
using Performance Measure 2. 107

4.9 The validation results compared to the test results for our three
architectures. 109

4.10 The validation results compared to the test results for our three
architectures. 111

4.11 The adjusted test video Action Recognition accuracies for the three
models. 111

B.1 Overview of the testing videos showing video names, video ID, video
class and number of frames. 128

Acronyms

3D-CNN 3D-Convolutional Neural Network. 5, 17, 44–46, 54, 70–72, 74, 83, 89

CNN Convolutional Neural Network. i, 3–5, 13, 15–17, 28–31, 37, 43–46, 54, 61,
70, 71, 76, 77, 114

LSTM Long Short-Term Memory. 4, 7, 8, 32, 34, 35, 43–46, 90–97, 104, 105, 115,
116

RCNN Recurrent Convolutional Neural Network. 5, 46

RNN Recurrent Neural Network. i, v, vii, 4, 5, 7, 8, 10, 15–17, 31–34, 37, 43–46,
54, 90, 92–95, 104, 105, 108, 114–116

SVM Support Vector Machine. 3, 13–15, 20

11

12 Acronyms

Chapter 1
Introduction

This chapter presents the motivation behind this master’s thesis. We present a brief
summary of the work done by the author during a summer internship at SINTEF
Ocean, as well as the work done in the Specialization Project. The findings and
conclusions from the Specialization Project are used as guidelines and motivation
for the hypotheses we present in this thesis. Finally, we give a brief overview of the
thesis structure.

1.1 Motivation
With the rapid development in the aquaculture industry and the rise of salmon
farming on the Norwegian sector, the need for automation and decision support
systems has become apparent in recent years. The Norwegian salmon industry has
become a huge business and the cost of farming has been steadily increasing with
one of the biggest contributing factors being the cost of feed. Feed is approximated
to be accounting for more than half of the total farming costs[13] and thus, big
savings can be made through optimization of the feeding process. There is therefore
much interest in automating this process.

During the summer of 2016, I worked at SINTEF Ocean as a Summer Intern
in the Intelligent Project, where Convolutional Neural Networks (CNNs) were used
as feature extractors for Support Vector Machines (SVMs)[2] to do salmon Action
Recognition in videos. This work was then extended through the subject TDT4501
– Computer Science, Specialization Project, where a literature review was performed
to summarize the current state-of-the-art in human Action Recognition. The main
aim of the Specialization Project was to use the findings from the literature review as
inspiration to design an architecture for Action Recognition in salmon. This Masters
thesis is the natural extension of that work and will show the implementations,
extensions and testing of the architecture proposed in the Specialization Project.

13

14 Chapter 1. Introduction

1.1.1 SINTEF Ocean Intelligent Project
During the summer of 2016, I worked at SINTEF Ocean as a summer intern. I
worked on the Intelligent Project, which is aimed at predicting behavior of salmon
in breeding cages.

Intelligent Project
SINTEF Ocean is leading a project called Intelligent, aiming to develop novel
concepts for salmon behavior prediction in net cages.

1. Novel concepts and methods for processing of underwater image/video data.

2. Novel prediction models applicable to salmon behavior analysis and informed
decision making.

The concepts and methods to be developed in Intelligent, are inspired by state-
of-the-art BigData and Machine Learning concepts and will exploit Deep Learning
and SVM algorithms to enable improved context awareness and intelligence for
monitoring and control of operations in aquaculture industry. Intelligent will lay
a foundation for the use of the Big Data concept in future project development
stages. Technology concepts developed in Intelligent can enable the Norwegian
aquaculture industry to better optimize operations, reduce waste, and increase the
overall sustainability.

Summer Internship
During the summer internship work on the Intelligent Project, led by SINTEF
Ocean, I developed a Twin-Stream architecture for Action Recognition in salmon.
The architecture used two identical, pretrained, versions of the well known AlexNet
Neural Network architecture[28]. The networks used plain video frames and Optical
Flow frames as input respectively and produced high-level feature vectors, which
were then fed into an SVM classifier at the end of each network. The architecture
was then topped with a final SVM classifier, taking the outputs of the two SVM
classifiers as its input, as seen in figure 1.1. This architecture was able to produced
Action Recognition scores around the 65% accuracy mark on out testing videos.

Although these scores are significantly better than a random-guesser classifier,
we believe that they can be significantly improved by including more of the temporal
information contained within videos. The reason for this is that humans have great
trouble classifying the content of a video based on a single frame. This performance
is even further reduced if the frames are from a video where the context is not
immediately clear, such as a darkened underwater frame or very close up frames
of gravel. However, when presented with several seconds of video, humans are
quickly able to classify the videos as videos of a shipwreck or of an ant colony
on the move. Thus we intuitively see that the temporal information in the video
is crucial for accurate classification by humans and that an increase in temporal
information could also lead to even more accurate classifications. We believe that
this observation also holds true for computer vision, thus we want to explore the
effects of increasing the temporal information used by classification architectures.

1.1 Motivation 15

Figure 1.1: The figure shows the Twin-Stream architecture implemented during the
summer internship at SINTEF Ocean. The architecture uses two AlexNet CNNs to
produce feature vectors of the input. One AlexNet takes individual video frames as input,
while the other takes Optical Flow video frames as input. The feature vectors were fed
into separate SVMs which produced outputs, which were then fed into a final SVM for
classification.

Specialization Project
In my Specialization Project, I did a literature review of the field of Human Action
Recognition in videos. Deep Learning has recently demonstrated very promising
results on image classification tasks through the use of CNNs[29]. This approach
has also successfully been extended to Action Recognition in videos of humans
through the addition of Recurrent Neural Networks (RNNs)[42, 51] and has lately
seen the most prominent use for such tasks. It was therefore natural to focus on
Deep Learning-based approaches for the literature review. The findings from the
review were used as inspiration to propose several architectures aimed at Action
Recognition in salmon. These architectures were then compared against each others
based on a set of architecture requirements, specifically designed for underwater
video classification. This comparison lead to a final architecture proposal, which will
be extended and implemented in this master’s thesis. The Specialization Project also
lead to an article1 set to be submitted to Computers and Electronics in Agriculture.

1Måløy H., Misimi E., Aamodt A., Mathisen B. M.; Deep learning architectures for human
action recognition: Transfer learning for action recognition in biomarine environments.

16 Chapter 1. Introduction

1.2 Hypotheses
Today, the feeding process in the salmon industry is usually a manual process, based
on the feed eaten rather than the salmon behavior. An operator is monitoring the
feeding process through the use of underwater cameras with the aim to determine
whether the salmon are eating the feed or not. When the operator can visually
determine that the amount of feed sinking to the bottom of the cage has exceeded
a certain threshold, the feeding process is terminated. Since this requires feed to
already be wasted for the operator observe that the threshold has been exceeded,
we can assume that this method results in a significant amount of feed being wasted.
We therefore want to explore the possibilities of automating this process using Deep
Learning approaches. Since we also aim to reduce the waste of feed during the
process, we want to rely on the behavior of the salmon themselves rather than
on the amount of feed sinking to the bottom of the cage. Since Deep Learning,
through the use of CNNs and RNNs, has already been used to successfully perform
Action Recognition in humans, we want to explore if this is also possible for salmon.
However, human actions are often distinguishable from each other through the pose
of the person, performing the action. If a person is playing baseball, we usually only
need to see a single image to be able to classify the action. These poses are known
as discriminative action poses and have been shown to be a large factor in Deep
Learning Human Action Recognition performance[32]. For salmon, however, it is
not clear that they possess such discriminative action poses. Thus our architectures
might have to rely on the poses of multiple salmon and and how it changes over time
to perform Action Recognition. This analysis therefore leads us to the following
hypotheses for this thesis:

H1: A system based on Convolutional Neural Networks can perform Action
Recognition in videos of salmon with the goal of separating Feeding from
NonFeeding behavior.

We focus on training Neural Networks that are able to separate videos into
Feeding and NonFeeding categories with high accuracy, specifically through the use
of CNNs.

Since this type of network uses single frames to do classification, we propose to
expand the model to include the movements of the salmon, through the temporal
aspects videos, utilizing the fact that videos consists of multiple frames through time.
This will be done by treating the videos as sequences of frames and therefore using
the sequence handling capabilities of RNNs, in conjunction with CNNs to increase
performance. We also want to explore the use of 3D-Convolutional Neural Networks
to treat video segments as cubes of video frames and then perform convolutions
both spatially over individual frames and temporally over multiple frames. This
leads us to our second hypothesis:

H2: The system can be improved by including the temporal dimension con-
tained within videos through the use of Recurrent Neural Networks or a
combination of Recurrent Neural Networks and 3D-Convolutional Neural Net-
works.

1.2 Hypotheses 17

To test the first hypothesis(H1) we have chosen to implement and test a CNN
trained towards the task of Action Recognition in videos of salmon. This will
be done by implementing different architectures, training them from pretrained
checkpoints and testing them on a test set of videos.

The second hypothesis(H2) will be tested though the implementation of several
different 3D-Convolutional Neural Network (3D-CNN) architectures and RNN ar-
chitectures. These will then be used in conjunction with the best model from H1,
to test whether the accuracy is increased on the test set. We will also be comparing
different combinations of the models to each other. Finally a comparison between
the best model in H1 will be compared to the best models in H2 on the test set
to evaluate the possible increase in performance from H1 to H2.

With this as a background, we produce the following scientific contributions in
this thesis:

1. An approach for combining several Deep Learning techniques in a novel ar-
chitecture to produce state-of-the-art Action Recognition results on salmon
by:

(a) Utilizing the temporal dimension through the use of a 3D-Residual Neural
Network in combination with Optical Flow inputs for motion feature
extraction.

(b) Combining the temporal architecture with a spatial CNN for spatial
feature extraction.

(c) Treating videos as a sequence of frames by feeding the temporal and spa-
tial features to a Long Short-Term Memory Recurrent Neural Network.

The results and architectures presented in this thesis also go beyond the current
state-of-the-art and will therefore result in an article to be published in a high
ranking journal. The thesis has therefore also received a delayed release date to
accommodate for this publication.

18 Chapter 1. Introduction

1.3 Structure of the Thesis
This thesis is divided into four main chapters.

Chapter 2 gives a brief overview of the field of Deep Learning as well as an
overview of the environment, from which the data used in this thesis is collected.
It also gives and overview of the previous work in the Specialization Project.

Chapter 3 contains our method and experiments. We introduce our dataset and
explain our approach for arriving at our final architectures for Action Recognition
in salmon.

Chapter 4 presents our testing dataset as well as our results, using our architec-
tures from chapter 3. We also give an in-depth analysis of our results to further
explain them and enhance understanding.

In chapter 5, we give our final conclusion as well as presenting our vision for
future work.

Chapter 2
Theory and Background

This chapter presents the theoretical background of this Master’s thesis. The goal is
that readers who are unfamiliar with the topics presented, can learn what is needed
to understand the later contents of the thesis. The first topic we present is the
field of Deep Learning, presented in section 2.1. We then proceed to the subject of
Activity Recognition in section 2.3, with special focus on the use of Deep Learning
approaches. Then, in section 2.4, we give an introduction to Activity Recognition
in underwater videos of salmon. Finally we present a brief summary of our previous
work in section 2.5.

2.1 Deep Learning
This section gives a brief overview of the theory within the field of Deep Learning.
It is intended to serve as an introduction to the field and to create a theoretical
foundation on which the reader can rely for the rest of the thesis.

2.1.1 Historical Background
Since the start of the Internet, the amount of readily available general data has
grown at an incredible phase. At first, this data mainly consisted of documents
and web pages, but in the later years, this growth has expanded to include photos
and even videos[11]. This has lead computer vision to become one of the biggest
technological advances in the last decade. With a vast array of applications such
as image recognition[38], self driving cars[23] and surveillance[25], computer vision
has become an integral part of many business models. In many of these approaches,
Image Classification plays a major role. This task is very demanding for computers,
as images can contain multiple objects, be taken from different viewpoints and
be occluded or severely cluttered. The goal has therefore been to develop agile
algorithms capable of recognizing objects in complex scenes.

19

20 Chapter 2. Theory and Background

Traditionally this was done using hand-crafted approaches such as Bag of visual
Words (BovW) topped with a classifier such as a Support Vector Machine (SVM)[6,
9]. These approaches produced the state-of-the-art results in image classification
competitions such as ILSVRC [38] for several years. However, recent developments
in Deep Learning has led to drastically increased performance and Deep Learning-
based approaches have taken over as the new state-of-the-art performers[20, 28, 41,
47].

Deep Learning is a field of Machine Learning specializing in statistical models
called Deep Neural Networks. These models can learn complex hierarchical repre-
sentations that correspond to multiple levels of abstractions. This is done through
the use of multiple layers of nonlinear processing units, called neurons, to transform
data, where each layer takes the previous layers as input. This creates a flow of
information, from the input through the network to the output. The way these
models are able to learn such complex representations is through the use of the
Backpropagation Algorithm[37]. This algorithm works in several steps. First, the
error, or cost, between the model output and the true output is calculated through
the use of a cost function. Then the cost for each neuron in the network is calculated
and propagated back through the network. The model weights are then updated
based on these cost calculations, resulting in a gradual increase in performance for
each weight update.

Since 2010 we have seen a drastic improvement in both natural language
processing[4] and image classification through the use of Deep Learning[29], pro-
ducing results that far exceed the competition. In the last five years alone, Deep
Learning has completely transformed the field of Computer Vision. This is not only
due to the fact that these models learn so well, but also because of the introduc-
tion of modern GPUs and an exponential growth in available data[18]. Modern
GPUs allow researchers to greatly parallelize the forward and backward passes
through Neural Networks by utilizing the hugely parallel design of GPUs. This
reduce training times by several time folds, leading to faster development and better
models.

An inherent limitation of Deep Learning is the need for very large datasets for
training. Since the weight update procedure has to be performed thousands if not
millions of times for a even quite simple networks to converge on a good set of
weights, the demand for large amounts of data is obvious. Thus, with more data, we
are able to explore more complex models and achieve better performance. Recently,
the use of pretrained models, already trained on large datasets have shown great
results when used as a starting point for training models towards new tasks. This
approach is known as Transfer Learning, where one can transfer many low-level
representations learned on one dataset to another, drastically reducing the need for
data. This has allowed for a much larger audience to acquire expertise and develop
new models.

2.1 Deep Learning 21

2.1.2 Dataset splits
The most common approach to training Deep Neural Networks is Supervised Learn-
ing. In supervised learning tasks, models learn features from labeled examples and
try to approximate their predictions to the correct labels as much as possible. A
common problem with this approach is a problem known as Overfitting. Overfitting
happens when the model learns features that are not necessarily valid for real-world
examples and become overfit to the training data. Such a model has not learned
general concepts, but rather remembers the correct output for a given example in
the training set. This results in poor performance in the real world. To combat
the problem of overfitting it is common practice to divide the available data into
three partitions, called the training set, the validation set and the testing set. It
is then possible to check for overfitting during training, using the validation set
performance as a guide. An important factor when this partitioning is done is to
make sure that the test set is representative of the data the model will be working
with when deployed. It is also important that the training set is representative of
the validation set and the test set. There are many ways of separating the original
dataset into training, validation and test sets, but a split of 60/20/20 or 50/25/25
are both quite common[19].

Training set
The training set is the partition used to train the model and is also, by far, the
largest of the three partitions. This is a labeled set of data, containing the input
data and the expected output. This expected output is then compared to the output
of the model to calculate the cost for each example in the dataset during training.

Validation set
The validation set is used to validate and tune the model during the training phase.
This is done by measuring the model’s performance on the validation set, without
allowing it to update its weights. This produces a good estimation for how well the
model will perform on the test set. The performance on the validation set is also
a good indication of when a model has become overfit to the training data. When
the validation performance goes from increasing to decreasing during training, it
usually indicates that the model has started to become overfit and further training
will only further deteriorate model performance.

Test set
The test set is used for a final testing of the model. After the model has been tuned
towards the optimal performance on the validation set, it is tested on the test set.
This gives a good indication of how well the finished model will perform on new
data and thus how well it will preform when deployed in the real world. It is very
important that the test set is not used until the model has finished training and
has been fully optimized towards the validation set. This is to avoid researcher bias
and to ensure valid test results.

22 Chapter 2. Theory and Background

2.1.3 Neural Networks
Neural Networks are graphs that consist of one or more connected neurons, or nodes,
with learnable weights W on their connections, or edges, as seen in figure 2.1. Each
neuron also has a learnable bias b, which enables the neuron to activate even for
zero-valued inputs. This is critical for successful learning as it helps the network
to converge on a good set of weights and biases. A neuron receives a set of inputs
x along its edges, computes the dot product over these inputs and its weights. It
then follows it with an optional non-linear activation function f to produce an
output y as shown in equation (2.1). Neural Networks are usually stacked in layers,
where every layer in the network takes the previous layers as inputs. If the network
consists of more layers than the input and output layers, the remaining layers are
usually referred to as hidden layers, as we do not see either the input or outputs
of these layers directly. An example of a simple Neural Network with two hidden
layers is seen in figure 2.1

y = f(
∑
i

Wi • xi + b) (2.1)

Figure 2.1: The figure shows a fully connected Neural Network with an input layer, two
hidden layers and an output layer. This network is of the typical feed forward architecture,
where all connections go forward through the network. Each of the connections between
the neurons also have a weight W . Figure adapted from [30]

The use of a non-linear activation function allows Neural Networks to approxi-
mate any function, including non-convex functions. The activation function takes
a number and does a fixed mathematical operation on it to squash it withing a well
defined range. The three most common activation functions today are:

1. The Sigmoid activation function.

2. The Tanh activation function.

3. The ReLU activation function.

2.1 Deep Learning 23

Sigmoid
The sigmoid activation function, shown in figure 2.2a, takes a real-valued number
and squashes it to a range between 0 and 1. It has the mathematical form presented
in equation (2.2). This results in large positive numbers becoming 1 and large
negative numbers becoming 0. The sigmoid activation function was historically
frequently used since it closely resembles the firing rates of real neurons in real
brains. However, it has seen a decline in the resent years due to the fact that it
can kill the gradients. Since the activations of the neuron can saturate at the tails
of the activation function, the gradient in these regions become very close to zero
and vanish. This leads to almost no signal flow during the backpropagation phase
and hence only very small or no weight updates are being performed. This in turn
leads to a network that stops learning.

f(x) = σ(x) = 1
1 + e−x

(2.2)

Tanh
The tanh activation function, shown in figure 2.2b, squashes a real-valued number
to a range between -1 and 1. Just like the Sigmoid, this activation function suffers
from the same saturation problem at its tails. The mathematical expression for
tanh is shown in equation (2.3)

f(x) = Tanh(x) = ex − e−x

ex + e−x
(2.3)

ReLU
The most popular activation function in recent years is the Rectified Linear Unit
activation function as seen in figure 2.2c. The activation is thresholded at zero and
has the mathematical equation shown in equation (2.4). This activation function
does not suffer from the saturation problem that both the sigmoid and tanh do. This
is due to its linear form and the ReLU has been shown to significantly accelerate
network convergence[29]. However, the ReLU activation function has one drawback.
A large gradient flowing through a ReLU activated neuron can cause the weights
to update in a way that results in the neuron never activating on a datapoint
again, effectively resulting in a "dead" neuron. This is irreversible, but is somewhat
avoidable by setting a good weight update parameters.

f(x) = ReLU(x) = max(0, x) (2.4)

24 Chapter 2. Theory and Background

−10 −5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

(a) Sigmoid activation function.

−10 −5 0 5 10
−1.0

−0.5

0.0

0.5

1.0

(b) Tanh activation function.

−10 −5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

(c) ReLU activation function.

Figure 2.2: The three most commonly used activation functions in Deep Learning. We
see that the ReLU can not get saturated, thus the gradients do not vanish.

2.1 Deep Learning 25

2.1.3.1 The Loss Function

The loss function can be defined as a function from a set of input values to class
scores, parameterized by a set of weights W and a set of biases b. It follows from
this assumption that some sets of parameters are better than others. If a network
is given an image of a ball, but gives the ball class a very low score, we can assume
that this particular set of parameters are not good. The loss function is therefore
a measure of the quality of a particular set of parameters based on how well the
network scores align with the ground truth labels in our training data.

There are several types of loss functions from hinge loss[14] to cross-entropy
loss[36], which all produce a loss function landscape, using all possible combinations
of the parameters. This landscape can be traversed by changing the parameters of
the network.

2.1.3.2 Optimization

The goal of optimization is to find the set of parameters that minimizes the loss
function. This can be viewed as traversing the loss landscape, by updating the
parameters, in order to find the lowest valley. There are several ways of doing this,
but the most common strategy is to follow the gradient through gradient descent.
To follow the gradient, we first compute the gradient of the loss function with our
current set of parameters and then perform a parameter update in the negative
direction of the gradient. This is done iteratively for each example or, batch of
examples, until the optimal set of parameters are found.

2.1.3.3 The Training Process

Training Neural Networks usually follows a set structure in which the network is
fed some training data, a loss is calculated based on the outputs of the network and
the true value for the data. The network then uses the backpropagation algorithm,
to perform a backward pass to find the appropriate weights adjustments for all the
weights and update the weights with these adjustments.

Epochs
When the network has seen all the available training data it has finished one Epoch
of training. A network usually requires several epochs of training before it converges
on a good set of weights.

Mini-Batches
In the earlier days of Neural Networks it was common to feed the network an
individual training example, calculate the loss for this example and updating the
network weights for this example through gradient descent in the backward pass.
In recent years, however, it has become common to compute the loss over several
training examples before preforming the backward pass. This collection of training
examples is called a Mini-Batch. When using mini-batches it is very important to

26 Chapter 2. Theory and Background

shuffle the training dataset at the start of each epoch. This ensures that the mini-
batches do not contain the same examples for every epoch and avoids the network
overfitting to individual mini-batches. Correctly using mini-batches usually results
in smoother convergence as the gradients computed in the backward pass use more
training examples.

2.1.3.4 Data Preprocessing

Data collected in the real world is generally suffering from several drawbacks in
relation to machine learning. It may be incomplete, thus lacking values or certain
attributes. It may be noisy, containing errors or statistical outliers, skewing the data.
And it may be inconsistent, containing discrepancies in codes or labels, such as
mislabeled data. Data preprocessing is a commonly used step to combat these issues
as it transforms the raw data into an understandable format. In Deep Learning,
there are several types of data preprocessing schemes, but the two most common
are:

Zero-Centering
This is the most common form of preprocessing. To zero-center data, the mean is
subtracted across every individual feature in the dataset. This results in centering
the datacloud around the origin along all dimensions. For images it is common to
perform this step by subtracting the the dataset mean from all images.

Normalization
The normalization process involves normalizing the data dimensions in order to
make them approximately the same scale. The most common way of doing this is
to divide each dimension by its standard deviation.

2.1.3.5 Regularization

As we described earlier, a common problem when training Neural Networks is
overfitting. This happens when the network learns the details and noise in the
training data to an extent that negatively impacts the model performance on the
validation data. To avoid this problem, several ways of controlling the learning
capacity of Neural Networks have been devised:

Dropout
Dropout[44] is a regularization technique which involves keeping a neuron active
during training with some probability p, and otherwise turning it of by setting it to
zero. This essentially trains an ensemble of networks, consisting of all sub-networks
that can be formed by removing non-output units from an underlying network.

2.1 Deep Learning 27

Batch Normalization
Batch Normalization[24] is a technique developed to tackle the problem of internal
covariate shift in Deep Neural Networks. Internal covariate shift is the change in
the distributions in network activations due to the change in network parameters
during training. The Batch Normalization layer accounts for this problem through
shifting its inputs to zero mean and unit variance for each mini-batch, resulting in a
normalized input. The exact steps of the batch normalization transform applied to
activation, x, over a mini-batch, B, is given in equation (2.5) and was first presented
by Ioffe and Szegedy in [24].

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β
Output: {yi = BNγ,β(xi)}

µB ←
1
m

m∑
i=1

xi // mini-batch mean

σ2
B ←

1
m

m∑
i=1

(xi − µB)2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B + ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Here ε is a constant added to the mini-batch variance for numerical stability.
(2.5)

Data Augmentation
Data Augmentation is a method for boosting the size of the training set to help
to avoid that the model memorizes it. There are many different ways to perform
data augmentation, but it is most common to augment the data in the ways the
model is supposed to be invariant to. If a model is supposed to be invariant to
rotation, the data augmentation could include various forms of rotation to the
original data. Data augmentation can also be preformed online, meaning that the
data is augmented with a probability p as it is being loaded, instead of having the
augmented data stored. This reduces storage space and means that the model will
be presented with differently augmented data every time.

28 Chapter 2. Theory and Background

2.1.4 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are very similar to regular Neural Networks
as the same principles are being used and the network still expresses a single differ-
entiable score function. The main difference lies within the fact that a CNN assumes
that its inputs are matrices of numbers, such as images, for image classification, or
sentence matrices, for natural language processing. This allows for the convolution
operator to be encoded. CNNs consist of three main building blocks. Convolutional
layers, pooling layers and fully connected layers. These layers are stacked on top
of each other to form a finished CNN.

The Convolution Operator The convolution operator is the fundamental basis
of the convolutional layers in CNNs. Given a two-dimensional input such as an
image, I, it uses a small matrix of weights known as a filter, F , of size h × w, to
compute the convolved image or activation map of that filter as shown in figure 2.3.
The activation map is computed using equation (2.6).

(I ∗ F)xy =
h∑
i=1

w∑
j=1

Fij • Ix+i−1,y+j−1 (2.6)

Figure 2.3: A figure showing an overview of the Convolution Operation. The activation
map I ∗ F is computed by sliding(or convolving) the filter F over the input image I and
computing the dot product between the filter and its current location on the input image.
Figure adapted from [49].

2.1.4.1 Convolutional Layer

The convolutional layers are the main layers of CNNs. These layers consist of a
set of several learnable filters. The filters are slid, or convolved, over the width
and height of the input volume, computing the dot product. This produces that
filter’s 2D activation map of the input as seen in figure 2.4. The filters act as feature
extractors and activate when they see a particular type of visual feature that excites
them. In the first, most basic layers, this can be edges or blobs of colors and in
the later layers, we see more advanced patterns such as circles or faces. The filters,
together with individual neuron biases are what is learned in the learning process

2.1 Deep Learning 29

for CNNs. A convolutional layer usually contains multiple different filters, which
in turn produce multiple different activation maps. Thus, the convolutional layer
produces a stack of these activation maps along the depth dimension called the
output volume.

0 50 100 150 200

0

50

100

150

200

(a) Input image.

0 50 100 150 200

0

50

100

150

200

(b) 2D Activation map.

Figure 2.4: The figure shows an input image(a) and an example activation map(b)
from the first Convolutional layer in VGG-16[41]. The activation map is produced by
performing the convolution operation over the input image, using one of the 64 filters in
the first Convolutional layer. We see that this particular filter seems to act like an edge
detector.

It is important to note that the neurons in a convolutional layer are not connected
to all the neurons in the previous layer’s output volume. Instead each neuron is
only connected to a local region of the volume as shown in figure 2.5, called the
neuron’s receptive field. The connections in the receptive field are local in the
spatial dimensions, but always full through the depth dimension, meaning that the
receptive field is full along the entire depth of the input volume.

Figure 2.5: A figure showing the input volume(left) and an example output volume of
neurons(right) in the first Convolutional layer. Each neuron is only connected to a spatial
region, called the neurons Receptive Field, shown in red. Figure adapted from [30]

Another important property of the convolutional layer, is the use of parameter
sharing. This assumes that if it is useful to compute a feature at one spatial position

30 Chapter 2. Theory and Background

of the input (x, y), it should also be useful to compute this feature at a different
position (x2, y2). If we denote a 2D slice of depth as a depth slice, shown in figure
2.7, we say that all the neurons in a depth slice are sharing the same filter. This
results in a dramatic reduction in parameters in each layer, as these parameters
are shared within depth slices. This makes CNNs able to handle large image data
inputs, without suffering from slow training times, as the amount of parameters in
the network is still manageable.

2.1.4.2 Pooling

It has become common practice to insert a pooling layer between a set of convolution
layers in most CNNs. The pooling layer reduces the spatial size of the representation
in order to reduce the number of parameters in the network. The pooling layer
operates on each depth slice independently and resizes it in the spatial dimension.
The most commonly used pooling version has a filter size of 2× 2, a stride 2 as seen
in figure 2.6. The most common pooling layer is the maxPool layer. The maxPool
filter selects the maximum value over a square of 2× 2 numbers and outputs that
number. A stride of 2 corresponds to the filter being moved two steps to the side or
down for each calculation. This results in the number of activations being decreased
by 75% as seen in figure 2.7. There are also other functions such as AveragePooling
and L2-normPooling. However, MaxPooling is the preferred pooling function, as it
often performs better in practice.

Figure 2.6: An illustration showing a 2 × 2 MaxPooling with stride 2. Each max is taken
over a 2×2 square. The filter is then moved two squares for the next computation. Figure
adapted from [30].

2.1 Deep Learning 31

Figure 2.7: The pooling layer downsamples the volume in the spatial(224×224) dimension
independently for each of the 64 depth slices of the volume. The volume is pooled with a
filter size of 2 × 2 and a stride of 2, resulting in the spatial dimensions being halved. Note
that the volume depth is preserved. Figure adapted from [30].

2.1.4.3 3D-Convolutions

Traditional CNNs are two-dimensional CNNs. This means that they are using
2D filters and produce a 3D volume of 2D depth slices as their output. It is,
however, very possible to extend this type of layer to become three-dimensional
Convolutional Layers. This is done by increasing the dimensionality of the filters to
3D and increasing the dimensionality of the input. This results in a 4D volume of
3D depth cubes as the output. For videos, this can be done by stacking sequential
video frames together, producing a cube of frames as the input. The 3D filters
are then convoluted over this cube in both the spatial and depth dimensions. This
produces depth slices that not only learn features in a single image, but also how
they transform through time in a video. This results the network learning spatio
temporal filters that are able to extract useful features in both space and time.

2.1.5 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) separate themselves from regular neural net-
works through their ability to handle sequences of input. Regular neural networks
can only accept a fixed-sized input vector and only calculate a corresponding fixed-
sized output vector. They also use the exact same steps for every input example
to calculate their output. RNNs, on the other hand, are able to handle both sin-
gle example input vectors and sequences of input vectors. They can also produce
single outputs as well as sequences of outputs, making these networks very flexible.
They do this, using loops to pass information from one time-step of the network
to the next. This property enable RNNs to handle sequential input data, such

32 Chapter 2. Theory and Background

as sequences of words for natural language processing for transforming speech to
text[17] or machine translation[46]. There are several different types of RNNs, but
all of them can be visualized as a chain of repeating modules, known as cells, as
seen in figure 2.8. The most common types are Vanilla RNNs and Long Short-Term
Memory (LSTM) RNNs.

Figure 2.8: The figure shows a chunk of a RNN in the looped form(left) with the inputs
xt and outputs ht at time-step t. The loop allows the network to pass information from
one time-step to another. The the unrolled form(right) shows the same network, but with
each time-step discretely visualized.

Vanilla Recurrent Neural Networks
The Vanilla RNN cell architecture is very simple. It consists of an input vector, a
hidden state and an output vector. The hidden state is calculated using the input
vector and the previous state as shown in equation (2.7) and the looped form in
figure 2.8, where Whh and Wxh are learnable weight matrices. Then the output
vector is calculated as shown in equation (2.8). In other words, the network uses the
previous state to calculate the output at the current state and since the previous
state was calculated the same way, the network uses the entire sequence to produce
the current output.

ht = tanh(Whhht−1 +Wxhxt) (2.7)

yt = Why • ht (2.8)

Bidirectional Recurrent Neural Networks
Regular RNNs are only able to process information from the past, through previous
examples in a sequence. They are therefore not able to use the entire input sequence,
with examples from both the past and the future to produce their current-state
output. Bidirectional RNNs[39], on the other hand, are able to use both future
and past examples in an input sequence to produce its current-state output. They
do this by processing the data in both directions with two separate hidden layers,
which are then fed to the same output node, as seen in figure 2.9.

2.1 Deep Learning 33

Figure 2.9: The figure shows a Bidirectional RNN with both the forward and backward
layers. This enables the network to use both past(xt−n) and future(xt+n) inputs from the
sequence to produce the current output ht.

Vanishing and exploding gradients
Vanilla RNNs commonly suffers from a problem of learning dependencies over longer
sequences. Vanilla RNNs can be visualized as a deep feed forward neural network,
where each timestep corresponds to one layer in the unrolled network as seen in
figure 2.8. Since the derivative of the tanh function is close or equal to zero in the
saturated areas, multiple matrix multiplications, as a result of multiple timesteps,
can result in the gradient completely vanishing for distant timesteps. This then
results in no weight updates being made and the network stops learning from these
timesteps. Conversely, the gradient might also explode, resulting large updates
being made to the weights and thus disrupting the learning process. In section
2.1.3, we saw that a common way to initially combat these problems was to use
the ReLU activation function. However, for RNNs, the introduction of the Long
Short-Term Memory network is the preferred solution.

34 Chapter 2. Theory and Background

Long Short-Term Memory Recurrent Neural Network
LSTM networks are specially designed to combat the problem of vanishing and
exploding gradients. The way LSTM RNNs do this is through their special cell
architecture. The LSTM architecture’s main component is the cell state Ct as seen
in figure 2.10. The cell state is a highway for information with only two linear
interactions. This enables information to flow through the cell largely unchanged.
The LSTM cell is also capable of removing and adding carefully regulated informa-
tion to the cell state through three gates. The three gates are the forget gate(ft),
the input gate(it) and the output gate(ot). Each gate has its own set of learnable
weights Wf ,Wi,Wo and biases bf , bi, bo.

The forget gate decides what information is going to be removed from the
cell state. It takes ht−1 and xt as input and calculates the output as shown
in equation (2.9)

ft = σ(Wf • [ht−1, xt] + bf) (2.9)

The input gate decides which values in the cell state is going to be updated.
It works in conjunction with a vector of candidate values C̃t to decide what
information is going to be added to the cell state. This is done through the
operation it ∗ C̃t, where it and C̃t are given by (2.10) and (2.11) respectively.

it = σ(Wi • [ht−1, xt] + bi) (2.10)

C̃t = tanh(WC • [ht−1, xt] + bC) (2.11)

The output gate decides what parts of the cell state is going to be output
from the cell. This is done through equation (2.12)

ot = σ(Wo • [ht−1, xt] + bo) (2.12)

The output of the LSTM cell is based on the current cell state and the output
gate. The cell state is updated by the forget gate and the input gate as shown in
(2.13) to produce the current cell state Ct, which is then squashed by a tanh and
multiplied with ot to produce the final output ht of the LSTM cell, as shown in
equation (2.14).

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.13)

ht = ot ∗ tanh(Ct) (2.14)

2.2 Optical Flow 35

Figure 2.10: The LSTM takes the previous cell state, Ct−1, the previous output, ht−1
and the current input, xt as input. The cell state of the LSTM is then modified by the
forget gate, ft, and the input gate, it to produce the current cell state, Ct. The output,
ht of the LSTM is then produced by feeding the cell state through a tanh activation and
then the output gate ot.

2.2 Optical Flow
Optical Flow is a pattern illustrating the motion of image objects between two or
more consecutive frames. These motions are usually caused by the movement of
the objects in the frame, but can also be caused by the movement of the camera.
Optical Flow works on two main assumptions:

1. The pixel intensities of an object do not change between consecutive frames

2. Neighboring pixels have similar motion,

If we consider a pixel P (x0, y0, t0) in frame 0. This pixel is moved by a distance
(dx, dy) in frame 1, taken after dt time. We therefore end up with equation (2.15)

36 Chapter 2. Theory and Background

P (x1, y1, t1) = P (x0 + dx, y0 + dy, t0 + dt) (2.15)

We can then take the taylor series approximation of the right-hand side, remove
the common terms and divide by dt to get equation (2.16)

fxu+ fyv + ft = 0 (2.16)

where fx, fy, u and v are given by the Optical Flow equation, shown in equation
(2.17). We see that fx and fy are the image gradients and that ft is the gradient
along the time dimension.

fx = δf

δx
; fy = δf

δy

u = dx

dt
; v = dy

dt

(2.17)

There are several methods to find u and v, but a common one is the Gunner
Farneback’s algorithm[12]. This algorithm produces a 2-channel array of Optical
Flow vectors (u, v) with magnitude and direction as shown in figure 2.11.

(a) Spatial image. (b) The resulting Optical Flow image.

Figure 2.11: The conversion from spatial image to Optical Flow using Gunner Farneback’s
algorithm on our videos of salmon. The direction and magnitude corresponds to the
hue and value planes respectively, resulting in different colors for different directions of
movement.

2.3 Human Activity Recognition 37

2.3 Human Activity Recognition
This section will give a brief overview of the field of Human Activity Recognition.

2.3.1 Action Recognition and Action Detection
Human activity recognition has spiked interests in several industries involved with
computer vision in recent years. Human activity recognition is a field concerned
with classifying human actions performed in videos. It can be separated into two
subtasks:

1. Human Action Recognition

2. Human Action Detection

Human Action Recognition
Human Action Recognition involves classifying individual videos. For this task,
each video contains only one class of action, and the goal is for the system to
accurately classify the action performed in the video.

Human Action Detection
Human Action Detection, on the other hand, is concerned with detecting actions
through continuous videos. This means that any given video contains multiple
classes of actions and the goal of the system is to accurately segment the video into
correctly classified segments.

The field Human Activity Recognition has become an important research do-
main, spanning different applications, such as sport analysis [43], human computer
interaction[35], and video surveillance[45]. It is also of general interest to the field of
computer vision as it expands the ability of machines to understand the contents of
video. There are several standardized datasets for human Activity Recognition, but
the most commonly used are the UCF-101[43] and Sports1M[26] Action Recognition
datasets. These datasets include videos of different humans, performing several
classes of actions from several different angles under a variety of conditions.

Human Activity Recognition is considerably more challenging than regular image
classification, as it relies on videos for inputs. This combines the challenges of both
image recognition and sequence handling, as videos are constructed of sequences of
single image frames. Since 2012, we have seen complete domination in both image
recognition[38] tasks and natural language processing tasks[40] through the use of
CNNs and RNNs. This has lead researchers to believe that a combination of these
techniques could do the same for Human Action Recognition. Thus, recent years
have seen a dramatic increase in use of Deep Learning architectures for Human
Action Recognition tasks. In section 2.5, we show that the the current state-of-the-
arts performance on both UCF-101 and Sports1M are driven by Deep Learning
approaches.

38 Chapter 2. Theory and Background

2.4 The Salmon Activity Domain
This section will present the Salmon Activity Domain and give an overview of how
it distinguishes itself from Human Activity.

2.4.1 Salmon in Videos
The Salmon Activity Domain distinguishes itself from the Human Activity in several
ways. The most noticeable is that there are only two classes of actions in the salmon
domain whereas the standard human Activity Recognition datasets often include
over 100 classes. The two classes in Salmon Activity Recognition are:

1. Feeding

2. NonFeeding

The Feeding class contains videos of salmon that are feeding throughout the entire
video. The NonFeeding class contains videos of salmon that are not feeding for
the entire duration of each video. This makes the Salmon Activity Domain very
suitable for Action Recognition. Another area where the two domains differ sig-
nificantly are the surroundings in the videos. The human domain include a vast
variety of surroundings from outdoor river rafting to indoor keyboard typing. This
makes many of the classes immediately recognizable purely on the basis of their
surroundings. Conversely, the salmon domain is limited to underwater video from
within a breeding cage at sea. Thus the surroundings in the videos from both
classes in the salmon videos are very similar.

The fact that the videos are captured under water also introduces several different
challenges, as light behaves quite different in water, compared to air. When light
hits the surface of the ocean it is reflected off the surface to a varying degree,
depending on the state of the water. The rougher the surface, the more light is
reflected, resulting in a dimmer scene for the camera to capture. The light that
does penetrate the surface is also refracted as light travels at different speeds in
air and water. Water also scatters and absorbs different wavelengths of light due
to particles in the water, resulting in different shades of color based on the depth
of the camera position. These factors may be further enhanced by the weather at
the facility where the videos are captured. Direct sunlight produces very different
lighting conditions compared to overcast weather. This is evident, not only in the
shades of color and amount of light in the scene, but also in the amount of light
reflected off of the fish themselves. As more direct sunlight is present in the scene,
more light is also reflected off of the fish, producing very bright areas in the frames
as seen in figure 2.12.

2.4 The Salmon Activity Domain 39

(a) A frame from a day with direct sun-
light. The specular reflection off the
salmon produces very bright areas in the
frame.

(b) A frame from a day with overcast
weather. There are very few bright areas
in the image.

Figure 2.12: The figure shows the difference between a sunny day and an overcast day.
In (a) the sunlight is reflected off of the salmon, producing very bright areas in the frame.
In (b) there is no direct sunlight and therefore very few bright areas in the frame.

The final major difference between the salmon and human domain is that human
activities often can be classified purely based on the pose of the human in the video.
If a human is posed to kick a football, we might quite easily classify the actions
as "playing soccer" just by observing the human in that defining pose. This has
also been observed in Deep Learning approaches through the use of discriminative
action poses to supplement videos during training[32]. Fish, on the other hand,
might not possess such defining poses. They are also often occluded by other fish,
thus it might not be possible to discern whether fish are eating or not based on
their pose alone. We therefore believe we are more dependent on the motion of the
fish through time in the Salmon Activity Domain. Another aspect of the Salmon
Activity Domain is the fact that fish act together in a shoal, thus shoal behavior
and pose might be just as indicative of Feeding or NonFeeding fish as individual
fish behavior and should therefore also be considered when developing solutions for
this domain.

40 Chapter 2. Theory and Background

2.5 Previous Work
During the fall semester of 2016, a Specialization Project was done in preparation
for this master’s thesis and as part of the subject TDT4501 – Computer Science,
Specialization Project. Since research on Salmon Activity Recognition is limited
at best, the goal of the Specialization Project was to create an overview of the
state-of-the-art in Human Action Recognition approaches. The project was then
aimed to conclude with proposing an architecture for Salmon Activity Recognition,
using the findings in human action recognition as inspiration. To create an overview
of the state-of-the-art in Human Action Recognition, a systematic literature review
was performed.

2.5.1 Systematic Literature Review
A systematic literature review is a process in which the available primary studies
on a subject are gathered and filtered through a series of well-defined steps. This
filtration produces a final set of studies containing the most relevant research. This
approach is most prevalent in medical research, but has seen increased use in other
fields in recent years.

According to Kitchenham and Charters[27], a systematic literature differentiates
itself from unsystematic reviews by using a strict framework of well-defined steps,
which in turn are being performed according to a predefined protocol. This enables
other researchers to reproduce the results from the literature review.

The systematic literature review
The systematic literature review was conducted through four main phases:

1. The research question phase
This phase required a set of literature research questions to be formulated.
The goal was for these questions neither to be too specific nor too vague,
and to still clearly target the problem faced in the project. It resulted in the
following research questions:

LRQ1: How can a combination of CNNs and RNNs be used to do action
recognition in videos?
LRQ2: How do the different architectures found compare to each other?
LRQ3: What implications do these approaches have for the domain of
action recognition in salmon?

2. The search phase
The goal of this stage in the review process is to find all the studies that
are relevant to the stated literature research questions. We did this, using a
two-step search strategy:

(a) The first step was to identify which sources that should be searched.
This was done by locating relevant online digital libraries and search
engines.

2.5 Previous Work 41

(b) The second step was to create a structured way of searching the sources.
This was done by building a search string through the use of key search
terms and logical operations. This enabled us to search 48 search strings
in one search through permutations of the search terms.

3. The filtering phase
The goal of the filtering phase is to filter out the irrelevant articles and to
create a final selection of articles. To achieve this, a set of inclusion and
quality criteria were developed to help with the objectivity in the selection
process. Articles were filtered through both the inclusion criteria and the
quality criteria to create the final set of selected articles. This resulted in the
articles seen in table 2.1 to be included in the review:

Table 2.1: The final selection of included articles along with their study IDs, authors and
publish year.

ID: Title: Authors: Published
year:

ST001 Long-term Recurrent Convolutional
Networks forVisual Recognition and
Description

Donahue, J. et
al.[10]

2015

ST002 Recurrent Neural Networks and
Transfer Learning for ActionRecogni-
tion

Giel, A. and
Diaz, R.[15]

2015

ST003 Beyond Short Snippets: Deep Net-
works for Video Classification

Yue-Hei Ng, Joe,
et al.[52]

2015

ST004 ARCH: Adaptive recurrent-
convolutional hybrid networksfor
long-term action recognition

Xin, Miao, et
al.[50]

2015

ST005 Multimedia Event Detection via Deep
Spatial-Temporal NeuralNetworks

Hou, Jingyi, et
al.[22]

2016

ST006 A Very Deep Sequences Learning Ap-
proachfor Human Action Recognition

Lin, Zhihui, and
Chun Yuan[31]

2016

ST007 A Multi-Stream Bi-Directional Recur-
rent Neural Network forFine-Grained
Action Detection

Singh, Bharat,
and Ming Shao
[42]

2016

ST008 Recurrent Convolutional Neural Net-
works for VideoClassification

Xu, Zhenqi,
Jiani Hu,
and Weihong
Deng[51]

2016

4. The analysis phase
The goal of the analysis phase was to perform an analysis of the final set of
articles with regards to the literature research questions. This included a com-
parison of the different architectures and an analysis on how the architectures
could be used as inspiration for the salmon action recognition domain.

42 Chapter 2. Theory and Background

2.5.2 Proposing an architecture
After we had concluded the systematic literature review, we used our findings to
propose several different architectures aimed at performing Activity Recognition
on salmon. The architectures were also developed with extra considerations to the
Salmon Activity Recognition Domain. The proposed architectures were explained
and compared to each other based on a set of Architectural Requirements developed
from analyzing the Salmon Activity Recognition Domain.

AR1: The architecture for the Salmon Activity Recognition Domain should
be robust to changes in light conditions.

AR2: The architecture for the Salmon Activity Recognition Domain should
consider both individual fish movements as well as the movement of the entire
shoal of fish.

AR3: The architecture for the Salmon Activity Recognition Domain should
be able to handle longer sequences of video.

AR4: The architecture for the Salmon Activity Recognition Domain should
be possible to implement and test for a single student as the work for a
Master’s thesis.

2.5 Previous Work 43

The Dual-Stream Network(DSN)
The Dual-Stream architecture features two streams of VGG-16[41] CNNs. The first
stream handles still frames extracted from videos, while the second stream uses
optical flow as its input. The feature vectors are extracted from fc6 in both networks
and are then combined as input to a set of two fully connected layers. Sequences of
feature vectors from fc8 are extracted and used as input to a bi-directional LSTM
RNN for the final sequence processing. The LSTM network is topped with a softmax
to produce the final score for a sequence. The design can be seen in figure 2.13.

Figure 2.13: The Dual-Stream Network. This network uses two CNNs, one with regular
video frames as input and one with Optical Flow frames as input. It then combines the
feature vector outputs from the two networks to produce sequences of feature vectors,
which are then used as input to a RNN.

44 Chapter 2. Theory and Background

The 3D-Convolutional Dual-Stream(3D-DS)
This approach is very similar to the Dual-Stream architecture. It uses one VGG-
16 CNN for still frames and a network for optical flow. The difference comes
in the optical flow network. Taking inspiration from ST004, we proposed a 3D-
convolutional optical flow network in the hopes of capturing more temporal features
when compared to the DSN. The rest of the architecture is exactly the same as the
Dual-Stream and uses a bi-directional LSTM network with a softmax to produce
the final scores for a sequence. The design of the network can be seen in figure 2.14

Figure 2.14: The 3D-Convolutional Dual-Stream Network. This network uses a regular
CNNs taking video frames as input and one 3D-Convolutional Neural Network (3D-CNN),
taking Optical Flow frames as input. It then combines the feature vector outputs from
the two networks to produce sequences of feature vectors, which are then used as input
to a RNN.

2.5 Previous Work 45

The Multi-Stream 3D-Convolutional Network(MS3D)
This architecture is heavily inspired by the architecture described in ST007. It
consists of four CNNs, where two of them are taking still frames of video as input
and two are using optical flow. The two different types of network both contain one
network for handling full frames and one network for cropped action regions using
bounding boxes around individual fish. This allows for motion from both individual
fish and the shoal of fish to be captured explicitly. The Optical Flow networks are
also inspired by ST004 and use 3D-CNNs to capture even more temporal information.
The four networks are then fused using two fully connected layers before sequences
of activations are fed into a bi-directional LSTM network which calculates the final
score using a softmax. The design of the network can be seen in figure 2.15

Figure 2.15: The Multi-Stream 3D-Convolutional Network. This network uses two
regular CNNs and two 3D-CNNs. One of the regular CNNs takes full video frames as
input, while the other takes cropped still frames, cropped around the action, as input.
The 3D-Convolutional Networks use a similar approach, but takes Optical Flow frames as
input instead. The Multi-Stream 3D-Convolutional Network then combines the feature
vector outputs from the four networks to produce sequences of feature vectors, which are
then used as input to a RNN.

46 Chapter 2. Theory and Background

The Full Motion Network(FMN)
This architecture takes inspiration from both ST008 and ST004 to produce an
architecture that is highly focused around motion features. It contains two streams
of two different types of CNNs. The first stream is a Recurrent Convolutional Neural
Network (RCNN) where all the convolutional layers are replaced with Recurrent
Convolutional layers as described in ST008. To further capture temporal and
motion features, the fully connected layers of the CNN architecture is replaced with
LSTM networks topped with a softmax classification layer. The second stream
consists of a 3D-CNN which takes Optical Flow as input. The sequences of feature
vectors outputted from this network are then stacked and fed into an LSTM network
topped with a softmax classification layer. Finally the two streams are fused using
a weighted average for the outputs, producing the final score. The design of the
network can be seen in figure 2.16:

Figure 2.16: The Full Motion Network. The network uses a Recurrent-CNN and a
3D-CNN. The feature vectors from the 3D-Convolutional vectors are stacked to produce
sequences of vectors which are used as input to a RNN. The outputs from the RCNN and
the RNN are then combined through a weighted average to produce the final score.

The four architectures were then compared and ranked based on a weighted
sum of The Architectural Requirements as shown in table 2.2, resulting in the final
proposal of the 3D-Convolutional Dual-Stream. This architecture is, to the best of
our knowledge, an original and novel architecture both for addressing the temporal
aspects of motion and for the Salmon Activity Recognition Domain.

2.5 Previous Work 47

Table 2.2: Ranking of the proposed architectures based on The Architectural Requirements.
The weights for each Architectural Requirements are shown in bold.

Architecture: AR1: AR2: AR3: AR4: Total:
3D-DS 1.0 1.0 1.0 1.0 7.0
DSN 1.0 0.0 1.0 1.0 6.0
FMN 1.0 1.0 1.0 0.5 5.5
MS3D 0.5 1.0 1.0 0.5 4.5
Weights 2.0 1.0 1.0 3.0 N/A

48 Chapter 2. Theory and Background

Chapter 3
Method and Experiments

This chapter will first present the programming libraries used for this thesis. It
will then give a description of our dataset and how we have processed it in our
work. Next it presents the method and experiments we have used to arrive at the
architectures used in the rest of this thesis.

3.1 Deep Learning Development Platforms
This section will give an overview of the Deep Learning libraries used during the
implementation and testing phases of this thesis. We implemented all models using
the Python APIs of the libraries presented.

3.1.1 TensorFlowTM

TensorFlowTM[1] is an open source Machine Learning library developed by Google
to meet their needs for a system capable of developing and testing Neural Networks.
It uses data flow graphs to do numerical computations, where nodes and edges in
the graph represent mathematical operations and tensors respectively. It allows the
user to run code on both CPU and GPU, enabling faster computations through
parallelization. TensorFlow provides an extensive suite of functions and classes
that allow users to build models from scratch with abundant customization options.
TensorFlow also facilitate making checkpoints when performing experiments and an
extensive amount of visualization options, making it a natural choice for research.

49

50 Chapter 3. Method and Experiments

3.1.2 TfLearn
A downside of TensorFlow’s widely available customization options is the amount of
code needed to accurately specify a model. This problem is addressed by TfLearn[7].
TfLearn provides a modular and transparent Deep Learning library, built on top
of TensorFlow with the intention to provide a high-level API to TensorFlow. It
provides an easier-to-read code structure and requires fewer lines of code to get a
model running, while still giving the option for full customization, as all functions
are built over TensorFlow. This enables researchers to speed up the experimentation
process through faster prototyping and testing.

3.2 The Salmon Activity Recognition Dataset
This section will introduce the reader to the dataset used for training, validating
and testing of the code implemented during this thesis. It enables the reader to
better understand the analysis given in chapter 4 and the design choices made
during implementation.

3.2.1 Summer Internship Dataset
During the summer internship we were given a dataset consisting of 16 color videos
of salmon taken from within a breeding cage. The videos were captured at 25 frames
per second with a resolution of 640×197 pixels. Each video had a duration of 8
seconds, resulting in a total dataset size of 3200 frames. Given that standard Deep
Learning datasets for image classification range from a few hundred thousand to
several million images, this dataset is extremely small. Initial testing also revealed
that the content of two of the videos differed significantly from the rest, in that
these two videos contained salmon swimming very close to the camera compared to
the others. We also found that the videos in the Feeding and NonFeeding classes
were easily distinguishable based on the color tint in the videos as a result from the
videos being captured during different light conditions.

This required both preprocessing and data augmentation in order to normalize
the data as much as possible. We therefore turned all the videos into grayscale to
account for the color tint. As described in section 1.1.1, we were able to produce an
architecture with classification accuracies around the 65% mark. Given the nature
of this dataset we concluded that the dataset was too small and that a new dataset
was needed to improve this score.

3.2.2 The Master’s Thesis Dataset
For this master’s thesis we did an acquisition of a new dataset and much larger
dataset. It consisted of videos were collected in northern Norway, during November
of 2016. They were recorded, using a single breeding cage and a standardized proce-
dure to produce the most consistent recordings possible. The camera was mounted
looking inward towards the center of the cage during both Feeding and NonFeeding
videos and captured at intervals of 2000, 5000 and 20000 frames throughout the day.

3.2 The Salmon Activity Recognition Dataset 51

The total dataset consisted of 76 videos, taken at a resolution of 224×224 pixels
with RGB color channels and at 24 frames per second. An illustration of the video
capture rig is given in figure 3.1. The videos were then labeled according to the
feeding times, provided by the feeding operator at the farming facility. However,
from comparing the feeding schedule, and video capture times, we found that some
were captured at the transition phase between Feeding and NonFeeding fish. These
videos were therefore edited to remove this transition phase, resulting in correctly
labeled videos. This editing involved removing all parts of a video closer than 3
minutes in time from the transition phases.

Figure 3.1: An illustration showing the camera placement within a breeding cage. The
camera is looking in towards the center of the cage, recording the salmon swimming in
front of it. The recordings are then processed into regular video and Optical Flow video.

When compared to the Summer Internship Dataset, this has resulted in a much
improved dataset with smaller deviations between the videos. The size of the
dataset was also significantly increased to around 8.6 hours of video, after it had
gone through the labeling process and quality check. This gives us a much better
foundation to base our research and we believe that the results presented, using
this dataset, will be much more representative than the results from the Summer
Internship.

52 Chapter 3. Method and Experiments

3.2.2.1 Dataset Split

When splitting the original dataset into training, validation and test sets, we decided
to split the videos based on dates. This ensures that all videos from a particular
date is only present in one of the three subsets. The reasoning behind this split
was twofold:

1. The conditions for a particular day might enable the model to overfit on other
factors than the behavior of the fish, such as how the camera moves or the
light conditions for that day. Splitting on dates avoids this.

2. Splitting the dataset based on dates gives the best representation of the
performance that can be expected if the model is deployed on a breeding site
and starts receiving new video data.

However, splitting the data in this fashion also creates more challenging valida-
tion and test sets. Since we split the dataset on dates instead of individual videos,
we increase the possibility of the validation and test sets containing conditions,
not well represented in the training set. This split was chosen intentionally in
order to give a good representation of performance on new videos and to prove the
robustness of our architectures through a challenging dataset split.

3.2.2.2 Dataset analysis

Although the new dataset is significantly larger than the dataset from the summer, it
still pose some challenges. Most importantly, the distribution between Feeding and
NonFeeding videos is not equal. Of the 8.56 hours of videos, 2.88 hours are Feeding
and 5.68 hours are NonFeeding. This corresponds to approximately 249260 Feeding
frames and 491540 NonFeeding frames. In order to avoid our models developing a
learning bias towards NonFeeding behaviour, we are dependent on having an equal
amount of both Feeding and NonFeeding frames in our training set. We also want an
equal distribution of Feeding and NonFeeding frames in our validation set in order
to get an accurate representation of both Feeding and NonFeeding performance.
We are therefore limited to using a subset of the NonFeeding examples for these
phases. The exact sampling procedure is described in Appendix A. Another factor
is the length of each video. Since the videos ranges from 2000 to 20000 frames per
video this produced some difficulties when splitting the data.

The size of the split was set to approximate a 60%, 20%, 20% split, as much as
possible. However to ensure an accurate representation of the models performance
on new data, we included videos from three separate dates, spread over the entire
data collection period in our test set. To achieve the test set size we wanted, we
were forced to use dates containing mostly videos of duration 5000 frames. Our
validation set only contain videos from a single date to ensure that the training set
would be big enough. Thus, the final dataset contains 5.77 hours of video, split over
training, validation and test datasets of size 65.55%, 17.20%, 17.25% respectively.
The dataset split is also seen in table 3.1.

3.2 The Salmon Activity Recognition Dataset 53

Table 3.1: The table shows the three dataset splits with their respective amounts of
frames and percentage of the total amount of data used in this thesis.

Dataset Name Number of Frames Hours of Video % of Total Dataset
Training Dataset 326768 3.78 65.55%
Validation Dataset 85760 0.99 17.20%
Testing Dataset 86000 0.99 17.25%
Total Dataset 498528 5.77 100.00%

Cage Overfitting
Since all the videos are collected from a single breeding cage, we note that the model
might also become overfit toward this particular cage, learning cage specific fish
behavior rather than general salmon behavior. This problem can only be overcome
by collecting videos from multiple cages and multiple farming facilities. However,
this is not viable for this master’s thesis and we will therefore only present results
valid for this specific cage. However, we believe that the approaches presented in
this thesis are generally valid for all cages.

Separating Data into Action Snippets
Since the main measure of performance for this thesis is Video Action Recognition
Accuracy, we should ideally report this measure of accuracy for each video in our
validation set. However, our validation set only contains a total of 9 videos which is
to few examples to give a good measure of performance. For training, the number
of videos is 20 Feeding videos and 27 NonFeeding videos, giving us a total of 47
training examples for Video Action Recognition. Standard Deep Learning datasets
for Action Recognition usually contain anywhere from several thousand to over one
million videos in the training data[26]. We therefore decided to segment the videos
into shorter Action Snippets for the training and validation phases to produce
more examples in our datasets. These Action Snippets range in duration from
single frames to 400 frames, depending on the model architecture. The validation
results presented in this chapter are therefore reported using Action Snippets Action
Recognition accuracies and losses instead of Video Action Recognition accuracies
and losses. This gives us a more detailed presentation of architecture performance,
thus giving us more data to work with. In our test results, we also provide the Action
Snippet Action Recognition accuracies for better comparison with our validation
results.

54 Chapter 3. Method and Experiments

3.3 The Dual-Stream Approach
In section 2.5 we arrived at a 3D-Convolutional Dual-Stream as the best suited
approach to explore in this master’s thesis. This approach was designed to fully
utilize the information contained within videos. The approach combines two differ-
ent Neural Network streams to produce high-level feature vector representations of
the videos and then feed these vectors into a Recurrent Neural Network (RNN) for
sequence processing. The Dual-Stream architecture is shown in figure 3.2

Spatial Stream
The first stream is the Spatial Stream. It consists of a Convolutional Neural Network
(CNN), taking individual video frames as input. By using individual video frames
as input, the Spatial Stream could able to learn a correlation between the spatial
properties of individual fish and the shoal, and which class of behavior is exhibited
in the frame.

Temporal Stream
The second stream is the Temporal Stream. It consists of a 3D-Convolutional Neural
Network (3D-CNN), taking Optical Flow, generated from the videos, as input. By
using Optical Flow as input, the Temporal Stream could learn motion features, thus
learning how the motion of the salmon and the shoal is related to Feeding and
NonFeeding behavior.

Recurrent Network
The Recurrent Network takes sequences of high-level feature vectors from both the
Spatial Stream and the Temporal Stream as input and process these as sequences
of video frames. This enables the Dual-Stream to process both spatial and motion
information through time. This could enable it to learn how changes in both
the Spatial Stream and the Temporal Stream, over time, is related to Feeding and
NonFeeding behavior.

The Final Classification Layer
Since we only have two classes in our dataset, Feeding and NonFeeding, we will be
using the same final classification layer for all the architectures presented in the
remainder of the thesis. Our classification layer consists of a single output, sigmoid
activated, fully connected layer. The sigmoid activation squashes our output to a
range between 0 and 1, thus enabling us to represent our two classes as 0 and 1 for
NonFeeding and Feeding respectively. When calculating the model accuracies, we
round the outputs to the nearest integers by forcing every number < 0.50 to 0 and
every number ≥ 0.50 to 1. Thus we have the following prediction intervals for our
two classes:

1. NonFeeding = [0.0, 0.50).

2. Feeding = [0.50, 1.0].

3.4 Data Preparation 55

Figure 3.2: The Dual-Stream approach takes sequences of high-level feature vectors from
both a Spatial Stream and a Temporal Stream as input to a Recurrent Network to fully
utilize the spatial and motion information contained within videos over time.

3.4 Data Preparation
Since our Dual-Stream approach requires both spatial data and Optical Flow data,
this section will give an overview of how we generated these two types of data.

3.4.1 Spatial Data
The spatial data consists of the individual image frames, extracted from the videos.
Since it is very impractical and slow to extract the frames from each video each time
they are needed, we created a tree folder structure and extracted all the frames for
storage in this structure. The frames were extracted using the OpenCV library[3]
and stored in a folder tree that separates test-, training- and validation sets as
individual folders. The frames for Feeding and NonFeeding were also separated
within each sub dataset, thus the folder structure consists of three sub dataset folders,
each with their own Feeding and NonFeeding folders. This enables us to manage
the data much more easily while training models as well as giving us a deterministic
dataset, that produces the same results given the same initial parameters.

3.4.2 Optical Flow Data
For convenience, we stored the Optical Flow frames in an identical tree folder struc-
ture as the spatial data. The Optical Flow dataset was generated using OpenCV’s
implementation of the Farneback’s algorithm [12]. This produces a 2-channel ar-
ray with Optical Flow vectors which are then stored as a Hue, Saturation and
Value(HSV) image. Here, the Direction array is stored in the Hue channel and
Magnitutde array is stored in the Value channel, the final Saturation channel is
filled with the maximum pixel value of 255. This enables us to color code the

56 Chapter 3. Method and Experiments

direction of movement between frames, by assigning different colors to different
directions of movement.

Since Optical Flow is generated from the relative motion of pixels between frames,
we also wanted to explore the effects of generating Optical Flow datasets at different
sampling rates from the videos. We therefore created three different datasets, where
we sampled and generated Optical Flow from every frame, every other frame and
every fifth frame. The reasoning behind this was that Optical Flow, generated
from more distant frames, might contain more discriminative motion patterns, thus
enabling the temporal models to learn better motion features. Figure 3.3 shows the
difference in distributions of Hue values for both Feeding and NonFeeding, using the
three sampling rates. From the figure we find that there is a significant difference
in the swimming directions between the Feeeding and NonFeeding classes. And
we can see that videos of feeding salmon contain a lot more variation, indicating
that the salmon are not swimming as coherent when feeding. As we can also see
from figure 3.3, the distributions for frames sampled at every frame and every other
frame look very similar. Indeed a direct comparison, seen in figure 3.4, reveals that
their distributions are virtually the same. This has two implications which will be
further explored in section 3.6:

1. The two datasets are very similar and contain virtually the same motion
information.

2. The dataset sampled at every other frame is half the size of the dataset
sampled at every frame, while still containing the same motion information.
This might enable us to produce models that learn the same motion features
in half the training time by training on this dataset.

3.4 Data Preparation 57

−100 −50 0 50 100 150 200 250 300

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035 Feeding
NonFeeding

(a) Distribution for Optical Flow Hue
values, sampled at every frame.

−100 −50 0 50 100 150 200 250 300

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035 Feeding
NonFeeding

(b) Distribution for Optical Flow Hue
values, sampled at every other frame.

−100 −50 0 50 100 150 200 250 300

0.000

0.002

0.004

0.006

0.008

0.010 Feeding
NonFeeding

(c) Distribution for Optical Flow Hue
values, sampled at every fifth frame.

Figure 3.3: Distribution of Optical Flow Hue values, in Feeding and NonFeeding training
videos for three different sampling rates. Since the Hue values correspond to the direction
of movement, it is clear that the Feeding videos contain a lot more variation in the
directions of movement than the NonFeeding videos. It is also clear that this difference is
much more visible in the sampling rates using every frame or every other frame than it is
in the every 5th sampling rate.

58 Chapter 3. Method and Experiments

−100 −50 0 50 100 150 200 250 300

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035 Feeding_EveryFrame
NonFeeding_EveryFrame
Feeding_Every2nd
NonFeeding_Every2nd

Figure 3.4: Feeding and NonFeeding distributions sampled at every frame and every other
frame. The two distributions overlap almost perfectly, indicating that the distribution is
very similar for both sampling rates.

3.5 The Spatial Stream
This section will present the work done while developing the Spatial Stream of the
Dual-Stream approach. It will present the choice between using a pretrained network
or training a network from scratch, compare several preprocessing strategies and
the use of data augmentation. Finally it will present the final Spatial Model used
in the rest of this thesis.

3.5.1 Transfer Learning
When approaching a new classification task, a common practice in Deep Learning is
to use a pretrained model to perform Transfer Learning. Transfer learning assumes
that a model trained on a similar classification task can be used as a starting
point for a model performing a new classification task to shorten training times.
However, using a pretrained model might also introduce some negative aspects. If
the model is not capable of handling our dataset, we could be forced to process our
dataset to meet the model’s requirements, risking to loose valuable information in
the process. Our dataset could also be very different than the data the model was
trained on. This could mean that starting from a pretrained model could result in
worse performance than starting from scratch.

For our task, however, we assume that a Neural Network trained on the ImageNet
dataset[38] has learned good features for images and thus is a better starting point
for our classification task than starting from scratch. We also believe that, since our
dataset consists of videos of salmon, it is suitably similar to the ImageNet dataset,
especially since images of fish are already part of the ImageNet dataset. Using a
pretrained model also introduces two other benefits for our purpose:

3.5 The Spatial Stream 59

1. We do not have to spend time developing and testing our own specialized
network architecture.

2. Training time is greatly reduced as the network has already learned good
filters and only has to fine-tune these to the new classification task.

We therefore conclude that we fine-tune our Spatial Stream from a pretrained
model, rather than training it from scratch.

3.5.2 The Pretrained Model
For our implementation, we have chosen to use the well known VGG-16 architecture[41].
All our implementations using the VGG-16 architecture are fine-tuned networks,
starting from a VGG-16 model trained on a subset of the ImageNet dataset, used
in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)[38]. This
network is trained using single images as input, thus we use Action Snippets con-
sisting of individual frames for the Spatial Stream. The specific checkpoint used as
a starting point for our models is the checkpoint available through TfLearn, found
at [8]. There are three main reasons for choosing VGG-16:

1. Many of the best performing architectures dealing with the Human Action
Recognition problem use this network for feature extraction[22, 31, 42].

2. The pretrained weights for VGG-16 is readily available in the libraries we use
for our implementation.

3. VGG-16 has a particularly easy to understand structure, which makes our
implementation easier to understand and visualize.

VGG-16
VGG-16 is a Deep Covolutional Neural Network, designed by Karen Simonyan and
Andrew Zisserman. Their goal was to uncover the effects of depth on a network’s
accuracy on large-scale image recognition tasks. They take a fixed size input of
224× 224 pixel, 3-channel images, use filters with size 3× 3 and maxPoolings with
filter size 2× 2 and a stride of 2. They also double the amount of filters after every
maxPooling to maintain the amount of parameters. The network is topped with
three fully connected layers, where the fist two are of size 4096 and use a ReLU
activation function. The final classification layer is a softmax activated layer of
size 1000, to reflect the number of classes in the ILSVRC dataset. During training,
they also used two Dropout layers between the two final fully connected layers.
This helped regularize the network and thus improved its accuracy. In their work,
Simonyan and Zisserman found that accuracy increased with the network depth
and proposed two new architectures in VGG-16, as seen in figure 3.5 and VGG-19.
The VGG-19 architecture expands upon the VGG-16 architecture by adding an
additional convolutional layer to the 56× 56, 28× 28 and 14× 14 stacks in figure
3.5. Both these architectures significantly improved on the previous state-of-the-art
on the ImageNet challenges, but they also suffer from having an enormous amount

60 Chapter 3. Method and Experiments

of trainable parameters. This puts limitations on the memory and parallelization
capabilities of even the newest GPUs. It is therefore common to use the slightly
smaller VGG-16 instead of VGG-19 when fine-tuning from a pretrained model, even
though VGG-19 actually performs slightly better in terms of accuracy.

Figure 3.5: The VGG-16 architecture. Figure adapted from [5].

3.5.3 Using Every Frame
For video classification tasks, it is common practice to use every frame from the
videos in the dataset for both training and testing of spatial networks. However, from
visual inspection of the Salmon Dataset, we observe that all the videos look very
similar, with up to several consecutive frames looking almost identical. We therefore
explore the effects of using different sampling frequencies to train our Spatial Stream
model. A subsampling of the training dataset could result in drastically reduced
training times as each epoch would only contain a fraction of the original dataset.
Given the limited amount of time for this master’s thesis, this could enable us
to explore a larger variety of model architectures. We therefore compared three
different sampling rates during training:

1. Sampling every frame from the videos.

2. Sampling every other frame from the videos.

3. Sampling every fifth frame from the videos.

We compare models fine-tuned with each of the three sampling rates on the
validation set to explore the effects of the sampling rates. The validation results are
presented in figure 3.6. From this comparison we find that there is a real advantage
to using every frame from the videos. We therefore use every single frame from the
training dataset with our approach when training all the following models for the
Spatial Stream.

3.5 The Spatial Stream 61

0 200 400 600 800 1000
Frame Number(x 85)

0

1

2

3

4

5

6

Lo
ss

Every_2nd
Every_5th
Every_Frame

Figure 3.6: The figure shows comparison between three models, trained with different
sampling rates. The performance is shown using each model’s prediction loss for the
validation set. It is clear that using every frame produces lower loss through most of the
validation set, thus using every frame gives better performance.

3.5.4 Image Preprocessing
As we described in section 2.1.3.4, data collected from the real world might not be
directly usable for machine learning. Thus a preprocessing step might be required.
For the Salmon Activity Recognition Domain we outline two main factors of noise
in the dataset:

1. The lighting conditions. Lighting conditions in different videos may vary
significantly due to both time of day and weather conditions. This produces
different color tints in the water, as well as different amounts of light in the
frame, depending on the conditions during video capture. Thus a need for
normalizing the data across these factors is identified.

2. Specular reflections from salmon in the videos. Since the salmon skin
is very reflective, there are some conditions which produce very bright specular
reflections in the videos. Since CNNs use matrix dot products as their main
operation, a very bright area of an image could produce abnormal activation
maps in the convolutional layers. Thus we identify the need to eliminate these
specular reflections.

To handle the different lighting conditions in our dataset, we decide to gray scale
all our videos, creating videos consisting of 3 identical grayscaled channels instead of
the regular RGB channels. This is done to avoid our network overfitting to specific

62 Chapter 3. Method and Experiments

color tints in the training set due to differences in lighting conditions. To further
normalize and prepare our data we experiment with two different preprocessing
strategies, explained in section 3.5.4.1 and section 3.5.4.2.

3.5.4.1 Our Own Preprocessing Strategy

With the videos being gray scaled, we are able to deal with the color tint introduced
by different lighting conditions. However, we do not address the different amounts
of light as a result of the time of capture. If a video is captured late in the day, it
may be significantly darker than a video captured near noon as a result of under
exposure. This effect is seen in figure 3.7. We therefore equalize the histograms
for every frame. This improves the contrast in underexposed images and thus
helps normalizing our data over the different exposures we get from the different
conditions during video capture.

(a) A video frame captured at 11:58 in
late November.

(b) A video frame captured at 15:42 in
late November.

Figure 3.7: Comparison between two frames captured at the same day, but at different
times of the day. The changes in light conditions are clearly visible.

The next step in our preprocessing method is to zero-center and normalize the
dataset. We calculated the mean and standard deviation of the entire training
dataset and subtract this mean from every image to zero-center the data. We also
divide every image by the standard deviation to create a unit variance dataset. This
is common practice in many Deep Learning applications as it helps the models to
learn from the content of the images rather than the lighting conditions or exposure
values.

Our final preprocessing step is to set very bright and very dark pixels to zero.
This is done to handle the specular reflections from the salmon skin in direct light.
It also zeroes out very dark areas of the videos as these are not important for our
task. Since zero-valued pixels do not affect the matrix dot products, this results in
more appropriate activation maps in our model. We call our preprocessing strategy

3.5 The Spatial Stream 63

the Specular Removal Preprocessing Strategy. A comparison between an input image
and a preprocessed image can be seen in figure 3.8.

Possible Limitations to our Preprocessing Strategy
Since the pretrained model of VGG-16 was trained using a different preprocessing
strategy than our Specular Removal Preprocessing Strategy, it is worth noting that
our fine-tuned model could suffer from our preprocessing steps. The reason for this
is that it places our data in another region, in relation to the ImageNet data, than it
would be located had we used the original VGG-16 preprocessing strategy. This also
means that the pretrained model is also trained on data with a different distribution
than our own dataset. This could make it more difficult for the pretrained model
to produce accurate predictions using this preprocessing strategy, thus resulting
in the need for more fine-tuning or in worse results overall. In section 3.5.4.3
we therefore compare our Specular Removal Preprocessing Strategy to the original
VGG-16 preprocessing strategy.

(a) The original input video frame (b) The preprocessed video frame

Figure 3.8: A comparison showing an input image and the resulting Specular Removal
image, processed using our Specular Removal Preprocessing Strategy

3.5.4.2 VGG-16 Preprocessing

When training the VGG-16 architecture for ILSVRC, Simonyan and Zisserman did
not do much preprocessing of the ILSVRC dataset. In fact, the only preprocessing
step they used was to subtract the pixel-wise mean image value of the entire training
dataset, effectively zero-centering the dataset. We fine-tune a VGG-16 network
from a pretrained model, subtracting the ILSVRC-mean from the Salmon Dataset.
This does not zero-center our data, but rather makes our data fit better with the
ILSVRC data. Since the pretrained model is trained on the ILSVRC dataset, this
also makes our data fit better with what the pretrained model is used to seeing,
thus it might converge on a better set of parameters.

64 Chapter 3. Method and Experiments

Table 3.2: The final average validation accuracies for the three preprocessing strategies.

Preprocessing Strategy Avg. Validation Accuracy
VGG-16 subtracting ILSVRC-mean 84.4%
VGG-16 using zero-centered + unit variance data 80.5%
VGG-16 using Specular Removal Preprocessing
Strategy

86.7%

3.5.4.3 Comparing the Preprocessing Strategies

To decide which preprocessing strategy to use, we compare three alternatives:

1. VGG-16 subtracting ILSVRC-mean

2. VGG-16 using zero-centered + unit variance data

3. VGG-16 using our Specular Removal Preprocessing Strategy

We fine-tune three models, each using only one of the three preprocessing strategies
and compared them using the validation set. We include the zero-centered + unit
variance data, preprocessing to see the added effects of histogram normalization and
removal of specular reflections in our Specular Removal Preprocessing Strategy. The
comparison results are shown in figure 3.9, as well as the final average validation
accuracies in table 3.2. From these results, it becomes clear that the Specular
Removal Preprocessing Strategy significantly outperforms the other strategies and
improves upon the standard VGG-16 preprocessing strategy by 2.21%. We can also
see from figure 3.9 that the Specular Removal Preprocessing Strategy on average,
produces a slightly flatter curve, indicating that the model is less inclined to prefer
a particular class over the other. Finally, we note that the model trained using only
the zero-centered + unit variance data actually performs worse than the original
VGG-16 model with the ILSVRC-mean, indicating that the extra preprocessing
steps in the Specular Removal Preprocessing Strategy add a real benefit.

3.5 The Spatial Stream 65

0 200 400 600 800 1000
Frame Number(x 85)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Lo

ss
VGG-16_PlainNet_ImPrep=ZeroCenter+UnitVariance
VGG-16_PlainNet_ImPrep=ILSVRC-mean
VGG-16_PlainNet_ImPrep=SpecularRemoval

Figure 3.9: The figure shows the validation loss curves for three models, trained using
different preprocessing strategies. The Specular Removal Preprocessing Strategy model has
the lowest loss of all the models, while the Zero-Center + Unit Variance has the highest
loss. We therefore conclude that the Specular Removal Preprocessing Strategy produces
the best performing models.

3.5.5 Improving the VGG-16 Architecture
Since the salmon data is quite different from the ImageNet data, we believe we can
enhance the performance of our model by expanding the VGG-16 architecture with
Batch Normalization layers before the final classification layer. We also remove the
two dropout layers between the fully connected layers since Batch Normalization
has a regularizing effect on its own. As we described in section 2.1.3.5, Batch
Normalization tackles the problem of internal covariate shift, by normalizing each
mini-batch. We therefore believe that using a Batch Normalization layers while fine-
tuning a model will help to account for the fact that our dataset is quite dissimilar
to the ILSVRC dataset, by normalizing the salmon data for each mini-batch. We
propose three variations of Batch Normalized VGG-16 networks:

1. A single Batch Normalization layer, before the final classification layer.

2. Three Batch Normalization layers. One before every fully connected layer.

3. A fully Batch Normalized network. Here, we use Batch Normalization layers
before every layer in the network, except the pooling layers.

We compare these architecture improvements together with the original VGG-16
architecture in figure 3.10. All the architectures were fine-tuned from the pretrained

66 Chapter 3. Method and Experiments

VGG-16 model, using the Specular Removal Preprocessing Strategy and compared
on the validation set. From table 3.3 and figure 3.10, we see that using a Batch
Normalization layer before every fully connected layer, improves the validation
accuracy by 2.4% over the standard VGG-16 architecture and by 1.4% compared to
the VGG-16 architecture with a single Batch Normalization layer. We also note that
the fully Batch Normalized network is the model struggling the most, indicating
that only Batch Normalizing the fully connected layers is beneficial. Thus, we
can conclude that using Batch Normalization layers between fully connected layers
increases performance by a significant margin.

0 200 400 600 800 1000
Frame Number(x 85)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

VGG-16_PlainNet
VGG-16_BatchNorm@AllFC
VGG-16_BatchNorm@End
VGG-16_BatchNorm@AllLayers

Figure 3.10: The figure shows the validation loss for the three proposed VGG-16 archi-
tecture improvements as well as the original VGG-16 architecture. It is clear that using
Batch Normalization layers through the entire network deteriorates performance. We also
see that the BatchNorm@AllFC and BatchNorm@End architectures both produce similar
loss and seem to outperform the original VGG-16 architecture. We finally observe that the
BatchNorm@AllFC architecture has fewer spikes than the BatchNorm@End, thus leading
us to conclude that the BatchNorm@AllFC is the best architecture.

Table 3.3: The final average validation accuracies for the four VGG-16 architectures.

VGG-16 Architecture Avg. Validation Accuracy
VGG-16 Plain Model 86.7%
VGG-16 Batch Normalized all layers 82.4%
VGG-16 Batch Normalized all FC 89.1%
VGG-16 Batch Normalized final FC 87.7%

3.5 The Spatial Stream 67

3.5.6 Data Augmentation
Data Augmentation is a commonly used strategy to increase the size of datasets
by augmenting the original dataset to create additional data points. It is also used
to produce more robust models in Machine Learning by introducing noise to the
training data. For our purposes, we believe that our dataset is sufficiently large,
but that we could see benefits in terms of a more robust model if we introduce noisy
data through data augmentation. We propose five different data augmentation
policies in order to enhance our model’s performance:

1. Blur

2. Flip

3. Rotate

4. Flip+Blur

5. Flip+Rotate

As we mentioned in section 3.2.2, our data only comes from one breeding cage
and is captured using a single camera, thus this camera only sees the salmon
swimming from the same angle. As we saw from section 3.4.2, the Hue values
are noteably different for Feeding and NonFeeding data. Since the Hue channel
represents direction, it is clear that Feeding salmon have more erratic swimming
patterns than NonFeeding salmon. We therefore propose to flip our training data
in order to avoid our model overfitting to the direction the salmon are swimming.
We also propose to rotate our training data by up to 5 degrees to account for the
effects waves and underwater currents might have on the camera, making our model
more robust to extreme weather conditions. The same reasoning is also used for
the addition of blurred data, since camera movements produced by weather could
result in blurry images. Finally we also explore the effects of combining the aug-
mentation strategies to further improve model robustness. Figure 3.11 and table
3.4 show the results of using the different data augmentation strategies. All models
were fine-tuned from the same VGG-16 checkpoint and using the Specular Removal
Preprocessing Strategy, but with their respective data augmentation policies. From
the results we see that data augmentation actually seems to deteriorate our ar-
chitecture’s performance, but that blurring the images does the least harm. We
believe that this is because our un-augmented dataset contains enough variation
to produce a sufficiently robust model. We also note that our validation data is
captured from the same breeding cage and in similar conditions as the training
data. This means that all the data will look very similar. However, had we used
data from several cages, we might have seen a better effect from using the data
augmentation policies. We therefore conclude that not using data augmentation
produces the best model for our dataset.

68 Chapter 3. Method and Experiments

0 200 400 600 800 1000
Frame Number(x 85)

0

2

4

6

8

10

12

14

Lo
ss

DataAug=Flip+Blur
DataAug=Flip+Rotate
DataAug=None
DataAug=Blur
DataAug=Flip
DataAug=Rotate

Figure 3.11: The figure shows the validation loss for six different models trained with six
different data augmentation policies. It is clear that the Flip and the Flip+Blur policies
produces the highest loss. It is also very hard to separate the Blur and None policies, as
they both seem to outperform the other policies with similar margins.

Table 3.4: The average validation accuracies for the data augmentation policies.

Data Augmentation Strategy Avg. Validation Accuracy
VGG-16 DataAug=Blur 88.5%
VGG-16 DataAug=Flip 87.4%
VGG-16 DataAug=Rotate 87.2%
VGG-16 DataAug=Flip+Blur 85.3%
VGG-16 DataAug=Flip+Rotate 87.6%
VGG-16 DataAug=None 89.1%

3.5 The Spatial Stream 69

3.5.7 The Final Spatial Stream
Using the results presented above, we can produce the final architecture to be used
in our Spatial Stream and its training strategy. As we saw earlier, using every frame
in the training dataset resulted in increased performance. We also found that using
our Specular Removal Preprocessing Strategy significantly improved performance of
the architecture. Using Batch Normalization layers before every fully connected
layer also resulted in a notable performance increase, while Data Augmentation had
a degrading effect. From these observations we conclude that our Spatial Stream
will consist of an improved VGG-16 Architecture, using Batch Normalization layers
before every fully connected layer. The architecture is also trained using:

1. Action Snippets of length one.

2. Every frame from the training data.

3. Our Specular Removal Preprocessing Strategy.

4. No Data Augmentation

Our final Spatial Stream is presented in figure 3.12.

Figure 3.12: The final improved VGG-16 architecture used in the Spatial Stream. We
use Batch Normalization layers before every fully connected layer to improve model per-
formance.

70 Chapter 3. Method and Experiments

3.6 Temporal Stream
This section will present the work done while developing the Temporal Stream in the
Dual-Stream architecture. It will present and compare several drastically different
network architectures. Finally it will present the final model used as the Temporal
Stream.

3.6.1 Capturing Temporal Information
As we mentioned in section 1.1.1, we believe that more temporal information will
result in better classification accuracy. Thus we propose using a 3D-CNN as our
Temporal Stream. As described by Tran et al. [48], 3D-CNNs are better suited for
learning spatiotemporal features compared to 2D-CNNs, therefore making them an
obvious choice for our Temporal Stream. We also saw from [50] that combining
3D-CNNs with Optical Flow further enhances the ability of these networks to learn
temporal information. We therefore use this as inspiration and use Optical Flow
as input to our Temporal Stream.

Optical Flow Input
Since 3D-CNNs are able to use the convolution operation in three dimensions, we
are able to learn correlation between pixels in a single frame as well as how they
transform through several consecutive frames from a video. We therefore expand
our input for the Temporal Stream to an image cube of several stacked consecutive
video frames as seen in figure 3.13. This means that the Action Snippet length for
the Temporal Stream is the same as the number of stacked consecutive video frames
used in the image cube.

Figure 3.13: The transformation of 10 consecutive images into an image cube used as
input for the Temporal Stream.

3.6 Temporal Stream 71

Preprocessing
For our Optical Flow data, the only preprocessing steps we apply are zero-centering
and unit variancing the data. Optical Flow is generated from the movement of
pixels through time and not the content of the video frames. it therefore does
not suffer from problems such as specular reflection or poor lighting conditions. It
therefore does not need to be processed further.

3.6.2 Developing a 3D-Convolutional Network Architecture
Since research on the use of 3D-CNNs for video classification is very limited, there
are no available pretrained models for us to fine-tune. We are therefore forced
to develop our own architecture and train it from scratch. When developing new
architectures, it is often a good idea to look to what other researchers have done.
In general, it seems that most 3D-CNNs used in research are not as deep as their
2D counterparts[25, 33, 48]. This is because 3D-CNNs often are used for different
types of tasks than 2D-Convolutional Networks. The increase in dimensionality
from 2D to 3D also brings with it an increase in the amount of trainable parameters
and therefore also an increase in the demands on GPU memory. It also leads to
increased training times, thus forcing researchers to stick to shallower architectures.
However, since an increase in depth proved beneficial for 2D-CNNs on ILSVRC as
seen in [20, 41], we also want to explore the effects of depth in our 3D-Convolutional
architectures. We therefore propose three different 3D-CNN architectures:

1. Taking inspiration from Ji et al. [25], we propose a Multi-Stream 3D-Convolutional
Network.

2. Taking inspiration from Tran et al. [48], we propose a Twin-Stream 3D-
Convolutional Network.

3. Taking inspiration from He et al. [20], we extend the Residual Neural Network
architectures to use 3D-Convolutional layers, producing a 3D-Convolutional
ResNet.

Using Every Other Frame for Faster Architecture Exploration
To explore and compare multiple architectures for our Temporal Stream also requires
us to train these architectures. In order to speed up training times, while still
producing models that are comparable to each other, we decided to use a Optical
Flow dataset sampled at every other frame. This halves the amount of data used for
training and speeds up training times. In figure 3.4, we show that the distribution of
Hue values are virtually identical for Optical Flow data sampled at every frame and
every other frame. This indicates that we should be able to train models producing
representative validation results using Optical Flow data, sampled at every other
frame. When we have found our final 3D-Convolutional architecture, we will train
that model, using the Optical Flow dataset sampled at every frame.

72 Chapter 3. Method and Experiments

3.6.2.1 Multi-Stream

For our Multi-Stream network architecutre, we take inspiration from Ji et al.[25]
and their 3D-CNN for Human Action Recognition. In their work, Ji et al. take
7 consecutive video frames as input and applies a set of hardwired filters to pro-
duce multiple channels of information, resulting in 33 feature maps divided over 5
different channels. These channels are: gray, gradient_x, gradient_y, optflow_x
and optflow_y. They then apply two different sets of convolutions with a filter size
of 7 × 7 × 3(7 × 7 in the spatial dimension and 3 in the temporal dimension) to
each of the five channels separately. This creates two sets feature maps for each
channel. However the difference in the two convolution sets is not specified by Ji et
al. They then subsample their feature maps through a 2× 2 subsampling to reduce
the spatial resolution. Their next step is to further increase the amount of feature
maps, by applying three different sets of convolutions with filter size 7× 6× 3, to
each of the channels in each of previous feature maps. They again fail to mention
the specifics of the differences in their convolution kernels. This results in 6 different
sets of feature maps for each channel. They again perform a subsampling, this time
using a size of 3 × 3. They finally apply a convolution with a filter size of 1 × 1
to all the sets of feature maps, before they apply their classifier through a fully
connected layer.

Since we only use Optical Flow as input to our architecture we do not apply
any hardwired filters to produce additional channels of information. However we
are inspired by the approach used by Ji et al., to apply different convolutions to
the input to produce more information. In our approach we aim to create multiple
representations of the temporal information in order to better represent the motion
of salmon in our architecture. We therefore apply two different sets of convolutions
to our input to produce two streams. Both convolutions use spatial filter of size
7×7, but we use different filter sizes for the temporal dimension in the two streams.
The first stream uses a filter of size 3, while the other uses a filter of size 5. This
creates two temporal representations of our input data. We then use a maxPooling
layers with filter size 2 × 2 × 2 to reduce the size of our feature maps. We next
apply three different convolutions with filter sizes: 7× 7× 3, 5× 5× 3 and 3× 3× 3
to each of the two streams. This creates different spatial interpretations of the two
streams and results in 6 streams with different feature maps. These feature maps
are then downsampled through maxPooling layers, using a filter size of 2× 2× 2,
to further reduce the size of each feature map. We then apply a fully connected
layer with 256 units, before we apply our classification layer. Our Multi-Stream
architecture is shown in figure 3.14.

3.6 Temporal Stream 73

Figure 3.14: The Multi-Stream Architecture. The convolutions and poolings are shown
in 3D, instead of 4D, to enhance visualization.

74 Chapter 3. Method and Experiments

3.6.2.2 Twin-Stream

For the Twin-Stream network architecture, we look to the findings of Tran et al.
[48]. They experimented with 3D-CNN and the effect of different filter sizes in
the temporal dimension. They compared six different networks, all with the same
architecture, but using a different strategy for the temporal filter depth. The network
architecture consisted of five convolutional layers, each immediately followed by a
pooling layer with filter size 2×2×2. The exception to this was the first layer, which
used a pooling of size 2× 2× 1 to avoid downsampling the temporal dimension too
early. They topped the architecture with two fully connected layers with 2048 units
and a final softmax classifier. The number of filters for the convolutional layers were
64, 128, 256, 256 and 256 from the first to last layer. They compared architectures
using filters with temporal depths of either 1, 3, 5 or 7, as well as increasing and
decreasing depth. The increasing filter strategy used temporal depths of 3-3-5-5-7
and the decreasing used 7-5-5-3-3. In their work, Tran et al. found that a filter
size of 3 × 3 × 3 seemed to be the best performing filter, shortly followed by the
increasing strategy.

Inspired by these findings, we propose a Twin-Stream architecture, consisting
of the two best performing architectures found by Tran et al. Our Twin-Stream
architecture uses two streams, with a temporal depth of 3 for Stream 1 and the
increasing temporal depth proposed by Tran et al. for Stream 2. However, due to
hardware limitations, we decided to decrease the amount of filters in each of the
convolutional layers, resulting in 32, 64, 128, 128 and 128 filters from the first to
last layer. We then apply two fully connected layers with 2048 units, before we
apply our final classification layer. We also use a Batch Normalization layer before
the first convolutional layers in both streams, as well as Dropout between the fully
connected layers during training. Using this approach, we aim to combine and
improve the best features from the two best performing architectures proposed by
Tran et al. Our final Twin-Stream architecture is shown in figure 3.15

3.6 Temporal Stream 75

F
ig

ur
e

3.
15

:
T
he

Tw
in
-S
tr
ea
m

A
rc
hi
te
ct
ur
e.

T
he

co
nv

ol
ut
io
ns

an
d
po

ol
in
gs

ar
e
sh
ow

n
in

3D
,i
ns
te
ad

of
4D

,t
o
en

ha
nc
e
vi
su
al
iz
at
io
n.

76 Chapter 3. Method and Experiments

3.6.2.3 Deep Network

As has been shown through the work of Simonyan and Zisserman[41], deeper network
architectures improves classification accuracies for 2D-CNN. This evidence is further
strengthened by the work of He et al. and their Residual Neural Networks[20, 21].
In their work He et al. explored the problem of degrading training accuracies in
deeper networks. This problem occurs when more layers are added to suitable deep
models and manifests itself in increased training error as models become deeper.
They argued that this is not due to the models overfitting, but rather because
deeper models are harder to optimize. To overcome the degradation problem,
He et al. proposed a deep residual learning framework in which they explicitly
let stacked layers fit a residual mapping, instead of hoping that they directly fit a
desired underlying mapping. Formally they denoted the desired underlying mapping
as H(x) and let the stacked layers fit another mapping of F (x) := H(x) − x.
The original mapping was recast into F (x) + x. They hypothesized that it is
easier to optimize the residual mapping than the original mapping, thus avoiding
the degradation problem. To realize the F (x) + x mapping, they used short cut
connections. These connections skip over some convolutional layers, to create what
they called residual blocks, shown in figure 3.16. Using these residual blocks, He
et al. were able to train several networks with depths of 18, 34, 50, 101 and 152,
shown in table 3.5, and showed that deeper residual networks did not suffer from
degrading training accuracies.

Figure 3.16: The shortcut used in Residual Neural Networks. Figure adapted from [20].

All architectures presented by He et al. started with a convolutional layer with
filter size 7 × 7, followed by a max pooling layer. Then they followed the same
principle as the VGG architectures by using filters of size 3 × 3 and doubling
the number of filters each time they performed a downsamping, to preserve time
complexity in each layer. The downsamplings were performed directly by applying
convolutional layers using filters of size 1× 1 and a stride of 2. They initially made
use of Batch Normalization layers after every convolutional layer and before every
activation. However, in [21], He et al. proposed an improved residual block, where
the Batch Normalization were applied along with a ReLU activation before the
convolutional layers. This improved configuration was called full pre-activation.
He et al. continued to show that this configuration further eased optimization.

3.6 Temporal Stream 77

Finally, to end their network they used an average pooling layer followed by a fully
connected softmax layer. For the networks of depths 50, 101 and 152 they expanded
their residual block to what they call a residual bottleneck. The bottleneck used 3
convolutional layers instead of 2, where they sandwiched a layer with filter size 3×3
between layers with filter size 1× 1 to reduce and increase dimensions respectively.
This was done to decrease training time of the deeper models. He et al. concluded
that their Residual Neural Networks avoided the problem of degrading training
accuracies and were able to outperform the state-of-the-art networks on ILSVRC
by a significant margin.

Encouraged by these findings, we propose a 3D-Residual Neural Network by
expanding the original architectures, developed by He et al., from 2D-CNNs to their
3D counterparts. To do this, we increase the dimensionality of every convolutional
layer from 2D to 3D. We use the same strategy as He et al., with the full pre-
activation configuration [21], when creating our networks. We use 3D-residual
blocks, shown in figure 3.17a and 3D-residual bottlenecks, shown in figure 3.17b
to build networks of varying depths. To the best of our knowledge, this is a novel
network architecture, that has not previously been explored. Thus our results will
be the state-of-the-art results using these architectures.

We explore four different network depths:

1. 18-layer 3D-residual block.

2. 34-layer 3D-residual block.

3. 50-layer 3D-residual bottleneck.

4. 101-layer 3D-residual bottleneck.

The four architectures were then compared, using the validation data as shown
in figure 3.18 and table 3.6. From this comparison, we observe that both the 34-layer
and the 50-layer networks outperform the shallower 18-layer network as is expected
considering the results presented by He et al. in [20]. However, we also observe
that the 34-layer network outperforms the 50-layer network, which is contrary to
what He et al. find using their 2D-Networks. We also observe that the 101-layer
network does not seem to converge at all. We hypothesize that this is due to the
degradation problem described earlier. Deeper networks are harder to optimize and
we suspect that the highway approach, used by He et al. is still not enough when
it comes to very deep networks using 3D-Convolutional building blocks.

78 Chapter 3. Method and Experiments

T
able

3.5:
A
rchitectures

for
2D

-R
esN

ets.
B
uilding

blocks
are

show
n
w
ith

(input,output)
num

ber
offilters

and
the

num
bers

ofblocks
stacked

in
each

stack.
D
ow

nsam
pling

is
perform

ed
by

conv3_
1,conv4_

1,and
conv5_

1
w
ith

a
stride

of2.
Table

adapted
from

[20].

layer
nam

e
output

size
18-layer

34-layer
50-layer

101-layer
152-layer

conv1
112

x
112

7
x
7,64

stride
2

conv2_
x

3
x
3
m
ax

pool.
stride

2
resB

lock(64,64)
x
2

resB
lock(64,64)

x
3

resB
ottleneck(64,256)

x
3

resB
ottleneck(64,256)

x
3

resB
ottleneck(64,256)

x
3

conv3_
x

28
x
28

resB
lock(64,128)

x
2

resB
lock(64,128)

x
4

resB
ottleneck(128,512)

x
3

resB
ottleneck(128,512)

x
4

resB
ottleneck(128,512)

x
8

conv4_
x

14
x
14

resB
lock(128,256)

x
2

resB
lock(128,256)

x
6

resB
ottleneck(256,1024)

x
3

resB
ottleneck(256,1024)

x
23

resB
ottleneck(256,1024)

x
36

conv5_
x

7
x
7

resB
lock(256,512)

x
2

resB
lock(256,512)

x
3

resB
ottleneck(512,2048)

x
3

resB
ottleneck(512,2048)

x
3

resB
ottleneck(512,2048)

x
3

1
x
1

average
pool,1000-d

fc,softm
ax

3.6 Temporal Stream 79

(a) 3D-residual block. (b) 3D-residual bottleneck.

Figure 3.17: The building blocks of our 3D-Residual Neural Networks. They are the
3D-Convolutional equivalents to the original building blocks, presented in [20] with the
modifications from [21]. This enables them to handle Spatio Temporal input, such as our
input cubes, since they can perform the convolution operation over both space and time.

0 50 100 150 200 250 300 350 400
Frame Number(x 100)

100

102

104

106

108

1010

Lo
ss

18-layers
50-layers
101-layers
34-layers

(a) The 101-layer network does not seem
to converge and therefore produces very
poor loss curves.

0 50 100 150 200 250 300 350 400
Frame Number(x 100)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

18-layers
50-layers
34-layers

(b) The validation loss curves for the 18-
, 34- and 50-layer 3D-Residual Network
architectures.

Figure 3.18: The figure shows the validation loss curves for four different 3D-Residual
Network architectures, using four different depths. The 101-layer network does not seem
to converge and therefore produces very poor loss curves. The 34-layer architecture seems
to be the optimal depth and produces the lowest loss.

80 Chapter 3. Method and Experiments

Long 3D-Residual Networks
To explore whether the lack of performance in our deeper architectures is due to
the degradation problem, we propose to expand our 3D-residual networks to an
architecture we call Long 3D-Residual Networks. This architecture does not only use
highways internally, in each residual block or bottleneck, but also adds a highway
through each stack in the network, as shown in figure 3.19. This was done to see if
it could further ease optimization of deep networks. We traine four Long Residual
counterparts to our regular 3D-residual networks and compare them directly as
shown in figure 3.20 and table 3.6. From the results we see that the addition of
the long highway to the residual networks does not seem to significantly improve
accuracies for the shallow networks, and in one case, it even deteriorates it. However,
for the deeper models, we observe some improvement and for the 101-layer network
we see significant performance gains in the long version. This further strengthens
our belief that the deeper networks benefit from the longer highways. However,
our deeper models still do not outperform the shallower 34-layer model, thus we
conclude that the deeper 3D-residual networks are not worth exploring further in
this thesis.

Table 3.6: The average validation accuracies for both our regular and long 3D-residual
networks.

Depth Regular Long
18-layer 77.2% 77.1%
34-layer 80.7% 78.4%
50-layer 79.0% 80.0%
101-layer 51.0% 75.3%

3.6 Temporal Stream 81

Figure 3.19: The Long 3D-Residual Network architecture, here shown on the 34-layer
version. We add shortcut connections to each stack of building blocks to ease model
optimization during training.

82 Chapter 3. Method and Experiments

0
50

100
150

200
250

300
350

400
Fram

e Num
ber(x 100)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Loss

18-layer_Long
18-layer_Regular(a)

18-layer.

0
50

100
150

200
250

300
350

400
Fram

e Num
ber(x 100)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Loss

34-layer_Long
34-layer_Regular

(b)
34-layer.

0
50

100
150

200
250

300
350

400
Fram

e Num
ber(x 100)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Loss

50-layer_Long
50-layer_Regular

(c)
50-layer.

0
50

100
150

200
250

300
350

400
Fram

e Num
ber(x 100)

10
0

10
2

10
4

10
6

10
8

10
10

Loss

101-layer_Long
101-layer_Regular

(d)
101-layer.

F
igure

3.20:T
he

figure
show

s
the

validation
loss

for
each

3D
-R

esidualN
etw

ork
architecture

and
their

Long
R
esidualcounterparts.

O
nly

the
101-layer

architecture
seem

s
to

benefit
from

the
Long

R
esidualexpansion,thus

w
e
do

not
explore

this
architecture

further.

3.6 Temporal Stream 83

Larger Input Sizes
Since we have only used input cubes of size 10× 224× 224 up until now, we explore
the effects of doubling the amount frames to create a cube of size 20× 224× 224.
Since 3D-CNNs convolve both spatially and temporally, we believe that we can
further enhance the performance of our 3D-residual network by using more frames
for each input, thus increasing the amount of temporal information available. Since
the 34-layer version seems to be the most promising architecture, we train a 34-layer
3D-residual network, using an input cube of size 20× 224× 224 and compare it to
the 34-layer network trained with an input cube of size 10× 224× 224. The results
are seen in figure 3.21 and in table 3.7. We find that we are able to further improve
model performance by using the larger input data. We therefore use 20× 224× 224
input cubes as we continue.

Table 3.7: The average validation accuracies for the two input cube dimensions.

Input dimensions Accuracy
10× 224× 224 80.7%
20× 224× 224 81.4%

0 25 50 75 100 125 150 175 200
Frame Number(x 200)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

34-Layer_ActionSnippets=10
34-Layer_ActionSnippets=20

Figure 3.21: The figure shows the validation loss for 34-layer 3D-Residual Networks
trained with two input dimensions(10Frames = 10 × 224 × 224 and 20Frames = 20 × 224 ×
224). We see that using larger input dimensions improves model performance.

84 Chapter 3. Method and Experiments

Downsampling Strategies
We now explore the possibilities of different downsampling strategies for our network.
From He et al. we saw that using direct downsampling through the use of 1 × 1
convolutional layers with a stride of 2 produced good results. However, we believe
that it is possible to improve upon this architecture through the use of pooling
layers for downsampling instead. This is because pooling layers consider a larger
region of the input before the downsample is performed, thus considering more
information when the downsampling is applied. We compare two different pooling
layers to the original 1 × 1 × 1 convolution strategy for a total of three different
downsampling strategies:

1. Type A: 2× 2× 2 max pooling layer with stride 2.

2. Type B: 2× 2× 2 average pooling layer with stride 2.

3. Type C: 1× 1× 1 convolutional layer with stride 2.

From the results, seen in figure 3.22 and table 3.8, we find that downsampling
using pooling layers indeed does produce better accuracies. We also see that Type
A seems to be the most promising downsampling strategy, however the difference
between Type A and Type B are so small that we consider then negligible. We
therefore decide to go with the most commonly used pooling strategy in Deep
Learning and choose Type A.

Table 3.8: The average validation accuracies for the three downsampling strategies.

Downsample strategy Accuracy
Type A 83.3%
Type B 83.2%
Type C 81.4%

3.6 Temporal Stream 85

0 25 50 75 100 125 150 175 200
Frame Number(x 200)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Lo
ss

Type=A
Type=B
Type=C

Figure 3.22: The figure shows the validation loss for three 34-layer 3D-Residual Networks
using three different downsampling strategies. Type C has the lowest loss valleys, but also
the highest peaks. We also see that the loss at the start and end of the plot is significantly
higher for Type C, thus the average performance is the worst. We also see that Type
A slightly outperforms Type B in most of the plot, indicating that Type A is the best
downsampling strategy.

Keep Temporal Information
We now explore the effects of keeping the full temporal depth of the input further
through the network. Since we only use 20 consecutive frames as input, we com-
pletely collapse the temporal signal at the downsampling layer in conv5_1 for the
original 3D-residual network architecture, as seen in table 3.9. This means that
the residual blocks following this layer only receive an input with temporal depth
1. Since these blocks still apply 3D-convolutional layers with filter sizes 3× 3× 3,
we hypothesize that we can further improve model performance by retaining the
temporal dimension further through our network. This would give these final resid-
ual blocks more temporal information to work with, thus enabling them to develop
better features. To keep the temporal information intact we use strides of length
1 in the temporal dimension for both the conv1 and maxPool layers. We call this
network architecture the Keep Temporal Dimension Network. This results in the
final residual blocks receiving a signal with temporal depth 3 as opposed to 1 in the
Original network architecture as seen in table 3.9. We compare these two networks
on our validation set in figure 3.23 and table 3.10. We find that there is a slight
increase in performance in our Keep Temporal Dimension Network.

86 Chapter 3. Method and Experiments

Table 3.9: The output sizes of the different layers in our 3D-Residual Networks. Down-
sampling is performed in layers conv1, maxPool, conv3_1, conv4_1 and conv5_1.

layer name output size
Original Keep Temporal Dimension

input 20 x 224 x 224 20 x 224 x 224
conv1 10 x 112 x 112 20 x 112 x 112
maxPool 5 x 56 x 56 20 x 56 x 56
conv2_x 5 x 56 x 56 20 x 56 x 56
conv3_1 3 x 28 x 28 10 x 28 x 28
conv3_x 3 x 28 x 28 10 x 28 x 28
conv4_1 2 x 14 x 14 5 x 14 x 14
conv4_x 2 x 14 x 14 5 x 14 x 14
conv5_1 1 x 7 x 7 3 x 7 x 7
conv5_x 1 x 7 x 7 3 x 7 x 7

Table 3.10: The average validation accuracies for the Original and the Keep Temporal
Dimension 3D-residual networks.

Architecture Accuracy
Original 83.3%
Keep Temporal Dimension 83.6%

0 25 50 75 100 125 150 175 200
Frame Number(x 200)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

34-layer_Regular
34-layer_KeepTemporalDim

Figure 3.23: The figure shows the validation loss for a regular 34-layer 3D-Residual
Network and a Keep Temporal Dimension 3D-Residual Network. We see that the Keep
Temporal Dimension network significantly outperforms the regular network through most of
the plot, indicating that the Keep Temporal Dimension network is the superior architecture.

3.6 Temporal Stream 87

Final Residual Network Architecture
Based on the findings described above, we now present the final 3D-Residual Network
architecture. We found that a 34-layer 3D-residual block architecture proved to be
the best performing network depth. We then went on to show that classification
accuracies could be further improved by increasing the input size from 10×224×224
to 20× 224× 224. We also compared three different downsampling strategies for
the downsampling residual blocks and found that a pooling strategy resulted in
the best performance. Finally we showed that keeping the temporal dimension
size for longer through the network also improved performance. We therefore
conclude that the final 3D-Residual Network architecture should be a 34-layer
3D-residual block network, using Action Snippets of length 20 and taking input
cubes of size 20 × 224 × 224. It also uses the Type A downsampling strategy for
the downsampling residual blocks and the Keep Temporal Dimension approach to
maintain the temporal dimension depth for longer. The final architecture is shown
in figure 3.24

88 Chapter 3. Method and Experiments

Figure 3.24: The final 3D-Residual Network Architecture. We use an input cube, consist-
ing of 20 consecutive stacked Optical Flow frames, the Type A downsampling strategy and
the Keep Temporal Dimension strategy for retaining more temporal dimension through
the network.

3.6 Temporal Stream 89

3.6.2.4 Final Temporal Stream Architecture

We now compare the three 3D-CNNs we have explored on our validation set. The
results are shown in figure 3.25 and in table 3.11. It is clear that the 3D-Residual
Network significantly outperforms the two other architectures. This indicates to
us that we have found a novel network architecture, which improves upon the
state-of-the-art architectures for 3D-CNNs on our data. We therefore choose the
3D-Residual Network as our Temporal Stream.

0 25 50 75 100 125 150 175 200
Frame Number(x 200)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Multi_Stream
Twin_Stream
3D-ResidualNet

Figure 3.25: A comparison of the three 3D-Convolutional Network architectures we have
explored. The plot is smoothed to enhance visualization.

Table 3.11: The figure shows the validation loss for the three proposed 3D-Convolutional
Network architectures. We see that the 3D-Residual Network significantly outperforms
the other models.

Network Architecture Accuracy
MultiStream 74.7%
TwinStream 76.5%
3D-Residual Network 83.6%

90 Chapter 3. Method and Experiments

3.7 Recurrent
This section will present the work done while developing the RNN models to test
hypothesis H2 from section 1.2. It presents the development of a Spatial RNN as
well as the Recurrent Network used for our Dual-Stream approach.

3.7.1 Spatial Recurrent Network
To test hypothesis H2 from 1.2, we extend the Spatial Stream from section 3.5 with
a RNN. We use sequences of high-level feature vectors from the Spatial Stream as
input. These feature vectors come from the final fully connected layer in our Spatial
Stream as this is the highest level representation for each image in the network, apart
from the classification layer. Since the Spatial Stream only uses Action Snippets of
length 1, the Action Snippet length for the Spatial RNN corresponds to the lengthe
of the input sequences. We compare three different recurrent models:

1. Spatial Stream + Vanilla RNN.

2. Spatial Stream + Long Short-Term Memory (LSTM) RNN.

3. Spatial Stream + Bidirectional LSTM RNN.

All networks were trained using one layer of 256 of their respective recurrent cells,
taking 10 vectors as a sequence input. We also Batch Normalize the inputs and use
dropout before the classification layer during training. The RNN architecture is
shown in 3.26. We compare the three models on our validation set and the results
are presented in figure 3.27 and table 3.12.

Figure 3.26: The Spatial RNN Architecture. We use stacks high-level feature vectors
from the final fully connected layer in our Spatial Stream to create sequence inputs for the
recurernt model. We also use a Batch Normalization layer before the RNN to improve
performance.

3.7 Recurrent 91

0 200 400 600 800 1000
Frame Number(x 85)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

VanillaRNN_ActionSnippets=10
Bi-LSTM_ActionSnippets=10
LSTM_ActionSnippets=10

Figure 3.27: The validation loss for three Recurrent Architectures using Action Snippets
of length 10. We see that both the LSTM and the Bidirectional LSTM outperform the
Vanilla RNN. We also observe that the Bidirectional LSTM seems to slightly outperform
the LSTM architecture.

92 Chapter 3. Method and Experiments

Table 3.12: The average validation accuracies for the three Spatial RNNs.

Network Architecture Sequence = 10 Sequence = 20
Vanilla RNN 93.2% N/A
LSTM 94.0% 95.0%
Bi-LSTM 94.0% 94.9%

From figure 3.27 and table 3.12, we find that the LSTM and the Bidirectional
LSTM models outperform the Vanilla RNN with a slight margin. We believe this
is due to the Vanilla RNN being prone to suffer from the vanishing and exploding
gradients problem described in section 2.1.5. We therefore exclude the Vanilla RNN
model from the rest of our explorations.

We now explore the effects of doubling the number of input vectors for the LSTM
and Bidirectional LSTM models. Since these models are specifically designed to
handle longer sequences of input, we believe that this will increase performances of
both models. The results are shown in figure 3.28 and table 3.12.

0 100 200 300 400
Frame Number(x 170)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Bi-LSTM_ActionSnippets=20
LSTM_ActionSnippets=20

Figure 3.28: The validation loss curves for the Bidirectional LSTM and the LSTM using
Action Snippets of length 20(Lower is better). The LSTM architecture outperforms the
Bidirectional LSTM architecture with a small margin.

From table 3.12 we see that doubling the input size leads to performance gains
for both models. In figure 3.28 we further observe that the LSTM network actually
slightly outperforms the bidirectional LSTM network, in spite of the Bidirectional
LSTMs ability to process examples from both past and future. This is however, by
such a small margin that we do not consider it significant. Thus we conclude that
both the regular LSTM or the Bidirectional LSTM network architecture, consisting

3.7 Recurrent 93

of 256 cells and using sequence lengths of 20 vectors are well suited models. For
our final model we choose to use the LSTM version. This is because we were not
able to show a significant improvement by using the more advanced Bidirectional
LSTM. The final Spatial RNN is shown in figure 3.29

Figure 3.29: The final Spatial RNN. It takes stacks of 20 high-level feature vectors from
the Spatial Stream as sequence input to the Recurrent Network, which consists of a Batch
Normalized LSTM RNN with 256 cells.

3.7.2 Dual-Stream Recurrent
We now move on to our Dual-Stream approach and present the Recurrent Network
developed for the Dual-Stream.

3.7.2.1 The Input Data

As we stated in section 3.3, we use feature vectors from both the Spatial Stream
and the Temporal Stream as input to the Dual-Stream RNN. From the Spatial
Stream, we use the final fully connected layer as our vector generator, giving us
4096 values. For the Temporal Stream, we use the Global Average Pool, seen in
figure 3.24, as our vector generator. This gives us 512 values and was selected since
it is the highest level representation of the input cube available in the Temporal
Stream, apart from the classification layer. However, since the Temporal Stream
takes input cubes containing 20 consecutive frames, it only produces one output
for every 20th frame of video. The Spatial Stream, on the other hand, produces an
output for every frame. Thus we have twenty times more data from the Spatial
Stream than from the Temporal Stream. To handle this discrepancy in data set
sizes, we produce element wise average vectors from 20 consecutive feature vectors
in the Spatial Stream data set. This gives us the same amount of data from both
the Temporal Stream and the Spatial Stream to use for our Dual-Stream approach.

94 Chapter 3. Method and Experiments

Table 3.13: The average validation accuracies for the two Dual-Stream RNN architectures.

Network Architecture Accuracy
LSTM 95.2%
Bi-LSTM 94.8%

3.7.2.2 Network Architecture

Using our findings from section 3.7.1, we train RNNs, using 256 recurrent cells and
input sequences of length 20. This results in an Action Snippet length of 400 frames
for the Dual-Stream RNN, since each vector in the input sequence is produced
using 20 frames. We also use a Batch Normalization layer to Batch Normalize the
input, as well as a dropout layer after the recurrent cells, during training. Since we
use vectors from both the Spatial Stream and the Temporal Stream as input, the
corresponding input examples in the sequences are concatenated to produce one
input example for the network as shown in figure 3.30. We train two RNNs:

1. Dual-Stream + LSTM RNN.

2. Dual-Stream + Bidirectional LSTM RNN.

Figure 3.30: The Dual-Stream RNN. The network concatenates 20 high-level feature
vectors from both the Spatial Stream and the Temporal Stream to produce a sequence of
20 feature vectors of size 4608 as input to a RNN.

We then compare both models on our validation set. The results are presented
in figure 3.31 and table 3.13. We find that the best performing model is the
Dual-Stream LSTM. Since no performance gains can be seen from using the more
advanced Bidirectional LSTM network, we conclude that our Dual-Stream approach
will use a Batch Nomalized LSTM network with 256 cells as its Recurrent Network.

3.7 Recurrent 95

0 25 50 75 100 125 150 175 200
Frame Number(x 400)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

LSTM_ActionSnippets=400
Bi-LSTM_ActionSnippets=400

Figure 3.31: The validation loss for the LSTM and the Bidirectional LSTM Dual-Stream
RNNs using Action Snippets of lenght 400. We see that the LSTM Dual-Stream RNN
outperforms the Bidirectional LSTM Network.

96 Chapter 3. Method and Experiments

3.7.3 The Final Dual-Stream
We now present our final Dual-Stream Approach. It consists of three parts as shown
in figure 3.32.

Spatial Stream
The Spatial Stream consists of an improved VGG-16 Architecture, using Batch
Normalization layers before every fully connected layer.

Temporal Stream
The Temporal Stream uses a 34-layer 3D-residual block network, taking input cubes
of size 20× 224× 224. It also uses the Type A downsampling strategy for the down-
sampling residual blocks and the Keep Temporal Dimension approach to maintain
the temporal dimension size for longer.

Recurrent Network
The Recurrent Network consists of a Batch Nomalized LSTM model with 256 cells.
It takes input sequences consisting of 20 high-level feature vectors from both the
Spatial Stream and the Temporal Stream. The vectors from the Spatial Stream are
created by performing element wise averaging over 20 consecutive feature vectors
to reflect the output size of the Temporal Stream.

3.7 Recurrent 97

F
ig

ur
e

3.
32

:
T
he

fin
al

D
ua

l-S
tr

ea
m

A
pp

ro
ac

h.
It

av
er
ag
es

20
hi
gh

-le
ve
lf
ea
tu
re

ve
ct
or
s
fr
om

fin
al

fu
lly

co
nn

ec
te
d
la
ye
r
in

th
e

Sp
at

ia
l

St
re

am
to

pr
od

uc
e
on

e
hi
gh

-le
ve
la

ve
ra
ge

ve
ct
or
.
20

of
th
es
e
ve
ct
or
s
ar
e
th
en

co
nc

at
en

at
ed

w
ith

20
hi
gh

-le
ve
lf
ea
tu
re

ve
ct
or
s,

us
in
g
th
e

3D
-G

lo
ba

lA
vg

Po
ol

in
th
e

Te
m

po
ra

lS
tr

ea
m

to
pr
od

uc
e
a
se
qu

en
ce

of
20

in
pu

t
ve
ct
or
s
fo
r
th
e
25
6-
ce
ll,

B
at
ch

N
or
m
al
iz
ed

LS
T
M

Re
cu

rr
en

t
N

et
wo

rk
.
T
hi
s
co
rr
es
po

nd
s
to

an
A
ct
io
n
Sn

ip
pe

t
le
ng

th
of

40
0
fr
am

es
.

98 Chapter 3. Method and Experiments

Chapter 4
Testing and Analysis

In chapter 3 we experimented with several Neural Networks for Activity Recognition
in Salmon. By comparing their performance on our validation dataset, we arrived
at three different network architectures, shown in figure 4.1. This chapter will
present empirical testing of each of the architectures using our testing dataset, in
an attempt to quantify the effects of increasing the amount of temporal information
used for prediction and to test our hypotheses from section 1.2.

(a) Spatial Network(Detailed figure
shown in figure 3.12).

(b) Spatial Recurrent Network(Detailed
figure shown in figure 3.29).

(c) Dual-Stream Network(Detailed fig-
ure shown in figure 3.32).

Figure 4.1: The three network architectures which will be compared in this chapter.

99

100 Chapter 4. Testing and Analysis

4.1 Testing Dataset Overview
Our testing dataset consists of 20 videos, distributed over 11 Feeding videos and
9 NonFeeding videos. These videos have not been seen by neither us nor our
architectures at any previous point in our work. This was done to avoid researcher
bias and to follow the standard Machine Learning testing procedure[16]. As we
mentioned in section 3.2.2, there are different video durations in our dataset. This
is also the case in our testing dataset. However, the testing set was constructed to
contain as equal a distribution from both classes as possible, without editing the
individual videos. In table 4.1, the total distribution in our testing set is given.

Table 4.1: The distribution for the number of videos and number of frames in our testing
dataset.

Video Class Number of Videos Number of Frames Size Percentage
Feeding 11 43000 45.74%
NonFeeding 9 51000 54.26%
Total 20 94000 100.00%

To make referring to individual test videos easier, we introduce unique video
IDs for each video. In table 4.2 we give an overview of all the testing videos, using
video ID, video class and number of frames. A full table, showing the videos with
their original video names as well as video IDs is available in Appendix B.

4.2 Testing Procedure 101

Table 4.2: Overview of the testing videos showing video ID, video class and number of
frames.

Video ID Video Class Number of Frames
Video 0 Feeding 2000
Video 1 Feeding 2000
Video 2 Feeding 2000
Video 3 Feeding 2000
Video 4 Feeding 5000
Video 5 Feeding 5000
Video 6 Feeding 5000
Video 7 Feeding 5000
Video 8 Feeding 5000
Video 9 Feeding 5000
Video 10 Feeding 5000
Video 11 NonFeeding 2000
Video 12 NonFeeding 2000
Video 13 NonFeeding 2000
Video 14 NonFeeding 5000
Video 15 NonFeeding 5000
Video 16 NonFeeding 5000
Video 17 NonFeeding 5000
Video 18 NonFeeding 5000
Video 19 NonFeeding 20000

4.2 Testing Procedure
The main measure of performance for this master’s thesis is Video Action Recog-
nition Accuracy, seen in Measure 2 below. However, since we introduced Action
Snippets in section 3.2.2.2, we have included performances on Action Snippet Action
Recognition Accuracy as well. We give four performance measures in our testing:

Measure 1: Individual Video Action Recognition accuracy. This measure
gives one binary classification for the entire duration of the video, where 1
means correctly classified and 0 means incorrectly classified. The classify the
video using the same class as the majority of predictions for that video. If the
amount is the same for both classes, we say the video is incorrectly classified.

Measure 2: Average Video Action Recognition accuracy for the entire test
set. This measure gives the total percentage of correctly classified videos using
Video Action Recondition accuracy. This is the main performance measure
for this master’s thesis.

Measure 3: Average Action Snippet accuracy for individual videos. This
measure gives the the average accuracy for all the Action Snippets in that
video.

102 Chapter 4. Testing and Analysis

Measure 4: Average Action Snippet Action Recognition accuracy over entire
test set. This measure gives the average accuracy over the entire test dataset
using Action Snippets. This is the measure used in chapter 3 and is included
for better comparison between the validation results and our test results.

We use four measures so that we are able to assess architecture performance on
individual videos as well as the entire dataset. Using Action Snippets also makes
it easier to compare our test results to the validation results, reported in chapter
3, since these results are only reported for the entire validation dataset and not
individual videos. Finally, testing individual video accuracies, using both binary
and Action Snippet measures, also enable us to determine if there are some videos
that stand out as either harder or easier to classify, helping us better understand
the overall architecture performance.

4.3 The Spatial Architecture 103

4.3 The Spatial Architecture
The Spatial Architecture consists of the final Spatial Stream architecture, described
in section 3.5.7. It takes single frames as input, corresponding to Action Snippets
of length 1. In table 4.3 we show the results on our test dataset using the four
measures described in section 4.2.

Table 4.3: Testing results for the Spatial Architecture

Performance Measure:
Video ID: Measure 1 Measure 2 Measure 3 Measure 4
Video 0 0

65.0%

49.0%

72.3%

Video 1 1 65.1%
Video 2 0 2.3%
Video 3 0 0.0%
Video 4 1 71.9%
Video 5 1 90.1%
Video 6 1 95.1%
Video 7 1 71.8%
Video 8 0 11.6%
Video 9 0 32.6%
Video 10 0 9.1%
Video 11 1 99.9%
Video 12 1 100.0%
Video 13 1 100.0%
Video 14 0 12.6%
Video 15 1 99.6%
Video 16 1 99.9%
Video 17 1 99.3%
Video 18 1 99.6%
Video 19 1 100.0%

Using Measure 1, we see that the Spatial Architecture is able to correctly classify
13 of the 20 test videos, giving it a Video Action Recognition accuracy of 65.0%
as seen in Measure 2. Further, using Measure 4, we note that 72.3% of all Action
Snippets in the entire test dataset are correctly classified. From Measure 3 we see
that this is largely due to the network’s ability to accurately classify the NonFeeding
videos. Only one of the NonFeeding videos is wrongly classified, while six of the
Feeding videos are wrongly classified. This indicates that Feeding videos are harder
to recognize, which also becomes clear by comparing the accuracies for Feeding and
NonFeeding videos using Measure 3.

104 Chapter 4. Testing and Analysis

4.4 The Spatial Recurrent Architecture
The Spatial Recurrent Architecture consists of the final Spatial Recurrent Network
architecture, described in section 3.7.1. It uses 20 consecutive frames to produce
a sequence of 20 vectors which are fed into a Long Short-Term Memory (LSTM)
Recurrent Neural Network (RNN). This corresponds to using Action Snippets of
length 20. In table 4.4 we show the results on our test dataset using our four
measures from section 4.2.

Table 4.4: Testing results for the Spatial Recurrent Architecture

Performance Measure:
Video ID: Measure 1 Measure 2 Measure 3 Measure 4
Video 0 1

75.0%

97.0%

80.9%

Video 1 1 74.0%
Video 2 0 0.6%
Video 3 0 0.0%
Video 4 1 76.4%
Video 5 1 100.0%
Video 6 1 100.0%
Video 7 1 99.6%
Video 8 0 16.4%
Video 9 1 91.2%
Video 10 0 44.0%
Video 11 1 100.0%
Video 12 1 100.0%
Video 13 1 100.0%
Video 14 0 3.2%
Video 15 1 100.0%
Video 16 1 100.0%
Video 17 1 100.0%
Video 18 1 98.8%
Video 19 1 100.0%

We see that the Spatial Recurrent Architecture is able to correctly classify 15 of
the 20 test videos. This results in a Video Action Recognition accuracy of 75.0%.
We also observe that 80.9% of all Action Snippets in the testing dataset are correctly
classified by this network. Using Measure 1 and Measure 3, we find that the reason
for this increase in performance comes from an improved ability to correctly classify
Feeding videos. This indicate that temporal information could be very important
for correctly classifying Feeding behavior.

4.5 The Dual-Stream Architecture 105

4.5 The Dual-Stream Architecture
The Dual-Stream Architecture consists of the final Dual-Stream approach, described
in section 3.7.2. It uses 400 consecutive Frames to produce a sequence of 20 spatial
vectors and 20 temporal vectors which are concatenated and fed into a LSTM RNN.
This corresponds to using Action Snippets of length 400. In table 4.5 we show the
results on our test dataset using the measures from section 4.2.

Table 4.5: Testing results for the Dual-Stream Architecture

Performance Measure:
Video ID: Measure 1 Measure 2 Measure 3 Measure 4
Video 0 1

80.0%

100.0%

86.4%

Video 1 1 100.0%
Video 2 1 100.0%
Video 3 0 0.0%
Video 4 1 100.0%
Video 5 1 100.0%
Video 6 1 100.0%
Video 7 1 100.0%
Video 8 0 16.7%
Video 9 1 100.0%
Video 10 1 91.7%
Video 11 0 50.0%
Video 12 1 100.0%
Video 13 1 100.0%
Video 14 0 0.0%
Video 15 1 100.0%
Video 16 1 100.0%
Video 17 1 100.0%
Video 18 1 91.7%
Video 19 1 100.0%

From table 4.5 we find that the Dual-Stream Architecture correctly classifies 16
of the 20 test videos, which results in an Video Action Recognition accuracy of
80.0%. From Measure 4 we can see that 86.4% of all Action Snippets in the testing
dataset are correctly classified by this architecture. Using Measure 1 and Measure
3, we again find that the increased performance comes largely from the ability to
correctly classify Feeding videos. This further strengthens our belief that Feeding
videos require more temporal data to be accurately classified than NonFeeding
videos do.

106 Chapter 4. Testing and Analysis

4.6 Analysis
We now give a comparison between the three architectures. Table 4.6 gives the Video
Action Recognition results on the testing dataset using Measure 2 from section 4.2.
We find that the Dual-Stream architecture outperforms both the other architectures,
while the Spatial architecture struggles the most. This indicates that utilizing more
temporal information in an architecture results in notable performance gains.

Table 4.6: A comparison of the test results between the Spatial Architecture, the Spatial
Recurrent Architecture and the Dual-Stream Architecture using Performance Measure 2.

Architecture: Performance Measure 2:
Spatial 65.0%
Spatial Recurrent 75.0%
Dual-Stream 80.0%

Table 4.7 gives the average Action Snippet Action Recognition results for the
testing dataset, using Measure 4. We find that the Dual-Stream architecture sig-
nificantly outperforms all the other architectures and that the Spatial architecture
is the struggling the most. This further strengthens the evidence suggesting that
more temporal data leads to better architecture performance.

Table 4.7: A comparison of the test results between the Spatial Architecture, the Spatial
Recurrent Architecture and the Dual-Stream Architecture using Performance Measure 4.

Architecture: Performance Measure 4:
Spatial 72.3%
Spatial Recurrent 80.9%
Dual-Stream 86.4%

In table 4.8, we present the average Action Snippet Action Recognition results for
the individual videos, using Measure 3. We find that the Dual-Stream architecture
outperforms the two other architectures by a significant margin on multiple videos.
We also observe that the Spatial Recurrent outperforms the Spatial architecture on
almost every video. Furthermore, we note that both the Spatial Recurrent and the
Dual-Stream are much more consistent in their classification. Producing either very
high or very low accuracies, indicating that the architectures produce very similar
predictions throughout the entire video.

This is further shown in the loss curves for the three architectures, given in
figure 4.2. The loss curves clearly show that both the Spatial Recurrent and the
Dual-Stream architecture are generally very accurate in their predictions, as is seen
by the low loss for most of the videos. We also see that even when the architectures
wrongly classify Action Snippets, they are very wrong, as is indicated by the high
loss spikes for both architectures. This is to be expected from Recurrent Networks,
as they use previous predictions when producing their current predictions. Moreover,
we see that the Dual-Stream loss is generally lower than the Spatial Recurrent loss,
indicating better performance.

4.6 Analysis 107

Using tables 4.8, we also note that more temporal information mostly seem to
influence the performance on the Feeding videos. This is mainly because perfor-
mance on NonFeeding videos is already really good, even for the Spatial architecture.
However, it also suggests that Feeding videos require more temporal information
for accurate classification. We hypothesize that this is because of the much higher
variance in swimming directions in Feeding videos, as we saw in figure 3.3. The
different swimming directions might seem "confusing" to the architectures at first
glance, but given more temporal data, the architecture can make sense of the
swimming patterns, resulting in a Feeding classification.

Table 4.8: A comparison of the test results between the Spatial Architecture, the Spatial
Recurrent Architecture and the Dual-Stream Architecture using Performance Measure 2.

Video ID: Performance Measure 3:
Spatial Spatial Recurrent Dual-Stream

Video 0 49.0% 97.0% 100.0%
Video 1 65.1% 74.0% 100.0%
Video 2 2.3% 0.6% 100.0%
Video 3 0.0% 0.0% 0.0%
Video 4 71.9% 76.4% 100.0%
Video 5 90.0% 100.0% 100.0%
Video 6 95.1% 100.0% 100.0%
Video 7 71.8% 99.6% 100.0%
Video 8 11.6% 16.4% 16.7%
Video 9 32.6% 91.2% 100.0%
Video 10 9.1% 44.0% 91.7%
Video 11 99.9% 100.0% 50.0%
Video 12 100.0% 100.0% 100.0%
Video 13 100.0% 100.0% 100.0%
Video 14 12.557% 3.2% 0.0%
Video 15 99.6% 100.0% 100.0%
Video 16 100.0% 100.0% 100.0%
Video 17 99.3% 100.0% 100.0%
Video 18 99.6% 98.8% 91.7%
Video 19 100.0% 100.0% 100.0%

These result suggest that the 3D-Convolutions combined with Optical Flow input
provide important motion information for the Dual-Stream architecture, which
ultimately leads to it being the best performing architecture.

108 Chapter 4. Testing and Analysis

0 50 100 150 200
Frame Number(x 400)

0

1

2

3

4

5
Lo
ss

Spatial_ActionSnippets=1
SpatialRecurrent_ActionSnippets=20
DualStream_ActionSnippets=400

Figure 4.2: The loss of the three architectures for the entire testing set. Low loss indicates
very good predictions, while high loss indicates very poor predictions. We see that the
Dual-Stream architecture is very stable through each video, as is indicated by the flat loss
curve. This is also somewhat observable when the it is wrongly classifying videos. This
indicates very similar predictions for the entire duration of each video.

4.6.1 Testing the Hypotheses
In section 1.2, we introduced hypotheses H1 and H2, which stated:

H1: A system based on Convolutional Neural Networks can perform Action
Recognition in videos of salmon with the goal of separating Feeding and
NonFeeding behavior.

H2: The system can be improved by including the temporal dimension con-
tained within videos through the use of Recurrent Neural Networks or a
combination of Recurrent Neural Networks and 3D-Convolutional Neural Net-
works.

In our tests we show that the Spatial architecture achieves a Video Action Recog-
nition score of 65% and an Action Snippet Action Recognition score of 72.3% as seen
in tables 4.6 and 4.7. This is well above the 50% mark which is to be expected from
a random guesser. Thus we consider these results strong evidence for hypothesisH1.

Our test results also show that including the temporal dimension from videos
through the use of RNNs, in the Spatial Recurrent Architecture, further improve
performance. In tables 4.6 and 4.7, we see that we were able to produce a video
Action Recognition score of 75.0% and an Action Snippet Action Recognition score

4.6 Analysis 109

of 80.9% using our Spatial Recurrent Architecture. This is a significant improvement
on the Spatial Architecture and gives strong indications for H2. Finally, our test
results also show that utilizing even more temporal information further improves
performance. By combining our Temporal Stream and our Spatial Stream to produce
input to a Recurrent network, ourDual-Stream Architecture produces a video Action
Recognition score of 80.0% and an Action Snippet Action Recognition score of 86.4%
as seen in tables 4.6 and 4.7. This shows that we can improve further upon the
Spatial Recurrent Architecture by including even more temporal information through
motion, with our Temporal Stream. We therefore consider these results to be very
good evidence for hypothesis H2.

4.6.2 Test Video Analysis
When we compare our test results to our validation results using Measure 3 for the
three architectures, we would expect that they should be very similar. However,
we note a significant reduction in performance on our test results compared to the
validation results as seen in table 4.9. To find the reason for this, we analyze the
individual videos of our testing dataset. Although the architectures produce different
result on the different test videos, there are three videos that are consistently
misclassified by all the architectures. These videos are:

Video 3

Video 8

Video 14

Table 4.9: The validation results compared to the test results for our three architectures.

Architecture: Validation: Test(Measure 3)
Spatial 89.1% 72.3%
Spatial Recurrent 94.9% 80.9%
Dual-Stream 95.2% 86.4%

To investigate why these videos are much harder for the architectures to classify,
we perform a visual inspection of each video. Since there are multiple correctly
classified videos from the same class and dates as our three hard videos, we only
compare our hard videos to these videos.

Video 3
When comparing Video 3 to the three other videos from the same date(Video 0-2),
we notice that the fish density seems higher in Video 3 compared to the other. We
also notice that the fish seem to be swimming closer to the camera than in the other
videos. More importantly, we also notice what looks like a piece seaweed floating
in and out of view as shown in figure 4.3. Although this seaweed is visible in the
other videos from that date, it covers a lot more of the view in Video 3 than it does

110 Chapter 4. Testing and Analysis

in the other videos. It also moves around much more and with quicker motions
in Video 3 compared to the others. This might produce very strange images for
the Spatial Stream in the three architectures, as the seaweed covers large parts of
the frame. This could make it very hard for the Spatial Stream to produce good
activation maps. The fact that the seaweed also moves a lot more in Video 3 than
the other videos, makes it very likely to produce very different Optical Flow frames
than what the Temporal Stream is trained for. Thus the Temporal Stream of the
Dual-Stream architecture might also be affected negatively.

Figure 4.3: The seaweed floating in and out of view from Video 3. The seaweed moves a
quite a lot and covers large portions of the frame for long durations. This could produce
strange activations for the Spatial Stream and very abnormal Optical Flow frames, thus
also negatively affecting the Temporal Stream. We believe that this is the reason for the
poor performance in Video 3 by all architectures.

Video 8
When we compare Video 8 to the other videos from the same date(Video 6-10) the
only noticeable difference between the videos is that the direction of fish movement
in Video 8 seems much more uniform than in the other videos. In all the other
videos there are fish moving in different directions than the fish in the foreground.
This will produce very different Optical Flow frames for Video 8, compared to the
other videos, explaining the poor performance for the Dual-Stream Architecture.
If the Spatial Stream uses the the way the fish are facing as a measure for its
predictions, this could also explain why the Spatial Architecture and the Spatial
Recurrent Architecture struggle with this video.

4.6 Analysis 111

Video 14
When comparing Video 14 to the other videos from the same date(Video 15-17)
the only thing we notice is that the fish in Video 14 seem to be further away from
the camera. If the Spatial Stream uses distance from camera as a measure for its
predictions, this might produce abnormal activations in this network.

4.6.2.1 Adjusted Test Results

Since we found plausible reasons for why the hard test videos are difficult to classify,
we present an adjusted comparison between our validation results and our test
results. In this adjusted test set, we removed the hard videos from the test dataset.
The results for all three architectures on the adjusted test set are given in table 4.10.
From the table we see that all architectures had significant performance increases
with the adjusted test set. We also note that the Dual-Stream Architecture was
the architecture with the most performance gain using the adjusted test set. This
indicate that the seaweed in Video 3 is making that video very hard for the Temporal
Stream. We also present the adjusted Video Action Recognition accuracies in table
4.11 and find significant increases in Video Action Recognition accuracies in the
adjusted results for all architectures.

Table 4.10: The validation results compared to the test results for our three architectures.

Architecture: Validation: Test(Measure 3)
Spatial 89.1% 85.8%
Spatial Recurrent 94.9% 91.5%
Dual-Stream 95.2% 97.9%

Table 4.11: The adjusted test video Action Recognition accuracies for the three models.

Architecture: Test(Measure 2)
Spatial 76.5%
Spatial Recurrent 88.2%
Dual-Stream 94.1%

4.6.3 Dataset Split Analysis
As we mentioned in section 3.2.2 our dataset split, splits our training, validation
and test data based on dates. This was done to give the best representation of
the architectures performances given new data. However, this also makes our task
much more challenging. Regular Machine Learning dataset splits aim to create
as representative datasets as possible, taking great care to ensure that both the
training and validation datasets are representative of the test set. This is done
because Machine Learning approaches are highly dependent on this property in
order to produce good results. By splitting our dataset on dates, as opposed to

112 Chapter 4. Testing and Analysis

performing the split within each date, we completely remove all information from
those dates from our training data. This means that our architectures have not
been exposed to the conditions of those dates. Since salmon behavior could also
be affected by the weather conditions, this makes our validation and test datasets
much harder for the architectures to classify. However we are still able to produce
very good testing and validation results despite these challenges. We therefore
believe that the robustness of our architectures to noise is extremely good and that
we could produce even better results, given a more representative dataset split.
This also strengthens our belief in that we have developed a novel architecture well
suited for general Action Recognition tasks.

4.6.4 Representativeness of the Dataset
Since our dataset is collected using a single camera rig and a single breeding cage,
our architectures are likely biased towards that particular cage. Since there is a
possibility that salmon behave differently under different conditions, our dataset
does not contain these conditions. Thus the architectures presented in this thesis will
not perform at the reported level without being trained on a dataset representative
of these conditions. The salmon in Chile might behave very differently than the
salmon in the north of Norway. There are also several species of salmon, which might
also display very different patterns of behavior. Thus our architectures will have to
be trained on a Chile dataset in order to produce similar results. Furthermore, our
dataset was collected during the month of November and in the north of Norway.
This means that our dataset might not be properly representative of the salmon
behavior in that cage for an entire year, as salmon behavior might change based
on water temperature and lighting conditions. Lastly, we note that the videos, on
average, also contain less light than what is representative for an entire years worth.
This is because the amount of light in the north of Norway during November is
very limited. Since darker videos provide less contrast and spatial information, this
makes the dataset used in this thesis more challenging to work with than if it was
representative for an entire year. This makes us very confident in the results we
have presented as a proof of concept for our architectures.

Chapter 5
Conclusion and Future Work

This chapter will present the conclusions from our work presented in the previous
chapters. We will also present how our work might impact the salmon breeding
industry, before we present our vision for future work.

5.1 Conclusion
In this master’s thesis we have developed and tested three architectures to perform
Action Recognition on videos of salmon and to test two hypotheses:

H1: A system based on Convolutional Neural Networks can perform Action
Recognition in videos of salmon with the goal of separating Feeding and
NonFeeding behavior.

H2: The system can be improved by including the temporal dimension con-
tained within videos through the use of Recurrent Neural Networks or a
combination of Recurrent Neural Networks and 3D-Convolutional Neural Net-
works.

We used a dataset consisting of 76 videos of salmon, recorded from within a breeding
cage. The videos were captured in the north of Norway during the month of
November. We created our own dataset split, separating the dataset into training,
validation and testing videos. The datasets contained an imbalanced distribution of
Feeding and NonFeeding data. A subsampling method was therefore used to create
datasets with equal amounts of Feeding and NonFeeding data for our training and
validation data. Our test set was not subsampled and consisted of 20 videos, divided
over 11 Feeding and 9 NonFeeding videos. The resulting total dataset consisted of
5.77 hours of videos. The percentage-wise size of the different splits were: 65.55%,
17.20% and 17.25% for training, validation and testing sets respectively. The split
was done by separating the videos based on the date they were recorded. This
was done to give a representative presentation of the performance of the three

113

114 Chapter 5. Conclusion and Future Work

architectures, given new video data, and to prove the robustness of our architectures
through a challenging dataset split.

Since we had a limited amount of videos available, we separated the individual
videos into Action Snippets for the training and validation phases, in order to
produce more examples. The Action Snippets ranged in duration from a single
frame to 400 frames of video, depending on the architecture used.

To test hypothesisH1, we implemented a Convolutional Neural Network (CNN),
called the Spatial Architecture. We based our network on the VGG-16 model,
proposed by Karen Simonyan and Andrew Zisserman[41]. This network takes single
video frames as input and gives an output for every frame. Using our validation set
as a guide, we made several improvements to the architecture, the main ones being
summarized as:

1. Our Specular Removal Preprocessing Strategy for normalizing the dataset
and removing specular reflections coming from the fish skin.

2. The use of Batch Normalization layers between every fully connected layer
for faster convergence during training and improved performance.

Using the Spatial Architecture we were able to produce test Video Action Recogni-
tion Accuracy of 65.0% and Action Snippet Action Recognition Accuracy of 72.3%.
This is much better than a random guesser, which would produce an accuracy of
50% in both measures, thus providing strong evidence for hypothesis H1.

Since humans usually require more than a single frame of video to accurately
classify it, we explored whether the performance of the Spatial Architecture could be
improved by including temporal information from the videos. We therefore tested
hypothesis H2 in two ways:

1. We extended the Spatial Architecture with a Recurrent Neural Network (RNN)
to utilize the temporal information contained within videos, through treating
videos as sequences of individual frames. We called this network the Spatial
Recurrent Architecture and it can be seen in figure 3.29.

2. We combined the Spatial Architecture with a 3D-Convolutional Network taking
Optical Flow frames as input, for motion feature detection. We called this
network the Temporal Stream. The Spatial Architecture and the Temporal
Stream were set up in a dual-stream configuration, processing input frames
in parallel. The high-level feature vectors from these two networks were then
used as input to a RNN to utilize the temporal information contained within
the videos. We called this network the Dual-Stream Architecture and it can
be seen in figure 3.32.

5.1 Conclusion 115

In the Spatial Recurrent Architecture we experimented with several types of
recurrent networks as well as sequence lengths and found that a Long Short-Term
Memory (LSTM) RNN, using 256 recurrent cells and a sequence length of 20 vectors
gave the best performance. The Spatial Recurrent Architecture was compared to
the Spatial Architecture, using our testing dataset. We found that the Spatial
Recurrent Architecture outperformed the Spatial Architecture with a significant
margin, producing a test Video Action Recognition Accuracy of 75.0% and Action
Snippet Action Recognition Accuracy of 80.9%, giving strong evidence for hypothesis
H2.

The Temporal Stream of the Dual-Stream Architeture was implemented, using a
3D-Convolutional Neural Network, taking input cubes consisting of several stacked
consecutive Optical Flow frames. We explored multiple 3D-Convolutional Network
architectures and found that a 34-layer 3D-Residual Network, using input cubes
made from 20 consecutive Optical Flow frames, was the best performing architecture.
This architecture was developed by extending the Residual Networks presented by
He et al. [20, 21], to use 3D-Convolutions instead of 2D-Convolutions. We also
explored the effects of using pooling layers instead of 1× 1× 1 convolutional layers
in the downsampling blocks. We found that maxPooling layers gave a significant
increase in performance over the 1×1×1 convolutional layers. This Temporal Stream
presents, to the best of our knowledge, a novel network architecture, extending the
Residual Neural Network architecture to be able to handle Spatio Temporal input
through the use of 3D-Convolutional layers.

Using the findings from the Spatial Recurrent Architecture we used sequences of
20 vectors from both the Spatial Architecture and the Temporal Stream as input to
the Dual-Stream Recurrent Network, resulting a total input of 400 frames for each
output. For the recurrent network we found that a LSTM RNN, using 256 cells
was the best performing architecture. In our test results we found that the Dual-
Stream Architecture outperformed both the Spatial Architecture and the Spatial
Recurrent Architecture, producing a test Video Action Recognition Accuracy of
80.0% and Action Snippet Action Recognition Accuracy of 86.4%. We therefore
concluded that the Dual-Stream Architecture was the best suited architecture for
Video Action Recognition in salmon. These findings suggests that extending the
Spatial Recurrent Architecture with a 3D-Convolutional Network to capture even
more temporal information through motion, is beneficial for performance. We
considered these results as very strong evidence for hypothesis H2.

As we stated in the section 1.1, over half of the cost of breeding salmon in
the Norwegian salmon farming industry comes from feed usage[13]. Since today’s
feeding process is a largely manual one, based on the amount of feed sinking to the
bottom of the breeding cage, automation of this process through the use of salmon
behavior could greatly reduce costs both in terms of labor needed and amount of
feed wasted.

In this thesis, we have examined the feasibility of using Deep Learning ap-
proaches to automate the feeding process. Using videos of salmon from within a
breeding cage as the input, we proposed several viable approaches to be able to
automatically separate Feeding and NonFeeding behavior in the salmon.

116 Chapter 5. Conclusion and Future Work

We presented results showing that we were able to separate videos of Feeding
and NonFeeding salmon with high accuracy. Through combining both spatial and
temporal information in a Dual-Stream approach, we were able to accurately classify
80.0% of all testing videos using Video Action Recognition accuracy as our measure.
Furthermore, we were able to accurately classify 86.4% of all frames in our testing
videos through the use of Action Snippets. The practical implications from these
results is that our architectures could be extended to develop robust models capable
of continuous monitoring of salmon behavior and to perform on-line decision making
on when to start and stop the feeding process.

The research contributions form our work can therefore be summarized in the
following way:

1. A novel 3D-Residual Deep Neural Network architecture approach. By extend-
ing the existing residual networks proposed by He et al. [20, 21] through the
use of 3D-Convolutions, we achieve state-of-the-arts performance using our
Optical Flow Salmon Dataset.

2. A novel Dual-Stream Deep Neural Network architecture. By combining both
Spatial Stream and Temporal Stream feature vectors as input to a LSTM RNN,
we achieve state-of-the-arts performance on our Salmon Dataset.

5.2 Future Work
Expanding upon our current work we hope to evaluate the effects of using different
Spatial Stream architectures, such as GoogLeNet[47] or 2D-Convolutional Residual
Networks[20] in both their pretrained forms and training them from scratch. These
networks report better performances on ILSVRC[38] and we want to explore if this
could also lead to better performance on our data.

We believe that the techniques we have implemented would also show noticeable
improvement by using longer input sequencers for our Dual-Stream Architecture.
We therefore need more continuous data in order to validate this intuition.

We also believe that our Dual-Stream Architecture is a general approach, capable
of producing good Action Recognition results for several action domains as well
as other salmon cages. We therefore would like to collect data from several other
cages over an entire year to validate our approach as a general approach to Salmon
Activity Recognition. We also would like to test our approach on some of the
existing Action Recognition Datasets to validate our approach as a general Action
Recognition approach.

Finally, we believe that there are still large holes in the scientific understanding
of what Deep Learning architectures are actually learning. To improve upon this,
we want to explore and visualize what our architectures are learning in order to
better understand Deep Neural Networks and to solidify and better explain our
results through further understanding.

Bibliography

[1] Abadi, Martín ; Agarwal, Ashish ; Barham, Paul ; Brevdo, Eugene
; Chen, Zhifeng ; Citro, Craig ; Corrado, Greg S. ; Davis, Andy ;
Dean, Jeffrey ; Devin, Matthieu ; Ghemawat, Sanjay ; Goodfellow,
Ian ; Harp, Andrew ; Irving, Geoffrey ; Isard, Michael ; Jia, Yangqing ;
Jozefowicz, Rafal ; Kaiser, Lukasz ; Kudlur, Manjunath ; Leven-
berg, Josh ; Mané, Dan ; Monga, Rajat ; Moore, Sherry ; Murray,
Derek ; Olah, Chris ; Schuster, Mike ; Shlens, Jonathon ; Steiner,
Benoit ; Sutskever, Ilya ; Talwar, Kunal ; Tucker, Paul ; Van-
houcke, Vincent ; Vasudevan, Vijay ; Viégas, Fernanda ; Vinyals,
Oriol ; Warden, Pete ; Wattenberg, Martin ; Wicke, Martin ; Yu,
Yuan ; Zheng, Xiaoqiang: TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. http://tensorflow.org/. Version: 2015. – Software
available from tensorflow.org

[2] Boser, Bernhard E. ; Guyon, Isabelle M. ; Vapnik, Vladimir N.: A
Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the
Fifth Annual Workshop on Computational Learning Theory. New York, NY,
USA : ACM, 1992 (COLT ’92). – ISBN 0–89791–497–X, 144–152

[3] Bradski, G.: In: Dr. Dobb’s Journal of Software Tools

[4] Collobert, Ronan ; Weston, Jason ; Bottou, Léon ; Karlen,
Michael ; Kavukcuoglu, Koray ; Kuksa, Pavel: Natural language
processing (almost) from scratch. In: Journal of Machine Learning Research
12 (2011), Nr. Aug, S. 2493–2537

[5] Cord, Matthieu: Deep CNN and Weak Supervision Learning
for visual recognition. https://blog.heuritech.com/2016/02/
29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/.
Version: 2016

[6] Csurka, Gabriella ; Dance, Christopher ; Fan, Lixin ; Willamowski,
Jutta ; Bray, Cédric: Visual categorization with bags of keypoints. In:

117

http://tensorflow.org/
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/

118 BIBLIOGRAPHY

Workshop on statistical learning in computer vision, ECCV Bd. 1 Prague,
2004, S. 1–2

[7] Damien, Aymeric u. a.: TFLearn. https://github.com/tflearn/tflearn,
2016

[8] Damien, Aymeric u. a.: TfLearn VGG-16 pretrained model. https://
github.com/tflearn/models. Version: 2016

[9] Deselaers, Thomas ; Pimenidis, Lexi ; Ney, Hermann: Bag-of-visual-
words models for adult image classification and filtering. In: Pattern Recog-
nition, 2008. ICPR 2008. 19th International Conference on IEEE, 2008, S.
1–4

[10] Donahue, Jeff ; Hendricks, Lisa A. ; Guadarrama, Sergio ;
Rohrbach, Marcus ; Venugopalan, Subhashini ; Saenko, Kate
; Darrell, Trevor: Long-term Recurrent Convolutional Networks for
Visual Recognition and Description. In: CoRR abs/1411.4389 (2014).
http://arxiv.org/abs/1411.4389

[11] Duggan, Maeve: Photo and video sharing grow online. In: Pew Research
Internet Project (2013)

[12] Farnebäck, Gunnar: Two-frame motion estimation based on polynomial
expansion. In: Image analysis (2003), S. 363–370

[13] Fiskeridirektoratet: Profitability survey on the pro-
duction of Atlantic salmon and rainbow trout 2015. http:
//www.fiskeridir.no/content/download/17237/244931/version/
3/file/rap-lonnsomhet-akvakultur-2015.pdf. http://www.
fiskeridir.no/content/download/17237/244931/version/3/file/
rap-lonnsomhet-akvakultur-2015.pdf. Version: 2015. – [Online; accessed
19-March-2017]

[14] Gentile, Claudio ; Warmuth, Manfred K.: Linear hinge loss and average
margin. In: Advances in Neural Information Processing Systems, 1999, S. 225–
231

[15] Giel, Andrew ; Diaz, Ryan: Recurrent Neural Networks and Transfer
Learning for Action Recognition. (2015). http://cs231n.stanford.edu/
reports/giel_diaz.pdf

[16] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep
Learning. MIT Press. – 110–111 S. – http://www.deeplearningbook.org

[17] Graves, Alex ; Jaitly, Navdeep: Towards End-To-End Speech Recogni-
tion with Recurrent Neural Networks. In: ICML Bd. 14, 2014, S. 1764–1772

https://github.com/tflearn/tflearn
https://github.com/tflearn/models
https://github.com/tflearn/models
http://arxiv.org/abs/1411.4389
http://www.fiskeridir.no/content/download/17237/244931/version/3/file/rap-lonnsomhet-akvakultur-2015.pdf
http://www.fiskeridir.no/content/download/17237/244931/version/3/file/rap-lonnsomhet-akvakultur-2015.pdf
http://www.fiskeridir.no/content/download/17237/244931/version/3/file/rap-lonnsomhet-akvakultur-2015.pdf
http://www.fiskeridir.no/content/download/17237/244931/version/3/file/rap-lonnsomhet-akvakultur-2015.pdf
http://www.fiskeridir.no/content/download/17237/244931/version/3/file/rap-lonnsomhet-akvakultur-2015.pdf
http://www.fiskeridir.no/content/download/17237/244931/version/3/file/rap-lonnsomhet-akvakultur-2015.pdf
http://cs231n.stanford.edu/reports/giel_diaz.pdf
http://cs231n.stanford.edu/reports/giel_diaz.pdf
http://www.deeplearningbook.org

BIBLIOGRAPHY 119

[18] Hashem, Ibrahim Abaker T. ; Yaqoob, Ibrar ; Anuar, Nor B. ;
Mokhtar, Salimah ; Gani, Abdullah ; Khan, Samee U.: The rise of “big
data” on cloud computing: Review and open research issues. In: Information
Systems 47 (2015), S. 98–115

[19] Hastie, Trevor ; Tibshirani, Robert ; Friedman, Jerome: The Ele-
ments of Statistical Learning. 2. Springer. – 222 S.

[20] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep
Residual Learning for Image Recognition. In: CoRR abs/1512.03385 (2015).
http://arxiv.org/abs/1512.03385

[21] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Identity
mappings in deep residual networks. In: European Conference on Computer
Vision Springer, 2016, S. 630–645

[22] Hou, Jingyi ; Wu, Xinxiao ; Yu, Feiwu ; Jia, Yunde ; undefined ;
undefined ; undefined ; undefined: Multimedia event detection
via deep spatial-temporal neural networks. In: 2016 IEEE International Con-
ference on Multimedia and Expo (ICME) 00 (2016), S. 1–6. http://dx.doi.
org/doi.ieeecomputersociety.org/10.1109/ICME.2016.7552981. – DOI
doi.ieeecomputersociety.org/10.1109/ICME.2016.7552981. – ISSN 1945–788X

[23] Huval, Brody ; Wang, Tao ; Tandon, Sameep ; Kiske, Jeff ; Song,
Will ; Pazhayampallil, Joel ; Andriluka, Mykhaylo ; Rajpurkar,
Pranav ; Migimatsu, Toki ; Cheng-Yue, Royce ; Mujica, Fernando
; Coates, Adam ; Ng, Andrew Y.: An Empirical Evaluation of Deep
Learning on Highway Driving. In: CoRR abs/1504.01716 (2015). http:
//arxiv.org/abs/1504.01716

[24] Ioffe, Sergey ; Szegedy, Christian: Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In: CoRR
abs/1502.03167 (2015). http://arxiv.org/abs/1502.03167

[25] Ji, Shuiwang ; Xu, Wei ; Yang, Ming ; Yu, Kai: 3D convolutional neural
networks for human action recognition. In: IEEE transactions on pattern
analysis and machine intelligence 35 (2013), Nr. 1, S. 221–231

[26] Karpathy, Andrej ; Toderici, George ; Shetty, Sanketh ; Leung,
Thomas ; Sukthankar, Rahul ; Fei-Fei, Li: Large-scale Video Classifi-
cation with Convolutional Neural Networks. In: CVPR, 2014

[27] Kitchenham, B. ; Charters, S: Guidelines for performing Systematic
Literature Reviews in Software Engineering. 2007

[28] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geof-
frey E.: ImageNet Classification with Deep Convolutional Neu-
ral Networks. Version: 2012. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.

http://arxiv.org/abs/1512.03385
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/ICME.2016.7552981
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/ICME.2016.7552981
http://arxiv.org/abs/1504.01716
http://arxiv.org/abs/1504.01716
http://arxiv.org/abs/1502.03167
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

120 BIBLIOGRAPHY

pdf. In: Pereira, F. (Hrsg.) ; Burges, C. J. C. (Hrsg.) ; Bottou,
L. (Hrsg.) ; Weinberger, K. Q. (Hrsg.): Advances in Neural Information
Processing Systems 25. Curran Associates, Inc., 2012, 1097–1105

[29] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geof-
frey E.: ImageNet Classification with Deep Convolutional Neu-
ral Networks. Version: 2012. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf. In: Pereira, F. (Hrsg.) ; Burges, C. J. C. (Hrsg.) ; Bottou,
L. (Hrsg.) ; Weinberger, K. Q. (Hrsg.): Advances in Neural Information
Processing Systems 25. Curran Associates, Inc., 2012, 1097–1105

[30] Li, Fei-Fei ; Johnson, Justin ; Yeung, Serena: CS231n: Con-
volutional Neural Networks for Visual Recognition, Lecture: Convolutional
Neural Networks (CNNs / ConvNets). https://cs231n.github.io/
convolutional-networks/. Version: 2017

[31] Lin, Zhihui ; Yuan, Chun: A Very Deep Sequences Learning Approach
for Human Action Recognition. In: International Conference on Multimedia
Modeling Springer, 2016, S. 256–267

[32] Ma, Shugao ; Bargal, Sarah A. ; Zhang, Jianming ; Sigal, Leonid
; Sclaroff, Stan: Do Less and Achieve More: Training CNNs for Action
Recognition Utilizing Action Images from the Web. In: CoRR abs/1512.07155
(2015). http://arxiv.org/abs/1512.07155

[33] Maturana, Daniel ; Scherer, Sebastian: Voxnet: A 3d convolutional
neural network for real-time object recognition. In: Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on IEEE, 2015, S.
922–928

[34] Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel,
V. ; Thirion, B. ; Grisel, O. ; Blondel, M. ; Prettenhofer,
P. ; Weiss, R. ; Dubourg, V. ; Vanderplas, J. ; Passos, A. ;
Cournapeau, D. ; Brucher, M. ; Perrot, M. ; Duchesnay, E.:
Scikit-learn: Machine Learning in Python. In: Journal of Machine Learning
Research 12 (2011), S. 2825–2830

[35] Rautaray, Siddharth S. ; Agrawal, Anupam: Vision based hand
gesture recognition for human computer interaction: a survey. In: Artificial
Intelligence Review 43 (2015), Nr. 1, S. 1–54

[36] Rubinstein, Reuven Y. ; Kroese, Dirk P.: The cross-entropy method:
a unified approach to combinatorial optimization, Monte-Carlo simulation and
machine learning. Springer Science & Business Media, 2013

[37] Rumelhart, David E. ; Hinton, Geoffrey E. ; Williams, Ronald J.:
Learning representations by back-propagating errors. In: Cognitive modeling
5 (1988), Nr. 3, S. 1

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
http://arxiv.org/abs/1512.07155

BIBLIOGRAPHY 121

[38] Russakovsky, Olga ; Deng, Jia ; Su, Hao ; Krause, Jonathan ;
Satheesh, Sanjeev ; Ma, Sean ; Huang, Zhiheng ; Karpathy, Andrej ;
Khosla, Aditya ; Bernstein, Michael ; Berg, Alexander C. ; Fei-Fei,
Li: ImageNet Large Scale Visual Recognition Challenge. In: International
Journal of Computer Vision (IJCV) 115 (2015), Nr. 3, S. 211–252. http:
//dx.doi.org/10.1007/s11263-015-0816-y. – DOI 10.1007/s11263–015–
0816–y

[39] Schuster, Mike ; Paliwal, Kuldip K.: Bidirectional recurrent neural
networks. In: IEEE Transactions on Signal Processing 45 (1997), Nr. 11, S.
2673–2681

[40] Shen, Lei ; Zhang, Junlin: Empirical Evaluation of RNN Architectures on
Sentence Classification Task. In: arXiv preprint arXiv:1609.09171 (2016)

[41] Simonyan, Karen ; Zisserman, Andrew: Two-stream convolutional
networks for action recognition in videos. In: Advances in neural information
processing systems, 2014, S. 568–576

[42] Singh, Bharat ; Marks, Tim K. ; Jones, Michael ; Tuzel, Oncel
; Shao, Ming: A multi-stream bi-directional recurrent neural network for
fine-grained action detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, S. 1961–1970

[43] Soomro, Khurram ; Zamir, Amir R. ; Shah, Mubarak: UCF101: A
dataset of 101 human actions classes from videos in the wild. In: arXiv
preprint arXiv:1212.0402 (2012)

[44] Srivastava, Nitish ; Hinton, Geoffrey E. ; Krizhevsky, Alex ;
Sutskever, Ilya ; Salakhutdinov, Ruslan: Dropout: a simple way to
prevent neural networks from overfitting. In: Journal of Machine Learning
Research 15 (2014), Nr. 1, S. 1929–1958

[45] Subetha, T. ; Chitrakala, S.: A survey on human activity recognition
from videos. In: 2016 International Conference on Information Communica-
tion and Embedded Systems (ICICES), 2016, S. 1–7

[46] Sutskever, Ilya ; Vinyals, Oriol ; Le, Quoc V.: Sequence to sequence
learning with neural networks. In: Advances in neural information processing
systems, 2014, S. 3104–3112

[47] Szegedy, Christian ; Liu, Wei ; Jia, Yangqing ; Sermanet, Pierre ;
Reed, Scott ; Anguelov, Dragomir ; Erhan, Dumitru ; Vanhoucke,
Vincent ; Rabinovich, Andrew: Going deeper with convolutions. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, S. 1–9

[48] Tran, Du ; Bourdev, Lubomir ; Fergus, Rob ; Torresani, Lorenzo ;
Paluri, Manohar: Learning Spatiotemporal Features With 3D Convolutional

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y

122 BIBLIOGRAPHY

Networks. In: The IEEE International Conference on Computer Vision
(ICCV), 2015

[49] Veličković, Petar: Deep learning for complete beginners: convolutional
neural networks with keras. https://cambridgespark.com/content/
tutorials/convolutional-neural-networks-with-keras/index.html.
Version: 2017

[50] Xin, Miao ; Zhang, Hong ; Wang, Helong ; Sun, Mingui ; Yuan, Ding:
Arch: Adaptive recurrent-convolutional hybrid networks for long-term action
recognition. In: Neurocomputing 178 (2016), S. 87–102

[51] Xu, Zhenqi ; Hu, Jiani ; Deng, Weihong: Recurrent convolutional neural
network for video classification. In: Multimedia and Expo (ICME), 2016 IEEE
International Conference on IEEE, 2016, S. 1–6

[52] Yue-Hei Ng, Joe ; Hausknecht, Matthew ; Vijayanarasimhan,
Sudheendra ; Vinyals, Oriol ; Monga, Rajat ; Toderici, George: Be-
yond short snippets: Deep networks for video classification. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015, S.
4694–4702

https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html

Appendices

123

Appendix A
Subsampling the Dataset

We store our datasets as individual frames in Feeding and NonFeeding folders so
that the subsampling is easier to perform.

We only subsample the class with the most data examples in order to create an
equal distribution between Feeding and NonFeeding examples. We use two different
subsampling methods during our training, depending on which architecture is being
trained:

Method 1: Action Snippets length = 1.

Method 2: Action Snippets length > 1.

Method 1 is used when training the Spatial Stream. This method only selects as
many NonFeeding frames as Feeding frames during each training epoch. We shuffle
the training data before each epoch and create mini-batches with an equal amount
of Feeding and NonFeeding examples. We end the epoch when there are no more
Feeding examples left in the epoch, thus making sure that we have trained on an
equal amount of Feeding and NonFeeding frames.

Method 2 is used when training the Temporal Stream and the Recurrent Networks.
These architectures require several consecutive frames as their Action Snippet input.
For example, given an architecture that require n consecutive frames, we sort our
data and select every nth frame and add this frame to a new n-frames list of frames.
The n-frames list is then shuffled and a representative selection is selected using the
train_test_split utility from scikit-learn[34], using 42 as our random state. We then
make sure that we have an equal amount of frames in both our Feeding n-frames list
and our NonFeeding n-frames list. During training we use this the n-frames lists
to build our training data. We do this by selecting a frame from our n-frames list
and then add the n consecutive frames from our original list, to create one Action
Snippet of length n.

125

126 Chapter A. Subsampling the Dataset

Appendix B
List of Test Videos

127

128 Chapter B. List of Test Videos

T
able

B
.1:

O
verview

ofthe
testing

videos
show

ing
video

nam
es,video

ID
,video

class
and

num
ber

offram
es.

V
id

e
o

N
a

m
e

V
id

e
o

ID
V

id
e

o
C

la
ss

N
u

m
b

e
r

o
f

F
ra

m
e

s
20161117_

102001_
cron

2000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

0930to1030_
20k

gm
in

V
id

eo
0

F
eed

in
g

2000
20161117_

105001_
cron

2000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

1030to1200_
10k

gm
in

V
id

eo
1

F
eed

in
g

2000
20161117_

112001_
cron

2000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

1030to1200_
10k

gm
in

V
id

eo
2

F
eed

in
g

2000
20161117_

115001_
cron

2000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

1030to1200_
10k

gm
in

V
id

eo
3

F
eed

in
g

2000
20161125_

111501_
cron

5000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

1115to1200_
15k

gm
in

V
id

eo
4

F
eed

in
g

5000
20161125_

114501_
cron

5000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

1115to1200_
15k

gm
in

V
id

eo
5

F
eed

in
g

5000
20161127_

111501_
cron

5000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

1021to1125_
16k

gm
in

V
id

eo
6

F
eed

in
g

5000
20161127_

114501_
cron

5000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

1125to1325_
12k

gm
in

V
id

eo
7

F
eed

in
g

5000
20161127_

121501_
cron

5000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

1125to1325_
12k

gm
in

V
id

eo
8

F
eed

in
g

5000
20161127_

124501_
cron

5000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

1125to1325_
12k

gm
in

V
id

eo
9

F
eed

in
g

5000
20161127_

131501_
cron

5000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224_
from

1125to1325_
12k

gm
in

V
id

eo
10

F
eed

in
g

5000
20161117_

122001_
cron

2000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224
V

id
eo

11
N

on
F

eed
in

g
2000

20161117_
125001_

cron
2000fram

es_
sin

glen
otrigger_

ou
t1_

224x
224

V
id

eo
12

N
on

F
eed

in
g

2000
20161117_

132001_
cron

2000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224
V

id
eo

13
N

on
F

eed
in

g
2000

20161125_
121501_

cron
5000fram

es_
sin

glen
otrigger_

ou
t1_

224x
224

V
id

eo
14

N
on

F
eed

in
g

5000
20161125_

124501_
cron

5000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224
V

id
eo

15
N

on
F

eed
in

g
5000

20161125_
131501_

cron
5000fram

es_
sin

glen
otrigger_

ou
t1_

224x
224

V
id

eo
16

N
on

F
eed

in
g

5000
20161125_

134501_
cron

5000fram
es_

sin
glen

otrigger_
ou

t1_
224x

224
V

id
eo

17
N

on
F

eed
in

g
5000

20161127_
134502_

cron
5000fram

es_
sin

glen
otrigger_

ou
t1_

224x
224

V
id

eo
18

N
on

F
eed

in
g

5000
20161117_

134501_
cron

20000fram
es_

sin
glen

otriggerC
A

M
2_

ou
t2_

224x
224

V
id

eo
19

N
on

F
eed

in
g

20000

Appendix C
Dataset Availability

The dataset used in this thesis was not openly available at the time the thesis was
written. However, we plan to release the full dataset together with the article result-
ing from this thesis. This to encourage research on the subject and to contribute
to the research community.

129

130 Chapter C. Dataset Availability

Appendix D
Code Documentation

In the attachments for this thesis, we have included the commented source code, used
for implementation and training of the architectures presented in this thesis. This
source code, seen in Attachments/MastersCode, is only included for documentation
purposes as it is not readily runnable in its delivered state. To verify the source
code and our reported results, our trained models as well as our dataset is needed.
This constitutes several gigabytes of data and is thus not practical to attach for
the thesis. The source code also requires a powerful GPU to be able to run at a
reasonable phase. This is because the architectures presented in this thesis consist
of a large amount of parameters, which greatly benefit from the parallelization
abilities of a GPU. It therefore also requires several parallel computing platforms
for optimized GPU utilization. An example screenshot of the source code running
on one of our computers is given in figure D.1.

We have also attached a short documentation of the source code, seen in Attach-
ments/html. It can be viewed by opening the index.html file in an Internet browser.
This documentation gives an overview of the code included in our attachments for
easier visualization and understanding of the source code.

131

132 Chapter D. Code Documentation

F
igure

D
.1:

A
screenshot

ofthe
code

running
on

one
ofthe

com
puters

used
in

this
thesis.

W
e
see

the
early

training
stages

ofa
34-layer

3D
-R

esidualN
etw

ork.

	Problem Description
	Preface
	Abstract
	Sammendrag
	List of Figures
	List of Tables
	Introduction
	Motivation
	SINTEF Ocean Intelligent Project

	Hypotheses
	Structure of the Thesis

	Theory and Background
	Deep Learning
	Historical Background
	Dataset splits
	Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Optical Flow
	Human Activity Recognition
	Action Recognition and Action Detection

	The Salmon Activity Domain
	Salmon in Videos

	Previous Work
	Systematic Literature Review
	Proposing an architecture

	Method and Experiments
	Deep Learning Development Platforms
	TensorFlow™
	TfLearn

	The Salmon Activity Recognition Dataset
	Summer Internship Dataset
	The Master's Thesis Dataset

	The Dual-Stream Approach
	Data Preparation
	Spatial Data
	Optical Flow Data

	The Spatial Stream
	Transfer Learning
	The Pretrained Model
	Using Every Frame
	Image Preprocessing
	Improving the VGG-16 Architecture
	Data Augmentation
	The Final Spatial Stream

	Temporal Stream
	Capturing Temporal Information
	Developing a 3D-Convolutional Network Architecture

	Recurrent
	Spatial Recurrent Network
	Dual-Stream Recurrent
	The Final Dual-Stream

	Testing and Analysis
	Testing Dataset Overview
	Testing Procedure
	The Spatial Architecture
	The Spatial Recurrent Architecture
	The Dual-Stream Architecture
	Analysis
	Testing the Hypotheses
	Test Video Analysis
	Dataset Split Analysis
	Representativeness of the Dataset

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Subsampling the Dataset
	List of Test Videos
	Dataset Availability
	Code Documentation

