
Security Assurance of REST API based
applications

Nishu Prasher

Master in Information Security

Supervisor: Basel Katt, IIK

Department of Information Security and Communication Technology

Submission date: June 2018

Norwegian University of Science and Technology

Security Assurance

Preface

This Master thesis is submitted to complete a three year part-time study program
in Master of information security (MIS) at NTNU, Gjøvik. The project was carried
out during the spring semester 2018, in cooperation with Statistics Norway. The
idea of the project was suggested by my supervisor, Associate Professor Basel Katt
at the Department of Information Security and Communication Technology. The
topic was discussed with the management at Statistics Norway, and it was chosen
after recognizing that the topic was complying with company’s need and objec-
tives. The intended readers for this thesis are security testers, security architects,
developers and managers, particularly security managers. The readers should be
familiar with basic concepts of security related terms and REST API technology.

01-06-2018

i

Security Assurance

Acknowledgments

My foremost thanks to Almighty for giving me knowledge, strength and opportu-
nity to undertake this research.

I would like to thank my supervisor Basel Katt, who has given me valuable
guidance throughout the work. This thesis could not be completed without his
help.

I would also like to thank my colleagues at Statistics Norway. From the manage-
ment, thanks to Erik Øvrum for giving me the opportunity to complete my master’s
degree. Thanks to Even Lysen, who has contributed to the security testing process.
Many thanks to Agata Wrzos-Kaminska and Hilde Madsen for the valuable discus-
sions and inputs during the work. Thanks to Rune Johansen and other colleagues
in the developer team for sharing their technical knowledge of the case studies.

Last but not the least I would like to express my gratitude towards my family
for their support during this work. I have spent precious family time on week-ends
and vacations to finish this work. Jeinender, you are my rock, this could not have
been accomplished without your support. My daughters Argha & Kashvi, thank you
for being patient and understanding. Thanks to my mother for feeding me dinners
on busy days.

N.P.

iii

Security Assurance

Abstract

Security assurance is the confidence that a system meets its security requirements,
based on specific evidences that an assurance technique provide. In this thesis, I
have proposed a quantification method which aims to develop security assurance
profiles by measuring the level of security of a REST API. The notion of measuring
security is complex and tricky, existing approaches are often based on manual re-
view and time consuming tasks. In addition, there is little research work done on
quantification of security assurance for REST APIs.

A common perspective has been to focus on the vulnerabilities of a system while
security testing. However, security requirements are not tend to get enough atten-
tion during a security test. The main approach of this thesis was to look at both
requirements and vulnerabilities to accomplish a level of security assurance. Ap-
propriate metrics were defined to reflect the requirement fulfillment and the vulner-
ability presence. The requirements were declared to be fulfilled if their associated
security mechanisms were present. Vulnerabilities were on the other hand sorted
into their relevant categories and assigned a risk score. The security assurance met-
ric was defined as an equation where the vulnerability metric was subtracted from
the requirement metric.

The case studies were carried out at Statistics Norway, where the author is em-
ployed. Analyzes showed that the API with the most security mechanisms imple-
mented got a slightly higher security assurance score. This was due to the fact that
the vulnerabilities were considered more harmful in one of the cases as the security
objectives diverged.

The proposed quantification method can be re-used on any other domain, by
altering the lists of requirements and vulnerabilities.

v

Security Assurance

Contents

Preface . i
Acknowledgments . iii
Abstract . v
Contents . vii
List of Figures . xi
List of Tables . xiii
1 Introduction . 1

1.1 Topic Description . 1
1.2 Keywords . 2
1.3 Problem description . 2
1.4 Justification, motivation and benefits 3
1.5 Research questions . 3
1.6 Choice of methods . 3
1.7 Claimed contributions . 4
1.8 Chosen Case Studies . 4

1.8.1 PX-API . 5
1.8.2 TS-API . 6

1.9 Thesis Outline . 7
2 Background . 9

2.1 Definition of REST & API . 9
2.1.1 Design Responses . 10
2.1.2 HATEOAS . 11
2.1.3 Simple & Stateless . 11
2.1.4 REST API Security . 11
2.1.5 UnRESTful security measures 12

2.2 Related Work . 12
2.2.1 Various Security Assurance Frameworks 12
2.2.2 Security testing of REST API 14
2.2.3 Standards available . 15
2.2.4 Quantification methods . 15
2.2.5 Summary of Related Work . 16

3 Methodology . 17
3.1 Qualitative Methods . 17

vii

Security Assurance

3.2 Quantitative Methods . 18
3.3 Case study . 19

4 Design . 21
4.1 Basic Concepts . 21
4.2 Process Development . 22
4.3 Modeling the API . 23

4.3.1 Hidden APIs . 24
4.4 Eliciting Security Elements . 24

4.4.1 Selection of Requirements . 25
4.4.2 List of Requirements . 25
4.4.3 Selection of Vulnerabilities . 26
4.4.4 List of Security Vulnerabilities 27

4.5 API Security Testing . 28
4.5.1 Tool selection . 29

4.6 Apply Metrics & Quantify Assurance 30
5 Quantifiable Metrics . 31

5.1 Importance of Metrics and Measurement 31
5.2 Security Assurance Models . 32

5.2.1 Requirement & Vulnerability Metrics 32
5.2.2 Existence score . 34
5.2.3 Weights . 34

5.3 Risk Models . 35
5.3.1 DREAD . 35
5.3.2 CVSS . 36
5.3.3 Evaluation of Risk models . 39

5.4 Scale Consideration & Normalization 39
6 Case study & Results . 41

6.1 Case study 1: PX-API . 41
6.1.1 UML Diagram . 42
6.1.2 Requirements review of PX-API 43
6.1.3 Vulnerability inspection of PX-API 46
6.1.4 Risk Modeling of PX-API . 47
6.1.5 Security Assurance Score (AM) for PX-API 48

6.2 Case Study 2: TS-API . 49
6.2.1 Requirement check . 49
6.2.2 Vulnerability check . 51
6.2.3 Risk Modeling . 51
6.2.4 Security Assurance Score (AM) for TS-API 53

6.3 Summary Result . 54

viii

Security Assurance

7 Discussion . 55
7.1 Definitions . 55
7.2 Framework & Method . 55
7.3 Results . 56

7.3.1 AM-score with Equal Weights 60
7.3.2 Human Factor . 61

7.4 Scale Consideration . 61
7.5 Analogy Example . 61
7.6 Qualitative Validation . 62

7.6.1 Framework . 63
7.6.2 Requirements and Vulnerability List 63
7.6.3 Metrics . 63
7.6.4 Other feedback . 64

8 Conclusion . 65
8.1 Future Work . 66

Bibliography . 69
A Appendix: Security Requirement List . 79
B Appendix Security Vulnerability List . 85
C Questionnaire . 89

ix

Security Assurance

List of Figures

1 PX-API Console . 6
2 Relationship between security terms, adapted from[1] 22
3 Proposed Security Process . 23
4 Requirements and their relation to security mechanisms 32
5 Related vulnerabilities are sorted into vulnerability categories. . . . 33
6 Normalize to different scale . 40
7 UML diagram of PX-API . 42

xi

Security Assurance

List of Tables

1 Quantification Example . 18
2 Degree of Security . 40
3 Displaying presence of security mechanisms for PX-API 44
4 Total Requirement Score (RM) for PX-API 45
5 Displaying vulnerabilities for PX-API 46
6 Risk Scores for PX-API . 47
7 Total Vulnerability score (VM) for PX-API 48
8 Displaying presence of security mechanisms for TS-API 50
9 Total Requirement score (RM) for TS-API 51
10 Displaying vulnerabilities for TS-API 52
11 Risk Scores for TS-API . 52
12 Total Vulnerability Score (VM) for TS-API 53
13 Comparison between original RM with distinct weights and new RM

with equal weights for PX-API . 58
14 Comparison between original RM with distinct weights and new RM

with equal weights for TS-API . 58
15 PX-API Risk Analysis Result with DREAD 59
16 TS-API Risk Analysis Result with DREAD 60
17 Security Requirements . 79
18 Security Vulnerabilities . 85

xiii

Security Assurance

1 Introduction

1.1 Topic Description

Security of sensitive information, whether it is personal or organizational data, is a
crucial issue troubling public, developers and decision makers today. REST APIs is
not any exception since they are part of critical systems that need protection against
threats and security breaches. How can security testers proclaim with confidence
that a particular API is safe to use? For this we need to measure security applied,
with appropriate security metrics.

The topic of this thesis is to define a quantitative security assurance method,
that will help to obtain a security assurance value which will reflect the security
of a REST API. Security assurance standards, such as Common Criteria (CC), is
often associated with a lot of manual work and time consuming tasks, which can
lead to discouragement for the security tester. Hence, it is important to simplify the
method, without compromising with the quality of the output value.

To assess the security of any application we need metrics which can be provided
as "a yardstick". Hence, an evaluation method have to be created to calculate the
overall risk. This thesis will offer security metrics that will help security testers to
obtain security assurance profiles for a REST API based application. Hopefully, it
will contribute to improve the efficiency of the security testing process and will
subsequently also motivate the security testers to use this method.

For this thesis initially a literature review is needed to analyze if and how avail-
able standards such as Application Security Verification Standard from OWASP[2]
can be used. The suggested quantitative method must be tested to evaluate if it
is working as per the expectations and the intended purpose. The verification of
the method can be done by applying it on two different APIs and compare the re-
sults. In addition a questionnaire will be sent to persons involved in the process to
validate the method.

The security testing will be done with the help of security experts from Statistics
Norway, since the author is employed there. The REST APIs included in the case
studies also belongs to Statistics Norway. Further, the quantification method will
be used to calculate the overall security of the REST APIs.

This thesis will be useful for security testers, security architects, developers and
managers, particularly security managers, etc.

1

Security Assurance

1.2 Keywords

• Security testing
• Assurance
• Information System Security
• Security risk
• Security quantification
• Security metrics

The collection of the keywords are specific and gives a good amount of reading
material when searched alone and in combination.

1.3 Problem description

Security assurance is the confidence that a system meets its security requirements,
based on specific evidences that an assurance technique provide. Evaluation, on the
other hand, is the process that is responsible for gathering and analyzing evidences
to check if the security requirements are fulfilled.

The current evaluation methods and standards, like the Common Criteria, tend
to achieve their goals manually, to a large extend, and require a lot of resources in
term of time, cost, and effort. Furthermore, such criteria can be found for a limited
number of application domains.

In other words the motive is to measure security which is not a forthright
task[3].

The main task of this thesis is to develop assurance profiles for general REST
API based systems with support of a coherence framework proposed by the master
thesis author.

An assurance profile is described as following by Haddad et al.

" The Assurance Profile provides a framework to the security expert community in
order to collect descriptions and architectures of typical security mechanisms, and
establish best practices on operational security assurance requirements and mea-
surements for these architectures... An Assurance Profile (AP) is a formalization
to define a common set of assurance measurments needs on an agreed Target Of
Measurement (TOM) for a given service...
...An AP represents a common and coherent understanding on how security and
assurance should be addressed by a TOM"[4].

According to the definitions above, the proposed framework will include the
definition of security functional requirements, security vulnerabilities and the asso-
ciated metrics. Furthermore, the framework will be tested against two case studies.
The case study will be done on APIs at Statistics Norway, and with cooperation of
colleagues at Statistics Norway.

2

Security Assurance

1.4 Justification, motivation and benefits

There are very little research on any framework for security testing a RESTful API.
However, there are a lot of research on frameworks for security testing other do-
mains such as Cloud, networks, web applications etc. An API makes it easier for
companies to offer services to their customers. With the growth of the API usage,
it is also important to focus on the security of APIs, so that essential company data
and customer data stay secure. According to a survey done by NorSIS, 8 out of 10
companies in Norway has 4 or fewer employees[5], hence it is challenging and not
always a priority to appoint a security specialist in the team. It is also very common
to outsource the IT-services, IT-security included. A framework can be beneficial for
security testers so that they are sure that the process is compliant with the rules
and objectives, in addition they can save time since by reusing generic modules.
Other quantification methods only focus on the vulnerabilities, but my method is
based on including the requirements, which will give a better understanding and
insight of the total security applied.

1.5 Research questions

1. How can an assurance-level of a REST API be estimated based on a quantifi-
cation method?

2. How can we automate the security control checking?
3. How can we check if the security testing process is working as per the expec-

tations and fulfill its intended purpose?

1.6 Choice of methods

In this study both quantitative and qualitative methods will be used. Qualitative
methods are mostly used to collect user experiences by doing in-depth interviews
or taking surveys for capturing mostly the feeling of the subject. Quantitative meth-
ods implies taking objective measurements or numerical analysis of tests, which is
suited for this study.

• Q1. How can an assurance-level of a REST-API be estimated based on a
quantification method?
Scientific research must be based on existing work. Thus, a literature review
of assurance methods will be performed. It is essential to gather knowledge
of similar frameworks which are available and getting an overview of current
methods and tools. After that narrow down the research to REST APIs. Met-
rics to measure the security must be assigned, so that the security assurance
can be calculated.

3

Security Assurance

• Q2. How can we automate the security control checking?
The definition of automated is described in the dictionary as "something that
is designed to replace or decrease human labour"[6]. Everything that can be
automated in the process will help to increase the efficiency of the method.
If there is a list of requirements available, it is easier to automate the security
control. The security tester know in advance what s/he need to look for. All
of this will be done by reviewing literature and trying to find out what the
common security issues of REST APIs are. Likewise, what are the needed re-
quirements. For instance OWASP have a very comprehensive list of security
requirements for web-applications. This list will be restricted for those secu-
rity requirements that are particular for REST APIs. Likewise they have also
a list of top 10 vulnerabilities for web-applications that will be used.

• Q3. Does the security testing process meets specifications made and ful-
fill its intended purpose?
The security process can be evaluated by applying it on two different REST
APIs and compare the results. Everyone involved in the process will be for-
mally (and informally) asked about what they think about the process and
the proposed method. The latter is defined as a qualitative research method.

1.7 Claimed contributions

• A definition of a method and an overall security testing process, which can
be used as directions for security testers who wants to test a REST API.

• Creation of an evaluation method to calculate the overall assurance, based on
proposed security metrics for fulfilled requirements and found vulnerabilities.

• Verification of the method by applying the method on two different APIs and
compare their assurance value. In addition, a validation from co-workers in
the form of questionnaire and informal discussions.

1.8 Chosen Case Studies

There are two REST APIs security tested for this thesis. Both of them belong to
Statistics Norway, where the author is employed. On the official website it can be
learnt more about the organization. But in short:

"Statistics Norway is the national statistical institute of Norway and
the main producer of official statistics. We are responsible for collecting,

4

Security Assurance

producing and communicating statistics related to the economy, popula-
tion and society at national, regional and local levels"[7].

The first one is an internal API which will be anonymized due to security rea-
sons. The other REST API is an open API which has a detailed user-documentation
available on the website. This API lets the user create a customized dataset, based
on queries made towards over 5000 StatBank tables Statistics Norway offer[8].

A summary of StatBank is given below:

"StatBank is a database where the user can compile tables and create
figures and maps. The database contains figures in tables that form part of
and are linked to the statistical publications, and enables users to create
more detailed tables than the published tables. The main source for the
tables is Statistics Norway, but tables are also sometimes sourced from
other producers of statistics in Norway who have given their consent to
the inclusion of the figures"[9].

1.8.1 PX-API
A short synopsis of the API will be given in this section, a detailed description of
the API is available here[8]. The API URL is composed as following:

http://data.ssb.no/api-name/api-version/lang/

There are two ways to find tables in the API. One is from the console and second
is the URL itself.

1. Via Console: http://data.ssb.no/api/v0/en/console/
2. Via URL: http://data.ssb.no/api/v0/en/table/

The data can only be extracted from the console, and from the URL its only possible
to extract the metadata.

5

Security Assurance

Figure 1: PX-API Console

The figure 1 is a snippet of the PX-API console on the web. In the console it is
possible to POST your query to extract the desired data.

If we choose the second option (Via URL), it is possible to navigate through the
StatBank tables. First, you get an overview of all the tables. Further, you can move
yourself more and more downward to specific data/statistics. The structure of the
URL is as following:

http://data.ssb.no/api/v0/no/table/(topic)/(subtopic)/(statistics)/(tablename)
The security objective of this API is mainly availability, since this is a public API

with official data.

1.8.2 TS-API

TS is short for top secret. This is an API that must be anonymized because the
management of the organization require that the functions and the security issues
are not disclosed in this thesis. The API does not hold any data and it is used for
transformation of the data. The security concerns are mostly related to integrity of
the data and not the confidentiality. The integrity objective is that the data must

6

Security Assurance

not be changed, before it is sent further[10].

1.9 Thesis Outline

This thesis is divided into 8 chapters. The first chapter is the Introduction. Chapter
2 gives a background information necessary to understand the subsequent chap-
ters, in addition there is a summary on the related work done on this topic. Next,
there is a comprehensive description on the methodology used. Chapter 4 is a de-
scription of the quantification method and all the related parts. Followed by chapter
5 where I explain how the metrics were developed. In Chapter 6 I have analyzed
the two case studies and the results that was acquired from the security testing.
Then there is chapter 7 where I discuss the result, the method and feedback from
the questionnaire. Finally, the last chapter 8 consist of a conclusion and suggested
further work.

7

Security Assurance

2 Background

This chapter presents an introduction of REST APIs, and the reason for their pop-
ularity. In addition, an introduction on the main security issues that are related
to REST APIs. Further, a section on related work that has been done on security
testing of REST APIs and other related domains. In addition related work done on
quantification methods is included.

2.1 Definition of REST & API

API is an abbreviation for Application Programming Interface. An API is a software
intermediary that lets two applications talk to each other[11]. Others [12] describe
APIs as windows into applications. Mulesoft[11] gives a real-life example of an API.
If you are using a website for instance for an online travel service such as Expedia,
you search on your criteria for instance destination hotel type etc. The travel service
have to talk with the airline database API to get all the information. The API is an
interface which get requests from several travel services and acquire data from
its database and then sends it back to the online travel service. The enormous
growth of APIs are due to a technology shift from XML to JSON (Javascript Object
Notation). Just to mention, Twitter went from using XML to JSON, and Oracle went
from SOA (Service Oriented Architecture) to REST. An API is just a front end to
your backend services[13]. It is a smart way of communicating because it provides
an layer of security, since the client-data is never fully exposed to the server and
the server is never fully exposed to the client[11]. We can compare an API[11] to
a waiter taking orders from the guest at a restaurant and giving the order to the
kitchen. The order is the request and the food which is sent back from the kitchen
is the response. The guest and the kitchen never talks to each other.

Neeraj Khandelwal [13] talks about how important it is to focus on security of
APIs. APIs don’t only expand business, an API-breach can also collapse it instantly.

"As an example, the use of JSON in HTTP requests presents new con-
duits through which untrusted data can reach backend services or an end
user’s browser, where it is consumed. Similarly, would-be attackers can
pass user inputs within the URL path (rather than URL query) with REST,
breaking legacy security tools. Another challenge with APIs is service avail-
ability. APIs are exercised programmatically and can be extremely chatty.
Unanticipated use, verbose applications or abusive partners can wreak

9

Security Assurance

havoc upon the API SLAs (Service Level Agreements), or even bring down
the backend services, with severe financial implications[13]".

REST stands for REpresentational State Transfer, and is a architectural style
developed by Roy Fielding[14, 15]. REST offers these key concepts for building a
service over the web[16]:

• Resource Identification: A resource is a unique thing identified with a URI
(Uniform Resource Identifier). It should have at least one representation,
and a set of attributes to describe the resource and not only an ID. Examples
of resources can be student, teacher, subject, book etc. Attributes describing
a student can be name, studentnr, class etc.

• Uniform Resource Interface: All resources are accessible with the help of
HTTP operations which can help retrieve, create, delete and update the re-
source. Roy Fielding noticed that four http verbs were used commonly (also
called methods)[15]:

◦ GET: Requests a representation of the resource specified
◦ POST: Create a new resource
◦ PUT: Update an existing resource or add a new
◦ DELETE: Delete resource

The idea is that the standard HTTP operations should be used for REST-based
services[16].

• Links and Hypermedia: Resources are linked together with relation link types,
so that client applications can navigate between different states of the same
resource[16].

2.1.1 Design Responses

For each operation the composition of the response must be considered. The two
aspects are the content of the response and secondly the fact that the responses
must handle errors[16]. The latter is described first.

Status Code

It is recommended to use proper status codes so that the client can understand
the interactions. Owasp[14] gives a guideline on how to use status codes. Paik et
al.[16] recommends using minimum of three codes:

• 200: OK - Normal response
• 400: Bad Request - The client requested something with errors or
• 500: Internal Error - The server encountered internal erros during processing

of the request.

10

Security Assurance

Response Formats

JSON and XML is the most commonly used response formats. It is recommended to
use response formats that represents simple objects, and a single result should re-
turn a single objects. However, a collection of the simple object should be returned
if a response contains multiple objects[16].

2.1.2 HATEOAS

HATEOAS stands for Hypermedia As The Engine of Application State. For a web-
service to be completely RESTful it should follow the HATEOAS principle. Which is
explained as:

"The principle is that a client interacts with a network application en-
tirely through hypermedia provided dynamically by application servers. A
REST client needs no prior knowledge about how to interact with any par-
ticular application or server beyond a generic understanding of hypermedia"[16].

In easy words HATEOAS let the API guide the user through the application by
including relevant information about any potential next step with the returned
responses[17].

2.1.3 Simple & Stateless

The main motive of REST is to simplify the URLs instead of using complex request
body or POST parameters. This is done by specifying the URLs as objects/nouns
instead of actions. This example is from[18] and describes it well:

• GET /tickets - Retrieves a list of tickets
• GET /tickets/12 - Retrieves a specific ticket
• POST /tickets - Creates a ticket
• PUT /tickets/12 - Updates ticket 12
• DELETE /tickets/12 - Delete ticket 12

It is recommended to use plural form of the noun to keep it consistent. In addi-
tion it is easier for the API provider to implement the API, when they do not need
to deal with different forms (person/people, goose/geese)[18]. Other advantages
of using REST is, that it is lightweight in communication, meaning that it acquire
less bandwidth[19]. REST is also stateless implying that nothing is saved on the
server, and the philosophy of REST is that the needed task is done in one request,
addressed as an ideal RESTful service[20].

2.1.4 REST API Security

REST API has similar vulnerabilities as a web-application[12]. According to[14,
19]the top most security vulnerabilities a REST API may have are listed here:

• Injection Attacks and message Altering

11

Security Assurance

• Authentication-based attacks
• Denial of service (DoS) and buffer overflows
• Cross-site scripting/cross-site request forgery
• Man-in-the-middle (MITM) attacks
• Replay attacks and spoofing
• Insecure direct object references
• Sensitive data exposure
• Missing function level access control
• Unvalidated redirects and forwards

Since REST APIs uses simple HTTP/HTTPS protocols it is inclined to all appli-
cation layer security vulnerabilities, e.g. XSS and parameter tampering. Beer and
Hassan also states in their paper:

"Generally REST deals with JSON format for data exchange; it is pos-
sible to subvert or disturb the application logic on the services by JSON
injections, which may result in misbehaviour of services, data theft, re-
source deletion and malware execution"[19] .

2.1.5 UnRESTful security measures

Oauth and OpenId are two security measures that are frequently used by many
organizations. However, their philosophy are indeed the opposite of REST, since
they are session based and REST is not supposed to maintain any user session. Still,
they will be selected as a security requirement in this thesis work, as the majority
of the security experts recommends these security measures for REST APIs[19].

2.2 Related Work

There is alot of research on security assurance framework for other domains but
there is little work on framework for REST APIs. This section will document this
and in addition it will document related work on quantification methods that has
been published.

2.2.1 Various Security Assurance Frameworks

Joshi et al. [21] proposes a framework in their paper, which contributed to im-
provement of the security level of their University campus network. The model
is a quantitative information security risk assessment model which uses Common
Vulnerability Scoring System (CVSS). The framework is divided into three main
phases:

1. Identify weak points (e.g. Identity Threat, Vulnerability Identification and
Analyzing the effectiveness of controls)

2. Prioritize what matters most (e.g. consisting of Quantitative Risk Manage-

12

Security Assurance

ment)
3. Improve University’s Security Position (e.g. Creation of Actionable Remedia-

tion Plan)

These phases are again divided into sub-processes and examples are given in
brackets. The framework is based on OCTAVE which is model based risk assessment
methodology, the difference is that the proposed model is operational based. This
is a framework that is too ample and less focused to use for testing a REST API, but
parts of the methodology can be suitable.

Such et al. [22] suggests a framework with 20 "assurance techniques". The tech-
niques are split over 5 high-level categories.

1. Review - Review of processes, Thereat Assessment, Source Code Review, etc.
2. Observe - Identification of real world deviations.
3. Interview - Interview of one or more persons about security related matters
4. Test - Vulnerability Sca, Penetrations Scan, Red Team Excercise, Social Engi-

neering, etc.
5. Independent validation - Witnessed Test and Public review

This framework can really be helpful in the categorization of the tests, because
the framework has a universal approach. All tests that are applicable to REST APIs
can be extracted and reused in our framework. Furthermore Such et al. also has
done a survey on 153 industry practitioners where 81% had over 5 years of ex-
perience. They were asked questions such as, how many people are required to
perform the assurance techniques? What kind of expertise is required? How much
time it is required to do the testing? etc. This information can be helpful when the
testing of our framework will be conducted.

Ouedraogo et al. [23] advocates the need for a Security Assurance (SA) system
which can be embedded within a current IT system. The purpose of the SA-system
is to identify vulnerabilities and mitigate these by a so-called assurance-driven ap-
proach. Hence, the output is a set of assurance indicators of the system. Security
tools such as anti-malware and intrusion detection systems must be strengthen
with Security Assurance systems. Their paper analyze the practical challenges as-
sociated to the assessment of SA. Their SA-tool is not a operational-framework but
a tool that helps to monitor the security assurance. It will show when the assur-
ance level eventually drop. This is a little out of scope, however it may be useful on
how its possible to combine the assurance indicators to the security mechanism. In
addition, it is interesting to see how the monitoring works.

Spears et al. examined in their paper[24] assurance in a regulatory context.
Their paper is mainly about how to conceptualize assurance by applying Capability
Maturity Model (CMM) to security processes. The CMM is a framework for evolv-

13

Security Assurance

ing a process from an ad hoc, less organized and less effective state to an highly
effective state of security. The levels are called maturity levels. These levels can
perhaps be useful in the thesis, for comparing with verification levels.

Tung et al. [25] has proposed a framework where they have applied security
activities and practises of SSDLC to generate security guidelines and improving
security software. This framework is an integrated security testing framework that
particularly can be used while developing a software.

Hudic et al. [26] offers a security assurance assessment methodology for hybrid
clouds. Systems and services in the cloud are multi-layered and multi-tenant envi-
roments. Hence, the proposed methodology of Hudic et al. consist of identification
and isolation of specific components that are of interest, where the independent
assurance level is calculated for each of them. Clouds are more complex then APIs
so this methodology is too obscure. However, in this paper the authors have aggre-
gated assessments into assurance levels for various groups, which is relevant for
this thesis also.

Gupta et al. has proposed a framework for security testing in their paper[27].
The main motive of their work was to check if the security mechanisms deployed
was able to mitigate the threats to the vulnerabilities in the system. They suggest to
take effective design decisions by choosing the most favorable security mechanism
to implement security and then perform testing. Rather than performing the secu-
rity testing after system implementation. By following their approach the security
related issues can dealt with in early stages. This work is interesting, but it suits
better for security testing during software development and not on later stages.

2.2.2 Security testing of REST API

This section is particularly on security testing of REST APIs and the related work
that have been done in this field. As mentioned earlier there are no framework
or a defined security testing process for a REST API. To define this we have to
first know how the testing of a REST API is done. OWASP has a very informa-
tive website[14]. OWASP stand for Open Web Application Security Project, and
it is an international nonprofit organization enganging of collecting security re-
lated incidents[19]. The information is updated regularly by the best experts in the
world. To develop a framework of a process we have to first know how this is done.
This also gives an initial overview over the different security controls that can be
automated and those which will need manual considerations. CA technologies has
published a white paper [12] which can give good technical insight into how to
protect your APIs against attack and hijack. A noteworthy observation from that
paper [12] is that even though REST API represents a new technology the threats
are the same old which have troubled IT since the beginning,e.g. SQL injection,

14

Security Assurance

parameter attacks, man-in-the-middle attacks. etc. There are also other helpful "ar-
ticles" [28, 29, 30, 31], often written in blog-form which can be valuable when we
do a technical study of this kind.

2.2.3 Standards available

There are standards available such as Owasp Application Security Verification Stan-
dard Project [2], which can be used to establish a level of confidence that the secu-
rity requirements are fulfilled. This particular standard is for web-applications, but
it is likely that by carefully selecting only those verifications that are applicable for
REST APIs, we can develop a security testing standard for our use.

Other standards can also be useful such as Web Security Verification standard by
Mozilla[32]. This standard has not been updated lately, however it can be used to
get an overview of verifications since it is briefer than the document from OWASP.

Srinivasan and Sangwan has published an article[33] where they have done
a comparison and categorization of web app security-testing frameworks. Mainly
five classification criteria were considered important:

• Which attack types a framework covers
• Testing approach (black box/white box)
• Automated/Manual or semi-automated method.
• Support of penetration testing for PCI (Payment Card Industry)
• Whether the framework mitigates false positives

This research is helpful for security testers/organizations looking for appropri-
ate frameworks for their work. Likewise, it gave an overview of available frame-
works during research work for this thesis.

2.2.4 Quantification methods

This subsection documents related work done on quantification methods. By quan-
tification methods it is meant, methods to measure security of a particular system
and development of associated security metrics.

In this paper[34] the authors discuss a different approach where they do not
measure security by normal means, but instead use a decision-theoretic method.
The proposed method is based on two options in terms of security sufficiency.

• "Send"-The system is secure enough to use
• "Hold"-The system is not secure enough to use. Reduce uncertainty to in-

crease security and try again.

Further two simple indicators of security sufficiency are made, "Pass"/"Fail" . "Pass"
means there will be no losses from a security breach, and "Fail" is the opposite. This
research is a method to "measure" how much security is enough?, and it is usable

15

Security Assurance

for decision making before deployment of a system.
Pendleton et al. discuss in their paper[35] how hard it is to develop secu-

rity metrics. In their study they [35] define security metrics based on four key
dimensions/sub-metrics: a) metrics of system vulnerabilities b) metrics of system
defense strength c) metrics of attack (or threat) severity d) metrics of system di-
mension or situations. Further, they try to investigate on the relationship between
these four sub-metrics.

Savola[3] explains security metrics as a metric that illustrate the security level,
security performance or the security strength of a system. Savola’s paper is mainly
about identifying quality criteria of security metrics. The result were three founda-
tional quality criteria: correctness, measurability and meaningfulness.

In the master thesis[36] of Kahraman it is documented a process of measuring
IT security and continuously validate the security level by setting up a Metrics
Scorecard. The end product is a establishment of different metrics for three parts:
Organizational, Minds (which I interpret as the human aspect) and Technical.

2.2.5 Summary of Related Work

None of the security assurance frameworks or quantification methods are able to
answer my research questions. Each of these works are useful but either they test
on other domains, different time of the process (mostly during the software devel-
opment) or the method/framework is unspecific and wide.

16

Security Assurance

3 Methodology

This study was done using both quantitative research methods and qualitative re-
search. Quantitative research methods are methods that deal with measurements
and numbers. While qualitative research is based on opinions and feelings.

3.1 Qualitative Methods

Qualitative research can help the researchers to get an idea of the basic opinions
and motivations behind an issue. The researchers get a better insight into the prob-
lem and can contribute in developing new ideas and hypotheses. It is not possible
to count qualitative data, since it can be chunks of videos, photos, text etc. How-
ever, the qualitative data can be transformed to quantitative data[37].

An extensive literature review of security assurance frameworks and REST APIs
has been done. The case study was carried out at Statistics Norway and with assis-
tance of colleagues from there. The test cases were chosen after discussion with col-
leagues and the management. First API, PX-API, was fine to security test since it did
not have any confidential data. The other API, TS-API, required to be anonymized,
since there were restrictions to publish security related information about it.

During the thesis work, I had several meetings with my colleagues to discuss my
findings. Communication with the supervisor was also very important and helpful,
and we had continuously discussions on questions that I had in mind.

Several persons with security expertise was involved in different parts of the
work progress. Colleagues from the developer-team and IT-administration were
beneficial to include, due to their expertise and advance knowledge in the chosen
test cases. The main objective to involve these was capacity development and a
better understanding of the test cases. The security testing of the REST APIs was
done by a security expert in the company.

A questionnaire was sent to all colleagues that were involved in the process
in mid-april. The questions can be found in the Appendix C. The questionnaire
had a formal tone, but some of the questions were already informally discussed
in meetings, hence the response rate was low. Ultimately, I still wanted to send a
formal questionnaire to get a verification of the method and the findings, and also
if there were additional comments.

17

Security Assurance

3.2 Quantitative Methods

Quantitative research method implies the activity of collecting data and quantify
the information that has gathered in order to come to a conclusion[38]. According
to Leedy & Ormrod[39] the quantitative research can broadly be classified in three
types: descriptive, experimental and casual comparative. Descriptive research de-
scribes the situation as it is. The experimental research is when some treatment is
done and then the outcome is described. In the casual comparative the investiga-
tion is done on how independent variables are re affected by dependent variables
and check the cause and affect relation between the variables[38].

The research question "How can the assurance-level of a REST API be estimated
based on a quantification method?", must be answered by doing quantitative re-
search.

The raw data consisted of a collection of requirements and vulnerabilities. Fur-
ther, the analysis of the data was done by assigning metrics:

• Existence score
• Weights
• Risk Score

The motive was to find the total security applied to the REST API. At first only
security issues related to REST APIs were investigated. Each vulnerability could be
counted as something that reduces the security, thus a negative number. A security
mechanism could be counted as something that increase the security, thus a positive
number.

During that research I was looking at a specific requirement, enforcement of
HTTPS. It was observed that the enforcement of HTTPS is dependent on certificate
validation, which ensures that the sender is trustworthy and if its not validated it
is possible to decrypt the data sent. Certificate Pinning gives an extra layer of secu-
rity, by establish a trusted connection between the client and server. Quoted from
Symantec: "The client authenticate the server by validating that the server certificate
was issued by a Certificate Authority that the client trusts[40]".

A quantification of the situation above is as following:

Table 1: Quantification Example

Features of TLS/SSL Count

HTTPS is enforced +1
Certificate validation is deactivated -1
Certificate Pinning is implemented +1

The table 1 illustrates how enforcement of HTTPS can be futile if the validation

18

Security Assurance

of the certificate is not active since it will be possible to decrypt the data. Certificate
Pinning on the other hand will give an extra layer of security. This example show
how the idea came about; a security requirement add security and a vulnerability
reduce security.

3.3 Case study

A case study is a research strategy that can be compared to an experiment or sim-
ulation of some kind[41]. Yin argues in his paper[41] that a case study does not
need a specific type of data. Both qualitative and quantitative data can be used
in a case study. The data can come from fieldwork, observations, verbal reports,
archival records or any combination of these. Yin emphasize that the quantitative
data "should reflect meaningful events"[41, p.61]. There is no restriction on using a
particular data collection method either.

19

Security Assurance

4 Design

This chapter documents the design of the proposed quantification method. The first
section introduces on some basic concepts needed to better understand subsequent
sections. Further, a description of the different steps of the proposed method is
included.

4.1 Basic Concepts

To prevent confusion, definitions of some of the essential security related terms
that have to be mentioned.

Souag et al. defines a security requirement as:

"Security is defined as a discipline which allows one to build reliable
system that can face malice, errors or mischief... A requirement prescribes
a property judged necessary for the system; security requirements engi-
neering frameworks derive security requirements using security-specific
concepts, borrowed from security engineering paradigm"[42].

While Felderer et al. states in their paper[43] that a security requirement can be
specified as a positive requirement representing the expected security functionality
of a security mechanism. Or it can be specified as a negative requirement, signifying
what an application should not do. Further Felderer et al. gives explanation of
other terms[43]:

• An asset is the element we want to protect.
• A fault is something that is wrong. A fault can also be found in dead code, so

it is not necessary that a fault lead to an error.
• A vulnerability is special kind of a fault that is related to a security property.

It is also described as a security mechanism that is missing or implemented
in a wrong way.

• An exploit is where the vulnerability is used to do something malicious.
• A threat is something that can potentially harm the asset, such as hackers,

malicious insiders or malware.
• A risk is the probability and the consequence of an unwanted incident.

Figure 2 shows relationship between security mechanism, security requirements
and vulnerabilities.

21

Security Assurance

Figure 2: Relationship between security terms, adapted from[1]

From the figure we can see that a security requirement is dependent on the fact
that a security mechanism is present and working properly. However, if it does not
perform well or if it is completely missing it will lead to a security vulnerability. A
security requirement reduces a risk and a security vulnerability lead to increased
risk.

4.2 Process Development

The goal of this thesis was to develop a security assurance profile for a REST API
based on a quantification method. To reach this goal several steps were needed:

1. Security testing to expose vulnerabilities
2. A draft of which security tests that must be sorted into manual and automated

controls: Everything that can be automated can help the security testers to
make the process itself more efficient. In addition list of tools is needed.

3. A checklist to tick of vulnerabilities that can be found.
4. A method for quantification of the security, with the help of risk scoring mod-

els. Along with a method to calculate the total security assurance level of the
REST API.

Then all of these components could respectively added into a security testing
framework. Figure 3 shows the proposed security process, which contain five steps.
Each of the steps will be described in the next consecutive sections.

22

Security Assurance

Figure 3: Proposed Security Process

4.3 Modeling the API

As it is shown in figure 3. the process starts with creating a meta data model of
the REST API. Because you as a security tester needs to know what you are going
to test. Hence, the tester need to get acquainted with the API. Brajesh De gives an
example in his book[44, p.155] where he has written some questions that can be
used to investigate the API.

• What is the API behaviour when

◦ no query parameters are passed
◦ right query parameter is passed
◦ parameter name passed is incorrect
◦ multiple parameters are passed in both right & incorrect combinations

are passed

• What is the default data format for the API response for both sucess and error
conditions

• What is the API response status code for both success and error conditions
• What is the API response for unexpected HTTP methods, headers and URLs

23

Security Assurance

The author takes up these questions to guide the reader about functional testing
of an API, and it suits well for this particular step, as we are interested to know
how the API behave. Generally API documentation tend to be available[44], so the
consumers of the API know how to use it. This documentation can also be valuable
for security testers when they want to know how an API acts.

To show how the REST API interacts an UML (Unified modeling language)
model is chosen to help to illustrate the API functions.

4.3.1 Hidden APIs
Since this step is about gathering knowledge about the API, it is beneficial to know
about how to find hidden information about REST APIs. A security tester should
have the knowledge of where all the information of the API can be found. It is
possible to find hidden APIs via the robots.txt. This file tells search engines whether
to index or not to index different paths[45]. As an example:

Disallow: /images
Disallow: /scripts
Disallow: /secret/admins
Disallow: /api/admin/users

This information can often be misused by hackers, so it is important to restrict
access to this file[45].

4.4 Eliciting Security Elements

A common perspective of security testers is focusing on the vulnerabilities, and
working to find these during penetration testing, fuzzing, manual checks etc[42].
Souag et al. say in their paper

"Recent trends in security methodologies tend to consider that the best
approach of security consists in starting from a risk analysis...[42, p.63]"

When the search for the security vulnerabilities started, it was observed that of-
ten security requirements and vulnerabilities were mentioned without classifying
which category they belong to. It made the creation of the checklists a confus-
ing task. Insufficient TLS/SSL configuration is a vulnerability, on the contrary the
HTTPS is a requirement. Further, if validation of the HTTP Certificate is deacti-
vated it does not matter that the encryption is enforced, still its possible to decrypt
the information. To capture all these entities it was necessary to not only to focus
on the security vulnerabilities but in addition create a checklist for security require-
ments. On the figure 3 we can see that under the sorting label the vulnerabilities
and requirements are placed into two separate boxes. By doing this it was easy to
get an understanding of what we expect from the API and what we don’t expect

24

Security Assurance

from it[43]. Web applications- and APIs-security is often seen as similar. However,
API-testing is different in the sense that it tests the interface which allows access to
data and communication and not the application as whole[44]. For this study, all
the vulnerabilities were obtained from the Owasp site[14]. The security require-
ments for this thesis work were compiled from the Owasp ASVS[2].

Finally the security testing provides a validation of whether various security
requirements are implemented and/or security vulnerabilities are present, or not
implemented or present[43]. More on the selection of the requirements and vul-
nerabilities will be discussed in the subsections below.

4.4.1 Selection of Requirements

Security requirements are often not prioritized due to several reasons. Stakehold-
ers sometimes does not understand the threats that a system may be facing. It
is difficult for developers to model what a system should not do instead of what
it should do. In addition, a security requirement is seen as something that lim-
its functionality or hinder usability[46]. Functional requirements can exhibit more
variability than security requirements. If you look at the functional requirements
for a website for an embedded avionics application and an e-commerce website
they may have nothing in common. However their security requirements presents
far less variability, both the avionics and ecommerce applications have to specify
levels of identification, authentication, authorization, integrity , privacy, etc.[47].
Therefore, the security requirements: such as authentication, authorization, input
validation will always be necessary for every domain. In chapter 5 the metrics for
requirement is elaborated and definitions on how security mechanisms fulfill re-
quirements is described in detail.

The security mechanisms that are compiled for REST APIs are modified from
the requirements for web-applications. Those not suitable for APIs were discarded.

4.4.2 List of Requirements

Total of 10 requirements were considered as vital for a REST API. The 10 require-
ments have 53 security mechanisms associated with them.

Following is a description of every security requirement for the REST API ac-
cording to Owasp that I have chosen as necessary for REST APIs[2].

• Authentication: Authentication is confirming that something or someone are
who they say they are. Three common factors can be used for authentication,
these are[48]:

◦ Something you know e.g. passwords
◦ Something you have e.g. a smartcard
◦ Something you are e.g. biometric authentication (fingerprints, iris etc.)

25

Security Assurance

.
• JWT: JWT stands for Json Web Tokens. JWTs are used for identity manage-

ment and transmission of data between two parties. The JWT is sent as a
compact and self-contained Json-object, which is digitally signed with HMAC
or cryptographic keys[49].

• Access Control: The objective of access control is to verify that only those who
are permitted to access a resource is allowed to do so, called authorization.
This includes, persons are holding valid credentials, users are assigned to
roles and metadata is protected from tampering.

• Input Sanitation: Input Sanitation is the activity of properly validating input
from users or clients before it is processed. The rule is that incoming data
should never be trusted.

• Error Handling: The API should provide a useful reaction to users. The logs
must be protected if they contain sensitive information.

• Data Protection: The CIA triad must be enforced according to[2]: Confiden-
tiality: The data should be protected against disclosure and unauthorised ac-
cess both in transit and rest. Integrity: The data should be protected against
alteration, deletion etc. Availability: The data should be available to autho-
rised users.

• Communication Security: If there is sensitive data, TLS should be used. In
addition strong ciphers and algorithms must be used.

• HTTP Security: The requirement regarding HTTP security is to verify that
HTTP responses contain a safe character set in the content type header.

• Web Services: The requirement regarding Web services is to verify that all
web-services has authentication, authorization, input validation etc enforced.

Appendix A shows the complete list of security requirements and their corre-
sponding security mechanisms for a REST API.

4.4.3 Selection of Vulnerabilities
"Hackers are always in search of security holes through exposed APIs[44]"

Because unfortunately APIs are often overlooked when assessing the security of a
web-application, since APIs dont have a visible front-end and is non-browseable.
Also APIs are difficult to security test as compared to a web-application[50]. In ad-
dition, vulnerabilities that are found in APIs does not only affect one single project
but spread to projects across global software ecosystem borders. Alqahtani et al.
state that "Tracing these vulnerabilities at a global scale becomes an inherently diffi-
cult task since many of the existing resources required for such analysis still rely on
proprietary knowledge representation[51]."
Hence securing the APIs should be a prioritized task for every organization.

26

Security Assurance

If a security mechanism is missing or not working properly it will lead to a secu-
rity vulnerability. According to figure 2 for a vulnerability to cause harm, presence
of a threat is necessary to exploit it. For instance if no input sanitation is done it
can lead to SQL Injection attack.

The most common vulnerabilities of a REST API was mainly found from Owasp[14]
and other sites/blogs[28].

Just like every requirement is defined as a category with its related security
mechanisms that can fulfill it, the vulnerabilities were defined as a category which
was populated with related vulnerabilities. For instance all vulnerabilities that re-
late to broken authentication was placed into the same category.

• 2.1 Permits Credentials stuffing
• 2.2 Permits Brute Force
• 2.3 Permits Weak Passwords
• 2.4 Use plain text, encrypted or weakly hashed password
• 2.5 Has missing or ineffective multi-factor authentication
• 2.6 Exposes session id in url
• 2.7 Do not properly invalidate authentication tokens

All of these vulnerabilities are associated with authentication. Some vulnerabil-
ities didn’t fit into categories so they were defined as its own vulnerability category
e.g. Elevation of Privilege.

4.4.4 List of Security Vulnerabilities

Total of 9 main vulnerability categories were considered to be crucial for a REST
API. In detail 36 security vulnerabilities were added into their associated main
categories. In Appendix B all of the security vulnerabilities is described in detail.
The main vulnerability categories are gathered from[52, 14], and are as following:

• Injection: This vulnerability can be exploited by sending untrusted data into
the API as part of a command or query. The input is then executed by the
interpreter which can lead to an attacker getting unauthorized access to data
or do other harm.

• Broken Authentication: Insufficient or missing authentication can lead to
an attacker to compromise passwords, json web tokens, API keys etc. Only
authenticated clients must be able to access the APIs. The APIs authentica-
tion and authorization requirements may be handled via API key, PKI, OAu-
th/OpenId tokens[44].

• Sensitive Data Exposure: Exposure of sensitive data due to absence of en-
cryption in transit or at rest can lead to an attacker performing identity theft,
card fraud etc.

27

Security Assurance

• Broken Access Control: Insufficient or missing access control can allow the
attacker to get access to other users account, change access rights, modify
data etc.

• Elevation of Privilege: This attack is when an outsider tricks to get access
rights they are not entitled to. This is mostly possible due to a bug that lets
the attacker bypass the security.

• Cross-Site Scripting: This is an exploit where it is possible to inject malicious
code into an API, due to improper input sanitation. The outcome is that it is
possible to hijack user sessions or redirect the user to malicious pages.

• Cross-Site Request Forgery: This is a vulnerability where the exploit is per-
formed by the authenticated user on the behalf of the victim. The target is
not data theft but state changing request[53].

• Parameter Tampering: This is a vulnerability where the attacker is allowed to
perform attacks e.g. model binding, mass assignment and http verb tamper-
ing.

• Man-in-the-middle-attack: Man-in-the-middle-attack is when an attacker place
himself between two communicating systems and intercept the information
sent between them[54].

4.5 API Security Testing

After the requirement and the vulnerability lists were created the security testing
was performed. In general security testing validates if security requirements are
implemented correctly[55]. According to Tian-yang et al.[56] there are two main
approaches for security testers, these are security functional testing and security
vulnerability testing. Tian-yang et al. state in their paper

"Software security testing can be divided into security functional test-
ing and security vulnerability testing. Security functional testing ensures
whether software security functions are implemented correctly and con-
sistent with security requirements basing on security requirement specifi-
cation. Software security requirements mainly include data confidential-
ity, integrity, availability, authentication, authorization, access control,
audit , privacy protection, security management, etc. Security vulnerabil-
ity testing is to discover security vulnerabilities as an attacker. Vulner-
ability refers to the flaws in system design, implementation, operation,
management. Vulnerability may be used to attack, resulting in a state
of insecurity, Security vulnerability testing is to identify software security
vulnerabilities"[56].

In this thesis I have combined these two methods and performed both of them.

28

Security Assurance

The security functional testing is mainly done by checking manually if the security
mechanisms exists or not. The security vulnerability testing on the other hand is
partially done automatically. For instance Black Box-fuzzing was performed on the
APIs. Black box, means that the attacker or in our case the tester does not have
access to the source-code. API fuzzing is done by sending all possible types of
combinations of input parameters and then inspect how the API responds. The
goal of the attacker/tester is to understand the system behaviour by studying the
error messages, and further use this information to get unauthorized access[44].

4.5.1 Tool selection

Mostly open-standard tools, those easy available on the internet, was used to secu-
rity test the REST API.

Here is a list of the security testing tools used in this study:

• The tool Sqlmap is:

"...an open source penetration testing tool that automates the pro-
cess of detecting and exploiting SQL injection flaws and taking over
of database servers. It comes with a powerful detection engine, many
niche features for the ultimate penetration tester and a broad range of
switches lasting from database fingerprinting, over data fetching from
the database, to accessing the underlying file system and executing
commands on the operating system via out-of-band connections[57]."

• Python (tool/scripting): Python is a simple and easy to learn programming
language. Python code is turned into machine language and run as the script
is executed. The code is not so fast as other languages e.g. C, Cobol, but
it has better portabability through heterogeneous environments, than other
compiled codes[58]. Even though Python is slow, it is very popular. The rea-
sons for its popularity is its massive user base, that can help other users
when necessary. Other reasons are that it has clean syntax and an expansive
library[59].

• Curl: Curl is open source software command line tool that is used to transfer
data with URLs. It is used in many areas like, cars, routers, mobile phones,
printers etc.[60]

• Burp-Suite: Burp-Suite is a web scanner that can find all web related vulner-
abilities. It can be used directly to interact and manipulate streams of web
traffic on the browser, and is a standard when it comes to such kind of trans-
parent proxies[61, 58]

• Wireshark: Wireshark is a popular network protocol analyzer worldwide, it
lets you see what is happening on your network. It is the standard across
many non-profit and commercial organizations, government agencies and

29

Security Assurance

educational institutions. Wireshark has features as: GUI interface, deep in-
spection of hundreds of protocols, multi-platform application, Live data ex-
traction, multiple output filetypes(XML/CSV/plaintext), etc[62].

4.6 Apply Metrics & Quantify Assurance

The last two steps on the figure 3 is assigning of metrics and quantify assurance.
Security metrics in this step is applied to "measure" the security. There have

been limited research on how to measure security, and conclusively the experience
has been that it is a complex task[34, 3]. It is not a straight forward method to do
this, because the problem is that to measure security we need quantifiable informa-
tion like percentage, average or any numbers[36]. Chapter 5 contains a detailed
explanation of how the security metrics were defined.

There is a need to define a metric that can capture the total score of requirements.
This specific metric will have a positive (+) sign. Unlike the metric that captures
the total score of vulnerabilities, which will have a negative sign (-). Another metric
must be defined to capture the total overal security by combining the two last-
mentioned metrics.

The "counting" of security mechanisms and security vulnerabilities is done sep-
arately. Thus, a distinctive scoring system for each of them was needed.

To evaluate a vulnerability’s impact and probability I needed a risk scoring
model. There are several risk scoring models available, which have been exten-
sively researched on. Two risk models were evaluated for my work, and a detailed
description of these models can be found in chapter 5.

A model for security requirement fulfillment was not found in the literature.
Hence, I am proposing a new method to evaluate the fulfillment of a requirement.

30

Security Assurance

5 Quantifiable Metrics

In this chapter a description of all metrics are included. First an introduction on
the importance of metrics. Then the proposed method of calculating the security
assurance of a system is described, together with the security requirement and
vulnerability metrics. Finally, a section on the risk models that were evaluated for
this study is depicted.

5.1 Importance of Metrics and Measurement

The security assurance level of a system state how much confidence one can have
in the system that is safe to use. Instead of acknowledge this with an exclusively
yes or no, the decision makers need to take informed decisions[63]. Because basi-
cally security is often seen as a costly expenditure which in addition interrupts the
production line. Therefore security metrics can be used to base a security testers ar-
gument on evident data. Another benefit could be to look at security metrics over a
time period, to evaluate the security performance of the security mechanisms[36].
A security metric is often defined as a metric that depicts the security level, secu-
rity performance or security strength of a system[3]. However, Savola[3] argues
that security cannot be measured as a universal concept due to the complexity
and uncertainty during the testing, therefore terms as indicators or strength are
more suitable to use for this purpose. Further Savola gives a definition of a mea-
surment as "a process of experimentally obtaining information about the magnitude
of a quantity. Quantity is a property of a phenomenon, body, or substance to which a
magnitude can be assigned. A measurement result indicates single-point-in-time data
on a specific factor to be measured, while metrics are descriptions of data derived from
measurements used to facilitate decision-making[3]".

For a security metric to be meaningful and usable it must be measurable. Which
is possible if the measurable information is available[3]. According to Savola "mea-
surability of a metric means that it has dimensions, quantity or capacity ascertained
in the measurement architecture and the measurable information is attainable with
sufficient precision[3]."

The purpose of this chapter is to define meaningful and measurable metrics to
capture the requirements and vulnerabilities present in the system.

31

Security Assurance

5.2 Security Assurance Models

There are little research done on security assurance models. Especially quantifying
security assurance is particularly difficult and diffuse.

According to NIST assurance is defined as following:

"(Security) Assurance - Grounds for confidence that the other four
security goals (integrity, availability, confidentiality and accountability)
have been adequately met by a specific implementation. "Adequately met"
includes (1) functionality that performs correctly, (2) sufficient protection
against unintentional errors (by users or software), and (3) sufficient re-
sistance to intentional penetration or bypass[64]."

A security requirement or a countermeasure will give protection (referring to
point 2), and to check if the functionality performs correctly (referring to point
1) there is necessary to check if a security mechanism is present, which is doable
because it is something that can be verified. While by doing security testing for
weaknesses it is possible to check sufficient resistance to intentional penetration or
bypass. Definition of the various metrics, that will measure the security assurance,
is described in subsections below.

5.2.1 Requirement & Vulnerability Metrics

Figure 4: Requirements and their relation to security mechanisms

The figure 4 shows how requirement R1 can be claimed to be fulfilled by checking
the presence of the related security mechanisms C1Sm1, C2Sm2, etc. C is short for
check and Sm is short for security mechanism.

32

Security Assurance

Figure 5: Related vulnerabilities are sorted into vulnerability categories.

The figure 5 is showing vulnerability categories with the related vulnerabilities
included. C is short for check and the capital V is short for vulnerabiltiy category,
while the lowcase v is short for vulnerability.

The metrics for measuring the score of Security Assurance can be defined as
following.

• AM : Assurance Metric
• RM : Requirement Metric
• VM : Vulnerability Metric

The relation between these metrics is as following:

AM = RM− VM (5.1)

To obtain AM, the VM must be subtracted from the RM. The RM and VM is defined
below.

RM =

m∑
i=1

Wi ·
n∑

j=1

CriSmj. (5.2)

Equation 5.2 is the definition of RM, where W is weight. And m is the total
number of requirements. Cr is abbreviated from check a requirement i, and each
security mechanism j associated with the requirement i. Further n is the total num-
ber of security mechanisms. The variable in the figure 4 has been added in the
equation 5.2 as CriSmj. For each requirement I have to check all the mechanisms

33

Security Assurance

that are present. Next, each requirement must be weighted with a number reflect-
ing the importance of the requirement.

VM =

m∑
i=1

Ri ·
n∑

j=1

CviVj. (5.3)

In equation 5.3 VM is defined where R is the risk value for the specific vulner-
ability category, Cv is abbreviated from check vulnerability category, and for each
category the associated vulnerabilities Vj must be checked if they are found. The
variable m is the total number of vulnerability categories, and n is number of vul-
nerabilities in each category. Finally, each vulnerability category must be given a
risk score.

5.2.2 Existence score

For each present mechanism an existence score must be assigned. A mechanism is
either present or not present, at first a score of 0 and 1 were considered. However,
in reality when the mechanisms was controlled it was acknowledged that there
were mechanisms that were not performing as they should. To reflect this state
of nature a score of 0.5 was included. The options for existence score were set to
P-score={0, 0.5, 1}. P is short for presence (of a mechanism). The scores express:

• 0: Not Present
• 0.5: Partly Present
• 1: Present

Likewise, the vulnerability score VE-score={0, 0.5, 1} reflects the existence of
the vulnerability. Zero signify that the vulnerability is not present, 1 is set for vul-
nerabilities that are found. Here 0.5 is applied if its dubious the vulnerability is
able to be harmful.

5.2.3 Weights

Weighting is explained as

"The process of weighting involves emphasizing the contribution of
some aspects of a phenomenon (or of a set of data) to a final effect or
result, giving them more weight in the analysis. That is, rather than each
variable in the data contributing equally to the final result, some data are
adjusted to contribute more than others[65]."

In relation to security, not all security requirements are equally important. That
depends merely on the functions of the API and what it does and if it process
sensitive data? The weights will express how important an security requirement is

34

Security Assurance

and it must be done according to what we want to protect.
A scale from 0-10 will aid to express the levels of importance. Where 0 is as-

signed to requirements that are meaningless and futile, and 10 is the maximum
expressing a vital requirement.

5.3 Risk Models

The term risk was defined in the chapter 4. To pursue the definition, a risk is an
impact of uncertainty on systems, organizations etc. Further risk management is
the management of this impact, where the purpose is to protect against the threats.
Whilst, risk assessment is the activity where the risks are identified, analyzed and
articulated to the decision makers. There are several frameworks or methods for
risk analysis, and organizations may choose their method depending on the type
of risks they encounter or their business area[63].

Two risk models were considered for this thesis work, CVSS (Common vulnera-
bility Scoring System) and DREAD-model.

5.3.1 DREAD

DREAD is a model for classifying and quantifying risk developed by Microsoft[66].
DREAD stands for the first letters of damage, reproducibility, exploitability, affected
users and discoverability. Further in OWASP explains in detail[66]:

• Damage: How much damage will it create if a vulnerability is exploited.

◦ 0=Nothing
◦ 5=Individual user data is affected
◦ 10=Complete system

• Reproducibility: This tells how easy it is to reproduce the threat exploit.

◦ 0=Very hard or impossible, even for administrators of the application.
◦ 5=One or two steps required, may need to be an authorized user.
◦ 10=Just a web browser and the address bar is sufficient, without au-

thentication.

• Exploitability: This tells what is needed to exploit the threat.

◦ 0=Advanced programming and networking knowledge, with custom or
advanced attack tools.

◦ 5=Malware exists on the Internet, or an exploit is easily performed,
using available attack tools.

◦ 10=Just a web browser

• Affected Users: How many users are affected.

◦ 0=None

35

Security Assurance

◦ 5=Some users, but not all
◦ 10=All users

• Discoverability: How easy is it to discover this threat.

◦ 0=Very hard to impossible; requires source code or administrative ac-
cess.

◦ 5=Can figure it out by guessing or by monitoring network traces.
◦ 8=Details of faults like this are already in the public domain and can be

easily discovered using a search engine.
◦ 10=The information is visible in the web browser address bar or in a

form.

According to various research work[67] it was noticed that there is little re-
search done on DREAD. During this thesis work the most helpful article was from
Owasp[66]. The algorithm in DREAD model uses, assigns a score from 0-10 to each
five categories, and then getting the average score for that particular threat. See
appendix for more information.
The risk score is calculated as following: Risk_DREAD = (Damage+Reproducibility+

Exploitability+AffectedUsers+Discoverability)/5

The category of Discoverability has been a discussion topic where many has
debated its value. Discoverability says something about how easy it is to discover
this threat. In some cases this has always been set to a constant 10, indicating that
it will always be discovered while doing security review[66].

In other cases this category is not set to a constant[67]. Others has moved to
DREAD-D, where the Discoverability has been omitted as they feel it encourage
Security by Obscurity[68]. If we compare the DREAD model with the common risk
matrix (impact*probability), the Damage potential and Affected users can be rec-
ognized as the Impact, and Reproducibility, Exploitability, and Discoverability can
be recognized as the Probability. Notably Owasp[66] recommend to alter the for-
mula, in a way that the impact score and the probability score is equal. If this is
not done the probability score will weight more than the impact in the total score.

5.3.2 CVSS

CVSS stands for Common Vulnerability Scoring System[69], an it is a published
standard used globally. It was designed by National Institute of Standard and Tech-
nology (NIST) with cooperation of industry partners.

CVSS helps to achieve a score, a decimal number, which reflects the vulner-
ability’s severity, in the range of [0.0, 10.0]. The metrics are calculated in three

36

Security Assurance

different groups: base, temporal and environmental[69]. The two latter metrics
are optional to use depending on the system and context.

1. Base metrics: Consists of two metrics, exploitability and impact metrics, which
represents the intrinsic and fundamental characteristics of a vulnerability
that do not change over time or across user environments. There is two
groups within this metric. The first group focus on how the vulnerability is
accessed[69]:

• Attack vector (AV): measures if its possible to exploit the vulnerability
locally or remotely. Options are [network, adjacent, local, physical].

• Attack complexity (AC): measures what must exist beyond the attackers
control to exploit the vulnerability e.g. software, hardware. Options are
[low,high].

• Privileges Required (PR): measures the privileges required to exploit a
vulnerability. Options are [none,low, high].

• User Interaction (UI): measures if user interaction is needed to exploit
the vulnerability or the attacker alone can perform the attack. Options
are [none, required].

The other group of metrics focus on the impact of the vulnerability:

• Scope: measures whether the exploit of the vulnerability will impact
other components in addition to the vulnerable component. Options are
[Unchanged,Changed].

• Confidentiality impact (CI): measures the impact on confidentiality if
the attack is successful. Options are [none,low,high].

• Integrity impact (II): measures the impact on integrity if the attack is
successful. Options are [none,low,high].

• Availability impact(AI): measures the impact on availability if the attack
is successful. Options are [none,low,high].

The score 0.0 indicate None severity vulnerability. When the scale of the Base
score is between 0.1-3.9, it indicates Low severity vulnerability. If its between
4.0-6.9 it indicates Medium severity vulnerability and 7.0-8.9 indicates High
severity vulnerability. At the highest, when it is between 8.9-10.0 it is Criti-
cal severity vulnerability. The CVSS site[69] offers a calculator which can be
used to calculate the score, so the analyst does not need to know the complex
formulas in the background[69].

2. Temporal: This metric group reflects if the characteristics of the vulnerability
changes over time[69].

37

Security Assurance

• Exploit Code Maturity: measures the probability of the vulnerability to
be attacked based on current state of exploit techniques and code avail-
ability. There are many type of malicious snippets available on the in-
ternet an attacker can use to exploit a vulnerability. Options are [not
defined, unproven,proof-of-concept, functional, high]. The option not de-
fined signify that the metric is not applicable and it will not affect base
score if chosen.

• Remediation Level: This metric is important for indicating the prioriti-
zation of the vulnerability. Because when the vulnerability is first pub-
lished, there is no fixed solution for it, and workarounds are often used
as temporary remediation. The chosen option will reflect the urgency
of the vulnerability. Options are [not defined, official-fix, temporary-fix,
workaround, unavailable].

• Report Confidence: measures the degree of confidence that the vulner-
ability exists and the credibility of the known technical details. For in-
stance sometimes the details of the vulnerability is not publicized be-
cause it is not known, only that the vulnerability exists. Later on it may
worked on it and acknowledge it by the vendor etc. Options are [not
defined, unknown, reasonable, confirmed].

3. Environmental: Reflects characteristics of vulnerabilities that are unique to a
particular user’s environment. This metric is composed by modified factors
that control security controls that could reduce or raise the impact of the ex-
ploit. They can be categorized in two groups. The first group let the analyst to
modify the base score depending on the importance of these requirements[69]:

• Confidentiality
• Integrity
• Availability

The other group is factors that need additional weighting to reflect the secu-
rity of the specific environment. These factors are:

• Modified Attack Vector
• Modified Attack Complexity
• Modified Privileges Required
• Modified User Interaction
• Modified Scope
• Modified Confidentiality
• Modified Integrity
• Modified Availability

38

Security Assurance

For instance the last three factors, modified confidentiality, integrity and availabil-
ity were used in this study. The modification of the confidentiality requirement was
done for the PX-API since its data was not private. Hence, the CVSS score decreased
indicating a low threat to data corruption.

5.3.3 Evaluation of Risk models

At first the DREAD model was chosen due to its simplicity, as CVSS sounded com-
plex and difficult to understand. However, it was done a risk-analysis with DREAD
of the REST APIs with a manager at Statistics Norway and the experience was
that DREAD is difficult to use in the real world. Especially the reproducibility and
discoverability category was complex to evaluate for each vulnerability. It was nec-
essary to convert the vulnerability to a threat since a vulnerability is not the same
as a threat. The DREAD model is actually a threat-model. Based on this experience
the CVSS was chosen instead.

CVSS base score, Temporal score and Environmental score was calculated for
the both REST APIs. NIST has developed its own CVSS calculator[70] which was
used in this study. The calculator makes it is easier to calculate the overall CVSS-
score, because the temporal and environmental score is also included. Environ-
mental score is usually added by the end-user[71], to adjust the score further re-
spectively according to the user environment. This case will be explained in detail
in chapter 6.

5.4 Scale Consideration & Normalization

The scale is dependent on number of requirements and vulnerabilities. The total
number of requirements are 10 which has 53 mechanisms. Total number of vulner-
ability categories are 9 and containing 36 vulnerabilities. The maximum number
of the weight a requirement can get is 10 and the maximum number of risk score
is also 10. The maximum score an API can get is if every requirement is fulfilled:

10× 10 = 100 (5.4)

For each vulnerability that is present, the score assigned to the vulnerability
is subtracted from the total. If every vulnerability is present, and each of them is
assigned max risk score, the total score will be

−9× 10 = 90 (5.5)

Consequently, the minimum score is -90. The scale will range from -90 up to 100.
However, such large range is difficult to work with and interpret, so the score

must be normalized to a common domain. A common domain used in scoring
models in security, e.g. risk models is 0-10, therefore this range was chosen. It is

39

Security Assurance

possible to shrink a large scale to fit into a new, smaller scale. The method used
here is min-max normalization [72, 73].

Figure 6: Normalize to different scale

υ ′ =
υ−minA

maxA −minA
(newmaxA − newminA) + newminA (5.6)

The min-max normalization[73, p.4] equation is shown in equation 5.6. The
minA and maxA are minimum and maximum of an attribute, A, refering to the
original variable A (in our case A=-90 to 100). The value v is mapped to value υ ′

in the range of [newminA,newmaxA] using min-max normalization[74]. Quoting
Shalabi & Shaaban, "min-max normalization performs a linear transformation on the
original data[75]".

Table 2: Degree of Security
Score Degree of Security
0.0 - 0.99 None Security
1 - 3.9 Low security
4.0 - 6.9 Moderate Security
7.0 - 8.9 Very Good Security
9.0 - 10.0 Excellent Security

The table 2 is adapted from the table of severity for vulnerabilities[70]. How-
ever, my table is showing the opposite, thus levels of security. This table can be used
to convert the score to textual representation.

40

Security Assurance

6 Case study & Results

A detailed description of the methodology can be found in the methodology chapter
3. This chapter describes how the quantification method was applied to two case
studies, and the result that was obtained.

Following procedure is performed on two different REST APIs, PX-API and TS-
API respectively. (Except sketching of the UML-diagram, which is only done for
PX-API.)

1. Learning about the API. Sketching a UML-diagram of the API, that shows
what the requests and responds look like.

2. Manual check: First a existence score that express whether a requirement is
present or not by checking the related security mechanism.

3. Weighting: Each requirement get a weight that will reflect the importance of
that requirement depending on the functionality of the API, and the security
requirement.

4. Analysis of security testing result: Security vulnerability score will be checked
after security testing both of the REST APIs.

5. Risk score: A risk analysis is done to get a vulnerability score.
6. Security Assurance: A total score of security assurance is calculated for the

REST API.

When we have the two security assurance scores, we can compare these two
values to evaluate how the quantification method worked.

6.1 Case study 1: PX-API

This section is particularly dedicated to PX-API. Referring to the section on case
study 3.3 in chapter 3 where it is stated that the case study can use both quantita-
tive and qualitative data. The quantitative data is for instance the existence score
(P,VE) of requirements and vulnerabilities. However, the assessment of the risks
and the importance of requirement is of a qualitative nature.

41

Security Assurance

6.1.1 UML Diagram

Figure 7: UML diagram of PX-API

42

Security Assurance

Figure 7 is an UML diagram of the PX-API, and shows what is sent in the "re-
quest" and how the response looks like. The figure is adapted from the diagram
for the twitter’s REST API[76]. My UML-diagram mainly focuses on the request
and response of the API. It is possible to navigate through the API using the URL.
The structure is in general: table-topic-subtopic-table-statistics-table. For instance
the url, http://data.ssb.no/api/v0/en/table/be list all the subtopics in the topic be
which is population. The drilling is done with GET-method all the way down. That
is shown on the left side of the diagram. If you know the table number, it is possible
to acquire the metadata of that table. For instance, for table number 05000 write:
http://data.ssb.no/api/v0/en/table/05000.

As mentioned earlier in the introduction chapter 1 there are two ways to use
the API, the other way is to use the API-console. In the console you can run the
POST query. It is only possible to acquire data with a POST query, GET method will
only give metadata.

There are three possible output format to choose from:

• JSON-stat
• CSV
• XLSX

The response will deliver a table based on the query you build with the cho-
sen variables. The diagram gives valuable information that can aid in the security
testing process, as the diagram shows the API methods, input parameters, requests
and response, as well as output format.

6.1.2 Requirements review of PX-API

For each requirement, their corresponding mechanism was checked mostly man-
ually in cooperation with system architects and developers. Table 3 shows all the
requirements and the associated security mechanisms that were present. P-Score
is short for Presence score. As explained earlier for mechanisms that were present,
a score of 1 is assigned. Zero was assigned for those which were not there. The
numbered list of security mechanisms can be looked up in the Appendix A. For
the first requirement Authentication there are no security mechanisms present. The
reason behind this is simply because no authentication is done, due to the fact that
this is an API open for public. The data that is acquired through the API is official
statistics available for anyone.

Several security mechanisms are available for Input Sanitation, Error Handling
and Communication Security, all of them has got a score of 1. The description of
7.2 can be found in the Appendix A stating:

"Verify that TLS is used for all connections (including both external and backend
connections) that are authenticated or that involve sensitive data or functions,

43

Security Assurance

and does not fall back to insecure or unencrypted protocols. Ensure the strongest
alternative is the preferred algorithm."

This has got 0.5 because the users are not redirected over to https, both http
and https works.

Table 3: Displaying presence of security mechanisms for PX-API

Security Requirement Security Mechanism(s) P-Score

Authentication 1.1 -1.7 0

JWT 2.1 -2.3 0

Access Control
3.1-3.5 0
3.6 1

Input Sanitation

4.1 1
4.2 1
4.3 1
4.4-4.8 0

Error Handling

5.1 1
5.2 1
5.3 1
5.4 0

Data Protection 6.1-6.6 0

Communication Security

7.1 1
7.2 0.5
7.3, 7.5 & 7.6 0
7.4 0.5

HTTP Security

8.1 0.5
8.2 1
8.3-8.7 0
8.8 0.5

Web Services 9.1-9.4 0

Cross Site-Scripting 10.1 1

Each requirement have different number of security mechanisms and this can
give a skewed score if its not normalized. For all the requirements to weight equally,
average of the score is used[77]. The average of the scores is then multiplied with
the weight. The weight reflects the importance of that requirement. The table 3 is
a table showing the total score with weights.

44

Security Assurance

Table 4: Total Requirement Score (RM) for PX-API

Security Requirement Tot.
Score

Tot.
Mecha-
nisms

Average
(A)

Weight
(W)

Result (A*W)

Authentication 0 7 0.00 0 0.00
JWT 0 3 0.00 0 0.00
Access Control 1 6 0.17 5 0.83
Input Sanitation 3 8 0.38 8 3.00
Error Handling 3 4 0.75 7 5.25
Data Protection 0 6 0.00 0 0.00
Communication Security 2 6 0.33 5 1.67
HTTP Security 2 8 0.25 6 1.50
Web Services 0 4 0.00 0 0.00
Cross Site-Scripting 1 1 1.00 7 7.00

Sum 19.25

Application of Weights

Table 4 is showing the total score and total mechanisms for each requirement, aver-
age, weight and the result. (Total mechanisms is total security mechanisms that is
possible to obtain for each requirement, this can be looked up in Appendix A) The
average is presented as rounded numbers, but the result is calculated based on the
decimal number. This also applies to the numbers in table 9. Although the authen-
tication was initially considered for PX-API by the developers, it was discarded as it
was considered to be less user friendly due to the fact that the data is official. The
security requirement authentication get 0 weight score for this API. The API also
do not need data protection as the data is not confidential official data, hence the
weight here is also 0. JWT also gets a 0 weight. All of the above mentioned con-
trols got 0, because they are considered as irrelevant. However, it was discussed
whether it could be useful if there were some security mechanisms implemented
for Web Services. But since there were none, the weight is deliberately set to 0. It is
worth mentioning that even though the weight would have been higher it would
not matter since there is no security mechanisms present.

The requirement Access Control has a weight of 5, again the reason for the low
weight is because the data is official.

Input Sanitation and Error Handling are two important security requirements.
Input must be validated before it is used, to confirm that it does not contain ma-
licious code which can be harmful to the system[2]. The intention behind Error
Handling is to give useful reaction to users and administrators in case of errors[2].
These requirements get 8 and 7 respectively.

45

Security Assurance

The requirement of communication security is given the weight 5 because in
communication security mostly the countermeasures involves around the enforce-
ment of TLS-protocol. Since the data is not confidential the weight is low.

Next, HTTP Security is essential for any API sine API interface is based on the
HTTP protocol[78]. But since the API has official data therefore the weight is 6 for
this requirement.

Last the Cross site scripting defence is important because even though the API it-
self does not have a confidential data, a XSS-attack can inject malicious script to the
web-page and acquire other confidential information retained by the browser[79].
The weight is 7 for this requirement.

The requirement fulfillment score for the different requirements will certainly
differ depending on the weight given to each of them.

6.1.3 Vulnerability inspection of PX-API

The table 5 displays all the vulnerabilities found for the PX-API after completing the
security testing process. The VE-score is the existence score for a vulnerability, that
either can be 0, 0.5 or 1. During a security test the tester can find a vulnerability
or s/he don’t find any, sometimes the vulnerability is found but the vulnerability is
not fully exploitable.

Table 5: Displaying vulnerabilities for PX-API

Vulnerability Category Vulnerability Description VE-Score

Injection Attack 1.1-1.3 0

Broken Authentication 2.1-2.7 0

Sensitive Data Exposure

3.1 1
3.2 1
3.3 0

Broken Access Control 4.1-4.12 0

Elevation of Privilege 5.1 0

Cross Site Scripting 6.1-6.3 0

Cross Site Request Forgery 7.1 0

Parameter Tampering 8.1-8.5 0

Man-in-the-middle-attack 9.1 0

The vulnerabilities found was mainly misconfiguration of TLS protocol. The VE-
score was set to 1 for vulnerabilities that exists and 0 for those which were not
found.

46

Security Assurance

The details explaining the uncovered vulnerabilities can be looked up in Ap-
pendix B.

6.1.4 Risk Modeling of PX-API

After the vulnerability inspection the risk scoring is performed. There is not any
fixed answer to risk appetite. Every organization need to define the level of risk
they are ready to accept. The skill to quantify risk, will depend on the knowledge
and experience of the team performing the risk scoring[80]. The risk score can
be reduced, but that does not mean that the risk itself has reduced. It is essential
to understand the causes behind the risk score. Ultimately the real risk must be
tackled[81].

Table 6: Risk Scores for PX-API
Metrics Vulnerability

Sensitive Data Protection

Exploitability Metrics

AV Network
AC Low
PR None
UI None

Impact Metrics

Scope Unchanged
C Low
I None
A None

Temporal Metrics

E High
RL Official Fix
RC Confirmed

Environmental Metrics CR Low

CVSS Base Score 5.3
CVSS Temporal Score 5.1
CVSS Environmental Score 4.4

CVSS Overall 4.4

Table 6 shows risk analysis of the exposed vulnerabilities. The abbreviated row
names (AV,AC,PR,UI,etc.) are explained in the subsection 5.3.2. Just to explain, for
the Exploitability Metric the attack vector (AC) is set to Network, Attack Complexity
(AC) is set to Low, etc. The impact on confidentiality (Impact Metrics, Scope:C) is
set to low since the API data is public. It is possible to decrypt the data, since
encryption is not enforced. However, the data captured by the attacker will not be
of sensitive nature. The temporal metrics does impact the overall score because

47

Security Assurance

mainly a fix is available. The score would have increased if the exploit did not have
any fixes available. Since the requirement of confidentiality for this API was low, I
adjusted the score further with the help of the Environmental Metrics (CR=low).

The CVSS calculator[69] specify this option as:

"There is some loss of confidentiality. Access to some restricted in-
formation is obtained, or the amount or kind of loss is constrained. The
information disclosure does not cause a direct, serious loss to the impacted
component."

Table 7: Total Vulnerability score (VM) for PX-API

Vulnerability VE-
score

Tot. vul. in cat. Average Risk Average*Risk

Sensitive data protection 2 3 0.67 4.4 2.93

Table 7 is compiled from table 5 and 6, showing the average VE-score and the
risk attached to these vulnerabilities. The second column shows total number of
vulnerabilities in the category. The risk is set to 4.4 for the vulnerability category
because the impact of these risks is low due to the data is not confidential. As we
can see the score 4.4 is obtained from the CVSS overall score.

6.1.5 Security Assurance Score (AM) for PX-API

The security assurance score can be calculated using the metrics AM. The defintion
can be found in the section 5.2.1. To summon the AM was calculated by subtracting
the VM metric from the RM metric, as also depicted on the figure 3. Hence, It will
give a value of:

19.25− 2.93 = 16.32 (6.1)

On the original scale [-90,100] the PX-API gets a value 16.32. This score need
to be normalized to a new range from 0 to 10, as explained in chapter 5.

The values that needs to be filled in is as following, min_A : -90, max_A = 100,
new_maxA:10, new_minA:0. And υ : is the AM-value:16.32.

υ ′ =
16.32− (−90)

100− (−90)
(10− 0) + 0

=
106.32

190
× 10

= 0.5595× 10
= 5.595 ≈ 5.60

(6.2)

48

Security Assurance

All calculations has been done with decimal numbers, even if they are shown as
rounded numbers in the equation. The PX-API got 5.60, which in our table of secu-
rity degree 2 falls between 4.0-6.9, evaluated as Moderate Security.

6.2 Case Study 2: TS-API

This section address the case study of TS-API.

6.2.1 Requirement check

TS-API is different from the PX-API, hence its security requirements are not weighted
similarly. First of all it is not a public API. An application use this API to transform
data, and the API does not have data of its own. The API has authentication controls
and Access Controls enforced as it is needed for countermeasure against unautho-
rized users. Many of the mechanisms for authentication requirement is fulfilled, but
not all. The most important security objective of this API is integrity. The reason is
the data processed in the API is not confidential but if the data is changed and its
recipients (users/applications) are changed, it can cause a lot of damage, including
damaging the company’s reputation. Input sanitation is equally important require-
ment for this API, due to the same reason as mentioned above. It should not be
possible to change the data.

All mechanisms for Error Handling is on place, which is a good thing. Often this
requirement is not taken seriously, but it is as important as other requirements. Not
just to know the status of the request, but also that the error can be fixed in time.
If there is no feedback from the system, the user can assume that the request has
been successfully executed. This is particularly important when the API is suppose
to handling request from applications. Else the whole system can hang, and it is
difficult for the developers to locate the error[82].

Data protection is less important because there is no confidential data. However,
all data is sent to the server in the HTTP message body or headers because of the
integrity requirement.

49

Security Assurance

Table 8: Displaying presence of security mechanisms for TS-API

Security Requirement Security Mechanism(s) P-Score

Authentication

1.1 1
1.2-1.4 & 1.7 0
1.5 1
1.6 0.5

JWT 2.1 -2.3 0

Access Control

3.1 1
3.2 1
3.4 1
3.3, 3.5, 3.6 0

Input Sanitation

4.1 0.5
4.2 1
4.3-4.7 0
4.8 1

Error Handling

5.1 1
5.2 1
5.3 1
5.4 1

Data Protection
6.1 1
6.2-6.6 0

Communication Security 7.1-7.6 0

HTTP Security

8.1, 8.3, 8.5-8.8 0
8.2 1
8.4 1

Web Services

9.1, 9.3 0
9.2 1
9.4 1

Cross Site-Scripting 10.1 0

Table 8 shows the presence of the different security requirements. The score 1 is
given if the requirement is present and functioning properly. Some of the require-
ments are given 0.5, because there is an uncertainty regarding the requirement’s
functionality. For instance for 4.1: "Verify that server side input validation failures re-
sult in request rejection and are logged." It is not sure that it is logged adequately. For
them to achieve score of 1, some improvement is needed in the implementation.

50

Security Assurance

Table 9: Total Requirement score (RM) for TS-API

Security Requirement Total
Score

Total
mecha-
nisms

Average
(A)

Weight
(W)

Result (A*W)

Authentication 2.5 7 0.36 10 3.57
JWT 0 3 0.00 0 0.00
Access Control 3 6 0.50 10 5.00
Input Sanitation 2.5 8 0.31 9 2.81
Error Handling 4 4 1.00 10 10.00
Data Protection 1 6 0.17 4 0.67
Communication Security 0 6 0.00 0 0.00
HTTP Security 2 8 0.25 7 1.75
Web Services 2 4 0.50 6 3.00
Cross Site Scripting 0 1 0.00 0 0.00

Sum 26.80

Table 9 is showing the total security mechanisms present, and the given weight
for each of the security requirement. The weight is given according to the impor-
tance of the requirement. For instance Authentication and Access Control is one
of the most essential parts needed for protection. Data Protection has a low score
because the data itself is not of confidential nature. Even if an outsider is able to
get access to this data, s/he will not be able to do any harm.

6.2.2 Vulnerability check

Table 10 is showing the vulnerabilities that were found for TS-API during the se-
curity testing. Three main vulnerability categories are affected: broken authentica-
tion, broken access control and elevation of privilege.

The vulnerability 4.12:API key compromise has got 0.5 as score. Similarly to the
requirement score this depicts as weak vulnerability, meaning not fully executable.
It was found that even if it was possible to aquire the API key and get access to the
API. It was not possible to change the data/recipient and act further.

6.2.3 Risk Modeling
The description of the vulnerability category Broken Authentication can be found in
the Appendix B. The vulnerabilities found in this category were:

2.2 Permits Brute Force
2.5 Has missing or ineffective multi-factor authentication

They have the same risk score.

51

Security Assurance

Table 10: Displaying vulnerabilities for TS-API

Vulnerability Category Vulnerability Description VE-score

Injection Attack 1.1-1.3 0

Broken Authentication

2.1, 2.3, 2.4, 2.6-2.7 0
2.2 1
2.5 1

Sensitive Data Exposure 3.1-3-3 0

Broken Access Control
4.1-4.11 0
4.12 0.5

Elevation of Privilege 5.1 1

Cross Site Scripting 6.1-6.3 0

Cross Site Request Forgery 7.1 0

Parameter Tampering 8.1-8.5 0

Man-in-the-middle-attack 9.1 0

Table 11: Risk Scores for TS-API
Metrics Vulnerability

Broken Au-
thentication

Broken Ac-
cess Control

Elevation of
Privilege

Exploitability Metrics

AV Network Network Local
AC Low Low Low
PR None Low Low
UI None None None

Impact Metrics

Scope Unchanged Unchanged Unchanged
C None None None
I High High High
A None None None

Temporal Metrics

E High High Functional Ex-
ploit exists

RL Official Fix Official Fix Official Fix
RC Confirmed Confirmed Reasonable

Environmental
Metrics

IR High High High

CVSS Base Score 7.5 7.5 5.5
CVSS Temporal Score 7.2 7.2 5.1
CVSS Environmental Score 8.9 8.9 6.8

CVSS Overall 8.9 8.9 6.8

52

Security Assurance

The two vulnerabilities must be seen together to evaluate the risk because they
are in the same category. A brute force attack[83]is when an attacker can send all
kind of combinations of passwords to forcefully get access to an account. This is
possible because there is no account lockout policy enforced and/or two-factor au-
thentication. Next vulnerability is missing two-factor authentication, which again
makes it possible to do a brute force attack or simple phishing[84]. This is a good
example of how risk is evaluated based on the category instead of a single vulner-
ability.

Table 12: Total Vulnerability Score (VM) for TS-API

Vulnerability VE-score Tot. vul. in
cat.

Average Risk Average*Risk

Broken Authentication 2 7 0.29 8.9 2.54
Broken Access Control 0.5 12 0.04 8.9 0.37
Elevation of Privilege 1 1 1.00 6.8 6.8

Sum 9.71

Table 12 is showing calculation of the Vulnerability score.

6.2.4 Security Assurance Score (AM) for TS-API

As mentioned earlier the score of AM is found by subtracting the VM metric from
the RM metric. In this case it will give a value of:

26.80− 9.71 = 17.09 (6.3)

On the original scale [-90,100] the TS-API gets a value 17.09 Now we want to
plot the AM value to a scale of 0-10. Just like the first API.

υ ′ =
υ−minA

maxA −minA
(new_maxA − newmin_A) + new_minA (6.4)

The values that needs to be filled in is as following, min_A : -90, max_A = 100,
new_maxA:10, new_minA:0. And υ :17.09 is the AM-value.

υ ′ =
17.09− (−90)

100− (−90)
(10− 0) + 0

=
107.09

190
× 10+ 0

= 0.5636× 10
= 5.636 ≈ 5.64

(6.5)

53

Security Assurance

All calculations has been done with decimal numbers, even if they are shown as
rounded numbers in the equation. The TS-API got 5.64, which in our table of se-
curity degree 2 falls between 4.0-6.9, evaluated as Moderate Security.

6.3 Summary Result

PX-API had 2 vulnerabilities and 12 security mechanisms present. TS-API on the
other hand had 3.5 vulnerabilities and 17 security mechanisms present. The PX-API
got the AM-score 5.60 and the TS-API got the AM-score 5.64. A detailed discussion
on the results can be found in chapter 7.

54

Security Assurance

7 Discussion

In this chapter I will discuss the framework, the process and the result I got.

7.1 Definitions

In chapter 4, security requirement is defined as a representation of the expected
security functionality of a security mechanism. Whilst a vulnerability was defined
as a special fault in the security mechanism that was able to be exploited and lead
to a risk.

It can be argued that there is no difference in a missing requirement and a
present vulnerability. So it is futile to check both. If one missing requirement is
recognized as a present vulnerability, a present requirement can be recognized as
a vulnerability that does not exist.

This can be true in some sense but there are some aspects that should be re-
flected on. It was observed that the relation between a security requirement and
a vulnerability was not a 1 to 1 relation. One security requirement may fix one to
many vulnerabilities, and a single vulnerability may needs many requirements to
get fixed.

Feng et al. confirm in their paper

"...there often exist complex interactions among the components of
information systems. Therefore, any single vulnerability may have multi-
ple propagation paths, leading to different security risks in information
systems"[85].

Lets take one security requirement as an example. TLS protocol is an security
requirement. Further, missing or wrongly configuration of this security requirement
can lead to a man-in-the-middle attack, a cross-site scripting attack. etc. But a
man-in-the-middle attack is not only possible because of missing a TLS, there are
several methods to do so such as sniffing, packet injection, session hijacking and
SSL-hijacking, etc.[54]. Depending on various vulnerabilities e.g. missing HTST,
deactivated certificate validation[86, 54], etc.

7.2 Framework & Method

In chapter 2 I have rendered a section on Related Work. What I have concluded with
that it is little or no research on how to security test, quantify or measure security of

55

Security Assurance

REST APIs. In general there are little research on quantification of security, where
security of a system is measured. I have observed that a lot of authors have sug-
gested security testing or security application as early as possible in the software
development cycle. Which is a positive trend, but the pitfall is that the security
assurance is not given the attention it needs on later stages. Because with new
technologies comes new vulnerabilities and attacker tries to exploit these all the
time. The framework I have proposed consisting of a method to quantify security
provides helpful metrics. According to Kahra[36] metrics can be used to observe
the security over a time period and the security performance. This framework is
not bound to just facilitate a REST API. In general, it can be utilized for any system
or domain. Provided that the list of requirements and vulnerabilities is adjusted
according to the system.

The framework differs also in the chosen approach and perspective. While other
security testing methods aim to address the vulnerabilities, in my thesis I have sug-
gested to include verification of requirement fulfillment. As I see it, there are sev-
eral advantages of doing so. The presence of requirements are checked manually
before the security testing is done. Afterwards the security tester can cross-check
the vulnerabilities with the related requirement(s) and conclude that they are not
working as expected.

I also observed that other methods only include risk analysis in their process and
often they lack requirement analysis. Mostly, requirement analysis is done early in
the software development process, and it is not a part of the security testing. I ex-
perienced that by adding requirement checking it helped to prioritize what should
be protected. The weight could give an additional indication on which requirement
was important for the particular API. In total, all of this could be acknowledged as
a basis on what to prioritize in implementing the countermeasures. After all the
security requirements and vulnerabilities are aspects of the same picture depicting
the security assurance level of a system.

7.3 Results

After the requirements were counted and before the result of the calculation was
done. The expectation was that the more of the requirements were on place the
more secure the REST API is. Hence I was expecting a higher score for TS-API. For
instance, it has authentication which is an important requirement that gives that
extra layer of security. It was not found a lot of vulnerabilities either, only three.
While the PX-API had less requirements on place and it was found two vulnera-
bilities for this API. This was before any weighting was done or risk analysis. The
weighting and risk score is necessary contributors to the score, because the weight
portray the importance of the requirement. The risk score on the other hand il-

56

Security Assurance

lustrate how harmful the vulnerability is. This is due to the fact that the security
objective can differ from one system to another. Information security has three
main objectives: confidentiality, integrity and availability[10]. The PX-APIs main
security objective is the availability of the data. The data should be available to
the user. There is no confidentiality needed as the data is public. The main security
objective for the TS-API is the integrity of the data. Any attacker should not be able
to change the data. The data itself is not confidential.

In a range of 0-10 where 0 is minimum and 10 is maximum, PX-API got 5.60
and TS-API got 5.64. According to this result it is indicating that the TS-API is
more secure than the PX-API. To evaluate this claim it is necessary to look at all the
factors that contributes to the score.

Many factors will impact the score. The presence of the security requirements
and security vulnerabilities are counted. The accuracy of this counting depends on
which scoring model for requirements and risk models for the vulnerabilities are
used.

Requirements are assigned weights according to their importance. The approach
used in this thesis was that every requirement was not equally important. For a
REST API that for instance process confidential data, needs protection so the data
is not leaked. Hence, the requirement for data protection and authentication is
more important for the TS-API used in this study than the other one which is a
public API. This is an important aspect of the score because the weight will not
only change the score total but value an existence score more than others.

The weight assigned indicate how security is emphasized. If authentication is
necessary to make a specific API secure, the importance of that will also be higher
than other, hence the weight is also higher. For a requirement that does not con-
solidate the security, or its presence is not vital, it will get a lower weight. The
weights I have given are making an impact on the score. If I change the weight the
score will change accordingly. The range, under which the score will fluctuate, can
be calculated. In our original approach the requirements are weighted differently
according to their importance. In the example below I have changed the weighting
to max, which represent the situation where each requirement is weighted equally
(abbreviated as Eq. W in the table column).

57

Security Assurance

Table 13: Comparison between original RM with distinct weights and new RM with equal
weights for PX-API

Security Requirement Average (A) Weight
(Org/Eq.
W)

Original
value

Eq. W

Access Control 0.17 5/10 0.83 1.67
Input Sanitation 0.38 8/10 3.00 3.75
Error Handling 0.75 7/10 5.25 7.50
Communication Security 0.33 5/10 1.67 3.33
HTTP Security 0.25 6/10 1.50 2.50
Cross Site - * 1.00 7/10 7.00 10.00

Sum 19.25 28.75

Table 14: Comparison between original RM with distinct weights and new RM with equal
weights for TS-API

Security Requirement Average (A) Weight
(Org/Eq.
W)

Original
Value

Eq. W

Authentication 0.36 10/10 3.57 3.57
Access Control 0.50 10/10 5.00 5.00
Input Sanitation 0.31 9/10 2.81 3.13
Error Handling 1.00 10/10 10.00 10.00
Data Protection 0.17 4/10 0.67 1.67
HTTP Security 0.25 7/10 1.75 2.50
Web Services 0.50 6/10 3.00 5.00

Sum 26.80 30.86

Next, we can find the relative difference between the original value and the
maximum value in percentage using this equation[87, 88] (Relative Percentage
Difference):

RPD =

(
X1 − X2

Xmean

)
× 100 (7.1)

X1 and X2 are the values we want to compare. Xmean is the average of the two

58

Security Assurance

values.

RPDPX =

(
28.75− 19.25
28.75+19.25

2

)
× 100

RPDPX = 39.58%

(7.2)

RPDTS =

(
30.86− 26.80
30.86+26.80

2

)
× 100

RPDTS = 14.08%

(7.3)

For PX-API the RPD is 39.58 %. For TS-API the RPD is 14.08 %. With these
percentages, I know that the original weights for TS-API is closer to the value
where requirements are weighted equally.
It is interesting to find out the span of the percentage difference. If the score scale
is from 0-10, we must insert 0 and 10 into the equation.

RPDspan =

(
10− 0
10+0

2

)
× 100

RPDspan = 200%

(7.4)

This means that the span of the percentage difference will be from [0%,200%].
As assigning of weights on the requirements contributes in disparity in the score,
likewise the risk scoring of the vulnerabilities will do the same. In this study I have
used CVSS model for risk analysis. The DREAD model was initially used which gave
almost the same scores. However, the DREAD model was challenging in the sense
that it was challenging to understand the terms reproducibility and exploitability.
I felt that a better technical insight of the exploit was necessary in producing a
reliable score for DREAD. The result of the DREAD model is given below.

Table 15: PX-API Risk Analysis Result with DREAD

Vulnerability: Sensitive
Data Protec-
tion

Damage 2
Reproducibility 7
Exploitability 7
Affected Users 1
Discoverability 10

Dread_Score 5.4

59

Security Assurance

Table 16: TS-API Risk Analysis Result with DREAD

Vulnerability: Broken Au-
thentication

Broken Ac-
cess Control

Elevation of
Privilege

Damage 8 8 8
Reproducibility 9 5 8
Exploitability 9 4 8
Affected Users 10 10 10
Discoverability 10 10 10

Dread_Score 9.2 7.4 8.8

Table 15 and 16 are showing the scores derived from the DREAD-model, which
does not differ so much from the score I got by using CVSS-model.

The CVSS score acquired from table 6 and 11, were:

• PX-API:

◦ Sensitive Data Protection: 4.4

• TS-API:

◦ Broken Authentication: 8.9
◦ Broken Access Control: 8.9
◦ Elevation of Privilege: 6.8

7.3.1 AM-score with Equal Weights

The AM-score with equal weights can also be interesting to calculate. In this exam-
ple I have used the vulnerability score as it is, and maximum requirement score.

• PX-API: 28.75 - 2.93 = 25.82, plotted into range 0-10, using equation 5.6,
gives new value 6.10

• TS-API: 30.86 - 9.71 = 21.15, plotted into range 0-10, using equation 5.6,
gives new value 5.85

If I use equal weighting the PX-API gets a higher score than the TS-API. In this
example I can aslo change the risk score, but I have deliberately kept it as it is.
For instance I could have used the value 10 as risk for PX-API, but that would have
given a wrong picture of the risk. The risk is low for PX-API due to the fact that
the data is not confidential. The question is if its correct to use equal weighting if
the security objectives does not require to do so? In this example it is proven that
equal weighting of the requirements will give another score than expected. Does
this means that the PX-API is more secure than TS-API? It is debatable, since PX-
API needs less security the requirements were originally weighted with lower score
than the TS-API. The theory is that requirements cannot be weighted equally, since

60

Security Assurance

the weighting must be done according to the security objectives of the system. For
instance, PX-API does not have confidential data so the weight for data protection
cannot be the same as requirements for availability which is the main security
objective of the PX-API.

7.3.2 Human Factor

The conclusion on the result section is that the human factor is one of the most
important part that contributes to the score. The score will fluctuate according to
how the requirements are weighted and how the vulnerabilities are interpreted by
the person evaluating. In addition the person searching for the requirements and
vulnerabilities must have the knowledge and the right tools available to perform
the testing to provide the raw data.

7.4 Scale Consideration

In chapter 5 I have explained the choice of normalize the score to a 0-10, instead of
using the original, large scale from -90 to 100. I had a discussion with colleagues
on which scale that was better suited for this work. Whatever scale is chosen, it
should not be confusing to understand the score. First of all it is necessary to define
what the scale range is, without it the score in itself does not make any sense. For
instance if I say that the AM-score is 10.

To interpret the score you need to relate it to something, and figure out what
does the score represent. If the scale is from 0 to 10, then 10 is max, hence it is the
maximum possible number, great! If the is scale from 0 to 100, then 10 is not so
impressing. On the original scale (-90 to +100) however, 10 is more than half of
possible scores.

Other ranges were also discussed, such as a scale of -5 up to 5. Where 5 is
max. Zero (0) is the middle value hence this can be defined as the middle value. A
negative score can therefore be interpreted as alarming, and can be used to create
attention among decision makers. The downside of using this scale is having 0 as
a middle value. Zero is too often interpreted as nothing. As appealing it was to
use negative numbers to display critical security, I did not like the idea of getting a
Security Assurance score of zero, as it will lead to confusion.

Therefore in this study I chose to use a range from 0-10, because it is the most
common scale in people’s mind.

7.5 Analogy Example

Lets think of the REST API as a particular house. A thief can be compared to a
malicious attacker.

An attack surface is the points where any thieves can enter the building, which

61

Security Assurance

in the analogy is the door and windows. Authentication is verifying that you are
the person you are claiming to be. By having a key to your house you will have
access to the house. This is one type of authentication mentioned earlier, you enter
by using something you own.

The PX-API can be compared to an open building, like for instance a library that
anybody can come inside. People come in and read the newspapers they are inter-
ested in etc. Nobody knows how many visited the library. May be not so important,
some may argue. But it could be an advantage to know how many guests usually
come on weekdays compared to the week-ends. In API world this can be related to
availability of the service.

On the other hand TS-API is a house with a key that need authorized persons
to enter. Since the API does not have confidential data there is nothing private
inside it. So TS-API can be compared to a show house which a real estate agent
use to show for potential buyers. The house does not have anything "private" in
it. The house is decorated with beautiful furniture. Remembering that the TS-API
had integrity requirements, the same should be applied here in the analogy. The
furniture should not be changed or damaged. Because it can affect the visitors’
opinion on the house, and thus the selling rate. Compared to the library the real
estate agent knows how many has visited the house.

Input Sanitation is an important security requirement. Sanitizing is checking
what is sent as a parameter into the API. In the analogy this can be compared to a
potential customer visiting the show house. S/He is allowed to take his/her partner
along, children etc. But it is obvious he cannot bring along a cigarettes, lighters, or
other hazardous items that can deteriorate the indoor environment.

The same applies to the library. If a guest brings a lighter and burn down the
library there is no newspaper available to read. Therefore though it is a public
place, there should be some access control and input sanitation.

What can be derived from the above example is that if there is some control that
checks who is entering the house or library it is definitely a safer place for everyone.
In public places such as libraries there is a need for authentication and/or access
control that can help controlling visitors. There is also possibility to install a visitor
counting system especially made for libraries and museums. This can be compared
to API keys or Access Tokens in APIs.

To conclude in general the security requirements such as Authentication, Access
Control and input sanitation, are essential security requirements.

7.6 Qualitative Validation

To evaluate the method a formal questionnaire was sent to those who were in-
volved in the process. In addition to the formal interview there were also done

62

Security Assurance

informal discussions during the process. In this section I have summarized the feed-
back I got from both the formal questionnaire and the informal discussion sessions.
The answers from the respondents were quite similar.

7.6.1 Framework

Do you think the developed security assurance framework based on quantitative secu-
rity assurance metrics is helpful, why and when? The response on this question was
that a framework for security testing a REST API is definitely seen as something
useful for many people in an organization. For a developer it can help as a guide
on how to develop a secure REST API (by using the requirement list), and provide
a secure product to the end user. A security tester can use the lists to perform the
testing and hereby reduce the manual work. The lists can also be used to build
expertise. In addition the organization can use them as a standard to follow for
everyone. Thus, the different stages of the process can be completed separately
or in succession as desired. Most importantly the end result, which this thesis has
revolved around can be used to report to the management.

7.6.2 Requirements and Vulnerability List

Do you think that you will use the list of requirement/vulnerability when you secu-
rity test/develop a REST API in the future? and why? A very positive feedback I got
from management is that in future all REST APIs developed in the organization
has to follow the security requirements in the list proposed in this thesis. Some
requirements may not suit the API due to its functionality, but they can be omit-
ted. Another feedback I got was that it was beneficial and agile of checking the
requirements during security testing, which was not common. This new approach,
in addition to the requirement list were highly appreciated in the organization.

7.6.3 Metrics

Do you think that dividing the assurance metrics into requirement and vulnerabil-
ity elements is sound? Is it possible that a security requirement can be only partially
fulfilled? (For the whole question see C) The response about the metrics revolved
around that a metric that is able to measure the security can help the manage-
ment to make better decisions. The management is aware of the difficulties around
measuring security.

When requirements were checked it was discussed on how to assign a value on
whether a particularly security mechanism was present or not. At first only 0 and 1
was included, because either a mechanism is present or it is not present. However,
it was necessary to set some of the presence score to 0.5, because they were not
functioning properly or as expected. I got confirmation from colleagues that this
was a good solution when such cases were discussed. Also, it was pointed out that

63

Security Assurance

in this case a smaller scale with three options (0, 0.5, 1) is easier to assign. On a
larger scale it is difficult to interpret what the value means.

7.6.4 Other feedback

Do you have any other feedback to the developed security assurance framework. The
feedback I got from the management was that the proposed framework was satis-
factory and future aim for the security work is to develop similar frameworks with
requirement lists and vulnerabilities for other domains.

Prior to the testing the expected security level of the REST APIs was discussed.
The TS-API with authentication controls were likely to be more secure, but it was
also emphasized that even though there is no confidential data in the PX-API, the
API should be secure enough so that it live up to the company’s credibility. A similar
AM-score for the two REST APIs intend to express exactly this scenario.

64

Security Assurance

8 Conclusion

The main goal of this work has been to design a quantification method which can
help to estimate assurance levels of REST APIs. The current evaluation methods
and standards, like the Common Criteria, tends to achieve their goals manually, to
a large extend, and require a lot of resources in term of time, cost, and effort. Fur-
thermore, there has been little research on REST APIs. The quantification method
proposed in this thesis consist of an semi-automated process where the security
tester can follow a step-by-step guide and achieve a score that will reflect the secu-
rity assurance level of the REST API.

The first research question aim to answer how the security assurance value
can be calculated with the help of a quantification method. Chapter 4 documents
the complete process on how the quantification is done with the help of metrics.
Chapter 5 specifically deals with the metrics. A security metric is a metric that
depicts the security level, security performance or security strength of a system.
Usually expressed by a numerical score. The desired security assurance value is
calculated with the help of an assurance metric (AM).

The AM reflects the security confidence a system may possess, and it is defined
as:

AM = RM− VM

RM is the requirement score corresponding to the security mechanisms that are
present and the weight assigned to the particular requirement. VM is the vulner-
ability score, comprised by whether the vulnerabilities exist and a risk score that
shows the harmfulness of these. It was observed that the RM varied according to
the weight applied. Likewise for the VM, which was impacted by the risk score.

The second research question focus on whether it is feasible to automate the se-
curity control process. It was recognized that the manual labour could be reduced
by complementing the process with the lists of requirements and vulnerabilities.
The security requirements and vulnerabilities for REST APIs were compiled from
security issues for web-applications that were pertinent for REST APIs. It was spec-
ified 53 security mechanisms for 10 requirements, and 36 vulnerabilities which
were sorted into 9 categories.

The third and last research question concentrate on if the method met its in-
tended purpose. To answer this question, two REST APIs were tested and their
scores were compared to each other. In addition, a questionnaire was sent to vali-
date the method.

65

Security Assurance

It was expected that the TS-API will achieve a higher score than the PX-API,
since it had more security mechanisms implemented. However, the difference in
the score was not as significant as expected. The TS-API got 5.64 while the PX-API
got 5.60. The reason was that even though the TS-API had more security mecha-
nisms the vulnerabilities found for this API was categorized as more harmful than
the vulnerabilities for PX-API. This lead to a reduction in the total score. In addition,
PX-API had public data that were not confidential, and therefore the requirement
of the confidentiality had been adjusted down with the environmental score in the
CVSS score model. In the example with application of equal weighting it is demon-
strated that the requirements cannot be weighted equally, if it is not required to do
so. The weights must be assigned according to the security objectives of the system.

To validate the method a questionnaire were sent to those involved. These were
security testers, developers and managers. The framework was assessed to be quite
useful, both in parts and also as a complete process. The requirement list compiled
from the OWASP was highly appreciated, and it was recommended as a guidance
to help security testers to check if their REST API is up-to-date on security trends.
The approach of testing the requirements in addition to the vulnerabilities were
seen as a smart and useful way of performing the security testing. Finally, it was
acknowledged that a metric that was able to measure security could be useful to
make better decisions. Prior to the testing the expected security level of the REST
APIs was discussed. The TS-API with authentication controls were likely to be more
secure, but it was also emphasized that even though there is no confidential data
in the PX-API, the API should be secure enough so that it live up to the company’s
credibility. A similar AM-score for the two REST APIs intend to express exactly this
scenario.

In general, this process can be used on any system, since the process itself is not
domain specific. Only the list of requirements and vulnerabilities are.

8.1 Future Work

During scientific research many questions are answered but also new one rises.
Some of the question raised in this paper will be summarized here. This research
was done on two REST APIs that had quite different security objectives. In short:

• Authentication: PX-API is an open API. TS-API need authentication to access.
• Data Protection: PX-API had open public data. The TS-API did not have data,

but instead had integrity requirements
• Communication Security: Only TS-API had TLS enforced, even though it was

recommended for PX-API also.

Due to the fact that the AM-score were not distinctively far from each other. It

66

Security Assurance

would be very interesting to see how another test cases with same security objec-
tives will influence the AM-score. Ideally, there could be test cases where both has
same security requirements (e.g. authentication controls, access controls etc.).

Another inquisitive test could be to modify the requirement and vulnerability
lists for a different application domain. In my opinion with little effort the method
can be customized to any system.

It was observed during the sorting of the vulnerabilities in categories that the
vulnerabilities could be sorted further into subcategories. This work could help to
ease the work of the security tester to evaluate the risk of the vulnerabilities.

Even though it is not feasible to map a requirement to each and every related
vulnerability. A research on mapping requirements to vulnerability categories could
be beneficial for the quantification method.

67

Security Assurance

Bibliography

[1] Newby, G. February 2002. The orange book and common criteria.
https://www.petascale.org/inls187/notes/Spring2002/February20/orange.html.

[2] Manico, J. July 2016. Open web application security project.
https://www.owasp.org/images/3/33/OWASP_Application_Security_
Verification_Standard_3.0.1.pdf.

[3] Savola, R. M. 2013. Quality of security metrics and mea-
surements. Computers & Security, 37, 78 – 90. URL: http:
//www.sciencedirect.com/science/article/pii/S0167404813000850,
doi:https://doi.org/10.1016/j.cose.2013.05.002.

[4] Haddad, S., Dubus, S., Hecker, A., Kanstrén, T., Marquet, B., & Savola, R.
Sept 2011. Operational security assurance evaluation in open infrastructures.
In 2011 6th International Conference on Risks and Security of Internet and
Systems (CRiSIS), 1–6. doi:10.1109/CRiSIS.2011.6061831.

[5] NorSiS. October 2017. Nasjonal sikkerhetsmåned 2017. https://www.
youtube.com/watch?v=X-DvBaXs4FY. Youtube video from conference.

[6] Merriam-Webster. Thesaurus - automated (adjective). https://www.merriam-
webster.com/thesaurus/automated. Merriam-Webster Thesaurus since 1828.

[7] Statistics-Norway. May 2018. About us. https://www.ssb.no/en/omssb/om-
oss.

[8] Norway, S. StatBank API User Guide. Statistics Norway, April
2017. http://www.ssb.no/en/omssb/tjenester-og-verktoy/api/px-
api/_attachment/248250?_ts=15b48207778.

[9] Statistics-Norway. January 2014. General terms of use for stat-
bank. https://www.ssb.no/en/informasjon/om-statistikkbanken/general-
terms-of-use-for-statbank.

[10] Metivier, B. April 2017. Fundamental objectives of information security: The
cia triad. https://www.sagedatasecurity.com/blog/fundamental-objectives-
of-information-security-the-cia-triad. Sage Data Security.

69

https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf
http://www.sciencedirect.com/science/article/pii/S0167404813000850
http://www.sciencedirect.com/science/article/pii/S0167404813000850
http://dx.doi.org/https://doi.org/10.1016/j.cose.2013.05.002
http://dx.doi.org/10.1109/CRiSIS.2011.6061831
https://www.youtube.com/watch?v=X-DvBaXs4FY
https://www.youtube.com/watch?v=X-DvBaXs4FY

Security Assurance

[11] Mulesoft. 2018. What is an api? (application prorgramming interface).
https://www.mulesoft.com/resources/api/what-is-an-api.

[12] technologies, C. September 2014. Protecting your apis against attack and
hijack. https://www.ca.com/content/dam/ca/us/files/white-paper/
protecting-your-apis-against-attack-and-hijack.pdf.

[13] Khandelwal, N. July 2015. Opinion: Gaping holes in security of
apis. https://securityledger.com/2015/07/opinion-gaping-holes-in-security-
of-apis/. The Security Ledger.

[14] Oftedal, E., van der Stock, A., Chih, T. H. H., Peeters, J., Wolff, J., & Granitz,
R. November 2017. Rest security cheat sheet. https://www.owasp.org/
index.php/REST_Security_Cheat_Sheet.

[15] Andrew, H. September 2012. Beginners guide to creat-
ing a rest api. http://www.andrewhavens.com/posts/20/
beginners-guide-to-creating-a-rest-api/.

[16] Paik, H.-y., Lemos, A. L., Barukh, M. C., Benatallah, B., & Natarajan, A. Web
Services – REST or Restful Services, 67–91. Springer International Publish-
ing, Cham, 2017. URL: https://doi.org/10.1007/978-3-319-55542-3_3,
doi:10.1007/978-3-319-55542-3_3.

[17] Baeldung. July 2017. An intro to spring hateoas.
http://www.baeldung.com/spring-hateoas-tutorial.

[18] Sahni, V. June 2015. Best practices for designing a pragmatic rest-
ful api. https://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-
api#restful.

[19] Beer, M. I. & Hassan, M. F. Nov 2017. Adaptive security architecture for
protecting restful web services in enterprise computing environment. Ser-
vice Oriented Computing and Applications. URL: https://doi.org/10.1007/
s11761-017-0221-1, doi:10.1007/s11761-017-0221-1.

[20] StackExchange. March 2012. Are authentication cook-
ies compatible with the rest philosophy, and why?
https://softwareengineering.stackexchange.com/questions/141019/should-
cookies-be-used-in-a-restful-api.

[21] Joshi, C. & Singh, U. K. 2017. Information security risks man-
agement framework – a step towards mitigating security risks

70

https://www.mulesoft.com/resources/api/what-is-an-api
https://www.ca.com/content/dam/ca/us/files/white-paper/protecting-your-apis-against-attack-and-hijack.pdf
https://www.ca.com/content/dam/ca/us/files/white-paper/protecting-your-apis-against-attack-and-hijack.pdf
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet
http://www.andrewhavens.com/posts/20/beginners-guide-to-creating-a-rest-api/
http://www.andrewhavens.com/posts/20/beginners-guide-to-creating-a-rest-api/
https://doi.org/10.1007/978-3-319-55542-3_3
http://dx.doi.org/10.1007/978-3-319-55542-3_3
https://doi.org/10.1007/s11761-017-0221-1
https://doi.org/10.1007/s11761-017-0221-1
http://dx.doi.org/10.1007/s11761-017-0221-1

Security Assurance

in university network. Journal of Information Security and Ap-
plications, 35(Supplement C), 128 – 137. URL: http://www.
sciencedirect.com/science/article/pii/S2214212616301806,
doi:https://doi.org/10.1016/j.jisa.2017.06.006.

[22] Such, J. M., Gouglidis, A., Knowles, W., Misra, G., & Rashid, A. 2016.
Information assurance techniques: Perceived cost effectiveness. Com-
puters and Security, 60(Supplement C), 117 – 133. URL: http:
//www.sciencedirect.com/science/article/pii/S0167404816300311,
doi:https://doi.org/10.1016/j.cose.2016.03.009.

[23] Ouedraogo, M., Kuo, C. T., Tjoa, S., Preston, D., Dubois, E., Simoes, P., &
Cruz, T. Aug 2014. Keeping an eye on your security through assurance in-
dicators. In 2014 11th International Conference on Security and Cryptography
(SECRYPT), 1–8.

[24] Spears, J. L., Barki, H., & Barton, R. R. 2013. Theorizing the concept and
role of assurance in information systems security. Information and Manage-
ment, 50(7), 598 – 605. URL: http://www.sciencedirect.com/science/
article/pii/S037872061300089X, doi:https://doi.org/10.1016/j.im.
2013.08.004.

[25] Tung, Y. H., Lo, S. C., Shih, J. F., & Lin, H. F. Oct 2016. An integrated security
testing framework for secure software development life cycle. In 2016 18th
Asia-Pacific Network Operations and Management Symposium (APNOMS), 1–4.
doi:10.1109/APNOMS.2016.7737238.

[26] Hudic, A., Smith, P., & Weippl, E. R. 2017. Security as-
surance assessment methodology for hybrid clouds. Comput-
ers and Security, 70(Supplement C), 723 – 743. URL: http:
//www.sciencedirect.com/science/article/pii/S0167404817300627,
doi:https://doi.org/10.1016/j.cose.2017.03.009.

[27] Gupta, D., Chatterjee, K., & Jaiswal, S. 2013. A framework for security test-
ing. In Computational Science and Its Applications – ICCSA 2013, Murgante,
B., Misra, S., Carlini, M., Torre, C. M., Nguyen, H.-Q., Taniar, D., Apduhan,
B. O., & Gervasi, O., eds, 187–198, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

[28] Guru99. November 2017. What is security testing: Complete tutorial. https:
//www.guru99.com/what-is-security-testing.html. Blog @Guru99.

71

http://www.sciencedirect.com/science/article/pii/S2214212616301806
http://www.sciencedirect.com/science/article/pii/S2214212616301806
http://dx.doi.org/https://doi.org/10.1016/j.jisa.2017.06.006
http://www.sciencedirect.com/science/article/pii/S0167404816300311
http://www.sciencedirect.com/science/article/pii/S0167404816300311
http://dx.doi.org/https://doi.org/10.1016/j.cose.2016.03.009
http://www.sciencedirect.com/science/article/pii/S037872061300089X
http://www.sciencedirect.com/science/article/pii/S037872061300089X
http://dx.doi.org/https://doi.org/10.1016/j.im.2013.08.004
http://dx.doi.org/https://doi.org/10.1016/j.im.2013.08.004
http://dx.doi.org/10.1109/APNOMS.2016.7737238
http://www.sciencedirect.com/science/article/pii/S0167404817300627
http://www.sciencedirect.com/science/article/pii/S0167404817300627
http://dx.doi.org/https://doi.org/10.1016/j.cose.2017.03.009
https://www.guru99.com/what-is-security-testing.html
https://www.guru99.com/what-is-security-testing.html

Security Assurance

[29] Mytton, D. October 2015. Api security risks and how
to mitigate them. https://blog.serverdensity.com/
5-api-security-risks-and-how-to-mitigate-them/. Blog @Server
Density.

[30] Wasson, M. November 2012. Authentication and
authorization in asp.net web api. https://docs.
microsoft.com/en-us/aspnet/web-api/overview/security/
authentication-and-authorization-in-aspnet-web-api. Microsoft
Docs.

[31] Lensmar, O. November 2014. Api security testing - how to hack
an api and get away with it. https://blog.smartbear.com/apis/
api-security-testing-how-to-hack-an-api-and-get-away-with-it-part-1-of-3/.
Blog @Smartbear.

[32] Wiki, M. April 2012. Webappsec/web security verification. https://wiki.
mozilla.org/WebAppSec/Web_Security_Verification.

[33] Srinivasan, S. M. & Sangwan, R. S. Jan 2017. Web app security: A compari-
son and categorization of testing frameworks. IEEE Software, 34(1), 99–102.
doi:10.1109/MS.2017.21.

[34] Port, D. & Wilf, J., eds. A Decision-Theoretic Approach to Measuring Security,
January 2017. http://hdl.handle.net/10125/41901.

[35] Pendleton, M., Garcia-Lebron, R., Cho, J.-H., & Xu, S. December 2016. A
survey on systems security metrics. ACM Comput. Surv., 49(4), 62:1–62:35.
URL: http://doi.acm.org/10.1145/3005714, doi:10.1145/3005714.

[36] Kahraman, E. Evaluating it security performance with quantifiable metrics.
mathesis, Institutionen för Data- och Systemvetenskap, 2005.

[37] Dovetail. April 2018. The difference between qualitative and quantitative
research. https://dovetailapp.com/guides/qual-quant.

[38] Williams, C. 01 2007. Research methods. Journal of Business & Economic
Research, 5.

[39] Leedy, P. D. & Ormrod, J. E. 2001. Practical Research Planning and Design.
Upper Saddle River, N.J Merrill Prentice Hall 2001.

[40] Symantec. 2017. Certificate pinning.
https://www.symantec.com/content/dam/symantec/docs/white-
papers/certificate-pinning-en.pdf. White Paper.

72

https://blog.serverdensity.com/5-api-security-risks-and-how-to-mitigate-them/
https://blog.serverdensity.com/5-api-security-risks-and-how-to-mitigate-them/
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/authentication-and-authorization-in-aspnet-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/authentication-and-authorization-in-aspnet-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/authentication-and-authorization-in-aspnet-web-api
https://blog.smartbear.com/apis/api-security-testing-how-to-hack-an-api-and-get-away-with-it-part-1-of-3/
https://blog.smartbear.com/apis/api-security-testing-how-to-hack-an-api-and-get-away-with-it-part-1-of-3/
https://wiki.mozilla.org/WebAppSec/Web_Security_Verification
https://wiki.mozilla.org/WebAppSec/Web_Security_Verification
http://dx.doi.org/10.1109/MS.2017.21
http://doi.acm.org/10.1145/3005714
http://dx.doi.org/10.1145/3005714

Security Assurance

[41] Yin, R. K. 1981. The case study crisis: Some answers. Administrative Science
Quarterly, 26(1), 58–65. URL: http://www.jstor.org/stable/2392599.

[42] Souag, A., Salinesi, C., & Comyn-Wattiau, I. 2012. Ontologies for security
requirements: A literature survey and classification. In Advanced Informa-
tion Systems Engineering Workshops, Bajec, M. & Eder, J., eds, 61–69, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[43] Felderer, M., Büchler, M., Johns, M., Brucker, A. D., Breu, R., & Pretschner,
A. 2016. Chapter one - security testing: A survey. In Advances in Com-
puters, Memon, A., ed, volume 101 of Advances in Computers, 1 – 51.
Elsevier. URL: http://www.sciencedirect.com/science/article/pii/
S0065245815000649, doi:https://doi.org/10.1016/bs.adcom.2015.11.
003.

[44] De, B. API Testing Strategy, 153–164. Apress, Berkeley, CA,
2017. URL: https://doi.org/10.1007/978-1-4842-1305-6_9, doi:10.
1007/978-1-4842-1305-6_9.

[45] Hunt, T. May 2013. Hack yourself first - how to go on the offence before
online attackers do. https://www.troyhunt.com/hack-yourself-first-how-to-
go-on/.

[46] da Silva, M. A. & Danziger, M. May 2015. The importance of security re-
quirements elicitation and how to do it. In Requirements Management, EMEA,
London, England. Newtown Square. Project Management Institute. Paper
presented at PMI Global Congress 2015.

[47] Firesmith, D. January 2004. Specifying reusable security requirements. Jour-
nal of Object Technology, 3(1), 61–75. URL: http://www.jot.fm/issues/
issue_2004_01/column6.pdf.

[48] Gibson, D. June 2011. Understanding the three factors of authentication.
http://www.pearsonitcertification.com/articles/article.aspx?p=1718488.

[49] Righi, R. October 2017. Using jwt to secure a stateless api world.
https://dzone.com/articles/using-jwt-to-secure-a-stateless-api-world.

[50] O’Leary, R. October 2017. Can you hear me now? apis are vulnerable!
https://www.whitehatsec.com/blog/api-vulnerabilities/. White paper.

[51] Alqahtani, S. S., Eghan, E. E., & Rilling, J. March 2017. Recovering seman-
tic traceability links between apis and security vulnerabilities: An ontological

73

http://www.jstor.org/stable/2392599
http://www.sciencedirect.com/science/article/pii/S0065245815000649
http://www.sciencedirect.com/science/article/pii/S0065245815000649
http://dx.doi.org/https://doi.org/10.1016/bs.adcom.2015.11.003
http://dx.doi.org/https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1007/978-1-4842-1305-6_9
http://dx.doi.org/10.1007/978-1-4842-1305-6_9
http://dx.doi.org/10.1007/978-1-4842-1305-6_9
http://www.jot.fm/issues/issue_2004_01/column6.pdf
http://www.jot.fm/issues/issue_2004_01/column6.pdf

Security Assurance

modeling approach. In 2017 IEEE International Conference on Software Test-
ing, Verification and Validation (ICST), 80–91. doi:10.1109/ICST.2017.15.

[52] OWASP. 2017. Owasp top 10 - 2017. the ten most critical web application
security risks. https://www.owasp.org/images/7/72/OWASP_Top_10-2017_

[53] Owasp. March 2018. Cross-site request forgery (csrf).
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF).

[54] Thakkar, J. February 2018. What is a man-in-the-middle-attack? how do you
prevent one? https://www.thesslstore.com/blog/man-in-the-middle-attack/.
hashedout by The SSL Store.

[55] Felderer, M., Zech, P., Breu, R., Büchler, M., & Pretschner, A. 2015.
Model-based security testing: a taxonomy and systematic classifica-
tion. Software Testing, Verification and Reliability, 26(2), 119–148.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1580,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1580,
doi:10.1002/stvr.1580.

[56] Tian-Yang, G., Yin-sheng, S., & You-yuan, F. 2010. Research on software se-
curity testing. International Journal of Computer and Information Engineering,
4(9). World Academy of Science, Engineering and Technology.

[57] sqlmap.org. April 2018. sqlmap: Automatic sql injection and database
takeover tool. http://sqlmap.org/. Opensource tool.

[58] Duffy, C. September 2015. Learning Penetration Testing with Python. PACKT
Publishing Ltd.

[59] Kolakowski, N. June 2016. Why is python so popular.
https://insights.dice.com/2016/06/01/why-is-python-so-popular/.

[60] Stenberg, D. April 2018. curl:// command line tool and library for tranferring
data with urls. https://curl.haxx.se/. Copyright owner is Daniel Stenberg.

[61] Portswigger. April 2018. Burp suite edition. https://portswigger.net/burp.

[62] Wireshark. April 2018. About wireshark. https://www.wireshark.org/.

[63] NCSC. September 2016. Risk management and risk analysis prac-
tice. https://www.ncsc.gov.uk/guidance/risk-management-and-risk-analysis-
practice. National Cyber Security Centre (UK Government).

74

http://dx.doi.org/10.1109/ICST.2017.15
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1580
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1580
http://dx.doi.org/10.1002/stvr.1580

Security Assurance

[64] Kissel, R. L. 2013. Glossary of key information security terms. NIST Pubs.
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=913810.

[65] Wikipedia. December 2017. Weighting.
https://en.wikipedia.org/wiki/Weighting.

[66] Owasp. July 2. Threat risk modeling.
https://www.owasp.org/index.php/Threat_Risk_Modeling.

[67] Astafyeu, A. Information security risk assessment methodologies in vulner-
ability assessment of information systems. Master’s thesis, Technical Uni-
versity of Denmark, 2015. URL: http://www2.imm.dtu.dk/pubdb/views/
edoc_download.php/7059/pdf/imm7059.pdf.

[68] Wikipedia. April 2017. Dread (risk assessment model).
https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model).

[69] First.org. Common vulnerability scoring system. https://www.first.org/cvss/.

[70] NVD. April 2018. Common vulnerability scoring system calculater version 3.
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator. National Vulnerability
Database (National Institute of Standards and Technology).

[71] Cisco. 2017. Common vulnerability scoring system q & a.
https://www.cisco.com/c/en/us/about/security-center/cvss-q-a.html#6.

[72] Borgatti, S. Normalizing Variables (Handout). Gatton College of Business and
Economics. University of Kentucky.

[73] Delen, D., Sharda, R., & Bessonov, M. 2006. Identifying signifi-
cant predictors of injury severity in traffic accidents using a series of
artificial neural networks. Accident Analysis & Prevention, 38(3), 434
– 444. URL: http://www.sciencedirect.com/science/article/pii/
S0001457505001879, doi:https://doi.org/10.1016/j.aap.2005.06.024.

[74] Khajvand, M. & Tarokh, M. J. 2011. Estimating customer future
value of different customer segments based on adapted rfm model
in retail banking context. Procedia Computer Science, 3, 1327 –
1332. World Conference on Information Technology. URL: http:
//www.sciencedirect.com/science/article/pii/S1877050911000123,
doi:https://doi.org/10.1016/j.procs.2011.01.011.

[75] Shalabi, L. A. & Shaaban, Z. May 2006. Normalization as a preprocess-
ing engine for data mining and the approach of preference matrix. In

75

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/7059/pdf/imm7059.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/7059/pdf/imm7059.pdf
http://www.sciencedirect.com/science/article/pii/S0001457505001879
http://www.sciencedirect.com/science/article/pii/S0001457505001879
http://dx.doi.org/https://doi.org/10.1016/j.aap.2005.06.024
http://www.sciencedirect.com/science/article/pii/S1877050911000123
http://www.sciencedirect.com/science/article/pii/S1877050911000123
http://dx.doi.org/https://doi.org/10.1016/j.procs.2011.01.011

Security Assurance

2006 International Conference on Dependability of Computer Systems, 207–
214. doi:10.1109/DEPCOS-RELCOMEX.2006.38.

[76] Visual-Paradigm. March 2015. How to design rest api? the twitter ex-
ample. https://www.visual-paradigm.com/tutorials/rest-api-design-twitter-
example.jsp.

[77] Wikipedia. May 2018. Weighted arithmetic mean.
https://en.wikipedia.org/wiki/Weighted_arithmetic_mean.

[78] Irom, A. & Serota, J. August 2017. Best practices for securing your apis.
https://www.incapsula.com/blog/best-practices-for-securing-your-api.html.

[79] Owasp. March 2018. Cross-site scripting (xss).
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS).

[80] RSA. Cyber risk appetite. Technical report, RSA Security LLC, 2016. Pub-
lished in the USA. 05/06 Whitepaper H15150.

[81] Rochford, O. May 2017. Settling scores with risk scoring.
https://www.csoonline.com/article/3195244/security/settling-scores-
with-risk-scoring.html. IDG Communications, Inc.

[82] Katarzyna. 2018. Error handling why it is crucial in api design process.
https://www.polidea.com/blog/Error_Handling_why_it_is_crucial_in_API_design_process/.
Polidea.

[83] Owasp. January 2016. Brute force attack.
https://www.owasp.org/index.php/Brute_force_attack.

[84] Griffith, E. February 2018. Two-factor authentication: Who has it and
how to set it up. https://www.pcmag.com/feature/358289/two-factor-
authentication-who-has-it-and-how-to-set-it-up.

[85] Feng, N., Wang, H. J., & Li, M. 2014. A security risk analysis
model for information systems: Causal relationships of risk factors
and vulnerability propagation analysis. Information Sciences, 256,
57 – 73. Business Intelligence in Risk Management. URL: http:
//www.sciencedirect.com/science/article/pii/S0020025513001539,
doi:https://doi.org/10.1016/j.ins.2013.02.036.

[86] CWE. March 2018. Cwe-295: Improper certificate validation.
https://cwe.mitre.org/data/definitions/295.html. Common Weakness Enu-
meration.

76

http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2006.38
http://www.sciencedirect.com/science/article/pii/S0020025513001539
http://www.sciencedirect.com/science/article/pii/S0020025513001539
http://dx.doi.org/https://doi.org/10.1016/j.ins.2013.02.036

Security Assurance

[87] MathisFun. 2017. Percentage difference.
https://www.mathsisfun.com/percentage-difference.html.

[88] Sluiter, A., B.Hames, R.Ruiz, C.Scarlata, J.Sluiter, D.Templeton, & D.Crocker.
Determination of structural carbohydrates and lignin in biomass. Technical
report, National Renewable Energy Laboratory, July 2008. A national labora-
tory of the U.S. Department of Energy Office of Energy Efficiency & Renew-
able Energy.

77

Security Assurance

A Appendix: Security Requirement List

Table 17: Security Requirements

Requirement Description

1.0 Authentication

1.1 Verify API endpoint by default require authentication except those
specifically intended to be public (Principle of complete media-
tion).

1.2 Verify all authentication controls are enforced on the server side.

1.3 Verify all authentication controls fail securely to ensure attackers
cannot log in

1.4 Verify that account passwords are one way hashed with a salt, and
there is sufficient work factor to defeat brute force and password
hash recovery attacks.

1.5 Verify that credentials such as passwords, security tokens and API
keys dont appear in URL.

1.6 Verify API keys are not accessible to others. Transmitted securely
and saved securely

1.7 Verify OpenId is present

2.0 JWT (Session)

2.1 Verify JWT (Json) tokens are handled in a secure way

2.2 Verify JWT (Json) tokens are invalidated after logout

2.3 Verify JWT in cookies is only accessible on the user domain

3.0 Access Control

3.1 Verify that access to sensitive records is protected, such that only
authorized objects or data is accessible to each user (for example,
protect against users tampering with a parameter to see or alter
another user’s account).

3.2 Verify that access controls fail securely

3.3 Verify that the same access control rules implied by the presenta-
tion layer are enforced on the server side.

Continued on next page

79

Security Assurance

Table 17 –Continued from previous page
Requirement Description

3.4 Verify that all access control decisions can be logged and all failed
decisions are logged.

3.5 Verify Oauth2 protocol is present

3.6 Verify CORS configuration is proper

4.0 Input Sanitation

4.1 Verify that server side input validation failures result in request
rejection and are logged.

4.2 Verify that input validation routines are enforced on the server
side.

4.3 Verify that all SQL queries, HQL, OSQL, NOSQL and stored pro-
cedures, calling of stored procedures are protected by the use of
prepared statements or query parameterization, and thus not sus-
ceptible to SQL injection

4.4 Verify that the application is not susceptible to LDAP Injection, or
that security controls prevent LDAP Injection.

4.5 Verify that the application has defenses against HTTP parameter
pollution attacks, particularly if the application framework makes
no distinction about the source of request parameters (GET, POST,
cookies, headers, environment, etc.)

4.6 Verify that client side validation is used as a second line of de-
fense, in addition to server side validation.

4.7 Verify that input data such as REST calls, query parameters, HTTP
headers, cookies, batch files, RSS feeds, etc; using positive val-
idation (whitelisting), then lesser forms of validation such as
greylisting (eliminating known bad strings), or rejecting bad in-
puts (blacklisting).

4.8 Verify when parsing JSON in browsers, that JSON.parse is used to
parse JSON on the client. Do not use eval() to parse JSON on the
client.

5.0 Error Handling

5.1 Verify that the application does not output error messages or stack
traces containing sensitive data that could assist an attacker, in-
cluding session id, software/framework versions and personal in-
formation

5.2 Verify that error handling logic in security controls denies access
by default

Continued on next page

80

Security Assurance

Table 17 –Continued from previous page
Requirement Description

5.3 Verify that security logs are protected from unauthorized access
and modification

5.4 Verify that the API does not log sensitive data such as sensitive
authentication data that could assist an attacker, including user’s
session identifiers, passwords, hashes, or API tokens

6.0 Data Protection

6.1 Verify that all sensitive data is sent to the server in the HTTP mes-
sage body or headers (i.e., URL parameters are never used to send
sensitive data).

6.2 Verify that the list of sensitive data processed by the application is
identified, and that there is an explicit policy for how access to this
data must be controlled, encrypted and enforced under relevant
data protection directives.

6.3 Verify that the application sets appropriate anti-caching headers
as per the risk of the application, such as the following: Expires:
Tue, 03 Jul 2001 06:00:00 GMT Last-Modified: now GMT Cache-
Control: no-store, no-cache, mustrevalidate, max-age=0 Cache-
Control: post-check=0, pre-check=0 Pragma: no-cache

6.4 Verify that data stored in client side storage (such as HTML5 lo-
cal storage, session storage, IndexedDB, regular cookies or Flash
cookies) does not contain sensitive data or PII.

6.5 Verify accessing sensitive data is logged, if the data is collected
under relevant data protection directives or where logging of ac-
cesses is required.

6.6 Verify that sensitive information maintained in memory is over-
written with zeros as soon as it no longer required, to mitigate
memory dumping attacks.

7.0 Communication Security

7.1 Verify that a path can be built from a trusted CA to each Trans-
port Layer Security (TLS) server certificate, and that each server
certificate is valid

7.2 Verify that TLS is used for all connections (including both external
and backend connections) that are authenticated or that involve
sensitive data or functions, and does not fall back to insecure or
unencrypted protocols. Ensure the strongest alternative is the pre-
ferred algorithm.

7.3 Verify that backend TLS connection failures are logged
Continued on next page

81

Security Assurance

Table 17 –Continued from previous page
Requirement Description

7.4 Verify that certificate paths are built and verified for all client cer-
tificates using configured trust anchors and revocation informa-
tion.

7.5 Verify that TLS certificate public key pinning (HPKP) is imple-
mented with production and backup public keys. For more infor-
mation, please see the references below

7.6 Verify that HTTP Strict Transport Security headers are included
on all requests and for all subdomains, such as Strict-Transport-
Security: max-age=15724800; includeSubdomains

8.0 HTTP Security

8.1 Verify that the application accepts only a defined set of required
HTTP request methods, such as GET and POST are accepted, and
unused methods (e.g. TRACE, PUT, and DELETE) are explicitly
blocked

8.2 Verify that every HTTP response contains a content type header
specifying a safe character set (e.g., UTF-8, ISO 8859-1).

8.3 Verify that a suitable X-FRAME-OPTIONS header is in use for sites
where content should not be viewed in a 3rd-party X-Frame.

8.4 Verify that the HTTP headers or any part of the HTTP response do
not expose detailed version information of system components

8.5 Verify that all API responses contain X-ContentType-Options: nos-
niff and Content-Disposition: attachment; filename="api.json" (or
other appropriate filename for the content type)

8.6 Verify that the X-XSS-Protection: 1; mode=block header is in
place to enable browser reflected XSS filters.

8.7 Verify CORS headers are disabled if cross-domain calls are not
supported

8.8 Verify the origins of cross-domain calls is specific enough in CORS
configuration

9.0 Web Services

9.1 Verify that the same encoding style is used between the client and
the server.

9.2 Verify that XML or JSON schema is in place and verified before
accepting input.

Continued on next page

82

Security Assurance

Table 17 –Continued from previous page
Requirement Description

9.3 Verify that the REST service is protected from Cross-Site Request
Forgery via the use of at least one or more of the following: ORI-
GIN checks, double submit cookie pattern, CSRF nonces, and re-
ferrer checks.

9.4 Verify the REST service explicitly check the incoming Content-
Type to be the expected one, such as application/xml or appli-
cation/json.

10.0 Cross Site

10.1 Verify that there are security mechanisms against Cross-site
Scripting

83

Security Assurance

B Appendix Security Vulnerability List

Table 18: Security Vulnerabilities

Vulnerability Description

1.0 Injection Attack

1.1 SQL Injection

1.2 NoSQL Injection

1.3 LDAP Injection

2.0 Broken Authentication

2.1 Permits Credentials stuffing

2.2 Permits Brute Force

2.3 Permits Weak Passwords

2.4 Use plain text, encrypted or weakly hashed password

2.5 Has missing or ineffective multi-factor authentication

2.6 Exposes session id in url

2.7 Do not properly invalidate authentication tokens

3.0 Sensitive Data Exposure

3.1 Old or weak crypto keys is used

3.2 Encryption is not enforced (HTTPS is not enforced) Insufficient
SSL/TLS configuration

3.3 User agent does not verify if the received server certificate is valid
or not

4.0 Broken Access Control

4.1 Bypassing access control checks by modifying the URL

4.2 Allowing the primary key to be changed to another users record,
permitting viewing or editing someone else’s account.

4.3 Metadata manipulation, such as replaying or tampering with a
JSON Web Token (JWT) access control token or a cookie or hid-
den field manipulated to elevate privileges, or abusing JWT inval-
idation

Continued on next page

85

Security Assurance

Table 18 –Continued from previous page
Vulnerability Description

4.4 JWT insecurity (missing cryptographic signature or MAC)

4.5 Replaying or tampering with JSON Web Token

4.6 Abusing JWT invalidation

4.7 Replaying or tampering with Cookie

4.8 CORS misconfiguration allows unauthorized API access.

4.9 Force browsing to authenticated pages as an unauthenticated user
or to privileged pages as a standard user.

4.10 Accessing API with missing access controls for POST, PUT and
DELETE.

4.11 API keys revocation is not done

4.12 API key compromise

5.0 Elevation of privilege
5.1 Elevation of privilege. Acting as a user without being logged in,

or acting as an admin when logged in as a user.

6.0 Cross-site Scripting

6.1 Reflected XSS: The application or API includes unvalidated and
unescaped user input as part of HTML output. A successful attack
can allow the attacker to execute arbitrary HTML and JavaScript
in the victim’s browser. Typically the user will need to interact
with some malicious link that points to an attackercontrolled
page, such as malicious watering hole websites, advertisements,
or similar

6.2 Stored XSS: The application or API stores unsanitized user input
that is viewed at a later time by another user or an administrator.
Stored XSS is often considered a high or critical risk.

6.3 DOM XSS: JavaScript frameworks, single-page applications, and
APIs that dynamically include attacker-controllable data to a page
are vulnerable to DOM XSS. Ideally, the application would not
send attacker-controllable data to unsafe JavaScript APIs

7.0 Cross-Site Request Forgery

7.1 Cross-Site Request Forgery

8.0 Parameter Tampering

8.1 Model Binding

8.2 Mass Assignement
Continued on next page

86

Security Assurance

Table 18 –Continued from previous page
Vulnerability Description

8.3 HTTP Verb Tampering

8.4 Insecure Direct Object Reference

8.5 Unvalidated redirects and forwards

9.0 Man-in-the-middle attack

9.1 Man-in-the-middle attack

87

Security Assurance

C Questionnaire

Here is the questions that were asked in the interview.

1. Do you think the developed security assurance framework based on quanti-
tative security assurance metrics is helpful, why and when?

2. Do you think that you will use the list of requirement/vulnerability when you
security test/develop a REST API in the future? and why?

3. Do you think that dividing the assurance metrics into requirement and vul-
nerability elements is sound?

4. Is it possible that a security requirement can be only partially fulfilled? If yes,
which scale can represent the fulfilment confidence, e.g., scale 0..1, 0..2, 0..3?
(For this thesis work this scale has been used. 0=not present, 0.5=partly
present, 1=present)

5. Do you have any other feedback to the developed security assurance frame-
work.

89

	Preface
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Topic Description
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Choice of methods
	Claimed contributions
	Chosen Case Studies
	PX-API
	TS-API

	Thesis Outline

	Background
	Definition of REST & API
	Design Responses
	HATEOAS
	Simple & Stateless
	REST API Security
	UnRESTful security measures

	Related Work
	Various Security Assurance Frameworks
	Security testing of REST API
	Standards available
	Quantification methods
	Summary of Related Work

	Methodology
	Qualitative Methods
	Quantitative Methods
	Case study

	Design
	Basic Concepts
	Process Development
	Modeling the API
	Hidden APIs

	Eliciting Security Elements
	Selection of Requirements
	List of Requirements
	Selection of Vulnerabilities
	List of Security Vulnerabilities

	API Security Testing
	Tool selection

	Apply Metrics & Quantify Assurance

	Quantifiable Metrics
	Importance of Metrics and Measurement
	Security Assurance Models
	Requirement & Vulnerability Metrics
	Existence score
	Weights

	Risk Models
	DREAD
	CVSS
	Evaluation of Risk models

	Scale Consideration & Normalization

	Case study & Results
	Case study 1: PX-API
	UML Diagram
	Requirements review of PX-API
	Vulnerability inspection of PX-API
	Risk Modeling of PX-API
	Security Assurance Score (AM) for PX-API

	Case Study 2: TS-API
	Requirement check
	Vulnerability check
	Risk Modeling
	Security Assurance Score (AM) for TS-API

	Summary Result

	Discussion
	Definitions
	Framework & Method
	Results
	AM-score with Equal Weights
	Human Factor

	Scale Consideration
	Analogy Example
	Qualitative Validation
	Framework
	Requirements and Vulnerability List
	Metrics
	Other feedback

	Conclusion
	Future Work

	Bibliography
	Appendix: Security Requirement List
	Appendix Security Vulnerability List
	Questionnaire

