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Abstract 
Filtered modelling of dynamic gas-particle flows has been actively studied by various groups around 

the world for more than a decade. Even so, the great complexity of this field of study means that 

several important knowledge gaps still exist. This thesis represents a significant step forward by closing 

several of the most important knowledge gaps through the development and rigorous assessment of 

new closures via detailed a priori and a posteriori analyses. The resulting set of filtered closures clearly 

outperforms the current state of the art, resulting in several valuable conclusions and 

recommendations. 

The primary conclusion from the present work is related to the critical importance of accounting for 

anisotropy in the filtered closures for drag and solids mesoscale stresses. For the filtered drag force, it 

was found that conventional isotropic closures strongly underpredict the drag correction in the 

directions perpendicular to gravity. A new formulation based on the drift velocity concept was found 

to account for this anisotropic effect in an efficient and natural manner. For the solids mesoscale 

stresses, the present work confirmed that the conventional approach based on the Boussinesq 

approximation results in large errors. In fact, studies showed that coarse grid simulations completely 

neglecting the solids mesoscale stresses perform better than those relying on the Boussinesq-based 

approach. Based on this knowledge, a new closure formulation was devised, conveniently allowing the 

prediction of the anisotropic solids mesoscale stresses via a single expression.  

Findings from the present study also challenged other conventions in the field. Firstly, the use of the 

filtered slip velocity as a second marker in the filtered drag force closure was found to lead to poor 

model performance. Secondly, a filter size to grid size ratio of unity appears to be the fundamentally 

correct ratio instead of the commonly employed ratio of 2. And thirdly, the 2D models derived in this 

work outperformed a 3D model from the literature in a validation study, suggesting that domain size 

independence of resolved simulations is more important than performing simulations in 3D. 

For reactive flows, the present work showed that a relatively simple closure can accurately predict the 

filtered reaction rate. In addition, the closure for the mesoscale species dispersion rate used in the 

filtered species transport equation was shown to have only a minor effect on reactor performance 

predictions. However, coarse grid reactive simulations were sensitive to the accuracy of the 

hydrodynamic filtered closures employed. Good hydrodynamic modelling is therefore the most 

important prerequisite for accurate large scale reactor performance predictions.  

Despite the progress made in this thesis, some important knowledge gaps persist. Firstly, this study 

did not attempt to quantify the generality of the proposed closures to flow situations with different 

particle and fluid properties. Such studies are required before the newly proposed closures can be 

recommended for use in reactors with particle and fluid properties that are very different from the 

FCC-type system considered in the present work. Secondly, an important effect related to the ratio of 

the domain width to the length of macro-clusters resolved in coarse grid simulations was identified. 

This effect required the use of a larger filter size to grid size ratio in narrow domains and further studies 

are required to find a general solution to this challenge.  

However, informed application of the anisotropic closures proposed in this thesis to real fluidized bed 

reactor problems can already be recommended. Experience from such studies can further accelerate 

the development of closures for filtered models towards the goal of their ubiquitous deployment for 

design, optimization and scale-up of fluidized bed reactors in industry.   
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Chapter 1: Introduction 

1.1 The importance of filtered Two Fluid Models to industry 

Fluidized beds are widely used in fluid catalytic cracking, coal gasification and polymerization 

processes, as well as for drying, cooling and coating of solids. Due to the excellent mass and heat 

transfer that they enable in a wide range of applications, fluidized beds form an essential part of many 

processing industries. In the last decade two decades, computational fluid dynamics (CFD) has become 

a useful tool for investigating the behaviour of fluidized beds. This is mainly due to the rapidly 

advancing computational resources, progress in theoretical models and new numerical methods. The 

primary use of CFD simulations is that they allow a better understanding to be developed. This is 

especially relevant for the complex multiphase flow in fluidized beds, since it can be challenging and 

costly to measure or visualise these flows by means of experiments. Also, as the modelling methods 

mature, such simulations can be used to aid the design process, decreasing the cost and time required 

for the optimization and scale-up of new technologies based on fluidized beds. 

Several simulation methods exist for the modelling of fluidized beds, but all face a common challenge: 

the extremely large number of particles in fluidized beds, which can be in the order of 1012 in industrial 

systems. Particle-Resolved Direct Numerical Simulation (PR-DNS), where the flow is resolved around 

individual particles, is only feasible for very small systems (i.e., typically involving less than O(105) 

particles). PR-DNS is mainly used for the development of models, for example for the drag between 

the fluid and the particles [1]. Particle-Unresolved Euler-Lagrange models (PU-EL; the most prominent 

example being CFD-DEM-based models) allow a substantial reduction in the computational 

requirements by not resolving the flow around the particles. Yet, PU-EL is limited by the number of 

particles that need to be tracked individually (typically, these simulations involve less than O(107) 

particles). The computational cost of CFD-DEM can be further reduced by tracking “parcels”, containing 

multiple particles each [2, 3]. However, models for correcting for the effects of this assumption are still 

in early development. 

The computational cost of fluidized bed simulations can further be decreased by not considering 

particles as discrete entities, but by assuming the solids phase to behave as a continuum. The Two 

Fluid Model (TFM) closed by the Kinetic Theory of Granular Flow (KTGF) follows such an argument, and 

accounts for the collisions and translation of individual particles by making using of closure models. 

Particle rotation is typically neglected, or simply lumped into closure models. The TFM is widely used 

and has been proven to be a useful tool for investigating the behaviour inside laboratory scale fluidized 

beds [4-10]. However, the primary limitation of this approach is that it requires the transient 

multiphase structures, which occur in fluidized beds in the form of gas bubbles and particle clusters, 

to be resolved [11]. These structures are similar to turbulent motion in turbulent flow, with the 

additional complexity that they form spontaneously and involve two or more phases. Multiphase flow 

structures exist over a large range of length scales, referred to as the mesoscale, and even the small 

structures can have an important effect on the overall bed behaviour. The TFM approach therefore 

requires very small grid cells and time steps to resolve all relevant structures, resulting in unfeasibly 

large computational times for industrial scale reactors - even on state-of-the art computing clusters. 
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The filtered TFM (fTFM) offers a solution to allow accurate solutions on coarse grids, where the 

mesoscale multiphase structures are not accurately resolved. fTFMs are based on the principle of 

performing a spatial averaging operation on the governing equations, which results in additional terms 

for the unresolved effects that have to be closed. The size of the grid in the coarse grid simulations will 

determine the range of scales that are unresolved, and therefore also the magnitude of the sub-grid 

corrections. The fTFM closures are generally obtained by performing resolved simulations, followed 

by a statistical analysis of spatially-averaged data to derive the required closure models [12-19]. 

Theoretical considerations can help to accelerate this closure development process, and can ensure 

that the developed closure is applicable to a wide range of flow situations [20].  

1.2 Filtered TFM literature 

The research community has long know about the presence of mesoscale structures in fluidized beds 

and its effect on simulations behaviour has frequently been studied [12, 21-23]. However, it has been 

less than a decade since the first complete fTFM has been proposed [16]. Since then, predominantly 

three groups have been developing TFM closures: The group of Prof. Sundaresan at Princeton 

University, the group of Prof. Simonin at INP Toulouse, and the group of Dr. Schneiderbauer at JKU 

Linz. This section will briefly discuss the various contributions from these different groups. 

In the work from the Sundaresan group it was found that primarily two hydrodynamic contributions 

from the mesoscale structures have to be accounted for to compensate for their effects in coarse grid 

simulations. The most important effect is that the effective drag coefficient is reduced compared to 

what is predicted by microscopic drag closure models that requires the mesoscale structures to be 

resolved. In the work from the Sundaresan group this effect is accounted for by using a drag correction 

factor. This factor simply scales the drag force (relative to the microscopic drag law predictions) as a 

function of the filter size, i.e., the size of the averaging region, and additional independent variables. 

The latter are referred to as “markers”, and the filtered solids volume fraction is the most prominent 

example thereof. The second contribution comes from the sub-grid solids velocity fluctuations, which 

results in additional stresses. The Sundaresan group has closed this contribution using the Boussinesq 

approximation, modelling the mean normal stress as an added filtered solids pressure, and the 

deviatoric stresses through a filtered solids viscosity. 

The original fTFM [12, 16, 19, 24], was developed from 2D simulations. Specifically, closures for the 

drag correction factor, the filtered solids pressure and the filtered solids viscosity were proposed, all 

based on one marker, namely the filtered solids volume fraction. However, these closures require 

additional corrections near walls to give accurate results [25], complicating the implementation in 

complex geometries. Subsequently, also in 2D, the closure models were extended to 2-marker closures 

[14], adding the filtered slip velocity magnitude as a marker for the drag correction factor and the 

filtered deviatoric shear rate magnitude as a marker for the filtered solids pressure and the filtered 

solids viscosity. Recently, 2-marker closure models have also been derived from 3D simulations [13]. 

The 2-marker closure models from the Sundaresan group have been shown to give reasonable 

predictions in validation studies without the use of wall-corrections [13, 26]. This group is also the only 

to have proposed closures for the effect of mesoscale structures on heat transfer [27], scalar transport 

[27] and on the rate of heterogeneous chemical reactions [28]. 

The group of Prof. Simonin introduced the concept of a sub-grid drift velocity [17] to close the 

reduction in the drag due to mesoscale structures. The closure for the drift velocity was formulated as 
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a function of the filter size and the filtered solids volume fraction. A dynamic parameter adjustment 

concept was also introduced. Later work from this group [18] extended the drift velocity closure and 

also proposed closures for the solids mesoscale stresses based on the Boussinesq approximation. The 

studies of this group also introduced the concept of an a priori analysis to the fTFM field by comparing 

model predictions to observed values in the resolved simulation data.  

The work by the Schneiderbauer group [15] initially followed an approach similar to the 2-marker 

closure models from the Sundaresan group [13, 14]. However, recently, Schneiderbauer has proposed 

a Spatially-Averaged TFM (SA-TFM) based on a theoretical development with well-reasoned 

assumptions [20]. In this approach, algebraic expressions were derived for the solids and gas phase 

turbulent kinetic energy (which are related to the mesoscale stresses), and the solids volume fraction 

variance. A drag correction closure, using these three quantities as independent variables, was then 

derived from theoretical principles based on certain assumptions. The filtered solids pressure and the 

filtered solids viscosity were calculated from the solids turbulent kinetic energy based on the 

Boussinesq approximation. Despite several simplifying assumptions that were adopted – some of 

which that requires a more detailed analysis, as will be discussed in the present study - the SA-TFM has 

been shown to give good predictions over a range of flow conditions [29].  

It can be noted that all of the studies above focussed on sub-grid corrections for monodisperse flows. 

If more than one particle diameter is considered for the solids phase, there exist additional drag forces 

between the different particle classes, which also required a closure model for the effect of mesoscale 

structures. At present, the only rigorous set of fTFM closures for bidisperse flows comes from the 

Sundaresan group [30]. However, bidisperse or polydisperse flows will not be discussed as part of the 

scope of the present study. 

Lastly, it can be noted that filtered closures have also been developed based on CFD-DEM simulations 

[2, 31, 32]. However, here different physics are at play compared to the TFM-based closure models, 

and much smaller filter sizes are generally considered. However, it has been shown that there is some 

similarity between the closures derived from TFM and CFD-DEM simulations [31]. 

1.3 Filtered TFMs as part of a multi-scale modelling approach 

The present study was performed as part of NanoSim, a project that investigated a multi-scale 

simulation-based approach to design cost-effective technologies for Chemical Looping Reforming 

(CLR). This entailed modelling at the atomistic-, particle-, reactor- and plant scales, with information 

exchanged between the different scales. Filtered Two Fluid Modelling fits perfectly into such a multi-

scale modelling environment due to several reasons: 

Firstly, the development of fTFMs, by itself, requires a multiscale modelling approach. This is because 

resolved simulations that accurately simulate the mesoscale in fluidized beds are required to generate 

data that is used for deriving fTFM closures. The closures can then be used to perform simulations on 

the macro (i.e., reactor) scale, without having to resolve the mesoscale structures. 

Secondly, more accurate fTFM closures can be developed based on improved closures developed on 

the micro (i.e., particle) scale. This is because an fTFM closure can only be as accurate as the resolved 

TFM simulations on which it is based. Since the TFM assumes the solids to be a continuum, closures 

are necessary to account for the behaviour of individual particles. Such closures, for example for the 
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interphase momentum exchange or mass- and heat transfer, can be improved by making use of 

modelling techniques where individual particles are tracked, for example PR-DNS or PU-EL. 

Lastly, since fTFMs allow several orders of magnitude speedup in reactor scale simulations, coarse grid 

filtered simulations may become an extremely useful tool for data generation: For example, a large 

number of reactor simulations can be performed to map out the reactor performance for a range of 

operating conditions, or design parameters. Subsequently, this data can be fed into system-scale 

simulations that can be used to predict the performance of a set of devices, or even a whole plant. 

Going even a step further, techno-economic assessments can be made that ultimately may lead to 

optimal design and optimal operating conditions for fluidized bed reactors, or the systems they are 

embedded in. 

1.4  Objectives 

1.4.1 Original objectives 

In a work before the start of the present study [25], it was found that early 1-marker fTFMs [16, 19] 

failed completely in wall-bounded domains (when using coarse computational meshes typical for 

industrial applications) in case dedicated wall corrections are not employed. Dedicated wall 

corrections complicate the functional form of the closure, and are difficult to implement in a generic 

manner, especially in complex geometries. It is therefore highly desirable to derive closures that can 

correctly account for regions with large flow gradients (i.e., regions close to walls). This could 

potentially be accomplished through more sophisticated closure models based on multiple markers. 

The primary objective of the present study was therefore to develop fTFM closures that accurately 

predict the flow behaviour near walls without wall corrections. 

1.4.2 Revised objectives and scope 

Shortly before and during the present study, the more advanced 2-marker closure models from the 

Sundaresan group [13, 14] were published. Validation studies performed with these closure models 

showed that they perform reasonably well in wall-bounded domains, and did not require dedicated 

wall corrections [13, 26]. However, early in the present study, the performance of the closure models 

was evaluated in domains that were set up to minimise the complicating effect of walls. As will be 

discussed in Chapter 4.1.2, it was found that these fTFMs failed completely for the verification case 

considered. This raised questions regarding the reliability of these 2-marker closure models for reasons 

that did not concern wall effects.  

As a result, the primary objective of this study was revised to focus on developing a better 

understanding of fTFM closures and how their accuracy and generality can be improved. Clearly, 

filtered data from resolved simulations must be analysed in greater detail than the current state of the 

art. Such a detailed analysis would lead to new functional forms based on new markers, ultimately 

resulting in closures that perform much more reliably in dedicated verification studies.    

This change in focus also necessitated a change in scope. An improved understanding of how fTFM 

closures behave and how improvements in the closures influence the predictions on coarse grids would 

require detailed verification against resolved simulations over a range of different conditions. 

However, performing several resolved simulations on relevantly large domain sizes is simply not 

feasible in 3D. For this reason, all closure development and verification in this study was limited to 2D 
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simulations. This was justified based on the finding that fTFM closures derived from 2D and 3D 

simulations are qualitatively similar [12]. This implies that any improvements made to fTFM closures 

based on 2D simulations can be similarly applied to data generated in 3D simulations in future work. 

Therefore, by first developing and verifying fTFM closures in 2D, and then applying the same improved 

principles to 3D data, the overall rate of fTFM closure development may be increased. It can further 

be noted that the validation studies presented in Chapter 5.3 document that the newly developed 

fTFM closures of the present work, based on 2D simulation data, are useful: these closures 

outperformed a recent fTFM from literature [13] that was based on 3D simulation data. This finding 

again justifies the approach followed in the present study. 

It is also known that there exists a substantial uncertainty regarding the scaling of fTFM closures to 

different particle and fluid properties than those they were derived for [33]. To limit the scope of the 

present study, it was also decided to focus on a single fluid/particle combination. Again, the argument 

is followed that if an accurate approach could be established for the specific case considered, future 

work can then aim to generalize the findings from the present study. 

Also, as mentioned earlier, the initial focus of this study was to develop improved closures in the near-

wall regions where large flow gradients occur, therefore resolved simulations in wall-bounded domains 

were planned to generate data for closure development. For this reason, early work evaluated a recent 

closure model for the particle-wall boundary condition [34] in riser flow and compared it to the most 

commonly used closure in literature [35]. The results of this study are given in Appendix C. The 

intention was to use the more recent closure in wall-bounded resolved simulations for closure 

development. However, due to the change of scope described in this section, resolved simulations for 

closure development were limited to fully-periodic domains. Future work will consider data from wall-

bounded domains using realistic particle-wall boundary conditions. 

To summarise, the present study therefore considers data from 2D resolved simulations performed in 

fully-periodic domains for a single fluid/particle configuration to develop improved fTFM closures. 

Additionally, the closure development process is continuously guided by detailed verification against 

2D resolved simulations, allowing an improved understanding of the effect of different closure 

formulations and the evaluation of the performance of the developed closures. 
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Chapter 2: Summary of governing equations 

This chapter will summarise the governing equations that are solved during simulations in this study. 

These equations are split in three sections: (i) The first section provides the transport equations and 

closures that are solved in the resolved KTGF-based TFM simulations. These equations are used for 

generating data for closure derivation, and for performing simulations against which to verify the fTFM 

closures developed in this study. (ii) The next section derives the filtered transport equations, which 

are solved during coarse grid simulations using fTFM closures, and highlights the different terms that 

require closure. (iii) Lastly, the third section summarises the closures proposed during the present 

study. 

This chapter will focus on the equations needed to predict the hydrodynamics of mono-disperse gas-

particle flows, as well as simple isothermal reactions. Filtered quantities present in generic scalar and 

energy transport equations were only considered as part of a study investigating the sensitivity of fTFM 

closures to the closure choices in the resolved simulations, the complete results of which are presented 

in Appendix B. The equations relevant to scalar and energy transport are therefore given in Appendix 

E.1 and Appendix E.2. 

2.1 Governing equations of the resolved TFM 

This section briefly presents the equations solved in the resolved TFM-based simulations, as well as 

the closures used. A more detailed description of the equations used can be found in an earlier 

work [11]. 

2.1.1 Continuity equations 

Continuity equations are solved for the gas and solids phases, which read as follows: 

𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔) + 𝛻 ⋅ (𝛼𝑔𝜌𝑔𝜐⃗𝑔) = 0 Equation 1 

𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑠) + 𝛻 ⋅ (𝛼𝑠𝜌𝑠𝜐⃗𝑠) = 0 Equation 2 

Additionally, the sum of the volume fractions for the different phases should be equal to unity. 

2.1.2 Momentum transport equations 

The following momentum conservation equation is solved for the gas  

𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔𝜐⃗𝑔) + 𝛻 ⋅ (𝛼𝑔𝜌𝑔𝜐⃗𝑔𝜐⃗𝑔) = −𝛼𝑔𝛻𝑝 + 𝛻 ⋅ 𝜏̅̅𝑔 + 𝛼𝑔𝜌𝑔𝑔⃗ + 𝐾𝑠𝑞(𝜐⃗𝑠 − 𝜐⃗𝑔) Equation 3 

,while that for the solids phase reads: 

𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑠𝜐⃗𝑠) + 𝛻 ⋅ (𝛼𝑠𝜌𝑠𝜐⃗𝑠𝜐⃗𝑠) = −𝛼𝑠𝛻𝑝 − 𝛻𝑝𝑠 + 𝛻 ⋅ 𝜏̅̅𝑠 + 𝛼𝑠𝜌𝑠𝑔⃗ + 𝐾𝑔𝑠(𝜐⃗𝑔 − 𝜐⃗𝑠) Equation 4 

, where the solids stress tensor is defined as follows: 
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𝜏𝑠̅̅ = 𝛼𝑠𝜇𝑠(𝛻𝜐⃗𝑠 + 𝛻𝜐⃗𝑠
𝑇) + 𝛼𝑠(𝜆𝑠 −

2

3
𝜇𝑠)𝛻 ⋅ 𝜐⃗𝑠𝐼 ̅ ̅ Equation 5 

In both momentum equations, the last term on the right-hand side describes the volumetric interphase 

momentum exchange rate, modelled by the Huilin-Gidaspow model [36] in the present study. This 

model employs the Ergun equation [37] for solids volume fractions greater than 0.2 and the Wen-Yu 

drag model [38] for more dilute flows. A blending function is used to smooth out the discontinuity 

between these equations. Furthermore, closures are required in the solids momentum equation 

(Equation 4) for the solids pressure [39], 𝑝𝑠 in the second term on the right, and the shear [40] and 

bulk [39] viscosities in Equation 5. The radial distribution function, which is used in the three previous 

closures, is calculated according to Ogawa [41]. In the case of prolonged, frictional contacts between 

particles in very dense flows, an additional frictional component is added to the solids pressure and 

solids viscosity. In this study the model by Johnson & Jackson [35] is used for the frictional pressure 

and the model by Schaeffer [42] for the frictional viscosity.  

2.1.3 Granular temperature transport equation 

The closures for the solids pressure and viscosities require information on the fluctuation velocity of 

the particles. The following transport equation for the granular temperature is used to supply relevant 

local information on this fluctuation velocity: 

3

2
[
𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑠𝛩𝑠) + 𝛻 ⋅ (𝛼𝑠𝜌𝑠𝜐⃗𝑠𝛩𝑠)] = (−𝑝𝑠𝐼 ̅

̅ + 𝜏̅̅𝑠): 𝛻𝜐⃗𝑠 + 𝛻 ⋅ (𝑘𝛩𝑠𝛻𝛩𝑠) − 𝛾𝛩𝑠 + 𝜙𝑔𝑠 Equation 6 

The first term on the right-hand side represents the generation of granular temperature due to solids 

stresses. The other terms on the right-hand side are the granular conductivity [40] (𝑘𝛩𝑠𝛻𝛩𝑠), the 

collisional dissipation of kinetic energy [39] (𝛾𝛩𝑠) and the dissipation of granular temperature due to 

momentum exchange between the phases [40] (𝜙𝑔𝑠). The interested reader is referred to a previous 

study for detailed information on how to close these terms [11]. 

2.1.4 Species transport equation 

In the present study, a hypothetical first-order, solids-catalysed reaction is considered, converting 

species A into species B. The following species conservation equation is solved for the reactant: 

 
𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔𝑋𝐴) + 𝛻 ⋅ (𝛼𝑔𝜌𝑔𝑋𝐴𝜐⃗𝑔) = 𝛻 ⋅ (𝐷𝛼𝑔𝛻𝑋𝐴) − 𝑘𝐴𝜌𝑔𝛼𝑠𝑋𝐴 Equation 7 

2.2 Governing equations of the filtered TFM 

2.2.1 Definition of filtered quantities 

The filtered conservation equations are obtained by performing a spatial averaging procedure on the 

microscopic conservation equations presented in Chapter 2.1. In the resulting filtered equations, 

details of the flow structure smaller than the filter size are smoothed out. Consequently, the effects of 

the sub-filter scale structures need to be modelled to close new terms appearing in the filtered 

transport equations. The filtered equations are then, in principle, capable of predicting the same 
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macroscopic flow behaviour (i.e., in the sense of spatial averages) as the resolved simulations, but 

without having to resolve the small scale multiphase structures using costly, fine grids. 

The filtered phase volume fraction is defined as 

𝛼𝑘̅̅ ̅(𝑥⃗, 𝑡) = ∫𝐺(𝑥⃗, 𝑦⃗)𝛼𝑘(𝑦⃗, 𝑡)𝑑𝑦⃗

𝐴∞

 Equation 8 

Where  𝐴∞ is the area of the simulation domain, 𝑥⃗ represents the position of the centre of the filter 

being evaluated and 𝑦⃗ represents the position of the computational cell being evaluated. 𝐺, the weight 

function, is a function of  𝑥⃗ − 𝑦⃗ and is constrained by ∫ 𝐺(𝑥⃗, 𝑦⃗)𝑑𝑦⃗
𝐴∞

= 1. A simple box filter is used in 

this study, therefore averaging is performed over a cubical region (or a square in 2D). The side of 

lengths of the filter cube is given by the filter size 𝛥𝑓. The filter size is non-dimensionalized based on 

the particles’ relaxation length:   

𝛥̂𝑓 =
𝛥𝑓

𝑣𝑡
2 𝑔⁄

 Equation 9 

The local phase volume fraction is divided into a filtered and a fluctuating part: 

𝛼𝑘
′(𝑦⃗, 𝑡) = 𝛼𝑘(𝑦⃗, 𝑡) − 𝛼𝑘̅̅ ̅(𝑦⃗, 𝑡) 

Equation 10 

The following generic equations can also be defined for 𝜃𝑘
′ (𝑦⃗, 𝑡) and 𝜃̃𝑘(𝑦⃗, 𝑡), representing any of the 

conserved variables considered in this study for a specific phase, 𝑘. 

𝛼𝑘̅̅̅̅ (𝑥⃗, 𝑡)𝜃̃𝑘(𝑥⃗, 𝑡) = ∫𝐺(𝑥⃗, 𝑦⃗)𝛼𝑘(𝑦⃗, 𝑡)𝜃𝑘(𝑦⃗, 𝑡)𝑑𝑦⃗

𝐴∞

 Equation 11 

𝜃𝑘
′′(𝑦⃗, 𝑡) = 𝜃𝑘(𝑦⃗, 𝑡) − 𝜃̃𝑘(𝑦⃗, 𝑡) Equation 12 

It should be noted that a single prime is used to denote the fluctuating part based on algebraic 

averages, whereas a double prime denotes the fluctuating part based on a phase-weighted variable. 

The latter is defined as: 𝜃𝑘̃ = 𝛼𝑘𝜃𝑘̅̅ ̅̅ ̅̅ ̅ 𝛼𝑘̅̅̅̅⁄ .  

2.2.2 Filtered equations 

2.2.2.1 Filtered continuity equations 

Applying a spatial average to Equation 1 and Equation 2, as well as rearranging, the filtered continuity 

equations can be derived. From Equation 13 and Equation 14, it is evident that no additional terms 

appear that require closure. 

𝜕

𝜕𝑡
(𝛼𝑔̅̅ ̅𝜌𝑔) + 𝛻 ⋅ (𝛼𝑔̅̅ ̅𝜌𝑔𝜐⃗𝑔

̃) = 0 Equation 13 

𝜕

𝜕𝑡
(𝛼𝑠̅̅ ̅𝜌𝑠) + 𝛻 ⋅ (𝛼𝑠̅̅ ̅𝜌𝑠𝜐⃗𝑠

̃ ) = 0 
Equation 14 

2.2.2.2 Filtered momentum transport equations 

The filtered solids momentum equation can be derived as: 
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𝜕

𝜕𝑡
(𝜌𝑠𝛼𝑠̅̅ ̅𝜐⃗𝑠

̃ ) + 𝛻 ⋅ (𝜌𝑠𝛼𝑠̅̅ ̅𝜐⃗𝑠
̃ 𝜐⃗𝑠
̃ ) = −𝛼𝑠̅̅ ̅𝛻𝑝̅ − 𝛻𝑝𝑠̅ − 𝛻 ⋅ (𝜌𝑠𝛼𝑠𝜐⃗𝑠

′′
𝜐⃗𝑠
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) + 𝛻 ⋅ 𝜏̅̅𝑠

̅

+𝛼𝑠̅̅ ̅𝜌𝑠𝑔⃗ + 𝐾𝑔𝑠(𝜐⃗𝑔 − 𝜐⃗𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛼𝑠

′𝛻𝑝′̅̅ ̅̅ ̅̅ ̅̅ ̅
 Equation 15 

Considering individual spatial components of the solids momentum equation in two dimensions, one 

obtains the following equations for the x- and y-direction, respectively: 

𝜕(𝜌𝑠𝛼𝑠̅̅ ̅𝑢𝑠̃)

𝜕𝑡
+
𝜕(𝜌𝑠𝛼𝑠̅̅ ̅𝑢𝑠̃𝑢𝑠̃)

𝜕𝑥
+
𝜕(𝜌𝑠𝛼𝑠̅̅ ̅𝑢𝑠̃𝑣𝑠̃)

𝜕𝑦

= −𝛼𝑠̅̅ ̅
𝜕𝑝̅

𝜕𝑥
−
𝜕𝑝𝑠̅
𝜕𝑥

+
𝜕 (𝛼𝑠𝜇𝑠 (

4
3
𝜕𝑢
𝜕𝑥
−
2
3
𝜕𝑣
𝜕𝑦
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

𝜕𝑥

+
𝜕 (𝛼𝑠𝜇𝑠 (

𝜕𝑢
𝜕𝑦
+
𝜕𝑣
𝜕𝑥
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

𝜕𝑦
+
𝜕 (𝛼𝑠𝜆𝑠 (

𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

𝜕𝑥
−
𝜕(𝜌𝑠𝛼𝑠𝑢𝑠

′′𝑢𝑠
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑥

−
𝜕(𝜌𝑠𝛼𝑠𝑢𝑠

′′𝑣𝑠
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑦
+ 𝐾𝑔𝑠(𝑢𝑔 − 𝑢𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝛼𝑠

′
𝜕𝑝′

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

Equation 16 

𝜕(𝜌𝑠𝛼𝑠̅̅ ̅𝑣𝑠̃)

𝜕𝑡
+
𝜕(𝜌𝑠𝛼𝑠̅̅ ̅𝑣𝑠̃𝑣𝑠̃)

𝜕𝑦
+
𝜕(𝜌𝑠𝛼𝑠̅̅ ̅𝑣𝑠̃𝑢𝑠̃)

𝜕𝑥

= −𝛼𝑠̅̅ ̅
𝜕𝑝̅

𝜕𝑦
−
𝜕𝑝𝑠̅
𝜕𝑦

+
𝜕 (𝛼𝑠𝜇𝑠 (

4
3
𝜕𝑣
𝜕𝑦
−
2
3
𝜕𝑢
𝜕𝑥
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

𝜕𝑦

+
𝜕 (𝛼𝑠𝜇𝑠 (

𝜕𝑢
𝜕𝑦
+
𝜕𝑣
𝜕𝑥
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

𝜕𝑥
+
𝜕 (𝛼𝑠𝜆𝑠 (

𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)

𝜕𝑦
−
𝜕(𝜌𝑠𝛼𝑠𝑣𝑠

′′𝑣𝑠
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑦

−
𝜕(𝜌𝑠𝛼𝑠𝑢𝑠

′′𝑣𝑠
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑥
+ 𝐾𝑔𝑠(𝑣𝑔 − 𝑣𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛼𝑠

′
𝜕𝑝′

𝜕𝑦

̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝛼𝑠̅̅ ̅𝜌𝑠𝑔 

Equation 17 

The three terms on the left-hand side, as well as the first term on the right-hand side in both equations 

can be calculated directly in an fTFM simulation. The same is true for the gravity term in the y-direction 

equation (i.e., the last term on the right-hand side of Equation 17). All other terms require closure. For 

both directions, the second term on the right represents the filtered microscopic solids pressure 

(consisting of a kinetic theory-based and a frictional part), the third and fourth terms represent the 

microscopic solids viscosity (also consisting of a kinetic theory-based and a frictional part), the fifth 

term represents the filtered microscopic bulk viscosity, the sixth and seventh terms the mesoscale 

solids normal and shear stresses, the eighth term the filtered interphase drag and the ninth term the 

interphase force due to fluctuations in the pressure gradient. The pressure gradient fluctuation term 

is referred to as the mesoscale interphase force in the present study, as will be discussed in 

Chapter 3.5.  

The filtered kinetic theory-based terms (present in terms two to five on the right-hand side) are 

generally considered small relative to the mesoscale stresses (i.e., terms 6 and 7 on the right-hand 

side). This is true at least for filter sizes used in industrially relevant simulations. Therefore, they are 

either (i) neglected [20], (ii) modelled as a function of the filter size and several markers (not including 

the granular temperature) [13], or (iii) calculated directly from the kinetic theory without applying 

filtering to the kinetic theory-based closures or the granular temperature transport equation [15, 16]. 
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In this study, the latter approach is followed, therefore closures for the filtered kinetic theory stresses 

or the filtered granular temperature equation will not be considered. Closures will, however, be 

discussed for the filtered frictional stresses in Chapter 3.7.  

In the filtered gas-phase momentum equation shown in Equation 18, the filtered gas phase stress 

tensor is usually evaluated from its filtered values, and therefore does not require closure [20, 43]. This 

is justified for typical particle concentrations (ranging from ~ 1% to the close packing limit), and by 

considering that the gas density is typically much lower than the particle density. The same closures 

for the filtered interphase forces (i.e., terms five and six on the right in Equation 18) can be used for 

both the gas and solid phase momentum equations. Therefore, only the mesoscale gas stresses (i.e., 

term two on the right) require closure in addition. The gas-phase mesoscale stresses are generally 

considered to be small compared to that of the solids phase [14] and have therefore often been 

neglected [16, 18]. An evaluation in this study has confirmed that forces due to mesoscale stresses in 

the gas phase are insignificant compared to those resulting from the solids mesoscale stresses. 

Consequently, this study will not attempt to close the gas phase mesoscale stresses. However, it should 

be noted that closures for the gas phase mesoscale stresses have been proposed in some recent 

studies [13, 14]. However, the impact of these closures on predictions made by coarse grid simulations 

has not been evaluated so far.  

𝜕

𝜕𝑡
(𝜌𝑔𝛼𝑔̅̅ ̅𝜐⃗𝑔

̃) + 𝛻 ⋅ (𝜌𝑔𝛼𝑔̅̅ ̅𝜐⃗𝑔
̃𝜐⃗𝑔
̃)

= −𝛼𝑔̅̅ ̅𝛻𝑝̅ − 𝛻 ⋅ (𝜌𝑔𝛼𝑔𝜐⃗𝑔
′′
𝜐⃗𝑔
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) + 𝛻 ⋅ 𝜏̅̅𝑔

̅̅̅ + 𝛼𝑔̅̅ ̅𝜌𝑔𝑔⃗ + 𝐾𝑠𝑔(𝜐⃗𝑠 − 𝜐⃗𝑔)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

− 𝛼𝑔
′𝛻𝑝′̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Equation 18 

In summary for the hydrodynamics, closures are required for the filtered drag force, the mesoscale 

interphase force, the solids mesoscale stresses and the filtered frictional stresses based on the 

arguments given. Closures for these quantities will be detailed in Chapter 3. 

2.2.2.3 Filtered species equation 

The filtered species transport equation for a reactant 𝐴 can be written as follows, considering a first 

order, solids catalysed reaction: 

𝜕

𝜕𝑡
(𝜌𝑔𝛼𝑔̅̅ ̅𝑋𝐴̃) + 𝛻 ⋅ (𝜌𝑔𝛼𝑔̅̅ ̅𝑋𝐴̃𝜐⃗𝑔̃)

= 𝛻 ⋅ (𝐷𝛼𝑔𝛻𝑋𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅) − 𝛻 ⋅ (𝜌𝑔𝛼𝑔𝑋𝐴
′′𝜐⃗𝑔

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) − 𝑘𝐴𝜌𝑔𝛼𝑠𝑋𝐴̅̅ ̅̅ ̅̅  

Equation 19 

The species dispersion due to the filtered microscopic diffusion (i.e., the first term on the right-hand 

side) is expected to be small relative to mesoscale dispersion, as well as convective transport. 

Therefore, in line with previous work regarding scalar dispersion in fTFMs [27], it will not be closed in 

the present study. Closures for the mesoscale species dispersion rate (i.e., the second term on the 

right-hand side), as well as the filtered reaction rate (third term on the right) will be discussed in 

Chapter 3.8. 

2.3 Summary of fTFM closures 

In this section, the most important closure models developed in the present study will be summarised. 

Although the closure models are repeated in Chapter 3 where they are derived, this summary gives a 
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useful overview of the closure development work performed in the present study. It also illustrates 

the increase in complexity of the closures as more physical effects are incorporated. It can be noted 

that scaled velocities, denoted with an asterisk, are scaled by the steady state sedimentation velocity, 

as discussed in Chapter 3.4.1.2. 

2.3.1 Filtered interphase forces 

2.3.1.1 Isotropic model 

Here, the combined filtered drag and mesoscale interphase forces, used in the filtered momentum 

transport equations (Equation 15 and Equation 18), are closed as follows: 

𝐾𝑔𝑠(𝜐⃗𝑔 − 𝜐⃗𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛼𝑠

′𝛻𝑝′̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐶𝐾𝑔𝑠,ℎ𝑜𝑚(𝜐⃗𝑔
̃− 𝜐⃗𝑠

̃)  Equation 20 

−log(𝐶) = atan(𝑥1Δ𝑓
∗𝛼̅𝑠)atan (𝑥2Δ𝑓

∗𝑚𝑎𝑥(𝛼̅max − 𝛼̅𝑠, 0)) atan(𝑥3Δ𝑓
∗) (

2

𝜋
)
3

× (𝑥4 log‖𝜐𝑠𝑙𝑖𝑝̃
∗‖ + 𝑥5Δ𝑓

∗𝑥6

+ 𝑥7(log‖𝜐𝑠𝑙𝑖𝑝̃
∗‖)

2
(1 −

atan(𝑥8Δ𝑓
∗)

𝜋 2⁄
)) 

if − log(𝐶) < 0           𝐶 = 1 

 

Equation 21 

𝑥1 = 36.6, 𝑥2 = 22.6, 𝑥3 = 1.68, 𝑥4 = 0.835, 𝑥5 = 0.140, 𝑥6 = 0.188, 𝑥7 = 1.33, 𝑥8 = 3.28 and 

𝛼̅𝑚𝑎𝑥 = 0.551. 

2.3.1.2 Anisotropic models 

For these models, the filtered drag force is closed separately: 

𝐾𝑔𝑠(𝜐𝑔,𝑖 − 𝜐𝑠,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐶𝑁𝐿𝐾𝑔𝑠,ℎ𝑜𝑚(𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖 − 𝜐𝑑,𝑖)  Equation 22 

Where the non-linearity correction factor, 𝐶𝑁𝐿, can be closed as: 

𝐶𝑁𝐿 = 1 + {[atan(𝑥1𝛼𝑠̅̅ ̅) − 𝑥2 atan(𝑥3max(𝛼𝑠̅̅ ̅ − 𝑥4, 0))] 𝑥5

+ [atan(𝑥6‖𝑣𝑠𝑙𝑖𝑝̃
∗‖
𝑥7𝛼𝑠̅̅ ̅)

− atan(𝑥8‖𝑣𝑠𝑙𝑖𝑝̃
∗‖
𝑥7max(𝛼𝑠̅̅ ̅ − 𝑥4, 0))] 𝑥9‖𝑣𝑠𝑙𝑖𝑝̃

∗‖
𝑥10
}

× (
2

𝜋
)
2

atan (𝑥11max(𝛼𝑠̅̅ ̅ − 𝑥12, 0)) 

Equation 23 
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𝑥1 = 23.5, 𝑥2 = 1.29, 𝑥3 = 7.73 − 2.17 (
2

𝜋
) atan (0.194Δ𝑓𝑖𝑙

∗ ), 𝑥4 = 0.154,   

𝑥5 = 2.04 (
2

𝜋
) atan (0.710Δ𝑓𝑖𝑙

∗ ), 𝑥6 = 135, 𝑥7 = −0.451, 𝑥8 = 43.6,  

𝑥9 = −0.547(
2

𝜋
) atan (0.825Δ𝑓𝑖𝑙

∗ ), 𝑥10 = 0.390, 𝑥11 = 13.0 and 𝑥12 = 0.570. 

The adjusted slip velocity, 𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖 − 𝜐𝑑,𝑖, is closed via the drift velocity, 𝜐𝑑,𝑖, using 1-marker, 2-

marker and 3-marker closures, as follows: 

𝜐𝑎𝑑𝑗,𝑖
∗ = 𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ − 𝜐𝑑,𝑖
∗  Equation 24 

𝜐𝑑,𝑖
∗ = 𝑘1 + 𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ (1 − 10−𝑘2) + 𝑘3 Equation 25 

𝑘1 = 𝑥1 (
2

𝜋
) (𝛼𝑠̅̅ ̅

𝑥2) atan (𝑥3max(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) 

𝑘1 = 0 if 𝑖 is in the direction perpendicular to gravity 

Equation 26 

𝑘2 = (
2

𝜋
)
2

atan(𝑥5𝛼𝑠̅̅ ̅) atan (𝑥3max(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) (𝑥6𝛼𝑠̅̅ ̅
𝑥7

+ 𝑥8 (
2

𝜋
) atan(𝑥9𝛼𝑠̅̅ ̅

𝑥10|𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ | ) 𝑙𝑜𝑔|𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ |) 

Equation 27 

𝑘3 = (
2

𝜋
)
3

atan(𝑥11𝛼𝑠̅̅ ̅) atan (𝑥12max(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) 𝑎𝑡𝑎𝑛(𝑥13Μ̂𝑑𝑟𝑖𝑓𝑡,𝑖) {𝑥14

+ |𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ |

𝑥15
[(𝑥16 |𝛼𝑠̅̅ ̅ −

𝑥4
2
|
𝑥17

+ 𝑥18)

+ min(𝑠𝑖𝑔𝑛(𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ Μ̂𝑑𝑟𝑖𝑓𝑡,𝑖), 0) 𝑥19 |𝛼𝑠̅̅ ̅ −

𝑥4
2
|
𝑥17
]} 

Equation 28 

The non-dimensional drift GPM, Μ̂𝑑𝑟𝑖𝑓𝑡,𝑖, is defined as: 

Μ̂𝑑𝑟𝑖𝑓𝑡,𝑖 =
(
𝑑𝛼𝑔̅̅ ̅
𝑑𝑥

𝑑𝜐̅𝑔,𝑖
𝑑𝑥

+
𝑑𝛼𝑔̅̅ ̅
𝑑𝑦

𝑑𝜐̅𝑔,𝑖
𝑑𝑦

)

𝛼𝑠̅̅ ̅ 𝛼𝑔̅̅ ̅𝑣̅𝑠𝑠_𝑠𝑙𝑖𝑝

𝑣𝑡
4

𝑔2
 

Equation 29 

𝜐̅𝑔,𝑖 = 𝜐̃𝑔,𝑖 − 𝛼̅𝑠𝜐𝑑,𝑖 Equation 30 

The following coefficients (Table 1) are used for the three adjusted slip velocity closure models: 
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Table 1 – Summary of the coefficients used in the 1-marker, 2-marker and 3-marker adjusted slip velocity 
closures. 

Coefficient 1-marker 2-marker 3-marker 

𝑥1 
−3.44 −1.40 −1.74 (

2

𝜋
) 𝑎𝑡𝑎𝑛(1.71Δ𝑓𝑖𝑙

∗ ) 

𝑥2 2.09 1.38 1.54 

𝑥3 
21.6 (

2

𝜋
) atan (0.216Δ𝑓𝑖𝑙

∗ ) 48.5 (
2

𝜋
) atan (0.235Δ𝑓𝑖𝑙

∗ ) 21.8 (
2

𝜋
) 𝑎𝑡𝑎𝑛(0.708Δ𝑓𝑖𝑙

∗ ) 

𝑥4 0.559 0.553 0.558 

𝑥5 99.7Δ𝑓𝑖𝑙
∗ 3.31

 333Δ𝑓𝑖𝑙
∗ 1.92

 45.6Δ𝑓𝑖𝑙
∗ 2.10

 

𝑥6 
2.19 1.76 (

2

𝜋
) atan (1.29Δ𝑓𝑖𝑙

∗ ) 2.09 (
2

𝜋
) 𝑎𝑡𝑎𝑛(0.331Δ𝑓𝑖𝑙

∗ ) 

𝑥7 1/(2.08Δ𝑓𝑖𝑙
∗ 0.246

) 1/(2.40Δ𝑓𝑖𝑙
∗ 0.234

) 0.248 

𝑥8 
0 

1

(2.44 (
2
𝜋
) atan(1.92Δ𝑓𝑖𝑙

∗ ))
 0.308 

𝑥9 0 25.6Δ𝑓𝑖𝑙
∗  6.35Δ𝑓𝑖𝑙

∗  

𝑥10 0 1.56 1.22 

𝑥11 0 0 4030 

𝑥12 0 0 194 

𝑥13 0 0 0.0742Δ𝑓𝑖𝑙
∗ 1.89

 

𝑥14 
0 0 

1

3.53 (
2
𝜋
)𝑎𝑡𝑎𝑛(0.303Δ𝑓𝑖𝑙

∗ )
 

𝑥15 
0 0 

1

1 + 4.69 (
2
𝜋
) 𝑎𝑡𝑎𝑛(0.0604Δ𝑓𝑖𝑙

∗ )
 

𝑥16 0 0 9.18 

𝑥17 0 0 2.84 

𝑥18 
0 0 

1

2.24Δ𝑓𝑖𝑙
∗  

𝑥19 
0 0 

1

0.0742 (
2
𝜋
)𝑎𝑡𝑎𝑛(0.419Δ𝑓𝑖𝑙

∗ )
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Lastly, the mesoscale interphase force is also closed individually: 

𝐹̂𝑀,𝑖 =
−𝛼𝑠

′ 𝜕𝑝
′

𝜕𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜌𝑔𝑔
  = 𝑘1 + 𝑘2 Equation 31 

𝑘1 = 𝑥1 (
2

𝜋
)𝛼𝑠̅̅ ̅

𝑥2 𝑎𝑡𝑎𝑛 (𝑥3𝑚𝑎𝑥(𝛼𝑠̅̅ ̅ − 𝑥4, 0)
𝑥5) 

𝑘1 = 0 if 𝑖 is in a direction perpendicular to gravity 

Equation 32 

𝑘2 = 𝑥6 (
2

𝜋
)
3

𝑎𝑡𝑎𝑛(𝑥7𝛼𝑠̅̅ ̅) 𝑎𝑡𝑎𝑛 (𝑥8𝑚𝑎𝑥(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) 𝑎𝑡𝑎𝑛(𝑥9𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ ) Equation 33 

𝑥1 = 29000(
2

𝜋
) atan(0.690Δ𝑓𝑖𝑙

∗ ), 𝑥2 = 185, 𝑥3 = 0.168, 𝑥4 = 0.551, 𝑥5 = 1.43,  

𝑥6 = 92.4 − 65.4 (
2

𝜋
) atan(0.167Δ𝑓𝑖𝑙

∗ ), 𝑥7 = 5.65, 𝑥8 = 7.06 and 𝑥9 = 0.475. 

2.3.2 Solids mesoscale stresses 

The closures for the solids mesoscale stresses are used in the filtered solids momentum transport 

equations (Equation 15). 

2.3.2.1 Isotropic model 

Here, the solids mesoscale stresses are closed based on the Boussinesq approximation: 

𝜌𝑠𝛼𝑠𝜐𝑠,𝑖
′′𝜐𝑠,𝑗

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 𝑝𝑠,𝑓𝑖𝑙𝛿𝑖𝑗 − 𝛼𝑠̅̅ ̅𝜇𝑠,𝑓𝑖𝑙 (
𝜕𝜐𝑖̃
𝜕𝑥𝑗

+
𝜕𝜐𝑗̃

𝜕𝑥𝑖
−
2

3

𝜕𝜐𝑘̃
𝜕𝑥𝑘

𝛿𝑖𝑗) Equation 34 

The following closures are derived for the filtered solids pressure, 𝑝𝑠,𝑓𝑖𝑙, and the filtered solids 

viscosity, 𝜇𝑠,𝑓𝑖𝑙: 

𝑝𝑠,𝑓𝑖𝑙

𝜌𝑠𝑣𝑡
2 =

2

𝜋
𝑥1𝛼𝑠̅̅ ̅

𝑥2atan(𝑥3𝛥𝑓
∗𝑥4‖𝑆̂𝑠,𝑓𝑖𝑙‖

𝑥5max(𝑥6 − 𝛼𝑠̅̅ ̅, 0))𝛥𝑓
∗𝑥7‖𝑆̂𝑠,𝑓𝑖𝑙‖

𝑥8+𝑥9𝛥𝑓
∗ 𝑥10

+
2

𝜋
𝑥11𝛼𝑠̅̅ ̅

𝑥12atan(𝑥13max(𝑥14 − 𝛼𝑠̅̅ ̅, 0))𝛥𝑓
∗𝑥15

 Equation 35 

𝑥1 = 0.774, 𝑥2 = 1.72, 𝑥3 = 0.403, 𝑥4 = 0.610, 𝑥5 = 1.19, 𝑥6 = 0.684, 𝑥7 = 1.57, 𝑥8 = 1.00, 𝑥9 =

0.331, 𝑥10 = −0.103, 𝑥11 = 0.123, 𝑥12 = 0.621 𝑥13 = 2.89, 𝑥14 = 0.591 and 𝑥15 = 1.05 

𝜇𝑠,𝑓𝑖𝑙

𝜌𝑠𝑣𝑡
3/𝑔

= [
2

𝜋
𝑥1𝛼𝑠̅̅ ̅

𝑥2atan(𝑥3𝛥𝑓
∗𝑥4‖𝑆̂𝑠,𝑓𝑖𝑙‖

𝑥5max(𝑥6

− 𝛼𝑠̅̅ ̅, 0))𝛥𝑓
∗𝑥7‖𝑆̂𝑠,𝑓𝑖𝑙‖

𝑥8+𝑥9𝛥𝑓
∗ 𝑥10

+
2

𝜋
𝑥11𝛼𝑠̅̅ ̅

𝑥12atan(𝑥13max(𝑥14 − 𝛼𝑠̅̅ ̅, 0))𝛥𝑓
∗𝑥15] /‖𝑆̂𝑠,𝑓𝑖𝑙‖ 

Equation 36 

𝑥1 = 0.350, 𝑥2 = 0.545, 𝑥3 = 2.43, 𝑥4 = 0.141, 𝑥5 = 0.772, 𝑥6 = 0.624, 𝑥7 = 1.83, 𝑥8 = 1.40, 

𝑥9 = 0.348, 𝑥10 = −0.0905, 𝑥11 = 0.130, 𝑥12 = −0.498, 𝑥13 = 3.58, 𝑥14 = 0.618 and 𝑥15 = 0.968.  

The dimensionless filtered deviatoric shear rate magnitude is defined as: 
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‖𝑆̂𝑠,𝑓𝑖𝑙‖ =
𝑣𝑡
𝑔
√2𝑆𝑠̿,𝑓𝑖𝑙: 𝑆𝑠̿,𝑓𝑖𝑙  Equation 37 

𝑆̅̅𝑠,𝑓𝑖𝑙 =
1

2
(𝛻𝜐⃗𝑠
̃ + 𝛻𝜐⃗𝑠

̃ 𝑇) −
1

3
𝛻 ⋅ 𝜐⃗𝑠

̃ 𝐼 ̅ ̅ Equation 38 

2.3.2.2 Anisotropic model 

In this closure model, each component of the solids mesoscale stress tensor is closed individually as 

follows: 

𝜌𝑠𝛼𝑠𝜐𝑠,𝑖
′′𝜐𝑠,𝑗

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜌𝑠𝑣𝑡
2 = 𝑠𝑖𝑔𝑛(𝛭̂𝑖𝑗) (

2

𝜋
)
2

𝑥1 atan (𝑥2𝛥𝑓
∗𝑥3𝛭̂𝑖𝑗

𝑥4(𝛼𝑠̅̅ ̅ + 𝑥5))

× atan(𝑥6𝛥𝑓
∗ 𝑥7𝛭̂𝑖𝑗

𝑥8max(𝑥9 − 𝛼𝑠̅̅ ̅, 0)) 𝛥𝑓
∗ 𝑥10𝛭̂𝑖𝑗

𝑥11+𝑥12𝛥𝑓
∗ 𝑥13

+𝐷 (
2

𝜋
)
2

𝑥14 atan(𝑥15𝛼𝑠̅̅ ̅) atan(𝑥16max(𝑥17 − 𝛼𝑠̅̅ ̅, 0)) 𝛥𝑓
∗𝑥18

 Equation 39 

𝑥1 = 0.542, 𝑥2 = 2.53, 𝑥3 = 0.102, 𝑥4 = −0.460, 𝑥5 = 0.0400, 𝑥6 = 3.66, 𝑥7 = 0.876, 𝑥8 = 0.213, 

𝑥9 = 0.685, 𝑥10 = 1.75, 𝑥11 = 0.80, 𝑥12 = 0.593, 𝑥13 = −0.218, 𝑥14 = 56.0, 𝑥15 = 2.61, 𝑥16 =

0.00743, 𝑥17 = 0.601 and 𝑥18 = 1.03. 𝐷 = 1 if 𝑖 = 𝑗. Otherwise, 𝐷 = 0. 

The dimensionless GPM, 𝛭̂𝑖𝑗, is defined as: 

Μ̂𝑖𝑗 = 𝛼𝑠̅̅ ̅ (
𝑑𝜐̃𝑠,𝑖
𝑑𝑥

𝑑𝜐̃𝑠,𝑗

𝑑𝑥
+
𝑑𝜐̃𝑠,𝑖
𝑑𝑦

𝑑𝜐̃𝑠,𝑗

𝑑𝑦
)
𝑣𝑡
2

𝑔2
 Equation 40 

2.3.3 Filtered frictional pressure 

The filtered frictional pressure is used in the filtered solids momentum transport equation (Equation 

15) and is closed as follows: 

𝑝̅𝑠,𝑓𝑟𝑖𝑐

𝜌𝑠𝑣𝑡
2 = 𝛼̅𝑠

𝑥1𝛥𝑓
∗ 𝑥2+𝑥3𝛥𝑓

∗ 𝑥4

(𝑥5‖𝑆̂𝑠,𝑓𝑖𝑙‖
𝑥6+𝑥7𝛥𝑓

∗ 𝑥8

𝛥𝑓
∗𝑥9 + 𝑥10

𝑒𝑥11max(𝛼̅𝑠−𝑥12,0)

(𝛼𝑠,max − 𝛼̅𝑠)
𝑥13
) Equation 41 

𝑥1 = 2.78, 𝑥2 = 1.00, 𝑥3 = −0.0726, 𝑥4 = 0.722, 𝑥5 = 0.124, 𝑥6 = 2.00, 𝑥7 = −0.0689, 𝑥8 =

0.684, 𝑥9 = 0.807, 𝑥10 = 7.38 × 10
−6, 𝑥11 = 36.0, 𝑥12 = 0.485, 𝑥13 = 3.64 and 𝛼𝑠,max = 0.63.  

2.3.4 Filtered reaction rate 

The filtered reaction rate in the filtered species transport equation (Equation 19) is closed using a 

reaction rate correction factor: 

𝑘𝐴𝜌𝑔𝛼𝑠𝑋𝐴̅̅ ̅̅ ̅̅ = R𝑘𝐴𝜌𝑔𝛼𝑠̅̅ ̅𝑋̃𝐴 Equation 42 

−log(𝑅) = (
2

𝜋
)
3

atan(𝑥1𝛥𝑓
∗ 𝑥2𝛼̅𝑠) atan(𝑥3𝛥𝑓

∗ 𝑥4max(x5 − 𝛼̅𝑠, 0))

× (𝑥6 atan(𝑥7‖𝜐𝑠𝑙𝑖𝑝̃
∗‖) log‖𝜐𝑠𝑙𝑖𝑝̃

∗‖ + 𝑥8atan(𝑥9𝛥𝑓
∗)) 

Equation 43 

𝑥1 = 5.66, 𝑥2 = 0.0118, 𝑥3 = 25.0, 𝑥4 = 0.232, 𝑥5 = 0.559, 𝑥6 = 0.341, 𝑥7 = 0.380, 𝑥8 = 1.09 and 

𝑥9 = 0.683.  
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Chapter 3: Development and a priori analysis of new fTFM 

closures  

3.1 Resolved simulations 

3.1.1 Simulation geometry 

A 2D geometry with a spatial extension of 0.64 m by 0.64 m is simulated to generate data for closure 

model development. It has been previously shown that this geometry yields domain size independent 

results [12]. The length of the domain therefore corresponds to 132 dimensionless units, when the 

particle relaxation length (𝑣𝑡
2/𝑔) is considered as the characteristic length scale. Recent work by 

Capecelatro et al. [44] also suggests that such a large domain, or even slightly larger, is necessary to 

yield domain size independent filtered statistics. The coordinates in the 2D domain are chosen such 

that gravity acts in the negative y-direction. Spatial discretization is performed on a uniform grid with 

a cell width of 0.625 mm (i.e., 8.33 particle diameters). This grid size was found to yield essentially grid 

size independent filtered statistics by Sarkar et al. [13].  

3.1.2 Initial and boundary conditions 

Simulations are performed at domain-averaged solids volume fractions of 0.02, 0.05, 0.1, 0.2, 0.3, 0.4 

and 0.45 to collect relevant statistics by probing a wide range of flow features. Local volume fractions 

and velocities are initialized at a slightly perturbed state to allow a pseudo-steady state to be reached 

in a shorter time. These perturbations do not affect the data, since they are much smaller than the 

heterogeneity inherent to the systems under investigation. Figure 1 shows examples of the 

instantaneous volume fraction contour plots over the range of domain-averaged solids volume 

fractions considered. It is evident that a large range of flow conditions is included in the simulations, 

ranging from small clusters in dilute flow regions, to small bubbles in dense flows, with a region where 

bubbles and clusters are equally sized in between. It can also be noted that the filter sizes considered 

in this study range from 3 cells to 141 cells (about an eighth of the domain length) wide. Therefore, 

the mesoscale structure size can range from much smaller than the filter size to much larger than the 

filter size, depending on the domain-average solids volume fraction and the filter being considered. 
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Figure 1 – Instantaneous contour plots of the solids volume fraction for simulations with domain-averaged 
solids volume fractions of a) 0.02, b) 0.1, c) 0.3 and d) 0.45. Blue indicates a zero solids volume fraction and 
red indicates the solids volume fraction at the maximum packing limit. 

The simulated domain is fully periodic, with periodic boundary conditions in the vertical and horizontal 

directions. The simulations therefore represent a region within a fluidized bed that is independent of 

inlet, outlet and wall effects. The average (gas phase) pressure gradient in the vertical direction is 

controlled to maintain a constant gas superficial velocity, as previously used in the investigation of a 

periodic riser section [11]. A domain-averaged superficial velocity of 0.25 m/s was found to be a 

suitable value. It can also be noted that, for the periodic simulations considered in this study, the 

specified gas-phase superficial velocity should not impact the statistics that are collected. This is 

because, in the absence of walls, different average gas-phase superficial velocities will only change the 

speed the system moves as a whole, but not the relative velocities. 



 

18 

 

3.1.3 Material properties 

The material properties used in this study are similar to that used in the fTFM papers from the 

Princeton group [12, 14, 16, 19]. These properties are summarised in Table 2. 

Table 2 – The material properties used in this study. 

𝑑𝑝 Particle diameter 75 × 10−6 𝑚 

𝜌𝑠 Particle density 1500 𝑘𝑔/𝑚3 

𝜌𝑔 Gas density 1.3 𝑘𝑔/𝑚3  

𝜇𝑔 Gas viscosity 1.8 × 10−5 𝑘𝑔/(𝑚. 𝑠) 

𝐷 Mass diffusivity 1.385 × 10−5 𝑚2/𝑠 

𝑣𝑡 Terminal settling velocity 0.2184 𝑚/𝑠 

3.1.4 TFM solver  

Simulations are performed using ANSYS FLUENT 16.2.0. Pressure-velocity coupling is performed using 

the phase-coupled SIMPLE algorithm [45], and all other equations are discretised using the QUICK 

scheme [46]. Second-order implicit time stepping was used since it has previously been shown to be a 

requirement for time step independent prediction of fast, dilute flows [11]. 

3.2 Data analysis 

Once the simulations reach a statistical steady state, data for relevant quantities is saved for each cell 

at an interval of four characteristic time units, 𝑡𝑐ℎ𝑎𝑟 = 𝑣𝑡/𝑔. The flow is considered to be fully 

developed when the domain-averaged solids mass flux clearly fluctuates around a constant mean 

value. For the statistical analysis of the data, CPPPO (https://github.com/CFDEMproject/C3PO-

PUBLIC), a data analysis tool developed by Municchi et al. [47], is used. Firstly, the quantities that 

require closure are spatially averaged for several different filter sizes. Filter sizes of  𝑥𝑓𝑥𝑓 grid cells 

are considered, where 𝑥𝑓 is the nearest odd integer to 𝑥𝑓 = 3
(𝑖/2),  with 𝑖 taking integer values of 2 to 

9. Next, the filtered values are allocated to multi-dimensional bins according to a number of user 

defined marker values. Running means and variances are calculated in each bin. The values of the 

averaged quantities in each bin are then used to calculate information that is relevant for closure 

development, e.g., drag correction factors. This data is then exported to IBM SPSS Statistics 24, where 

the parameters in the chosen expression are fitted to best approximate the binned data. 

Scripts in MATLAB R2016b are used to visualize the data, and to compare closure model predictions of 

the filtered quantity that must be closed with data collected in resolved TFM simulations. For each cell 

in the resolved simulation, the markers computed by CPPPO are used to calculate the model 

predictions for the filtered quantity, and the observed values for the filtered quantity (pre-computed 

by CPPPO) are collected as well. The sum of the squared difference of the model predictions from the 

observed values for the filtered quantity is then used to calculate the coefficient of determination as 

𝑅2 = 1 − ∑ (𝑦𝑖 − 𝑓𝑖𝑖 )2 ∑ (𝑦𝑖 − 𝑦̅𝑖 )2⁄ . Here 𝑦𝑖  is the observed value, 𝑦̅ is the mean of all observed 

https://github.com/CFDEMproject/C3PO-PUBLIC
https://github.com/CFDEMproject/C3PO-PUBLIC
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values and 𝑓𝑖 is the predicted value. This analysis is performed for four sets of data, each containing 

one time instance from each of the domain-averaged volume fractions considered. This allows 95% 

confidence intervals to be calculated whenever this is desired. 

3.3 Considerations when developing closures for fTFMs 

3.3.1 The sensitivity of fTFM closures to the resolved TFM configuration 

As an early part of the present study, an investigation was made into the effect that the closures used 

in the resolved simulations have on the filtered statistics. This is an important topic, since the fTFM 

closure models can only be as accurate as the TFM simulations from which they were derived. The TFM 

approach involves several important closure laws, each with a range of alternative formulations 

published over the past three decades. In addition, system-dependent coefficients such as the particle-

particle restitution can potentially influence TFM model results. It is therefore important to understand 

the effect of TFM closures on filtered quantities in order to assess the uncertainty involved when 

applying the fTFM approach. Only a summary of the most important conclusions from this study will 

be presented here, but the interested reader may find the complete study in Appendix B. 

The primary conclusion from this study was that, generally, the average change in filtered quantities 

with different resolved TFM formulations is small, 1 to 12% for all factors excluding the drag. This 

provides reason for increased confidence in the fTFM approach, since it indicates that fTFMs are not 

very susceptible to uncertainties in the choice of TFM closures used in the resolved simulations from 

which the filtered models are derived. 

A larger effect was observed for the drag model: approximately 20% average deviation from the base 

case. This is an important finding since there is not yet consensus in the literature regarding the best 

choice of drag model and therefore several different drag models are commonly used. Inclusion of a 

frictional pressure model also had a significant effect, with average differences from the base case in 

the range of 4% to 12%. However, these differences are mostly present in the very large solids volume 

fraction range where differences can increase up to 70% due to larger, more viscous solids clusters 

when frictional pressure is included. Based on these findings, it was decided to include a frictional 

pressure model in the resolved simulations used for fTFM closure derivation in the present study. This 

is in contrast to other fTFM studies in literature, which have all neglected frictional stresses. 

Additionally, the Huilin-Gidaspow model [36], which is expected to be accurate over a wider range of 

conditions, was used to model the drag, in contrast to the simpler Wen-Yu model [38], which has 

primarily been used in fTFM studies. 

Finally, it was noted that the filtered quantities could be divided into two groups according to how 

they reacted to changes in the resolved TFM formulations. The filtered drag, heat transfer and reaction 

corrections were significantly influenced by the choice of drag law and the inclusion of frictional 

stresses. The quantities containing variances, the filtered solids stresses and filtered scalar co-

variances, were significantly affected by changes in the drag law, inclusion of frictional pressure and 

changes in the particle-particle restitution coefficient. The similar behaviour within groups suggests 

that the transport processes within each group are controlled by the same mechanisms. This 

knowledge may be used when selecting markers and formulating closures for filtered quantities within 

these groups. 
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3.3.2 Layout of bins for collecting statistics 

When the filtered resolved simulation data is binned based on different markers, it is desirable that a 

statistically significant number of data samples should be present in as many bins as possible and over 

as large a range of marker values as possible. This would lead to a more accurate and more widely 

applicable closure model. However, the number of samples tend to decay with increasing values of 

certain markers. For example, when the filtered solids volume fraction and the filtered slip velocity 

magnitude are used as markers, the number of data samples tend to decrease rapidly with increasing 

filtered slip velocity magnitude values, as seen in Figure 2.a. This behaviour can be counteracted by 

having the bin size with respect to the filtered slip velocity magnitude increase exponentially with 

increasing filtered slip velocity magnitudes. Figure 2.b shows that a simple scaling can substantially 

increase the number of samples in each bin at large filtered slip velocity magnitudes. This leads to 

improved data at large slip velocities for use in closure derivation. As a result of this finding, simple 

scalings of the bin sizes are applied in this study whenever it is desirable to do so. 

 

Figure 2 – The number of samples in each bin as a function of the scaled filtered slip velocity magnitude when 
a) using uniform bins and b) using bins that increases exponentially in size. The filtered slip velocity magnitude 
is scaled with the steady state sedimentation velocity, as discussed later in Chapter 3.4.1.2. 

3.3.3 Respecting physical limits in functional forms 

From physical arguments, the functional behaviour of the sub-grid quantities can be deduced at the 

limits of certain markers. This is especially the case for the filter size and the filtered solids volume 

fraction as markers: both markers are of key importance in previous studies, and are also used in all of 

the closure models derived in the present work. Respecting these limits ensure that the fTFM will 

predict realistic behaviour, even when used outside the parameter space where data is available from 

the resolved simulations used for parameter calibration. Such limits, however, have not always been 

respected in the literature, the most recent example being the drag closure suggested by Sarkar et al. 

[13], which does not respect the physical limit that no clustering can occur in very dense flows. As will 

be shown in Chapter 5.3.2.1, this causes the fTFM to fail completely in very dense flows. To prevent 

such a situation from occurring, the functional forms of the closure models developed in this study 

respect the following limits: 

Firstly, for the filtered solids volume fraction, the model formulation should ensure that the sub-grid 

corrections tend to zero at zero filtered solids volume fractions and at very dense packings. This is 
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necessary since the suspension will be homogenous at these limits and therefore no sub-grid 

corrections due to mesoscale structures should exist.  

Secondly, for the filter size, no sub-grid correction should be performed when the cell size of the fine 

grid simulations (or smaller) is used in simulations using the filtered drag closure. This is achieved by 

using a scaled filter size in the closures, defined as 𝛥𝑓
∗ = min (𝛥̂𝑓 − 𝛥̂𝑓𝑖𝑛𝑒 , 0). Here, the minimum 

dimensionless filter size, 𝛥̂𝑓𝑖𝑛𝑒 = 0.1285, which corresponds to using the drag closure at the grid size 

at which the fine grid simulations for model derivation were performed. At very large filter sizes, the 

behaviour may differ depending on the quantity that is closed. For example, the drag correction tends 

to reach a maximum at very large filter sizes, whereas the solids mesoscale stresses tend to increase 

continuously. 

3.3.4 Gradients of filtered variables as markers 

It can be noted that several of the markers proposed in the present study requires the gradients of 

filtered variables to be calculated. It was found that the method used to calculate the gradient of the 

filtered value had a significant impact on the magnitude of the gradient. To the knowledge of the 

authors, this topic has not been previously discussed in the filtering literature. In the present work, 

gradients were calculated using the second order central differencing scheme, which was found to be 

sufficient to capture the gradients of the relatively smooth filtered fields. It was found that the best 

comparison with the resolved data could be obtained if the neighbouring values in the central 

differencing were taken at half the filter length from the cell under consideration. This method 

smoothens over rapid changes in the filtered values, leading to - on average - smaller gradients 

calculated in the analysis, if compared to another approach: calculating filtered gradients by 

considering the neighbouring cells (in the resolved simulations) as the neighbours in the central 

differencing. As a result, the method of calculating the filtered gradient leads to quantitative 

differences in the closure that is derived. It is important to realize that, when performing coarse grid 

simulations, the value inside the neighbouring coarse-grid cell has to be used to calculate gradients. 

Thus, an equivalent value to the neighbouring value in the resolved simulations is not available in 

coarse grid simulations. Therefore, the proposed method of evaluating the gradient over the filter 

width is more meaningful.  

3.4 Filtered drag force closures 

The closure for the filtered drag force (sixth term on the right of Equation 15) is generally accepted to 

be the most important closure in fTFMs. This section will discuss two methods for closing the filtered 

drag force: using an isotropic drag correction factor, or by modelling an anisotropic drift velocity from 

which an adjusted slip velocity is calculated. Additionally, for the anisotropic adjusted slip velocity 

model, 1-marker, 2-marker and 3-marker models are proposed to evaluate the benefit of increasing 

the complexity of the closure model by adding additional independent variables. Finally, the 

performance of the proposed models is evaluated in an a priori manner: this is done by comparing 

model predictions of the filtered drag force to observed values in the resolved simulation data used 

for model derivation as described in Chapter 3.2. 
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3.4.1 Isotropic drag closures 

In the isotropic approach, the filtered drag force can be modelled together with the mesoscale 

interphase force (seventh term on the right of Equation 15), as is commonly done in the literature  [13, 

14]. This combined contribution is referred to as the filtered interphase force in the present study and 

can be closed as follows: 

𝐾𝑔𝑠(𝜐⃗𝑔 − 𝜐⃗𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛼𝑠

′𝛻𝑝′̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐶𝐾𝑔𝑠,ℎ𝑜𝑚(𝜐⃗𝑔
̃− 𝜐⃗𝑠

̃)  Equation 44 

Here, 𝐾𝑔𝑠,ℎ𝑜𝑚 is the interphase momentum exchange coefficient evaluated at the filtered solids 

volume fraction and the filtered slip velocity magnitude. The drag correction factor, 𝐶, must be closed. 

Mesoscale structures mostly tend to reduce the filtered interphase force compared to the drag force 

predicted by the microscopic drag law, since gas will tend to slip around clusters, thereby reducing the 

overall drag. On the other hand, the mesoscale interphase force tends to add a force in the direction 

of the filtered slip velocity (as discussed in Chapter 3.5), thereby opposing the effect of the mesoscale 

structures on the filtered drag force. However, the reduction in the filtered drag compared to that 

predicted by the microscopic drag law tends to be substantially larger than the mesoscale interphase 

force. Therefore, the drag correction factor is generally smaller than unity, i.e., the combined filtered 

drag and mesoscale interphase forces are smaller than the force predicted by the microscopic drag 

law.  

In this work, the drag correction factor is calculated based on the vertical direction data, as is common 

practice in the literature [13, 14, 16]. This is done assuming that the drag in the vertical direction is of 

much greater significance than the drag in the lateral directions. The implications of this assumption 

will be discussed further in Chapter 3.4.2. 

3.4.1.1 Exploring markers for isotropic drag closures 

The first fTFMs closed the drag correction factor using 1-marker closure models, using the filter size 

and the filtered solids volume fraction as independent variables [16]. Later studies [13, 14] expanded 

the drag closures to 2-marker models, using the filtered slip velocity magnitude as an additional 

independent variable. The filtered slip velocity is highly correlated with the reduction in the drag 

because, with increasing cluster formation, gas will tend to slip around dense clusters, increasing the 

slip velocity, but also decreasing the overall drag between the phases. It can further be noted that both 

(i) the filtered solids volume fraction and (ii) the filtered slip velocity are directly available on the coarse 

grid scale. Therefore, they can be grouped as ‘grid-based’ markers. 

More recent studies have revealed three additional markers that may serve as good independent 

variables for filtered drag closures: these include (i) the solids volume fraction variance [20, 32], (ii) the 

drift velocity [17, 18, 32] and (iii) the solid-phase turbulent kinetic energy [20, 48, 49]. These three 

markers were evaluated as potential candidates for use in a 2-marker drag closure in combination with 

the filtered solids volume fraction. The results revealed that the scaled drift velocity, defined here as 

𝜐𝑑,𝑖
∗ =

𝛼𝑠𝜐𝑔,𝑖̅̅ ̅̅ ̅̅ ̅̅ 𝛼𝑠̅̅̅̅⁄ −𝜐̃𝑔,𝑖

𝜐̃𝑔,𝑖−𝜐̃𝑠,𝑖
, performed the best of the above-mentioned candidates. The results for the drift 

velocity are therefore further discussed here, whereas the results for the solids volume fraction 

variance and the solids turbulent kinetic energy are given in Appendix D.2.  
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Figure 3.a shows that there is a linear proportionality between the drag correction factor and the 

scaled drift velocity, which would be simple to model. Additionally, Figure 3.b shows that a simple 

scaling of the filtered drag correction factor with the drift velocity can substantially reduce the range 

of the filtered drag correction: 𝐶/(1 + 𝜐𝑑,𝑖
∗ ) varies only between unity and three (in contrast, 𝐶 

typically varies by more than an order of magnitude). It should be noted that the behaviour of the drag 

correction near a filtered solids volume fraction of 0.2 is linked to the use of the Huilin-Gidaspow drag 

closure [36] in the resolved simulations, since this closure blends the Wen-Yu and Gidaspow drag 

models around a solids volume fraction of 0.2. The nature of the filtered drag correction shown in 

Figure 3.b is hence, to some degree, also a function of the underlying microscopic drag law. This 

observation is in agreement with the work presented in Appendix B. 

 

Figure 3 - a) The filtered drag correction factor as a function of the scaled drift velocity. b) The filtered drag 
correction factor scaled by the scaled drift velocity as a function of the filtered solids volume fraction. Different 
symbols denote different dimensionless filter sizes.  

The disadvantage of using the drift velocity, as well as the other potential candidates mentioned 

earlier, is that these quantities require additional modelling. This is because they express sub-grid flow 

phenomena, are consequently not directly available in coarse grid simulations and hence are referred 

to as ‘sub-grid-based’ markers. The use of sub-grid-based markers necessitates a “model-in-model” 

approach which could potentially create complex interactions between inaccuracies on the two 

closure levels. This added complexity is only justifiable if the sub-grid-based marker offers clear 

advantages for collapsing the resolved data to a form that is easy to model. Further investigation 

revealed that similar advantages are offered by the slip velocity magnitude (a grid-based marker) when 

it is correctly scaled. The next section will detail the advantages of such a scaled slip velocity magnitude 

marker. 

3.4.1.2 Improving filtered drag closures by using a scaled slip velocity magnitude marker 

The filtered slip velocity magnitude used as marker in filtered drag closures is commonly non-

dimensionalized using the single-particle terminal velocity [13-15]. However, it was found that it is 

beneficial to instead scale the filtered slip velocity magnitude with the steady state sedimentation 

velocity of a homogenous suspension. This is the velocity at which the interphase drag force and the 

gravitational force on the particles would balance if the particles were uniformly distributed within a 
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filtered region. Using such a scaled filtered slip velocity magnitude as the second marker results in two 

important benefits:  

(i) The dependency of the second marker upon the filtered solids volume fraction (i.e., the first marker) 

is substantially reduced as shown in Figure 4: the filtered slip velocity magnitude non-dimensionalized 

with the particle terminal velocity, ‖𝜐𝑠𝑙𝑖𝑝̃‖̂ , tends to strongly decrease with increasing filtered solids 

volume fraction (see Figure 4.a; the y-axis is scaled to illustrate the change of nearly two orders-of-

magnitude).  On the other hand, the scaled filtered slip velocity magnitude, ‖𝜐𝑠𝑙𝑖𝑝̃
∗‖, remains relatively 

constant up to a filtered solids volume fraction of approximately 0.4 and changes at most by a factor 

of approximately six (see Figure 4.b). This scaling therefore leads to a more even distribution of data 

samples during the statistical analysis of TFM simulation output. Hence, more statistically meaningful 

data can be produced from a fixed resolved simulation campaign. In other words, the computational 

cost of resolved TFM-based simulations can be reduced to produce data with the same statistical 

significance. In addition, it is desirable that the independent variables used in the model fit are not 

highly correlated. Removal of much of the filtered volume fraction dependency by the proposed new 

scaling should therefore improve the model.  

 

Figure 4 - Plots of a) the filtered slip velocity magnitude non-dimensionalized by the single particle terminal 

velocity and b) the filtered slip scaled by the steady state sedimentation velocity of a homogenous suspension 

as a function of the filtered solids volume fraction for different dimensionless filter sizes. 

(ii) It was found that, at large filter sizes, a linear dependency exists between the scaled drag correction 

factor, defined as −log (𝐶), and log(‖𝜐𝑠𝑙𝑖𝑝̃
∗‖). This dependency is illustrated in Figure 5.b, offering 

similar closure fitting advantages as the drift velocity (see Figure 3). Figure 5.a also illustrates a 

relatively simple volume fraction dependency, confirming the value of the much weaker correlation 

between the two markers enabled by the newly proposed second marker, ‖𝜐𝑠𝑙𝑖𝑝̃
∗‖.  
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Figure 5 - The scaled filtered drag correction factor, −𝐥𝐨𝐠 (𝑪), calculated based on the data for the direction of 
gravity as a function of a) the filtered solids volume fraction and b) the scaled slip velocity magnitude for 
different dimensionless filter sizes. The symbols show the binned data obtained from resolved simulations and 
the lines the model predictions. 

Scaling the drag correction factor in this way provides an additional benefit: a maximum drag 

correction, as used in previous studies [13, 14], no longer needs to be specified. As the scaled filtered 

slip velocity magnitude increases, the drag correction factor will asymptotically approach zero due to 

the logarithmic definition of the scaled drag correction factor. This ensures that safe extrapolation to 

large filter sizes and slip velocities is possible. 

The expression in Equation 45 is proposed to model the scaled drag correction factor. This formulation 

respects important physical limits, as discussed in Chapter 3.3.3. Also, the drag correction will saturate 

as the filter size approaches infinity. 

−log(𝐶) = atan(𝑥1Δ𝑓
∗𝛼̅𝑠)atan (𝑥2Δ𝑓

∗𝑚𝑎𝑥(𝛼̅max − 𝛼̅𝑠, 0)) atan(𝑥3Δ𝑓
∗) (

2

𝜋
)
3

× (𝑥4 log‖𝜐𝑠𝑙𝑖𝑝̃
∗‖ + 𝑥5Δ𝑓

∗𝑥6

+ 𝑥7(log‖𝜐𝑠𝑙𝑖𝑝̃
∗‖)

2
(1 −

atan(𝑥8Δ𝑓
∗)

𝜋 2⁄
)) 

if − log(𝐶) < 0           𝐶 = 1 

 

Equation 45 

A non-linear regression was performed, yielding an excellent fit to the binned data (𝑅2 = 0.985) for 

the following values of the coefficients: 𝑥1 = 36.6, 𝑥2 = 22.6, 𝑥3 = 1.68, 𝑥4 = 0.835, 𝑥5 = 0.140, 

𝑥6 = 0.188, 𝑥7 = 1.33, 𝑥8 = 3.28 and 𝛼̅𝑚𝑎𝑥 = 0.551. The fine grid dimensionless filter size was set 

to Δ̂𝑓𝑖𝑛𝑒= 0.1285. 

Figure 5 confirms that the proposed expression fits the binned data very well. It can also be noted that 

the binned data indicates that, at low slip velocities, the filtered drag force can be greater than the 

drag force predicted by the homogenous drag law, resulting in a negative scaled filtered drag 

correction factor (or drag correction factors greater than unity). For the present work, it is assumed 

that the effect of the filtered drag force at such small scaled slip velocities will be small, since it will 
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only serve to further reduce the slip and thereby also the drag force. For this reason, the data at scaled 

drag corrections smaller than zero were neglected during closure model fitting and the model is limited 

to not predict drag correction factors greater than unity. 

3.4.2 Anisotropic filtered drag force closures 

3.4.2.1 Directional dependence of the drag correction factor 

As discussed in Chapter 3.4.1, the isotropic drag closure proposed in the previous section was derived 

based on the drag force in the direction aligned with gravity. This was motivated by the fact that this 

component of the drag force will be most important in a global sense due to gravity. Unfortunately, 

this argument does not hold when considering the statistics collected based on a finite filter size, 𝛥̂𝑓, 

as will be shown next.  

Firstly, it can be established that the drag correction factor, 𝐶, is substantially different in the lateral 

and vertical directions:  Figure 6.a and Figure 6.b compare the predictions on the basis of Equation 45 

with the scaled filtered drag correction factors calculated based on the lateral direction drag force (i.e., 

the flow variables in the direction perpendicular to gravity). This shows that, quantitatively, the closure 

given by Equation 45 will substantially overpredict the drag force in the lateral directions when used 

in coarse grid simulations (note that – 𝑙𝑜𝑔(𝐶) is shown as the dependent variable in Figure 6.a and 

Figure 6.b). This effect is especially pronounced for large filter sizes and high particle concentrations.  

Qualitatively, two significant differences can be observed between the lateral and vertical direction 

scaled drag correction factors: Firstly, at intermediate volume fractions, the vertical direction scaled 

drag correction tends to remain nearly constant, whereas the lateral direction scaled drag correction 

factor tends to increase with increasing filtered solids volume fraction. Secondly, at small scaled 

filtered slip velocity magnitudes, the vertical direction filtered drag force tends to be greater than that 

predicted by the microscopic drag law, whereas the drag is always substantially reduced in the lateral 

direction compared to the homogenous case. These qualitative differences imply a fundamental 

anisotropy in the filtered drag coefficient. Hence, a different functional form (than that shown in 

Equation 45) will be required when computing the filtered interphase force in planes perpendicular to 

gravity. 

Previous studies have argued that the importance of the drag in the directions perpendicular to gravity 

is unimportant relative to the drag aligned with gravity. Next it is shown that this is not necessarily the 

case: the ratio of the slip velocity component aligned with gravity to the slip velocity component 

perpendicular to gravity is analysed in Figure 6.c and Figure 6.d. Specifically, it is found that, although 

the slip in the direction perpendicular to gravity is generally smaller, it is clearly not insignificantly. 

Thus, this indicates that the forces originating from the slip in the directions perpendicular to gravity 

are not insignificant in fTFMs, and hence necessitate a precise closure.  
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Figure 6 - The scaled filtered drag correction factor, −𝒍𝒐𝒈 (𝑪), calculated based on the lateral direction drag 
force (top) and the ratio of the lateral direction slip velocity to the vertical direction slip velocity (bottom) are 
plotted as a function of the filtered solids volume fraction (left) and the scaled filtered slip velocity magnitude 
(right) for different dimensionless filter sizes. In the top figures, the lines show the model predictions for the 
model based on the drag force in the direction aligned with gravity (vertical direction). 

3.4.2.2 A revised formulation based on an adjusted slip velocity  

Based on the encouraging results using the drift velocity as a second marker in Chapter 3.4.1.1, the 

drift velocity formulation proposed by the group of Prof. Simonin at INP Toulouse [17, 18] was further 

investigated. Applying some modifications to previous work, it was found that the filtered drag force 

in the direction i can be written as described in Equation 46 to Equation 50. The complete derivation 

is given in Appendix E.3. Note that only the filtered drag force will be discussed in this section. A 

separate closure for the mesoscale interphase force is proposed in Chapter 3.5. 

𝐾𝑔𝑠(𝜐𝑔,𝑖 − 𝜐𝑠,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐶𝑁𝐿𝐾𝑔𝑠,ℎ𝑜𝑚(𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖 − 𝜐𝑑,𝑖)  Equation 46 

𝜐𝑑,𝑖 =
𝛼𝑔
′ 𝜐𝑔,𝑖
′̅̅ ̅̅ ̅̅ ̅̅

𝛼̅𝑠𝛼̅𝑔
 Equation 47 
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𝐶1 =

𝐾𝑔𝑠
𝛼𝑠

(𝛼𝑠𝜐𝑔,𝑖 − 𝛼𝑠𝜐𝑠,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐾𝑔𝑠̅̅ ̅̅̅
(𝛼𝑠𝜐𝑔,𝑖 − 𝛼𝑠𝜐𝑠,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝛼̅𝑠

=
𝐾𝑔𝑠(𝜐𝑔,𝑖 − 𝜐𝑠,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐾𝑔𝑠̅̅ ̅̅̅(𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖 − 𝜐𝑑,𝑖)
 Equation 48 

𝐶2 =
𝐾𝑔𝑠̅̅ ̅̅̅

𝐾gs,hom
 Equation 49 

𝐶𝑁𝐿 = C1𝐶2 Equation 50 

In Equation 46, the drift velocity, 𝜐𝑑,𝑖, and the non-linearity correction factor, 𝐶𝑁𝐿, require closure. 

Note that an opposite sign convention is used for the drift velocity compared to previous work from 

the INP Toulouse group [17, 18] and the definition used in Chapter 3.4.1.1. This convention ensures 

that the filtered slip velocity and the drift velocity will tend to mostly have the same sign. Also, the 

definition of the drift velocity (i.e., Equation 47) is different from the definition used in previous 

studies, where 𝜐𝑑,𝑖 = 𝜐̃𝑔,𝑖 −
𝛼𝑠𝜐𝑔,𝑖̅̅ ̅̅ ̅̅ ̅̅

𝛼̅𝑠
 when the sign convention of the present study is followed. As will be 

shown in Chapter 3.4.2.6, this allows a promising additional grid-based-marker to be identified for 

modelling the drift velocity.  

Whereas in the isotropic formulation given by Equation 44 the filtered drag force is proportional to the 

filtered slip velocity, in the anisotropic formulation the filtered drag force is proportional to the 

difference between the filtered slip velocity and the drift velocity. Hence, this difference is referred to 

as the “adjusted slip velocity”, 𝜐̃𝑎𝑑𝑗,𝑖. Similar to the observation for the slip velocity in Chapter 3.4.1.2, 

scaling the drift velocity and the adjusted slip velocity with the steady state sedimentation velocity also 

removes most of the volume fraction dependence of these quantities. It is therefore convenient to 

define the scaled adjusted slip velocity, 𝜐̃𝑎𝑑𝑗,𝑖
∗ , and the scaled drift velocity, 𝜐𝑑,𝑖

∗ , as the respective 

velocities scaled by the steady state sedimentation velocity. 

The benefits when adopting the above drift velocity formulation can be best demonstrated when 

considering the correlation of the filtered drag force with the scaled slip velocity, as well as the scaled 

adjusted slip velocity. This data is shown in Figure 7. First, panels a) and b) show that there is a large 

difference in the qualitative behaviour of the filtered drag force as a function of the slip velocity 

depending on the direction considered, as discussed in Chapter 3.4.2.1. Most importantly, the filtered 

drag force in the vertical direction tends to be positive at zero filtered slip velocities. A positive drag 

force is observed even at small negative slip velocities for this direction. In the isotropic drag correction 

factor framework, this would require setting 𝐶 to very large values at small, positive slip velocities, and 

𝐶 < 0 for negative slip velocities. This discontinuity in 𝐶 would be very challenging from a closure 

fitting point of view. Also, it is clear that very different functional forms of the drag correction factor 

would be required for the two directions. 
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Figure 7 - The filtered drag force in the lateral (left) and the vertical (right) directions plotted against the scaled 
filtered slip velocity (top) and the scaled adjusted slip velocity (bottom) 

Panels c) and d) in Figure 7 show that the filtered drag force is an almost linear function of the adjusted 

slip velocity that passes through the origin. The small deviations from a linear dependence are due to 

the assumptions used to derive the adjusted slip velocity formulation of the filtered drag force. This 

can be corrected for, as will be discussed later in this section. Additionally, the adjusted slip velocity 

formulation nearly collapses the different filter sizes onto the same line, implying that most of the filter 

size dependence of the filtered drag force comes from the closure for the drift velocity that is used to 

calculate the adjusted slip velocity (Equation 46). The qualitative behaviour of the filtered drag force 

dependency on the scaled adjusted slip velocity is very similar for the lateral and vertical directions. 

This implies that the anisotropy of the filtered drag force only has to be accounted for in the closure 

for the drift velocity. Chapter 3.4.2.4 will show that this can be done in a relatively simple manner.  

Lastly, it can be noted that much larger filtered drag forces are observed in the bins when plotting 

against the scaled adjusted slip velocity. This means that the filtered drag force is much more sensitive 

to the adjusted slip velocity than to the filtered slip velocity. Furthermore, as shown in Figure 8, it is 

observed that the variance of the filtered drag force relative to the mean in each bin is about an order 

of magnitude larger when the data is binned as a function of the scaled slip velocity, than when it is 

binned as a function of the scaled adjusted slip velocity. Thus, the former binning strategy leads to 

small and large values in the bins cancelling out, leading to smaller values for the bin means. In 

contrast, binning as a function of the scaled adjusted slip velocity leads to a lower variance of filtered 

drag force data inside individual bins. 
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Figure 8 – The coefficient of variation (the standard deviation divided by the absolute of the mean) of the 
filtered drag force in each bin when using a) the scaled filtered slip velocity and b) the scaled adjusted slip 
velocity. 

An important difference from previous work on the drift velocity-based drag closures [17, 18, 31, 32] 

is the presence of 𝐶𝑁𝐿 in Equation 46. 𝐶𝑁𝐿 compensates for errors introduced by two simplifying 

assumptions: (i) that the average of a product is equal to the products of the averages (Equation 48), 

and (ii) that the spatial average of the interphase momentum coefficient is set equal to the interphase 

momentum coefficient evaluated at the filtered volume fraction and the filtered slip velocity 

magnitude. Since both of these assumptions would be true if the involved functions (i.e., 
𝐾𝑔𝑠

𝛼𝑠
(𝛼𝑠𝜐𝑔,𝑖 − 𝛼𝑠𝜐𝑠,𝑖) in Equation 48 and 𝐾𝑔𝑠 in Equation 49) were linear, 𝐶𝑁𝐿 will be referred to as the 

non-linearity correction factor in the present study. 

All earlier work on the drift velocity-based approach in fTFMs had assumed 𝐾𝑔𝑠(𝜐𝑔,𝑖 − 𝜐𝑠,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

𝐾𝑔𝑠,ℎ𝑜𝑚(𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖 − 𝜐𝑑,𝑖), therefore 𝐶𝑁𝐿 = 1. Data provided in a personal communication (Dr. Ozel, 

correspondence by e-mail, 24 August 2017) with one of the authors of a recent study [32] shows that 

there is indeed a very high correlation between 𝐾𝑔𝑠(𝜐𝑔,𝑖 − 𝜐𝑠,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐾𝑔𝑠,ℎ𝑜𝑚(𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖 − 𝜐𝑑,𝑖), as 

shown in Figure 9. However, the filter sizes evaluated in these previous studies were all very small, 

and, from the aforementioned data, the correlation coefficient appears to decrease linearly with the 

base-10 logarithm of the ratio of the filter size and the particle diameter. Two data points from the 

larger filter sizes evaluated in the present study matches the extrapolation from the given data and 

confirms that this trend continues at larger filter sizes. Thus, the correlation between 𝐾𝑔𝑠(𝜐𝑔,𝑖 − 𝜐𝑠,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

and 𝐾𝑔𝑠,ℎ𝑜𝑚(𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖 − 𝜐𝑑,𝑖) supporting the traditional drift velocity-based approach degrades with 

increasing filter size. The assumption of 𝐶𝑁𝐿 = 1 therefore appears to weaken at the large filter sizes 

evaluated in the present study. Therefore, a closure for 𝐶𝑁𝐿 will be discussed in Chapter 3.4.2.3. 
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Figure 9 - Pearson correlation coefficient showing the correlation between 𝑲𝒈𝒔(𝝊𝒈,𝒊 − 𝝊𝒔,𝒊)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑲𝒈𝒔,𝒉𝒐𝒎(𝝊̃𝒈,𝒊 −

𝝊̃𝒔,𝒊 − 𝝊𝒅,𝒊). A value of 1 represents a perfect correlation. 

The newly developed adjusted slip velocity-based formulation for the filtered drag force neatly 

separates three contributions that cause the filtered drag force to differ from the drag force predicted 

by the microscopic drag law: 𝐶1, 𝐶2 and 𝜐𝑑,𝑖. To evaluate their relative importance, the contribution of 

the drift velocity is rearranged to yield a third correction factor: 

𝐶3 =

𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖 −
𝛼𝑔
′ 𝜐𝑔,𝑖
′̅̅ ̅̅ ̅̅ ̅̅

𝛼̅𝑠𝛼̅𝑔

𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖
 

Equation 51 

Clearly, this correction factor is simply the ratio of the adjusted and the original filtered slip velocity. 

Also, it can be seen that 𝐾𝑔𝑠(𝜐𝑔,𝑖 − 𝜐𝑠,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐶1𝐶2𝐶3𝐾𝑔𝑠,ℎ𝑜𝑚(𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖). Therefore, the product of the 

three contributions is equal to the drag correction factor defined in Equation 44 if the mesoscale 

interphase force was not lumped together with the filtered drag force. 

Figure 10 compares the average values of the three drag correction factors in the drift velocity 

formulation as a function of the filter size and the filtered solids volume fraction. Considering that  𝐶1 

and 𝐶3 are directionally dependent, data is shown for the vertical direction only. Similar conclusions 

will be drawn when considering the lateral direction. For this section regarding anisotropic drag 

closures, only the five largest filter sizes (i.e., Δ̂𝑓≥ 1.93.) in the range described in Chapter 3.2 will be 

considered for closure derivation. This is done because the assumption of negligible filtered kinetic 

theory stresses may no longer hold at smaller filter sizes, and the models developed in this study will 

start to become less accurate. Limiting the closure fitting to these filter sizes therefore simplifies the 

data analysis, while also ensuring that the closure models will be most accurate for the range of filter 

sizes where the closures are intended to be used. Despite this detail, using the scaled filter size in all 

closure models developed in the present study still ensures that the sub-grid contribution to the drag 

will go to zero as the filter size approaches the grid size at which the resolved simulations for model 

development were performed. 
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Figure 10.a shows that the assumption 
𝐾𝑔𝑠

𝛼𝑠
(𝛼𝑠𝜐𝑔,𝑖 − 𝛼𝑠𝜐𝑠,𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝐾𝑔𝑠̅̅ ̅̅̅ (𝛼𝑠𝜐𝑔,𝑖−𝛼𝑠𝜐𝑠,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝛼̅𝑠
 would tend to 

overpredict the filtered drag force. Therefore, 𝐶1 serves to reduce the filtered drag force by a factor of 

up to almost 2. The assumption 𝐾𝑔𝑠̅̅ ̅̅̅ = 𝐾gs,hom has the opposite effect, therefore 𝐶2 acts to increase 

the filtered drag force by a factor of up to approximately 3 (Figure 10.b). The sudden change in the 

slope of the data at a filtered solids volume of fraction of 0.2, where the blending of the Wen-Yu and 

Gidaspow models occurs in the Huilin-Gidaspow drag model [36], suggests that 𝐶2 is dependent on the 

choice of the microscopic drag law employed in the resolved simulations used for model development. 

The contributions originating from 𝐶1 and 𝐶2 are much smaller than the contribution from the drift 

velocity (see Figure 10.d). Clearly, the latter can reduce the filtered drag force by up to an order of 

magnitude. Finally, Figure 10.c shows that the contributions originating from 𝐶1 and 𝐶2 tend to cancel 

each other out to some degree. The effect of 𝐶2 tends to be somewhat larger, with their combination, 

i.e., 𝐶𝑁𝐿 = 𝐶1𝐶2, taking on a maximum value of approximately 1.8. The effect of the non-linearity 

correction factor is therefore much smaller than that of the drift velocity, providing basis for the 

argument of previous works to neglect its effect. However, it is still clear from Figure 10.c that at filter 

sizes relevant to this study assuming 𝐶𝑁𝐿 = 1 would lead to a substantial underprediction of the 

filtered drag force at intermediate filtered volume fractions. 

 

Figure 10 - Comparison of the three drag correction contributions in the adjusted slip velocity formulation of 
the filtered drag force in the vertical direction. Additionally, panel c) shows the combined contribution of 𝑪𝟏 
and 𝑪𝟐. 
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3.4.2.3 Closure for the non-linearity correction factor 

Evaluation of the non-linearity correction factor revealed that it could be closed using a 2-marker 

model similar to the isotropic drag closure discussed in Chapter 3.4.1.2. Furthermore, it was found 

that, when the data was binned as a function of the filtered solids volume fraction and the scaled 

filtered slip velocity magnitude, there was only a minor difference between values of 𝐶𝑁𝐿 calculated 

from the lateral and vertical direction data. Therefore, the closure model in this section is calibrated 

using the average of the lateral and vertical direction values.   

Figure 11.a shows that, at low filtered solids volume fractions, 𝐶𝑁𝐿 increases with increasing solids 

volume fraction. At filtered solids volume fractions larger than 0.2, 𝐶𝑁𝐿 decreases again towards a 

value of 1. From Figure 11.b it can be seen that 𝐶𝑁𝐿 starts at a value greater than 1 when the scaled 

filtered slip velocity magnitude is equal to zero and then decreases with increasing slip velocity. 

Additionally, 𝐶𝑁𝐿 increases asymptotically with increasing filter size as can also be observed in Figure 

10.c.

 

Figure 11 - The non-linear correction factor plotted against a) the filtered solids volume fraction and b) the 
scaled filtered slip velocity magnitude for different filter sizes. 

It was found that these trends can be captured using the functional form shown in Equation 52 and 

the coefficients provided below. The closure for the non-linearity correction factor contains a part that 

is independent of the scaled filtered slip velocity magnitude (and proportional to 𝑥5), as well as a part 

that decreases with increasing slip velocities (and proportional to 𝑥9). Both parts contain a term that 

increases asymptotically with the filtered solids volume fraction, and a part that decreases with 

increasing solids volume fraction above a certain value. The coefficient 𝑥2, with a value greater than 

unity, allows 𝐶𝑁𝐿 to become smaller than unity, as observed for certain combinations of large filtered 

solids volume fractions and large scaled filtered slip velocities. The last arctangent function ensures 

that the value of 𝐶𝑁𝐿 returns to unity in very dense regions. Lastly, the filter size dependencies of the 

coefficients ensure that the values of 𝐶𝑁𝐿 will reach a maximum at very large filter sizes. 
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𝐶𝑁𝐿 = 1 + {[atan(𝑥1𝛼𝑠̅̅ ̅) − 𝑥2 atan(𝑥3max(𝛼𝑠̅̅ ̅ − 𝑥4, 0))] 𝑥5

+ [atan(𝑥6‖𝑣𝑠𝑙𝑖𝑝̃
∗‖
𝑥7𝛼𝑠̅̅ ̅)

− atan(𝑥8‖𝑣𝑠𝑙𝑖𝑝̃
∗‖
𝑥7max(𝛼𝑠̅̅ ̅ − 𝑥4, 0))] 𝑥9‖𝑣𝑠𝑙𝑖𝑝̃

∗‖
𝑥10
}

× (
2

𝜋
)
2

atan (𝑥11max(𝛼𝑠̅̅ ̅ − 𝑥12, 0)) 

Equation 52 

𝑥1 = 23.5, 𝑥2 = 1.29, 𝑥3 = 7.73 − 2.17 (
2

𝜋
) atan (0.194Δ𝑓𝑖𝑙

∗ ), 𝑥4 = 0.154,   

𝑥5 = 2.04 (
2

𝜋
) atan (0.710Δ𝑓𝑖𝑙

∗ ), 𝑥6 = 135, 𝑥7 = −0.451, 𝑥8 = 43.6,  

𝑥9 = −0.547(
2

𝜋
) atan (0.825Δ𝑓𝑖𝑙

∗ ), 𝑥10 = 0.390, 𝑥11 = 13.0 and 𝑥12 = 0.570. 

Using these coefficients, a fit with 𝑅2 = 0.980 against the binned data was obtained. Figure 12 

confirms that the closure in Equation 52 accurately approximates the binned data. Lastly, Figure 13 

shows the model predictions against the binned data for the lateral and vertical directions separately, 

whereas previous plots showed the averages from these directions only. This confirms that using an 

isotropic closure for the non-linearity correction factor will only lead to minor errors. 

 

Figure 12 - The non-linear correction factor plotted against a) the filtered solids volume fraction and b) the 
scaled filtered slip velocity magnitude for different filter sizes. The symbols show the binned data and the lines 
the model predictions.  
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Figure 13 - The non-linear correction factor calculated from a) the lateral direction data and b) the vertical 
direction data plotted against the filtered solids volume fraction for different filter sizes and scaled filtered slip 
velocities. The symbols show the binned data and the lines the model predictions.  

3.4.2.4 1-marker adjusted slip velocity closure 

As a first step, the scaled adjusted slip velocity will be closed using a relatively simple 1-marker model, 

assuming a linear correlation of the drift velocity and the slip velocity. This is in line with the work of 

the Simonin group [17]. However, in contrast to this previous work, all velocities are scaled using the 

steady state sedimentation velocity due to the benefit of removing most of the filtered volume fraction 

dependency. Another important difference from earlier work is that the closure model is fitted to the 

scaled adjusted slip velocity, 𝜐𝑎𝑑𝑗,𝑖
∗ = 𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ − 𝜐𝑑,𝑖
∗ , instead of the scaled drift velocity. As will be 

demonstrated in Chapter 3.4.2.5, the drift velocity is strongly correlated with the slip velocity, and can 

be almost as large as the slip velocity. This results in relatively small adjusted slip velocities for most 

situations, especially for large filter sizes. As a result, small relative changes in the drift velocity 

correspond to much larger relative changes in the adjusted slip velocity. Therefore, the effect of an 

independent variable on the drift velocity may appear negligible, but the effect on the adjusted slip 

velocity can be significant (this will be demonstrated later in the context of Figure 15). Similarly, errors 

in the predictions of the drift velocity may appear negligible, but may lead to substantial errors in the 

prediction of the adjusted slip velocity. Since the filtered drag force is proportional to the adjusted slip 

velocity, it is argued that it is essential that the predictions of the adjusted slip velocity are accurate. 

For this reason, this study will fit a closure for the adjusted slip velocity and, where possible, display 

binned data and model predictions for the adjusted slip velocity.   

It is found that the scaled adjusted slip velocity can be accurately modelled using Equation 53 to 

Equation 56 and the coefficients given below. Similar to the work of the Simonin group, the drift 

velocity in direction 𝑖  is found to be proportional to the filtered slip velocity in direction 𝑖 (this is 

reflected by the second term on the right-hand side of Equation 54). However, it is found that there 

are substantial differences between the adjusted slip velocity in the lateral and the vertical directions, 

which can be explained by an additional term in the drift velocity closure that is independent of the 

filtered slip velocity and only acts in the direction aligned with gravity (𝑘1 in Equation 54). Therefore, 

it can be argued that the drift velocity originates from differences in the velocities of the phases in the 

direction considered, or from a driving force component such as gravity. The latter may be referred to 
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as the “gravitational contribution” to the drift velocity, and will be further discussed in Chapter 3.4.2.5. 

It can be isolated simply by considering the drift velocity parallel and perpendicular to gravity. 

The gravitational contribution (denoted as 𝑘1 below) increases approximately quadratically with 

increasing filtered solids volume fraction up to a certain point, after which it returns to zero in very 

dense regions. The slip velocity contribution, 𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ (1 − 10−𝑘2), is formulated in such a way that 𝑘2 is 

analogous to the scaled drag correction factor, i.e., −log (𝐶) in the isotropic drag closure in Equation 

45, giving similar advantages as those discussed in Chapter 3.4.1.2. The slip velocity contribution, 𝑘2, 

is zero in the very dilute and very dense limits, and reaches a maximum at intermediate filtered solids 

volume fractions. The filter size dependencies of the coefficients ensure that both contributions to the 

drift velocity will tend to saturate at very large filter sizes. 

𝜐𝑎𝑑𝑗,𝑖
∗ = 𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ − 𝜐𝑑,𝑖
∗  Equation 53 

𝜐𝑑,𝑖
∗ = 𝑘1 + 𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ (1 − 10−𝑘2) Equation 54 

𝑘1 = 𝑥1 (
2

𝜋
) (𝛼𝑠̅̅ ̅

𝑥2) atan (𝑥3max(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) 

𝑘1 = 0 if 𝑖 is in the direction perpendicular to gravity 

Equation 55 

𝑘2 = (
2

𝜋
)
2

atan(𝑥5𝛼𝑠̅̅ ̅) atan (𝑥3max(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) (𝑥6𝛼𝑠̅̅ ̅
𝑥7) Equation 56 

𝑥1 = −3.44, 𝑥2 = 2.09, 𝑥3 = 21.6 (
2

𝜋
) atan (0.216Δ𝑓𝑖𝑙

∗ ), 𝑥4 = 0.559, 𝑥5 = 99.7Δ𝑓𝑖𝑙
∗ 3.31

, 𝑥6 = 2.19 

and 𝑥7 = 1/(2.08Δ𝑓𝑖𝑙
∗ 0.246

). 

Using the coefficients above, a fit with 𝑅2 = 0.990 is obtained against the binned data. Since the 

filtered slip velocity is not used as a marker in the binning procedure, the mean filtered slip velocity in 

each bin is used in Equation 54 when calibrating the parameters of the closure model. Since each bin 

does not have a fixed filtered slip velocity value, the binned data for the 1-marker model is best 

displayed in the form −log (1 − 𝜐𝑑,𝑖
∗ /𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ ), as shown in Figure 14. From the binned data, it is clear 

that this scaled ratio of the drift velocity to the filtered slip velocity is dependent on the direction 

considered. More importantly, it can be seen that the 1-marker model proposed in this section 

accurately predicts the binned data in both directions. Furthermore, the drift velocity correctly goes 

to zero in the limits of dilute and dense filtered solids volume fractions. 
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Figure 14 – The average value of −𝐥𝐨𝐠 (𝟏 − 𝝊𝒅,𝒊
∗ /𝝊̃𝒔𝒍𝒊𝒑,𝒊

∗ ) plotted against the filtered solids volume fraction for 

a) the lateral direction and b) the vertical direction. Symbols show the binned observation and lines the closure 
model predictions. 

It can be added that the closure model in this section is not truly a 1-marker model, since Equation 54 

assumes a correlation to the scaled filtered slip velocity in the direction considered and the binned 

values of the filtered slip velocities are used during model fitting. However, it can be noted that, in the 

case where the gravitational contribution is zero and the non-linearity correction factor is equal to 

unity, 𝐾𝑔𝑠(𝜐𝑔,𝑖 − 𝜐𝑠,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 10−𝑘2𝐾𝑔𝑠,ℎ𝑜𝑚(𝜐̃𝑔,𝑖 − 𝜐̃𝑠,𝑖) for this closure model. Hence, 10−𝑘2 is analogous 

to the drag correction factor, 𝐶, and 𝑘2 is analogous to the scaled drag correction factor, − log(𝐶), in 

the isotropic drag closure discussed in Chapter 3.4.1.2. Since 𝑘2 is only a function of the filtered solids 

volume fraction, the closure model developed in this section is henceforth referred to as the 

anisotropic 1-marker drag closure. This also serves to distinguish it from the closure model in the 

following section where 𝑘2 is also a function of the scaled filtered slip velocity. 

3.4.2.5 2-marker adjusted slip velocity closure 

For the 2-marker model presented in this chapter, the scaled adjusted slip velocity is binned as a 

function of the filter size, the filtered solids volume fraction and the filtered slip velocity in the direction 

considered. Having the filtered slip velocity as an additional independent variable allows the data to 

be visualized in ways that help to explain some of the concepts discussed in Chapter 3.4.2.4.  

Firstly, the scaled drift velocity in the lateral direction is plotted against the scaled slip velocity in the 

lateral direction in Figure 15.a and Figure 15.b for the smallest and largest filter sizes evaluated. These 

figures show the proportionality between the drift velocity and the slip velocity for the direction 

considered (the same proportionality is observed in the vertical direction). It can also be seen than the 

value of the drift velocity is very close to that of the slip velocity, little dependence on the filtered solids 

volume fraction can be observed, and the proportionality appears almost linear, especially for the 

largest filter size considered.  

On the contrary, considering the scaled adjust slip velocity (see Figure 15.c and Figure 15.d) shows a 

significantly non-linear correlation between the slip velocity and the adjusted slip velocity (and 

therefore also the drift velocity). Additionally, significant filtered solids volume fraction dependencies 

can be observed. These examples demonstrate how the adjusted slip velocity (and therefore also the 

filtered drag force) is extremely sensitive to changes in the drift velocity. This is due to the very strong 
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correlation between the drift velocity and the slip velocity. As discussed in Chapter 3.4.2.4, this shows 

why it is important to perform model fitting and data evaluation based on the adjusted slip velocity, 

instead of the drift velocity.  

 

Figure 15 – The scaled drift velocity (top) and the scaled adjusted slip velocity (bottom) plotted against the 

scaled filtered slip velocity for the lateral direction data for filter sizes of Δ̂𝒇= 𝟏. 𝟗𝟑 (left) and Δ̂𝒇= 𝟏𝟖. 𝟏 (right). 

Next, the scaled adjusted slip velocity in the vertical direction is shown in Figure 16 for situations in 

which the filtered slip velocity in the vertical direction is zero. This shows that there exists a positive 

drag force in the vertical direction at zero filtered slip velocity, which, as discussed in Chapter 3.4.2.4, 

stems from the presence of the gravitational force in that direction. This gravitational contribution 

increases with filter size, and reaches a maximum just below a filtered solids volume fractions of 0.5. 

This justifies the functional form for the gravitational contribution shown in Equation 55. It is also clear 

that this contribution is substantial relative to the scaled adjusted slip velocities reported for the lateral 

direction, as shown in Figure 15.c and Figure 15.d. 
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Figure 16 - The scaled adjusted slip velocity in the vertical direction for situations in which the filtered slip 
velocity in the vertical direction is zero. 

Using a 2-marker closure model, the scaled adjusted slip velocity can be closed using Equation 57 to 

Equation 60 and the coefficients below. Similar to the 1-marker model presented in Chapter 3.4.2.4, 

the anisotropy of the drift velocity is accounted for via the gravitational contribution, 𝑘1, which is 

independent of the filtered slip velocity. The only difference is that now the proportionality of the drift 

velocity to the filtered slip velocity is also a function of the filtered slip velocity in the direction 

considered, as implied by Equation 60. As with −log (𝐶) in the isotropic drag closure, it is found that 

𝑘2 is also proportional to 𝑙𝑜𝑔|𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ |. This is because 𝑘2 is defined in a way that is analogous to the use 

of −log (𝐶) in the isotropic drag closure. The addition of the slip velocity dependent term in 𝑘2 ensures 

that the adjusted slip velocity will start to flatten out at large filtered slip velocities, as observed from 

the binned data in Figure 15.c and Figure 15.d. Also, it is found that the dependency of 𝑘2 on the 

filtered slip velocity ceases at combinations of small slip velocities and dilute flows, which is accounted 

for by using (
2

𝜋
) atan(𝑥9𝛼𝑠̅̅ ̅

𝑥10|𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ | ) in Equation 60. 

𝜐𝑎𝑑𝑗,𝑖
∗ = 𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ − 𝜐𝑑,𝑖
∗  Equation 57 

𝜐𝑑,𝑖
∗ = 𝑘1 + 𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ (1 − 10−𝑘2) Equation 58 

𝑘1 = 𝑥1 (
2

𝜋
) (𝛼𝑠̅̅ ̅

𝑥2) atan (𝑥3max(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) 

𝑘1 = 0 if 𝑖 is in the direction perpendicular to gravity 

Equation 59 

𝑘2 = (
2

𝜋
)
2

atan(𝑥5𝛼𝑠̅̅ ̅) atan (𝑥3max(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) (𝑥6𝛼𝑠̅̅ ̅
𝑥7

+ 𝑥8 (
2

𝜋
) atan(𝑥9𝛼𝑠̅̅ ̅

𝑥10|𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ | ) 𝑙𝑜𝑔|𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ |) 

Equation 60 

𝑥1 = −1.40, 𝑥2 = 1.38, 𝑥3 = 48.5 (
2

𝜋
) atan (0.235Δ𝑓𝑖𝑙

∗ ), 𝑥4 = 0.553, 𝑥5 = 333Δ𝑓𝑖𝑙
∗ 1.92

,  

𝑥6 = 1.76 (
2

𝜋
) atan (1.29Δ𝑓𝑖𝑙

∗ ), 𝑥7 = 1/(2.40Δ𝑓𝑖𝑙
∗ 0.234

), 𝑥8 = 1/ (2.44 (
2

𝜋
) atan(1.92Δ𝑓𝑖𝑙

∗ )) ,  

𝑥9 = 25.6Δ𝑓𝑖𝑙
∗  and 𝑥10 = 1.56. 
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Using this closure model, an excellent fit, i.e., 𝑅2 = 0.977, is obtained against the binned data. This is 

demonstrated in Figure 17. It can be noted that, in the lateral direction, the scaled adjusted slip velocity 

is symmetrical around values of zero filtered slip velocity. However, in the vertical direction, due to the 

presence of gravity, the adjusted slip velocity tends to be biased towards positive values (see data for 

zero filtered slip velocity in panels b) and d) of Figure 17). Also, it can be seen from panels b) and d) 

that the effect of the gravitational contribution in the vertical direction becomes more significant at 

larger filter sizes. Lastly, in the dilute and dense volume fraction limits, the drift velocity is zero, 

therefore the adjusted slip velocity becomes equal to the filtered slip velocity. 

 

Figure 17 – The scaled adjusted slip velocity for the lateral direction (left) and vertical direction (right) plotted 

against the filtered solids volume fraction and at Δ̂𝒇= 𝟏. 𝟗𝟑 (top) and Δ̂𝒇= 𝟏𝟖. 𝟏 (bottom). 

3.4.2.6 3-marker adjusted slip velocity closure 

When investigating anisotropic closures for the solids mesoscale stresses (presented later in Chapter 

3.6.3), it was found that a filtered variance quantity in the form of 𝑋′𝑌′̅̅ ̅̅ ̅̅  can be modelled by a marker 

of the form 𝑀 = (
𝑑𝑋̃

𝑑𝑥

𝑑𝑌̃

𝑑𝑥
+
𝑑𝑋̃

𝑑𝑦

𝑑𝑌̃

𝑑𝑦
), referred to as the “gradient product marker” (GPM). This approach 

can similarly be applied to the definition of the drift velocity, 𝜐𝑑,𝑖 =
𝛼𝑔
′ 𝜐𝑔,𝑖

′̅̅ ̅̅ ̅̅ ̅̅ ̅

𝛼̅𝑠𝛼̅𝑔
, as used in the present study 

to obtain a promising third marker. Applying the GPM concept to the scaled drift velocity, the “drift 

GPM” in the direction 𝑖 becomes: 
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Μ𝑑𝑟𝑖𝑓𝑡,𝑖 =
(
𝑑𝛼𝑔̅̅ ̅
𝑑𝑥

𝑑𝜐̅𝑔,𝑖
𝑑𝑥

+
𝑑𝛼𝑔̅̅ ̅
𝑑𝑦

𝑑𝜐̅𝑔,𝑖
𝑑𝑦

)

𝛼𝑠̅̅ ̅ 𝛼𝑔̅̅ ̅𝑣̅𝑠𝑠_𝑠𝑙𝑖𝑝
 

Equation 61 

In the present study, the drift GPM is non-dimensionalized as Μ̂𝑑𝑟𝑖𝑓𝑡,𝑖 = Μ𝑑𝑟𝑖𝑓𝑡,𝑖
𝑣𝑡
4

𝑔2
. Additionally, since 

the GPM is highly dependent on the filter size, the following scaling is applied for the binning process 

to ensure a better distribution of data through the parameter space: 

𝛭𝑑𝑟𝑖𝑓𝑡,𝑖
∗ =

Μ̂𝑑𝑟𝑖𝑓𝑡,𝑖

𝑎𝛥𝑓
∗ (𝑏+𝑐𝛥𝑓

∗ )
 Equation 62 

Where 𝑎 = 3.28, 𝑏 = −1.81 and 𝑐 = −0.0120. 𝛭𝑑𝑟𝑖𝑓𝑡,𝑖
∗  will henceforth be referred to as the scaled 

drift GPM. A potential issue with using the drift GPM is that, as can be noted from Equation 61, the 

definition of the drift GPM requires the algebraic average of the gas velocities in the filter region. 

However, the filtered momentum transport equations, discussed in Chapter 2.2.2.2, solve for the 

phase-weighted gas velocities. From the derivation of the newly proposed adjusted slip velocity 

formulation in Appendix E.3, it is found that the algebraic average of the gas velocity can be calculated 

as: 

𝜐𝑔,𝑖̅̅ ̅̅ = 𝜐̃𝑔 − 𝛼̅𝑠𝜐𝑑,𝑖 
Equation 63 

It is therefore clear that the model prediction for the drift velocity (which requires the drift GPM to be 

known) is required to calculate 𝜐𝑔,𝑖̅̅ ̅̅ , which is necessary to calculate the drift GPM. Thus, the algebraic 

averages of the velocities are implicitly defined. Fortunately, this can easily be solved via a simple 

iteration loop: For the current iteration, the value of the drift velocity from the previous iteration is 

used to calculate 𝜐𝑔,𝑖̅̅ ̅̅ , the drift GPM and the filtered drag force, in that order. For the first iteration of 

the simulation the 𝜐𝑔,𝑖̅̅ ̅̅  can simply be approximated as 𝜐̃𝑔,𝑖  to calculate the drift GPM. 

Furthermore, two additional factors ensure that this process is robust. Firstly, as shown in Table 3, 𝜐𝑔,𝑖̅̅ ̅̅  

is highly correlated with 𝜐̃𝑔,𝑖, even at large filter sizes. Therefore, a very good approximation of the 

drift GPM could be obtained even if 𝜐̃𝑔,𝑖  was used in Equation 61. Secondly, because of the very strong 

correlation between the drift velocity and the filtered slip velocity in Table 3, the drift velocity can be 

predicted to a high degree of precision using the 3-marker closure model derived later in this section. 

This is in contrast to the adjusted slip velocity, which is much more difficult to predict precisely, as will 

be discussed in Chapter 3.4.3. It can also be seen that the correlation between observed values and 

model predictions for the drift velocity increases at large filter sizes, when the correlation between the 

drift velocity and the filtered slip velocity is even stronger. As a result of these two factors and the 

iterative procedure followed, the estimate of  𝜐𝑔,𝑖̅̅ ̅̅  used to calculate the drift GPM will always be very 

accurate. 
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Table 3 – Coefficient of determination (𝑹𝟐) for the correlation of 𝝊̅𝒈,𝐢 and 𝝊̃𝒈,𝒊 as observed in the resolved 

simulations, as well as for the correlation between observed values and model predictions (using the 3-marker 
closure) for the drift velocity, 𝝊𝒅,𝒊. Results are shown for two filter sizes.  

Δ̂𝒇 

Correlation between 𝝊̅𝒈,𝐢 and 𝝊̃𝒈,𝒊 
Correlation between observed and predicted 

values for 𝝊𝒅,𝒊 

Lateral 

direction 

Vertical 

direction 
Lateral direction Vertical direction 

1.93 0.9991 0.9990 0.8481 0.8712 

18.1 0.9973 0.9931 0.9865 0.9920 

For the 3-marker closure proposed in this section, the adjusted slip velocity is binned for each filter 

size as a function of the filtered solids volume fraction, the scaled slip velocity in the direction 

considered and the scaled drift GPM in the direction considered. The binned data for the scaled 

adjusted slip velocity is shown in Figure 18 plotted against the scaled drift GPM. It is clear that there is 

a strong dependence of the adjusted slip velocity with respect to the drift GPM at both small and large 

filter sizes. The drift GPM dependence appears to be of similar importance as the filtered slip velocity 

dependence.  

Specifically, increasing drift GPM values lead to smaller adjusted slip velocities, and therefore also 

smaller filtered drag forces. At the smaller filter size considered, the scaled adjusted slip velocity tends 

to flatten out at large absolute values of the drift GPM. At the larger filter size considered, such a trend 

cannot be clearly distinguished. However, this is most likely due to the fact that large enough GPMs do 

not occur in the resolved simulations: All other filter sizes, for which the results are not shown here, 

confirm that the adjusted slip velocity becomes independent of the drift GPM at large absolute values 

of the drift GPM. Lastly, it is noted that there appears to be some correlation between the filtered slip 

velocity and the drift GPM for a specific direction. As seen from Figure 18, the drift GPM tends to be 

positive at large positive slip velocities and negative at large negative slip velocities. 
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Figure 18 - The scaled adjusted slip velocity for the lateral direction (left) and vertical direction (right) plotted 

against the scaled drift GPM at Δ̂𝒇= 𝟏. 𝟗𝟑 (top) and Δ̂𝒇= 𝟏𝟖. 𝟏 (bottom). The data shown is for an intermediate 

filtered solids volume fraction, 𝜶𝒔̅̅ ̅ = 𝟎. 𝟐𝟓𝟏 . 

Through a rigorous analysis of the binned data, it was found that the scaled adjusted slip velocity could 

be closed using the 3-marker model in Equation 64 and Equation 68 and the coefficients below. The 

third marker adds a substantial amount of complexity to the closure fitting process. This is due to (i) 

the large increase in the number of bins caused by the added dimension in the binned data, and (ii) 

due to the complex interactions between the different markers. The process that was used to 

overcome this complexity is described in more detail in Appendix D.1 for the interested reader.  

Compared to the 2-marker model, it can be seen that the gravitational and slip velocity contributions 

(i.e., 𝑘1 and  𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ (1 − 10−𝑘2), respectively) remain similar, with only minor changes in the filter size 

dependencies of the coefficients. Most important, it is found that the effect of the drift GPM can be 

included as an additional term 𝑘3, which is denoted as the “gradient contribution term” in what 

follows. Therefore, gradients in the flow (specifically in the filtered gas volume fraction and in the 

algebraically averaged gas velocity field) can be identified as an additional source of drift velocity. It 

can be physically understood that large drift GPMs in a coarse grid filtered simulation indicates the 

presence of a cluster interface, which cannot be well resolved on a coarse grid. It is well known that 

poor cluster interface resolution overpredicts gas-solid contact, leading to overpredictions of 

interphase mass, momentum and energy transfer. The use of the drift GPM as marker allows the model 

to directly address this overprediction of momentum transfer.  
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In the gradient contribution, i.e., 𝑘3 in Equation 68, the first two arctangent functions ensure that the 

gradient contribution to the drift velocity is zero at the dilute and dense limits. The third arctangent 

function, i.e., 𝑎𝑡𝑎𝑛(𝑥13Μ̂𝑑𝑟𝑖𝑓𝑡,𝑖), causes the gradient contribution to saturate at large absolute values 

of the drift GPM, as observed in the binned data. The filter size dependency of 𝑥13 compensates for 

the fact that the dimensionless drift GPM decreases rapidly with increasing filter size. Therefore, at 

large filter sizes, the gradient contribution saturates at smaller drift GPM values.  

The next three terms identify different parts of the gradient contribution. The first part (proportional 

to 𝑥14) is due to only the drift GPM and takes the sign of the drift GPM. The second part (proportional 

to (𝑥16 |𝛼𝑠̅ −
𝑥4

2
|
𝑥17
+ 𝑥18)) is due to the interaction of the drift GPM and the filtered slip velocity, 

since it is observed that the gradient contribution increases at large absolute slip velocities. It is found 

that this part has a minimum effect at intermediate volume fractions, but the effect increases towards 

the dilute and dense limits. However, it can be noted that the first two arctangent functions still ensure 

that this part goes to zero at the dilute and dense limits. Furthermore, this GPM-slip interaction part 

of the gradient contribution takes the sign of the drift GPM and its absolute value is symmetrical 

around a drift GPM of zero.  

The third part of the gradient contribution (proportional to 𝑥19) is an asymmetrical GPM-slip 

interaction part, since it is observed that near the dilute and dense limits there is an additional effect 

in case the drift GPM and the filtered slip velocity has opposite signs. This asymmetrical effect can 

clearly be seen in Figure 19, where the drift GPM dependence is compared at dilute and intermediate 

volume fractions. The asymmetrical GPM-slip interaction part has no effect at intermediate volume 

fractions, but the effect increases towards the dilute and dense limits, similarly to the symmetrical 

GPM-slip interaction part. In the closure model, by using min(𝑠𝑖𝑔𝑛(𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ Μ̂𝑑𝑟𝑖𝑓𝑡,𝑖), 0), this part is 

defined in such a way that it only has an effect in case the drift GPM and the filtered slip velocity has 

opposite signs. Also, this part has the opposite sign as the drift GPM. The asymmetrical interaction part 

therefore has an effect in the opposite direction as the symmetrical interaction part. 

𝜐𝑎𝑑𝑗,𝑖
∗ = 𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ − 𝜐𝑑,𝑖
∗  Equation 64 

𝜐𝑑,𝑖
∗ = 𝑘1 + 𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ (1 − 10−𝑘2) + 𝑘3 Equation 65 

𝑘1 = 𝑥1 (
2

𝜋
) (𝛼𝑠̅̅ ̅

𝑥2) atan (𝑥3max(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) 

𝑘1 = 0 if 𝑖 is in the direction perpendicular to gravity 

Equation 66 

𝑘2 = (
2

𝜋
)
2

atan(𝑥5𝛼𝑠̅̅ ̅) atan (𝑥3max(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) (𝑥6𝛼𝑠̅̅ ̅
𝑥7

+ 𝑥8 (
2

𝜋
) atan(𝑥9𝛼𝑠̅̅ ̅

𝑥10|𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ | ) 𝑙𝑜𝑔|𝜐̃𝑠𝑙𝑖𝑝,𝑖

∗ |) 

Equation 67 
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𝑘3 = (
2

𝜋
)
3

atan(𝑥11𝛼𝑠̅̅ ̅) atan (𝑥12max(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) 𝑎𝑡𝑎𝑛(𝑥13Μ̂𝑑𝑟𝑖𝑓𝑡,𝑖) {𝑥14

+ |𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ |

𝑥15
[(𝑥16 |𝛼𝑠̅̅ ̅ −

𝑥4
2
|
𝑥17

+ 𝑥18)

+ min(𝑠𝑖𝑔𝑛(𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ Μ̂𝑑𝑟𝑖𝑓𝑡,𝑖), 0) 𝑥19 |𝛼𝑠̅̅ ̅ −

𝑥4
2
|
𝑥17
]} 

Equation 68 

𝑥1 = −1.74 (
2

𝜋
) 𝑎𝑡𝑎𝑛(1.71Δ𝑓𝑖𝑙

∗ ), 𝑥2 = 1.54, 𝑥3 = 21.8 (
2

𝜋
) 𝑎𝑡𝑎𝑛(0.708Δ𝑓𝑖𝑙

∗ ), 𝑥4 = 0.558,  

𝑥5 = 45.6Δ𝑓𝑖𝑙
∗ 2.10

, 𝑥6 = 2.09 (
2

𝜋
) 𝑎𝑡𝑎𝑛(0.331Δ𝑓𝑖𝑙

∗ ), 𝑥7 = 0.248, 𝑥8 = 0.308 , 𝑥9 = 6.35Δ𝑓𝑖𝑙
∗ ,  

𝑥10 = 1.22, 𝑥11 = 4030, 𝑥12 = 194, 𝑥13 = 0.0742Δ𝑓𝑖𝑙
∗ 1.89, 𝑥14 = 1/ (3.53 (

2

𝜋
) 𝑎𝑡𝑎𝑛(0.303Δ𝑓𝑖𝑙

∗ )),  

𝑥15 = 1/ (1 + 4.69 (
2

𝜋
) 𝑎𝑡𝑎𝑛(0.0604Δ𝑓𝑖𝑙

∗ )), 𝑥16 = 9.18, 𝑥17 = 2.84, 𝑥18 = 1/(2.24Δ𝑓𝑖𝑙
∗ ) and  

𝑥19 = 1/ (0.0742(
2

𝜋
) 𝑎𝑡𝑎𝑛(0.419Δ𝑓𝑖𝑙

∗ )). 

The closure model presented in this section yields an excellent fit to the binned data over all filter sizes 

with 𝑅2 = 0.979. This is demonstrated for the intermediate filter size in Figure 20, where the scaled 

adjusted slip velocity is plotted against the filtered solids volume fraction at different filtered slip 

velocities and scaled drift GPM values. Additionally, Figure 19 shows how the closure models capture 

the drift GPM dependency to predict the scaled adjusted slip velocity. 

 

 

Figure 19 - The scaled adjusted slip velocity for the lateral direction plotted against the scaled drift GPM at 

Δ̂𝒇= 𝟓. 𝟗𝟏 for a) a dilute filtered solids volume fraction, 𝜶𝒔̅̅ ̅ = 𝟎. 𝟎𝟏𝟐𝟓  and b) an intermediate filtered solids 

volume fraction, 𝜶𝒔̅̅ ̅ = 𝟎. 𝟐𝟓𝟏 . 
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Figure 20 - The scaled adjusted slip velocity for the lateral direction (left) and the vertical direction (right) 

plotted against the filtered solids volume fraction at Δ̂𝒇= 𝟓. 𝟗𝟏 for different scaled drift GPMs (top, centre and 

bottom rows). 

3.4.3 A priori analysis of the filtered drag closures 

In this section, the resolved simulation data used for model derivation is used to compare the observed 

values to the predicted values when using a specific closure model for the filtered drag force. The 

correlation of the observed and predicted values is then expressed using the coefficient of 
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determination (𝑅2) as discussed in Chapter 3.2. An 𝑅2 value of unity corresponds to a perfect 

correlation, whereas the model predictions increasingly differ from the observed values as the 𝑅2 

value decreases. An 𝑅2 value of zero corresponds to using the mean of the observations as the model 

prediction.   

It can be noted that the 𝑅2 values in this section, determined by comparing observations and 

predictions for individual data samples, are significantly lower than those reported in Chapter 3.4.1 

and Chapter 3.4.2. This is because in these chapters model predictions were compared to the binned 

observed values, i.e., conditional averages. This means that there is a large amount of scatter of the 

data characterized by these conditional averages, which is averaged out in the bin and not explained 

directly by the closure model. Such a large amount of averaging reduces the capability of the model to 

accurately predict flow situations that may differ substantially from the average conditions of the 

resolved simulations from which the models were derived. For example, validation of fTFM closures 

from literature performed early in this study [50] showed that a one-marker model [16, 19] failed 

completely by its inability to predict large enough drag corrections for the case under consideration. 

On the contrary, a two-marker model [13], which explains more of the variance in the sample data, 

could predict these flow conditions reasonably well. Additionally, one-marker models derived from 

periodic simulations are known to fail in wall-bounded flows without wall correction functions [25], 

whereas two-marker models have been shown to perform reasonably well also in wall-bounded flows 

without additional wall corrections [13, 26]. It is therefore valuable to develop closure models that can 

explain as much as possible of the variance in the resolved simulation data without averaging these 

results in the bins, thereby making the models more generally applicable. For this reason, this section 

compares the 𝑅2 values determined from the same set of resolved data for the different filtered drag 

force closures developed, as a measure of their relative predictive capabilities.  

It can be noted that the isotropic closure presented in Chapter 3.4.1.2 was derived for the combined 

filtered drag and mesoscale interphase forces. To be able to compare it directly with the anisotropic 

closures for the filtered drag force presented in Chapter 3.4.2, the isotropic closure is rederived for the 

filtered drag force only. It is found that the same expression as in Equation 45 can be used by only 

changing the coefficient values. This new closure model is provided in Appendix F.1.  

Figure 21 summarises the results when comparing the observations and predictions for samples in the 

resolved simulation data. Clearly, the models perform substantially better in the vertical direction than 

in the lateral direction. This is especially evident for the isotropic closure, which makes reasonable 

predictions at the smallest filter size, but deteriorates rapidly as the filter size increases. Although not 

all the data is shown, it can be noted that 𝑅2 = −1.12 for the isotropic model in the lateral direction 

and for the largest filter size considered. The isotropic model therefore completely fails in predicting 

the filtered drag force in the lateral direction when large filter sizes are considered. The reason for this 

was observed earlier in Figure 6, where it was clearly seen that the assumption of an isotropic drag 

correction factor becomes poorer at larger filter sizes.  

In contrast, the anisotropic models perform much better in predicting the lateral filtered drag force, 

although the predictive capability of the models clearly decrease with increasing filter size. This is 

expected as there will be more sub-grid variability when using larger filter sizes, and it appears that 

this variability will be difficult to predict. Furthermore, it is observed that the model predictions are 
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significantly improved as the number of markers in the anisotropic closure is increased. Most 

important, there is a substantial improvement at all filter sizes when increasing from 2 to 3 markers. 

 

Figure 21 – The coefficient of determination as a function of the dimensionless filter size for the lateral and 
vertical direction and for the four different closures developed for the filtered drag force. 

In the vertical direction, several surprising observations can be made. Firstly, the isotropic closure 

(based on 2-markers) performs poorer than the 1-marker anisotropic closure (in combination with the 

2-marker closure for the non-linearity correction factor). This is especially pronounced at larger filter 

sizes. Closer analysis of the sample data confirmed that this is due to the isotropic closure not 

accurately accounting for the gravitational contribution to the filtered drag, since the formulation in 

Equation 119 (see Appendix F.1) limits the filtered drag force to be proportional to the filtered slip 

velocity. It therefore is clear that the adjusted slip velocity formulation of the filtered drag force in 

Equation 46 is an improved method for closing the filtered drag force, compared to using an isotropic 

drag correction factor. 

The second interesting observation is that the correlation between the observations and predictions 

in the vertical direction improves with increasing filter size at large filter sizes. This is contrary to the 

notion that predictions will become more difficult as the sub-grid variability increases with increasing 

filter size. The third observation is that the effect of the number of markers in the adjusted slip velocity 

closures becomes smaller at larger filter sizes. 

The trends in the 𝑅2 values can be explained based on the following hypothesis: There is less variability 

in the gravitational contribution to the drift velocity than in the slip and gradient contributions, 

therefore the portion of the filtered drag force resulting from the effect of gravity can be explained 

with a high coefficient of determination. Since there is no gravitational contribution in the lateral 

direction, this would explain why the 𝑅2 values in the lateral direction are substantially lower than 

those in the vertical direction. Furthermore, since the proportion of the gravitational contribution to 

the filtered drag force in the vertical direction increases with increasing filter size (see Figure 16 and 

Figure 17), this is also a possible explanation for the reversal of the trend for the 𝑅2 values at 

intermediate filter sizes. Lastly, since the gravitational contribution is a function of the volume fraction 

only, this explains why there is little difference in the performance of the 1-marker, 2-marker and 3-
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marker models in the vertical direction at large filter sizes: in these situations, the contribution of the 

gravitational part to the filtered drag force is dominating, and captured reasonably well already with a 

1-marker-based, anisotropic drag closure. 

In conclusion, it can be noted that the anisotropic closures clearly outperform the isotropic closure, 

with the 3-marker model also offering a clear improvement in predictive capability compared to the 

simpler anisotropic closures. However, from Chapter 3.4.2.6, it is also clear that including the gradient 

contribution to the adjusted slip velocity closure substantially complicates the derivation process, as 

well as the resulting closure expression. The verification exercises in Chapter 5.1 and Chapter 5.2 will 

therefore further evaluate whether the more complex 3-marker drag closure results in any practical 

improvements in coarse grid simulations. 

3.5 Mesoscale interphase force closures 

3.5.1 Anisotropic closure for the mesoscale interphase force 

The contribution from the pressure gradient fluctuations (last term on the right of Equation 15), has 

been referred to as the buoyancy force [18, 20] or as a mesoscale added-mass force [51-53] in the 

literature. Following these detailed studies [51-53], it is noted that this force originates from the 

redistribution of the pressure gradient over the mesoscale structures. On the contrary, the filtered 

drag force, the other interphase transfer force in the filtered momentum transport equations, is a force 

acting on the microscale (i.e., at the particle level) which is averaged over the mesoscale structures. To 

highlight this important difference, the pressure gradient fluctuation contribution is simply referred to 

as the mesoscale interphase force in the present study. 

While the more detailed studies [51-53] found the mesoscale interphase force to be of significant 

importance, other studies have reported that it can be neglected [18, 20] for certain applications. To 

investigate the importance of the mesoscale interphase force, the absolute values of the filtered drag 

force and the mesoscale interphase force is binned as a function of the filtered solids volume fraction 

and the absolute filtered slip velocity in the direction considered. The relative contribution (in a 

percentage) of the mesoscale interphase force to the total filtered interphase force is then defined as:  

𝑀𝐼𝐹% =
−𝛼𝑠

′𝑑𝑝

𝑑𝑖

′̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝐾𝑔𝑠(𝜐𝑔,𝑖−𝜐𝑠,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −𝛼𝑠

′𝑑𝑝

𝑑𝑖

′̅̅ ̅̅ ̅̅ ̅̅ ̅
)

× 100%.  

Figure 22 shows that, although the mesoscale interphase force is on average smaller than the filtered 

drag force, its contribution to the filtered interphase momentum transfer is significant in both 

directions. The contribution of the mesoscale interphase force tends to increase with increasing filter 

size and reaches a maximum at intermediate volume fractions and small slip velocities. For the filter 

sizes shown, the contribution can be up to 33% of the combined filtered interphase momentum 

transfer force. 
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Figure 22 – The percentage contribution of the mesoscale interphase force to the sum of the filtered drag force 
and the mesoscale interphase force as a function of the filtered solids volume fraction (left) and the filtered 
slip velocity in the direction considered (right) for the vertical (top) and the lateral (bottom) directions at 
different filter sizes. 

Due to the apparent significance of the mesoscale interphase force, a simple anisotropic closure is 

derived in this section, to be used in combination with the anisotropic filtered drag force closures 

presented in Chapter 3.4.2. Using the definition 𝐹𝑀,𝑖 = −𝛼𝑠
′ 𝜕𝑝

′

𝜕𝑖

̅̅ ̅̅ ̅̅ ̅̅
 , the mesoscale interphase force is 

non-dimensionalised as follows, using characteristic quantities similar to those used in the fTFM 

literature [12]. Specifically, 𝐹̂𝑀,𝑖 = 𝐹𝑀,𝑖/(𝜌𝑔𝑔). 

It can be noted that, similarly to the anisotropic drag closures, only filter sizes larger than Δ̂𝑓≥ 1.93 

are considered for deriving the closure for the mesoscale interphase force in this section. Analysis of 

the mesoscale interphase force showed that it is correlated with the filtered slip velocity in the 

direction considered, as shown for the lateral direction in Figure 23. From the binned data, it can be 

seen that the mesoscale interphase force tends to be proportional to the filtered slip velocity, but the 

dependency tends to flatten out at large values for the filtered slip velocity. Additionally, the mesoscale 

interphase force tends to be zero at the dilute and dense volume fraction limits, and has a maximum 

at intermediate particle volume fractions. Lastly, the magnitude of the mesoscale interphase force 
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tends to decrease with increasing filter size. Interestingly, it can be noted that, since it was observed 

in Figure 22 that the contribution of the mesoscale interphase force increases relative to the filtered 

drag force with increasing filter size, it can be concluded that the filtered drag force decreases at a 

faster rate than the mesoscale interphase force with increasing filter sizes. 

 

 

Figure 23 - The dimensionless interphase mesoscale force in the lateral direction as a function of a) the filtered 
solids volume and b) the scaled filtered slip velocity in the lateral direction for three filter sizes. 

For the vertical direction, as with the filtered drag force, it is found that there exists a positive force at 

zero filtered slip velocities, as seen in Figure 24. This contribution increases with the filter size and 

appears to saturate at large filter sizes. 

 

Figure 24 - The dimensionless interphase mesoscale force in the vertical direction as a function of the filtered 
solids volume fraction for all filter sizes considered conditioned on a vertical filtered slip velocity of zero. 

Based on these previous observations, it is found that the mesoscale interphase force can be closed in 

a similar way as the 2-marker anisotropic drag closure reported in Chapter 3.4.2.5. The mesoscale 

interphase force is divided into two parts: one part, 𝑘1, that is due to a gravitational contribution and 
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only acts in the vertical direction, and a second part, 𝑘2, that is correlated with the filtered slip velocity 

in the direction considered. The proposed closure model is provided in Equation 69 to Equation 71, 

with the optimised coefficients reported below. Both contributions peak at intermediate volume 

fractions and have a zero value at the dilute and dense filtered volume fraction limits. From the filter 

size dependencies of 𝑥1 and 𝑥6, it can be seen that both contributions will saturate at very large filter 

sizes. However, the gravitational contribution will tend to increase with increasing filter sizes, whereas 

the slip contribution decreases with increasing filter size. The gravitational contribution is, as with the 

filtered drag force, independent of the filtered slip velocity. On the other hand, the slip contribution 

takes the sign of the slip velocity and its absolute value increases with increasing absolute values of 

the filtered slip velocity in the direction considered. The arctangent function, 𝑎𝑡𝑎𝑛(𝑥9𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ ), ensures 

that the slip contribution reaches a plateau at large absolute values of the filtered slip velocity. 

𝐹̂𝑀,𝑖 = 𝑘1 + 𝑘2 Equation 69 

𝑘1 = 𝑥1 (
2

𝜋
)𝛼𝑠̅̅ ̅

𝑥2 𝑎𝑡𝑎𝑛 (𝑥3𝑚𝑎𝑥(𝛼𝑠̅̅ ̅ − 𝑥4, 0)
𝑥5) 

𝑘1 = 0 if 𝑖 is in a direction perpendicular to gravity 

Equation 70 

𝑘2 = 𝑥6 (
2

𝜋
)
3

𝑎𝑡𝑎𝑛(𝑥7𝛼𝑠̅̅ ̅) 𝑎𝑡𝑎𝑛 (𝑥8𝑚𝑎𝑥(𝑥4 − 𝛼𝑠̅̅ ̅, 0)) 𝑎𝑡𝑎𝑛(𝑥9𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ ) Equation 71 

𝑥1 = 29000(
2

𝜋
) atan(0.690Δ𝑓𝑖𝑙

∗ ), 𝑥2 = 185, 𝑥3 = 0.168, 𝑥4 = 0.551, 𝑥5 = 1.43,  

𝑥6 = 92.4 − 65.4 (
2

𝜋
) atan(0.167Δ𝑓𝑖𝑙

∗ ), 𝑥7 = 5.65, 𝑥8 = 7.06 and 𝑥9 = 0.475. 

Using the proposed model, a good fit (𝑅2 = 0.948) is obtained against the binned data, as shown in 

Figure 25. Some minor deviations of the model predictions from the binned data can be discerned, for 

example in the lateral direction and for large filtered slip velocities. In these situations, the interphase 

mesoscale force is somewhat overpredicted. Therefore, it can be concluded that the approach of 

dividing the force into a gravitational and a slip contribution does not work quite as well as for the 2-

marker anisotropic drag closure. In general, however, the model appears to capture the trends in the 

data sufficiently well, especially considering that the mesoscale interphase force is generally of lesser 

importance than the filtered drag force. 
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Figure 25 - The dimensionless mesoscale interphase force for the lateral (top) and vertical (bottom) directions 
plotted against the filtered solids volume fraction (left) and the scaled filtered slip velocity in the direction 

considered (right) at Δ̂𝒇= 𝟓. 𝟗𝟏. 

3.5.2 A priori analysis of the mesoscale interphase force closures 

In this section, the performance of the anisotropic closure for the mesoscale interphase force proposed 

in the previous section is evaluated by comparing observed values in the resolved simulations to model 

predictions. To provide context for the performance of the anisotropic model, the mesoscale interface 

force predicted by the isotropic closure is evaluated in the same way. This is done by subtracting the 

force predicted by the isotropic closure for the filtered drag force (Equation 119 in Appendix F.1) from 

the combined filtered interphase force predicted by the isotropic closure in Chapter 3.4.1.2. 

Figure 26 shows that the isotropic approach performs very poorly in predicting the mesoscale 

interphase force observed in the resolved simulations. The complete failure in the lateral direction can 

be expected, since the isotropic closure is derived only from the vertical direction data. The poor 

performance in the vertical direction is due to the fact that the larger filtered drag force is weighted 

more in the isotropic closure for the combined filtered drag and mesoscale interphase force. Since the 

two forces show different qualitative behaviours with respect to the markers, the isotropic closure will 

tend to follow the trend of the filtered drag force. This leads to a poorer performance in predicting the 

mesoscale interphase force individually. 
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Figure 26 – The coefficient of determination as a function of the dimensionless filter size for the lateral and 
vertical directions and for the isotropic and anisotropic approaches for calculating the mesoscale interphase 
force. 

A significant improvement in performance is noted for the anisotropic closure compared to the 

isotropic approach in a combined closure. However, the 𝑅2 values are still substantially lower than 

those reported for the filtered drag force in Chapter 3.4.3. This observation seems to indicate that the 

filtered slip velocity may not be the optimum second marker for closing the mesoscale interphase 

force. Based on the excellent performance of the GPM type markers reported in Chapter 3.4.2 and 

Chapter 3.6.3 when closing filtered co-variance terms, such a GPM-based approach can be 

recommended for future studies that aim on improving mesoscale interphase force predictions. Also, 

it can be noted that, similar to the case of the filtered drag force, the closure performs better in the 

vertical direction, where, surprisingly, the 𝑅2 value increases with increasing filter size. Again, this can 

be explained based on the hypothesis that the gravitational contribution to the mesoscale interphase 

force can be more precisely predicted. Since the gravitational contribution will become relatively more 

important at larger filter sizes, the overall fidelity of the prediction increases as well. 

It should be noted that, although the 𝑅2 values reported for the anisotropic model is quite low, the 

model still accurately predicts the mean effect of the mesoscale interphase force, as shown in Figure 

25. The anisotropic closure should therefore be able to reasonably account for the effect of this force 

component. Also, this closure offers a clear improvement compared to the common approach in 

literature of closing the mesoscale interphase force in combination with the filtered drag force. Hence, 

it will be considered for the verification studies performed in Chapter 4, Chapter 5.1 and Chapter 5.2. 

3.6 Solids mesoscale stress closures 

The solids mesoscale stresses result from the sub-grid solids velocities due to mesoscale structures and 

increases the dispersive momentum transport in the system. These stresses have traditionally been 

closed based on the Boussinesq approximation [13-15, 18, 20]. This section will first evaluate the 

traditional Boussinesq-based approach, and then propose and evaluate an alternative, anisotropic 

approach. It can be noted that it has recently been suggested [20] that the solids mesoscale stresses 
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originate from large scale shear rates or from interfacial work (i.e., drag). The present study will, as 

most previous studies, focus on the shear rate contribution [13-15, 18, 20], as it appears to lead to 

substantially larger solids mesoscale stresses than the drag contribution [20]. Also, the present study 

will analyse how the shear rate contribution can be more accurately modelled. Future work will 

consider adding the interfacial work contribution to the anisotropic mesoscale stress closure 

developed in this section. 

3.6.1 Isotropic closure models for the solids mesoscale stresses 

In recent literature [13, 14, 20] the approach for closing the solids mesoscale stress tensor, ∑̿𝑠,𝑓𝑖𝑙, has 

been to model the mean of the components on the diagonal as an isotropic filtered solids pressure: 

𝑝𝑠,𝑓𝑖𝑙 ≈
1

3
𝑡𝑟(𝛴̅̅𝑠,𝑓𝑖𝑙) Equation 72 

The deviatoric components have been modelled via a classical Boussinesq ansatz that relies on a 

filtered solids viscosity, 𝜇𝑠,𝑓𝑖𝑙. The latter has been calculated from the solids mesoscale deviatoric 

stress tensor, 𝜏̅̅𝑠,𝑓𝑖𝑙, as follows: 

𝜇𝑠,𝑓𝑖𝑙 ≈
√𝜏̅̅𝑠,𝑓𝑖𝑙: 𝜏̅̅𝑠,𝑓𝑖𝑙

2𝛼𝑠̅̅ ̅√𝑆̅
̅
𝑠,𝑓𝑖𝑙: 𝑆̅

̅
𝑠,𝑓𝑖𝑙

 Equation 73 

𝜏̅̅𝑠,𝑓𝑖𝑙 = 𝛴̅̅𝑠,𝑓𝑖𝑙 −
1

3
𝑡𝑟(𝛴̅̅𝑠,𝑓𝑖𝑙)𝐼 ̅ ̅ Equation 74 

𝑆̅̅𝑠,𝑓𝑖𝑙 =
1

2
(𝛻𝜐⃗𝑠
̃ + 𝛻𝜐⃗𝑠

̃ 𝑇) −
1

3
𝛻 ⋅ 𝜐⃗𝑠

̃ 𝐼 ̅ ̅ Equation 75 

Recent studies [13, 14] have used simple Smagorinsky-type models to close the filtered solids pressure 

and viscosity using the dimensionless filter size, the filtered solids volume fraction and the filtered 

deviatoric shear rate magnitude (henceforth abbreviated as the SRM, see below for its definition) as 

independent variables. Since the SRM is a scalar quantity, the models presented in the current section 

are referred to as the isotropic solids mesoscale stress closures in the rest of the study. A more complex 

equation closure strategy will be used in this study compared to earlier work, adding additional 

coefficients and dependencies to the Smagorinsky equation form. The reasoning for this more complex 

form is that, in the presented 2D study, the focus is on evaluating different modelling approaches. The 

error associated with the fit of the model to the binned data will therefore be minimized to allow a 

more direct comparison of the modelling approaches. However, since the mesoscale stresses can vary 

over several orders of magnitude, 15 coefficients are necessary to establish a good fit over all filter 

sizes and flow conditions. It should however be noted that reasonably good closure model fits 

(i. e. , with 𝑅2 > 0.95) can still be obtained with comparably simple functional forms (e.g., using six 

coefficients). The equations proposed below could therefore be modified at a later stage to simpler, 

more user-friendly forms for specific applications, for example when only a certain range of filter sizes 

needs to be considered, as demonstrated for the anisotropic solids mesoscale stress closure in the next 

section.  
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When using the SRM, defined as ‖𝑆𝑠,𝑓𝑖𝑙‖ = √2𝑆𝑠̿,𝑓𝑖𝑙: 𝑆𝑠̿,𝑓𝑖𝑙, as the second marker, a poor distribution 

of samples in the parameter space occurs. This is since ‖𝑆𝑠,𝑓𝑖𝑙‖ tends to decrease with increasing filter 

size and increasing filtered solids volume fraction. The physical reason for this behaviour is that (i) the 

domain-averages shear (i.e., that at very large filter size) is zero due to the periodic setup, and (ii) 

velocity fluctuations will be dampened more quickly in dense suspensions. Consequently, to obtain a 

more even distribution of samples, and therefore also a better model fit, ‖𝑆𝑠,𝑓𝑖𝑙‖ is scaled in a similar 

manner as done by Milioli [14] for the binning procedure: 

‖𝑆𝑠,𝑓𝑖𝑙
∗ ‖ =

‖𝑆̂𝑠,𝑓𝑖𝑙‖

𝑎𝛼𝑠̅̅ ̅
𝑏𝛥̂𝑓

𝑐 Equation 76 

Here the SRM is non-dimensionalized via ‖𝑆̂𝑠,𝑓𝑖𝑙‖ = ‖𝑆𝑠,𝑓𝑖𝑙‖
𝑣𝑡

𝑔
. In this study, the following values were 

found for the coefficients: 𝑎 = 1.056, 𝑏 = −0.208 and 𝑐 = −0.580. 

The following functional form is used to model the mesoscale stresses in this section: 

𝜏̂𝑠,𝑓𝑖𝑙 =
2

𝜋
𝑥1𝛼𝑠̅̅ ̅

𝑥2atan(𝑥3𝛥𝑓
∗𝑥4‖𝑆̂𝑠,𝑓𝑖𝑙‖

𝑥5max(𝑥6 − 𝛼𝑠̅̅ ̅, 0))𝛥𝑓
∗𝑥7‖𝑆̂𝑠,𝑓𝑖𝑙‖

𝑥8+𝑥9𝛥𝑓
∗ 𝑥10

+
2

𝜋
𝑥11𝛼𝑠̅̅ ̅

𝑥12atan(𝑥13max(𝑥14 − 𝛼𝑠̅̅ ̅, 0))𝛥𝑓
∗𝑥15

 Equation 77 

, where 𝜏̂𝑠,𝑓𝑖𝑙 =
𝜏𝑠,𝑓𝑖𝑙

𝜌𝑠𝑣𝑡
2. The definition of the scaled filter size, 𝛥𝑓

∗ = 0.1285, is discussed in Chapter 3.3.3.  

The form of Equation 77 is based on the Smagorinsky-type models previously used in the fTFM 

literature [13-15], but with the following modifications: The mesoscale stresses tend to increase with 

increasing solids volume fraction, until they start to decrease above a critical volume fraction. The 

arctangent function captures this effect, which is found to be a function of the filter size and ‖𝑆̂𝑠,𝑓𝑖𝑙‖. 

This volume fraction dependency is different from that reported by the Princeton group [13, 14], where 

the mesoscale stresses continue to increase with increasing solids volume fraction in dense regions. 

However, from a physical understanding it is expected that, in very dense regions, the solids velocity 

distribution would become more uniform, leading to a reduction in solids velocity fluctuations. Since 

mesoscale stresses decrease with decreasing velocity fluctuations by definition, mesoscale stresses 

must approach zero in the limit of high solids volume fractions. It was previously found that the 

reduction in the mesoscale stresses with increasing solids volume fractions starts at lower solids 

volume fractions when the effect of frictional pressure is included in the resolved simulations, as 

discussed in Appendix B. Therefore, it is expected that this effect will be more important in the present 

study compared to the work of the Princeton group, since frictional stresses were not considered in 

the latter. 

The filter size dependency is obtained by using the scaled dimensionless filter size, 𝛥𝑓
∗ , which will 

ensure zero solids mesoscale stresses if the model is applied at the same grid size as used in the 

resolved simulations. Furthermore, it was found that the model fit could be significantly improved by 

making the exponent to which ‖𝑆̂𝑠,𝑓𝑖𝑙‖ is raised a function of the filter size. Lastly, the second term in 

Equation 77 (with different coefficients for the volume fraction and filter size dependencies) is included 

since, similarly to Schneiderbauer [20], non-zero solids mesoscale stresses were observed at zero 
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values of ‖𝑆̂𝑠,𝑓𝑖𝑙‖ in the present simulations. The physical reason for this observation is that, even in 

the absence of mean shear, mesoscale velocity fluctuations in sedimenting gas-particle suspensions 

persist due to the well-known instability mechanism [54, 55]. Hence, a no-shear mesoscale stress limit 

must be considered when closing fTFMs for sedimenting suspensions. 

More information regarding the model fit for the filtered solids pressure and filtered solids viscosity is 

presented in Appendix F.2.1 and Appendix F.2.2. This is since, in most aspects, these models are similar 

to that reported previously in the literature [13-15].  

Apart from models for the isotropic filtered solids pressure and the filtered solids viscosity, an 

anisotropic model was also established for the individual diagonal components of the solids mesoscale 

stress tensor (i.e., the normal stresses) by setting 𝑝𝑓𝑖𝑙,𝑠,𝑥 ≈ 𝜌𝑠𝛼𝑠𝑢𝑠
′′𝑢𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑝𝑓𝑖𝑙,𝑠,𝑦 ≈ 𝜌𝑠𝛼𝑠𝑣𝑠
′′𝑣𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

This is similar to the ideas recently published by Sarkar et al. [13]. As shown by the latter authors, it 

was also found that the model is largely similar in shape to the isotropic filtered solids pressure model, 

except that the mesoscale stresses aligned with gravity (𝜌𝑠𝛼𝑠𝑣𝑠
′′𝑣𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) tend to be greater in magnitude. 

These anisotropic normal stress models will be used in the subsequent analysis. Therefore, the 

coefficients for the corresponding closure models are also included in Appendix F.2.3 and Appendix 

F.2.4. 

3.6.2 A priori analysis of the isotropic solids mesoscale stress closures 

The closure models using the SRM as a marker will be evaluated next. First, consider the Boussinesq 

ansatz: 

𝜌𝑠𝛼𝑠𝜐𝑠,𝑖
′′𝜐𝑠,𝑗

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 𝑝𝑠,𝑓𝑖𝑙𝛿𝑖𝑗 − 𝛼𝑠̅̅ ̅𝜇𝑠,𝑓𝑖𝑙 (
𝜕𝜐𝑖̃
𝜕𝑥𝑗

+
𝜕𝜐𝑗̃

𝜕𝑥𝑖
−
2

3

𝜕𝜐𝑘̃
𝜕𝑥𝑘

𝛿𝑖𝑗) Equation 78 

Here, 𝜕𝑢𝑘̃/𝜕𝑥𝑘 implies the sum of the terms on the diagonal of the strain rate tensor. From this, it 

follows that the individual components of the solids mesoscale stress tensor are modelled as: 

𝜌𝑠𝛼𝑠𝑢𝑠
′′𝑢𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ 𝑝𝑠,𝑓𝑖𝑙 − 𝛼𝑠̅̅ ̅𝜇𝑠,𝑓𝑖𝑙 (
4

3

𝜕𝑢̃𝑠
𝜕𝑥

−
2

3

𝜕𝑣̃𝑠
𝜕𝑦
) Equation 79 

𝜌𝑠𝛼𝑠𝑣𝑠
′′𝑣𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ 𝑝𝑠,𝑓𝑖𝑙 − 𝛼𝑠̅̅ ̅𝜇𝑠,𝑓𝑖𝑙 (
4

3

𝜕𝑣̃𝑠
𝜕𝑦

−
2

3

𝜕𝑢̃𝑠
𝜕𝑥
) Equation 80 

𝜌𝑠𝛼𝑠𝑢𝑠
′′𝑣𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜌𝑠𝛼𝑠𝑣𝑠
′′𝑢𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ −𝛼𝑠̅̅ ̅𝜇𝑠,𝑓𝑖𝑙 (
𝜕𝑢̃𝑠
𝜕𝑦

+
𝜕𝑣̃𝑠
𝜕𝑥
) Equation 81 

From these definitions, and by considering the filtered solids momentum equations in Equation 16 and 

Equation 17, it can be deduced that the forces due to the solids mesoscale stresses are modelled as 

follows in the x- and y-directions, respectively: 

𝜕(𝜌𝑠𝛼𝑠𝑢𝑠
′′𝑢𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑥
+
𝜕(𝜌𝑠𝛼𝑠𝑢𝑠

′′𝑣𝑠
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑦

≈
𝜕𝑝𝑠,𝑓𝑖𝑙

𝜕𝑥
−

𝜕 (𝛼𝑠̅̅ ̅𝜇𝑠,𝑓𝑖𝑙 (
4
3
𝜕𝑢̃𝑠
𝜕𝑥

−
2
3
𝜕𝑣̃𝑠
𝜕𝑦
))

𝜕𝑥
−

𝜕 (𝛼𝑠̅̅ ̅𝜇𝑠,𝑓𝑖𝑙 (
𝜕𝑢̃𝑠
𝜕𝑦

+
𝜕𝑣̃𝑠
𝜕𝑥
))

𝜕𝑦
 

Equation 82 
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𝜕(𝜌𝑠𝛼𝑠𝑣𝑠
′′𝑣𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑦
+
𝜕(𝜌𝑠𝛼𝑠𝑢𝑠

′′𝑣𝑠
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝜕𝑥

≈
𝜕𝑝𝑠,𝑓𝑖𝑙

𝜕𝑦
−

𝜕 (𝛼𝑠̅̅ ̅𝜇𝑠,𝑓𝑖𝑙 (
4
3
𝜕𝑣̃𝑠
𝜕𝑦

−
2
3
𝜕𝑢̃𝑠
𝜕𝑥
))

𝜕𝑦
−

𝜕 (𝛼𝑠̅̅ ̅𝜇𝑠,𝑓𝑖𝑙 (
𝜕𝑢̃𝑠
𝜕𝑦

+
𝜕𝑣̃𝑠
𝜕𝑥
))

𝜕𝑥
 

Equation 83 

Based on Equation 79 to Equation 83, several comparisons between the resolved simulation results 

and the model predictions can be made to evaluate the performance of the modelling approach using 

the SRM as the second marker. A summary of these comparisons is presented in Figure 27 in the form 

of R2 values (calculated according to the procedure outlined in Chapter 3.2) as a function of the filter 

size. It should be noted that the R2 values in Figure 27 represent the correlation of model predictions 

to individual samples from the resolved TFM data, and not to the conditionally-averaged (i.e., binned) 

data that was used to establish the closure models.   

 

Figure 27 - 𝑹𝟐 values as a function of the dimensionless filter size when comparing model predictions with the 
SRM as marker to observed values for various quantities relevant to the solids mesoscale stresses. 

Firstly, the accuracy of modelling the volumetric force due to the solids mesoscale stresses in both 

momentum equations is evaluated (therefore, the left- and right-hand sides obtained from Equation 

82 and Equation 83 are considered). This comparison is given by the blue lines in Figure 27 and clearly 

shows that the current approach performs poorly at predicting the forces resulting from the solids 

mesoscale stresses. At small filter sizes, the model only achieves 𝑅2 ≈ 0 and the performance 

deteriorates at large filter sizes (i.e., 𝑅2 decreases with increasing filter size, and may reach large 

negative values). It is therefore clear that this modelling approach performs poorly when predicting 

the sub-grid effects due to the solids mesoscale stresses and that further investigation is required to 

determine the cause of this poor performance. 

In the next two steps, the performance of models for the normal solids mesoscale stresses are 

evaluated when using the filtered deviatoric shear rate magnitude as the second marker. Firstly, 

isotropic normal mesoscale stresses are assumed and the mean normal stresses are compared. This 

means that 
1

3
(𝜌𝑠𝛼𝑠𝑢𝑠

′′𝑢𝑠
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜌𝑠𝛼𝑠𝑣𝑠

′′𝑣𝑠
′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) is compared to the model prediction for 𝑝𝑠,𝑓𝑖𝑙, calculated 
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using Equation 77 and the coefficients given in Appendix F.2.1. From the green line in Figure 27, it can 

be seen that an average 𝑅2 of roughly 0.73 is obtained, indicating a good representation of the sample 

data by the closure model. This means that this approach performs very well in predicting the mean 

normal solids mesoscale stresses. 

However, models were also derived for the individual normal components of the solids mesoscale 

stresses (i.e., 𝜌𝑠𝛼𝑠𝑢𝑠
′′𝑢𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝜌𝑠𝛼𝑠𝑣𝑠
′′𝑣𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) using the SRM as the marker (coefficients used in Equation 

77 for these models are given in Appendix F.2.3 and Appendix F.2.4). When comparing the 

corresponding closure model predictions to the solids mesoscale stresses observed in the resolved 

TFM simulations, a significantly lower, although still reasonable, average 𝑅2 of 0.50 is obtained. This is 

shown by the red lines in Figure 27.  

An explanation for the poorer performance when comparing to individual normal stress components 

can be obtained by evaluating the correlation between values of 𝜌𝑠𝛼𝑠𝑢𝑠
′′𝑢𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝜌𝑠𝛼𝑠𝑣𝑠
′′𝑣𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . This 

was done for a large number of samples, and the result is shown in Figure 28. From this comparison, 

it is clear that there is a very poor correlation between 𝜌𝑠𝛼𝑠𝑢𝑠
′′𝑢𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝜌𝑠𝛼𝑠𝑣𝑠
′′𝑣𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Therefore, the 

assumption of isotropic mesoscale fluctuations is clearly incorrect. Subsequently, this means that the 

accuracy of closure models employing the filtered deviatoric shear rate magnitude as a marker will be 

limited, since the SRM is a scalar quantity and can therefore not accurately capture the differences in 

the normal stress components.   

 

Figure 28 - Coefficients of determination as a function of the dimensionless filter size when evaluating the 
correlation between the two diagonal components of the solids mesoscale stresses. The symbols show the 
mean values and the lines the 95% confidence interval.  

Furthermore, it can be seen that the fluctuations tend to become more isotropic (i.e., the correlation 

coefficient 𝑅² increases) as the filter size is increased. This is expected since a larger number of the 

mesoscale structures (i.e., clusters and bubbles) will be smaller than the averaging volume for large 

filter sizes, leading to more isotropic behaviour. Clearly, extremely large filter sizes would have to be 

considered for the mesoscale fluctuations to become truly isotropic. Also, the data shown in Figure 28 

suggests that the increase in 𝑅2 values with increasing filter size halts at large filter sizes. Thus, such 

an asymptotic isotropic behaviour may even not exist. However, this flattening trend is uncertain due 

to rapidly widening 95% confidence bounds of the data set.  
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Another perspective is offered in Figure 29 where plots of 𝜌𝑠𝛼𝑠𝑢𝑠
′′𝑢𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  against 𝜌𝑠𝛼𝑠𝑣𝑠
′′𝑣𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are 

presented at different filter sizes for samples randomly selected over all flow conditions. It is 

immediately clear that no correlation (and hence no isotropy) exists at small filter sizes, but some 

correlation starts to become visible at the largest filter size.  

 

Figure 29 - Plots of 𝝆𝒔𝜶𝒔𝒗𝒔
′′𝒗𝒔

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ against 𝝆𝒔𝜶𝒔𝒖𝒔
′′𝒖𝒔

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ for dimensionless filter sizes of a) 0.643, b) 1.93, c) 6.04 
and d) 18.1. The colour key shows different values of the filtered solids volume fraction. 

However, even though the isotropic SRM marker is clearly not ideal for predicting the observed 

anisotropy of the normal mesoscale stresses, the 𝑅2 values for these stresses remain reasonable in 

both the lateral and vertical directions (see Figure 27). Another reason will therefore have to be found 

for the poor predictions of the total forces resulting from the solids mesoscale stresses.  

Next, the performance of the Boussinesq approximation is evaluated, firstly by looking at the normal 

stresses. Thus, the left- and right-hand sides are compared for each component of the normal stress 

approximation, i.e., that of Equation 79 and Equation 80. The purple lines in Figure 27 show that, when 

the normal components of the mesoscale solids stresses are modelled by the Boussinesq 

approximation, there is a large decrease in the 𝑅2 values (to an average value of approximately 0.02) 

compared to when these stresses are modelled directly, as done in the previous two steps. Applying 

the Boussinesq approximation for modelling the normal mesoscale solids stresses therefore clearly 

worsens the comparison of closure model predictions with observed values.  

Finally, the performance of the closure model for the mesoscale shear stresses can be evaluated by 

comparing the left and the right-hand sides of Equation 81. From the orange line in Figure 27, it can be 
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seen that that 𝑅2 values of less than zero are obtained in this comparison for all filter sizes, with large 

negative 𝑅2 values at large filter sizes. If the approach of modelling the off-diagonal mesoscale stress 

components with the Boussinesq ansatz would be correct, at least some of the variance in the sample 

values of 𝜌𝑠𝛼𝑠𝑢𝑠
′′vs

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ would be explained by −𝛼𝑠̅̅ ̅𝜇𝑠,𝑓𝑖𝑙 (
𝜕𝑢𝑠̃

𝜕𝑦
+
𝜕𝑣𝑠̃

𝜕𝑥
). Clearly, this is not the case since 𝑅2 

can become as low as -3.51 (see Figure 27). 

The challenge of modelling 𝜌𝑠𝛼𝑠𝑢𝑠
′′vs

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ lies therein that the off-diagonal component of the solids 

mesoscale stress tensor, unlike the diagonal components, can assume both positive and negative 

values. By using the viscosity analogy, one thereby assumes a linear dependency between 𝜌𝑠𝛼𝑠𝑢𝑠
′′vs

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

and −(
𝜕𝑢𝑠̃

𝜕𝑦
+
𝜕𝑣𝑠̃

𝜕𝑥
). However, from Figure 30 it is evident that no such trend exists.  

 

Figure 30 – A Plot of 𝝆𝒔𝜶𝒔𝒖𝒔
′′𝒗𝒔

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  against −(
𝝏𝒖𝒔̃

𝝏𝒚
+

𝝏𝒗𝒔̃

𝝏𝒙
). The colour map shows different dimensionless filter 

sizes. 

From the results presented in this section, it is therefore evident that a new method should be 

formulated for modelling the off-diagonal component of the mesoscale stresses (𝜌𝑠𝛼𝑠𝑢𝑠
′′vs

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). Also, it 

was shown that there is room for improvement when modelling the anisotropic normal mesoscale 

stresses, i.e.,  𝜌𝑠𝛼𝑠𝑢𝑠
′′𝑢𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝜌𝑠𝛼𝑠𝑣𝑠
′′𝑣𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . These topics will be addressed in the following section.  

3.6.3 Anisotropic closure model for the solids mesoscale stresses 

By rigorously screening potential markers to correlate the mesoscale stresses with, it was found that, 

in general, a filtered variance quantity in the form of α𝑋′′𝑌′′̅̅ ̅̅ ̅̅ ̅̅ ̅ can be modelled by a marker of the form 

𝛼̅ (
𝑑𝑋̃

𝑑𝑥

𝑑𝑌̃

𝑑𝑥
+
𝑑𝑋̃

𝑑𝑦

𝑑𝑌̃

𝑑𝑦
). In what follows, the latter is called the gradient product marker (GPM). Most 

importantly, it will be shown below that the GPM appears to correlate well with all solids mesoscale 

stress components. Therefore, each component of the solids mesoscale stress tensor can be modelled 

as: 

𝛴̂𝑠,𝑓𝑖𝑙,𝑖𝑗 = 𝑓(𝛥̂𝑓 , 𝛼𝑠̅̅ ̅, 𝛭̂𝑖𝑗) Equation 84 

, where: 
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𝛭𝑥𝑥 = 𝛼𝑠̅̅ ̅ ((
𝑑𝑢𝑠̃
𝑑𝑥
)
2

+ (
𝑑𝑢𝑠̃
𝑑𝑦
)
2

) Equation 85 

𝛭𝑥𝑦 = 𝛼𝑠̅̅ ̅ (
𝑑𝑢𝑠̃
𝑑𝑥

𝑑𝑣𝑠̃
𝑑𝑥

+
𝑑𝑢𝑠̃
𝑑𝑦

𝑑𝑣𝑠̃
𝑑𝑦
) Equation 86 

𝛭𝑦𝑦 = 𝛼𝑠̅̅ ̅ ((
𝑑𝑣𝑠̃
𝑑𝑥
)
2

+ (
𝑑𝑣𝑠̃
𝑑𝑦
)
2

) Equation 87 

and the GPM is non-dimensionalized using Μ̂𝑖𝑗 = Μ𝑖𝑗𝑣𝑡
2/𝑔2.  

Figure 31 qualitatively illustrates that there is a good correlation between the individual components 

of the mesoscale stresses and their respective GPMs for an intermediate domain-averaged volume 

fraction and filter size. This correlation is strong even without considering an additional marker, e.g., 

the filtered solids volume fraction (included in panel a) in Figure 31). Also, it is clear from Figure 31 that 

large values for the two different normal stresses appear in different regions, again emphasising the 

need for different markers for the individual stress components.  

The good performance of the GPM rests on the fact that, in one-dimensional space, the quantity 𝑋′𝑌′̅̅ ̅̅ ̅̅  

can be exactly described as 𝑘
𝑑𝑋̅

𝑑𝑥

𝑑𝑌̅

𝑑𝑥
 if both variables vary linearly inside the averaging region. In this 

case 𝑋′ and 𝑌′ are the differences from the algebraic averages of 𝑋 and 𝑌 and 𝑘 is a proportionality 

factor. In the case of such a linear variation 𝑘 =
𝑑𝑥2

12
(𝑛 + 1)(𝑛 − 1), where 𝑑𝑥 is the cell size and 𝑛 is 

the number of cells in the averaging region. It was also found that when phase-weighted variables are 

considered, as in the case of the solids mesoscale stresses, 𝑘𝛼̅
𝑑𝑋̃

𝑑𝑥

𝑑𝑌̃

𝑑𝑥
 is a very good approximation of 

𝛼𝑋′′𝑌′′̅̅ ̅̅ ̅̅ ̅̅ ̅, where 𝑋′′ and 𝑌′′ are the fluctuations of the quantities 𝑋 and 𝑌 around their Favre averages. 

Naturally, this approximation will degrade in situations where the quantities of interest do not vary 

linearly inside the averaging region. Hence, it may be expected that this approximation will perform 

better for small filter sizes (i.e., in situations where the averaging region is smaller than the typical 

mesoscale structures), and will gradually worsen as the filter size is increased.   
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Figure 31 - A comparison of the solids mesoscale stress components to their respective GPMs for a domain-
averaged solids volume fraction of 0.2 and a dimensionless filter size of 3.47. In general, the dimensionless 
stresses are shown on the left and the corresponding dimensionless GPM on the right. Specifically, plots are 

shown for a) the filtered solids volume fraction, b) 𝜮̂𝒔,𝒇𝒊𝒍,𝒙𝒙, c) 𝜧̂𝒙𝒙, d) 𝜮̂𝒔,𝒇𝒊𝒍,𝒚𝒚, e) 𝜧̂𝒚𝒚, f) 𝜮̂𝒔,𝒇𝒊𝒍,𝒙𝒚 and g) 𝜧̂𝒙𝒚. 
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Similar to the SRM, the GPM rapidly decreases with filter size, leading to a poor distribution of the 

samples in the bins. For this reason, the GPM is scaled for the binning process as follows: 

𝛭𝑖𝑗
∗ =

𝑀̂𝑖𝑗

𝑎𝛥̂𝑓
(𝑏+𝑐𝛥̂𝑓)

 Equation 88 

The following values were obtained for the coefficients. For 𝛭𝑥𝑥
∗ : 𝑎 = 0.291, 𝑏 = −1.11 and 𝑐 =

−0.0117.  For 𝛭𝑥𝑦
∗ : 𝑎 = 0.177, 𝑏 = −1.16 and 𝑐 = −0.0154.  For 𝛭𝑦𝑦

∗ : 𝑎 = 0.362, 𝑏 = −1.12 and 

𝑐 = −0.0163.   

From an analysis of the binned data it was found that the following general expression can be used to 

model the individual components of the solids mesoscale stress tensor: 

𝛴̂𝑠,𝑓𝑖𝑙,𝑖𝑗 = 𝑠𝑖𝑔𝑛(𝛭̂𝑖𝑗) (
2

𝜋
)
2

𝑥1 atan (𝑥2𝛥𝑓
∗ 𝑥3𝛭̂𝑖𝑗

𝑥4(𝛼𝑠̅̅ ̅ + 𝑥5))

× atan(𝑥6𝛥𝑓
∗𝑥7𝛭̂𝑖𝑗

𝑥8max(𝑥9 − 𝛼𝑠̅̅ ̅, 0)) 𝛥𝑓
∗ 𝑥10𝛭̂𝑖𝑗

𝑥11+𝑥12𝛥𝑓
∗ 𝑥13

+𝐷 (
2

𝜋
)
2

𝑥14 atan(𝑥15𝛼𝑠̅̅ ̅) atan(𝑥16max(𝑥17 − 𝛼𝑠̅̅ ̅, 0)) 𝛥𝑓
∗𝑥18

 Equation 89 

Apart from using the GPM as the second marker, the shape of the equation is similar to that of Equation 

77. This is because, similarly to the shear rate magnitude-based closure models, the mesoscale stresses 

tend to increase with increasing values of the GPM and reach a maximum at an intermediate filtered 

solids volume fraction. However, a change in the volume fraction dependency is introduced. It was 

found that the reduction of the mesoscale stresses towards low solids volume fractions could be better 

captured by using an arctangent function. Similar to the arctangent that causes the reduction in the 

mesoscale stresses at very high volume fractions, the rate of the reduction in the stress with changing 

volume fraction is a function of the filter size and the value of the GPM.  

It should be noted that the stress does not become zero when the filtered solids volume fraction tends 

to zero, as can be noted from the binned data shown in Figure 33.  To include this effect, the coefficient 

𝑥5 is added to the filtered solids volume fraction within the arctangent used in Equation 89.  It should 

be noted that, despite this addition, the physical limit of zero mesoscale solids stresses at a filtered 

solids volume fraction of zero is still obeyed. Specifically, if the filtered solids volume fraction is zero, 

the second term in Equation 89 will vanish. Furthermore, since the filtered solids volume fraction is 

zero, the GPM will also have a zero value, resulting in the first term in Equation 89 also vanishing. As a 

result, the correct limit for dilute flows is obeyed in the developed closure model. 

It should be noted that, as for the isotropic model presented in Chapter 3.6.1, the complex form of 

Equation 89 with many coefficients is used to minimize the error in the model fit, allowing a clear 

comparison of the two modelling approaches investigated for the solids mesoscale stresses. However, 

to demonstrate that a simpler closure could also accurately predict the solids mesoscale stresses, an 

anisotropic closure using fewer coefficients than the one discussed in this section is presented in 

Appendix F.2.5. The relative performance of these two closure models will be assessed in the next 

section. 

A benefit of using the GPM as the second marker was identified when analysing the binned results: 

separate models were not necessary for the different components of the solids mesoscale stresses as 
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long as the GPM is calculated using appropriate gradients (as shown in Equation 85 to Equation 87) 

and 𝐷 = 1 for the normal components and 𝐷 = 0 for the off-diagonal components of the solids 

mesoscale stress tensor. Therefore, the normal solids mesoscale stresses contain an additional 

contribution that is independent of the GPM that is not present in the shear components (second term 

in Equation 89). This contribution is due to other sources of the solids mesoscale stresses than the 

solids velocity gradients, for example the interfacial work as discussed by Schneiderbauer [20], that is 

not accounted for in the present model. It can be noted that the additional contribution is likely also 

present in the shear mesoscale stresses, but negative values and positive values tend to cancel each 

other around GPM values of zero, causing the mean shear mesoscale stresses to be zero at zero GPMs, 

as seen later in Figure 33. 

Based on the finding above, a single model was therefore fitted to the binned data for all components 

of the solids mesoscale stress tensor. This resulted in a fit with 𝑅2 = 0.989 using the following 

coefficient values: 𝑥1 = 0.542, 𝑥2 = 2.53, 𝑥3 = 0.102, 𝑥4 = −0.460, 𝑥5 = 0.0400, 𝑥6 = 3.66, 𝑥7 =

0.876, 𝑥8 = 0.213, 𝑥9 = 0.685, 𝑥10 = 1.75, 𝑥11 = 0.80, 𝑥12 = 0.593, 𝑥13 = −0.218, 𝑥14 = 56.0, 

𝑥15 = 2.61, 𝑥16 = 0.00743, 𝑥17 = 0.601 and 𝑥18 = 1.03. It can be noted that, in the first term of 

Equation 89, the exponent of the filter size factor (𝑥10) is 1.75, which is slightly lower than the 

exponents of around 2 that has been reported in literature [13-15, 20] for the SRM-based filtered solids 

pressure closures. The exponent of the GPM factor (𝑥11 + 𝑥12𝛥𝑓
∗𝑥13) ranges from 1.60 at the smallest 

filter size and 1.12 at the largest filter size considered in this study. Noting that the GPM is comparable 

to the SRM squared, the GPM exponent is therefore only slightly larger than the SRM exponents of 

around 2 reported in literature [13-15] at the larger filter sizes considered. An example of the model 

fit is given for the vertical direction normal solids mesoscale stresses in Figure 32 and for the absolute 

value of the shear solids mesoscale stresses in Figure 33. 

 

Figure 32 - Comparison of the binned data (symbols) to the model fit (lines) for the dimensionless y-direction 
diagonal component of the solids mesoscale stress as a function of a) the filtered solids volume fraction and 
b) the scaled gradient product marker. 
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Figure 33 - Comparison of the binned data (symbols) to the model fit (lines) for the dimensionless off-diagonal 
component of the solids mesoscale stress as a function of a) the filtered solids volume fraction and b) the 
scaled gradient product marker. 

As can be seen from the binned data in Figure 32 and Figure 33, the proposed closure model is able to 

accurately capture the general trends in the data, as well as the difference in the normal and the shear 

components by setting the second term in Equation 89 to zero when predicting the shear solids 

mesoscale stresses. It should be noted that although only the data for positive shear GPMs are shown 

in Figure 33, if the GPM had a negative sign, the stress would be equal in magnitude, but also take on 

a negative sign. For this reason, the first term in Equation 89 is multiplied by the sign of the GPM. Since, 

from the definitions in Equation 85 and Equation 87, the normal GPMs are always positive, the 

predicted normal solids mesoscale stresses will also always be positive, as observed in the binned data. 

3.6.4 A priori analysis of the anisotropic solids mesoscale stress closure 

Using the proposed anisotropic solids mesoscale stress closure, a similar comparison as in Chapter 

3.6.1 can be performed for the closure model predictions and the observations in the resolved TFM 

simulation data. Similar comparisons to that in Figure 27 are made in Figure 34, except that the 

comparison of the average of the normal mesoscale stresses to the model predictions is excluded. This 

is because the earlier results showed that the normal fluctuations are highly anisotropic, therefore 

evaluating the performance of the model in predicting the average of the normal stresses is 

meaningless since these normal stresses are evaluated in different momentum equations. From 

inspecting the 𝑅2 values summarized in Figure 34 for the prediction of the volumetric force due to the 

solids mesoscale stresses (blue lines), it is clear that the model using the anisotropic GPM compares 

substantially better to the sample data from resolved simulations than the model using the isotropic 

SRM as marker that was presented previously. Over all filter sizes, the GPM model shows good 

performance with an average 𝑅2 of 0.620. A still reasonable minimal value of 𝑅2 (i.e., 0.47) for the 

vertical direction force at the largest filter size further illustrates the robustness of the GPM-based 

closure model.  



 

67 

 

 

Figure 34 - R2 values as a function of the dimensionless filter size when comparing model predictions with the 
anisotropic GPM as marker to observed values for various components of the solids mesoscale stress tensor. 

The average 𝑅2 for the normal solids mesoscale stresses (red lines in Figure 34) is 0.74, which is a 

significant improvement over the value of 0.50 that was obtained when using the isotropic SRM as 

marker to model the individual components of the normal mesoscale solids stresses. It is therefore 

clear that, by accounting for the anisotropy of the normal components of the solids mesoscale stresses 

by using an anisotropic marker, substantially more of the variance in the resolved simulation data can 

be explained. However, it is in the prediction of the shear mesoscale stress (orange line in Figure 34) 

that the largest improvement is made. Whereas the solids viscosity approach detailed in Chapter 3.6.1 

failed in predicting 𝜌𝑠𝛼𝑠𝑢𝑠
′′vs

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ correctly, the closure model predictions for the solids mesoscale shear 

stress component based on the GPM are much more reasonable. Specifically, a similar accuracy 

(average 𝑅2 = 0.70) to that observed for the normal components can be demonstrated. Again, this is 

because there is a clear correlation between 𝜌𝑠𝛼𝑠𝑢𝑠
′′vs

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and the GPM, which can also adequately 

predict the sign of 𝜌𝑠𝛼𝑠𝑢𝑠
′′vs

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. An example of this correlation is provided for the largest filter size (i.e., 

the most challenging situation) in Figure 35. 
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Figure 35 - The dimensionless off-diagonal solids mesoscale stress plotted against the dimensionless gradient 
product marker. The colour key shows the filtered solids volume fraction. 

From Figure 34, it can be noted that there is a general decrease in the model performance as the filter 

size is increased. As explained earlier, this is because the GPM marker works best in predicting the 

velocity fluctuations when the gradient inside the filtered region is relatively uniform. However, as the 

filter size increases, some of the structures (bubbles and clusters) will become smaller than the 

averaging region. This means that the mean gradient over the filter can deviate substantially from the 

gradient at specific regions within the filter, leading to a poorer performance of the GPM. Future work 

can potentially look at markers that can improve the model performance at large filter sizes, although 

the proposed model already represents a large improvement over the current state of the art.  

It can be noted that the sudden deviation from the trend of better model performance at smaller filter 

sizes at the smallest filter size is simply because the model fit to the binned data becomes relatively 

poorer at small filter sizes, when the stresses also become small. Despite this, the model fit over the 

large spectrum of filter sizes appears acceptable. It is expected that, in general, the ability of GPM-

based models to predict the solids mesoscale stresses will improve as the filter size becomes smaller, 

therefore very accurate models could be derived specifically for small filter sizes. 

As mentioned earlier, a simplified version of the anisotropic solids mesoscale stress closure was also 

derived, only considering Δ̂𝑓≥ 1.93 for the model fit and reducing the number of coefficients from 18 

to 11. This closure model is given in Appendix F.2.5. From Figure 34, it can be seen that the simplified 

closure model (green lines) predicts the forces resulting from the solids mesoscale stresses to a similar 

accuracy as the more elaborate closure model for the larger filter sizes (i.e., those used in the 

derivation of the simplified closure model). At the second smallest filter size considered, the simplified 

closure model performs slightly poorer. However, surprisingly, the simplified closure model performs 

better at the smallest filter sizes. Therefore, it appears that by using the scaled filter size in the closure 

model, the closure model can be accurately extrapolated to the limit of having the filter size equal to 

the grid size in the resolved simulations. Based on this excellent performance of the simplified closure 

model, it can be argued that, if necessary, the closure model can still be further simplified compared 

to Equation 121, while maintaining acceptable accuracy. 

In general, it can be concluded from this section that it is essential to model the solids mesoscale 

stresses in a way that accounts for the anisotropy of the sub-grid solids velocity fluctuations. While the 
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correlation with the data in the resolved simulations has been improved substantially by accounting 

for the anisotropy of the stresses, the verification performed in Chapter 4, Chapter 5.1 and Chapter 

5.2 will evaluate the practical benefits of this improvement in coarse grid simulations. 

3.7 Frictional stress closures 

It was found in the investigation discussed in Appendix B, that the qualitative behaviour of the sub-

grid contributions that require closure in fTFMs change when frictional stresses are included in the 

resolved simulations used for model derivation. This is because the frictional stresses cause the dense 

regions to become more homogenous, thereby reducing the effect of mesoscale structures in very 

dense regions. Based on this finding, a closure for predicting the frictional pressure was included in the 

resolved simulations to account for this physical behaviour of fluidized beds. 

It was found that, at large filtered solids volume fractions, the filtered frictional pressure became 

significant compared to the solids mesoscale stresses. The filtered frictional stresses will therefore 

tend to prevent the coarse grid simulations from entering very dense regions that did not occur in the 

resolved simulations. Since most of the fTFM closures change rapidly near the dense volume fraction 

limit, it was deemed necessary to include a closure for the filtered frictional pressure. 

3.7.1 Filtered frictional pressure closure 

It was found that the filtered frictional pressure could be modelled as a function of the filtered solids 

volume fraction and the filtered deviatoric shear rate magnitude (SRM), as defined in Chapter 3.6.1. 

Since the filtered frictional pressure is an isotropic quantity, the use of the scalar-valued SRM as an 

independent variable will not pose a problem. From the expression given in Equation 90, it can be seen 

that the closure for the filtered frictional pressure contains two parts: one that is correlated to the 

SRM and another that is independent of the SRM. Both parts increase with the filter size, although the 

rate of increase with the filter size is greater for the first, SRM dependent term. Additionally, both 

terms increase exponentially with the filtered solids volume fraction. However, the SRM independent 

term is defined in such a way that it increases extremely rapidly towards the dense volume fraction 

limit beyond a certain solids volume fraction, specified by 𝑥12. 

𝑝̅𝑠,𝑓𝑟𝑖𝑐

𝜌𝑠𝑣𝑡
2 = 𝛼̅𝑠

𝑥1𝛥𝑓
∗ 𝑥2+𝑥3𝛥𝑓

∗ 𝑥4

(𝑥5‖𝑆̂𝑠,𝑓𝑖𝑙‖
𝑥6+𝑥7𝛥𝑓

∗ 𝑥8

𝛥𝑓
∗𝑥9 + 𝑥10

𝑒𝑥11max(𝛼̅𝑠−𝑥12,0)

(𝛼𝑠,max − 𝛼̅𝑠)
𝑥13
) Equation 90 

The proposed closure yields a good fit to the binned data (i.e., 𝑅2 = 0.965) with the following 

coefficients: 𝑥1 = 2.78, 𝑥2 = 1.00, 𝑥3 = −0.0726, 𝑥4 = 0.722, 𝑥5 = 0.124, 𝑥6 = 2.00, 𝑥7 =

−0.0689, 𝑥8 = 0.684, 𝑥9 = 0.807, 𝑥10 = 7.38 × 10
−6, 𝑥11 = 36.0, 𝑥12 = 0.485, 𝑥13 = 3.64 and 

𝛼𝑠,max = 0.63 (the latter is the maximum packing specified in the resolved simulations).  

Figure 36 shows the model predictions compared to the binned data for the filtered frictional pressure. 

By comparing the dimensionless filtered frictional pressure values to the normal mesoscale stresses in 

Figure 32, it can be seen that, although smaller, the filtered frictional pressure may have a significant 

contribution at large filtered solids volume fractions. The binned data also shows that substantial 

filtered frictional pressures may occur significantly below a solids volume fraction of 0.5, where 

frictional stresses start in the resolved simulations. This is because a filtered region, especially at large 

filter sizes, may be at an intermediate filtered solids volume fraction, but may still contain very dense 
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regions where frictional stresses occur. It is found that such situations are more likely to occur at large 

filtered shear rates, therefore the correlation with the SRM appears reasonable. Lastly, it can be seen 

that, although the filtered frictional pressures tend to increase with the filter size, large filtered 

frictional pressures are not observed for the largest filter size. This is because the maximum filtered 

solids volume fraction, as well as the average SRM, in the binned data from the resolved simulations 

tend to decrease with increasing filter sizes. 

 

Figure 36 - The filtered frictional pressure as a function of a) the filtered solids volume fraction and b) the 
dimensionless filtered deviatoric shear rate magnitude for different filter sizes. The symbols show the binned 
data and the lines the model predictions. 

3.7.2 A priori analysis of the filtered frictional pressure closure 

As in previous sections, the coefficient of determination is calculated by comparing the model 

predictions to the observed values. This is done for both (i) the resolved data for the filtered frictional 

pressure, and (ii) for the volumetric forces resulting from the filtered frictional pressure. The results in 

Figure 37 show that the model for the filtered frictional pressure explains a large amount of variance 

in the resolved simulation data at the smaller filter sizes considered. However, the correlation 

coefficient decreases rapidly with increasing filter size, therefore the predictive capability of the 

proposed model decreases at large filter sizes. As previously noted, the binned data suggests that the 

filtered frictional pressure becomes less important at larger filter sizes, therefore the decrease in the 

𝑅2 values at large filter sizes may not have a substantial effect on the model accuracy in coarse grids 

simulations. Also, even at the minimum 𝑅2 value of around 0.1, the model can be expected to 

reasonably predict the mean effects of the filtered frictional pressure. The proposed model can 

therefore be expected to adequately fulfil the required purpose, namely to prevent very dense regions 

from occurring in coarse grid simulations. 
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Figure 37 - R2 values as a function of the dimensionless filter size when comparing model predictions with the 
observed values for various quantities relevant to the filtered frictional pressure. 

3.7.3 Filtered frictional viscosity 

From Equation 16 and Equation 17 it can be seen that the frictional viscosity is multiplied with the 

deviatoric shear rate before averaging. This results in three different, anisotropic quantities that have 

to be closed to include the effects of the frictional viscosity in the coarse grid simulations. From 

experience, closing anisotropic quantities is a much more complex task than closing isotropic 

quantities, such as the filtered frictional pressure. Therefore, it can be expected that closing the filtered 

frictional viscosity contributions would be a time consuming and complex task. 

Fortunately, the resolved simulation data suggests that the filtered frictional viscosity contributions 

are significantly smaller than the filtered frictional pressure. Furthermore, the contribution of the 

frictional viscosity decreases with increasing filter size. The absolute value of the forces resulting from 

the filtered frictional viscosity contributions are on average approximately 3.5 times smaller than the 

absolute values of the forces resulting from the filtered frictional pressure when Δ̂𝑓= 1.93, and about 

5 times smaller when Δ̂𝑓= 18.2. It addition, the forces due to the frictional pressure are already 

significantly smaller than those arising from the filtered drag force, the solids mesoscale stresses and 

the mesoscale interphase force. Experience with performing coarse grid simulations also indicated that 

the closure for the filtered frictional pressure has only a minor effect for the cases considered in the 

present study. Based on these findings, it is concluded that for the filter sizes that are of significance 

for the present study, little additional accuracy would be achieved by closing the filtered frictional 

viscosity contributions. Such a closure is therefore not developed. 

It should be noted, however, that, in specific cases where large, dense, frictional regions are present, 

closures for the filtered frictional contributions may be more important than in the present study. 

Furthermore, it is known that the accuracy of the frictional pressure and viscosity models used in this 

study is debatable and more realistic models have been proposed more recently [56, 57]. Therefore, it 

is suggested that if fTFM closures are required for a case where the frictional stresses are of critical 

importance, new resolved simulations should be performed with more advanced frictional stress 

models to generate data for closure development. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 10 100

R
2

Dimensionless filter size

Force-x

Force-y

FP



 

72 

 

3.8 Species transport closures 

3.8.1 Mesoscale species dispersion rate closures 

In the filtered species transport equation (Equation 19), 𝛼𝑔𝑋𝐴
′′𝜐⃗𝑔

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ requires closure. In the present 

study, the fTFM closure model developed by Agrawal et al. [27], where the mesoscale species 

dispersion is modelled as an added species diffusivity, is used. Since analysis of the closure model in 

the verification study in Chapter 4.1.3 showed that the mesoscale species dispersion had only a minor 

effect on the overall reactant conversion, no attempt was made to develop an improved closure model 

in the present study.  

However, it can be speculated that the mesoscale species dispersion could potentially be closed using 

a similar approach as for the solids mesoscale stresses (see Chapter 3.6.3). Thus, a GPM-based marker 

could be used to refine the fidelity of the closure for the mesoscale dispersion rate. In this case, the 

GPM would then be the product of the filtered species mass fraction and the filtered gas phase velocity 

gradients. Such an approach will be investigated in future studies. 

3.8.2 Filtered reaction rate closures 

In this section, the filtered reaction rate in Equation 19, 𝑘𝐴𝜌𝑔𝛼𝑠𝑋𝐴̅̅ ̅̅ ̅̅ , will be closed as follows: 

𝑘𝐴𝜌𝑔𝛼𝑠𝑋𝐴̅̅ ̅̅ ̅̅ = R𝑘𝐴𝜌𝑔𝛼𝑠̅̅ ̅𝑋̃𝐴 Equation 91 

Due to mass transfer limitations imposed by the mesoscale structures, the filtered reaction rate is 

reduced compared to the reaction rate evaluated as the filtered values, i.e., 𝑘𝐴𝜌𝑔𝛼𝑠̅̅ ̅𝑋̃𝐴. This effect is 

therefore compensated for in the coarse grid simulations by deriving a closure model for the reaction 

rate correction factor, 𝑅, defined as follows: 

R =
𝛼𝑠𝑋𝐴̅̅ ̅̅ ̅̅

𝛼𝑠̅̅ ̅𝑋̃𝐴
 Equation 92 

This methodology is analogous to the use of the drag correction factor presented in Chapter 3.4.1. 

Nevertheless, it should be noted that, since the filtered reaction rate is a scalar quantity, this approach 

does not suffer from the same issues as those associated with the filtered drag force. 

In the periodic simulations used for data generation, a problem is faced in calculating the filtered 

reaction rate correction in that 
AX  tends to zero as the reactant is converted. For this reason, the 

reactant mass fraction is scaled with the domain-averaged reactant mass fraction to produce a scaled 

reactant mass fraction, 𝜅𝐴= 𝑋𝐴 〈𝑋𝐴〉𝑑⁄ . Based on this scaled variable, the reaction rate correction 

factor can then be redefined as: 

R =
𝛼𝑠𝜅𝐴̅̅ ̅̅ ̅̅

𝛼𝑠̅̅ ̅𝜅̃𝐴
 Equation 93 

The only fTFM closure for the reaction rate in literature [28] follows a somewhat different approach, 

where the filtered reaction rate is corrected for non-local effects. It should be noted that such an 

approach was first followed in this study as well. A closure derived based on such a non-locally 

corrected reaction rate correction factor is presented in Appendix F.3.1. This model was used in initial 
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verification studies in partially-periodic domains presented in Chapter 4, where there was not a clear 

difference in the performance of the non-locally corrected closure and the closure using the definition 

in Equation 92. However, in a later verification study in a wall-bounded domain, it was found that, 

when the hydrodynamics were correctly predicted, the non-locally corrected closure tended to 

overpredict the conversion. In this case, the definition in Equation 92 yielded better results, and will 

therefore be focussed on in what follows. 

Similar to the work of Holloway & Sundaresan [28], it was found that the reaction rate correction is a 

strong function of the filtered solids volume fraction, and that the largest reduction in the reaction 

rate occurs at intermediate filtered solids volume fractions. No correction is necessary at the dilute 

and dense volume fraction limits, as expected. Furthermore, it was found that the reaction rate 

correction factor depends on the scaled slip velocity magnitude, as defined in Chapter 3.4.1.2. 

Specifically, the reduction in the reaction rate tends to increase with increasing scaled slip velocity 

magnitude because the slip velocity is correlated with the amount of sub-grid heterogeneity.  

It should also be noted that the closure model developed by Holloway & Sundaresan [28] also included 

a mesoscale Thiele modulus (i.e., a scaled reaction rate) and the Schmidt number as independent 

variables. In the present study, the focus is placed on determining (i) how accurately the reaction rates 

can be predicted on coarse grids, and (ii) how the hydrodynamic fTFM closures influence the reactive 

predictions on coarse grids. To limit the scope, the present study therefore only considers a single 

reaction rate constant, 𝑘𝐴, and species mass diffusivity, 𝐷, given in Table 2. The reaction rate constant 

is specified such that the mesoscale Thiele modulus, 𝜑 = √𝑘𝐴𝑑𝑝
2/𝐷 = 0.16. The closure model in this 

study is therefore derived specifically for verification purposes and will be extended in the future to be 

of practical used for large scale, non-isothermal fluidized bed reactor studies. 

Based on the binned data, it is found that the reaction rate correction factor can be closed as in 

Equation 94. It can be noted that a scaled version of the reaction rate correction factor is used in the 

closure expression. As with the drag correction factor in Chapter 3.4.1, when the reduction of the 

filtered reaction rate is large, i.e., 𝑅 is small, the filtered reaction rate is sensitive to small changes in 

the value of 𝑅. Using the scaled reaction rate correction factor, −log(𝑅), more emphasis is placed on 

these areas of large correction to ensure that the closure model is accurate in these critical regions.  

In Equation 94, the first two arctangent functions ensure that there is no correction in the reaction 

rate at the dilute and dense volume fraction limits and that the correction reaches a maximum at 

intermediate filtered volume fractions. The rate at which the correction reduces towards the dilute 

and dense volume fraction limits is additionally a function of the filter size. Next, two terms contribute 

towards the reaction rate correction. The first is proportional to the base-10 logarithm of the scaled 

filtered slip velocity magnitude and independent of the filter size. This contribution tends to disappear 

as small filtered slip velocities. The second contributing term is independent of the scaled filtered slip 

velocity magnitude. Additionally, this term increases with the filter size and plateaus for very large 

filter sizes.  

−log(𝑅) = (
2

𝜋
)
3

atan(𝑥1𝛥𝑓
∗ 𝑥2𝛼̅𝑠) atan(𝑥3𝛥𝑓

∗ 𝑥4max(x5 − 𝛼̅𝑠, 0))

× (𝑥6 atan(𝑥7‖𝜐𝑠𝑙𝑖𝑝̃
∗‖) log‖𝜐𝑠𝑙𝑖𝑝̃

∗‖ + 𝑥8atan(𝑥9𝛥𝑓
∗)) 

Equation 94 
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The fit to the binned data shown in Figure 38 is achieved with the following coefficients: 𝑥1 = 5.66, 

𝑥2 = 0.0118, 𝑥3 = 25.0, 𝑥4 = 0.232, 𝑥5 = 0.559, 𝑥6 = 0.341, 𝑥7 = 0.380, 𝑥8 = 1.09 and 𝑥9 =

0.683. The binned data also clearly show the importance of accounting for the effect of the filtered 

slip velocity magnitude in the closure model.  

 

 

Figure 38 - The scaled reaction rate correction factor, −𝒍𝒐𝒈(𝑹), as a function of a) the filtered solids volume 
fraction and b) the scaled filtered slip velocity magnitude. The symbols show the binned data from the resolved 
simulations and the lines the model predictions. 

3.8.3 A priori analysis of the filtered reaction rate closures 

As with the previous closure models, the performance of the filtered reaction rate closure will next be 

analysed by comparing observed values in the resolved simulation data to model predictions. Here the 

scaled filtered reaction rate, 𝑘𝐴𝜌𝑔𝛼𝑠𝜅𝐴̅̅ ̅̅ ̅̅ , is considered. To give context to the performance of the 

closure model developed in this section, a simple 1-marker was derived as well for the reaction rate 

correction factor. The information for this closure model is given in Appendix F.3.2. It can further be 

noted that these closures, developed during the early stages of the present study, consider filter sizes 

from Δ̂𝑓= 0.643 to Δ̂𝑓= 10.4. However, the performance of the closure models will still be evaluated 

for Δ̂𝑓≥ 1.93, the filter sizes that are considered most relevant for industrial scale simulations. 

Figure 39 compares the performance of the 1-marker and 2-marker closure models for predicting the 

filtered reaction rate. The 2-marker closure performs slightly better for most filter sizes, but the mean 

𝑅2 for the 1-marker model always falls within the 95% confidence interval of the 2-marker model. 

Therefore, adding the scaled filtered slip velocity magnitude as the second marker does not 

substantially improve the predictive capability of the closure model. Future work should therefore 

consider alternative second markers that may lead to larger improvements in the closure model 

performance. However, it should be noted that the 𝑅2 values calculated for the filtered reaction rate 

is significantly higher than those of all hydrodynamic closures considered earlier in this chapter. It 

therefore appears that the variability of the effect of the mesoscale structures on the filtered reaction 

rate is relatively small. Both closure models should therefore be able to precisely predict the filtered 

reaction rate in coarse grid simulations. Due to the minor difference in the 𝑅2 values when using the 

1-marker and 2-marker closures, their relative performance will not be further considered during the 
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verification studies in Chapter 4, Chapter 5.1 and Chapter 5.2. Therefore, the 2-marker closure model 

is used for the rest of this study. 

 

Figure 39 – The 𝑹𝟐 when comparing the observed and predicted values of the scaled filtered reaction rate, 
𝒌𝑨𝝆𝒈𝜶𝒔𝜿𝑨̅̅ ̅̅ ̅̅ ̅, as a function of the dimensionless filter size. The dotted lines show the 95% confidence interval 

for the 2-marker model. 
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Chapter 4: Verification of fTFM closures in a partially-

periodic domain 

In this chapter, the closure models derived in the previous chapter will be evaluated in an a posteriori 

manner: by comparing the results of coarse grid simulations employing the fTFM closures to 

benchmark results from resolved simulations. These verification studies will help to improve the 

understanding of how the different closures behave, reveal the progress that was made with the 

closures developed in this study and help to identify limitations of the existing closures that will be 

addressed in future studies. 

It should be noted that for this entire chapter, as well as in Chapter 5.1 and Chapter 5.2, the same 

particle and fluid properties as presented in Chapter 3.1.3, i.e., those used for deriving the fTFM 

closures, are used. Additionally, to allow the detailed verification performed in the present chapter, all 

simulations are performed in 2D. As previously discussed, development and verification in 2D allows a 

more detailed analysis of the closure performance with current computational resources. The 

improved understanding developed in this study can then be applied in the future to develop closure 

models from 3D resolved simulation data. 

Early 1-marker fTFMs [16, 19] developed from periodic simulations are known to fail in wall-bounded 

domains without dedicated wall-correction functions. Later 2-marker-based closure models [13, 14] 

have been shown to offer improved performance in wall-bounded domains, and it has been speculated 

that these more advanced closure models may not require wall-corrections [13, 26]. However, this 

claim has not been deeply analysed in the literature. Due to the uncertainty regarding the ability of 

fTFMs to accurately predict the sub-grid corrections in near-wall regions, the verification in this chapter 

aims to minimise the effect that wall-regions have on the simulations. These preliminary verification 

cases were used to assess the performance of existing fTFMs in literature to better understand the 

improvements that are necessary, as well as to test closures during the development phase in the 

present study. 

4.1.1 Simulation setup 

Coarse grid simulations using fTFM closures are performed using grid sizes of 20 mm (267𝑑𝑝), 40 mm 

(533𝑑𝑝) and 80 mm (1067𝑑𝑝). In the present study, such simulations will be referred to as “filtered 

simulations”, since they solve the transport equations of the filtered variables given in Chapter 2.2. A 

resolved TFM simulation, used as benchmark to assess the performance of fTFM closures, is performed 

on a grid of 0.884 mm (11.8𝑑𝑝). It should be noted, that due to the large domain considered in this 

section, it was computationally infeasible to use the same grid size for the benchmark resolved 

simulations as was used in the fully-periodic simulations used for model development, i.e., 0.625 mm 

(8.33𝑑𝑝). However, it was tested that the solution of the verification case only changed slightly when 

refining the grid from 1.25 mm to 0.884 mm (see Figure 40). Therefore, the solution is expected to 

change even less when refining to 0.625 mm. Considering this, for the preliminary evaluation purposes 

of the verification performed in this chapter, a grid size of 0.884 mm for the benchmark resolved 

simulations is a reasonable compromise between accuracy and computational cost. 
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Figure 40 - Analysis of the grid dependence of the results for the bubbling verification case. The solid lines 
show the time-averaged solids volume fraction for a 0.884 mm grid, and the dotted lines for a 1.25 mm grid. 
The different colours show the vertical profiles at three different lateral positions. 

In this section, a rectangular region (referred to as the “fluidization region”) is considered, with an inlet 

at the bottom and periodic boundaries at the sides. The size and the aspect ratio of this region changes 

for the three cases considered in this section, as described in Table 4. Periodic boundaries are selected 

to eliminate uncertainties arising from wall effects in this preliminary verification, since the closure 

models evaluated in this study were derived from data collected from fully-periodic simulations. To 

prevent numerical instabilities due to backflow, walls slope at 45° from the top of the rectangular 

region towards an outlet with a width of 0.08 m. The solids boundary conditions at the walls are 

specified as free-slip to prevent backflow into the fluidization region and thereby minimize the effect 

of the walls on the flow in this region. The simulated domains can be seen in Figure 43 to Figure 45. 

Table 4 - Description of the configuration for the three verification cases 

Case 
Fluidization region 

height (m) 

Fluidization region 

width (m) 

Average gas superficial 

velocity (m/s) 

Bubbling 1.6 0.96 0.468 

Turbulent 2.26 0.679 2.07 

Fast fluidization 3.2 0.48 5.01 

Three cases, operated in different fluidization regimes, are considered in this chapter to thoroughly 

test the generality of the filtered models derived in this study. The average superficial inlet gas velocity 

is chosen to be at the geometric centre of the bubbling fluidization and turbulent fluidization regimes, 

according to Bi and Grace [58], and quarter way between the transitions to core-annular dilute phase 

flow and homogenous dilute phase transport for the fast fluidization case. A solids flux of 150 𝑘𝑔/𝑚2𝑠 

is specified for all three cases. Additionally, non-uniform boundary conditions, illustrated in Figure 41, 

are specified at the inlet to allow faster cluster formation in the absence of walls. The gas and solids 

velocities are set equal at the inlet and are specified to be half the mean superficial gas velocity at the 

sides and then increase linearly towards the centre. The solids volume fraction is set to half of the 

mean solids volume fraction at the centre and increases linearly towards the sides. The flow at the 
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inlet therefore changes from fast and dilute at the centre to denser and slower at the sides of the 

domain. Additionally, the reactant is injected with a mass fraction of 1 at the centre of the inlet and 

decreases linearly towards 0 at the sides. 

 

Figure 41 - Non-uniform inlet boundary conditions for the partially-periodic verification cases.  

4.1.2 Preliminary hydrodynamic verification of fTFMs from literature 

In this section, the performance of three fTFM closure models from literature was evaluated: The 1-

marker closure models from Igci [16], the 2-marker closure models from Milioli [14] and the 2-marker 

closure models from Sarkar [13]. Additionally, an early version of the isotropic drag closure from 

Chapter 3.4.1.2, used in combination with the solids mesoscale stress closure from Sarkar [13], is 

evaluated. This model is here referred to as the Cloete model, but will not be discussed in detail, since 

later sections will discuss more complete fTFMs from the present study in greater detail. Filtered 

simulations were performed on 20 mm grid cells, specifying the filter size used in the fTFM closures as 

twice the grid size, as is common practice [17, 19, 26]. The simulations were allowed to run for 10 s to 

reach a pseudo-steady state, after which time-averaging was performed for 30 s.  

An overall impression of model performance is provided in Figure 42. The bars represent the 

percentage deviation in terms of the time-averaged solids holdup in the fluidization region from the 

fine-grid simulations for the three different fluidization regimes. A positive deviation implies that too 

much solids is present in the domain, most likely caused by an underprediction of the drag force. A 

negative deviation indicates too little solids resulting from an overpredicted drag force.  
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Figure 42 - Deviation in the overall solids holdup from the resolved simulation for several different model 
setups. Coarse: no fTFM closures; Cloete: Similar to Chapter 3.4.1.2; Igci: [16]; Milioli: [14]; Sarkar: [13]. All 
simulations were carried out on a grid with a mesh size of 20 mm (i.e., approximately 23 times larger than the 
fine grid simulations). 

The importance of a filtered closure models is clearly visible in the coarse grid simulations without 

fTFM closures for the bubbling and turbulent regimes shown in Figure 42. In both these cases, a 

significant negative deviation (i.e., ca. 25%) in the overall solids holdup is observed, indicating that 

clustering is not sufficiently resolved to accurately predict the momentum coupling between gas and 

solids. As a result, the momentum coupling term is overpredicted, resulting in an underprediction of 

the solids holdup. This is not observed in the fast fluidization case, simply because clustering only took 

place in a relatively small region of the domain (see Figure 45).  

Of the four different fTFMs employed, the Igci model consistently showed the best performance. This 

is the original filtered model, using only the filtered volume fraction as a marker for both the drag and 

the stresses. Also, the Igci model has been derived from 2D simulations. Unfortunately, this model is 

not suitable as a general solution for large-scale fluidized bed reactor modelling because of two 

important limitations: (i) it requires specialized wall functions to give reliable predictions in wall-

bounded domains [25], and (ii) it cannot create sufficiently large drag corrections to predict flows in 

domains with very large cell sizes [50].  

The more complex two-marker closure models, which employ the filtered slip velocity magnitude as 

an additional marker for the drag and the filtered deviatoric shear rate magnitude as an additional 

marker for the solids mesoscale stresses, proved to be less reliable. These closure models are required 

to overcome the fundamental limitations of the one-marker closure outlined above, but it is clear that 

additional work is required to improve performance to the point where these models can be safely 

employed for large-scale fluidized bed reactor simulations.  
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Figure 43 - Instantaneous solids volume fraction contours arranged from left to right for the (a) Resolved, (b) 
Coarse, (c) Cloete, (d) Igci, (e) Milioli and (f) Sarkar models in the bubbling regime. The closure models are 
referenced in the caption of Figure 42. 

 

Figure 44 - Instantaneous solids volume fraction contours arranged from left to right for the (a) Resolved, (b) 
Coarse, (c) Cloete, (d) Igci, (e) Milioli and (f) Sarkar models in the turbulent regime. The closure models are 
referenced in the caption of Figure 42. 
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Figure 45 - Instantaneous solids volume fraction contours arranged from left to right for the (a) Resolved, (b) 
Coarse, (c) Cloete, (d) Igci, (e) Milioli and (f) Sarkar models in the fast fluidization regime. The closure models 
are referenced in the caption of Figure 42. 

As shown in Figure 43, Figure 44 and Figure 45, both the Milioli and Sarkar closure models lead to large 

inaccuracies when compared to the resolved simulation. Not only is the solids holdup much too high, 

also the bottom region where no clustering takes place is not captured correctly. Given that the Sarkar 

model was derived for 3D flows, it is understandable that the drag force is underpredicted, since the 

reduction in drag resulting from the mesoscale structures are expected to be larger in 3D. However, 

such a clear reason for the discrepancy cannot be identified for the Milioli closure.  

The Cloete closure model in this section was tested in combination with the solids mesoscale stress 

closures from all of the literature fTFMs investigated. Figure 46 shows that the solids mesoscale stress 

closure has a significant impact on the solids holdup and the general flow behaviour in the filtered 

simulation. Therefore, there is a large amount of uncertainty regarding the choice of the solids 

mesoscale stress closure.  
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Figure 46 - Instantaneous solids volume fraction contours for the Cloete filtered drag model with (a) no filtered 
stress modelling, (b) Igci filtered stresses, (c) Milioli filtered stresses and (d) Sarkar filtered stresses in the 
bubbling regime. 

The verification results in this section clearly show that there is a large amount of uncertainty regarding 

the performance of the literature models investigated. The only model that yielded reasonable results 

was the fTFM from Igci, which, as discussed earlier, has been shown in validation studies to have 

important limitations for practical use. These findings triggered a more detailed analysis of the filtered 

data from the resolved simulations, which eventually led to the development of the anisotropic 

closures in Chapter 3.4.2 and Chapter 3.6.3. These anisotropic closures will be evaluated in subsequent 

verification sections. 

4.1.3 Preliminary reactive verification 

This section will briefly discuss an important finding from an early reactive verification study [59] that 

formed part of the present study. This investigation evaluated the reactive predictions on coarse grids 

in the bubbling case when using preliminary formulations of the isotropic drag closure (Chapter 

3.4.1.2), the Boussinesq-based solids mesoscale stress closure (Chapter 3.6.1), the filtered frictional 

pressure (Chapter 3.7.1) and the non-locally corrected filtered reaction rate closure (Appendix F.3.1). 

Since a more detailed reactive verification will be performed for the partially-periodic bubbling case in 

Chapter 4.1.4, the results from this investigation will not be detailed here. However, one finding will 

be pointed out: Figure 47 shows that accounting for the mesoscale species dispersion rate had little 

effect on the overall conversion rate for this case. It can be seen that the effect of the mesoscale 

species dispersion increases with filter size, but remains relatively small even at the largest filter size 

considered here. Based on this finding, an improved closure model was not investigated in this study 

and the existing closure model of Agrawal et al. [27] was used for all reactive filtered simulations. 
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Figure 47 - Time-averaged contours of the scaled reactant conversion (−𝒍𝒐𝒈(𝑿𝑨)). Top row: with mesoscale 

species dispersion rate closure [27]. Bottom row: without mesoscale species dispersion rate closure. Each row 
shows the resolved simulation on the left and then the coarse grid simulations on grids with a mesh size of 20, 
40 and 80 mm. The blue-red colour map spans a range of 0-6. 

4.1.4 Detailed verification for the bubbling case 

In this section, a detailed hydrodynamic and reactive verification of the partially-periodic bubbling case 

is performed. Four possible combinations of the anisotropic and isotropic closures for the filtered 

interphase momentum exchange and the solids mesoscale stresses are evaluated at three different 

grid sizes of 20 mm, 40 mm and 80 mm. Time-averaged vertical profiles of relevant quantities are then 

compared to the results of the resolved simulation to assess the performance of the different closures. 

The following closures are investigated: (D+) Anisotropic filtered interphase forces using the non-

linearity correction factor closure (Chapter 3.4.2.3), the 3-marker adjusted slip velocity closure 

(Chapter 3.4.2.6) and the anisotropic mesoscale interphase force closure (Chapter 3.5.1). (D-) Isotropic 

filtered interphase forces using the isotropic drag correction closure (Chapter 3.4.1.2). (S+) Anisotropic 
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solids mesoscale stress closure (Chapter 3.6.3). (S-) Isotropic solids mesoscale stress closures based on 

the Boussinesq approximation (Chapter 3.6.1). To be more concise, these closures are referred to as 

the anisotropic drag, isotropic drag, anisotropic stress and isotropic stress models, respectively. All 

filtered simulations use the filtered frictional pressure closure (Chapter 3.7.1) and the non-locally 

corrected filtered reaction rate closure (Appendix F.3.1). It can be noted that the filter size in the 

closure models are set equal to the grid size in the coarse grid simulations in this section. 

4.1.4.1 Inlet effect 

The non-uniform inlet conditions shown in Figure 41 was specified to introduce a mean gradient in the 

flow field, in the absence of walls for most of the domain, thus providing more interesting verification 

data. However, this boundary condition also introduced some uncertainty due to the region of uniform 

intermediate volume fraction that can be observed at the bottom of the domain in Figure 48. In filtered 

simulations, a region of intermediate volume fraction is generally associated with significant clustering, 

leading to significant corrections for drag, stresses and reaction rates. As a result, the filtered 

simulations generally predicted significant sub-grid corrections in the uniform inlet region where no 

correction should actually be imposed since no clustering takes place.  

This is clearly observed in the slip velocity prediction along vertical lines in the centre and at the side 

of the domain shown in Figure 49. It is shown that the match between the resolved and coarse grid 

simulations is generally very good, except in the lower region on the centre line. This is the region of 

intermediate volume fraction where the models predict a correction, while no correction should be 

imposed. Due to this uncertainty in the central region of the domain, the rest of the paper will present 

results on the side periodic boundaries where clustering takes place along the entire height of the 

domain.  

 

Figure 48 – Contour plot of the instantaneous solids volume fraction from the resolved TFM simulations. 
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Figure 49 – Comparison of time-averaged vertical profiles of the vertical slip velocity along lines at the centre 
and at the side of the domain. Coarse grid simulations are performed on a 20 mm grid and using anisotropic 
closures for both the filtered interphase forces and the solids mesoscale stresses. 

It should be noted that fTFM closures in literature are generally expected to perform poorly in such 

cases with homogenous regions at intermediate volume fractions, since all the proposed closures 

make use of algebraic equations. Solving transport equations for markers that affect the closures is a 

possible strategy to allow a more accurate modelling of such cases on coarse grids. Such models have 

been proposed [20], but were subsequently simplified to algebraic relations before application. This 

was done to eliminate the complexity of solving additional transport equations. In practical 

applications, clustering general occurs rapidly at the boundaries, and such homogeneous regions at 

intermediate volume fractions are negligibly small. As a result, this weakness of algebraic fTFM 

closures is not expected to cause significant errors in most practical applications. 

It can be noted that the fTFM closures investigate here accurately predicted the solids holdup in the 

turbulent and fast fluidization cases described in Chapter 4.1.1. However, an unusual periodic 

behaviour was obtained for all fTFMs considered, which does not match the resolved simulation 

behaviour. Some evidence of this can be seen in Figure 44.d. This is also expected to be an effect of 

the inlet boundary conditions and the absence of walls that cannot be captured by the algebraic fTFM 

closures employed in the present study. For this reason, the partially-periodic turbulent and fast 

fluidization cases are not further considered for detailed verification. 

4.1.4.2 Solids volume fraction 

The model predictions of time-averaged solids volume fraction along a vertical line on the side periodic 

boundary of the domain is shown in Figure 50. Clearly, all models return reasonable predictions of this 

quantity, but the cases with anisotropic solids mesoscale stress modelling generally produce a closer 

match to the resolved simulation data. Anisotropic solids mesoscale stress modelling also appears to 

be important for good grid independence behaviour, especially when transitioning from the 40 mm to 

the 80 mm grid. The anisotropic drag model also appears to outperform the isotropic drag model, 

except for the coarsest grid. 
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Figure 50 - Time-averaged vertical profiles of the solids volume fraction along the side boundary. From left to 
right the coarse grid simulations are performed on grids of 20 mm, 40 mm and 80 mm. 

4.1.4.3 Vertical direction slip velocity 

The insights from the solids volume fraction profiles in Figure 50 are also reflected in the slip velocity 

predictions plotted on Figure 51. Once again, the anisotropic stress model appears to be important for 

ensuring good predictions, especially on coarser grids. In this case, no clear improvement from the 

anisotropic drag closure model can be observed when used in combination with the anisotropic stress 

model. However, in combination with the isotropic stress model, the anisotropic drag model performs 

better on the two smaller grid sizes.  

  

Figure 51 - Time-averaged vertical profiles of the vertical slip velocity along the side boundary. From left to 
right the coarse grid simulations are performed on grids of 20 mm, 40 mm and 80 mm. 

4.1.4.4 Volume fraction variance 

As may be expected, Figure 52 shows that all coarse grid simulations predict a significantly lower solids 

volume fraction variance than the resolved simulations, especially as the grid is coarsened. Figure 53 

offers a graphical illustration of this effect. However, it is clearly shown that the anisotropic stress 

closure significantly increases the degree of solids volume fraction variance resolved on the coarse 

grids. The anisotropic drag model also resolved greater flow details on the coarser grids.  
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Figure 52 - The vertical profiles of the solids volume fraction variance along the side boundary. From left to 
right the coarse grid simulations are performed on grids of 20 mm, 40 mm and 80 mm. 

The improved performance of the anisotropic stress closures can be explained based on the macro-

scale structure resolution: From Figure 53 it can be seen that the isotropic stress models predict less 

distinct macro-scale ‘clusters’ and ‘bubbles’. More gas flow will then tend to pass through these macro-

clusters, whereas more of the gas flow will tend to slip around the more resolved macro-clusters 

predicted by the anisotropic mesoscale stress closure. As a result, the vertical drag is increased when 

using the isotropic solids mesoscale stress closure, leading to underpredictions in the vertical slip 

velocity (Figure 51) and the solids volume fraction (Figure 50, with the exception of the coarsest grid). 
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Figure 53 - Comparison of the instantaneous volume fraction contours for the resolved simulations and for the 
different closure combinations at different coarse grid sizes. 

4.1.4.5 Conversion rate 

Finally, the performance of the filtered reaction rate closure is displayed in Figure 54. Once more, the 

anisotropic stress closure appears to be critical for attaining accurate results on the coarser meshes. 

This result illustrates the importance of accurate resolution of the hydrodynamic flow details when 
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completing reactive fluidized bed simulations. In this case, the effect of the anisotropic drag closure 

was insignificant.   

 

Figure 54 - The time-averaged vertical profiles of the conversion rate (
𝒅(−𝒍𝒐𝒈(𝑿𝑨))

𝒅𝒚
) along the side boundary. 

From left to right the coarse grid simulations are performed on grids of 20 mm, 40 mm and 80 mm. 

To put the reactive results in context, coarse grid simulations were also performed with the fTFM 

closures from Igci [16], which performed the best of the literature models evaluated in Chapter 4.1.2, 

for the hydrodynamics. The closure of Holloway [28] was used for the filtered reaction rate. In these 

simulations, the filter size is set to twice the grid size, as recommended by Igci [19]. This setup is 

referred to as the Princeton model. From Figure 55, it can be seen that the Princeton model 

overpredicts the conversion rate in the bottom region and underpredicts the conversion rate at 

intermediate heights when using 20 mm and 40 mm cells. Surprisingly, the results using 80 mm cells 

matches the resolved simulation results reasonably well. However, this can be considered to be 

coincidental, since the filtered simulations should become more accurate as the grid is refined. In 

general, the closures developed in the present study predicts the conversion rate more accurately and 

it can therefore be concluded that the closure models from the present study represent a significant 

advancement in the ability to predict reactive behaviour on coarse grids. 

 

Figure 55 - The time-averaged vertical profiles of the conversion rate (
𝒅(−𝒍𝒐𝒈(𝑿𝑨))

𝒅𝒚
) along the side boundary. The 

performance of the anisotropic closures from the present study is compared to that of the Princeton model on 
grids of 20 mm, 40 mm and 80 mm. 
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However, a final set of simulations was performed with the anisotropic closures from the present study 

for the hydrodynamics, but with the closure from Holloway [28] for the filtered reaction rate. Figure 

56 shows that there is little difference between the predictions whether closing the filtered reaction 

rate with the closure developed in the present study or with the closure from literature. It can 

therefore be concluded that the improved closures for the filtered drag force and the solids mesoscale 

stresses are primarily responsible for the improved predictions of the conversion rate. On the contrary, 

improvements in the filtered reaction rate closure has a negligible effect. This is in agreement with the 

a priori assessment of the filtered reaction rate closure in Chapter 3.8.3, which indicated that even a 

simple 1-marker closure model could yield a very strong correlation with the observed values in the 

resolved simulations data. It therefore appears that much more complex closures are required for the 

filtered interphase forces and for the solids mesoscale stresses than for the filtered reaction rate. 

 

Figure 56 - The time-averaged vertical profiles of the conversion rate (
𝒅(−𝒍𝒐𝒈(𝑿𝑨))

𝒅𝒚
) along the side boundary. The 

performance of the filtered reaction rate closure developed in the present study and that from the Princeton 
group is compared on grids of 20 mm, 40 mm and 80 mm. All simulations use the anisotropic closures 
developed in the present study for the hydrodynamics. 
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Chapter 5: Further verification and validation of fTFM 

closures 

The a posteriori assessments presented in this chapter was carried out in collaboration with Dr. Schalk 

Cloete from SINTEF Materials and Chemistry, who performed the coarse grid simulations, analysed the 

data and disseminated the results for submission as journal papers. The author of the present thesis 

developed the fTFM closures that are evaluated here, implemented the newly developed and literature 

closures in ANSYS FLUENT, performed the resolved simulations that serve as benchmark in the 

verification, provided insight into the behaviour of the different closure models and contributed to the 

dissemination of the results. 

5.1 Verification in a fully-periodic domain  

Due to the issues regarding the boundary conditions in the verification cases considered in Chapter 4, 

new cases are considered in this section for a more detailed verification of the closure models 

developed in the present study. Here, the fTFM closures outlined in Chapter 3 will be implemented in 

a periodic case similar to the resolved simulations from which the closures were derived. This is the 

most direct model verification test available. It is also a very challenging verification exercise given that 

there are no walls, inlet or outlet boundaries to constrain the solution within certain bounds. 

Therefore, such a periodic verification study is a good place to get a first impression of model 

performance.  

The results presented in this section will focus only on the hydrodynamic closures (i.e., filtered drag 

force, mesoscale interphase force, solids mesoscale stresses, filtered frictional stresses and filtered 

KTGF stresses) and quantify model performance via the vertical direction domain-averaged slip 

velocity: this velocity is the time average of the difference between the Favre-averaged gas and solids 

velocities over the entire domain. In all cases, the simulation was run for 5 s to reach a pseudo-steady 

state, followed by 5 s of averaging.   

Aside from the different closure combinations, the most important independent variable in this study 

is the filter size to grid size ratio (henceforth denoted as filter/grid ratio). A filter/grid ratio of 2 is 

commonly suggested in fTFM studies [17, 19, 26]. This ratio is, however, not well understood at present 

and is often used as a tuning parameter in fTFM simulations. In the previous verification in Chapter 4, 

it was found that excellent results could be achieved by setting the filter size in the closure models 

equal to the grid size used in the coarse grid simulations. The filter/grid ratio is therefore evaluated in 

detail here to better understand how it influences the coarse grid simulations and what the correct 

ratio should be. Ideally, grid independence would also be tested, but cell sizes larger than 10 mm could 

not be simulated without the resolved macro-clusters occasionally spanning across the entire periodic 

domain. As shown in Figure 57, larger cells resulted in larger macro-scale clusters, thus increasing the 

likelihood of such a macro-cluster spanning the entire height or width of the periodic domain. This 

unwanted phenomenon introduces significant uncertainty in the simulation data, and hence needs to 

be avoided.  
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Figure 57 - Instantaneous contours of solids volume fraction on grids of 10 mm, 20 mm and 40 mm with a 
filter/grid ratio of 1 and a domain-averaged solids volume fraction of 0.2. The blue-red colourmap range is 0-
0.6 and the complete fTFM model, described as Case 1 later in this section, is used. 

Thus, the 10 mm cell size was selected as a good compromise between computational affordability for 

the large number of simulations to be completed, and the avoidance of domain-size effects caused by 

macro-clusters spanning horizontally or vertically across the entire domain. Grid independence has 

been considered in Chapter 4.1.4 and will be further investigated in detail in other verification cases 

reported in Chapter 5.2.  

Table 5 - Different case setups investigated in this section. 

Case Filtered drag 

force 

Solids mesoscale 

stresses 

Mesoscale 

interface force 

Filtered frictional 

stress 

Granular 

temperature 

1 3-marker Anisotropic Included Filtered pressure Complete 

2 3-marker Anisotropic Excluded Filtered pressure Complete 

3 2-marker Anisotropic Included Filtered pressure Complete 

4 1-marker Anisotropic Included Filtered pressure Complete 

5 Isotropic Anisotropic Included in drag 

model 

Filtered pressure Complete 

6 3-marker Boussinesq Included Filtered pressure Complete 

7 3-marker None Included None Complete 

8 3-marker Anisotropic Included Unfiltered pressure 

and viscosity 

Complete 

9 3-marker Anisotropic Included Filtered pressure Algebraic  

10 3-marker Anisotropic Included Filtered pressure None 

A similar challenge was encountered in the 10 mm cases, especially in the cases with large 

domain-averaged slip velocities (mostly the cases with larger filter/grid ratios and lower domain-

averaged volume fractions). In these cases, a vertical channel occasionally formed across the domain, 

allowing the gas to slip rapidly past the solids. These instances created erroneous data and it was 

therefore decided to double the height of the simulation domain compared to that used for model 
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derivation in Chapter 3.1. This modification of the domain successfully removed this problem, but 

naturally introduces a new uncertainty. This uncertainty is shown to be negligibly small in the first 

subsection below.  

The subsections that follow will investigate the performance of various fTFM closure combinations at 

four filter/grid ratios (0.707, 1, 1.414 & 2) and three domain-averaged solids volume fractions (0.1, 0.2 

& 0.3). The ten different cases simulated are summarized in Table 5. 

5.1.1 Case 1: Complete model  

Case 1 represents the most complete set of closures available in this study. As shown in Figure 58, the 

model performs well when the filter/grid ratio is at unity or slightly below. For perspective, cases run 

without any fTFM closures are also included (see green bars), showing the expected large 

underpredictions of the domain-averaged slip velocity, especially at larger domain-averaged volume 

fractions.  

 

Figure 58 - Domain-averaged slip velocity results from Case 1 in Table 5. The error bars represent the standard 
deviation in the temporal variation of the slip velocity over the averaging period. FS = filter/grid ratio.  

Clearly, larger filter/grid ratios significantly overpredict the slip between the phases. A filter/grid ratio 

of 2 returns a slip velocity more than double the value obtained in the resolved simulations. This is a 

significant finding because larger filter/grid ratios are often employed in the literature. Arguably, a 

filter/grid ratio close to unity makes more sense given that the model will then explain only 

phenomena occurring on a scale smaller than the computational cells employed.  

Figure 58 also shows that the standard deviation of the average slip velocity over the 5 s time averaging 

period is substantially larger than was the case in the resolved simulation. This is due to the large 

macro-clusters being resolved in the filtered simulations, increasing the amplitude of the slip velocity 

oscillations in the geometry. Figure 59 illustrates the difference in the size and morphology of the 

resolved structures between the filtered and resolved simulations.  
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Figure 59 - Comparison of the resolved solids volume fraction field in the filtered coarse grid simulations (top) 
and the resolved fine grid simulations (bottom) for the three domain-averaged volume fractions considered. 
The blue-red colourmap range is 0-0.6.  

As outlined earlier, the results in Figure 58 were generated from a domain that is twice as long as the 

square domain used in the resolved simulations to prevent the occasional formation of vertical gas 

channels. Since these channels mostly occurred in cases with larger filter/grid ratios, simulations could 

be carried out in the regular square domain for a filter/grid ratio of 1. Figure 60 adds these results to 

the data in Figure 58. Clearly, the difference between the green and yellow bars in Figure 58 is well 

within the standard deviations indicated on the graphs. No systematic difference is present with the 

domain-averaged slip velocity being slightly smaller in one case and slightly larger in the other two. 

Hence, it can be concluded that the decision to use a taller periodic domain does not introduce 

significant uncertainty into the study.    
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Figure 60 - Domain-averaged slip velocity results from Case 1 including cases completed in the original square 
geometry (AR = 1). The error bars represent the standard deviation in the temporal variation of the slip velocity 
over the averaging period. FS = filter/grid ratio.  

Despite the good performance of the model at a filter/grid ratio around unity, comparisons between 

the volume fraction field in the filtered simulations and the filtered volume fraction field from the 

resolved simulations show significant qualitative differences. As shown in Figure 61, the filtered 

simulations generally give smoother and larger structures than the filtered resolved simulation data. 

This discrepancy is to be expected because a large portion of the variance in the filtered data is not 

explained by the models, as seen from the 𝑅2 values substantially below unity during the a priori 

analyses performed in Chapter 3. Despite the qualitative differences in Figure 61, the predictive 

performance of the filtered model remains admirable, especially considering a simulation speedup 

factor in the order of 104 for the case considered in this section.  
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Figure 61 – Instantaneous solids volume fraction fields from the coarse grid simulation using the complete set 
of fTFM closures (top) and the resolved simulation results that were filtered (bottom) for domain-averaged 
solids volume fractions of 0.1 (left), 0.2 (middle) and 0.3 (right). 

5.1.2 Case 2: Exclusion of the mesoscale interphase force  

The mesoscale interphase force is generally accepted to be of lesser importance than the drag 

correction. In some cases [15, 18, 20] it is even neglected completely. As shown in Figure 62, for the 

case considered here this seems to be a reasonable assumption, although it may lead to moderate 

underpredictions of the interphase momentum exchange in dilute cases (e.g. filter/grid ratios of 1 and 

1.4 for the domain-averaged volume fraction of 0.1). However, it should be noted that in Chapter 3.5 

it was found that the relative importance of the mesoscale interphase force compared to the filtered 

drag force increased with increasing filter size. Therefore, the mesoscale interphase force may be of 

greater importance when coarser grids than 10 mm are considered. 



 

97 

 

 

Figure 62 - Top: Domain-averaged slip velocity results from Case 2 in Table 5. The error bars represent the 
standard deviation in the temporal variation of the domain-averaged slip velocity over the averaging period. 
FS = filter/grid ratio. Bottom: Results from Case 1 for perspective.  

5.1.3 Case 3: 2-marker drag model  

As outlined in 3.4.2.5, the 2-marker closure for the adjusted slip velocity excludes the drift GPM used 

in the 3-marker closure. It is immediately evident from Figure 63 that this simplification has a large 

impact on model performance. Clearly, the 2-marker model predicts significantly smaller interphase 

momentum exchange than the 3-marker model, and substantially overpredicts the domain-averaged 

slip velocity even when the filter/grid ratio is smaller than unity.  
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Figure 63 - Top: Domain-averaged slip velocity results from Case 3 in Table 5. The error bars represent the 
standard deviation in the temporal variation of the domain-averaged slip velocity over the averaging period. 
FS = filter/grid ratio. Bottom: Results from Case 1 for perspective.  

The following explanation may be offered for the large decrease in the model performance when the 

drift GPM is neglected as independent variable: In general, the effect of an increasing drift GPM is to 

decrease the filtered drag force. The large difference in the performance of the 2- and 3-marker 

closures may therefore be related to the drift GPM being smaller in the filtered simulations than in the 

filtered data from the resolved simulation. This notion is confirmed in Figure 64 where it is shown that 

the drift GPMs calculated in the coarse grid simulations are generally substantially smaller than those 

from the filtered resolved simulation data.  
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Figure 64 - Comparison of instantaneous vertical direction dimensionless drift GPMs from the coarse grid 
simulations (top two rows) and from the filtered resolved data (bottom row) for the same three instances as 
shown in Figure 61. The two rows of coarse grid images show the same data, but only using colourmaps of 
different ranges for better visualization.  

The smaller drift GPM values observed in the coarse grid simulations must be due to the filtered 

models not explaining all the variance in the resolved simulation data, as discussed in Chapter 5.1.1. 

The filtered volume fraction field from the resolved simulations appears to be significantly more 

detailed with sharper gradients than the coarse grid simulations. The third marker (i.e., the drift GPM) 

therefore appears to be important to adjust for the inability of the filtered models to capture all the 

details in the filtered resolved data. In essence, the 2-marker model assumes the lower drag force that 

would occur in a situation with high volume fraction and velocity gradients, even when such large 

gradients are not resolved in the coarse grid simulation. This leads to an underprediction of the 

interphase momentum exchange rate. 
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5.1.4 Case 4: 1-marker drag model  

As shown in Figure 65, the performance of the 1-marker model is much closer to the 3-marker model 

than the 2-marker model. Even though the slip prediction is still significantly larger in the most dilute 

case, the prediction is similar in the two denser cases.  

This result questions the attractiveness of the filtered slip velocity as a marker. One potential challenge 

with this marker is that it removes most of the self-correcting nature of the drag force; i.e. larger slip 

velocities lead to larger drag forces, which then reduce the slip velocity. When the slip velocity is used 

as a marker, the binned data from resolved simulations suggests that the drag force becomes only 

weakly dependent on the slip velocity. This means that a small error in the model could potentially 

lead to a large error in the slip velocity. In this periodic case, for example, even a small error in the drag 

closure would require a large change in slip velocity to restore the balance between drag and gravity.  

Furthermore, whereas the physical arguments for using the solids volume fraction and drift GPM are 

clear, it is more difficult to formulate a strong physical argument for using the slip velocity as marker. 

The solids volume fraction is a good marker because clustering can only occur at intermediate filtered 

volume fractions. Similarly, a large drift GPM indicates that the given cell is on the edge of a poorly 

resolved macro-cluster where the closure model should reduce the drag force. As discussed earlier 

(see Chapter 3.4.1.1), the filtered slip velocity correlates well with the drag correction, since they both 

result from the same physical mechanism of the gas tending to slip around dense solids clusters. As a 

result of this good correlation, it has been common practice to use the filtered slip velocity as a marker 

for the drag correction. However, given that larger filtered slip velocities are a result of drag reduction 

from the sub-grid clustering phenomena, rather than the cause, it is not technically suitable for use as 

an independent variable in the filtered drag closure. With regards to this, it can be noted that when a 

closure for the drag reduction resulting from clustering is derived from theoretical principles [20], it 

does not contain the filtered slip velocity as an independent variable. Future work will therefore 

explore a 2-marker model using the solids volume fraction and drift GPM as markers or other 

formulations that do not use the filtered slip velocity as a marker.   
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Figure 65 - Top: Domain-averaged slip velocity results from Case 4 in Table 5. The error bars represent the 
standard deviation in the temporal variation of the domain-averaged slip velocity over the averaging period. 
FS = filter/grid ratio. Bottom: Results from Case 1 for perspective.  

5.1.5 Case 5: Isotropic drag model  

Figure 66 shows that the isotropic drag model behaves similarly to the 2-marker model. This should be 

expected given that both models use the filtered solids volume fraction and filtered slip velocity as 

markers. The speculation about the risks of using the slip velocity as marker from the previous section 

therefore also applies to this model.  
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Figure 66 - Top: Domain-averaged slip velocity results from Case 5 in Table 5. The error bars represent the 
standard deviation in the temporal variation of the domain-averaged slip velocity over the averaging period. 
FS = filter/grid ratio. Bottom: Results from Case 1 for perspective.  

Given that the isotropic model strongly overpredicts the drag in the lateral direction (see Figure 6), it 

was expected that this model would predict somewhat lower slip velocities than the 2-marker model. 

However, a comparison of Figure 63 and Figure 66 shows that the slip velocities from the isotropic 

model are even slightly higher than those from the 2-marker model. This implies that some other 

aspect of the model formulation more than cancels out the significant overprediction of the lateral 

direction drag.  

Aside from using anisotropic closures, the 2-marker closure model also uses the adjusted slip velocity 

formulation with separate models for the nonlinearity correction factor, the adjusted slip velocity and 

the mesoscale interphase force. This more complex formulation therefore appears to improve the 

model performance slightly. Figure 67 illustrates the difference in the filtered interphase force 

prediction of these two models. The figure shows that the filtered slip velocity dependence of the 
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isotropic drag closure becomes weaker at higher slip velocities, which might explain the even larger 

overpredictions of the slip velocity compared to the 2-marker model.  

 

Figure 67 - Comparison of the vertical direction filtered interphase force (sum of the filtered drag and 
mesoscale interphase forces) predictions from the 2-marker anisotropic (circles) and isotropic (lines) drag 
closures as a function of scaled filtered slip velocity in the vertical direction.  

5.1.6 Case 6: Boussinesq-based solids mesoscale stresses  

As discussed in 3.6.2, use of the Boussinesq approximation to model the deviatoric component of the 

solids mesoscale stress tensor is an erroneous assumption. Even though this approach shows a 

negative coefficient of determination compared to the sample data, the slip velocity comparison in 

Figure 68 does not show such a large mismatch with the anisotropic stress closure. This could simply 

be due to the relatively small (10 mm) cell size employed in these simulations. The solids mesoscale 

stresses increase super-linearly with filter size, whereas the filtered drag force decreases with filter 

size, implying that the effect of the solids mesoscale stress closure will become more apparent at larger 

cell sizes.  
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Figure 68 - Top: Domain-averaged slip velocity results from Case 6 in Table 5. The error bars represent the 
standard deviation in the temporal variation of the domain-averaged slip velocity over the averaging period. 
FS = filter/grid ratio. Bottom: Results from Case 1 for perspective.  

It can be noted that even though the overall effect of the solids mesoscale stress closure appears to 

be significantly smaller than the filtered drag force closure, the dynamic behaviour of the clusters 

changed significantly when the Boussinesq approximation was employed. As may be expected, the 

flow behaviour became more viscous with the Boussinesq-based closure due to the added solids 

viscosity, although macro-scale clusters were resolved with similar sharpness as when the anisotropic 

solids mesoscale stress closure was used.  

5.1.7 Case 7: No filtered stresses 

A simple test of the effect of solids mesoscale stress closures is to simply neglect these models. Figure 

69 shows that removal of the mesoscale stress model only slightly increased the slip velocity. As 

discussed in the previous section, it is likely that the effect of mesoscale stresses is relatively small on 

this cell size and may be substantially larger on coarser grids. In any case, an increase in domain-
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averaged slip velocity when solids stresses are neglected may be expected given that the lack of 

momentum dispersion would allow the gas to more easily slip around the macro-clusters. 

 

 

Figure 69 - Top: Domain-averaged slip velocity results from Case 7 in Table 5. The error bars represent the 
standard deviation in the temporal variation of the domain-averaged slip velocity over the averaging period. 
FS = filter/grid ratio. Bottom: Results from Case 1 for perspective.  

5.1.8 Case 8: Standard frictional pressure and viscosity models 

The lack of a filtered model for the deviatoric component of the frictional stress tensor is a shortcoming 

of the present model formulation. As explained in Chapter 3.7.3, deriving such a model could be 

difficult considering the limited impact that such a closure is expected to have in most cases. To test 

this assumption, the simulations were run using the standard (not filtered) closures for frictional 

pressure and viscosity [35, 42]. This would be another option when filtered closures for the frictional 

stresses are not available. Figure 70 confirms that the effect of frictional stress modelling is indeed 

relatively small.  
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Figure 70 - Top: Domain-averaged slip velocity results from Case 8 in Table 5. The error bars represent the 
standard deviation in the temporal variation of the domain-averaged slip velocity over the averaging period. 
FS = filter/grid ratio. Bottom: Results from Case 1 for perspective.  

5.1.9 Cases 9 & 10: Effect of granular temperature modelling 

In the present study, the filtered kinetic theory stresses are approximated using the microscopic 

closures used in the resolved simulations with the unfiltered granular temperature. This is done under 

the assumption that the effect of the filtered kinetic theory stresses will be small for the filter sizes 

considered in the present study. To quantify the effect of incorporating the KTGF stresses in this way, 

simulations were run with commonly used approximations of the granular temperature: neglecting 

convection and diffusion of granular temperature (see the second term on the left-hand side and the 

second term on the right-hand side of Equation 6) to turn the conservation equation into an algebraic 

formulation (Case 9), and completely neglecting the KTGF (Case 10). As illustrated in Figure 71, the 

effect of KTGF stresses was insignificantly small, even in this case using a relatively small cell size.  
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Figure 71 - Domain-averaged slip velocity results from Case 9 (middle) and Case 10 (top) in Table 5. The error 
bars represent the standard deviation in the temporal variation of the domain-averaged slip velocity over the 
averaging period. FS = filter/grid ratio. Bottom: Results from Case 1 for perspective.  

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3

D
o
m

a
in

 a
ve

ra
g
e
d
 

s
lip

 (
m

/s
)

Domain averaged volume fraction

Resolved FS = 2 FS = 1.4 FS = 1 FS = 0.7

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3

D
o
m

a
in

 a
ve

ra
g
e
d
 

s
lip

 (
m

/s
)

Domain averaged volume fraction

Resolved FS = 2 FS = 1.4 FS = 1 FS = 0.7

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3

D
o
m

a
in

 a
ve

ra
g
e
d
 

s
lip

 (
m

/s
)

Domain averaged volume fraction

Resolved FS = 2 FS = 1.4 FS = 1 FS = 0.7



 

108 

 

Interestingly, the case implementing the granular temperature conservation as an algebraic 

formulation was the most stable numerically, suggesting that this should be the preferred KTGF option 

in filtered simulations 

5.2 Verification in wall-bounded domains 

In this section, the fTFM closures developed in this study, which were derived from resolved 

simulations performed in fully-periodic domains, were also verified against dedicated resolved 

simulations carried out in wall-bounded domains. Two resolved simulations were completed using the 

same cell size (0.625 mm) as the periodic resolved simulations:  

1. A bubbling fluidized bed where the fluidization velocity (0.086 m/s) was taken as the geometric 

mean between the minimum fluidization velocity and the critical fluidization velocity (where 

turbulent fluidization starts) [58]. This geometry was 0.48 m wide and 0.8 m tall.  

2. A turbulent fluidized bed where the fluidization velocity (1.171 m/s) was set equal to the 

critical velocity [58]. This geometry was 0.32 m wide and 1.2 m tall. 

Both geometries were simple rectangles with a velocity inlet on the bottom face, a pressure outlet on 

the top face, and walls on the side faces. For the turbulent case, a significant amount of solids reached 

the outlet in some cases and these solids were recirculated back to the inlet at the bottom of the 

domain to keep the mass in the fluidized bed constant. At the walls, a no-slip boundary condition is 

specified for the gas phase and a free-slip boundary condition for the solids phase. The presence of a 

wall has an important effect on the mesoscale structures by confining the flow and thereby altering 

the heterogeneity. The purpose of the verification in this section is to test whether the closure models 

developed in the present study are able to accurately predict the flow behaviour under such 

conditions. Consequently, a free-slip wall will be sufficient to include the confining effect of the walls. 

Different combinations of the fTFM closures developed in this study were tested in these two 

geometries on three different computational cell sizes: 10 mm, 20 mm and 40 mm. In order to simplify 

the comparison, the filter/grid ratio was adjusted for each case so that the bed expansion of the 

bubbling case on the 10 mm grid matched well with the resolved simulation. This same filter/grid ratio 

was then also used on the other grids and the turbulent case to evaluate model generality. The 

different cases with their respective filter/grid ratios are summarized in Table 6. It should be noted 

that the 1-marker, 2-marker and 3-marker filtered drag force closures refer to the anisotropic adjusted 

slip velocity closures developed in Chapter 3.4.2. The non-linearity correction factor closure of the 

Chapter 3.4.2.3 and the mesoscale interphase force closure of Chapter 3.5.1 are used in combination 

with these filtered drag force closures.  

All cases were run with the filtered frictional pressure closure, except for Case 6 where all filtered 

stresses were deactivated. In all cases the filtered KTGF stresses were approximated by using the same 

closures as in the resolved simulations in combination with the PDE for the unfiltered granular 

temperature.  

After attaining a pseudo-steady state, the bubbling cases were averaged for 30 s and the turbulent 

cases for 15 s. Time averages for velocities and reactant concentrations were phase-weighted in both 

the resolved and coarse grid simulations to correctly assign more weight to instances with high volume 

fractions and allow a direct comparison between the resolved and filtered simulation results.  
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Table 6 - Summary of the cases investigated in the wall-bounded verification study.  

Case Filtered drag force closure Solids mesoscale stress 

closure 

Filter/grid ratio 

1 3-marker Anisotropic 1.8 

2 2-marker Anisotropic 1.0 

3 1-marker Anisotropic 1.1 

4 Isotropic Anisotropic 2.3 

5 3-marker Boussinesq 2.5 

6 3-marker None 1.7 

7 Isotropic Boussinesq 3.0 

5.2.1 Case 1: Complete model 

The performance of the complete model in the bubbling case is summarized in Figure 72. A distinct 

feature of this case is the asymmetric flow pattern that developed in the geometry where the gas 

prefers to rise on one side of the domain. This behaviour persisted for long simulation times and is 

likely related to the dimensions of the geometry. This asymmetric flow pattern is also predicted by the 

filtered simulations.  
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Figure 72 - Time-averaged contour plots for Case 1 (bubbling). In each row, the contours from left to right 
represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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In general, the bed expansion is predicted very well on all grids, indicating good grid independence 

behaviour. However, the reactant conversion is increasingly overpredicted on coarser grids. The 

erroneous prediction of the reactions show the importance of resolving at least some of the macro-

scale flow behaviour. It is clear from the y-velocity profiles that the coarser grids no longer resolve the 

large downwards velocities taking place at the walls. This back-mixing behaviour forces the gas to rise 

more rapidly in the centre of the domain, thus shortening the gas residence time. If this macro-scale 

flow pattern is no longer captured, the gas residence time is overpredicted, leading to a significant 

overprediction in reactant conversion. It can therefore be concluded that in some cases it may be 

required to refine the grid for specific regions in coarse grid simulations to capture the macro-scale 

flow features, even in case good fTFM closures are being used. However, it should also be noted that 

the free-slip boundary condition for the solids phase specified for these verification simulations over 

emphasises the effect of the downflow near the wall. More realistic partial-slip boundary conditions 

would alleviate this problem to some degree, but this was not explored in the present study. 

Despite the inaccuracy on the coarsest grids, the performance of the complete model setup shown in 

Figure 72 is very good. The 10 mm grid shows an especially close match in all the time-averaged 

contour plots. As mentioned in Chapter 5.1, this fTFM simulation already allows for a speedup (in terms 

of computation time) in the order of 104. The two further doublings of the cell size from this benchmark 

each bring about one order of magnitude of additional speedup. The imperfect performance of the 40 

mm grid is also understandable given that this geometry contains only 240 computational cells.  

Further perspective is given by Figure 73 where the model behaviour without any fTFM closures is 

illustrated. The complete failure of the simulations without fTFM closures is immediately evident. 

Almost no clustering behaviour could be resolved, leading to a very large overexpansion of the bed 

and overprediction of the reactant conversion. This result confirms the critical importance of fTFM 

closures in coarse grid simulations of Geldart A powders. 

Model performance in the turbulent fluidization regime is summarized in Figure 74. Note that, due to 

time constraints, the resolved simulation in this case could only be averaged for 4 s, whereas the coarse 

grid simulations were averaged for 15 s. Reasonable agreement with the resolved simulation data is 

observed, indicating that the fTFM closures scale well to this much more dilute flow situation. It is 

possible that the time-averaged y-velocity contours will become more uniform with 15 s of averaging 

to produce a closer match with the coarse grid simulations.  

The coarse grid simulations also show good grid independence behaviour in the turbulent case, 

although the 40 mm case again fails to resolve the large downflows at the walls. A slight 

underprediction in the bed expansion ratio and reactant conversion is observed, which might be 

related to the effect of the geometry width on the required filter/grid ratio as discussed next.  
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Figure 73 - Time-averaged contour plots without using fTFM closures (bubbling regime). In each row, the 
contours from left to right represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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Figure 74 - Time-averaged contour plots for Case 1 (turbulent regime). In each row, the contours from left to 
right represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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One interesting feature of these results is that a larger filter/grid ratio (i.e., 1.8) was required to obtain 

good results compared to the filter/grid ratio around unity recommended in Chapter 4.1.4 and Chapter 

5.1. Use of a filter/grid ratio of unity results in significant overexpansion of the bed. This feature is also 

shared by the other cases to be presented later in this section.  

To shed further light on this issue, Figure 75 compares data from the turbulent wall-bounded case to 

two periodic cases carried out using the same model setup, cell size and filter/grid ratio, as well as a 

similar domain-averaged volume fraction (0.1) as the bed region of the verification case. Clearly, the 

width of the fully-periodic domain has a large impact on the degree of resolution of the macro-clusters 

in the filtered simulations. Macro-clusters in the narrow periodic domain are generally less dense (as 

observed from the instantaneous solids volume fraction contours), resulting in a lower root mean 

square error (RMSE) of the solids volume fraction.  

The domain-averaged vertical direction slip velocity in the narrow periodic domain (1.08 m/s) is also 

much lower than in the standard periodic case (1.88 m/s). Interestingly, the slip velocity in the narrow 

periodic domain with a filter/grid ratio of 1.8 is close to the slip velocity of 1.02 m/s in the wider 

geometry at a filter/grid ratio of 1 (see Figure 58). This gives further confidence that the increase in 

filter/grid ratio is required primarily because of the narrower geometry.  

The effect of the domain width on the degree of macro-cluster resolution is related to the size of the 

macro-clusters. From the wider periodic domain in Figure 75, it can be observed that the macro-

clusters can become larger than the width of the narrower domain. This implies that, in the narrower 

domain, the gas path through the resolved solids flow field is constrained so that gas often has to pass 

through the macro-clusters instead of around them. Naturally, this artificially increases the degree of 

momentum coupling, thus requiring more filtering (a larger filter/grid ratio) to compensate.  

It is important to note that this is not a wall effect, but rather an effect of the relative size of the 

macro-clusters to the domain width. Since the filtered closures were derived in a wider domain than 

the domain used in the verification case, this effect became significant. Further studies, such as a 

filtering the resolved data from the wall-bounded verification case and analysing it in detail, will be 

required to fully understand this effect. 

Given that the clusters in the narrower periodic domain are still more resolved than the lower region 

of the wall-bounded turbulent case, it may be that the boundary conditions also have an effect. For 

example, the macro-clusters forming in the periodic case have (theoretically) an infinite amount of 

time to develop, whereas the macro-clusters in the wall-bounded case are continuously influenced by 

the solid walls and the uniform gas inlet. Again, further work will be required to better understand this 

effect.   
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Figure 75 - Top row: Instantaneous solids volume fraction contours illustrating macro-cluster formation in 
three cases: the turbulent wall-bounded verification case (left), a fully-periodic simulation using the same 
domain size as the turbulent verification case (middle), and the domain used in the fully-periodic verification 
study in Chapter 5.1 (right). All simulations were run on a 10 mm cell size with a filter/grid ratio of 1.8. Bottom 
row: Root mean square error (RMSE) contours determined over 15 s of averaging in the same three cases.   

5.2.2 Case 2: 2-marker drag model 

The performance of the 2-marker drag model in the bubbling verification case is summarized in Figure 

76. Similar to the 3-marker model, this model also shows good grid independence behaviour and 
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captures the asymmetric flow pattern developing in the bed. One significant difference is the higher 

reactant conversion resulting from the smaller filter/grid ratio that had to be employed in this case.  

The explanation behind the smaller filter/grid ratio required by the 2-marker model relative to the 3-

marker model is the same as outlined in Chapter 5.1.3 for the periodic verification study. Low drift 

GPMs were observed in the filtered cases, leading to a higher drag force prediction by the 3-marker 

model. However, the large drift GPMs from the resolved periodic simulations are averaged into the 2-

marker closure model, causing an underprediction of the drag in cases where the drift GPM is low. 

Figure 77 displays the performance of the 2-marker model in the turbulent case. Although reasonable 

grid independence behaviour is observed, a significantly denser bed is predicted than for the 3-marker 

model in Figure 74. This results in a somewhat less accurate comparison to the resolved case. 

Specifically, the resolved simulation predicts an average solids volume fraction of 0.108 in the bottom 

quarter of the domain. The 2-marker and 3-marker models, respectively, predict values of 0.116 and 

0.104 on the 10mm grid and values of 0.128 and 0.108 on the 20mm grid. The more dilute turbulent 

case therefore appears to emphasize model shortcomings more strongly than the denser bubbling 

case.  
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Figure 76 - Time-averaged contour plots for Case 2 (bubbling regime). In each row, the contours from left to 
right represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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Figure 77 - Time-averaged contour plots for Case 2 (turbulent regime). In each row, the contours from left to 
right represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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5.2.3 Case 3: 1-marker model 

Figure 78 illustrates the performance of the 1-marker model in the bubbling case. Similar to the other 

two anisotropic drag models, grid independence behaviour is good for the bed expansion, but the 

reactant conversion is increasingly overpredicted on coarser grids as the downward flow at the walls 

is no longer resolved.   

This model required a filter/grid ratio just marginally higher than the 2-marker model and significantly 

lower than the 3-marker model. The same explanation is valid for this case where the large drift GPMs 

in the resolved periodic simulations are also averaged into the model, leading to underpredictions of 

the filtered drag force when the drift GPM is low.  

The turbulent case in Figure 79 shows a high degree of similarity with the 3-marker model (Figure 74), 

except on the coarsest mesh where a substantially larger bed expansion is predicted. Overall, the 1-

marker model outperforms the 2-marker model in this verification test. As discussed in Chapter 5.1.4, 

this result questions the attractiveness of the filtered slip velocity as a second marker for the filtered 

drag force closure, suggesting that a 2-marker closure using the filtered solids volume fraction and the 

drift GPM may be an interesting topic for future work.  
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Figure 78 - Time-averaged contour plots for Case 3 (bubbling). In each row, the contours from left to right 
represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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Figure 79 - Time-averaged contour plots for Case 3 (turbulent). In each row, the contours from left to right 
represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  



 

122 

 

5.2.4 Case 4: Isotropic drag model 

As shown in Figure 80 and Figure 81, the isotropic drag model shows a gradual expansion of the bed 

with increasing grid size. Clearly, grid independence behaviour is significantly worse than the 

anisotropic drag models discussed in the previous three sections. A possible explanation for this is 

because, as discussed in Chapter 3.4.2.1, the isotropic drag closure will tend to increasingly overpredict 

the filtered drag force in the lateral directions as the filter size is increased. This increase in lateral drag 

forces makes it more difficult for the gas to slip around macro-clusters, resulting in proportionally more 

gas passing through the macro-clusters in the vertical direction. This then increases the effective 

vertical drag, explaining the increase in the bed expansion with increasing grid size seen in Figure 80 

and Figure 81. 

The generalizability between the bubbling and turbulent cases is also significantly worse than for the 

anisotropic models. This is especially evident in the 10 mm case where the bed expansion is strongly 

underpredicted in the turbulent case. The grid dependency improves the bed expansion prediction as 

the grid is coarsened. Finally, the 10 mm bubbling case showed a highly skewed flow behaviour that 

differs significantly from the resolved simulation. This is because the bubbling case experiences a 

strong circulating flow pattern with significant lateral velocities observed. Since the isotropic drag 

closure will poorly predict the lateral direction drag forces, which are highly significant in this case, the 

isotropic drag model cannot accurately predict this circulating flow behaviour.  

Another interesting point is the very large difference in the filter/grid ratio required in this case (2.3) 

and in the periodic case (where even a filter/grid ratio of 0.7 overpredicted the slip velocity by more 

than 100% as shown in Figure 66). In comparison to the anisotropic drag models, this difference in the 

required filter/grid ratios is much larger, further increasing the uncertainty related to this model 

parameter.  

Overall, these results clearly illustrate the merits of the anisotropic adjusted slip velocity formulation 

for the filtered drag force outlined in Chapter 3.4.2.2. In comparison to the conventional isotropic drag 

approach, all three anisotropic formulations considered in this study offer clear improvements in terms 

of accuracy and generality with regard to grid size and flow situation.   
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Figure 80 - Time-averaged contour plots for Case 4 (bubbling). In each row, the contours from left to right 
represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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Figure 81 - Time-averaged contour plots for Case 4 (turbulent). In each row, the contours from left to right 
represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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5.2.5 Case 5: Boussinesq-based solids mesoscale stress closure 

Figure 83 shows that the use of the Boussinesq-based solids mesoscale stresses result in reasonable 

predictions in the bubbling case. A slight decrease in the bed expansion is observed as the grid is 

coarsened, but this effect is relatively small.  

A much larger impact is observed in the turbulent case shown in Figure 84. Here, the bed expansion is 

strongly overpredicted on the 10 mm grid and strongly underpredicted on the 40 mm grid. Another 

perspective is provided in Figure 82 where the instantaneous volume fraction contours of the cases 

with the anisotropic and Boussinesq-based solids mesoscale stress closures are compared. The 

comparison of the 10 mm cases shows the more intuitive behaviour: the viscosity introduced in the 

Boussinesq assumption caused a greater amount of momentum dispersion, resulting in less clustering 

and greater gas-solids momentum transfer, ultimately leading to an overprediction of the bed 

expansion.  

As the grid is coarsened, however, this trend is reversed, with the Boussinesq-based stresses 

underpredicting the bed expansion. This is due to the viscosity in the bed becoming so large that the 

dense macro-clusters forming at the side of the domain become unphysically immobile, allowing the 

gas to rise more easily through the centre of the domain. This causes the bed to collapse near the walls. 

If the viscosity was not as large, these macro-clusters would frequently move into the rising gas stream 

to be swept upwards, thus increasing bed expansion.  

 

Figure 82 - Instantaneous solids volume fraction contours showing the impact of solids mesoscale stress 
modelling. The three images on the left are the 10, 20 and 40 mm grid sizes using the anisotropic solids 
mesoscale stress closure, and the three images on the right are the 10, 20 and 40 mm grid sizes using the 
Boussinesq-based solids mesoscale stress model.  

This result clearly illustrates the merits of the anisotropic solids mesoscale stress closure and shows 

that using the Boussinesq approximation to close the solids mesoscale stresses can result in large 

predictive errors in certain cases.  
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Figure 83 - Time-averaged contour plots for Case 5 (bubbling regime). In each row, the contours from left to 
right represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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Figure 84 - Time-averaged contour plots for Case 5 (turbulent regime). In each row, the contours from left to 
right represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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5.2.6 Case 6: No filtered stresses 

Figure 85 and Figure 86 show that the case without any modelling for the solids mesoscale stresses or 

the filtered frictional stresses behaves quite similarly to the complete case (Case 1: Figure 72 and Figure 

74). The selected filter/grid ratio is also similar to the complete case (1.7 instead of 1.8). The biggest 

difference is shown in the bed expansion ratio for the turbulent case where the lack of solids stresses 

caused a greater underprediction of the bed expansion. This result is expected given the momentum 

dispersion effect of the solids mesoscale stresses. Without this effect, the gas is able to slip around the 

macro-clusters more easily, reducing the degree of gas-solids momentum transfer and creating a more 

compact bed.  

In general, however, the results show that completely neglecting the solids mesoscale stresses yields 

better performance than using the Boussinesq approximation in the closure model. This is also 

suggested by the large negative coefficient of determination (R2) at larger filter sizes in Figure 27. A 

negative R2 implies that a simple average of all the data would be a better model than the proposed 

correlation.   
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Figure 85 - Time-averaged contour plots for Case 6 (bubbling regime). In each row, the contours from left to 
right represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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Figure 86 - Time-averaged contour plots for Case 6 (turbulent regime). In each row, the contours from left to 
right represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  



 

131 

 

5.2.7 Case 7: Isotropic drag and Boussinesq stresses 

This final case was included to illustrate the performance of the current state of the art closures: 

isotropic drag combined with solids mesoscale stresses with an isotropic filtered solids pressure and 

Boussinesq-based filtered solids viscosity. Figure 87 and Figure 88 both show that the inaccuracies of 

these drag and stress approaches discussed in Chapter 5.2.4 and Chapter 5.2.5 cancel each other out 

to a certain degree. Specifically, the isotropic drag closure tended to increase the bed expansion with 

increasing grid size, while the Boussinesq stresses tended to decrease the bed expansion. In the 

bubbling case (Figure 87), this led to an increase in the bed expansion from the 10 mm to the 20 mm 

grid, followed by a decrease to the 40 mm grid. In the turbulent case (Figure 88), the effect of the 

stresses dominated, causing a consistent decrease in the bed expansion as the grid is coarsened.  

Another interesting feature is the highly skewed flow pattern developing on the 10 mm grid in the 

bubbling case (Figure 87). This is similar to the skewed flow pattern in Figure 80 (isotropic drag and 

anisotropic stresses), but appears to be even more accentuated by using Boussinesq-based solids 

mesoscale stress closure.  

It should also be noted that this case required the largest filter/grid ratio (3) – nearly double that of 

the cases with anisotropic drag and solids mesoscale stress models. In general, it is preferable to limit 

the reliance on the filtered closures and rely more on the directly resolved flow field to limit 

uncertainty from the imperfect sub-grid closures. Filtered models that perform well at a lower 

grid/filter ratio are therefore preferred.  

Overall, these results show that the use of current state of the art isotropic filtered closures certainly 

achieves great improvements relative to the case without filtering (shown in Figure 73). However, the 

anisotropic approaches proposed in the present study appear to offer substantial benefits in terms of 

generality, grid independence and good performance at lower filter/grid ratios.   
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Figure 87 - Time-averaged contour plots for Case 7 (bubbling). In each row, the contours from left to right 
represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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Figure 88 - Time-averaged contour plots for Case 7 (turbulent). In each row, the contours from left to right 
represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  



 

134 

 

5.2.8 Case 1 with no-slip walls 

A final test was done where the bubbling bed from Case 1 (complete model) was run with no-slip walls. 

Note that, as with the turbulent case, the resolved simulation for this case could only be time-averaged 

for 18 s due to time constraints.  

As shown in Figure 89, the model also performs well in this case. When comparing with the free-slip 

case shown in Figure 72, it is clear that the transition from free-slip to no-slip boundaries did not have 

a large impact on the fluidized bed behaviour. The flow remains skewed and the biggest discrepancy 

remains the reactant conversion in the coarse grid case.  

The most prominent difference created by the no-slip boundary conditions is a significant reduction in 

the lateral direction velocities at the bottom of the domain where the downward flow at the walls 

reach the distributor. A comparison of Figure 89 and Figure 72 shows that this effect is well captured 

on the 10 mm grid, although this flow detail could not be resolved on the coarser grids.  

Given the relative insensitivity of the bubbling case to changes in the model formulation, it is likely that 

a larger effect of no-slip boundaries may be observed in the turbulent case. Unfortunately, time 

constraints did not allow for a no-slip resolved simulation of the turbulent case.  

In cases where the wall friction boundary condition is much more important than observed in Figure 

89, a partial-slip boundary condition may need to be employed. In the coarse grid simulations, this will 

add the complication that a closure for the filtered shear stress at the walls will be required. Such a 

closure should compensate for i) the effect of the sub-grid mesoscale structures at the wall on the non-

linear shear stress, ii) the fact that the filtered granular temperature, used in wall shear stress closures 

for partial-slip boundary conditions, is not known, and iii) an accurate estimate of the solids slip velocity 

at the walls will be difficult to obtain on coarse grids. Given the substantial additional modelling effort 

that this entails, it is advisable to first determine the importance of the wall boundary condition by 

comparing free-slip to no-slip cases.  

Narrow risers with rapidly rising particle flows represent the most likely case where partial-slip 

boundary conditions may be important. A study was completed early in the present work to show that 

the conventional Johnson and Jackson boundary condition [35] performs poorly in such a case, since 

it requires the specularity coefficient to be tuned for the flow situation considered. A more recent 

formulation proposed by Schneiderbauer [34] significantly improved the generality of the wall 

boundary condition, since a single set of parameters could accurately be used for a large range of flow 

conditions. The Schneiderbauer model is therefore recommended for cases requiring a partial-slip 

boundary condition. More details of this study can be found in Appendix C. Therefore, future work can 

be suggested to developed a sub-grid closure based on this boundary condition for use in coarse grid 

simulations when the particle-wall boundary condition is of importance. 
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Figure 89 - Time-averaged contour plots for Case 1 with no-slip walls (bubbling). In each row, the contours 
from left to right represent the resolved case, the 10 mm grid, the 20 mm grid, and the 40 mm grid.  
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5.3 Validation of fTFM closures 

In this chapter, some of the fTFM closures developed in Chapter 3 is validated by comparing filtered 

simulation results to experimental results from literature. The primary experimental data set is from a 

lab scale fluidized bed [60, 61]. In addition, the larger NETL Challenge problem [62] is also considered 

briefly. From this study earlier versions of isotropic drag closure and the anisotropic solids mesoscale 

stress closure, henceforth referred to as the NTNU model, are considered. The formulation of closures 

used (see Appendix G.1) are slightly different from those reported in Chapter 3.4.1.2 and Chapter 3.6.3, 

but the closure predictions are expected to be nearly identical. Additionally, to serve as benchmark, 

two fTFMs from literature are also considered: Those of Igci [16, 19] and Sarkar [13]. The closures used 

for these two fTFMs are detailed in Appendix G.2 and Appendix G.3. It can be noted that for all fTFMs 

the approach of setting the filter size in the closures to twice the grid size, as is commonly used in 

literature [17, 19, 26], is followed. This filter/grid ratio is close to the ratio of 2.3 that was found to be 

the optimal value for the wall-bounded verification in Chapter 5.2 when using an isotropic drag closure 

in combination with the anisotropic solids mesoscale stress closure. 

Unfortunately, validation has not yet been performed for the anisotropic filtered interphase force 

closures developed in Chapter 3.4.2 and Chapter 3.5. This will be considered in future studies. 

However, based on the verification results in Chapter 4 and Chapter 5, especially those in the wall-

bounded domain, it can be expected that the anisotropic filtered interphase force closures will further 

improve the performance of the closures reported in this chapter. 

5.3.1 Simulation geometry, initial and boundary conditions 

5.3.1.1 Lab scale experiments 

The geometry selected for this study is a lab scale 0.267 m ID fluidized bed with a tall freeboard section 

expanding to 0.667 m ID to prevent particle elutriation as reported by Zhu et al. [60, 61]. The fluidized 

bed section is 2.5 m in height and the freeboard extends to a height of 4.2 m. The geometry was 

meshed with a structured Cartesian cut-cell mesh using three different cell sizes: 1 cm, 1.41 cm and 2 

cm, corresponding to 154𝑑𝑝, 217𝑑𝑝 and 308𝑑𝑝, respectively. To put this into perspective, for TFM 

simulations without sub-grid closures, grid sizes of approximately 10 particle diameters are typically 

required for accurate results. Since the bed generally did not expand significantly into the freeboard 

region, a coarser mesh was employed in the freeboard. An example of the meshed geometry is 

displayed in Figure 90.  

Gas was injected uniformly though a velocity inlet on the bottom face of each reactor. Four fluidization 

velocities were investigated: 0.06, 0.4, 0.9 and 1.4 m/s. Gas exited at the top of the reactor though a 

pressure outlet at 0 Pa gauge pressure. A no-slip boundary condition was specified at the walls for the 

gas phase, while a partial-slip boundary condition was specified for the solids. The model of Johnson 

and Jackson [35] was used for the solids boundary condition with a specularity coefficient of 0.001 

describing the wall roughness. This value depends on the reactor material and particle properties and 

is therefore not known. The low value given above indicates an almost free-slip boundary condition 

and was found to give acceptable results in the current case.  

Geldart A-type [63] powder was used in the experiments with a density of 1780 𝑘𝑔/𝑚3 and a mean 

diameter of 65 µ𝑚 [60]. Standard air at room temperature was used as the fluidizing gas. The 
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simulations were initialized with a static bed height of 0.9 m replicating the experiments. The solids 

volume fraction in this initial static bed was set to 0.6. All simulations were time-averaged for 30 s after 

reaching a statistical steady state. The statistical steady state was identified by monitoring the average 

solids velocity magnitude in the domain.  

 

Figure 90 - The geometry with the 2 cm mesh used in this study. The inlet is indicated in blue and the outlet in 
red.  

5.3.1.2 NETL Challenge problem 

An additional validation was performed for the NETL challenge problem [62] in a bubbling bed with a 

diameter of 0.91 m (more than 3 times larger than the primary validation case). The fluidization 

velocity employed was 0.6 m/s, and the particle size and density were 79 𝜇𝑚 and 1489 𝑘𝑔/𝑚3 

respectively.  

A rather complex sparger is used for gas injection. However, given the almost perfectly linear pressure 

gradient that developed in the bed, it appears that this complex inlet condition did not have a large 
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impact on the macro-scale bed behaviour. For this reason, the bed was simulated as a simple cylinder 

with a uniform velocity inlet on the bottom face and a pressure outlet on the top face. The cylinder 

was specified to be 0.91 m in diameter and 6.3 m in height. The geometry was meshed with three 

different cell sizes; 3.5 cm, 5 cm and 7 cm, to evaluate grid independence behaviour.   

The bed was initialized with 1510 kg of particle and a boundary condition was implemented to reinject 

the small amount of solids reaching the outlet at the velocity inlet. Simulations were time-averaged 

for 90 s of flow time after a pseudo-steady state condition was identified by monitoring the average 

solids velocity magnitude.  

5.3.2 Results and discussion 

Results will be presented and discussed in four sections. Firstly, a qualitative comparison between the 

three filtered models will be presented to give a visual impression of model behaviour. Secondly, a 

quantitative comparison against experimental data will be presented. The final two sections will 

individually explore the impact of models for filtered interphase momentum exchange and solids 

mesoscale stresses.  

5.3.2.1 Qualitative comparison 

A first impression of model behaviour is given in Figure 91. In general, the NTNU model appears to 

create a more resolved flow than the other models. For the slowest fluidization velocity, the Sarkar 

model does not predict any fluidization, mainly because the drag correction does not disappear in the 

limit of very dense flows where no clustering can take place (to be discussed later around Figure 96).  

 

Figure 91 - Instantaneous solids volume fraction contours from the three fTFM approaches evaluated in this 
study for four different fluidization velocities. Contours are displayed on a central plane through the axis of 
the geometry in Figure 90 for the 2 cm grid size. The blue-red colourmap ranges from zero to 0.63 (maximum 
packing). 

Qualitative behaviour of the three different models on the three different grid sizes considered in this 

study is displayed in Figure 92. The figure shows that the NTNU model generally predicts similar 

dynamics and overall expansion of the dense bed region, while the bed becomes denser with grid 
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refinement for the other two approaches. A slight grid dependency effect can be observed for the 

NTNU model in the dilute region above the dense bed where less particle entrainment to the freeboard 

is observed on finer grids.  

 

Figure 92 - Instantaneous solids volume fraction contours from the three fTFM approaches evaluated in this 
study for three different grid sizes. Contours are displayed on a central plane through the axis of the geometry 
in Figure 90 for a fluidization velocity of 0.9 m/s. The blue-red colourmap ranges from zero to 0.63 (maximum 
packing). 

5.3.2.2 Quantitative comparison 

The first comparison to experimental results is presented in the form of axial pressure gradient to 

assess the ability of the model to accurately predict the amount of bed expansion. As shown in Figure 

93, all models provide at least reasonable comparisons to the experimental data, although the 

pressure drop is significantly overpredicted in some cases. It is important to keep in mind that, if no 

filtering was employed, the model would predict an axial pressure gradient of about half the 

experimental values [25]. 
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Figure 93 - Comparison of the time-averaged axial pressure gradient predicted by the three different filtered 
models for three different grid sizes. The pressure gradient was calculated over an axial distance of 20 cm as 
was the case in the experiments [61]. For each model, the dotted line represents the 2 cm grid, the dashed line 
the 1.4 cm grid, and the solid line the 1 cm grid.  

Figure 93 also confirms the observation from Figure 92 that the NTNU model generally shows the best 

grid independence behaviour, while the other two models generally lead to denser beds as the grid is 

refined. Only in the case with the slowest fluidization velocity (U = 0.06 m/s) does the Igci model 

provide a better fit to the experimental data.  

Grid dependency effects shown by the Igci model are most likely due to the lack of a filter size 

dependency of the wall corrections employed in the simulation (Equation 157 to Equation 160). As 

observed in the prior validation study, these wall corrections are very important for ensuring accurate 

results with this model [25], but the wall corrections should disappear in the limit of very small grid 

sizes. Grid dependency of the Sarkar model may be due to challenges with filter-size dependency, 

model scaling and wall corrections as will be further discussed in the next two sections.  
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Figure 94 shows the comparison to radial solids volume fraction measurements. The radial volume 

fraction profile is generally well captured by all models, with the exception of the case at 0.4 m/s where 

the models fail to capture the relatively uniform radial profile. The experimental profile was averaged 

from three measurements, where one was significantly different from the other two due to a swirling 

phenomenon observed only at this fluidization velocity [60, 61]. This unique effect could not be 

captured by the models, all of which consistently predicted the expected higher solids concentration 

towards the wall.  

 

Figure 94 - Comparison of the time-averaged radial solids volume fraction predicted by the three different 
filtered models for three different grid sizes. Results were collected at a bed height of 0.6 m as measured in 
the experiments [61]. For each model, the dotted line represents the 2 cm grid, the dashed line the 1.4 cm 
grid, and the solid line the 1 cm grid. 

As can be deduced from the pressure drop measurements at a height of 0.6 m reported in Figure 93, 

the NTNU model marginally overpredicts the average solids volume fraction at this height and the 

Sarkar model shows greater overpredictions. The denser bed predicted by the Sarkar model is due to 

a substantially larger drag correction as will be discussed in the next section.  
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Finally, Figure 95 displays the comparison of solids volume fraction standard deviation at the same 

measurement locations as Figure 94. In general, model predictions show the correct trend: higher 

standard deviation in the centre of the geometry where most bubbles are rising and lower standard 

deviation at the walls. Although perfect grid independence is not achieved, the NTNU model again 

shows the smallest grid dependency except in the case with the lowest fluidization velocity (0.06 m/s). 

Results also confirm that the NTNU model resolves more flow details, as could be qualitatively 

observed in Figure 91 and Figure 92. 

 

Figure 95 - Comparison of radial profiles of the standard deviation of solids volume fraction measurements 
predicted by the three different filtered models for three different grid sizes. Results were collected at a bed 
height of 0.6 m as measured in the experiments [61]. For each model, the dotted line represents the 2 cm grid, 
the dashed line the 1.4 cm grid, and the solid line the 1 cm grid. 

The fluidization velocity of 0.4 m/s once again shows the greatest deviations. In particular, the NTNU 

model and the finest grid simulation with the Sarkar model substantially overpredict the solids volume 

fraction standard deviation. This may also be due to the swirling phenomenon observed in the 

experiments that could not be successfully reproduced by the models.  
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5.3.2.3 Drag model comparison 

As alluded to in the previous section, the Sarkar model generally overpredicts the solids bed density, 

especially for finer grid sizes (which should be more accurate than coarser grids). Given that this model 

is the only one in this study that was derived in 3D, it can be intuitively expected to be the most 

accurate. However, Figure 96 shows that the Sarkar model predicts substantially larger drag 

corrections (i.e., smaller drag forces) than the NTNU model, thus offering a simple explanation for the 

overprediction of the bed density. The hard limit imposed at a drag correction factor of 𝐶 = 0.03 in 

the Sarkar model is also visible for the highest slip velocity in Figure 96. Such a limit is avoided in the 

NTNU model by scaling the drag correction factor as − log(𝐶) to allow for a more natural treatment 

of regions with a large drag correction, as discussed in Chapter 3.4.1.2.   

 

Figure 96 - Comparison of drag correction factors for the three filtered drag closures investigated in this study. 
For the NTNU and Sarkar models, different slip velocities are included, scaled by the steady state 
sedimentation velocity (Equation 138). The scaled velocity ranges from 1 (solid line) through 2, 4 and 8 to 16 
(dotted line). The left-hand graph shows the drag correction factor (𝑪 in Equation 124, Equation 142 and 
Equation 151), and the right-hand side shows a scaled drag correction factor (− 𝒍𝒐𝒈(𝑪)) to better portray the 
regions where the drag correction has a large impact (small 𝑪). 

Part of the reason for the overprediction of the drag correction in the Sarkar model is related to the 

scaling from the particles where the model was derived (150 μm and 441 kg/m3) to the particles used 

in the experiments for this study (65 μm and 1780 kg/m3). The NTNU and Igci models were derived for 

particles that are closer to the experimental case (75 μm and 1500 kg/m3), thus requiring less scaling 

than the Sarkar model. 

Incidentally, the commonly used scaling parameter, the particle terminal velocity, is fairly similar 

between the particles used in the derivation of the different models: 0.2697 m/s for the Sarkar model 

and 0.2297 m/s for the NTNU and Igci models. It can therefore be expected that the uncertainties 

introduced by scaling the model to a new system should be small. In addition, Sarkar et al. [13] 

investigated the scalability of their model to the particle conditions under which the NTNU and Igci 

models were derived and concluded that the model scaled quite well. However, significant 

overprediction of the drag correction was observed at larger slip velocities (see Fig. 16 in [13]). In this 
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study, the average ratio between the drag correction factors from the Sarkar and NTNU models ranges 

from 0.765 at a scaled slip velocity of 1 to 0.436 at a scaled slip velocity of 16, reflecting a similar trend. 

Despite these differences, the Sarkar model was validated [13] for a Geldart A particle system (NETL 

challenge problem [62]) similar to the one investigated in this study. Successful validation of the Sarkar 

and NTNU models in this alternative (larger) case was confirmed in Figure 97 (a brief description of this 

simulation case is given in Chapter 5.3.1.2). Unlike the results presented thus far, the Sarkar model 

also shows good grid independence behaviour in this case.  

 

Figure 97 - Comparison of simulation predictions from two filtered models to the pressure drop measurements 
in the NETL challenge problem [62]. For each model, the dotted line represents a 7 cm grid, the dashed line a 
5 cm grid, and the solid line a 3.5 cm grid. 

An important reason for the similar performance of the NTNU and Sarkar models in this case is that 

the NTNU model is closer to the Sarkar model for the larger cell sizes required (i.e., 3.5 - 7 cm) than for 

the cell sizes used in the validation study presented in the previous sections (i.e., 1 - 2 cm). As shown 

in Figure 98, the Sarkar model saturates already at very small cell sizes, whereas the NTNU model 

saturates much more slowly. Based on the good grid independence behaviour of the NTNU in both 

validation cases, the filter size dependency in the NTNU appears to be more realistic.  

The most likely explanation for this large difference in filter size dependency is that the Sarkar model 

was derived from resolved simulations on a small 3D domain (13.5 dimensionless units), whereas the 

NTNU model was derived from a much larger 2D domain (132 dimensionless units). Given that the 

particle properties are similar for the validation case from Zhu et al. [60, 61] and the NETL challenge 

problem [62], but the Sarkar model performs much better in the challenge problem where larger filter 

sizes are used (Figure 98), it appears that the effect of the domain size used for model derivation is of 

greater importance than the uncertainty related to scaling the particle properties discussed earlier. 
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Figure 98 - Comparison of the drag correction factor from the NTNU and Sarkar models employed on different 
cell sizes at an intermediate solids volume fraction of 0.3. As in Figure 96, five different scaled slip velocities 
are shown, ranging from 1 (solid line) through 2, 4 and 8 to 16 (dotted line). As outlined in the caption of Figure 
96, the left-hand figure shows the drag correction factor (𝑪) and the right-hand figure shows the scaled drag 
correction factor (− 𝒍𝒐𝒈(𝑪)). 

5.3.2.4 The effect of solids mesoscale stress modelling 

Finally, the influence of the solids mesoscale stress model in the NTNU model is investigated by 

replacing it with the Sarkar stress model. Specifically, Equation 124 to Equation 138 are used for the 

interphase momentum exchange and Equation 143 to Equation 150 are used for the solids stresses. A 

qualitative impression of the effect of this blended model is shown in Figure 99. It is clear that the bed 

expands much more than in the case of the individual NTNU and Sarkar models, while also resolving 

less flow detail.  

 

Figure 99 - Instantaneous solids volume fraction contours similar to Figure 91, only replacing the Igci model 
with a blend of the NTNU and Sarkar models.  
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Figure 100 gives a qualitative impression of the grid independence behaviour of this blended model. 

Large grid dependence effects are visible, with finer grids resulting in a much denser bed. 

 

Figure 100 - Instantaneous solids volume fraction contours similar to Figure 92, only replacing the Igci model 
with a blend of the NTNU and Sarkar models.  

These results are quantified via the axial pressure drop comparisons in Figure 101. The qualitative 

observations from Figure 99 and Figure 100 are confirmed by the data. In general, the blended model 

predicts a more dilute bed than both (i) the individual NTNU and (ii) Sarkar model, and also shows large 

grid dependencies. It is only on the finest grid (1 cm) that the blended model predicts similar results as 

the NTNU model. These results therefore confirm the finding in Chapter 5.2.6 that using isotropic, 

Boussinesq-based closures for the solids mesoscale stresses, similar to those in the Sarkar model, 

introduces a substantial error in the model predictions. As discussed in Chapter 3.6.2, modelling the 

deviatoric component of the solids mesoscale stress tensor through the Boussinesq approximation 

fails to capture the direction of the resulting force. As a result, modelling these stresses as a solids 

viscosity leads to a force of the correct magnitude, but often in the incorrect direction. In contrast, the 

anisotropic solids mesoscale stress closure used in the NTNU model can accurately predict the forces 

resulting from the solids mesoscale stresses. 
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Figure 101 - Comparison of the time-averaged axial pressure gradient similar to Figure 93, only replacing the 
Igci model with a blend of the NTNU and Sarkar models. For each model, the dotted line represents the 2 cm 
grid, the dashed line the 1.4 cm grid, and the solid line the 1 cm grid. 

It can further be noted that anisotropy in the solids mesoscale stresses becomes especially important 

in domains where walls have a large influence, as in the lab scale fluidized bed under consideration. It 

is well known in the field of single-phase turbulence that turbulent fluctuations become highly 

anisotropic in regions close to the wall. It has recently been shown that this is also the case for the 

solids mesoscale stresses and that it is important to account for this anisotropy at the walls in coarse 

grid simulations [64]. It is therefore likely that the importance of walls in this validation study 

emphasized the large grid dependency effects shown in Figure 101, since the Boussinesq-based solids 

mesoscale stress closure using isotropic independent variables in the Sarkar model is expected to 

perform especially poorly in highly anisotropic situations. This notion is supported by a worsening in 

the grid dependency behaviour as the fluidization velocity is increased.   
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Chapter 6: Conclusions 

The primary conclusion from the present study is that fTFM performance can be improved 

substantially by correctly accounting for anisotropy in the closures for the filtered interphase forces 

and the solids mesoscale stresses. Newly proposed anisotropic filtered drag force, mesoscale 

interphase force and solids mesoscale stress closures clearly outperformed conventional isotropic 

closures. An anisotropic approach is therefore strongly recommended for all future fTFM studies.  

New anisotropic closures were evaluated in two ways: 1) a priori assessments where model predictions 

were compared against a large number of filtered samples from the resolved simulations, and 2) a 

posteriori assessments where coarse grid filtered simulations were verified against computationally 

expensive resolved simulations.  

A priori assessments of the filtered drag model revealed that the conventional isotropic approach 

strongly underpredicts the drag correction in the directions perpendicular to gravity. This realization 

inspired the formulation of a new filtered drag force closure based on the drift velocity concept, which 

enabled accurate predictions in all directions via a single model equation. A posteriori assessments 

showed that the new anisotropic drag closures offered clear improvements in terms of grid 

independence and model generality. 

The effect of anisotropy was even more apparent when closing the solids mesoscale stresses. In this 

case, a priori assessments showed that the conventional approach, based on the Boussinesq 

approximation for closing the solids mesoscale stresses, produced a very poor match to the resolved 

simulation data. Predicting the deviatoric components of the solids mesoscale stress tensor with the 

Boussinesq approximation resulted in forces of the correct average magnitude, but often the incorrect 

direction. As a result of this large error, a posteriori assessments revealed that ignoring the solids 

stresses resulted in better model performance than including a Boussinesq-based solids mesoscale 

stress closure. 

Failure of the conventional approach to solids mesoscale stress modelling prompted the formulation 

of a new anisotropic stress closure. A novel “gradient product marker” (GPM), essentially the 

anisotropic equivalent of the conventionally employed filtered deviatoric shear rate magnitude, was 

identified to correlate well with the deviatoric stresses. This new marker allowed for the formulation 

of a new closure that could accurately predict all components of the solids mesoscale stress tensor 

using a single closure equation. A posteriori assessments confirmed the good performance of this new 

anisotropic solids mesoscale stress closure.  

Aside from this primary conclusion, several secondary conclusions were also drawn: 

1. Firstly, it was found that the model setup of the resolved simulations had a significant effect 

on the filtered statistics that are used to derive fTFM closures. Particle scale models for drag 

and frictional stresses had the largest effect on the resulting filtered statistics. Simpler drag 

models are often employed and frictional stresses are often neglected for the sake of 

simplicity, but it is recommended that the most sophisticated resolved simulation setup is 

always employed. Simplifications on this level can lead to inaccurate filtered data being used 

during closure development, thus reducing the accuracy of the resulting filtered closures.  
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2. Scaling the filtered slip velocity, drift velocity and adjusted slip velocity with the steady state 

sedimentation velocity removed much of the dependency of these velocities on the filtered 

solids volume fraction. This resulted in improved statistics for closure fitting and in simpler 

functional forms for the closure models. 

3. It was critical to account for important physical limits in the closure models, such as zero sub-

grid corrections in the dilute and dense solids volume fraction limits. This allows the closure 

models to be safely extrapolated to conditions for which resolved simulation data was not 

available during closure fitting. 

4. For the direction aligned with gravity, adding additional markers to the drag closure 

significantly improved model performance in a priori tests for smaller filter sizes, but 

improvements became smaller as the filter size was increased. Each drag closure had a 

gravitational component that depended only on one marker: the filtered solids volume 

fraction. This component became increasingly dominant as the filter size was increased, 

thereby reducing the effect of adding additional markers. For the direction perpendicular to 

gravity, however, inclusion of additional markers clearly improved model performance for all 

filter sizes.  

5. The filtered slip velocity, often employed as a second marker for the filtered drag force closure, 

was found to perform poorly in a posteriori assessments despite good a priori performance. 

Including the filtered slip velocity as a marker in the filtered drag force closure removes most 

of the slip velocity dependency of the modelled filtered drag force. As a result, even a small 

error in the closure requires a large change in the slip velocity to restore the balance between 

drag and gravity. This, in general, leads to poor closure performance. It is therefore 

recommended that future fTFM development efforts move away from the filtered slip velocity 

as a marker for the filtered drag force closure.  

6. A posteriori assessments of the effect of adding additional markers to the filtered drag force 

closure were more uncertain because the filtered slip velocity was used as a second marker. 

As suggested in point 5 above, this caused the 2-marker closure model to perform significantly 

worse than the 1-marker closure model. The addition of a third marker, the novel drift GPM, 

restored good model performance. The resulting 3-marker closure model outperformed the 

much simpler 1-marker closure model in a posteriori tests. Future work is therefore 

recommended to derive a simpler 2-marker closure model using the filtered solids volume 

fraction and drift GPM as markers.  

7. In general, a posteriori assessments indicated that a filter size to grid size ratio of unity appears 

to be the fundamentally correct ratio instead of the commonly employed ratio of 2. This 

ensures that only structures smaller than the grid size considered are accounted for in the sub-

grid corrections. 

8. However, the fTFM verification tests also revealed another important domain size effect: when 

the domain width approaches the size of the macro-clusters resolved in the coarse grid 

simulations, a larger filter size to grid size ratio than unity is required. In this situation, gas 

cannot slip freely around the macro-clusters and more gas is forced through the macro-

clusters. This artificially increases gas-solids momentum coupling, requiring more filtering to 

achieve the correct solution. Further studies are recommended to account for this effect in a 

more general manner, possibly by including a transport equation for a heterogeneity index 

such as the drift velocity or the filtered solids volume fraction variance.  

9. It is important to note that the effect in point 8 is not a wall effect, but rather a domain width 

effect. Verification tests in the present study showed that anisotropic closure models behaved 

well in wall-bounded flows. In the single test completed, a transition from free-slip to no-slip 
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wall boundary conditions had only a minor effect on the overall reactor behaviour, which could 

be predicted by the filtered simulations. However, further tests under different flow conditions 

are recommended to generalize this conclusion.  

10. In cases where the wall boundary condition may be important, such as rapid flows in narrow 

risers, the present work showed that the conventional partial-slip boundary condition by 

Johnson and Jackson required the specularity coefficient to be tuned for the flow conditions 

considered. A more complex partial-slip boundary condition recently proposed by 

Schneiderbauer was shown to be more generally applicable. However, an additional closure 

model will be required to use partial-slip boundary conditions in filtered simulations. Future 

work is therefore recommended to develop such a closure for cases where the wall boundary 

conditions are important. 

11. For reactive flows, even a relatively simple filtered reaction rate closure performed very well 

in a priori tests. A posteriori tests confirmed that the formulation of an accurate filtered 

reaction rate closure is a relatively simple task, but the accuracy of the hydrodynamic closures 

can have a significant effect on the overall prediction of the reactor performance. In addition, 

implementation of a closure from literature for the mesoscale species dispersion rate did not 

have a significant impact on model performance. It is therefore recommended that fTFM 

development efforts continue to focus on the hydrodynamics in the knowledge that even a 

simple filtered reaction rate closure will perform well, as long as the hydrodynamic closures 

are accurate.  

12. Filtered closures were developed in the present study from 2D simulation data, since this 

allowed a more detailed verification of the developed closures with the available 

computational resources. Despite the closures being derived from 2D resolved simulation 

data, a validation study against 3D experimental results showed promising performance. The 

2D closure models from the present study outperformed a literature model derived from 3D 

simulation data. This is possibly due to the fact that the domain in which the 3D model was 

derived had to be an order of magnitude smaller (due to computational costs) than the 2D 

domain used in the present study. This result therefore suggests that it is more important for 

resolved simulation data to be domain independent than to be completed in 3D. However, 

since simulations on large enough domains in 3D are expected to remain computationally 

infeasible for some years to come, a detailed quantification of the effect of deriving fTFM 

closures in 2D versus 3D is suggested for future work. Since this will only be a comparative 

analysis, such a study can be performed on a small enough domain such that 3D simulations 

are computationally feasible. 

In conclusion, the collection of closures proposed in the present work has been proven to perform well 

over a range of flow conditions. These closures can form a sound basis for further fTFM development 

work. One important topic that was not explored in the present work is the generality with regard to 

particle and fluid properties. A logical next step would therefore be to investigate the scaling of the 

variables used in the proposed anisotropic fTFM closures with the aim of achieving good accuracy 

under flow situations with different particle and fluid properties.  

In conjunction with several other recommendations for future work listed above, it is therefore clear 

that there is still a lot to learn about filtered modelling of fluidized bed reactors. Even so, informed 

application of the anisotropic models proposed in the present work can already start adding value to 

certain large-scale fluidized bed reactor applications. Such a learning-by-doing approach will surely 

further accelerate progress in this field. 
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Nomenclature 

Abbreviations 

CFD  Computational Fluid Dynamics 

FCC  Fluid catalytic cracking 

fTFM  Filtered Two Fluid Model 

GPM  Gradient Product Marker 

KTGF  Kinetic Theory of Granular Flow 

PDE  Partial Differential Equation 

PR-DNS  Particle-Resolved Direct Numerical Simulation 

PU-EL  Particle-Unresolved Euler-Lagrange  

RMSE  Root mean square error 

SA-TFM  Spatially-Averaged Two Fluid Model 

SRM  Filtered deviatoric shear rate magnitude 

TFM  Two Fluid Model 

Main Symbols 

𝐶  Drag correction factor 

𝐶𝑁𝐿  Non-linearity correction factor 

𝐶𝑝  Heat capacity (𝐽/(𝑘𝑔. 𝐾))   

𝐷  Mass diffusivity (𝑚2/𝑠) 

𝑑𝑝  Particle diameter (𝑚) 

𝑒𝑤  Normal restitution coefficient 

𝐹𝑀  Volumetric mesoscale interphase force (𝑁/𝑚3) 

𝐺  Weight function 

𝑔⃗  Gravity vector (𝑚/𝑠2) 

𝑔0  Radial distribution function 

ℎ  Specific enthalpy (𝐽/𝑘𝑔) 

𝐼 ̅ ̅  Identity matrix 

𝐾𝑠𝑔  Interphase momentum exchange coefficient (𝑘𝑔/(𝑚3. 𝑠)) 

𝑘𝐴  Reaction rate constant of species A 

𝑘𝑔  Gas phase thermal conductivity (𝑊/(𝑚.𝐾)) 
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𝑘𝛩𝑠  Granular temperature diffusion coefficient (𝑘𝑔/(𝑚. 𝑠)) 

𝑁  Normal shear stress (𝑁/𝑚2) 

𝑝  Pressure (𝑃𝑎) 

𝑄  Heat transfer correction factor 

𝑞𝑠  Granular temperature flux at the wall (𝑊/𝑚2) 

𝑅  Reaction rate correction factor 

𝑆̅̅  Deviatoric shear rate tensor (1/𝑠)  

𝑇  Temperature (𝐾) 

𝑡  Time (𝑠) 

𝑈  Fluidization velocity (𝑚/𝑠) 

𝑢  X-direction velocity (𝑚/𝑠) 

𝑣  Y-direction velocity (𝑚/𝑠) 

𝑣̅𝑠𝑠_𝑠𝑙𝑖𝑝  Steady state sedimentation velocity (𝑚/𝑠) 

𝑣𝑡  Particle terminal velocity (𝑚/𝑠) 

𝑋𝐴  Mass fraction of species A 

𝑥, 𝑦  Lateral and vertical directions 

𝑥⃗, 𝑦⃗  Position vector 

𝛼  Volume fraction 

𝛽0  Tangential restitution coefficient 

𝛿𝑖𝑗   Kronecker delta 

𝜙𝑔𝑠  Interphase energy transfer (𝑊/𝑚3) 

𝜙  Specularity coefficient or generic scalar value 

𝜑  Thiele modulus 

𝛾  Heat transfer coefficient (𝑊/𝑚3) 

𝛾𝛩𝑠   Dissipation rate (𝑊/𝑚3) 

𝜅𝐴  Mass fraction of A scaled with domain averaged mass fraction 

𝜆  Filtered scalar-velocity co-variance (𝑘𝑔/(𝑚2𝑠)) 

𝜆𝑠  Solids bulk viscosity (𝑘𝑔/(𝑚. 𝑠)) 

𝜇𝑠  Solids viscosity (𝑘𝑔/(𝑚. 𝑠)) 

𝜇𝑤  Friction coefficient 

𝜇  Dynamic viscosity (𝑘𝑔/(𝑚. 𝑠)) 

𝜌  Density (𝑘𝑔/𝑚3) 

𝜏̅̅  Stress tensor (𝑃𝑎) 
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𝜏̅̅𝑠,𝑓𝑖𝑙  Solids mesoscale deviatoric stress tensor (𝑃𝑎) 

𝜏𝑠  Shear stress at the wall (𝑁/𝑚2) 

υ  Velocity (𝑚/𝑠) 

𝜐𝑑  Drift velocity (𝑚/𝑠) 

𝜐𝑎𝑑𝑗  Adjusted slip velocity (𝑚/𝑠) 

𝜐𝑠̅  Normalised particle slip velocity at the wall 

𝜉  Gradient constant (𝑚−1) 

𝛥𝑓  Filter size (𝑚) 

𝛩  Granular temperature (𝑚2/𝑠2) 

𝛭  Gradient product marker 

𝛱  Heat transfer source term constant (𝑊/𝑚3) 

𝛴̅̅𝑠  Solids mesoscale stress tensor (𝑃𝑎) 

Sub- and superscript definitions 

𝑓𝑖𝑙  Filtered value 

𝑓𝑟𝑖𝑐  Frictional 

𝑔  Gas 

𝑘  Generic phase 

𝑖, 𝑗  Coordinate indexes 

𝑠  Solid 

𝑠𝑙𝑖𝑝  Slip velocity 

𝑤  Wall 

𝑥, 𝑦  Lateral and vertical directions 

|  Slip velocity parallel to wall 

Operator definitions 

|𝑥|  Absolute value 

𝑥̅  Algebraic volume average 

〈𝑥〉𝑑  Domain average 

𝑥′  Fluctuation from algebraic average 

𝑥′′  Fluctuation from phase-weighted average 

‖𝑥‖  Magnitude 

𝑥  Non-dimensionalized value 

𝑥̃  Phase-weighted volume average 
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𝑥∗  Scaled value 

𝑥⃗  Vector quantity 

 

  



 

155 

 

References 

[1] F. Municchi, S. Radl, Consistent closures for Euler-Lagrange models of bi-disperse gas-particle 
suspensions derived from particle-resolved direct numerical simulations, International Journal of 
Heat and Mass Transfer, 111 (2017) 171-190. 

[2] S. Radl, S. Sundaresan, A drag model for filtered Euler–Lagrange simulations of clustered gas–
particle suspensions, Chem. Eng. Sci., 117 (2014) 416-425. 

[3] L. Lu, S. Benyahia, T. Li, An efficient and reliable predictive method for fluidized bed simulation, 
AIChE J., (2017). 

[4] S. Cloete, A. Zaabout, S.T. Johansen, M. van Sint Annaland, F. Gallucci, S. Amini, The generality 
of the standard 2D TFM approach in predicting bubbling fluidized bed hydrodynamics, Powder 
Technol., 235 (2013) 735-746. 

[5] S.A. Wassie, F. Gallucci, S. Cloete, A. Zaabout, M. van Sint Annaland, S. Amini, The effect of gas 
permeation through vertical membranes on chemical switching reforming (CSR) reactor 
performance, International Journal of Hydrogen Energy, 41 (2016) 8640-8655. 

[6] N. Ellis, M. Xu, C.J. Lim, S. Cloete, S. Amini, Effect of Change in Fluidizing Gas on Riser 
Hydrodynamics and Evaluation of Scaling Laws, Ind. Eng. Chem. Res., 50 (2011) 4697-4706. 

[7] F. Taghipour, N. Ellis, C. Wong, Experimental and computational study of gas-solid fluidized 
bed hydrodynamics, Chem. Eng. Sci., 60 (2005) 6857-6867. 

[8] F. Hernández-Jiménez, S. Sánchez-Delgado, A. Gómez-García, A. Acosta-Iborra, Comparison 
between two-fluid model simulations and particle image analysis and velocimetry (PIV) results 
for a two-dimensional gas–solid fluidized bed, Chem. Eng. Sci., 66 (2011) 3753-3772. 

[9] A. Bakshi, C. Altantzis, R.B. Bates, A.F. Ghoniem, Study of the effect of reactor scale on 
fluidization hydrodynamics using fine-grid CFD simulations based on the two-fluid model, Powder 
Technol., 299 (2016) 185-198. 

[10] P. Ostermeier, A. Vandersickel, S. Gleis, H. Spliethoff, Three dimensional multi fluid modeling 
of Geldart B bubbling fluidized bed with complex inlet geometries, Powder Technol., 312 (2017) 
89-102. 

[11] S. Cloete, S. Amini, S.T. Johansen, On the effect of cluster resolution in riser flows on 
momentum and reaction kinetic interaction, Powder Technol., 210 (2011) 6-17. 

[12] Y. Igci, A.T. Andrews, S. Sundaresan, S. Pannala, T. O'Brien, Filtered two-fluid models for 
fluidized gas-particle suspensions, AIChE J., 54 (2008) 1431-1448. 

[13] A. Sarkar, F.E. Milioli, S. Ozarkar, T. Li, X. Sun, S. Sundaresan, Filtered sub-grid constitutive 
models for fluidized gas-particle flows constructed from 3-D simulations, Chem. Eng. Sci., 152 
(2016) 443-456. 

[14] C.C. Milioli, F.E. Milioli, W. Holloway, K. Agrawal, S. Sundaresan, Filtered two-fluid models of 
fluidized gas-particle flows: New constitutive relations, AIChE J., 59 (2013) 3265-3275. 

[15] S. Schneiderbauer, S. Pirker, Filtered and heterogeneity-based subgrid modifications for gas–
solid drag and solid stresses in bubbling fluidized beds, AIChE J., 60 (2014) 839-854. 

[16] Y. Igci, S. Sundaresan, Constitutive Models for Filtered Two-Fluid Models of Fluidized Gas–
Particle Flows, Ind. Eng. Chem. Res., 50 (2011) 13190-13201. 

[17] J.-F. Parmentier, O. Simonin, O. Delsart, A functional subgrid drift velocity model for filtered 
drag prediction in dense fluidized bed, AIChE J., 58 (2012) 1084-1098. 



 

156 

 

[18] A. Ozel, P. Fede, O. Simonin, Development of filtered Euler–Euler two-phase model for 
circulating fluidised bed: High resolution simulation, formulation and a priori analyses, Int. J. 
Multiphase Flow, 55 (2013) 43-63. 

[19] Y. Igci, S. Sundaresan, Verification of filtered two-fluid models for gas-particle flows in risers, 
AIChE J., 57 (2011) 2691-2707. 

[20] S. Schneiderbauer, A spatially-averaged two-fluid model for dense large-scale gas-solid flows, 
AIChE J., 63 (2017) 3544-3562. 

[21] K. Agrawal, P.N. Loezos, M. Syamlal, S. Sundaresan, The Role of Meso-Scale Structures in Rapid 
Gas-Solid Flows, J. Fluid Mech., 445 (2001) 151-185. 

[22] P.N. Loezos, S. Sundaresan, The role of meso-scale structures on dispersion in gas–particle 
flows,  Circulating Fluidized Beds VII, 2002, pp. 427-434. 

[23] A.T. Andrews, P.N. Loezos, S. Sundaresan, Coarse-grid simulation of gas-particle flows in 
vertical risers, Industrial and Engineering Chemistry Research, 44 (2005) 6022-6037. 

[24] Y. Igci, S. Pannala, S. Benyahia, S. Sundaresan, Validation Studies on Filtered Model Equations 
for Gas-Particle Flows in Risers, Ind. Eng. Chem. Res., 51 (2012) 2094-2103. 

[25] S. Cloete, S.T. Johansen, S. Amini, Evaluation of a filtered model for the simulation of large 
scale bubbling and turbulent fluidized beds, Powder Technol., 235 (2013) 91-102. 

[26] S.S. Ozarkar, X. Yan, S. Wang, C.C. Milioli, F.E. Milioli, S. Sundaresan, Validation of filtered two-
fluid models for gas–particle flows against experimental data from bubbling fluidized bed, Powder 
Technol., 284 (2015) 159-169. 

[27] K. Agrawal, W. Holloway, C.C. Milioli, F.E. Milioli, S. Sundaresan, Filtered models for scalar 
transport in gas–particle flows, Chem. Eng. Sci., 95 (2013) 291-300. 

[28] W. Holloway, S. Sundaresan, Filtered models for reacting gas–particle flows, Chem. Eng. Sci., 
82 (2012) 132-143. 

[29] S. Schneiderbauer, Validation study on Spatially Averaged Two Fluid Model for dense gas-
solids flows, CFB-12, Krakow, Poland (2017). 

[30] W. Holloway, S. Sundaresan, Filtered models for bidisperse gas–particle flows, Chem. Eng. 
Sci., 108 (2014) 67-86. 

[31] A. Ozel, J. Kolehmainen, S. Radl, S. Sundaresan, Fluid and particle coarsening of drag force for 
discrete-parcel approach, Chem. Eng. Sci., 155 (2016) 258-267. 

[32] A. Ozel, Y. Gu, C.C. Milioli, J. Kolehmainen, S. Sundaresan, Towards filtered drag force model 
for non-cohesive and cohesive particle-gas flows, Physics of Fluids, 29 (2017) 103308. 

[33] S. Schneiderbauer, S. Pirker, The impact of different fine grid simulations on the sub-grid 
modification for gas–solid drag, 9th International Conference on Multiphase Flow, Firenze (2016). 

[34] S. Schneiderbauer, D. Schellander, A. Löderer, S. Pirker, Non-steady state boundary conditions 
for collisional granular flows at flat frictional moving walls, Int. J. Multiphase Flow, 43 (2012) 149-
156. 

[35] P.C. Johnson, R. Jackson, Frictional-Collisional Constitutive Relations for Granular Materials, 
with Application to Plane Shearing, J. Fluid Mech., 176 (1987) 67-93. 

[36] L. Huilin, D. Gidaspow, Hydrodynamics of binary fluidization in a riser: CFD simulation using 
two granular temperatures, Chem. Eng. Sci., 58 (2003) 3777-3792. 

[37] S. Ergun, Fluid Flow through Packed Columns, Chemical Engineering Progress, 48 (1952) 89-
94. 

[38] C.Y. Wen, Y.H. Yu, Mechanics of Fluidization, Chem. Eng. Prog. S. Ser., 62 (1966) 100-111. 



 

157 

 

[39] C.K.K. Lun, S.B. Savage, D.J. Jeffrey, N. Chepurniy, Kinetic Theories for Granular Flow: Inelastic 
Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field, J. Fluid Mech., 140 
(1984) 223-256. 

[40] D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of Circulating Fluidized Beds, Kinetic 
Theory Approach, 7th Engineering Foundation Conference on Fluidization (1992). 

[41] S. Ogawa, A. Unemura, N. Oshima, On the Equation of Fully Fluidized Granular Materials, J. 
Appl. Math. Phys, 31 (1980) 483. 

[42] D.G. Schaeffer, Instability in the Evolution Equations Describing Incompressible Granular 
Flow, J. Differ. Equations, 66 (1987) 19-50. 

[43] S.B. Pope, Tubulent Flows, Cambridge University Press, Cambridge, UK, 2000. 

[44] J. Capecelatro, O. Desjardins, R.O. Fox, Effect of Domain Size on Fluid–Particle Statistics in 
Homogeneous, Gravity-Driven, Cluster-Induced Turbulence, Journal of Fluids Engineering, 138 
(2015) 041301-041301-041308. 

[45] S. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing 
Corporation1980. 

[46] B.P. Leonard, S. Mokhtari, ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed 
Steady Multidimensional Flow,  NASA TM 1-2568 (ICOMP-90-12)NASA Lewis Research Center, 
1990. 

[47] F. Municchi, C. Goniva, S. Radl, Highly efficient spatial data filtering in parallel using the 
opensource library CPPPO, Computer Physics Communications, 207 (2016) 400-414. 

[48] S. Schneiderbauer, S. Pirker, S. Sundaresan, The Dependence of the Effective Gas-Solid Drag 
in Filtered Two-Fluid Models on the Sub-Filter Solid Turbulence,  AIChE Annual Meeting Salt Lake 
City, 2015. 

[49] S. Schneiderbauer, Cluster induced turbulence (CIT) - A spatially averaged two-fluid model 
(SA-TFM) for dense gas-solid flows, 24th ERCOFTAC ADA Pilot Center Meeting (2016). 

[50] S. Cloete, J.H. Cloete, S. Amini, Comparison of the Filtered Two Fluid Model and Dense Discrete 
Phase Model for Large-Scale Fluidized Bed Reactor Simulations, AIChE Annual Meeting San 
Franciso, USA (2016). 

[51] D.Z. Zhang, W.B. VanderHeyden, The effects of mesoscale structures on the macroscopic 
momentum equations for two-phase flows, Int. J. Multiphase Flow, 28 (2002) 805-822. 

[52] J. De Wilde, Reformulating and quantifying the generalized added mass in filtered gas-solid 
flow models, Physics of Fluids, 17 (2005) 113304. 

[53] J. De Wilde, The generalized added mass revised, Physics of Fluids, 19 (2007) 058103. 

[54] S. Sundaresan, Instabilities in Fluidized Beds, Annual Review of Fluid Mechanics, 35 (2003) 
63-88. 

[55] W.D. Fullmer, C.M. Hrenya, The Clustering Instability in Rapid Granular and Gas-Solid Flows, 
Annual Review of Fluid Mechanics, 49 (2017) 485-510. 

[56] A. Srivastava, S. Sundaresan, Analysis of a frictional–kinetic model for gas–particle flow, 
Powder Technol., 129 (2003) 72-85. 

[57] S. Schneiderbauer, A. Aigner, S. Pirker, A comprehensive frictional-kinetic model for gas–
particle flows: Analysis of fluidized and moving bed regimes, Chem. Eng. Sci., 80 (2012) 279-292. 

[58] H.T. Bi, J.R. Grace, Flow regime diagrams for gas-solid fluidization and upward transport, Int. 
J. Multiphase Flow, 21 (1995) 1229-1236. 

[59] J.H. Cloete, S. Cloete, S. Radl, S. Amini, Verification of filtered Two Fluid Models for reactive 
gas-solid flows, CFD 2017, Trondheim, Norway (2017). 



 

158 

 

[60] H. Zhu, J. Zhu, G. Li, F. Li, Detailed measurements of flow structure inside a dense gas-solids 
fluidized bed, Powder Technology, 180 (2008) 339-349. 

[61] H. Zhu, Turbulent Fluidized Bed vs. High Density Riser - Regimes and Flow Characterizations, 
The University of Western Ontario, 2006. 

[62] L. Shadle, M. Shahnam, R. Cocco, A. Issangya, C. Guenther, M. Syamlal, J. Spenik, J.C. Ludlow, F. 
Shaffer, R. Panday, B. Gopalan, R. Dastane, Challenge Problem III, Circulating Fluid Bed X, Sun River 
Valley, Oregon, USA (2011). 

[63] D. Geldart, Types of gas fluidization, Powder Technol., 7 (1973) 285-292. 

[64] S. Schneiderbauer, Validation study on spatially averaged two-fluid model for gas-solid flows: 
I. A-priori analysis of wall bounded flows, AIChE J., Under review (2017). 

[65] S. Cloete, S.T. Johansen, S. Amini, Grid independence behaviour of fluidized bed reactor 
simulations using the Two Fluid Model: Effect of particle size, Powder Technol., 269 (2015) 153-
165. 

[66] S. Cloete, S.T. Johansen, S. Amini, Grid independence behaviour of fluidized bed reactor 
simulations using the Two Fluid Model: Detailed parametric study, Powder Technol., 289 (2016) 
65-70. 

[67] M. Syamlal, T.J. O'Brien, Computer simulation of bubbles in a fluidized bed,  AIChE Symposium 
Series, 1989, pp. 22-31. 

[68] H. Iddir, H. Arastoopour, Modeling of multitype particle flow using the kinetic theory 
approach, AIChE J., 51 (2005) 1620-1632. 

[69] G. Ahmadi, D. Ma, A thermodynamical formulation for dispersed multiphase turbulent 
flows—1, Int. J. Multiphase Flow, 16 (1990) 323-340. 

[70] S. Cloete, S. Amini, S.T. Johansen, A fine resolution parametric study on the numerical 
simulation of gas-solid flows in a periodic riser section, Powder Technol., 205 (2011) 103-111. 

[71] A. Almuttahar, F. Taghipour, Computational fluid dynamics of high density circulating 
fluidized bed riser: Study of modeling parameters, Powder Technol., 185 (2008) 11-23. 

[72] A. Soleimani, S. Schneiderbauer, S. Pirker, A comparison for different wall-boundary 
conditions for kinetic theory based two-fluid models, Int. J. Multiphase Flow, 71 (2015) 94-97. 

[73] Y. Zhao, Y. Zhong, Y. He, H.I. Schlaberg, Boundary conditions for collisional granular flows of 
frictional and rotational particles at flat walls, AIChE J., 60 (2014) 4065-4075. 

[74] B. Chalermsinsuwan, P. Piumsomboon, D. Gidaspow, Kinetic theory based computation of 
PSRI riser: Part I-Estimate of mass transfer coefficient, Chem. Eng. Sci., 64 (2009) 1195-1211. 

[75] H. Lu, S. Wang, Y. He, J. Ding, G. Liu, Z. Hao, Numerical simulation of flow behavior of particles 
and clusters in riser using two granular temperatures, Powder Technol., 182 (2008) 282-293. 

[76] S. Benyahia, M. Syamlal, T.J. O'Brien, Study of the ability of multiphase continuum models to 
predict core-annulus flow, AIChE J., 53 (2007) 2549-2568. 

[77] J.T. Jenkins, Boundary Conditions for Rapid Granular Flow: Flat, Frictional Walls, Journal of 
Applied Mechanics, 59 (1992) 120-127. 

[78] M.Y. Louge, Computer simulations of rapid granular flows of spheres interacting with a flat, 
frictional boundary, Physics of Fluids, 6 (1994) 2253-2269. 

[79] T. Li, S. Benyahia, Revisiting Johnson and Jackson boundary conditions for granular flows, 
AIChE J., 58 (2012) 2058-2068. 

[80] J.T. Jenkins, M.Y. Louge, On the flux of fluctuation energy in a collisional grain flow at a flat, 
frictional wall, Physics of Fluids, 9 (1997) 2835-2840. 



 

159 

 

[81] A. Yan, J. Zhu, Scale-Up Effect of Riser Reactors (1) Axial and Radial Solids Concentration 
Distribution and Flow Development, Ind. Eng. Chem. Res., 43 (2004) 5810-5819. 

[82] A. Yan, J. Zhu, Scale-Up of Riser Reactors: Particle Velocity and Flow Development, AIChE J., 
51 (2005) 2956-2964. 

[83] T. Li, S. Benyahia, J.-F. Dietiker, J. Musser, X. Sun, A 2.5D computational method to simulate 
cylindrical fluidized beds, Chem. Eng. Sci., 123 (2015) 236-246. 

[84] J.X. Zhu, G.Z. Li, S.Z. Qin, F.Y. Li, H. Zhang, Y.L. Yang, Direct measurements of particle velocities 
in gas–solids suspension flow using a novel five-fiber optical probe, Powder Technol., 115 (2001) 
184-192. 

[85] J.H. Cloete, S. Cloete, S. Radl, S. Amini, Evaluation of wall friction models for riser flow, Powder 
Technol., 303 (2016) 156-167. 

[86] S.F. Foerster, M.Y. Louge, H. Chang, K. Allia, Measurements of the collision properties of small 
spheres, Physics of Fluids, 6 (1994) 1108-1115. 

[87] A. Lorenz, C. Tuozzolo, M.Y. Louge, Measurements of impact properties of small, nearly 
spherical particles, Experimental Mechanics, 37 (1997) 292-298. 

[88] M. Sommerfeld, N. Huber, Experimental analysis and modelling of particle-wall collisions, Int. 
J. Multiphase Flow, 25 (1999) 1457-1489. 

[89] S. Cloete, S.T. Johansen, A. Zaabout, M. van Sint Annaland, F. Gallucci, S. Amini, The effect of 
frictional pressure, geometry and wall friction on the modelling of a pseudo-2D bubbling fluidised 
bed reactor, Powder Technol., 283 (2015) 85-102. 

[90] A. Ozel, G. Rubinstein, S. Sundaresan, A Dynamic Drag Model Using Sub-Grid Scalar Variance 
of Solid Volume Fraction for Gas-Solid Suspensions,  AIChE Annual Meeting San Francisco, 2016. 

[91] D.J. Gunn, Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds, International 
Journal of Heat and Mass Transfer, 21 (1978) 467-476. 

  



 

160 

 

Appendix 

A. Publication list 

A.1 Accepted journal papers 

[1] J.H. Cloete, S. Cloete, S. Radl, S. Amini, Evaluation of wall friction models for riser flow, Powder 

Technol., 303 (2016) 156-167. 

[2] J.H. Cloete, S. Cloete, F. Municchi, S. Radl, S. Amini, The sensitivity of filtered Two Fluid Model to 

the underlying resolved simulation setup, Powder Technol., 316 (2017) 265-277. 

[3] S. Cloete, J.H. Cloete, S. Amini, Hydrodynamic validation study of filtered Two Fluid Models, Chem. 
Eng. Sci., 182 (2018) 93-107. 

A.2 Journal papers under review 

[1] J.H. Cloete, S. Cloete, S. Radl, F. Municchi, S. Amini, Development and verification of anisotropic 
stress closures for filtered Two Fluid Models, Chem. Eng. Sci., Under review (2018). 

[2] J.H. Cloete, S. Cloete, S. Radl, S. Amini, Development and verification of anisotropic drag closures 
for filtered Two Fluid Models, Chem. Eng. Sci., Under review (2018). 

A.3 Conference papers 

[1] S. Cloete, J.H. Cloete, S. Amini, Comparison of the Filtered Two Fluid Model and Dense Discrete 

Phase Model for Large-Scale Fluidized Bed Reactor Simulations, AIChE Annual Meeting, San Francisco, 

USA, 2016. 

[2] J.H. Cloete, S. Cloete, S. Radl, S. Amini, Verification of filtered Two-Fluid Models in different flow 

regimes, CFB-12, Krakow, 2017. 

[3] J.H. Cloete, S. Cloete, S. Radl, S. Amini, Verification of filtered Two Fluid Models for reactive gas-

solid flows, CFD 2017, Trondheim, Norway, 2017. 

[4] J.H. Cloete, S. Cloete, S. Radl, S. Amini, Verification study of anisotropic filtered Two Fluid Model 

Closures, AIChE Annual Meeting, Minneapolis, USA, 2017. 

A.4 Planned journal papers 

[1] J.H. Cloete, S. Cloete, S. Radl, S. Amini, On the improvement of filtered Two Fluid Model drag 

closures by considering additional independent variables 

[2] J.H. Cloete, S. Cloete, S. Radl, S. Amini, Development and verification of reactive filtered Two Fluid 
Models for coarse-grid fluidized bed simulations 

[3] S. Cloete, J.H. Cloete, S. Radl, S. Amini, Detailed verification of filtered Two Fluid Models in different 

fluidization regimes 

 

 

  



 

161 

 

B. The sensitivity of fTFM closures to the resolved TFM configuration 

In this section, the complete findings from the study summarized in Chapter 3.3.1 are reported. 

B.1 Simulations 

The resolved simulations from which the filtered data is obtained is similar to that described in 

Chapter 3, with a few exceptions. Firstly, in this study, scalar transport and heat transfer is also 

considered. The equations and methodology relevant to these phenomena are given in Appendix E.1 

and Appendix E.2. Secondly, in this section only the following domain-averaged solids volume fractions 

are considered in the resolved simulations: 0.02, 0.1, 0.2, 0.3 and 0.4. Lastly, a coarser grid of 1.25 mm 

(16.67𝑑𝑝) is considered to make the large number of simulations performed in this section 

computationally feasible. This grid size is insufficient to achieve grid independence according to 

general guidelines for selecting the grid size in resolved TFM simulations of fluidized beds [65, 66] given 

the small 75 µ𝑚 particle size. However, performing “slightly unresolved” simulations is valid for this 

study since it only seeks to compare simulations relative to each other. The error associated with the 

spatial discretization is hence assumed to be similar in the different simulations. 

B.2 Filtered closure quantities considered 

It should be noted that, in this section, unlike the rest of this thesis, no distinction is made between 

fluctuations from algebraic and phase-weighted averages by making using of single and double primes. 

B.2.1 Filtered drag and solids mesoscale stresses 

A drag correction factor, evaluated in the vertical direction, is considered, similar to what is discussed 

in Chapter 3.4.1. 

 𝐶 =
𝐾𝑔𝑠(𝜐𝑔,𝑦−𝜐𝑠,𝑦)−𝛼𝑠

′𝑑𝑝
′

𝑑𝑦

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐾𝑔𝑠,𝑐𝑜𝑎𝑟𝑠𝑒(𝜐̃𝑔,𝑦−𝜐̃𝑠,𝑦)
 Equation 95 

where 𝐾𝑔𝑠,𝑐𝑜𝑎𝑟𝑠𝑒 is evaluated at the filtered solids volume fraction and the filtered slip velocity 

magnitude. 

When considering the solids mesoscale stresses (third term on the right in Equation 15), the mean of 

the normal stresses is used to calculated a filtered solids pressure as follows: 

𝑝̂𝑠,𝑓𝑖𝑙 =
𝑝𝑠,𝑓𝑖𝑙

𝜌𝑠𝑣𝑡
2 =

1
2 (𝛼𝑠𝜐𝑠,𝑥

′𝜐𝑠,𝑥
′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛼𝑠𝜐𝑠,𝑦

′𝜐𝑠,𝑦
′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝑣𝑡
2  

Equation 96 

The shear components still need to be considered. In the work from the Princeton group [12, 16, 27] 

this term is modelled as a filtered solids viscosity by calculating the ratio of the shear stress and the 

filtered shear gradients. However, the present study found that this produces a problem in samples in 

which the filtered shear gradients are small (see section B.1). Since the present study is only concerned 

with comparing sub-grid terms for different model formulations, and not with the actual 

implementation of the filtered models, it was therefore deemed unnecessary to cast the filtered shear 

stress into the filtered viscosity form. Only the dimensionless filtered solids mesoscale shear stress is 

henceforth considered, and calculated as follows: 
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𝜏̂𝑠,𝑓𝑖𝑙 =
𝜏𝑠,𝑓𝑖𝑙

𝜌𝑠𝑣𝑡
2 =

𝛼𝑠𝜐𝑠,𝑥
′𝜐𝑠,𝑦

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑣𝑡
2  Equation 97 

B.2.2 Scalar transport 

Previously, a filtered diffusivity has been considered to close the filtered scalar transport equation [27]. 

In the present study, the same problem with small values for the filtered scalar gradients was 

experienced as when calculating a filtered solids viscosity (see section B.2.1). Therefore, only the 

dimensionless filtered scalar-velocity co-variance (henceforth referred to as the filtered scalar co-

variance) is calculated. Note, only the fluctuations of the x-velocity are considered in the present work; 

an extension to other directions is straight forward and will be considered in future work. 

𝜆̂𝑘,𝑓𝑖𝑙 =
𝜆𝑘,𝑓𝑖𝑙

𝜌𝑠𝑣𝑡
=
𝛼𝑘𝜙𝑘

′𝜐⃗𝑠
′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑣𝑡
 

Equation 98 

B.2.3 Heat transfer 

The filtered heat transfer correction is calculated in a similar way to the filtered drag correction: 

𝑄 =
𝛾(𝑇𝑠 − 𝑇𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝛾𝑐𝑜𝑎𝑟𝑠𝑒(𝑇̃𝑠 − 𝑇̃𝑔)
 Equation 99 

where 𝛾𝑐𝑜𝑎𝑟𝑠𝑒 is, again, evaluated at the filtered phase volume fraction and filtered slip velocity. 

B.2.4 Reactions 

A non-locally corrected reaction rate correction is considered, as described in Chapter 3.8.2 and 

Appendix F.3.1. 

𝑅 =
𝛼𝑠𝜅𝐴̅̅ ̅̅ ̅̅ − 𝑚2𝛻𝛼𝑠̅̅ ̅

𝑇 ⋅ 𝛻𝜅𝐴̃
𝛼𝑠̅̅ ̅𝜅𝐴̃

 
Equation 100 

Where 𝑚2 = 𝛥
2/12, and 𝛥 is the filter size. 

B.3 Verification against literature results 

Since the methodology followed in this paper is strongly based on the papers published by the 

Princeton group [12, 14, 16, 19, 27, 28], the results were compared to ensure that the methodology is 

applied correctly. Overall, a satisfactory comparison is achieved, indicating that the results generated 

in the present study can be used with confidence. However, two interesting areas of differences should 

be addressed. 

The first topic involves the modelling of the filtered shear stress for the solids and the filtered co-

variance of the scalars. In the work performed at Princeton these quantities were modelled as a filtered 

solids viscosity and a filtered scalar diffusivity, as follows: 

𝜇𝑠,𝑓𝑖𝑙̅̅ ̅̅ ̅̅ = 𝜌𝑠𝛼𝑠𝜐𝑠,𝑥
′𝜐𝑠,𝑦

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (
𝑑𝜐𝑠,𝑥̃
𝑑𝑦

+
𝑑𝜐𝑠,𝑦̃

𝑑𝑥
)⁄  Equation 101 

𝐷𝑘,𝑓𝑖𝑙̅̅ ̅̅ ̅̅ ̅ = 𝜌𝑠𝛼𝑠𝜙𝑘
′𝜐𝑘,𝑥

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (
𝑑𝜙𝑘̃
𝑑𝑥

)⁄  Equation 102 
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Samples of both of these values become problematic when the value of the denominator is small, 

resulting in very large sample values. These samples magnify the natural variation in the filtered shear 

stress and filtered scalar co-variance (numerators in Equation 101 and Equation 102) within each bin 

and cause problems in obtaining a smooth correlation as a function of the marker. This problem can 

be reduced by eliminating samples where the denominator has a value below a certain cut-off value. 

A good comparison with the results from the Princeton group is achieved when using cut-off values 

equal to the mean gradient ( 1100m for this study) for the filtered scalar diffusivity and 1% of the non-

dimensional unit for the filtered solids viscosity. However, further investigation of the cut-off values 

showed that the solution keeps on changing with changing values of the cut-off value.  

This is shown in Figure 102 for the filtered scalar diffusivity in the gas phase, although the same is 

observed for the filtered solids viscosity. It is shown that, initially, increasing the cut-off value leads to 

a smoother curve. At very large cut-off values, the curves become less smooth again, since a large 

percentage of the samples are now ignored. It is also clear that the solution keeps changing with the 

cut-off value. Future research should therefore investigate the closure of the filtered solids shear 

stresses and filtered scalar co-variances in the form of Equation 101 and Equation 102. However, since 

this study is only concerned with investigating the effect of different resolved TFM setups relative to 

each other and not with the implementation of the filtered models, Equation 97 and Equation 98 are 

considered instead. 

 

Figure 102 - Comparison of the dimensionless filtered scalar diffusivity in the gas phase considering different 
values for the cut-off value of the denominator. 

Secondly, the main difference in the results from this study and those from Princeton is in the 

behaviour of the filtered variances at high volume fractions. In the work performed at Princeton, 

numerous simulations were performed at high domain-averaged particle volume fractions. As the 

domain-averaged solids volume fraction is increased above 0.3, a point is reached where the formation 

of gas bubbles is dramatically reduced and the flow rapidly becomes more homogenous by further 

increasing the domain-averaged volume fraction. In these simulations, there are therefore very small 

variances in each filter region. The correlations derived for the filtered solids pressure, filtered solids 

viscosity and filtered scalar therefore all peak at a filtered solids volume fraction of approximately 0.3 

(with the exception of the scalar diffusivity in the gas phase, which peaks earlier) and then declines 
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towards a zero value at large volume fractions, where the solids distribution is completely 

homogenous. 

These highly homogenous simulations concentrate the samples in a small range of bins around the 

domain-averaged solids volume fraction. In this narrow range of bins, the mean of the sampled values 

is dragged towards zero, competing with fewer samples obtained from simulations at smaller domain-

averaged volume fractions. The result is a noticeable dip in the correlation around each domain-

averaged solids volume fraction considered for large values of the filtered solids volume fraction (this 

is illustrated to some degree in Figure 103, which will be discussed shortly). To obtain a smooth curve, 

a large number of domain-averaged solids volume fractions would have to be considered as was done 

by the Princeton group. However, in the present study where several different model setups are 

compared, performing that many simulations is not feasible. 

For this reason, five domain-averaged solids volume fractions are considered in this study, only up to 

domain-averaged solids volume fractions where sharp bubbles/clusters still form. This changes the 

nature of the filtered variances at high filtered solids volume fractions since none of the simulations 

includes large, dense, slow-moving zones. Instead, very dense regions only occur in small regions inside 

clusters of particles, where considerable velocity fluctuations still occur. This causes the fluctuations 

to continue rising above filtered solids volume fraction of 0.3, in contrast to the results of the Princeton 

group. Regardless of this difference, the values obtained up to filtered solids volume fractions around 

0.3 are similar to those reported in ref. [16]. It can therefore be concluded that the nature of the 

variance terms in dense regions is very different depending on whether the dense region is within a 

small, dynamic solids cluster or within a large, homogenous solids area, as would occur in dense 

bubbling beds. Additional markers are clearly necessary to capture this effect and should be 

investigated in future studies. 

At the highest domain-averaged volume fraction of 0.4 considered in this study, clear bubble formation 

occurs in most model setups. However, when using either the Huilin-Gidaspow or Syamlal-O'Brien drag 

models, the bubbles in these simulations become much less distinct. This occurs because the 

interphase momentum exchange coefficient is larger for these models in dense regions than for the 

Wen-Yu drag model, leading to larger drag forces, smaller slip velocities and more homogenous flow 

(as discussed in section B.5.1).  

The effect of including the simulation results at a domain-averaged solids volume fraction of 0.4 is 

shown in Figure 103. Results from the simulations with domain-averaged volume fractions of 0.3 and 

0.4 are shown when analysed individually, as well as the correlation combining data from all domain-

averaged volume fractions. The results from the two different drag models are quite similar for the 

data obtained from the domain-averaged solids volume fraction of 0.3. On the contrary, it can be seen 

that, at a domain-averaged solids volume fraction of 0.4, the filtered stresses are much smaller in the 

simulations using the Huilin-Gidaspow drag model due to the more homogenous flow situation with 

fewer velocity fluctuations. This causes a sharp dip in the correlation around a filtered solids volume 

fraction of 0.4. Such a sudden change in behaviour makes the comparison of filtered quantities for 

different model setups difficult. For this reason, the information from simulations using a domain-

averaged solids volume fraction of 0.4 is neglected in the following results.  
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Figure 103 - Comparison of the filtered solids normal stresses for simulations performed with the Wen-Yu and 
Huilin-Gidaspow drag models using a filter size of 33 by 33 cells. 

B.4 Overall impact assessment 

This section will give an overall view of the impact of the different TFM setups on the different filtered 

correlations. This will be done by analysing the difference of the results of each setup from the base 

case (referred to as Base). The base case was chosen to be similar to the setup employed by the 

Princeton group in their studies and uses the Wen-Yu drag model [38], the radial distribution function 

by Ogawa [41], a particle-particle restitution coefficient of 0.9 and does not include a frictional 

pressure model. Additional TFM setups are considered with the following changes from the base case:  

 Drag model 

o Huilin-Gidaspow drag model [36] (referred to as the HG case) 

o Syamlal-O'Brien drag model [67] (SO case) 

 Frictional pressure 

o Including the frictional pressure model by Johnson & Jackson [35, 42] (FP case) 

 Particle-particle restitution coefficient 

o 0.95 (PPR-H) 

o 0.8 (PPR-L) 

 Radial distribution functions 

o Arastoopour [68] (Ara) 

o Ma & Ahmadi [69] (MA) 

All filtered quantities are presented in their dimensionless forms, as presented in section B.2. It should 

also be noted that the filtered slip velocity, |𝜐̃𝑔,𝑦 − 𝜐̃𝑠,𝑦|, is also included as one of the filtered 

quantities to be assessed. The filtered slip velocity has been shown to be an important marker for the 

drag by ref. [14].  Although not included as a marker in this study, it is expected that it will also be an 

important marker for other filtered quantities as well, as the filtered slip velocity will influence the 

shape and definition of the solid clusters and gas bubbles, and thereby also the sub-grid effects. It 

therefore becomes valuable to assess the influence that different simulations setups will have on the 

filtered slip velocity. 
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The overall difference from the base case is quantified by calculating the percentage difference of a 

filtered quantity from the base case in each bin and then calculating the average difference in all of 

the bins. However, some bins at large filtered solids volume fractions contain very few samples, causing 

variation in the data, and should therefore be neglected. To do this, the amount of markers are 

calculated that would be in each bin if the samples were distributed uniformly over all the bins. All bins 

with fewer than 20% of this number of samples are then neglected in the comparison of TFM setups 

and are also not presented in the graphs following in the discussion of results. Such a comparison is 

given in Figure 104 for a filter size of 9x9 cells (11.25x11.25 mm2) and in Figure 105 for a filter size of 

33x33 cells (41.25x41.25 mm2).  

 

Figure 104 - Comparison of all TFM setups considered to the base case for all filtered quantities using a filter 
size of 9x9 cells. HG = Huilin-Gidaspow drag model, SO = Syamlal-O'Brien drag model, FP = including frictional 
pressure, PPR-H = particle-particle restitution coefficient of 0.95, PPR-L = particle-particle restitution 
coefficient of 0.8, Ara = radial distribution function of Arastoopour, MA = radial distribution function of Ma & 
Ahmadi. 

  



 

167 

 

 

 

Figure 105 - Comparison of all TFM setups considered to the base case for all filtered quantities using a filter 
size of 33x33 cells. HG = Huilin-Gidaspow drag model, SO = Syamlal-O'Brien drag model, FP = including frictional 
pressure, PPR-H = particle-particle restitution coefficient of 0.95, PPR-L = particle-particle restitution 
coefficient of 0.8, Ara = radial distribution function of Arastoopour, MA = radial distribution function of Ma & 
Ahmadi. 

A number of conclusions can be drawn from this overview of the results generated in this study. Firstly, 

it is clear that the effect of the drag law (HG and SO) is by far the most important, especially on the 

filtered slip velocity and filtered heat transfer correction.  

Apart from the drag law, however, the average deviations from the base case are relatively small, 

ranging from about 1% to 10%. The effect of changing the radial distribution function is the smallest 

and it can in general be concluded that the choice of this closure is insignificant when deriving filtered 

models. The generally small impact of the TFM formulation on the filtered quantities is a positive result, 

since it indicates that the uncertainty associated with the choice of the resolved TFM formulation is 

small in most cases and therefore gives reason for increased confidence in the fTFM approach. 

It can also be observed that the effect of the different model settings is mostly similar for the small 

and the large filter sizes, although there are some exceptions. Firstly, the effect of including frictional 

pressure (FP) is larger in some cases for the smaller filter size. This is because the frictional pressure is 

specified to only have an effect at solids volume fractions higher than 0.5. For the large filter size, there 

are fewer samples with very large filtered solids volume fractions, therefore reliable data is available 

for fewer high filtered solids volume fraction bins. The effect of including the frictional pressure is 

therefore smaller when using large filter sizes. The significance of changing to the Syamlal-O'Brien drag 

model is also reduced with the increased filter size. This effect is discussed further in section B.5.3. 

It can also be noted that some filtered quantities are similarly affected by changes in the TFM setup. 

For example, for the filtered slip velocity, drag correction, heat transfer correction and reaction rate 

correction, the significant effects are all for the HG, SO and FP cases. Furthermore, the effects on the 

filtered solid stresses are very similar, with the SO, FP and PPR-H cases being significant. Finally, the 

two filtered scalar co-variances respond similarly. They also behave somewhat similarly to the filtered 

solids stresses, except that the frictional pressure (FP) and the lower particle-particle restitution 

coefficient (PPR-L) has a more significant effect for the filtered scalar co-variances. 
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These effects will be analysed in more detail in the following section. 

B.5 Detailed analysis of significant effects 

In this section, the results presented in section B.4 will be analysed in more detail, limiting the 

discussion to the more significant model effects on each filtered quantity. The results are visualised by 

plotting both the filtered quantity and the percentage deviation from the base case as a function of 

the filtered solids volume fraction. Furthermore, the discussion focusses on the smaller filter size (9x9 

cells) since the results are similar for the two filter sizes with some effects more visible for the smaller 

filter.  

B.5.1 Filtered slip velocity 

From Figure 106 it can be seen that, at higher filtered solids volume fractions, the filtered slip velocity 

for the frictional pressure case rapidly decreases relative to the base case. This can be explained 

through Figure 107 which shows that the dense regions inside clusters tend to be larger and more 

homogenous when the frictional pressure is included. This is due to the much larger viscosity of the 

solids in the dense regions with frictional stresses included, causing the solids cluster to become more 

difficult to deform.  

 

Figure 106 - Comparison of the dimensionless filtered slip velocity for the significant cases by a) the filtered 
quantity and b) the percentage deviation from the filtered quantity in the base case 
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Figure 107 - Comparison of the solids volume fraction contours without frictional pressure on the left and with 
frictional pressure on the right. Blue corresponds to a solids volume fraction of zero and red to a solids volume 
fraction of 0.6. 

Both the Huilin-Gidaspow and Syamlal-O'Brien drag models predict significantly lower slip velocities 

over the entire range of filtered volume fractions than the Wen-Yu model, as seen in Figure 106. This 

behaviour is explained by comparing the interphase momentum exchange coefficients for the drag 

models, as is done in Figure 108 at a slip velocity of 0.01 m/s (a good approximation of the slip velocities 

inside the dense regions). Here it can be seen that the interphase exchange coefficient of the Huilin-

Gidaspow and Syamlal-O'Brien drag models are larger than that of the Wen-Yu drag model, especially 

in dense regions. The larger drag forces predicted lead to tighter coupling between the gas and 

particles, resulting in smaller slip velocities. However, the main reason for the large influence of the 

alternative drag models is likely to be related to less distinct cluster resolution as will be further 

discussed in subsequent sections.  

 

Figure 108 - Comparison of the interphase momentum exchange coefficients for the three drag models 
considered at a slip velocity of 0.01 m/s by a) the coefficient value and b) the percentage deviation from the 
Wen-Yu drag law 
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B.5.2 Filtered drag correction 

For the drag correction, the addition of frictional pressure again has a large affect at filtered solids 

volume fractions above approximately 0.4. This is again due to the more homogenous nature of the 

clusters with frictional pressure included. In the bins at the highest filtered solids volume fraction with 

sufficient samples, which corresponds to the centres of the clusters, the solids distribution is essentially 

uniform and the filtered drag correction is close to unity.  

 

Figure 109 - Comparison of the filtered drag correction for the significant cases by a) the filtered quantity and 
b) the percentage deviation from the filtered quantity in the base case 

 The trends for the Huilin-Gidaspow and Syamlal-O'Brien drag models show that the practice of scaling 

the filtered drag force with the coarse grid drag force appears to work well, since the deviations of the 

filtered drag corrections fluctuate around zero with a maximum deviation of about 10% in both cases. 

The shape of the interphase exchange coefficient deviations (right-hand side of Figure 108) is clearly 

visible (inversed) on the right-hand side of Figure 109.  

It can also be noted that for the cases where frictional pressure is not included, the drag correction 

factor does not return to a value of 1 near maximum packing. This is due to the nature of the dense 

regions in this data set where only results from periodic simulations with domain-averaged volume 

fractions up to 0.3 were included (as previously discussed in section B.1). Completely homogenous, 

dense regions that are larger than the filter size therefore do not exist in these simulations (maximum 

packing is approached only in small areas inside the clusters). When frictional pressure is included, 

however, larger clusters form, leading to dense, homogenous regions larger than the filter size and 

therefore also drag correction factors close to one near maximum packing. The drag correction factor 

is therefore also expected to return to 1 close to maximum packing for the cases without frictional 

pressure with the inclusion of more data from denser cases. 

B.5.3 Filtered solids stresses 

The normal and shear filtered solids stresses behave very similarly, therefore only the shear filtered 

stress is presented here in Figure 110. Both the normal and shear filtered stresses tend to increase 

linearly with the filtered solids volume fraction. However, at large values of the filtered solids volume 

fraction the slope decreases as the velocity fluctuations tend to decrease within the more homogenous 

regions in the centre of the clusters. This effect is clearly enhanced by including the frictional pressure 

in the TFM formulation.  
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Figure 110 - Comparison of the dimensionless filtered solids shear stress for the significant cases by a) the 
filtered quantity and b) the percentage deviation from the filtered quantity in the base case 

The alternative drag models also tend to decrease the filtered stress in the dense regions. When 

comparing this result with the filtered slip velocity result in Figure 106, it can be deduced that the 

influence of the alternative drag laws is to reduce the cluster resolution, especially at higher filtered 

solids volume fractions. Greater cluster resolution would naturally increase the effects of clustering 

such as decreased interphase exchange and increased dispersion of mass, momentum and heat. These 

results clearly show that the use of the Huilin-Gidaspow or Syamlal-O'Brien drag models decrease the 

filtered slip velocity and the filtered stresses, thus indicating reduced cluster resolution.  

Finally, for the filtered stresses the effect of the particle-particle restitution coefficient becomes more 

significant compared to the other filtered quantities. Discussion of this effect is deferred to section 

B.5.5 where both the low and high particle-particle restitution coefficient cases were significant.  

B.5.4 Filtered heat transfer correction 

Similar to the filtered drag correction, the inclusion of frictional pressure causes the filtered heat 

transfer correction to proceed to unity at large filtered solids volume fractions (Figure 111). However, 

for the case of the filtered heat transfer correction, there is a region around filtered solids volume 

fractions of 0.3 where the correction is actually predicted to be larger. This may be due to the much 

more viscous solids phase in the dense particle regions which restricts convective heat transfer.  
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Figure 111 - Comparison of the filtered heat transfer correction for the significant cases by a) the filtered 
quantity and b) the percentage deviation from the filtered quantity in the base case 

For the drag laws, both the Huilin-Gidaspow and Syamlal-O'Brien predict substantially smaller sub-grid 

drag corrections than the Wen-Yu drag model. This is again due to the degree of cluster resolution 

being lower with these drag models as discussed in the previous section. 

B.5.5 Filtered scalar co-variances 

Figure 112 and Figure 113 show the filtered scalar co-variances in the gas and solid phases, 

respectively. It can be noted that filtered scalar co-variance in the solids phase behave similarly to the 

solids shear stress, except for an increase of the slope at very large filtered solids volume fractions. 

The shape of the filtered correlation is very different in the gas phase. However, despite this difference, 

the effect of changes in the resolved TFM formulation is very similar. The effects of the frictional 

pressure and the two alternative drag laws can therefore be explained through similar arguments to 

those put forward in section B.5.3. 

 

Figure 112 - Comparison of the filtered scalar co-variance in the gas phase for the significant cases by a) the 
filtered quantity and b) the percentage deviation from the filtered quantity in the base case 
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Figure 113 - Comparison of the filtered scalar co-variance in the particle phase for the significant cases by a) 
the filtered quantity and b) the percentage deviation from the filtered quantity in the base case 

The effect of changing the particle-particle restitution coefficient, however, requires additional 

discussion. Unlike the filtered solids stresses, more elastic collisions now lead to smaller filtered scalar 

co-variances. A similar decrease is observed when the particle-particle restitution coefficient is 

decreased to 0.8 from 0.9. However, the particle-particle restitution coefficient of 0.95 leads to a 

maximum decrease in the filtered scalar co-variance at high filtered solids volume fractions, while a 

particle-particle restitution coefficient of 0.8 leads to a maximum decrease in the dilute regions. 

To gain a better understanding of this behaviour, the solids volume fraction variance (𝛼𝑠
′𝛼𝑠

′̅̅ ̅̅ ̅̅ ̅̅ ) was 

calculated for the three cases with different particle-particle restitution coefficients. For the case with 

the less elastic collisions, both the non-homogeneity of the solids and the scalar dispersion tends to 

increase relative to the base case from low solids volume fractions to high solids volume fraction, since 

the less elastic collisions lead to more clustering in the dense regions. Surprisingly, however, the scalar 

dispersion is decreased relative to the base case, whereas one would expect the increased variance in 

the solids volume fraction to lead to more scalar dispersion. 

In the case of the more elastic collisions, the solids volume fraction variance is decreased relative to 

the base case in the dilute regions due to decreased clustering. The scalar variance decreases relative 

to the base case, but in contrast to the solids volume fraction variance, this decrease takes place in the 

dense regions. It can therefore be concluded that the scalar dispersion is not influenced only by the 

degree of volume fraction segregation and that other factors, such as the cluster shape, size and 

number, play an important role. Further investigations using additional markers will be required to 

fully understand these trends.  
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Figure 114 - Percentage deviation of the solids volume fraction variance from that in the base case 

B.5.6 Filtered reaction correction 

The effect of changes in the TFM formulation is nearly identical for the filtered heat transfer and 

filtered reaction rate correction (Figure 115). This is understandable, since interphase heat transfer 

and first-order, solids catalysed reaction are analogous processes. However, the changes caused by 

the different TFM formulations are much smaller for the filtered reaction rate correction. This is 

because the reaction rate chosen is relatively slow compared to the heat transfer rate.  

 

Figure 115 - Comparison of the filtered reaction rate correction in the gas phase for the significant cases by a) 
the filtered quantity and b) the percentage deviation from the filtered quantity in the base case 
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C. Evaluation of wall boundary conditions for riser flow 

Particle-wall collisions play a critical role in the behaviour of risers due to the large ratio of wall area to 

reactor volume and the high velocity of particles typical of risers. There is general agreement in the 

literature that the choice of wall boundary condition for the solid phase have a significant influence on 

the overall hydrodynamics of the riser [70, 71]. However, it remains unclear what the correct approach 

is for including the wall effects, as boundary conditions in the literature include anything from free-slip 

to no-slip.  

The most popular model for the particle-wall boundary condition, by a considerable margin, is that of 

Johnson and Jackson [35]. At the time of writing, the original paper describing the model had over 700 

citations in the literature. This is despite the well-known limitations of the approach [72, 73]. In the 

Johnson and Jackson model the effect of particle-wall friction and wall roughness on the shear force is 

incorporated into a single heuristic constant, called the specularity coefficient. The specularity 

coefficient is not a physically measurable property and its desired value may change with flow 

conditions. This is a problem in systems such as circulating fluidised beds, which may contain dense 

and dilute regions, requiring very different specularity coefficients for accurate results in these 

different regions. The dependence on flow conditions leads to a disparity in the values of the 

specularity coefficient used in literature studies of risers, with one group assuming partial slip 

(specularity coefficients of 0.1 to 0.5) [74, 75] and another group assuming near free-slip (values 

smaller or equal to 0.001) [71, 76].  

Furthermore, the Johnson and Jackson model assumes a linear relationship between the shear stress 

and the slip velocity. However, it is well known that at high slip velocities all the particles will slide at 

contact and that the shear stress will be limited by Coulomb friction [34, 77-79]. The Johnson and 

Jackson model therefore tends to overpredict the shear stress and granular temperature generation 

for rapid flows, which explains the use of very low specularity coefficient values in the literature.  

Despite the dominance of the Johnson and Jackson model, there are alternative methods available in 

literature. Jenkins [77] proposed expressions for the shear stress and granular temperature flux in 

terms of measurable quantities, the friction coefficient (𝜇𝑤) and the tangential (𝛽0) and normal (𝑒𝑤) 

particle-wall restitution coefficients. However, their theory was restricted to the limits of either non-

sliding or all-sliding collisions; therefore a priori knowledge of the flow domain is required for using 

their model. Jenkins and Louge [80] improved these correlations for the flux of the granular 

temperature based on computer simulations of Louge [78] for the limits of non-sliding and all-sliding 

collisions. 

Sliding and non-sliding collisions were first linked into one expression by Li and Benyahia [79], who 

provided an expression for the specularity coefficient based on the friction coefficient, particles-wall 

restitution coefficients, slip velocity and granular temperature. This approach therefore solves the 

problem of the specularity coefficient not being a measurable quantity, as well as its dependency on 

the flow conditions. However, it was recently noted that this approach does not differentiate between 

sliding and non-sliding collisions in the dissipation term of the boundary condition for the granular 

temperature, leading to an overprediction of the granular flux in rapid granular flows [72]. 

The model by Schneiderbauer [34] also included sliding and non-sliding collisions in one expression, 

dependent on the friction and particle-wall restitution coefficients. However, an improved treatment 

of the granular flux leads to better comparisons with the simulation data of Louge [78], compared to 
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the work of Li and Benyahia [79]. Additionally, the model can also account for a boundary moving in a 

normal direction relative to the flow, making it the only approach suitable to systems with moving 

parts.  

Most recently, Zhao [73] achieved an even better comparison with the data of Louge [78] by also 

considering the rotational granular temperature of the particles. However, the approach of using a 

rotational granular temperature is not common practice due to the added computational expense of 

solving an extra conservation equation and the complexity added by the additional closures.  

For this reason it can be argued that currently the model by Schneiderbauer [34] is the best alternative 

for replacing the Johnson and Jackson model [35] as the most commonly used wall-friction model for 

granular flows. It has the primary advantages of requiring only measurable quantities as input and 

achieving a very good match with simulation data by Louge [78] by accounting for the effect of a 

transition from non-sliding to sliding collisions on both the shear stress and the granular flux. 

Additionally, it retains most of the simplicity that makes the Johnson and Jackson model popular. 

The potential benefit of the Schneiderbauer wall-friction model has been demonstrated in a spouted 

bed [57] for fluidised beds. However, its true advantage is expected to be best illustrated in risers, 

where rapid granular flow occurs at the walls. For this reason, the study presented here will aim to 

evaluate the Schneiderbauer model as an alternative to the Johnson and Jackson model by comparing 

numerical results with experimental data in risers over a range of superficial gas velocities and solids 

fluxes.  

C.1 Simulation setup 

C.1.1 Model equations 

For this section, the same transport equations are solved for the hydrodynamics as those discussed in 

Chapter 2.1. However, of particular significance for this section of work are the equations used for 

modelling the particle-wall interaction. The contribution of the wall comes in a shear stress term that 

is included in the particle phase momentum equation (Equation 4) and a granular flux term that is 

included in the granular temperature equation (Equation 6). 

The first formulation used is that by Johnson and Jackson [35], for which the expressions for the shear 

stress and the granular flux are: 

𝜏𝑠 = −
𝜋

6
√3𝜙

𝛼𝑠
𝛼𝑠,max

𝜌𝑠𝑔0√𝛩𝑠𝜐⃗𝑠,| Equation 103 

𝑞𝑠 = 𝜏𝑠 ⋅ 𝜐⃗𝑠,| −
𝜋
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(1 − 𝑒𝑤
2)𝜌𝑠𝑔0𝛩𝑠

3
2 Equation 104 

where the input parameters are the specularity coefficient (𝜙) and the particle-wall restitution 

coefficient (𝑒𝑤). 

For the Schneiderbauer model [34], the following set of equations are used: 

𝜏𝑠 = −𝑛𝑤𝜇𝑤𝛼𝑠𝜌𝑠𝑔0𝛩𝑠𝑒𝑟𝑓(𝜐𝑠̅)
𝜐⃗𝑠,|

‖𝜐⃗𝑠,|‖
 Equation 105 
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Equation 106 
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𝜇0 =
7
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1 + 𝛽0

𝜇𝑤 Equation 109 

where the input values are the friction coefficient (𝜇𝑤), the tangential restitution coefficient (𝛽0) and 

the normal restitution coefficient (𝑒𝑤). 

It can also be noted that for this section of work the radial distribution function is calculated using the 

equation by Arastoopour [68] to be consistent with the work by Schneiderbauer [57], where they 

optimised the three parameters in their wall friction model for a spouted bed. 

C.1.2 Solver settings 

In this study, the same solver settings were used as those described in Chapter 3.1.4 for the resolved 

simulations performed in fully-periodic domains. 

C.1.3 Simulation geometry 

The simulations are performed on a 800 mm long section of a riser with a diameter of 76mm according 

to the experiments by Yan and Zhu [81, 82]. A periodic section of the riser is simulated, assuming fully 

developed flow in the experimental setup. 

Due to the large number of simulations that will be required to study the effect of changing the 

parameters in the Schneiderbauer model at different flow conditions, it was deemed impractical to 

perform 3D simulations. However, in 2D simulations the ratio of the wall area to reactor volume is 

significantly reduced compared to the 3D case. It is important to correctly maintain this ratio since the 

primary purpose of this study is to investigate the effect of the walls. For this reason a recently 

published 2.5D approach is utilised [83]. In this method, a single layer of 3D cells is used, with the cell 

volume increasing from the riser centre towards the walls to accurately reproduce the geometrical 

proportions in the 3D riser, as is done in an axisymmetric simulation. However, in the 2.5D model the 

two wedges that subsequently form are linked in the centre by a rectangle to allow particles to be 

transported across the centre. This solves the primary problem of using axisymmetric simulations for 

predicting riser flow [83].  

This setup allows a much better representation of the riser geometry, while still maintaining the same 

number of cells as in 2D. An additional benefit of the 2.5D approach is that it does not require the 

boundary conditions or initial conditions to be adapted, as was done in a previous study [11], to allow 

for comparison between 2D simulations and experimental data. This is because the 2.5D model 

accurately reproduces the radial proportions of the riser geometry, except for a slight overestimation 

of the volume caused by the rectangle connecting the wedges.  
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Despite the better comparison with experimental data afforded by the 2.5D approach, it was noted by 

[83] that 2.5D simulations tend to overpredict the solids velocity in the centre of the reactor compared 

to 3D simulations. This behaviour was also observed in the present study when comparing simulation 

results to experimental data (Figure 123). However, keeping this behaviour in mind, 2.5D simulations 

results are still sufficient for the purpose of this study when limiting the comparison with experimental 

results to the solids velocity profile closer to the wall. In this region, the results are most sensitive to 

the wall boundary condition and comparison between 2.5D and 3D simulation results are reasonably 

good. Comparison of 2.5D simulation results and experimental data near the wall is therefore sufficient 

for the evaluation of different wall boundary condition settings. 

A structured grid of 0.67 ×  1.34 𝑚𝑚 cells is used. This grid size was shown earlier to give mesh 

independent results in combination with second order time discretisation for the riser considered in 

an earlier study [11]. 

C.1.4 Boundary conditions 

The top and bottom boundary conditions are specified to be translationally periodic in the length of 

the riser. To be able to maintain the conditions used in the experiments by Yan and Zhu [81, 82], the 

pressure drop is adjusted to maintain the target gas superficial velocity, as discussed in [11].  Each 

simulation is initialised with the domain-averaged particle volume fraction for that specific case. The 

superficial gas velocity and the particle volume fraction used in the simulations correspond to the five 

cases investigated by Yan and Zhu [81, 82]. These operating conditions are summarised in Table 2. 

Table 7 - The operating conditions considered in this study 

Case Superficial velocity (m/s) Solids flux 

(kg/m2s) 

Average volume 

fraction 

1 3.5 100 0.0565 

2 5.5 50 0.0106 

3 5.5 100 0.0251 

4 5.5 200 0.0497 

5 8.0 100 0.0128 

At the walls, the boundary conditions are set as no-slip for the gas phase and partial-slip, using either 

the Johnson and Jackson or Schneiderbauer formulation, for the particle phase. 

C.1.5 Material properties 

Air at room temperature is specified as the fluidising gas. The solid phase consists of FCC catalyst 

particles with a density of 1500 𝑘𝑔/𝑚3 and a mean diameter of 67 𝜇𝑚, as specified in the 

experimental work [81, 82]. 

C.1.6 Data collection 

All simulations are performed initially for 7.5 𝑠 to allow for a statistical steady state to be reached, 

which is determined from the average mass flux in the system. A further 20 𝑠 of simulated time is 
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performed subsequently to allow important flow variables to be time-averaged. For Case 5 the results 

are time-average over 50 𝑠, since it requires more time to yield symmetrical results. Time-averaged 

values are calculated for the solids flux and for particle velocity and volume fraction profiles. These 

values are compared with experimental data. The particle velocities and volume fractions are further 

averaged over the length of the period section. The solids velocities are calculated as a mass weighted 

average, since the measuring technique employed in the experiments will tend to more heavily weigh 

the velocities in dense regions [84]. Although no experimental data is available for it, the time-

averaged granular temperature profile is also determined, since it is an important quantity in 

explaining the simulation behaviour during this study. 

C.2 Comparison of the Johnson and Jackson and Schneiderbauer models 

As a start to the investigation, the performance of the Schneiderbauer model and the Johnson and 

Jackson model with two different specularity coefficients is investigated over a large range of flow 

conditions, as summarised in Table 2. The simulations using the Schneiderbauer model is performed 

using the following values of the friction parameters:  𝜇𝑤 = 0.5, 𝑒𝑤 = 0.9 and 𝛽0 = 0.4. These are the 

values that Schneiderbauer [57] found to be the optimum in their study considering a spouted bed. 

Since the spouted bed was operated using glass spheres with a diameter of 3 𝑚𝑚, compared to the 

67 𝜇𝑚 FCC catalyst particles in this study, it is expected that the performance of the model could still 

be improved significantly from this starting point by optimising the values for this particular case. 

Two cases will be considered for the Johnson and Jackson model, corresponding to the two different 

approaches often used in literature. For the low friction approach, a specularity coefficient of 0.001 is 

specified. For the high friction approach, the specularity coefficient is calculated in such a way that the 

shear stress will be similar to that of the Schneiderbauer model settings used in this section for the 

limit of all non-sliding collisions (when the value of the normalised slip velocity, 𝜐𝑠̅, in Equation 108 is 

low). This criterion can be calculated by setting the shear stress in Equation 103 and Equation 105 

equal and using the knowledge that at low values of 𝜐𝑠̅ the gradient of the error function is constant 

and therefore 𝑒𝑟𝑓(𝜐𝑠̅) =
2

√𝜋
𝜐𝑠̅. This holds to within 5% for 𝜐𝑠̅ <≈ 0.275 and yields the condition that 

𝜙 =
6√2𝜀𝑠,max

7𝜋√3𝜋
(1 + 𝛽0) Equation 110 

giving 𝜙 = 0.111 for this study, using a maximum packing of 0.63. A particle-wall restitution 

coefficient of 0.9 was used for both of the Johnson and Jackson approaches. 

The results for the conditions considered are summarised in Figure 116. Plots are shown for the time-

averaged values of the solids y-velocity and the solids volume fraction for each case, where 

experimental data are available. An additional plot is also shown for the granular temperature, since 

the granular temperature helps to explain some of the behaviour observed. It is assumed that the 

experimental data, given as a function of the radius, is completely symmetric, since no mention of any 

asymmetry is made [81, 82].  
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Figure 116 - Results comparing the solids y-velocity, particle phase volume fraction and granular temperature 
for simulations and experiments. Experiments (  ), Schneiderbauer model (  ), Johnson and Jackson 
with 𝝓 = 𝟎. 𝟏𝟏𝟏 ( ), Johnson and Jackson with 𝝓 = 𝟎. 𝟎𝟎𝟏 ( ), Johnson and Jackson with 𝝓 = 𝟎. 𝟏𝟏𝟏 
and 𝒆𝒘 = 𝟎. 𝟐 ( ). 
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Figure 117 – Error in the solids mass flux prediction for each of the wall friction modelling methods. 

These results will now be discussed in a sequential manner. 

C.2.1 Case 1 

Considering the solids velocity and volume fraction for Case 1 in Figure 116 it can immediately be 

observed that the Schneiderbauer model and the Johnson and Jackson model at the non-sliding limit 

(𝜙 = 0.111) give very similar results. The reason is that, in the dense case with low gas velocity, large, 

slow-moving clusters form at the wall, shielding the wall from the fast-moving particles. Most of the 

solids at the wall subsequently have a low slip velocity, leading to non-sliding collisions. The agreement 

of both methods with the experimental data is good, except for a small overprediction in the 

downwards solids flux at the walls, leading to an underprediction in the solids flux, shown in Figure 

117.  For the simulation with the low specularity coefficient the low friction at the walls often leads to 

thin streaks of solids rapidly falling at the wall. This causes a slightly larger overestimation of the 

downward solids flux at the wall and a substantial increase in the underprediction of the solids flux 

(67%, compared to 34% for the Schneiderbauer model). A video illustrating the flow behaviour 

described for Case 1 can be found with the publication from this study [85]. 

C.2.2 Cases 2 and 3 

The conclusions that can be drawn for Cases 2 and 3, where faster, more dilute flows occur, are similar. 

Here, the Johnson and Jackson model with a high specularity coefficient fails completely, predicting 

much too high upward solids velocities and very low solids volume fractions at the walls. This indicates 

that there are essentially no solids clusters forming at the walls. By examining the granular 

temperature profiles, the cause can be seen to be very large granular temperatures at the walls. Since 

the flow is fast, a high shear stress at the wall causes large velocity gradients in the wall region. These 

large gradients give rise to large generation of granular temperature (first term on the RHS of Equation 

6) which creates higher granular viscosities. The resulting highly viscous flow causes even more 

granular temperature generation in Equation 6 and also forces more slip at the wall despite the high 

degree of wall shear stress, thus resulting in a significant positive granular temperature flux at the wall 

according to Equation 104. To separate the effects of Equation 6 and Equation 104, an additional 



 

182 

 

simulation was performed using a specularity coefficient of 0.111 and a very low restitution coefficient 

of 0.2 in Case 3 to test whether the problem with large granular temperatures at the wall can be solved 

by substantially increasing the dissipation term in Equation 104. However, results in Figure 116 show 

that despite a small improvement, the effect is not sufficient to deliver good results. Additionally, such 

nearly completely inelastic collisions are not physically realistic for the FCC catalyst particles 

considered in this study. 

This problem with the Johnson and Jackson model is overcome by using a very low specularity 

coefficient value, such as 0.001. In such a case, the self-strengthening mechanism for granular 

temperature generation described above is avoided, allowing clusters to form. It can be observed from 

Figure 116 that this approach yields a very good comparison with experimental data for the particle 

velocity and volume fraction close to the walls. However, the deviations are observed at the centre of 

the riser. In the experiments, the peak velocity is significantly lower and the profile flatter. The volume 

fraction in the centre is also overpredicted in the simulations. Similar results occur for the 

Schneiderbauer model and at most of the operating conditions. Therefore, it is likely that these errors 

are due to the 2D domain discretization employed, limitations of the KTGF closures used or the periodic 

assumption, and not due to the wall friction models. For this reason, this discussion will generally focus 

more on the comparison with experimental data close to the walls. 

The solids velocities estimated by the Schneiderbauer model are similar to that of the low friction 

Johnson and Jackson simulations. However, lower volume fractions are obtained at the walls, 

indicating that the current setup underestimates the cluster formation at the walls. The granular 

temperature plots for Case 2 and 3 shows a slight increase in the granular temperature close to the 

walls. This suggests that the generation of granular temperature at walls might be too high with the 

current friction parameters, deterring cluster formation. 

C.2.3 Case 4 

In Case 4 all three approaches perform reasonably well. Therefore, this denser case somehow allows 

the formation of clusters in the case of the Johnson and Jackson model with a specularity coefficient 

of 0.111, despite the high granular temperature still observed for this approach in Figure 116. By 

observing videos of the flow for this case it was determined that for this approach cluster formation is 

much slower than for the other two. During start up solids clusters form in the centre of the riser, but 

are not allowed to form at the walls. Eventually, these clusters become sufficiently dense to overcome 

the excessive granular pressure gradient and reach the walls where they are maintained in a manner 

similar to Case 1. The time-averaged granular temperature remains excessively high due to 

contributions from dilute wall regions (dense and dilute regions are weighed equally in the averaging 

procedure).  

For all three approaches in Case 4 the upward particle velocity at the centre and the downward solids 

flow at walls are overestimated, but otherwise the general comparison is good. All three methods yield 

exceptional comparisons with the experimental data for the particle volume fraction. Figure 117 shows 

that all three methods slightly underpredicts the average solids flux through the domain, with the low 

friction Johnson and Jackson method performing slightly better than the other two methods.   
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C.2.4 Case 5 

For Case 5 it is clear that the large friction Johnson and Jackson approach fails in a similar way as was 

described for Cases 2 and 3. For the other two methods highly asymmetric flow can be observed, which 

is characteristic of all instances of Case 5 considered in this study. Clusters will initiate at one wall first 

and start falling, lowering the upward gas velocity on that side. The gas flow then tends to move 

towards the other wall to bypass the solids and accelerates to maintain the same gas flux through the 

system. Due to the high gas velocity used in this case, this leads to high granular temperatures at the 

wall opposite to the one containing clusters, preventing clusters from forming on the side as well. A 

video illustrating the flow behaviour described for Case 5 can be found with the publication from this 

study [85]. 

However, viewing Figure 116 for Case 5, a clear difference between the Schneiderbauer model and the 

Johnson and Jackson model with a low specularity coefficient is evident. For the Johnson and Jackson 

model the particle velocity and volume fractions are completely skewed, indicating that the 

asymmetrical flow described above persists for the entire simulation. From viewing videos of the flow 

behaviour, it can be seen that the reason for this is that, when using the Johnson and Jackson model 

with a specularity coefficient of 0.001, every time a cluster starts growing a part of it is sheared off 

before it can become large enough to be swept from the wall completely. This is because of the very 

large shear caused by the rapidly falling clusters in this near free-slip condition. 

For the Schneiderbauer model there is little cluster formation occurring, most likely due to large 

granular temperature at the walls. However, when it forms, clusters on one wall can break up 

completely, allowing a chance for clusters to be formed at the opposite side. If enough time is allowed 

for averaging the results, periods with clusters at each wall will cancel each other out, leading to more 

symmetrical results in the profile. Despite the more symmetric averaged profile for the Schneiderbauer 

model, the comparison with the experimental solids volume fractions is still relatively poor. The 

simulation predicts much higher solids volume fractions at the centre, while failing to predict enough 

cluster formation next to the walls.  

C.2.5 Summary of initial results 

From the results discussed in this section it can be concluded that there are two different regimes for 

solids flows next to the walls, both of which should be treated correctly. The first is rapid, dilute flows 

occurring before the onset of cluster formation. In this regime, it is important that wall shear stresses 

should be sufficiently small to prevent excessive strain rates in the wall regions which leads to 

unphysical self-strengthening granular temperature generation. This confirms the conclusion by 

Benyahia [76] that a specularity coefficient close to free-slip should be used to limit the granular 

temperature generation at the walls. 

The second regime occurs when solids clusters have already formed at the wall. Here dense clusters 

will fall under the influence of gravity and it becomes important that sufficient wall shear stresses are 

included to limit the slip velocity of these dense clusters next to the wall. If the flow is sufficiently 

dense, the Johnson and Jackson model with a high specularity coefficient correctly models this regime 

and the dense clusters shield the wall from high velocity flows, thereby preventing excessive granular 

temperatures in dilute regions as described above.  
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The promise of the Schneiderbauer model therefore lies therein that it can treat both regimes 

accurately. By accounting for sliding collisions at large slip velocities the granular temperature 

generation should be limited enough to allow cluster formation at the walls, while realistic shear 

stresses at the walls are retained for clusters falling relatively slowly at the walls. It therefore has the 

best potential to give reasonable results over the entire wide range of flow conditions considered in 

this study with a single set of model parameters. However, since the cluster formation at the walls 

with the Schneiderbauer model is insufficient in Cases 2, 3 and 5, it appears as if the granular 

temperature generation is still too large with the settings used in this section. The rest of the study will 

therefore aim to optimise the friction parameters used in the Schneiderbauer model and to evaluate 

the performance of the optimised model.  

C.3 Attempted optimisation of the Schneiderbauer model 

Although the Schneiderbauer model parameters have the advantage of being measurable properties, 

they will still mostly be obtained by fitting simulation results to experimental results. This is because 

experimental measurements for particle-wall collision properties, as in these studies from literature 

[86-88], are limited and most often reliable data will not be available for the specific material and 

particle size under investigation. This is especially the case for smaller particles sizes, as in this study, 

due to the practical difficulties of measuring collision properties for small particles. For this reason, a 

large number of simulations will be performed to determine the combination of friction parameters 

that will yield the best comparison with experimental results over all the flow conditions considered.  

C.3.1 Theoretical considerations 

To do this in a logical and structured manner, it is best to first obtain an understanding of how the 

Schneiderbauer model behaves with changing friction parameters. This is achieved by plotting the 

shear stress and the normalised granular flux (𝑞𝑠 √3𝛩𝑠𝑁
2⁄ ) against a dimensionless slip velocity, 𝑟 =

‖𝜐⃗𝑠,|‖ √3𝛩𝑠⁄ . The values of the three friction parameters are varied around those considered earlier 

in this study to gain a better understanding of their influence. Additionally, the following equations are 

derived for the shear stress at the limits of all non-sliding (𝑒𝑟𝑓(𝜐𝑠̅) =
2

√𝜋
𝜐𝑠̅) and all sliding collisions 

(𝑒𝑟𝑓(𝜐𝑠̅) = 1): 

‖𝜏𝑠‖ = −
√2

7√𝜋
(1 + 𝛽0)𝛼𝑠𝜌𝑠𝑔0√𝛩𝑠‖𝜐⃗𝑠,|‖ Equation 111 

‖𝜏𝑠‖ = −
1

2
(1 + 𝑒𝑤)𝜇𝑤𝛼𝑠𝜌𝑠𝑔0𝛩𝑠 Equation 112 

First considering the shear stress, it can immediately be seen from Equation 111 that the shear stress 

in the non-sliding regime is only dependent on the tangential restitution coefficient, while in the sliding 

regime, Equation 112, the shear stress is dependent on the friction coefficient and the normal 

restitution coefficient. This can be confirmed from the plots in Figure 118. For sliding collisions the 

shear stress is independent of the slip velocity and its value decreases with a reduction in either the 

friction coefficient or the normal restitution coefficient. For non-sliding collisions the shear stress is 

directly proportional to the tangential slip velocity. It is also clear that the friction coefficient has a 

larger influence on the shear stress than the restitution coefficients, due to the restitution coefficients 
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occurring in the form (1 + 𝑒𝑤). The friction parameters also influence the onset of sliding collisions. 

The friction coefficient again has the largest influence with sliding collisions starting earlier at low 

friction coefficient values. 

 

Figure 118 – Plot of a) the shear stress and b) the normalised flux, 𝒒𝒔 √𝟑𝜣𝒔𝑵
𝟐⁄ , plotted against the non-

dimensional slip velocity, 𝒓 = ‖𝝊⃗⃗⃗𝒔,|‖ √𝟑𝜣𝒔⁄ . The effects of changes in the friction coefficient, normal 

restitution coefficient and tangential restitution coefficient are shown separately. 

Due to the complexity of the granular flux equation, the behaviour of the granular flux cannot that 

easily be deduced from simplified equations. However, by plotting the behaviour of the granular 

temperature flux with changing values of the friction parameters, several important observations can 

be made. Firstly, the friction coefficient is once again the most influential. Increasing its value both 
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increases the positive granular temperature flux in the sliding regime and the negative flux in the non-

sliding regime. The normal restitution coefficient has a smaller, but more regular, effect. By specifying 

more elastic collisions the granular temperature flux to the solids increases. Lastly, the tangential 

restitution coefficient has the smallest influence on the granular temperature flux, with an increase in 

its value primarily allowing sliding collisions to start at lower velocities.  

Since the number of simulations required to test the influence of all three parameters on all 5 cases 

would be impractically large, the sensitivity analysis will be carried out only for the two most influential 

parameters and two most interesting cases. Regarding the parameters, the tangential restitution 

coefficient is not considered in this optimisation study. Results in section C.2 showed the primary 

shortcoming of the current setting in the Schneiderbauer model is its ability to predict cluster 

formation in fast, dilute flows. Excluding the tangential restitution coefficient is therefore reasonable, 

since the tangential restitution coefficient has no influence on the granular flux in the sliding regime. 

The current value of 0.4 delivered good results in the denser cases, where mostly non-sliding collisions 

occur at the wall and the tangential restitution coefficient will therefore be most influential, and 

therefore appears to be an appropriate choice. Consequently, it was decided to run simulations for all 

combinations of 𝛽0 = 0.4, 𝜇𝑤 = 0.5, 0.4, 0.3 and 𝑒𝑤 = 0.9, 0.7, 0.5. Lower values of the parameters 

were explored, since in both cases this will lead to less granular temperature generation at high slip 

velocities. 

Regarding the cases, it was decided to focus on Cases 1 and 5 because they represent the outer bounds 

of the range of conditions considered in this study. 

C.3.2 Simulation results 

To allow for easier interpretation of results, the profiles will from now on be displayed averaged over 

the plane of symmetry. From Figure 116 is can be seen that the results for all cases, except Case 5, is 

highly symmetric and this approach is therefore justified. Figure 119 shows that, given enough 

averaging time, the profile for Case 5 will also become symmetric when using the Schneiderbauer 

model. To maintain practical computational times, simulations of Case 5 are therefore run for 50s, 

after which the profiles are averaged over the symmetry plane.  
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Figure 119 – Plot of the time-averaged particle y-velocity for Case 5 using the Schneiderbauer model with a 
friction coefficient of 0.5 and a normal restitution coefficient of 0.7. 

The effect of changing the friction parameters in Case 5 can best be seen from the time-averaged solids 

volume fraction profiles shown in Figure 120, since the solids velocity profile proved to be insensitive 

to changes in the wall boundary conditions. It is evident that the solids volume fraction at the wall 

increases as the value of either the friction coefficient or the normal restitution coefficient is lowered. 

This is a result of less granular temperature generation at the walls producing the desired effect of 

more clusters forming at the walls. However, even at very low friction values the simulations are 

unable to reproduce the high solids volume fraction at the walls or the low volume fraction at the riser 

centre.   
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Figure 120 – Time-averaged particle volume fraction profiles for Case 5 using the Schneiderbauer model at 
different normal restitution coefficients for friction coefficient values of a) 0.5, b) 0.4 and c) 0.3 
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For Case 1 it was established that for these conditions the time-averaged volume fraction is insensitive 

to changes in the wall boundary conditions, therefore the solids y-velocity is shown in Figure 121. Here 

it is shown that, at the highest friction coefficient investigated (𝜇𝑤 = 0.5), a small reduction in solids 

velocity next to the wall is seen when lowering the normal restitution coefficient to a value of 0.5. This 

seemingly small effect created a considerable increase in the underestimation of the solids flux (39% 

to 67% by changing 𝑒𝑤 from 0.7 to 0.5), shown in Figure 122. At lower friction coefficients, it can be 

seen that, by further decreasing the normal restitution coefficient, the simulations strongly overpredict 

down-flow at the walls. This leads to even greater underpredictions of the solids flux and even negative 

fluxes in the worst scenarios. To maintain the same gas flow rate through the system, the gas in the 

centre accelerates, leading to a considerable overprediction of the upwards solids velocity in the 

centre.  

This significant change in behaviour is because combinations of sufficiently low values for the friction 

coefficient and normal restitution coefficient lead to the onset of sliding collisions at lower velocities. 

This causes clusters falling at the walls (normally considered to be in the non-sliding regime) to enter 

the sliding regime, where the shear stress is highly dependent on the friction coefficient and the 

normal restitution coefficient. In this way, the shear stress on solids clusters at the walls is reduced, 

resulting in the large downward flux of solids that is observed.  
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Figure 121 – Time-averaged particle y-velocity profiles for Case 1 using the Schneiderbauer model at different 
normal restitution coefficients for friction coefficient values of a) 0.5, b) 0.4 and c) 0.3. 
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Figure 122 – Comparison of the percentage underprediction in the solids mass flux compared to experimental 
data for Case 1 when performing simulations using the Schneiderbauer model and different combinations of 
values for the friction coefficient and the normal restitution coefficient. 

It can therefore be concluded that by lowering the values of the two parameters considered, the 

granular temperature generation is decreased and more clusters will form, lessening this shortcoming 

described in section C.2. However, this also decreases the shear stress at the walls, which can lead to 

too large downward solids flows at the walls. To obtain the optimum setting for the Schneiderbauer 

model in this study the settings that greatly overpredicts the downward flow of the solids at the walls 

in the dense case (Case 1) were first eliminated. This leaves the following settings as options: 𝜇𝑤 =

0.5, 𝑒𝑤 = 0.9, 𝜇𝑤 = 0.5, 𝑒𝑤 = 0.7 and 𝜇𝑤 = 0.4, 𝑒𝑤 = 0.9. From these alternatives, the setting was 

chosen that predicts the largest solids volume fraction at the wall, and therefore also the most clusters, 

in the fast and dilute case (Case 5). This gives the setting of 𝜇𝑤 = 0.4, 𝑒𝑤 = 0.9, with a particle volume 

fraction of 0.0206 at the wall. This represents only a minor change from the original setting (𝜇𝑤 =

0.5, 𝑒𝑤 = 0.9). It was therefore not possible to substantially improve the general performance of the 

Schneiderbauer model further through parameter tuning, although this small modification did 

successfully increase the solids volume fraction at the walls in the more dilute cases (Cases 2, 3 and 5 

in Figure 123).  
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Figure 123 – Comparison of the performance of the optimised Schneiderbauer model to that of  the Johnson 
and Jackson model using a specularity coefficient of 0.001 in a) Case 1, b) Case 2, c) Case 3, d) Case 4 and e) 
Case 5. Black is used for the time-averaged particle volume fraction, grey for the time-averaged particle y-
velocity. 
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The ultimate performance of the Schneiderbauer model over the range of cases investigated is 

therefore comparable to that of the near free-slip implementation of the classic Johnson and Jackson 

model. However, it should again be emphasized that this near free-slip implementation is not generally 

applicable. For example, previous work conducted by the authors in a pseudo-2D setup [4, 89] showed 

that high wall friction on the large front and back walls must be included to reasonably predict 

experimentally measured solids velocity profiles. The primary advantage of the Schneiderbauer 

approach is that it can deliver reasonable results in fast and dilute flows with settings which can also 

achieve reasonable results in slow and dense flows.  

Despite returning comparable mean performance, the near free-slip Johnson and Jackson 

implementation resulted in significantly different dynamic behaviour to that of the Schneiderbauer 

model. This can be seen from the video included with the publication based on this study [85]. Clusters 

tend to fall much faster next to the wall and the flow is more prone to asymmetric behaviour 

(seemingly permanent in Case 5). As an example, the root-mean-square of the near-wall particle y-

velocity in the near free-slip Johnson and Jackson implementation is 127% and 164% greater than the 

Schneiderbauer prediction in Cases 3 and 4 respectively.  

In addition, the larger strain rates in the near free-slip Johnson and Jackson implementation also leads 

to substantially higher granular temperatures (Figure 116). This tends to mask the error caused by 

underpredicted wall shear stress by increasing the granular viscosity and thereby the resistance to 

further strain. A lack of shear stress on the clusters at the wall is therefore compensated for by an 

increase in the viscous shear force exerted by the upward flow at the centre of the geometry.  

It therefore becomes clear that more detailed experimental data on the dynamic behaviour of clusters 

at the walls will be required to properly evaluate model performance. Such work can be strongly 

recommended for future study.    

C.4 Summary and Conclusions 

Two formulations for the particle-wall boundary condition, the Johnson and Jackson and 

Schneiderbauer models, were investigated over a range of riser flow conditions in this study. The 

Johnson and Jackson model was tested both with reasonable partial slip settings (specularity 

coefficient of 0.111) and with near free-slip settings (specularity coefficient of 0.001), whereas the 

Schneiderbauer model was implemented with recommended coefficients. The recommended 

Schneiderbauer coefficients were shown to be close to optimal for the range of flow conditions 

considered in this study.  

Results revealed that the Johnson and Jackson model with the larger specularity coefficient could only 

simulate denser and slower cases, failing completely in faster and more dilute cases. In such cases, this 

implementation of the Johnson and Jackson model strongly overpredicts the shear stress and the 

granular temperature generation at the walls, thus resulting in an unphysical self-strengthening 

generation of granular temperature in the near-wall regions. 

This problem can be solved by specifying a very low specularity coefficient, as is commonly done in 

literature. However, this near free-slip condition is not physically reasonable and causes the Johnson 

and Jackson approach to perform poorly in dense flows, where the low shear stress at the walls allows 

solids to fall rapidly. In general, however, this approach performs surprisingly well when measured 

according to mean velocities and volume fractions. Despite this comparable mean performance, it was 
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shown that the dynamic cluster behaviour at the walls differs significantly between the two 

approaches. In particular, the near free-slip Johnson and Jackson implementation is more prone to an 

asymmetric flow situation where clusters fall rapidly on one side of the geometry while the rising gas 

is pushed to the other side. More detailed experimental data on the dynamic flow behaviour will 

therefore be required to draw definitive conclusions on this matter and is recommended for future 

study.  

In general, however, the Schneiderbauer model appears to offer a clear improvement over the broadly 

deployed classic Johnson and Jackson model. As opposed to the Johnson and Jackson model, a single 

set of model parameters can give reasonable results both in dense, slow moving flows and dilute, fast 

moving flows. Additionally, it has the benefits of using measurable properties as parameters. It can 

therefore be recommended for future work in simulating fluidised bed risers.  
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D. Supplementary results and discussion 

D.1 Process for developing a 3-marker model 

This section briefly describes the process followed to derive the complex 3-marker closure in Chapter 

3.4.2.6. To start, a closure model was derived for each filter size considered individually. This approach 

i) substantially reduces the number of bins considered for each fit and ii) removes the interactions with 

the filter size. 

Furthermore, different contributions were analysed separately, slowly building up the closure model 

piece-by-piece. The gravitational contribution, 𝑘1, could be isolated by simply considering the vertical 

direction for instances when both the filtered slip velocity and the drift GPM were zero. The slip 

contribution, 𝜐̃𝑠𝑙𝑖𝑝,𝑖
∗ (1 − 10−𝑘2), was closed by considering the lateral direction when the drift GPM 

was zero. Next, the gradient contribution, 𝑘3, was investigated, based on the lateral direction. Firstly, 

the slip velocity independent part was obtained by considering instances when the filtered slip velocity 

was zero. Secondly, the symmetrical slip-GPM interaction contribution was identified by looking at 

instances when the filtered slip velocity and the drift GPM had the same sign. Lastly, the asymmetrical 

slip-GPM interaction contribution was identified by considering the remaining data and noting the 

deviation from symmetrical behaviour. 

Following such a procedure, coefficient values were obtained for each filter size. Based on these values, 

filter size dependencies of the coefficients were identified and simple filter size dependent correlations 

were fitted for the coefficients. Using these correlations as initial values, a closure model could then 

be fitted to the entire set of data, including all filter sizes. 

D.2 Marker evaluation for isotropic drag closures 

Trends emerging from the use of the solids volume fraction variance as the second marker in an 

isotropic drag closure are displayed in Figure 124. It is clear that the use of this marker collapses the 

data onto a shape that will relatively easy to fit a correlation to. However, it is clear that the sample 

are not evenly distributed through the parameter space. This can be explained from the physical 

understanding that there will be a correlation between the two markers: a high variance in the solids 

volume fraction will most likely occur at intermediate filtered solids volume fractions. The sample 

count trends in the bottom two graphs in Figure 124 clearly show that samples at a high solids volume 

fraction variance are concentrated at intermediate filtered solids volume fractions, while samples at a 

high solids volume fraction variance are concentrated at low and high filtered solids volume fractions. 

It should be noted that for all plots of the filtered drag correction factor in this paper, bins with fewer 

than 500 samples, which will add scatter to the plots and obscure the trends in the data, are not shown.  



 

196 

 

 

Figure 124 - The drag correction factor (top) and sample count (bottom) as a function of the filtered solids 
volume fraction (left) and the solids volume fraction variance in the filtered region (right).  

Model fitting through a 2D parameter space with such unevenly distributed data must be done very 

carefully. If the closure model does not prevent the flow situation from entering regions of the 

parameter space where little or no sample data is available, large inaccuracies can result. Another 

observation from the top two graphs in Figure 124 is that there appears to be little or no filter size 

dependency in the trends. However, a preliminary closure model proposed for the solids volume 

fraction variance [90] is a strong function of the filter size. Also, the algebraic correlation for the solids 

volume fraction variance used in the models from Schneiderbauer [20] makes used of the filtering 

length scale in several places. This therefore implies that this approach does not remove the filter size 

as a variable.  

Trends resulting from the use of the scaled filtered turbulent kinetic energy of the solid phase (𝑘𝑠
∗ =

1

2
𝛼𝑠
∗̅̅ ̅2(1 − 𝛼𝑠

∗̅̅ ̅̅ ̅̅ ̅̅ ̅)2
𝛼𝑠 𝜐⃗⃗⃗𝑠

′ ⋅𝜐⃗⃗⃗𝑠
′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝛼𝑠̅̅̅̅
, where 𝛼𝑠

∗ =
𝛼𝑠

𝛼𝑠,max
) as the second marker are shown in Figure 125. In this case 

the data does not collapse into a shape that will be simple to model, neither is there a good distribution 

of data in the parameter space. The area where samples occur will depend on a complex interaction 

of the filter size, solids volume fraction and solids kinetic energy. In particular, samples appear to be 
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concentrated in a much narrower band of high filtered turbulent kinetic energy when the filter size 

becomes large.  

 

Figure 125 - The drag correction factor (top) and the sample count (bottom) as a function of the filtered solids 

volume fraction (left) and the base-10 log of the scaled solids turbulent kinetic energy in the filter region 

(right).  

It should be noted that the use of these markers was only evaluated as part of the approach for fitting 

closure models from statistically analysed resolved simulation data, as followed in this study. In the 

Spatially-averaged TFM of Schneiderbauer [20], the drag closure, a function of the gas and solids 

turbulent kinetic energies and the solids volume fraction variance, is derived from theoretical 

considerations. As a result, the importance of an easily recognizable dependence of the drag on the 

markers and an even distribution of samples in the parameter space does not apply in the same way 

as it does here, since no closure fitting is involved. 
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E. Additional equations 

E.1 Scalar transport equations 

It is found that in both the filtered species and enthalpy transport equations contain a mesoscale scale 

dispersion rate term that requires closures. To keep the calculation of these sub-grid scalar fluctuations 

completely independent from the reactions and heat transfer, an additional scalar variable was solved 

for each phase. It was assumed that the diffusive flux for the scalars is zero, i.e., scalar quantities are 

not dispersed by sub-grid-scale fluid or particle motion, or molecular diffusion.  

𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘𝜙𝑘) + 𝛻 ⋅ (𝛼𝑘𝜌𝑘𝜐⃗𝑠𝜙𝑘) = 0 Equation 113 

A similar approach as in ref. [27] was used to impose a mean gradient. In this case, the following 

substitution was performed: 𝜙𝑘 = 𝜙k
∗ + 𝜉𝑥, where the value of 𝜉 was chosen as 100𝑚−1. Substituting 

this relation into Equation 113, the following conservation equation for the scalar is obtained: 

 
𝜕

𝜕𝑡
(𝛼𝑘𝜌𝑘𝜙𝑘

∗) + 𝛻 ⋅ (𝛼𝑘𝜌𝑘𝜐⃗𝑠𝜙𝑘
∗) = −𝛼𝑘𝜌𝑘𝜐𝑘,𝑥𝜙𝑘

∗𝜉 Equation 114 

The transport equations are then solved for 𝜙𝑘
∗ , thus introducing a source term proportional to the 

phase x-velocity, which is then used to calculate 𝜙𝑘 in each cell. The filtered statistics are then 

calculated for 𝜙𝑘, for which there will always be a mean gradient in the x-direction. 

Applying a spatial average to Equation 113, the filtered scaled transport equation is obtained: 

𝜕

𝜕𝑡
(𝜌𝑘𝛼𝑘̅̅̅̅ 𝜙𝑘̃) + 𝛻 ⋅ (𝜌𝑘𝛼𝑘̅̅̅̅ 𝜙𝑘̃𝜐⃗𝑠

̃ ) = −𝛻 ⋅ (𝜌𝑘𝛼𝑘𝜙𝑘
′′𝜐⃗𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) Equation 115 

The mesoscale scaled dispersion rate (right-hand side term) requires closure. Such a closure can then 

be used in the filtered species and the filtered enthalpy transport equations. 

E.2 Energy transport equations 

The enthalpy equation is solved to calculate the filtered heat transfer correction. Similar to Agrawal et 

al. [27], a source term in the solids and an equally-strong sink in the gas phase to conserve energy in 

the system, was used to maintain a temperature gradient between the phases. The constant 𝛱 is 

selected such that the particles are heated at a rate of 0.1°𝐶/𝑠. The heat transfer coefficient was 

calculated from the correlation provided by Gunn [91]. It is assumed that heat conduction due to 

particle-particle collisions is negligible. Consequently, the following enthalpy transport equations are 

solved. 

𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑠ℎ𝑠) + 𝛻 ⋅ (𝛼𝑠𝜌𝑠ℎ𝑠𝜐⃗𝑠) = −𝛾(𝑇𝑠 − 𝑇𝑔) + 𝛱𝛼𝑠 Equation 116 

𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔ℎ𝑔) + 𝛻 ⋅ (𝛼𝑔𝜌𝑔ℎ𝑔𝜐⃗𝑔) = 𝛻 ⋅ (𝑘𝑔𝛼𝑔𝛻𝑇𝑔) + 𝛾(𝑇𝑠 − 𝑇𝑔) + 𝛱

〈𝛼𝑠〉𝑑
〈𝛼𝑔〉𝑑

𝛼𝑔 Equation 117 

The following thermal properties are considered for the present study: 𝑘𝑔 = 0.024 𝑊/(𝑚.𝐾), 𝐶𝑝𝑔
=

1.15 × 103 𝐽/(𝑘𝑔. 𝐾) and 𝐶𝑝𝑠 = 1 × 10
3 𝐽/(𝑘𝑔. 𝐾). 
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Performing a spatial average, the filtered energy equation for the solids phase becomes: 

𝜕

𝜕𝑡
(𝜌𝑠𝛼𝑠̅̅ ̅ℎ𝑠̃) + 𝛻 ⋅ (𝜌𝑠𝛼𝑠̅̅ ̅ℎ𝑠̃𝜐⃗𝑠

̃ ) = −𝛾(𝑇𝑠 − 𝑇𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛱𝛼𝑠̅̅ ̅ − 𝛻 ⋅ (𝜌𝑠𝛼𝑠ℎ𝑠
′𝜐⃗𝑠

′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) Equation 118 

As can be seen, the source term, i.e., the second term on the right-hand side, does not require a 

closure, while the first term (i.e., that characterizing heat transfer between the phases) does. Similarly 

to the fluctuation term in the species equation (Equation 19), the third term on the right of Equation 

118 can be modelled using the closure obtained from the filtered scalar transport equation (Equation 

115). 

E.3 Drift velocity formulation derivation 

𝐾𝑔𝑠(𝜐𝑔,𝑖 − 𝜐𝑠,𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

=
𝐾𝑔𝑠

𝛼𝑠
(𝛼𝑠𝜐𝑔,𝑖 − 𝛼𝑠𝜐𝑠,𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

= 𝐶1𝐾𝑔𝑠̅̅ ̅̅̅
(𝛼𝑠𝜐𝑔,𝑖 − 𝛼𝑠𝜐𝑠,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝛼̅𝑠
 

= 𝐶1𝐶2𝐾gs,hom
(𝛼𝑠𝜐𝑔,𝑖 − 𝛼𝑠𝜐𝑠,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝛼̅𝑠
 

= 𝐶1𝐶2𝐾gs,hom(
𝛼𝑠𝜐𝑔,𝑖̅̅ ̅̅ ̅̅ ̅

𝛼̅𝑠
−
𝛼𝑠𝜐𝑠,𝑖
𝛼̅𝑠

̅̅ ̅̅ ̅̅ ̅
) 

= 𝐶1𝐶2𝐾gs,hom(
𝛼𝑠𝜐𝑔,𝑖̅̅ ̅̅ ̅̅ ̅

𝛼̅𝑠
− 𝜐̃𝑠,𝑖) 

= 𝐶1𝐶2𝐾gs,hom(
(1 − 𝛼𝑔)𝜐𝑔,𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝛼̅𝑠
− 𝜐̃𝑠,𝑖) 

= 𝐶1𝐶2𝐾gs,hom(
𝜐̅𝑔 − 𝛼𝑔𝜐𝑔,𝑖̅̅ ̅̅ ̅̅ ̅̅

𝛼̅𝑠
− 𝜐̃𝑠,𝑖) 

= 𝐶1𝐶2𝐾gs,hom(
𝜐̅𝑔

𝛼̅𝑠
−
𝛼̅𝑔𝜐̃𝑔

𝛼̅𝑠
− 𝜐̃𝑠,𝑖) 

Now consider: 

𝜐̃𝑔 =
𝛼𝑔𝜐𝑔,𝑖̅̅ ̅̅ ̅̅ ̅̅

𝛼̅𝑔
=
(𝛼𝑔̅̅ ̅ + 𝛼𝑔

′ )(𝜐𝑔,𝑖 + 𝜐𝑔,𝑖
′ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝛼̅𝑔
=
𝛼𝑔̅̅ ̅𝜐𝑔,𝑖̅̅ ̅̅ + 𝛼𝑔

′ 𝜐𝑔,𝑖
′̅̅ ̅̅ ̅̅ ̅̅

𝛼̅𝑔
= 𝜐𝑔,𝑖̅̅ ̅̅ +

𝛼𝑔
′ 𝜐𝑔,𝑖
′̅̅ ̅̅ ̅̅ ̅̅

𝛼̅𝑔
 

∴ 𝜐𝑔,𝑖̅̅ ̅̅ = 𝜐̃𝑔 −
𝛼𝑔
′ 𝜐𝑔,𝑖
′̅̅ ̅̅ ̅̅ ̅̅

𝛼̅𝑔
 

Then, 

𝐶1𝐶2𝐾gs,hom(
𝜐̅𝑔

𝛼̅𝑠
−
𝛼̅𝑔𝜐̃𝑔

𝛼̅𝑠
− 𝜐̃𝑠,𝑖) 

= 𝐶1𝐶2𝐾gs,hom(
𝜐̃𝑔 − 𝛼𝑔

′ 𝜐𝑔,𝑖
′̅̅ ̅̅ ̅̅ ̅̅ 𝛼̅𝑔⁄

𝛼̅𝑠
−
𝛼̅𝑔𝜐̃𝑔

𝛼̅𝑠
− 𝜐̃𝑠,𝑖) 
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= 𝐶1𝐶2𝐾gs,hom(
(1 − 𝛼̅𝑔)𝜐̃𝑔

𝛼̅𝑠
−
𝛼𝑔
′ 𝜐𝑔,𝑖
′̅̅ ̅̅ ̅̅ ̅̅

𝛼̅𝑠𝛼̅𝑔
− 𝜐̃𝑠,𝑖) 

= 𝐶1𝐶2𝐾gs,hom(𝜐̃𝑔 − 𝜐̃𝑠,𝑖 −
𝛼𝑔
′ 𝜐𝑔,𝑖
′̅̅ ̅̅ ̅̅ ̅̅

𝛼̅𝑠𝛼̅𝑔
) 
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F. Supplementary fTFM closures 

F.1 Isotropic closure for the filtered drag force 

Using the isotropic closure, the filtered drag force is closed as follows: 

𝐾𝑔𝑠(𝜐⃗𝑔 − 𝜐⃗𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐶𝐾𝑔𝑠,ℎ𝑜𝑚(𝜐⃗𝑔

̃− 𝜐⃗𝑠
̃)  Equation 119 

The filtered drag correction factor, 𝐶, is modelled with the expression in Equation 45 and the following 

coefficients: 𝑥1 = 28.8, 𝑥2 = 15.9, 𝑥3 = 2.23, 𝑥4 = 0.829, 𝑥5 = 0.235, 𝑥6 = 0.131, 𝑥7 = 3.01, 𝑥8 =

8.99 and 𝛼̅𝑚𝑎𝑥 = 0.551. A fit with 𝑅2 = 0.985 is obtained against the binned data, as illustrated in 

Figure 126. 

 

Figure 126 - The scaled filtered drag correction factor, −𝐥𝐨𝐠 (𝑪), calculated based on the data for the direction 
aligned with gravity as a function of a) the filtered solids volume fraction and b) the scaled slip velocity 
magnitude for different dimensionless filter sizes. The symbols show the binned data obtained from resolved 
simulations and the lines the model predictions. 

F.2 Solids mesoscale stresses closures 

F.2.1 Isotropic filtered solids pressure for the mean normal solids mesoscale stresses 

A model fit with 𝑅2 = 0.992, shown in Figure 127, was obtained with the following coefficients: 𝑥1 =

0.774, 𝑥2 = 1.72, 𝑥3 = 0.403, 𝑥4 = 0.610, 𝑥5 = 1.19, 𝑥6 = 0.684, 𝑥7 = 1.57, 𝑥8 = 1.00, 𝑥9 =

0.331, 𝑥10 = −0.103, 𝑥11 = 0.123, 𝑥12 = 0.621 𝑥13 = 2.89, 𝑥14 = 0.591 and 𝑥15 = 1.05. In can be 

noted that, in the first term of Equation 77, the exponent of the filter size factor is 1.57, whereas the 

exponent of the shear rate factor (𝑥8 + 𝑥9𝛥𝑓
∗𝑥10) ranges from 1.245 to 1.380 for the filter sizes 

considered in the model fit. These values are significantly lower than the exponents of roughly 2 that 

were previously reported in literature [13-15, 20]. The most likely reason for this is that the other filter 

sizes and shear rate dependencies in the proposed equation explains part of the variance in the filtered 

solids pressure usually modelled by only these two factors in the simpler Smagorinsky-type models. 
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Figure 127 - Comparison of the binned data to the model fit (line with smaller symbols) for the dimensionless 
filtered solids pressure as a function of a) the filtered solids volume fraction and b) the scaled SRM. 

F.2.2 Filtered solids viscosity for the deviatoric solids mesoscale stresses 

A model fit with 𝑅2 = 0.990, shown in Figure 128, was obtained with the following coefficients: 𝑥1 =

0.350, 𝑥2 = 0.545, 𝑥3 = 2.43, 𝑥4 = 0.141, 𝑥5 = 0.772, 𝑥6 = 0.624, 𝑥7 = 1.83, 𝑥8 = 1.40, 𝑥9 =

0.348, 𝑥10 = −0.0905, 𝑥11 = 0.130, 𝑥12 = −0.498, 𝑥13 = 3.58, 𝑥14 = 0.618 and 𝑥15 = 0.968.  

The mesoscale stress calculated from Equation 77 is related to the filtered solids viscosity as: 

𝜇̂𝑠,𝑓𝑖𝑙 =
𝜏̂𝑠,𝑓𝑖𝑙

‖𝑆̂𝑠,𝑓𝑖𝑙‖
 Equation 120 

, where 𝜇̂𝑠,𝑓𝑖𝑙 =
μ𝑠,𝑓𝑖𝑙

𝜌𝑠𝑣𝑡
3/𝑔

. It can be seen that due to the non-zero stresses at zero values of ‖𝑆̂𝑠,𝑓𝑖𝑙‖, the 

filtered viscosity tends to increase rapidly as ‖𝑆̂𝑠,𝑓𝑖𝑙‖ tends to zero, an effect that was not included in 

previous studies [13, 14]. Furthermore, it can be noted that for the filtered viscosity model fit in this 

study the exponent of the filter size factor is 1.83 and the exponent of the shear rate magnitude factor 

ranges from 0.668 to 0.794. These values are slightly lower than the values of roughly 2 and 1, 

respectively, previously reported in literature [13-15]. 
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Figure 128 - Comparison of the binned data to the model fit (line with smaller symbols) for the filtered solids 
volume fraction times the dimensionless filtered solids viscosity as a function of a) the filtered solids volume 
fraction and b) the scaled SRM. The dependent variable is chosen to be consistent with the definition of the 
filtered solids viscosity used in literature [13, 14]. 

F.2.3 Isotropic closure for the lateral direction normal solids mesoscale stress 

A model fit with 𝑅2 = 0.976 was obtained with the following coefficients: 𝑥1 = 3.60, 𝑥2 = 2.20, 𝑥3 =

0.187, 𝑥4 = 0.717, 𝑥5 = 1.43, 𝑥6 = 0.660, 𝑥7 = 1.53, 𝑥8 = 1.00, 𝑥9 = 0.0594, 𝑥10 = −0.561, 𝑥11 =

11.11, 𝑥12 = 1.06, 𝑥13 = 0.0764, 𝑥14 = 0.582 and 𝑥15 = 1.03.  

F.2.4 Isotropic closure for the vertical direction normal solids mesoscale stress 

A model fit with 𝑅2 = 0.972 was obtained with the following coefficients: 𝑥1 = 0.327, 𝑥2 = 1.32, 

𝑥3 = 1.37, 𝑥4 = 0.459, 𝑥5 = 1.08, 𝑥6 = 0.651, 𝑥7 = 1.70, 𝑥8 = 1.00, 𝑥9 = 0.638, 𝑥10 = −0.0652, 

𝑥11 = 0.106, 𝑥12 = 0.432, 𝑥13 = 3.50, 𝑥14 = 0.605 and 𝑥15 = 1.11.  

F.2.5 Simplified anisotropic closure for the solids mesoscale stresses 

The anisotropic closure model for the solids mesoscale stresses proposed in Chapter 3.6.3 can be 

simplified as follows when only the range of filter sizes, Δ̂𝑓≥ 1.93, is considered: 

𝛴̂𝑠,𝑓𝑖𝑙,𝑖𝑗 = 𝑠𝑖𝑔𝑛(𝛭̂𝑖𝑗) (
2

𝜋
)
2

𝑥1 atan(𝑥2𝛥𝑓
∗𝑥3𝛭̂𝑖𝑗

𝑥4𝛼𝑠̅̅ ̅)

× atan(𝑥5𝛥𝑓
∗𝑥3𝛭̂𝑖𝑗

𝑥4max(𝑥6 − 𝛼𝑠̅̅ ̅, 0)) 𝛥𝑓
∗ 𝑥7𝛭̂𝑖𝑗

𝑥8

+𝐷 (
2

𝜋
)𝑥9 atan(𝑥10𝛼𝑠̅̅ ̅)max(𝑥6 − 𝛼𝑠̅̅ ̅, 0) 𝛥𝑓

∗𝑥11

 Equation 121 

By removing some coefficients and by using others multiple times, the number of coefficients are 

reduced from 18 in Equation 89 to 11 in Equation 121. Still, an excellent fit to the binned data is 

obtained, with 𝑅2 = 0.985 (compared to 𝑅2 = 0.989 for the more elaborate model), using the 

following coefficients: 𝑥1 = 0.193, 𝑥2 = 17.1, 𝑥3 = −0.489, 𝑥4 = −0.578, 𝑥5 = 701, 𝑥6 = 0.576, 
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𝑥7 = 2.15, 𝑥8 = 1.19, 𝑥9 = 0.268, 𝑥10 = 2.45 and 𝑥11 = 1.01. Figure 129 and Figure 130 shows that 

the fit to the binned data is still good with this simplified closure model. 

 

Figure 129 - Comparison of the binned data (symbols) to the model fit (lines) for the dimensionless y-direction 
diagonal component of the solids mesoscale stress as a function of a) the filtered solids volume fraction and 
b) the scaled gradient product marker. 

 

Figure 130 - Comparison of the binned data (symbols) to the model fit (lines) for the dimensionless off-diagonal 
component of the solids mesoscale stress as a function of a) the filtered solids volume fraction and b) the 
scaled gradient product marker. 
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F.3 Filtered reaction rate closures 

F.3.1 2-marker non-locally corrected reaction rate correction factor 

The non-locally corrected reaction rate correction factor is defined by Holloway and Sundaresan [28] 

as: 

R =
𝛼𝑠𝜅𝐴̅̅ ̅̅ ̅̅ − 𝑚2𝛻𝛼𝑠̅̅ ̅

𝑇 ⋅ 𝛻𝜅𝐴̃
𝛼𝑠̅̅ ̅𝜅̃𝐴

 Equation 122 

where  𝑚2 = 𝛥𝑓
2/12, and Δ𝑓 is the filter size. It was found that this quantity could be closed with the 

expression in Equation 94, using the following coefficients: 𝑥1 = 7.93, 𝑥2 = −0.0925, 𝑥3 = 17.3, 𝑥4 =

−0.00372, 𝑥5 = 0.563, 𝑥6 = 0.137, 𝑥7 = 0.777, 𝑥8 = 1.01 and 𝑥9 = 0.351. The fit of the model 

predictions to the binned data is shown in Figure 131. It can clearly be seen, compared to Figure 38, 

that the non-local correction substantially reduces the correction in the reaction rate. Additionally, the 

dependency on the scaled filtered slip velocity magnitude is of lesser of importance when the non-

local correction is applied. It can therefore be speculated that the slip velocity magnitude dependency 

compensates for the effect of the gradients in the flow field on the filtered reaction rate. 

 

Figure 131 - The scaled non-locally correction reaction rate correction factor, −𝒍𝒐𝒈(𝑹), as a function of a) the 
filtered solids volume fraction and b) the scaled filtered slip velocity magnitude. The symbols show the binned 
data from the resolved simulations and the lines the model predictions. 

F.3.2 1-marker reaction rate correction factor 

The 1-marker model for the reaction rate correction factor is fitted by simply neglecting the scaled 

filtered slip velocity magnitude term in Equation 94. Consequently: 

−log(𝑅) = (
2

𝜋
)
3

atan(𝑥1𝛥𝑓
∗𝑥2𝛼̅𝑠) atan(𝑥3𝛥𝑓

∗𝑥4max(x5 − 𝛼̅𝑠, 0)) 𝑥6atan(𝑥7𝛥𝑓
∗) Equation 123 

The fit shown in Figure 132 is obtained with the following coefficients: 𝑥1 = 3.19, 𝑥2 = 0.214, 𝑥3 =

8.39, 𝑥4 = 0.536, 𝑥5 = 0.564,  𝑥6 = 1.23 and 𝑥7 = 1.54. 
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Figure 132 - The scaled reaction rate correction factor, −𝒍𝒐𝒈(𝑹), as a function of the filtered solids volume 
fraction and the filter sizes considered in the model fit. The symbols show the binned data from the resolved 
simulations and the lines the model predictions. 
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G. Filtered TFM closures used in the validation study 

G.1 NTNU model 

G.1.1 Filtered interphase momentum exchange 

The filtered drag and mesoscale interphase forces are lumped together and approximated by the 

filtered drag correction factor (𝐶) applied to the Huilin-Gidaspow drag law [36]. 

𝐾𝑔𝑠(𝜐⃗𝑔 − 𝜐⃗𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛼𝑠

′𝛻𝑝′̅̅ ̅̅ ̅̅ ̅̅ = 𝐶𝐾𝑔𝑠(𝜐⃗𝑔
̃− 𝜐⃗𝑠

̃ ) Equation 124 

−log(𝐶) = atan(𝑥1Δ𝑓
∗𝛼̅𝑠)atan (𝑥2Δ𝑓

∗(𝛼̅max − 𝛼̅𝑠)) atan(𝑥3Δ𝑓
∗) (

2

𝜋
)
3

× (𝑥4 log‖𝑣𝑠𝑙𝑖𝑝̃
∗‖ + 𝑥5Δ𝑓

∗𝑥6 + 𝑥7(log‖𝑣𝑠𝑙𝑖𝑝̃
∗‖)

2
(1 −

atan(𝑥8Δ𝑓
∗)

𝜋 2⁄
))

−log(𝐶) = 0                                                 if     Δ𝑓
∗ < 0    or    𝛼̅𝑠 > 𝛼̅max

 

𝑥1 = 36.59, 𝑥2 = 22.63, 𝑥3 = 1.676, 𝑥4 = 0.8350, 𝑥5 = 0.1399, 𝑥6 = 0.1881, 

𝑥7 = 1.329, 𝑥8 = 3.280, Δ̂𝑓𝑖𝑛𝑒= 0.1286 and 𝛼̅𝑚𝑎𝑥 = 0.5511. 

Equation 125 

Δ𝑓 = 2𝑉
1 3⁄  Equation 126 

Δ̂𝑓 =
Δ𝑓

𝑣𝑡
2 𝑔⁄

 

𝑣𝑡 = 0.2038 m/s 

Equation 127 

Δ𝑓
∗ = Δ̂𝑓 − Δ̂𝑓𝑖𝑛𝑒 Equation 128 

  

‖𝜐𝑠𝑙𝑖𝑝̃
∗‖ =

‖𝜐𝑠𝑙𝑖𝑝̃‖

𝑣̅𝑠𝑠_𝑠𝑙𝑖𝑝
 Equation 129 

Instead of the conventional scaling via the single particle settling velocity, the steady state 

sedimentation velocity (𝜐̅𝑠𝑠_𝑠𝑙𝑖𝑝) is used to scale the filtered slip velocity magnitude. This value is 

approximated from the Huilin-Gidaspow drag law: 

𝑣̅𝑠𝑠𝑠𝑙𝑖𝑝,𝑊𝑌 =
𝜇𝑔Re̅̅̅̅ 𝑠𝑠𝑠𝑙𝑖𝑝,𝑊𝑌

𝜌𝑔𝑑𝑝
 Equation 130 

Re̅̅̅̅ 𝑠𝑠_𝑠𝑙𝑖𝑝,𝑊𝑌 ≈
𝐴

𝛼̅𝑔(1 + 0.2296𝐴
0.5329)0.7642

 Equation 131 

𝐴 =
𝛼̅𝑔
3.65𝑔(𝜌𝑠 − 𝜌𝑔)𝑑𝑝

3𝜌𝑔

18𝜇𝑔
2  Equation 132 

𝑣̅𝑠𝑠_𝑠𝑙𝑖𝑝,𝐸𝑟𝑔𝑢𝑛 =
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 

Equation 133 

𝑎 = 1.75
𝜌𝑔𝛼̅𝑠

𝑑𝑝
 Equation 134 
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𝑏 = 150
𝛼̅𝑠
2𝜇𝑔

𝛼̅𝑔𝑑𝑝
2 Equation 135 

𝑐 = −(𝜌𝑠 − 𝜌𝑔)𝛼̅𝑠𝑔 Equation 136 

𝜓 =
1

2
+
arctan(262.5(𝛼̅𝑠 − 0.2))

𝜋
 

Equation 137 

𝑣̅𝑠𝑠_𝑠𝑙𝑖𝑝 = 𝜓𝑣̅𝑠𝑠_𝑠𝑙𝑖𝑝,𝐸𝑟𝑔𝑢𝑛 + (1 − 𝜓)𝑣̅𝑠𝑠_𝑠𝑙𝑖𝑝,𝑊𝑌 Equation 138 

G.1.2 Solids mesoscale stresses 

The different components of the solids mesoscale stress tensor are described as follows: 

Normal stresses (nondimensionalized by 𝑣𝑡
2𝜌𝑠): 

𝛴̂𝑠,𝑓𝑖𝑙,𝑖𝑖 = (
2

𝜋
)
2

𝑥1atan (𝑥2𝛥𝑓
∗ 𝑥3𝛭̂𝑖𝑖

𝑥4(𝛼̅𝑠 + 𝑥5))

× atan (𝑥6𝛥𝑓
∗𝑥7𝛭̂𝑖𝑖

𝑥8(𝑥9 − 𝛼̅𝑠)) 𝛥𝑓
∗𝑥10𝛭̂𝑖𝑖

𝑥11+𝑥12𝛥𝑓
∗ 𝑥13

+(
2

𝜋
)
2

𝑥14atan(𝑥15𝛼̅𝑠)atan(𝑥16(𝑥17 − 𝛼̅𝑠))𝛥𝑓
∗𝑥18

 

𝑥1 = 0.550, 𝑥2 = 2.91, 𝑥3 = 0.102, 𝑥4 = −0.515, 𝑥5 = 0.0358, 𝑥6 = 3.04, 𝑥7 =

0.960, 𝑥8 = 0.240, 𝑥9 = 0.691, 𝑥10 = 1.75, 𝑥11 = 0.80, 𝑥12 = 0.608, 𝑥13 =

−0.219, 𝑥14 = 53.2, 𝑥15 = 2.49, 𝑥16 = 0.00719, 𝑥17 = 0.604 and 𝑥18 = 1.08 

Equation 139 

Shear stresses (nondimensionalized by 𝑣𝑡
2𝜌𝑠): 

𝛴̂𝑠,𝑓𝑖𝑙,𝑖𝑗 = (
2

𝜋
)
2

𝑥1atan (𝑥2𝛥𝑓
∗𝑥3𝛭̂𝑖𝑗

𝑥4(𝛼̅𝑠 + 𝑥5))

× atan (𝑥6𝛥𝑓
∗𝑥7𝛭̂𝑖𝑗

𝑥8(𝑥9 − 𝛼̅𝑠)) 𝛥𝑓
∗𝑥10𝛭̂𝑖𝑗

𝑥11+𝑥12𝛥𝑓
∗ 𝑥13

 

 

𝑥1 = 0.630, 𝑥2 = 1.76, 𝑥3 = 0.0844, 𝑥4 = −0.394, 𝑥5 = 0.0767, 𝑥6 = 4.89, 𝑥7 =

0.514, 𝑥8 = 0.157, 𝑥9 = 0.685, 𝑥10 = 1.79, 𝑥11 = 0.80, 𝑥12 = 0.528 and 𝑥13 =

−0.167. 

Equation 140 

The new gradient product marker is defined as follows (non-dimensionalized): 

𝛭̂𝑖𝑗 =
2

3
𝛼̅𝑠 (

𝑑𝜐𝑠̃𝑖
𝑑𝑥

𝑑𝜐𝑠𝑗̃

𝑑𝑥
+
𝑑𝜐𝑠̃𝑖
𝑑𝑦

𝑑𝜐𝑠𝑗̃

𝑑𝑦
+
𝑑𝜐𝑠̃𝑖
𝑑𝑧

𝑑𝜐𝑠𝑗̃

𝑑𝑧
)
𝑣𝑡
2

𝑔2
 Equation 141 

G.2 Sarkar model 

G.2.1 Filtered interphase momentum exchange 

The same drag correction factor philosophy is used as in the NTNU model, only using the Wen-Yu drag 

law [38] instead of the Huilin-Gidaspow drag law.  
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𝐶 = 1 −min [(𝑎 +
𝑏

‖𝑣𝑠𝑙𝑖𝑝̃‖ 𝑣𝑡⁄
)𝛼𝑠̅̅ ̅

(𝑐+
𝑑

‖𝑣𝑠𝑙𝑖𝑝̃‖ 𝑣𝑡⁄
)
, 0.97] 

𝑎 = 0.9506, 𝑏 = 0.1708, 𝑐 = 0.049(
1

Δ̂𝑓
− 1) and 𝑑 = 0.3358 

Equation 142 

G.2.2 Filtered solids stresses 

A dedicated model is provided for the filtered kinetic theory solids pressure and viscosity: 

𝑝̅𝑠 = 0.01797𝜌𝑠Δ𝑓
2𝑆𝑠̅

2
𝛼̅𝑠
1.645

𝛼̅𝑠,𝑚𝑎𝑥 − 𝛼̅𝑠
 

𝛼̅𝑠,𝑚𝑎𝑥 = 0.63 

Equation 143 

𝜇̅𝑘𝑖𝑛,𝑠 = 0.00307𝜌𝑠 (
𝑔

𝑣𝑡
2)

−6/7

Δ𝑓
8/7
𝑆𝑠̅

𝛼̅𝑠
1.544

𝛼̅𝑠,𝑚𝑎𝑥 − 𝛼̅𝑠
 Equation 144 

𝜏̅̅𝑠 ≈ 𝜇̅𝑘𝑖𝑛,𝑠𝑠̅𝑠 Equation 145 

𝑠̅𝑠 = [∇𝜐̃𝑖 + (∇𝜐̃𝑖)
𝑇] −

2

3
(∇ ∙ 𝜐̃𝑖)𝐼 ̅ ̅ Equation 146 

𝑆𝑠̅ = √𝑠̅𝑠: 𝑠̅𝑠/2 Equation 147 

The solids mesoscale stresses are approximated as follows: 

𝜌𝑠𝛼𝑠𝜐⃗𝑠
′′𝜐⃗𝑠

′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ 𝑝̅𝑚𝑒𝑠𝑜,𝑠𝐼 ̅+̅𝜇̅𝑚𝑒𝑠𝑜,𝑠𝑠̅𝑠 Equation 148 

𝑝̅𝑚𝑒𝑠𝑜,𝑠 = 0.0236𝜌𝑠 (
𝑔

𝑣𝑡
2)

3/7

Δ𝑓
17/7

𝑆𝑠̅
2

𝛼̅𝑠
1.115

𝛼̅𝑠,𝑚𝑎𝑥 − 𝛼̅𝑠
 Equation 149 

𝜇̅𝑚𝑒𝑠𝑜,𝑠 = 0.02518𝜌𝑠 (
𝑔

𝑣𝑡
2)

−2/7

Δ𝑓
12/7

𝑆𝑠̅
𝛼̅𝑠
1.123

𝛼̅𝑠,𝑚𝑎𝑥 − 𝛼̅𝑠
 Equation 150 

G.3 Igci model 

G.3.1 Interphase momentum exchange 

Similar to the Sarkar model, the Igci model applies the drag correction factor to the Wen-Yu [38] drag 

law. 

𝐶 = 1 −

(
𝑔Δ𝑓
𝑣𝑡
2 )

1.6

(
𝑔Δ𝑓
𝑣𝑡
2 )

1.6

+ 0.4

ℎ Equation 151 
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ℎ =

{
  
 

  
 

2.7𝛼̅𝑠
0.234, 𝛼̅𝑠 < 0.0012

−0.019𝛼̅𝑠
−0.455 + 0.963, 0.0012 ≤ 𝛼̅𝑠 < 0.014

0.868exp(−0.38𝛼̅𝑠) − 0.176exp(−119.2𝛼̅𝑠), 0.014 ≤ 𝛼̅𝑠 < 0.25

−4.59 × 10−5exp(19.75𝛼̅𝑠) + 0.852exp(−0.268𝛼̅𝑠), 0.25 ≤ 𝛼̅𝑠 < 0.455

(𝛼̅𝑠 − 0.59)(−1501𝛼̅𝑠
3 + 2203𝛼̅𝑠

2 − 1054𝛼̅𝑠 + 162), 0.455 ≤ 𝛼̅𝑠 ≤ 0.59
0, 𝛼̅𝑠 > 0.59 }

  
 

  
 

 

 

Equation 152 

G.3.2 Solids stresses 

Models for mesoscale solids pressure and viscosity are added to the kinetic theory pressure (𝑝𝑠,𝑝) and 

viscosity (𝜇𝑠,𝑝) at a solids volume fraction below 0.59: 

𝑝𝑚𝑒𝑠𝑜,𝑠

𝜌𝑠𝑣t
2 =

{
 

 
𝑝𝑠,𝑝

𝜌𝑠𝑣t
2 + 𝑋𝑝(𝛼𝑠 − 0.59)(−1.69𝛼𝑠 − 4.61𝛼𝑠

2 + 11𝛼𝑠
3), 𝛼𝑠 ≤ 0.59

𝑝𝑠,𝑝

𝜌𝑠𝑣t
2 , 𝛼𝑠 > 0.59

}
 

 
 Equation 153 

𝑋𝑝 = 0.48(
𝑔Δ𝑓

𝑣𝑡
2 )

0.86

(1 − exp (−
𝑔Δ𝑓

1.4𝑣𝑡
2)) Equation 154 

𝜇𝑚𝑒𝑠𝑜,𝑠𝑔

𝜌𝑠𝑣t
3 =

{
 

 
𝜇𝑠,𝑝𝑔

𝜌𝑠𝑣t
3 + 𝑋𝜇(𝛼𝑠 − 0.59)(−1.22𝛼𝑠 − 0.7𝛼𝑠

2 − 2𝛼𝑠
3), 𝛼𝑠 ≤ 0.59

𝜇𝑠,𝑝𝑔

𝜌𝑠𝑣t
3 , 𝛼𝑠 > 0.59

}
 

 
 Equation 155 

𝑋𝜇 =

0.37 (
𝑔Δ𝑓
𝑣𝑡
2 )

1.22

0.28 (
𝑔Δ𝑓
𝑣𝑡
2 )

0.43

+ 1

 Equation 156 

G.3.3 Wall corrections 

The Igci model employs dedicated wall corrections for the interphase momentum exchange 

coefficient and the solids mesoscale stresses based on the distance from the wall (𝑥): 

𝐾𝑠𝑔,𝑒𝑓𝑓 =
𝐾𝑠𝑔

1 + 6.0exp(−0.4𝑥𝑑)
 Equation 157 

𝑝𝑚𝑒𝑠𝑜,𝑠,𝑒𝑓𝑓 =
𝑝𝑚𝑒𝑠𝑜,𝑠

1 + 9.1exp(−0.45𝑥𝑑)
 Equation 158 

𝜇𝑚𝑒𝑠𝑜,𝑠,𝑒𝑓𝑓 =
𝜇𝑚𝑒𝑠𝑜,𝑠

1 + 5.6exp(−0.15𝑥𝑑)
 Equation 159 

𝑥𝑑 =
𝑥𝑔

v𝑡
2   Equation 160 

 


