
June 2007
Agnar Aamodt, IDI
Till Cristopher Lech, CognIt as

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Case-based Reasoning in Text
Document Classification

Ida Sofie Gebhardt Stenerud

Problem Description
The purpose of this project is to design and partially implement a system that categorizes
documents with unknown content into predefined categories, based on Case-Based Reasoning
(CBR). The categorization will be committed on data structures delivered by CognIT's CORPORUM
system for text analysis. CORPORUM generates a semantic representation of textual documents,
which consists of the key concepts and the links between these concepts. This representation is
called a "light weight ontology" and is delivered in XML and/or RDF format. The CBR tool Creek
will be used for categorizing the light weight ontologies delivered by CORPORUM.

Assignment given: 24. January 2007
Supervisor: Agnar Aamodt, IDI

Preface

This paper is part of a master degree at the Department of Computer and Information Science
(IDI) at The Norwegian University of Science and Technology (NTNU). The project has been
performed under the supervision of Agnar Aamodt at IDI NTNU and Till Christopher Lech
at CognIT As.

The goal of this project is to experiment with document classification and case-based reasoning,
and implement a system that demonstrates this functionality. We have used CognIT’s text
analysis system CORPORUM to extract information from text. This output is represented
and reasoned with in Volve’s knowledge-intensive case-based reasoning framework Creek.

Testing the system requires access to the Creek code, which can be found at Volve As in
Trondheim. Since the code of Creek is protected, Frode Sørmo (frode@volve.no) or Agnar
Aamodt (agnar.aamodt@idi.ntnu.no) must be contacted to obtain access privileges. The
user will also need the executable file CoglibTest.exe, which is included in the .zip-file attached
to this project. How to run the program is explained in the file user guide.txt.

I would like to thank Frode Sørmo for patient support in practical as well as theoretical prob-
lems. I also want to thank my co-supervisor Till Christopher Lech and CognIT for providing
technical assistance, an office space and vital supplies such as fruit and coffee. Finally, I would
like to thank Agnar Aamodt for being a patient and helpful supervisor throughout this year.

i

ii

Abstract

This work investigates document classification in Case-Based Reasoning (CBR). The investi-
gation is exemplified by the design and implementation of a system that uses the knowledge-
intensive CBR framework Creek to categorize textual cases.

The Information Extraction tool CORPORUM analyzes natural language text by extracting
’light weight ontologies’ consisting of key concepts and the links between them. The output
delivered by CORPORUM has been the basis of text categorization in Creek. To find the
category of an unknown text case, Creek compares it to a number of already categorized texts
and outputs most similar. The calculation of similarity between textual cases has been done
according to Creek’s existing method. The implemented program is based on a study of Textual
CBR and Information Extraction, as well as an analysis of Creek’s representation and reasoning
functionality.

When testing the implemented system, we have observed that Creek and CORPORUM can
cooperate in categorizing documents, even if their format of representing text cases is initially
different. Because of differences in relation types, the general domain knowledge of Creek was
not fully utilized during case matching. However, our results suggests that Creek will benefit
greatly from using a text analysis tool such as CORPORUM for ontology building.

iii

iv

Contents

I Introduction 1

1 Introduction 3
1.1 Background and Motivation . 3
1.2 Scientific Approach . 3
1.3 Project Goals . 4

1.3.1 Main goal . 4
1.3.2 Subgoals . 4

1.4 System Requirements . 5
1.5 Interpretation and Limits . 6
1.6 Structure of Thesis . 6

II Prestudy 9

2 Textual Case-Based Reasoning 11
2.1 Knowledge-intensive Case-based Reasoning . 12
2.2 Textual CBR . 13

2.2.1 Transforming Text to Structured Case Representation 14
2.2.2 Assessing Similarity Between Textual Cases 15
2.2.3 Domain Knowledge in Textual CBR . 16

2.3 Summary . 16

3 Information Extraction 19
3.1 Information Retrieval . 19

3.1.1 Models of Information Retrieval . 19
3.1.2 Vector Space Model . 20
3.1.3 Example of Text Classification with VSM with IDF 21
3.1.4 Latent Semantic Analysis . 21
3.1.5 Evaluation of Statistical Approaches . 22

3.2 Natural Language Processing . 22
3.2.1 Syntax-Driven Semantic Analysis . 23
3.2.2 Shallow Natural Language Processing 24
3.2.3 Lexico-Syntactic Pattern Extraction . 25
3.2.4 Evaluation of Rule-Based Approaches 26

3.3 What is Structured Information? . 26
3.3.1 Extracting Document Structures . 26
3.3.2 Extraction of Association Rules . 27

3.4 Layered Information Extraction . 27
3.5 Summary . 28

v

vi CONTENTS

4 Ontologies 29
4.1 Building ontologies . 30
4.2 Reasoning with Ontologies . 30

4.2.1 Is-a and Causal Relations . 31
4.3 Examples on Ontologies . 32

4.3.1 WordNet . 33
4.3.2 Cyc . 33
4.3.3 ConceptNet . 33

4.4 The Semantic Web . 34
4.4.1 Metadata . 34
4.4.2 Resource Description Framework . 34
4.4.3 RDF versus OWL . 35
4.4.4 Summary . 36

III Technologies 37

5 Creek 39
5.1 Background and History . 39
5.2 Representation and Reasoning . 39

5.2.1 The Domain Model . 39
5.2.2 The Case Structure . 40
5.2.3 The CBR Process . 41

5.3 Functionality . 42
5.4 Creek and Textual CBR . 43

6 CORPORUM 45
6.1 Kernel 2 and CoglibTest . 46
6.2 Visualizing CoglibTest Relations . 48

6.2.1 Observations . 48
6.3 Other Functions in the CORPORUM Framework 50
6.4 Combining Creek and CORPORUM . 51

IV Results 53

7 Functional Design 55
7.1 Main System Components . 55
7.2 Text Case Representation . 55
7.3 RDF Import and Merging . 56
7.4 The CBR Matching . 57
7.5 Process Decomposition . 58

7.5.1 Process 1: Analyze Text . 59
7.5.2 Process 2: Generate Cases . 59
7.5.3 Process 3: Run CBR Session . 62

8 Implementation 63
8.1 The Implementation Process . 63
8.2 Case Representation . 63
8.3 Adding Text Cases . 64

8.3.1 Import RDF File . 64
8.3.2 Analyze RDF Statements . 65

CONTENTS vii

8.3.3 Generate Creek Case . 66
8.4 Case Matching . 67

V Analysis 69

9 Proof-of-Concept Testing 71
9.1 Test 1: Run a general CBR session . 71
9.2 Test 2: Visualize an RDF File . 72
9.3 Test 3: Combine Cases in the Domain Model 73
9.4 Test 4: Recognize a Duplicate . 74
9.5 Test 5: Discover Changes to the Duplicate . 75
9.6 Test 6: Recognize a Duplicate Partition . 76

10 Discussion and Concluding Remarks 79
10.1 Discussion . 79

10.1.1 Knowledge Containers in Implemented System 79
10.1.2 Alternative Exploitation of Knowledge Containers 81
10.1.3 The Second Solution . 82

10.2 Achievement of Goals . 82
10.3 Further Research . 83

10.3.1 Creek and Textual CBR . 83
10.3.2 CORPORUM and Textual CBR . 83
10.3.3 Further Cooperation . 84

10.4 Concluding Remarks . 84

A CORPORUM Coglibtest Light Weight Ontology 89
A.1 Input . 89
A.2 Output . 89

viii CONTENTS

List of Figures

1.1 Top Level System Functionality . 5
1.2 Mid-Level System Functionality . 6

2.1 [Aamodt and Plaza 1994] The Four Steps of the CBR Cycle 11
2.2 [Aamodt 2004] The Knowledge-Intensiveness Dimension of CBR 12
2.3 [Recio et al. 2005] jCOLIBRI Case Representation 15

3.1 Parse Tree for Natural Language Processing . 23

4.1 [McGuinness 2002] An Ontology Spectrum . 29
4.2 Adapted from [Konolige 1994]: A Causal Problem Structure 31
4.3 A Taxonomy with is-a Relations . 32
4.4 [Liu and Singh 2004b] A Subset of ConceptNet’s Semantic Network 34
4.5 [Patel-Schneider and Fensel 2002] The Semantic Web Tower 35

5.1 Screenshot from Creek: The General Domain Model 40
5.2 [Aamodt 2004] Integration of Cases and Domain Knowledge 40
5.3 Creek’s Case Structure . 41
5.4 Screenshot from Creek: Map and Frame View 42

6.1 CORPORUM GUI: Screenshot from Coglibtest 47
6.2 The Relation Type Related To . 49
6.3 The Relation Type Weakly Related To . 49
6.4 The Relation Type Strongly Related To . 50

7.1 Sequence Diagram . 56
7.2 The Two Solution of Case Representation . 57
7.3 Mid-Level System Functionality with Manual Steps 59
7.4 Decomposition of Process 1: Analyze Text . 60
7.5 Decomposition of Process 2: Generate Cases . 60
7.6 Pseudocode for Process 2.1 and 2.2 . 61
7.7 Pseudocode for Process 2.3 . 61
7.8 Decomposition of Process 3: Run CBR Session 62

8.1 RDF Case Represented in Creek . 64
8.2 A Partition Object . 64
8.3 Screenshot from Creek: The XML Import Wizard 65
8.4 RDF Import Sequence . 66

9.1 Functionality Test 1: Run CBR Session . 72

ix

x LIST OF FIGURES

9.2 Functionality Test 2: Visualize an RDF File . 73
9.3 Functionality Test 3: Combine Cases in the Domain Model 74
9.4 Functionality Test 4: Recognize a Duplicate . 75
9.5 Functionality Test 5: Discover Changes to Duplicate 76
9.6 Functionality Test 6: Recognize a Duplicate Partition 78

Part I

Introduction

1

Chapter 1

Introduction

1.1 Background and Motivation

This project treats document classification, a problem where the task is to assign a document
to one or more categories, based on its content. This can be done manually, semi-automatically
or in a fully automatized way. Document classification is not considered a sub-field of neither
Artificial Intelligence or Information Systems. It is rather a problem in information science
that is best solved using techniques from several theoretical domains [Lenz 1998].

Over the past years, document classification has received increasing attention. This is much
due to the exponential growth on the resources available at the world’s largest document
database - the Internet [Kobayashi and Takeda 2000]. However, not only Internet search engines
would benefit from a more structured document collection. Enterprises typically possess large
numbers of error and success reports, as well as documentation on strategies, methods and
best practices. These are useful experiences that are unavailable for the end users without a
proper structure.

For a document to be classified into a category, it must be decided whether or not the docu-
ment belongs under the specific heading. In most cases, this is a fairly easy job for humans,
but sorting an entire document collection after semantic category is an extensive job if done
manually. The question is whether we can program a computer to perform the same task, and
what knowledge and reasoning power would have to be available.

Case-Based Reasoning (CBR) is a method in Artificial Intelligence that solves a new problem by
finding the most similar prior experience. In this project, documents will be automatically clas-
sified into predefined categories using the knowledge-intensive CBR framework Creek. Creek
works by comparing structured units, and the text analysis tool CORPORUM will be used to
extract structured information from natural language text.

1.2 Scientific Approach

This project is largely design-oriented, and the scientific approach varies between description/-
analysis and design/implementation.

3

4 1. Introduction

We have been assigned two Artificial Intelligence tools and a goal to make them cooperate in
categorizing textual documents. Since neither of them are designed specifically for the purpose,
some program code must be modified and expanded. The implementation done in this project is
based on a preliminary study of the technologies involved, as well as the theoretical foundation
these technologies are based upon.

The implemented system have been evaluated as a ’proof of concept’, i.e a demonstration that
the goal is accessible using today’s technology and methods. The goal of the testing is to
demonstrate the functionality of the system.

The problem of document classification is inter-diciplinary by nature and depend on techniques
from different theoretical domains such as Information Retrieval, Natural Language Processing
and Case-based Reasoning. The scientific basis of this project is research on textual Base-based
Reasoning and Information Extraction. In addition, more distant areas such as graph theory
and linguistics have contributed to the project.

1.3 Project Goals

1.3.1 Main goal

The purpose of this project is to investigate how text classification is possible using case-based
reasoning. This will be exemplified by the design and partial implementation of a system that
demonstrates the functionality.

More specifically, the implemented system will use the Case-based Reasoning framework Creek
to categorize textual cases. The categorization will be committed on data structures delivered
by CognIT’s CORPORUM system for text analysis. CORPORUM analyzes text by generat-
ing a semantic representation which consists of the key concept and the links between these
concepts. This representation can be delivered in XML and/or RDF format, and is called a
’light weight ontology’. Creek will be adjusted and expanded to be able to classify the light
weight ontologies given by CORPORUM.

1.3.2 Subgoals

To reach the main goal, several subgoals must be reached:

Prestudy
We will study the literature on Textual Case-Based Reasoning and Information Extrac-
tion, as well as go trough CORPORUMs text analysis functionality. In order to extend
and adjust Creek, we will study its case representation and CBR process.

Design
Based on the insights from the prestudy, we will design a system that automatically
categorizes documents into predefined categories, based on Case-Based Reasoning. The
system shall use CORPORUM’s light weight ontologies as input and Creek as the clas-
sification tool.

Implementation
Parts of the proposed system will be implemented as a proof-of-concept, and Creek will
be adjusted and extended to handle textual cases.

1.4. System Requirements 5

Analysis
Finally, we will test and evaluate the system, before discussing the results.

1.4 System Requirements

The second subgoal in section 1.3.2 is to design a system that automatically categorizes doc-
uments into predefined categories, based on CBR. Figure 1.1 shows the general functionality
that can be expected from such a system. The user feeds the system with texts and categories,
and the system will output the category of the unknown text. The arrows represent the data
flow between the user and the system.

Figure 1.1: Top Level System Functionality

Automatic categorization means that the user shall provide no other input than the texts and
categories, i.e the program must discover the rules of categorization by itself. However, since
the task is to assign predefined categories, the system is not required to discover abstract or
hidden categories. Every unsolved text will be assigned one of the categories that has been
inserted by the user.

Figure 1.2 is an extended version of figure 1.1, where the system has been split up into the
two applications CORPORUM and Creek. The circles represent processes, arrows are data
flow between processes and components, and the broken line represent the system seen as one
single unit.

The process ’Categorize’ has been divided into three subprocesses, where the first, Analyze
Text, will be performed by CORPORUM. The two other subprocesses, Generate Cases and
Run CBR Session, will be implemented in Creek. In the Analyze Text process, the natural
language text is analyzed, and structured information is extracted and stored. This must be
done because texts are extremely difficult to reason with unless they are on a structured or
semi-structured form [Brüninghaus and Ashley 2001]. CORPORUM delivers text in either
XML or RDF format, which are both quite different from Creek’s cases. Generate Cases

6 1. Introduction

Figure 1.2: Mid-Level System Functionality

will transform the CORPORUM output to Creek cases. In process 3, Run CBR Session, the
unsolved case is compared with all solved cases according to some similarity measure, and the
output will be the most similar case.

The categorization tool should be able to recognize a document’s category even if the category
name is not mentioned in the text. When being confronted with input that is a duplicate of
one of the experiences, this experience should obtain a match close to 100%. At CognIT’s
request, the system input will be short unstructured texts written in Norwegian.

1.5 Interpretation and Limits

The code that is developed during this project is only a demonstration on how Creek can classify
CORPORUM’s light weight ontologies. If the enterprises involved wants to either cooperate
or use these results commercially, our implemented system will have to be re-implemented.
When implementing, we have focused on changing and little as possible to avoid disrupting
any of Creek’s vital functions. Some desired system properties such as speed, performance and
memory usage have not been considered very important in this project.

1.6 Structure of Thesis

Part I have introduced the thesis, while part II is a preliminary study on the theoretical
domains involved in the project. We will first present Case-based Reasoning, which is the

1.6. Structure of Thesis 7

model of categorization that will be deployed in this project. Then we will discuss Information
Extraction, the process of preparing a natural language text for CBR. Then we will present
ontologies and the Semantic Web, since an understanding of the concepts involved here are
required for the rest of the thesis.

In part III we present the functionality of CORPORUM and Creek, and part IV presents
the functional design and implementation details. The evaluation and discussion is done in
part V. Finally, there is an appendix with one example of a natural language text and the
corresponding RDF generated by CORPORUM.

8 1. Introduction

Part II

Prestudy

9

Chapter 2

Textual Case-Based Reasoning

Case-Based Reasoning (CBR) refers to a model of problem solving in Artificial Intelligence
which is based on the intuition that problems are often variations over already solved problems.
New problems are solved by finding one or more similar past experiences, and then adapting
the solutions to fit the problem. The whole CBR process is illustrated in figure 2.1.

Figure 2.1: [Aamodt and Plaza 1994] The Four Steps of the CBR Cycle

A general CBR cycle can be described by the following 4 steps [Aamodt and Plaza 1994]:

1. RETRIEVE the most similar case or cases

2. REUSE the information and knowledge in that case to solve the problem

3. REVISE the proposed solution

4. RETAIN the parts of this experience likely to be useful for future problem solving

11

12 2. Textual Case-Based Reasoning

A case is a structured unit that represent some object, concept or event. It is usually described
by its most salient properties and its category label(s). The most common way of representing
a case is a list of properties, a so-called feature vector, where each feature can be weighted
according to its relevance for the solution. In the most simple form, each feature is considered
equally relevant for the case solution.

Solving a problem in CBR is based on finding the most similar experience, and this similarity
between two cases can be calculated in numerous ways. When cases are represented as sets or
feature vectors, a simple similarity measure between two cases is the number of overlapping
features. A more sophisticated measure is the k-nearest neighbour (k-NN) algorithm, which
computes the distance between the input case and all other case. The k cases with shortest
distance are chosen to be the most similar ones.

In the k-NN algorithm, the distance between the cases ci and cj is given as [Mitchel 1997]:

d(ci, cj) ≡

√√√√ n∑
r=1

(fr(ci)− fr(cj))2 (2.1)

where n is the number of features and fr(ci) denotes the value the rth attribute of case ci.
This method can either select the most similar case (1-NN), or it can be used to cutting of the
least similar cases from further processing.

Notice in equation 2.1 that attribute r is expected to have some value fr(ci) that can be
compared with other values. When this value is numeric, the distance between two values
is just their Euclidian difference. However, when the feature values are strings, there is no
natural way of comparing them except from exact syntactic matching. This might lead to
inaccurate results, as the same concept or event can be described with different words. In fact,
more than 80% of the times, people would choose different words to describe the same concept
[Deerwester et al. 1990].

2.1 Knowledge-intensive Case-based Reasoning

Knowledge-intensive CBR is an effort to reduce the problem with purely syntactic feature
matches. This is done by equipping the system with general knowledge that can help select
more accurate cases. In fact, the more knowledge is embedded into a CBR system, the more
effective it is expected to be [Dı́az-Agudo and Gonzáles-Calero 2001]. Although knowledge-
intensive systems might perform better than knowledge-poor, acquiring this knowledge is a
significant cost when done manually [Gabel and Stahl 2004].

Figure 2.2: [Aamodt 2004] The Knowledge-Intensiveness Dimension of CBR

2.2. Textual CBR 13

CBR systems are often referred to as either knowledge-intensive or knowledge-poor. In fact,
knowledge-intensiveness varies over a continuous scale, as illustrated in figure 2.2.

Knowledge can be stored within the cases, for example by attaching semantic information to
the features, or in the similarity measure that is used to retrieve accurate cases. It might also
be stored in a structure separate from the cases, for example an ontology or a rule base. In
the knowledge container model introduced by Richter [Richter 1995], every piece of knowledge
can be represented in one or more of the following categories:

� The collection of cases

� The definition of an index vocabulary for cases

� The construction of a similarity measure

� The specification of adaptation knowledge

When designing CBR application, one should reflect about which container knowledge should
be added to in order obtain the maximal benefits of the program [Lenz 1998].

2.2 Textual CBR

Textual Case-Based Reasoning (TCBR) is a subfield of CBR concerned with design and im-
plementation of CBR applications where some or all the past experiences are stored in textual
format [Weber et al. 2006]. The goal is to use the textual knowledge sources in an automatic
or semi-automatic way to support case-based matching.

A typical application for textual CBR is a troubleshooting or FAQ scenario. Assume that a
user has a problem with some device and consults a FAQ page. Rather than having to search
trough all the questions, a CBR program would utilize the fact that a similar question (though
probably not equal) is likely to have been asked and solved before.

Such a troubleshooting process can be illustrated with the CBR cycle:
The user enters the problem description, and the system RETRIEVEs the problems most
similar to the description. Then it identifies the differences between the problems and the
description, and selects which parts should be suggested as solution. The REUSEd solution
is proposed, along with a request for feedback. If feedback given by the user is negative, the
solution must be REVISEd. Finally, the system RETAINs whatever turned out useful from
this CBR session.

Traditionally, CBR has been focused within domains where cases have been structured, either
in attribute-value pairs or complex graphs [Lenz 1998]. Natural language texts are, however,
unstructured by nature. There exist many domains, such as law, medicine and diagnostics
in general, where CBR techniques are particularly promising, but experiences are stored in
natural language [Brüninghaus and Ashley 2005].

Today, the research on textual CBR has its main focused within four different areas [Weber
et al. 2006]

1. Transforming text into structured case representation

2. Assessing similarity between textually represented cases

3. Adapting textual cases

4. Automatic generation of TCBR representations

14 2. Textual Case-Based Reasoning

In this project, there is no requirement that the representation shall be automatically discovered
or the cases be adapted. Since the two first questions are the most important for the system
we shall implement, they we will be the focus this part.

2.2.1 Transforming Text to Structured Case Representation

Transforming text to knowledge rich cases can be done in two fundamentally different ways
[Wilson and Bradshaw 1999]:

1. A document can be transformed into some structure consisting of knowledge-rich features.
This is done either manually or automatically with Information Extraction techniques
(e.g [Lenz 1998])

2. A document containing large amounts of text can be split into several textual case com-
ponents, where each component contains a part of the original text and has a defined
interpretation of this text portion (e.g [Recio et al. 2005])

Representing Text

Finding a good representation for text is difficult, and no representation has so far standed
out as the obvious choice for TCBR. The most basic and widely used case representation is a
so-called bag of word (BOW) [Brüninghaus and Ashley 2001]. Like the name indicates, the text
has been tokenized into a set of words without considering the word sequence. The features
in a case represented as BOW will be either all or a selection of the words appearing in the
document.

Textual cases can also be represented as feature vectors with attribute-value pairs. Attribute-
value pairs are useful for representing labeled values where the labels are common for many
cases. For example, a case describing a book can have features such as Author - Amos Tversky
and Title - Features of Similarity.

Other approaches includes representing a text as a network structure, where features are linked
to each others. This has for example been done in the law domain, representing every legal case
as a labeled graphs [Cunningham et al. 2004]. The nodes correspond to important concepts,
and arcs are added between concepts that are adjacent. There has also been research on
representing a text in first-order language with clearly defined semantics (e.g [Gupta and Aha
2004]). However, the engineerings costs of transforming text to such a representation is beyond
reach of todays technologies [Weber et al. 2006].

Finally, the case can be represented according to its document structure. When the Case-
Based Reasoning framework jCOLIBRI was extended to handle textual cases, each text case
was represented by an individual, which could contain other individual and thus generate a
tree structure. Every individual in this approach is an array of attributes, where one attribute
contains the text, and the rest of the attributes describes concepts extracted from this text.
This is exactly as described in Wilson and Bradshaw’s second approach. This case structure
is shown in figure 2.3.

The Transformation Process

Every natural language text must be analyzed and transformed to get it on case format. This
process might be as simple as dividing the text into separate words, or a complex process where

2.2. Textual CBR 15

Figure 2.3: [Recio et al. 2005] jCOLIBRI Case Representation

highly knowledge-intensive representations of the textual content are generated. In general,
automatic mapping between natural language text and structural case is a difficult procedure,
as texts are usually created for an entirely different purpose than developing CBR applications
[Davis et al. 2003]. Therefore, transforming text to a representation applicable for reasoning
will usually require substantial knowledge engineering effort.

When the text has been divided into tokens, these tokens can be added directly to a case without
further processing. However, this very simple approach has several drawbacks. For example,
when two cases are compared, words with different grammatical tense (such as represent and
represented) will not match even though they refer to the same concept. This problem can
be solved by instead representing every word by its word stem. Another problem with this
approach is the fact that the case will largely be populated with function words - words that
appear often but carry little meaning. These can be removed either using probabilistic methods
or a function word list.

M. Lenz [Lenz 1998] suggests using a layered approach that includes several modules like the
above mentioned methods. Each module has its own function, and is supposed to extract one
type of knowledge from the text. This approach is called Information Extraction and is one of
the most generic and flexible TCBR architectures. Research suggest that this can dramatically
reduce the transformation problem and make efficient and robust TCBR systems [Brüninghaus
and Ashley 2001]. Information Extraction will be analyzed and described more thoroughly in
the next chapter.

2.2.2 Assessing Similarity Between Textual Cases

How similarity between two cases is calculated depend largely on the representation being used.
When texts are transformed to a new representation, the focus moves from comparing the texts
to comparing objects of the new representation. A comparison between bag-of-word cases is
usually based on set theory, where similarity is equal to the number of matching features
between the two cases. There are several such formulas, where one of the most reputable is
the tversky measure in equation 2.2 [Tversky 1977]:

S(A,B) =
f(A ∩B)

f(A ∩B) + αf(A−B) + βf(B−A)
(2.2)

16 2. Textual Case-Based Reasoning

f(A) and f(B) are the set of all features describing the objects A and B, respectively. The
constants α and β can be specified by the user or learned with machine learning algorithms.

The jCOLIBRI framework for developing textual CBR applications allow the user to choose
between several similarity measures in comparing text attribute sets. They present several
measures, such as [Recio et al. 2005]:

The Jaccard Coefficient:
|o1 ∩ o2|
|o1 ∪ o2|

(2.3)

The Overlap Coefficient:
|o1 ∩ o2|

min(|o1| , |o2|)
(2.4)

where o1 and o2 are the set of attributes in text 1 and 2, respectively. o1 ∩ o2 is the set of
common attributes between texts 1 and 2, and o1∪o2 is the set of attributes that appear either
in text 1, text 2 or both. min(|o1| , |o2| is the smallest set of o1 and o2.

Reasoning with texts represented as networks changes the focus to calculating the similarity
between two threes or graphs. Though a network based representation carry much knowledge,
the transformation will probably not ease the categorization task [Lenz et al. 1998]. This is
one major drawback of representing texts as networks. A simple way of comparing two labeled
graphs is counting the number of matching concepts and/or relations, in a manner similar to
equation 2.3. Alternatively, the algorithms may be based on graph theory, such as the greedy
approach presented by Champin and Solnon [Champin and Solnon 2003].

2.2.3 Domain Knowledge in Textual CBR

Textual CBR application are usually characterized by a high degree of knowledge. In fact,
the knowledge embedded in Textual CBR systems is actually what separates them from other
approaches working with texts [Lenz 1998]. The knowledge container model presented in
section 2.1 indicates that this knowledge can be present in several formats, such as the cases
and the background knowledge.

In the process of selecting the accurate category for a text, the background knowledge might
be just as important as the text itself. Consider the following text:

Det koster lite å begrense temperaturøkningen i verden til to grader, mener FNs klimapanel.
Prislappen er ca. 0,12 prosent av verdens BNP (brutto nasjonalprodukt).

For the Norwegian reader, it is clear that this text should be categorized under the heading
’klima’ (eng: climate). Notice, however, that the word ’klima’ is mentioned only once, and that
is within the compound word ’klimapanel’. Our ability to categorize texts easily depends both
on our language understanding and prior knowledge on concepts and relations in the domain.

Background and domain knowledge can be acquired and deployed in different ways, where
some will be discussed in chapter 4.

2.3 Summary

This section provides the basic background of the concepts of CBR, knowledge-intensive CBR
and, most important, Textual CBR.

2.3. Summary 17

In CBR, a problem is solved by comparing it to a number of stored experiences to find the
experience that is most similar to the problem. This way of problem solving is usually used
on domains where cases are structured, but can be expanded to comparing natural language
texts. The goal is then to find the category that best describes an unknown text by comparing
it to other categorized texts. Textual CBR works best when the text has been analyzed so
that the most important information will be compared.

In the next chapter we will go trough different approaches to Information Extraction, where
natural language text is automatically mined for structured information.

18 2. Textual Case-Based Reasoning

Chapter 3

Information Extraction

Information Extraction (IE) is a field in Artificial Intelligence where the goal is to extract
structured information from unstructured text [Cowie and Lehnert 1996]. In this chapter we
will present several approaches to information extraction and evaluate their ability to analyze
and represent natural language, as well as their compatibility with textual case-based reasoning.

3.1 Information Retrieval

Information Retrieval (IR) deals with the representation, storage, organization of and access
to information items [Baeza-Yates and Ribeiro-Neto 1999]. It is the science of searching, both
for information within documents and for documents themselves. The traditional approach
to information retrieval uses keyword searches and statistical techniques to retrieve relevant
documents.

Note that an information retrieval system does not actually retrieve information. Rather, it
searches for documents that are related to the information expressed in a query. A typical
IR system ask the user to give a query with one or more words expressing the user’s area of
interest. The output given the user is a set of documents that the system find to be relevant.

3.1.1 Models of Information Retrieval

There are three classic IR models: Boolean, vector and probabilistic [Baeza-Yates and Ribeiro-
Neto 1999].

In the most simple Boolean model, each document is represented as a set of index terms, which
usually corresponds to the words contained in the document. The query is also a list of words,
and the output will be documents that overlaps the query. A typical query consists of a few
words, for example ’document classification case-based reasoning’. The output will then be the
set of documents that contain all the words given in the query.

This model could not have been applied directly to case-based reasoning, because only texts
that contains the entire query (i.e a whole text) would have been retrieved. In addition, the
Boolean model has no system of ranking the documents after similarity.

19

20 3. Information Extraction

A somewhat more sophisticated representation is the vector model. Each document is repre-
sented as a t-dimensional vector of index terms, where each term has a weight that indicates
its importance. The query is represented in the same way.

In this model, the output will be a list of documents ranked by similarity to the query. A
document can be retrieved even if it matches partially, so that the documents will not have
to contain the whole query to be retrieved. It is possible to specify a threshold and retrieve
only the document with a similarity degree that exceeds the threshold. The success of this
model depends on how the text is transformed and which methods are used to assign relevance
weights.

Both the term weights and the similarity of the vector model can be calculated in numerous
ways. The weight is often based on the term’s frequency and position in the text. The similarity
between two texts can for example be the angle between the query and document vector, or
simply the number of overlapping terms.

Inverse Document Frequency

Inverse Document Frequency (IDF) is a statistical measure that is used to describe how im-
portant a term or phrase is to the documents in a collection. The more a word appears in the
general document corpus, the lower is the inverse document frequency.

The IDF formula is given as [Salton and McGill 1983]:

idfi =
N

ni
(3.1)

where N is the number of documents, and ni is the number of documents that contain term i.

The IDF measure is based on an intuition that words that appear in many documents are not
very useful for distinguishing between relevant and non-relevant documents [Baeza-Yates and
Ribeiro-Neto 1999]. IDF can be used for extracting key word that defines the content of each
document, but only as long as the documents are quite different. On major drawback to IDF
is that the term frequency within a single document is ignored. This is improved in the vector
space model.

3.1.2 Vector Space Model

The Vector Space Model (VSM) is a specification of the vector model, where the whole docu-
ment is represented as a term vector. Before transforming the text to a vector, function words
should be removed from the text, either using probabilistic methods or a list over common
words. Approximately 40 - 50% of the total words in a document are removed [Salton and
McGill 1983].

The vector ~dj for document j is defined as

~dj = (w1,j , w2,j , w3,j , . . . , wn,j) (3.2)

The entry wi,j is s the weight of term i in document j. Note that i does not necessarily have
to be present in j, it should rather be interpreted as how close i and j are. Alternatively, the
document collection can be defined with a matrix W = [wij]. This matrix contains information
on how important each term i is for each document j.

3.1. Information Retrieval 21

The weight wi,j is calculated as follows:

wi,j = tfi,j ∗ idfi (3.3)

where tfi,j is the number of times term i appears in document j and idfi is given in equation
3.1.

The vector space model is a simple and effective way to represent and compare documents. On
large documents collections, the method is computationally expensive, since the indices must
be re-calculated every time a new word or document is added.

3.1.3 Example of Text Classification with VSM with IDF

In 2005, there was written a master thesis on text classification with statistical IR methods
[Rogstad and Ulseth 2005]. This was done using the Vector Space Model and Inverse Document
Frequency. Similarly to the requirement of this project, the categories should be defined in
advance, and each of the unclassified documents would be designated one of these categories.

The following categories were used: Air Traffic, Football, Handball, Movie and Music. Since a
few of these domains are quite similar, some key words are likely to describe several domains.
To avoid this, all documents on one domain were treated as one unit, and this unit was
compared against the rest of the collection. The key words obtained was then the words that
best separated the category from the other categories.

The results obtained were promising: 100% of the documents were classified correctly, and only
one document fell below the classification treshold. This makes the precision rate 95%, wich
must be considered very good.

3.1.4 Latent Semantic Analysis

In information retrieval, there are two fundamental problems that are unaddressed by tradi-
tional frequency-based approaches: synonymy and polysemy [Riloff and Lehnert 1994].

Two different words or phrases that expresses the same concept are called synonyms. Examples
of synonyms are the words ’agreement’, ’arrangement’ and ’settlement’. Polysemy, on the other
hand, refers to the fact that one single word can have multiple meanings. For example, the
word ’deal’ can refer to the a contract/agreement, a plank of pine or handing out playing cards.

Latent Semantic Analysis (LSA) it is a technique in natural language processing which auto-
matically identifies semantic information from a corpus [Jurafsky and Martin 2000]. The LSA
approach aims to solve the synonymy/polysemy problem by discovering hidden relations and
concepts rather than being solely based on the words in a query.

LSA is based on the assumption that every text has an underlying built-in semantic struc-
ture. Because of the the synonymy/polysemy problem, this structure can be well-hidden and
unavailable for frequency-based text analysis techniques.

The ground idea of LSA is to map each document and query vector into a lower dimensional
space with associated concepts [Deerwester et al. 1990]. This process starts with a matrix W
where wij is the weight of term i for document j, exactly as the as approach described in
section 3.1.2. The matrix then goes trough a mathematical operation named Singular Value
Decomposition where it is decomposed into three reduced matrices [Jurafsky and Martin 2000].

22 3. Information Extraction

After the decomposition, the documents are represented with vectors of factor values. Ac-
cordingly, the closeness of two documents in this reduced model is determined by the overall
pattern similarity rather than the exact term usage.

A result of the LSA is that abstract categories appearing in a text collection can be automati-
cally discovered. However, this method is not yet verified to be superior in practical situations
[Baeza-Yates and Ribeiro-Neto 1999].

3.1.5 Evaluation of Statistical Approaches

Statistical approaches in information retrieval have two especially desirable properties: speed
and robustness against noise in the data sets. These techniques are popular because they
take advantage of large document collections to identify words that are useful indexing terms
automatically [Cowie and Lehnert 1996]. However, word-based techniques have some general
limitations. In addition to synonymy and polysemy, there are several linguistic phenomenons
that limit their success, such as [Riloff and Lehnert 1994]:

Phrases
Some phrases are combined by words that are bad indexing terms by themselves. For
example, the phrase ’pass away’ is synonym to dying, but neither ’pass’ or ’away’ are in
general associated with dying.

Local Context
Some words/phrases are useful as indexing terms only in some local contexts. To retrieve
texts about bank robberies, the word ’robbery’ is not enough. The object of the robbery
must be a bank.

Global Context
Some documents do not contain any good indexing terms. The relevance of a document
may depend on the entire context of a sentence, paragraph or even whole text rather than
single words. For example, the sentence ’An armed man took the money and run’ refers
to a robbery. However, none of the words are good indexing terms to describe robbery
independently. The clear meaning of the sentence appears when the words are combined.

3.2 Natural Language Processing

It is a common assumption that natural language texts are unstructured by nature. This is
not strictly true, since the words of written text seldom appear in random order. Rather,
sentence composition tend to follow strict rules or patterns, which allows humans to get a deep
understand the meaning of the text.

Inspired by human text understanding, Natural Language Processing (NLP) approaches usually
analyze the text by dividing it into its basic components. The principle of compositionality
states that the meaning of a natural language sentence can be derived from the meanings of it
parts [Jurafsky and Martin 2000]. To illustrate, consider the following sentences:

John killed Mary
Mary killed John

It should be evident that the meaning of a sentence is based not only on the words that make
it up, but also on their the ordering, grouping and inter-text relations. Instead of relying on
word frequencies and other statistical measures, NLP aims to capture the text content.

3.2. Natural Language Processing 23

3.2.1 Syntax-Driven Semantic Analysis

Syntax-driven semantic analysis is a so-called deep NLP approach where goal is to get a full
understanding of the text being processed. The syntax is mapped to semantics by matching
the text against language composition patterns, such as noun-verb-noun, which can be used
to parse the sentence ’John killed Mary’. Unfortunately, most sentences have a much higher
complexity level, which makes this method computationally expensive.

Rule
1 S → NP VP
2 NP → Noun
3 NP → Proper Noun
4 NP → Det Noun
5 VP → Verb NP

Vocabulary
6 Noun → mammal
7 Noun → animal
8 Verb → is
9 Det → every
10 Det → an

Table 3.1: Subset of English Grammar

To analyze the more complex sentence ’Every mammal is an animal’, there is needed a vo-
cabulary that categorizes words in grammatical classes and a number of sentence composition
patterns. These patterns are usually represented recursively, such as the rule base of table 3.1.
The rule ’S → NP VP’ means that one type of sentence S is dividable i two parts: the noun
phrase and the verb phrase.

The sentence ’Every mammal is an animal’ can be transformed to the parse tree in figure 3.1
using the vocabulary and grammar presented in figure 3.1. The parse tree might be used in
its original form to represent text. More common, though, is transforming it to a more flexible
representation such as First-Order Predicate Logic.

S

NP

Det

Every

Noun

mammal

VP

Verb

is

NP

Det

an

Noun

animal

Figure 3.1: Parse Tree for Natural Language Processing

24 3. Information Extraction

First-Order Predicate Logic

First-Order Predicate Logic (FOPC) is a popular way to represent natural language because
of its flexibility, well-known semantics and sound computational basis [Nilsson 1991]. The
soundness of FOPC means that what is deduced from FOPC predicates will always be true as
long as the premises are true [Barwise 1977].

Classes in the domain that we are modeling can be represented in FOPC as objects, where
the instances of these classes are represented as constants. Examples of objects in the above
mentioned sentences are animal and mammal. The constants are John and Mary.

In FOPC, objects and constants are linked via relationships. A relationship can be expressed
by a FOPC predicate, for example:

killed (John, Mary) (3.4)
killed (Mary, John) (3.5)

To represent the fact that either all or some instances of class has some property, we can use the
∀ and ∃ quantifiers, respectively. For example, the parse tree in figure 3.1 can be represented
with the following predicate:

∀x(mammal(x) → animal(x)) (3.6)

Predicates allows deduction of properties that are unknown but true. For example, all constants
that belong to the class mammal will also belong to the animal class.

The transformation from text or parse tree to FOPC is easiest to perform by hand. It is
possible to do this automatically, but this requires heavy processing capabilities [Barendregt
1981]. Syntax-driven semantic analysis in general difficult on any natural domain because of
the assumption that sentences are unambiguous and free of errors [Lenz et al. 1998].

3.2.2 Shallow Natural Language Processing

In contrast to deep NLP methods such as syntax-driven semantic analysis, shallow NLP do
not include full parsing of the text.

Part-Of-Speech Tagging (POS Tagging or POST) is a shallow NLP method that instead of
building structured representations merely tags each word with relevant information. POST
is also called grammatical tagging, and is the process of marking up the words in a text as
corresponding to their grammatical group, context and relationships with other words in the
text. Examples of grammatical group are noun, verbs, adjectives and prepositions.

Due to polysemy, one word might correspond to different concepts and sometimes also to
different grammatical classes. The most probable grammatical tag can be found by matching
ambiguous sentences to language composition patterns or by training the tagger on an already
tagged document collection. The same is true for unknown words. A trained POS tagger
would tag the non-existent word ’blahblahous’ as an adjective, simply because the affix ’-ous’
is most common for adjectives [Brill 1992]. The process of part-of-speech tagging is possible to
perform by hand, but is now usually computerized.

Other important shallow NLP components are tokenizer, lemmatizer, stemmer and phrase
detector. The tokenizer divides a sentences into tokens, where a token is usually either a word,
number or punctuation mark.

3.2. Natural Language Processing 25

Both the lemmatizer and the stemmer returns the base form or stem of the words. A lemma is
defined as the combination of the stem and its part-of-speech (POS) tag [Galvez and de Moya-
Anegón 2006]. To find the lemma, the lemmatizer usually consults a list over words and their
corresponding word stems. Stemming, on the other hand, is usually rule-based. Known suffices
and affices are removed to obtain the word stem, without considering the context. Stemmers
are easy to implement and run fast, but the accuracy is often too low for practical applications
[Galvez and de Moya-Anegón 2006].

The phrase detector recognizes word phrases, which are words that naturally constitute a unit.
The two most important phrase types are the verb phrase and the noun phrase. A noun phrase
is a syntactic sentence unit that keeps information about a noun called the head. Besides the
head, the noun phrase might consist of adjectives, preposition or other nouns, which all rely
syntactically on the head [Kroeger 1992]. An example of a noun phrase is ’Caesar’s conquest
of Gaus’, in which ’conquest’ is the head. A verb phrase is similar to noun phrases, except that
the head is always a verb.

3.2.3 Lexico-Syntactic Pattern Extraction

Lexico-Syntactic Pattern Extraction (LSPE) is a shallow rule-based approach to relation ex-
traction. LSPE extracts relations between concepts and store these relations in a representa-
tion similar to FOPC. Similarly to Syntax-Driven Semantic Analysis, LSPE algorithms tries
to match a text to several patterns. These patterns are, however, quite simple, and span over
phrases rather than entire sentence.

Some patterns are easily extractable from text, such as the hyponym relation, which is a way
of representing instance relationships. If A is a kind of B, then B is a hyponym of A, such as
a flower being hyponym of tulip and rose.

Consider the following sentence:

Agar is a substance prepared from a mixture of red algae, such as Ge-
lidium, for laboratory or industrial use

Even though we have no acquaintance with neither Gelidium or red algae, the sentence pattern
gives us a clear idea of the semantics, namely that gelidium is a type of red algae. The above
pattern is also computer interpretable with the following rules [Fellbaum 1998]:

NP0 such as NP1 {, NP2 . . . , (and | or)NPi} , i ≥ 1
for all NPi, i ≥ 1, hyponym(NPi, NP0)

This allows the computer to discover the relation hyponym(Gelidium, red algae). Other pat-
terns that are used to extract hyponyms from text are [Hearst 1992]:

NP {, } especially {NP , } ∗ {or | and} NP

The colours, especially red, blue and green...

=⇒ hyponym(colour, red), hyponym(colour, blue), hyponym(colour, green)

NP {, } including {NP , } ∗ {or | and} NP

...some latin languages, including Spanish and French

=⇒ hyponym(Spanish, latin language), hyponym(French, latin language)

26 3. Information Extraction

The preferred patterns to extract relations from seem to vary greatly between applications and
domains. Some programs, such as the Snowball framework, can learn to extract relations by
scanning the text [Agichtein and Gravano 2000]. Snowball is originally domain-independent,
but it is possible to add explicit rules that are useful for the specific domain being analyzed.

3.2.4 Evaluation of Rule-Based Approaches

When natural language texts are analyzed with NLP approaches, the result is a representation
with a high degree of knowledge and content understanding. FOPC is the most extreme
representation in terms of knowledge - when a domain model is expressed in FOPC predicates,
this allows for deduction of both texts, words and concept properties.

There is, however, a trade-off between the knowledge available in the representation and the
reasoning power that have to be available [Levesque and Brachman 1985]. In representing
cases, parse trees are not much easier to compare than raw text [Lenz et al. 1998].

LSPE returns more shallow knowledge than deep NLP, but this method requires significantly
less computation. It is easier to parse long sentences and phrases, and the methods is less
prone to errors when encountering unknown words.

Because of the disadvantages related to deep NLP methods, shallow approaches are usually
preferred. All the shallow NLP components in section 3.2.2 are widely used in layered text
extraction approaches, as will be presented further down.

3.3 What is Structured Information?

The goal of Information Extraction is to extract structured information from unstructured
text. However, this structure need not necessarily represent the semantic concepts. We will
briefly represent a few other options.

3.3.1 Extracting Document Structures

A document is often naturally divided into parts such as pages, sections, chapters etc. Some
parts of the document are usually more information-bearing, such as the introduction, con-
clusion and headers. To automatically discover this structure in a text, most researchers use
methods rooted in Machine Learning and/or Information Retrieval.

One way to partition a document into structured is to track the the frequency distributions
of different terms [Kulyukin and Burke 2002]. The partitions obtained will then arguably
correspond to a structural organization of information in a given document. However, this
approach ignores that even in a document not structured with metadata, humans tend to add
signs that naturally divides text, such as headers and paragraphs.

If labeled information such as title, author and publishing year can be extracted, these are
easily storable in a feature-vector, as explained in section 2.2.1. However, most of the research
we have encountered (such as [Recio et al. 2005]) also analyzes the text content and attach this
semantic information to their cases.

3.4. Layered Information Extraction 27

3.3.2 Extraction of Association Rules

Another structure that can be mined for is association rules. At NTNU, there is a project in
progress that deals with a rule-based approach for relation extraction [Kvarv 2007]. The aim
of this project is to extract a rule base from a text body, process these rules and use these to
generate an ontology. In short, this is a clustering technique that determines which words tend
to appear together.

The process starts with a matrix W , where wij is 1 if term i ever appears in document j, and 0
elsewhere. In other words, the weight is boolean, in contrast to the VSM approach mentioned
earlier. Then follows the Apriori algorithm for association rules generation [Agrawal et al.
1993]. This algorithm aims to discover so-called frequent item sets from the matrix, and the
association rules are then generated from these sets in an iterative fashion.

A ⇒ B(s, c) is a valid association rule given that {A,B} are document terms. c is the confidence
and s is the support percentage [Agrawal et al. 1993]. In other words, that word A predicts B
with confidence c. The further idea is to process and enhance these rules in order to use them
as a basis for ontology generation.

3.4 Layered Information Extraction

In section 2.2.1, we introduced the layered approach to Information Extraction. The method
starts with raw texts, and the idea is to let the text ’float’ trough the different layers. Each
layer has its own function and is supposed to capture one specific form of knowledge. M. Lenz
suggests deploying the following layers [Lenz 1998]:

Keyword Layer
A dictionary and IR techniques such as word frequency are used to recognize important
expressions in the documents. Then a part-of-speech tagger is used to obtain information
about semantic word categories, and stemming information is looked up in a dictionary.

Phrase Layer
Application-specific knowledge sources, i.e relevant documents, are used to extract phrases.
These knowledge sources are usually raw text and must be scanned for relevant phrases.
Recognizing phrases is more difficult than just parsing keywords, so the integration of
domain-experts is essential in this phase.

Thesaurus Layer
The task of the thesaurus layer is to relate different keywords to each other. Lenz suggests
using a general parser such as WordNet - an ontology where nouns are organized into
lexicalized concepts [Fellbaum 1998].

Glossary Layer
This layer resembles the thesaurus layer, but is mainly performed by a human domain
expert. The goal of this phase is to relate application-specific terms to each other by
specifying similarity relations.

Feature Value Layer
In the feature value layer, the goal is to define some attributes and their relevance to the
application. These can be obtained consulting a domain experts on which attributes are
normally used to describe the domain/application. Then, there is produced a similarity
measure including weighting of the various features, and the different feature values.

28 3. Information Extraction

Domain Structure Layer
The whole domain is described in this layer. With a full topic overview, one can clear
out areas disjoint from the field of interest. Using the topic classification, entire sets of
documents can be safely ignored and thus precision can be improved greatly.

Information Extraction Layer
In this layer, the goal is to automatically extract information in the form of attribute-
value pairs. The textual components are also scanned for specific ’triggers’ as an effort
to generate an association rule base.

Observe how several tools and approaches are combined in this approach. A domain expert
is involved in several layers, and in the Phrase Layer similar texts are scanned for key words.
Both IR and shallow NLP tools such as the lemmatizer and part-of-speech tagger are used. In
the final layer, relations are extracted using some type of LSPE algorithm. In addition to this,
entirely external tools such as the WordNet ontology is used.

The success of this approach indicates that one single technique is not sufficient to generate
structure suitable for textual CBR. Lenz analyzed the layers by subsequently eliminating higher
layers and measuring the classification rates. The result was that removal of any layer would
lower the performance. The biggest effect was obtained when removing the feature value layer
[Lenz 1998].

This layered approach transforms each text to a structured case, in addition to adding knowl-
edge to the domain model. Since an expert will specify both phrases and important relations
between concepts, the quality of the domain model is ensured. Basically, this approach uses
the best from all the approaches presented in this chapter. On the negative side, it must be
mentioned that including a domain expert in the knowledge acquisition is both time consuming
and expensive.

3.5 Summary

In this chapter, we have presented several approaches to analysis of natural language texts.
The statistical approaches we have discussed here use only word frequencies to represent and
reason with texts. This is based on an assumption that similar documents will have a bigger
portion of overlapping word than dissimilar documents. This is a decent assumption, but it
might be insufficient in some cases.

The rule based approached presented in this chapter aim to understand the text content and
compare documents based on this content. We have also presented a layered approach that
combines statistical and rule-based techniques, and gets the benefits from both the statistical
and the rule-based approach.

So far, Information Extraction have only concerned transforming text to cases. However, it
might be equally useful to store knowledge in a general domain model, and several of the
methods here are as useful for ontology building. In the next chapter, we will examine the field
of ontologies.

Chapter 4

Ontologies

An ontology refers to some kind of shared understanding with respect to a given domain.
A definition of an ontology used in the AI community is ’An explicit representation of con-
ceptualization’ [Gruber 1994]. This conceptualization or world view is usually a hierarchical
description of concepts and the relations that connect and describe them [Pan and Horrocks
2003].

An ontology may take a variety of forms, but will inevitably include some sort of vocabulary
that defines the syntax allowed in the domain. In most cases, the ontology will also include a
specification of the meaning of the words in the vocabulary. Ontologies can be expressed in any

Figure 4.1: [McGuinness 2002] An Ontology Spectrum

degree of formality, from a loose informal natural language to a formal semantic specification
including theorems, proof and a sound reasoning [McGuinness 2002]. Figure 4.1 illustrates the
spectrum of ontologies.

The simplest form of an ontology is a finite list over words that are allowed in some language.
This is called a controlled vocabulary. More sophisticated than the controlled vocabulary is a
glossary, a list of words where the meaning of each word is defined in natural language.

The next point on figure 4.1 is a thesaurus. In addition to the vocabulary, the thesaurus often

29

30 4. Ontologies

includes some basic semantic relations interpretable by computer agents, such as the synonymy
relationship which states that two concepts have equal meaning.

The next two types of ontologies have few surface differences. Instead, they are separated
by the difference of formality of the subclass hierarchy. A subclass hierarchy is a taxonomy
where the concepts are related via is-a relations. In formal taxonomies, the is-a relation have a
strict use and semantic interpretation. In more informal ontologies, is-a might be interpreted
as class relationships (for instance, Yorkshire Terrier is-a Dog) or instance specifications (Fido
is-a Dog). It might even concern the words being used rather than physical object they refer
to (Fido is-a Dog-Name).

The next point on the figure includes frames. At this point, it is often possible to separate
between class nodes and object nodes, and it is possible to specify properties of both classes
and objects. Even more expressive is value restrictions, where there are restrictions on what
can be inserted in a property slot.

4.1 Building ontologies

There are two fundamentally different ways of designing an ontology; top-down and bottom-
up. Most ontologies have some kind of top concept or relation that all other concepts are
defined by. In a top-down approach, the ontology building start with defining the most general
concepts, and then use the top concepts layers to define the rest of the ontology.

In the bottom-up approach, the ontology building starts with describing the details of the
domain. After the relevant concepts and relations are defined, these are usually organized
in some structure. The bottom-up approach is especially useful when the details are better
understood than the more abstract concepts. Ontologies built bottom-up will typically reach
a high level of details. Unfortunately, it is harder to control the structure and organization of
concepts than in the top-down approach.

A middle-out approach combines top-down and bottom-up strategy. First, fundamental terms
are manually defined, and the abstractions and details are based on this mid-level terms
[Uschold and Gruninger 1996]. This approach will arguably lead to a balanced portion of
details and abstraction.

Ontologies can be built manually by a domain expert, or automatically or semi-automatically
by extracting concepts and relations from text. In automatic ontology building, methods from
Information Extraction are frequently used. Information Extraction works best at recognizing
concept as a detailed level, since high-level concepts are commonsense knowledge and therefore
usually excluded from texts [Liu and Singh 2004a].

4.2 Reasoning with Ontologies

When the ontology is represented in some graph structure, the most basic reasoning methods
are spreading activation and graph traversal. These methods are useful for finding out which
concepts are related or computing the distance between two concepts. Alternatively, you can
reason about ontologies, for instance by comparing two ontologies and computing the similarity
between them.

More interesting, however, is reasoning that attempts to imitate how humams would utilize
general domain knowledge. Reasoning within ontologies includes discovering inconsistencies

4.2. Reasoning with Ontologies 31

within the ontology as well as searching for ’hidden’ concept properties. To deduce anything
from the concepts expressed in an ontology, the relations must have some have some general
properties that allow for drawing conclusions. Examples of such properties for relation R on
the domain a, b, c are:

∀a, aRa (4.1)
if aRb then bRa (4.2)
if aRb and bRc then aRc (4.3)

These are the properties of reflexivity, symmetry and transitivity, respectively. Similarity
relations are often considered symmetric, so that if an object A is similar to B, then B is
also similar to A. Transitive relations, such as the is-a relation, are useful for drawing sound
conclusions. In general, one can say that the more transitive relations found in an ontology,
the more properties are deductible [Barwise 1977].

4.2.1 Is-a and Causal Relations

Generally speaking, there are 2 types of functions that especially useful when reasoning within
ontologies. Where the causal relations are mostly used for diagnostic or temporal domains,
subclass or is-a relations are used in ontologies that describes relations among objects in the
domain.

Reasoning With Causal Relations

Cause-and-effect analysis is an important part of commonsense reasoning. We use causal
reasoning to understand every aspect of life, such as how to make dinner and why the car
motor does not start.

Figure 4.2 shows a problem structure on the car starting problem. ’Normal’ causal relations
are represented as solid arrows. For instance, leaving the light on overnight will normally lead
to a dead battery, and turning the key will normally start the car. If the battery is dead, this
will normally cause the card not to start. The dashed line is blocking of one of the causal
relations: a dead battery will overrun the effect of turning the car keys.

Figure 4.2: Adapted from [Konolige 1994]: A Causal Problem Structure

When causes and effects are structured as in figure 4.2, we can draw conclusions on our actions.
Suppose that the lights were left on overnight, and the car keys are turned. A reasoning engine

32 4. Ontologies

can conclude that since the lights were on, the battery should be dead and the car will not be
started by turning the key.

Reasoning With Subclass Relations

In a strict sub-class hierarchy we can deduce inheritance between objects and classes. Figure
4.3 shows such a hierarchy, where all arrows represent is-a relations. This relation is transitive,
so we know that since sparrows are birds and birds are animals, sparrows are also animals.

Figure 4.3: A Taxonomy with is-a Relations

The quality of whatever is deduced from an ontology depends on the degree of formality on
the relations. The biggest advantages of using formal relations in ontologies are the accurate
semantics and sound reasoning. However, the drawbacks are that humans are inevitably inac-
curate when categorizing and comparing things, and are often willing to say that a bird is-a
flying-thing even when they know that penguins are birds and can not fly. In addition, where
logic is deductive, human reasoning is abductive and empirical, and conclusions are often drawn
on heuristics rather than exact deduction rules.

Reasoning on causal relations is complicated by exceptions (such as the unlimited number of
conditions that might cause the car not to start) and inaccurate information (for instance,
keeping the lights on might cause dead batteries only 99% of the times). If the information is
incomplete or insecure, causality can be represented in terms of probability of events.

When ontologies are expressed with informal relations, reasoning might lead to inaccurate
conclusions. Because of the drawbacks associated with logic, some researchers suggest that
formal causal relations should not be used at all, and that more practical-values relations such
as similarity relations are better suited to express the information contained in an ontology
[Liu and Singh 2004a].

4.3 Examples on Ontologies

We will present the three ontologies WordNet, Cyc and ConceptNet. They have been chosen
because, similarly to this project, they all concern with representing and reasoning over texts
and commonsense knowledge.

4.3. Examples on Ontologies 33

4.3.1 WordNet

Wordnet is a database of words, primarily nouns, verbs and adjectives. It is arguably the
most popular and widely used semantic resource in the computational linguistics community
[Fellbaum 1998]. The words contained in WordNet are linked by a small set of semantic
relations such as the synonym, is-a and part-of relations. In other words, the concepts form a
network representation, which is very flexible for representing natural language concepts. The
main reasoning functionality of WordNet is word-similarity determination.

4.3.2 Cyc

The Cyc project tries to formalize commonsense knowledge into a logical framework. All
knowledge is represented declaratively and described by the language CycL, which is designed
especially for the purpose. Cyc can be seen as a number of small integrated ontologies called
microtheories. Each microtheory captures the knowledge and reasoning power for some partic-
ular domain, such as space, time or cause-effect [Uschold and Gruninger 1996]. To ensure that
the microtheories are always accurate, most of the knowledge have been manually inserted by
a large number of knowledge engineers. Cyc is the most appropriate in domains where the
concepts can be expressed clearly and unambiguously.

To use Cyc to reason about text, it is necessary to first map the text into the declarative CycL
representation. Any ambiguity the of natural language must be resolved before representing
the text in CycL. This is to avoid producing ambiguous or contradictory formulations. For this
reason, Cyc is somewhat difficult to apply for practical textual reasoning tasks [Liu and Singh
2004b].

4.3.3 ConceptNet

ConceptNet has been designed as an extended combination of Cyc and WordNet. Where
WordNet has its advantage in the semantic structure, Cyc is better at unambiguous logical
deduction. ConceptNet have the same network structure as WordNet, but the relations are
extended with more practical-valued relations such as EffectOf, PropertyOf, LocationOf, and
MotivationOf. However, the scope of knowledge is general world knowledge, like the Cyc
ontology. Figure 4.4 shows an excerpt of the semantic network in the ConceptNet ontology.

In contrast to both WordNet and Cyc, the knowledge of ConceptNet is generated automatically
from analyzing over 700 000 sentences on the World Wide Web [Liu and Singh 2004a]. The
extraction uses a pattern-approach similar to that described in section 3.2.3. For example,
the knowledge extracted from the sentence ’An apple is a sweet fruit’ will be both ’is-a(apple,
fruit)’ and ’PropertyOf(apple, sweet)’.

Several applications have been built as attachments to the ConceptNet ontology, such as a dy-
namic translation program that takes an input, for example the sentence ’I am at a restaurant’
and automatically generates a list of concepts relevant to the situation, such as ’waiter’, ’chair’,
’menu’ and ’eat’, together with their corresponding translations.

34 4. Ontologies

Figure 4.4: [Liu and Singh 2004b] A Subset of ConceptNet’s Semantic Network

4.4 The Semantic Web

Ontologies on the web reach from taxonomies that categorize web sites to catalogues of products
and services. The term ’Semantic Web’ refers to a new way of structuring the web pages on
the Internet. Today’s web is designed primarily for the interpretation by human users. For
example, to execute a particular service, such as buying airline tickets, the user must visit the
different flying companies’ web pages, and then search for and compare flights. In the Semantic
Web, the user can instead consult one single program - the semantic web agent - and let this
find the perfect ticket.

4.4.1 Metadata

To make the above mentioned scenario possible, the various web pages would have to be
changed so that computer agents can interpret the semantics. The text must be structured
by metadata - data visible to the web client, but not (necessarily) to the human user. In
sum, all metadata on the Internet constitute the ontology called the Semantic Web. However,
structuring documents with metadata is useful not only for web pages but for texts in general,
and there is an increasing awareness of the benefits of metadata [Lider and Mosoiu 2003].

4.4.2 Resource Description Framework

The Resource Description Framework (RDF) was developed by the World Wide Web Consor-
tium (W3C) as a standard for metadata, with the purpose of adding a formal semantic to the
resources available at the Intnernet [Berners-Lee et al. 2001]. RDF provides the technology
and syntax for describing how resources on the Web are connected.

The data model for RDF consist of three types of objects [Pan and Horrocks 2003]:

Resources
An RDF resource might be a Web Page, a part of a Web page or an object inaccessible

4.4. The Semantic Web 35

by the Internet. Resources are always named by URI’s, which are kind of URL’s that
specify the location of the resource.

Properties
A property is a relation, attribute or characteristic that describes a resource.

Statements
Statements are triplets consisting of three parts: the subject, predicate and object. The
subject is a resource, the predicate is a property and the object is either a resource or a
data value.

The following lines make up an example of an RDF statement with subject ’John’, object
’Mary’ and predicate ’hasFriend’:

<rdf:Description about=’#John’>
<hasFriend rdf:resource=’#Mary’/>

</rdf:Description>

The statement relates the URIs John and Mary trough the property hasFriend, and the seman-
tics of the statement is that John has Mary as a friend. An RDF document typically consist
of a list of statements, which in sum make up a graph where resources are linked together by
properties.

The RDF syntax is a subset of the XML language, and several technologies are defined (or
planned) as an extension of RDF. How RDF relates to other languages in the semantic web
can be seen in figure 4.5.

Figure 4.5: [Patel-Schneider and Fensel 2002] The Semantic Web Tower

4.4.3 RDF versus OWL

While RDF defines a simple standard for metadata, the RDF Schema (RDFS) introduces
classes, is-a relationships and range restrictions [Patel-Schneider and Fensel 2002]. OWL is one
of the languages that are used in the ’Ontology vocabulary’ layer of the semantic web tower
in figure 4.5. The intentions of OWL is to provide a richer selection of classes and properties
that is suitable for expressing practical relationships between URIs.

OWL adds a broader vocabulary for describing properties and classes, like property character-
istics and class relations such as cardinality and equality. Syntactically, RDF and OWL are

36 4. Ontologies

similar except that OWL assigns an additional meaning to certain RDF statements. This is
illustrated in the following OWL code:

<owl:Class rdf:ID="Animal"/>
<owl:Class rdf:ID="Mammal">

<rdfs:subClassOf rdf:resource="#Animal"/>
</owl:Class>
<Mammal rdf:ID="Weasel"/>

This OWL code defines the two classes ’Mammal’ and ’Animal’. ’Weasel’ is an instance of
’Mammal’, which is subclass of the ’Animal’ class. The rdfs:subClassOf is the is-a property
defined in the RDFS language.

The language OWL is an extension of RDF and RDFS, so that every ontology expressed in
RDF/RDFS is a valid ontology in the OWL language. However, not all information written in
the OWL language will be interpretable by RDF applications.

4.4.4 Summary

During this chapter, we have presented the field of ontologies. An ontology is a structured
description of a domain, and it is often formed as a labeled graph where the concepts in the
domain is linked with different relations.

We have focused especially on two relations that possess the transitive property: the is-a
and causal relation. These relations are especially useful for ontology reasoning and can be
expressed in different degree of formality. The interpretation of these relations will affect
whatever is deducted in the ontology.

Finally, we introduced the Semantic Web, and presented the ontology languages OWL and
RDF and their applications.

Part III

Technologies

37

Chapter 5

Creek

Creek is a framework for knowledge-intensive CBR, developed by researchers at The Norwegian
University of Science and Technology (NTNU) during the 1990s. Creek differs from most other
CBR frameworks because it can utilize domain knowledge as well as a case base. This ensures
that cases are matched even though they do not have the same features, as long as these
features have some semantic connection.

5.1 Background and History

The original Creek framework was designed as part of Agnar Aamodt’s PhD thesis in 1991
at The Norwegian University of Science and Technology. This framework has been realized in
several versions, including the Java realization called TrollCreek.

Volve AS have recently bought the commercial rights to the Creek framework, with the inten-
tion of using it to predict and prevent errors in oil well drilling. Their application is called
Creek and is based on the TrollCreek code and architecture. However, where TrollCreek was
known for the tight coupling between cases and domain knowledge, the new Creek version
has its cases stored as separate units apart from the domain model. Creek is in still under
development, and changes and improvements are added continuously.

5.2 Representation and Reasoning

5.2.1 The Domain Model

The domain model of Creek is in fact an ontology - a graph structure with the entity Thing
as its top node. Both CBR terms, domain specific concepts and relations are defined in this
ontology. A selection of entities from the the top three layers of the subclass hierarchy can be
seen in figure 5.1. The arrows refer to a relation type called has subclass. The inverse relation,
subclass of , is similar to the is-a relation described in chapter 4.

The entities in the ontology are connected via relations. A relation is composed of a relation
type (has color), an origin entity (apple) and a target entity (e.g red or green). The relation

39

40 5. Creek

Figure 5.1: Screenshot from Creek: The General Domain Model

also has an inverse relation (color of), an explanation strength (set to 0.5 per default) and
some other optional fields.

5.2.2 The Case Structure

In earlier Creek versions such as TrollCreek, the entire domain was a list of relations expressed
on the format the format origin - relation type - target. This is also true for relations concerning
the cases. Cases in TrollCreek are symbolic, which means that the case must correspond to
an entity in the ontology. The case entity is linked to properties via has finding relations.
An example of a valid relation is Case A - has color - blue, given that the has color relation
inherits from has finding.

Each case is defined by all the relations that is connected to the case entity. This very tight
coupling between cases and domain knowledge is illustrated in figure 5.2.

Figure 5.2: [Aamodt 2004] Integration of Cases and Domain Knowledge

It is also important to note that in older versions, all information about the cases has to be
symbolic. This means that even numbers and string values have to be defined as entities in the
ontology.

5.2. Representation and Reasoning 41

In the new Creek implementation, cases are stored separately from the general domain knowl-
edge. The cases are now divided into symbolic organizational units called sections. Sections
contains a number of features, where each feature is described by its parameter type, value and
unit of measurement. This is illustrated in figure 5.3.

Parameter Type Value Unit of Measurement

Person Data
Name John string
Age 57 years
Spouse Mary person

Work Data
Position CFO symbol
Senority 15 years
.

Figure 5.3: Creek’s Case Structure

The parameter type and unit of measurement must be symbolic, but the value can be either
string, numeric, URL, symbolic or another section. All the parameter types within one section
must be unique, so it is not possible to have two ’Name’ units within the same section.

When sections are nested, this generates a tree-structured case, where the sections correspond
to those nodes in the tree that are not leaf nodes. Note that the case will constitute a Directed
Acyclic Graph (DAG). A DAG is a graph whose all edges have an orientation and there are no
cycles [Platt et al. 2000].

5.2.3 The CBR Process

Case matching is performed by comparing the unsolved input case to all cases in the case base
and then returning the most similar. We will go trough both the old and the new case matching
process.

Matching Cases in TrollCreek

In TrollCreek the procedure for comparing cases are divided into two steps, one syntactic and
one semantic. First, the two cases are checked for identical features. The syntactic similarity
between an input case CIN and an solved case CRE is the sum of the matching features’
relevance. This is calculated with the following formula [Aamodt 2004]:

syn sim(CIN , CRE) =

∑n
i=1

∑m
j=1 syn sim(fi, fj) ∗ rel(fi)∑m

j=1 rel(fi)
(5.1)

In equation 5.1, n is the number of features in CIN , m is the number of features in CRE and
rel(f) is feature f ’s relevance for the solution of the solved case.

In the second step, the two cases are checked for features that are related via paths in the
domain model. Two features a and b are related if they are both causally related to an
explanatory concept c in the domain model, so that both c causes a and c causes b - possibly
via other concepts. The semantic similarity between two cases is based on the number and
strength of the paths connecting them.

42 5. Creek

The final case similarity is calculated by adding the similarity obtained in the two steps,
before normalizing according to the number of features. The more matching features are found
between two cases, the more similar they are.

Matching Cases in Creek

When the new case structure was introduced, the case comparison procedure was changed.
Now, each case goes trough a semantic transformation prior to the syntactical case matching,
where the causal relations in the ontology is used to infer additional case information.

After the transformation, the input case is compared against all cases in the case base. Only
sections that corresponds to the same entity in the knowledge model are compared. Within the
section comparison, only entries that have the same parameter type are compared, according
to the similarity measure given by the unit of measurement.

When creating a parameter type, the user can specify the similarity relation to be used. For
example, numbers can be compared with Euclidian difference In today’s Creek, two string and
symbol values are similar only if they are equal:

similarity(e1, e2) =

{
1 if e1 = e2.
0 otherwise

Finally, the case similarity is calculated, based on the section similarities, which are in turn
based on the entry similarities. The case with the highest similarity score is returned, and the
results of the CBR process is illustrated in the graphical user interface.

5.3 Functionality

The two most important functions in Creek are the ontology building function and the case
matching based on information found in this ontology.

When building an ontology, the user can add its own entities and relations, and integrate these
with the existing domain knowledge. This can all be done directly from the graphical user
interface. Entities can be opened in two different views; the frame view that shows a list of
features, and a map view that shows its position in the ontology, as shown in figure 5.4. Here,
the symbolic entity 0, 12 is opened in both map and frame view.

Figure 5.4: Screenshot from Creek: Map and Frame View

5.4. Creek and Textual CBR 43

When working on a map view, it is possible to right-click the entity and choose which relation
types to show or hide. Unfortunately, the arrows are unlabeled so that the relation name is
hidden.

It is possible to save and load the entire knowledge model containing all the cases and general
domain knowledge. There is also possible to export this to either OWL or JCXML (a subset
of XML designed specifically for Creek). OWL is especially useful for this purpose, since it has
a standard syntax and semantics. Therefore, it should, in theory, be possible to integrate the
exported model with other applications or frameworks.

Similarly to the export, it is possible to import files written in OWL and JCXML. The import
wizard has been written in TrollCreek code, so that the cases will be generated according to the
old representation. Importing cases does not work with the new code, but since the structure
of the domain model is unchanged, the import works fine as long as there are no cases.

These days, functionality is added so that cases can be imported as XML, just like an already
saved knowledge model. Alternatively, the user can write the XML directly into the GUI.

Currently, there is not possible to import more than one file per program session. In other
words, there is not possible to merge two imported models and generate an extended knowledge
model.

5.4 Creek and Textual CBR

Right now, there is not added specific functionality for representing text cases, but, in theory,
anything can be represented in Creek. The case structure is quite flexible; for example, you can
add your own similarity measures. Obviously, though, the new case structure is best utilized
when text is represented as some kind of list or tree structure.

If a tree structure is used to represent the cases, we must remember that the sections that
make up the tree will only match if they are equal, i.e refer to the same entity. This can be
useful on domains where cases are naturally divided into sections that are equal for all cases
(for example; administrative data, geographical data, observable errors and tested solutions).

If a list structure is used, Creek’s cases can easily be adapted to contain a bag-of-word (BOW),
for example by using a flat case with only one section. Note, however, that each feature
is expected to have a parameter type, which would probably be ’string’ if the BOW is not
processed further. The problem is then that cases are only allowed to contain one parameter
type per section. If instead the token, i.e the word itself, is considered as the parameter type,
a value must be attached. This value might be the frequency of the word, or its position in the
text, anything that will help judge adjacency between words.

For the case to actually go trough the semantic transformation, the relations in the domain
model would have to have a causal nature. As mentioned in chapter 3, causal relations are
especially difficult to extract from text, and to guarantee sound computation they must be valid
in all possible situations. Letting a domain expert specify the general knowledge is probably
both easier and safer than extracting these using Information Extraction techniques.

44 5. Creek

Chapter 6

CORPORUM

CORPORUM is a family of products within the area of Knowledge Management, developed
by CognIT a.s., where one of the key features it the ability to analyze text documents. The
text analysis starts with an unstructured text written in natural language. The text is then
analyzed by several modules, where most of then use techniques from Information Extraction
and shallow Natural Language Processing. This resembles the layered Information Extraction
approach discussed in section 3.4.

The final output of the text analysis is a so-called ’light weight ontology’, which describes key
concepts in the text and how these are related. In this project, we will use these ontologies
in two ways. First, we will use these as basis for comparison in CBR. Second, we will merge
ontologies in a general domain model.

The text analysis functionality is composite of the following modules [Lech et al. 2007]:

Tokenisation I
In the first step, the text is broken down to paragraphs and single tokens.

Language Recognition
For each single paragraph in the text, it is decided which language is likely to have
been used. This is done by counting word frequencies and then consulting a language
vocabulary.

Tokenisation II
The paragraphs are broken down into sentences. Most sentences end with a punctuation
mark followed by a capital letter, but phrases such as ’Dr. Brown’ complicates the process.
Therefore, several rules are deployed to set the sentence boundaries correctly. Then, short
forms of phrases are extended to the original phrase (for example don’t is extended to
do not) and all letters are transformed to lower case. For each token, lower/upper case
information and type (numeric, string, URL, proper name) are attached.

Part-of-Speech Tagging
Part-of-speech tagging is done using a rule-based Brill tagger, which use local rules to per-
form the lexical analysis and word disambiguation [Voutilainen 1995]. The determination
of grammatical class is based a vocabulary and statistical generalizations.

Named Entity Recognition
In this phase, proper nouns are identified. These are either single token or multiple
token grouped name collocations (such as Mary Brown), sometimes with name-indicating

45

46 6. CORPORUM

tokens (such as Dr. Brown). Then an extensive grammar is consulted, to ensure that for
example Robert Gordon University is tagged as organization even though Robert Gordon
is tagged as male.

Key Concept Extraction and Relation Extraction
The key concepts are identified and ranked after several criteria, such as whether or not
they are proper nouns or if they belong to an adjective + noun + preposition phrase. Two
concepts are linked according to their rank if their distance is shorter than a constant.
This constant is based on the number of sentences separating the concepts. When two
concepts are related, a semantic relation is added between them. The three basic relations
used today are weakly related, related and strongly related. CognIT have also worked on
extracting other relations such as the subclass and property relation.

The idea behind this design was that the modules should be independent, so that one module
could be unplugged without having any effect on the other modules’ results. In reality, this have
been a hard goal to reach. First of all, Tokenisation II is dependent of Language Recognition,
since knowing what language is used will ease the tokenisation process. For example, the
Norwegian genetiv s is easily confused with plural form in English.

An equally important aspect is that some modules are interdependent and difficult to run in a
fixed sequence. For example, knowing the sentence boundaries are important when extracting
proper nouns, but the opposite is also the case: When the proper nouns have been identified,
it is easier to set the sentence boundaries correctly. Because of this, Tokenization II and Name
Entity Recognition are run iteratively.

6.1 Kernel 2 and CoglibTest

The part of CORPORUM that will be deployed in this project is called Kernel 2. We originally
planned to use the more recent Kernel 3, but the output is unfortunately not yet available in
RDF format. Both Kernel 2 and Kernel 3 implement the module functionality, but, accordingly,
the relation extraction is significantly improved in Kernel 3.

CoglibTest is a GUI (graphical user interface) built on top of Kernel 2, with most of the
functionality from Kernel 2 included. A screenshot of the program is shown in picture 6.1.

CoglibTest takes an unstructured text as input, and generates the output in either XML or
RDF format. Alternatively, CoglibTest can output a summary or a list of a general key words,
as seen in picture 6.1. The co-reference function has not been implemented in this program
version. The language options are Norwegian, English, Swedish and German.

To demonstrate CoglibTest, we have used the following text selected from the Norwegian
newspaper Aftenposten: 1

1http://www.aftenposten.no/nyheter/miljo/article1822401.ece

6.1. Kernel 2 and CoglibTest 47

Figure 6.1: CORPORUM GUI: Screenshot from Coglibtest

Dramatisk økning
Forbrukere verden over er blitt langt mer bekymret for global oppvarming enn for bare et
halvt år siden. Dobbelt s̊a mange svarer at de er bekymret i april, som i oktober.

- Vi har ikke opplevd en s̊a dramatisk økning i oppmerksomheten rundt klimaendringer
siden slutten av 80-tallet, sier doktor Max Boykoff ved Environmental Change Institute ved
universitetet i Oxford.

Han tror all oppmerksomheten rundt FNs klimarapporter, kombinert med uvanlige
værmønstre slik som oversvømmelser i det sørlige Afrika og mindre snø i Alpene, har bidratt
til forbrukernes sterke fokus p̊a problemstillingen.

When generating RDF, the first line is interpreted as the title of the text. The generated RDF
consists of statements in this format:

<rdf:Description rdf:about="april">
<oe:relatedTo rdf:resource="#oktober"/>

</rdf:Description>

48 6. CORPORUM

In addition, the output has some statements on the following format:

<rdf:Description rdf:about="http://www.test.com/mytest/index.html">
<oe:isAbout>

<do:dramatisk_økning rdf:about="http://www.test.com#Oxford"/>
<oe:isAbout>

</rdf:Description>

For files of bigger size, there is often included some of the following statements:

<oppvarming rdf:ID="oppvarming_001">
<oe:hasSomeProperty>global</oe:hasSomeProperty>

</oppvarming>

The RDF format has a strict syntax, and because of some programming bugs in CoglibTest,
the output is not well-formed2. Out of the three types of statement shown above, only the first
type is well-formed. The other statements must be removed from the output before using the
output further. The exact process is described in the attached file user guide.txt.

When selecting the keyword choice, the following key words are extracted:
Alpene, Oxford, snø, universitetet, oppmerksomheten, Afrika, Dramatisk økning.

6.2 Visualizing CoglibTest Relations

We have anticipated the course of events and included some screen shots from Creek, taken
right after the mentioned RDF file has been imported.

Figure 6.2 shows the graph where only the related to relations are highlighted. Entities that
are not linked to any other entities via this relation have been excluded from the view. The
arrows shows the direction of the relations. If there goes an arrow from entity A to B, this
means that A is related to B, but not necessarily the opposite, since the relations do not have
the symmetric property.

Similarly, figure 6.3 and 6.4 shows all the weakly related to and strongly related to relations
that has been extracted from the text.

6.2.1 Observations

We will not have a full evaluation of the graphs here, only present some general observations
that the reader can validate by looking at the pictures.

Figure 6.2 consists of the related to relations. The concepts that are extracted are all pretty
sensible keyword with respect to summarizing the text. The word ’oppmerksomhet’ has a
central position, where almost all the other terms are related to it. This is probably because
it is appearing two times and have a central placement in the text.

Figure 6.3 shows the weakly related to relations of the RDF file. CORPORUM have correctly
identified the two proper nouns, doctor Max Boykoff and Environmental Change Institute.
The phrase ’focus p̊a problemstilling’ seems to have been mistakenly identified as a proper
noun or co-ocurrence phrase. CORPORUM has also extracted several adjective-substantive

2RDF document validation can be done on http://www.w3.org/RDF/Validator/

6.2. Visualizing CoglibTest Relations 49

Figure 6.2: The Relation Type Related To

Figure 6.3: The Relation Type Weakly Related To

50 6. CORPORUM

phrases (such as ’dramatisk økning’ and ’global oppvarming’). For all the extracted phrases,
A is weakly related to B only if B is a phrase in which A occur.

Figure 6.4: The Relation Type Strongly Related To

Figure 6.4 does not have a clear observable structure, but several of the concepts from the
middlemost paragraph have now been included. The directions on the weakly related to
arrows have been reversed for proper nouns, so that Max is weakly related to Max Boykoff,
but Max Boykoff is strongly related to Max.

We think that the concepts extracted from the text are very useful. In sum, they form a good
representation of the text. Most adjective-substantive phrases are recognized, except from when
unknown words (such as ’værmønstre’) are encountered. CORPORUM have also managed to
identify the proper nouns. We are, however, less impressed by the relations that have been
extracted. Very few of the relations are valid in the real world, since they are based on physical
distance between the words in the text rather than real semantic links. The relations can be
useful when the reasoning is restricted to graph traversal and spreading activation, but since
there are no is-a or causal relations, they are not suitable for neither taxonomy building or
deduction.

6.3 Other Functions in the CORPORUM Framework

Some other functions are included in the the Kernel functionality as well. First, we have
the CORPORUM summarizer. This is a visualization module that is designed to present the
results from the text analysis functionality. This has been implemented both as a standalone
program and an integrated part of Kernel 3, but it has not been implemented in Kernel 2.

Two ontologies can also be compared. The similarity between two ontologies is calculated using
an algorithm developed by CognIT. This is a graph comparison algorithm inspired by neural

6.4. Combining Creek and CORPORUM 51

networks, which uses a spreading activation technique and then counts overlapping features.
The algorithm is called the Resonance Algorithm.

None of these extra functions have been implemented in CoglibTest, and we have therefore not
been able to test these during the project.

6.4 Combining Creek and CORPORUM

In 2002, there was written a master thesis where the purpose was to make Creek and CORPO-
RUM cooperate. This project had the main focus on improving Creek’s domain model with
texts analyzed by CORPORUM [Tomassen 2002].

The outcome of this project is the design and partial implementation of the Ontology Import
Wizard. The wizard starts with raw texts, and trough a 6 step process the text is structured,
enhanced and merged with Creek’s existing domain model.

The 6 steps of the ontology import wizard are:

1. Specify Source Document

2. Identify Document Structure

3. Extract Classifications in Document

4. Extract Ontology Models

5. Enhance Concepts with Dictionaries

6. Merge with Domain Model

Step 1, 2 and 3 are manual steps where the user specifies a text and defines the text contents.
In step 1, the user is supposed to specify the natural language text to use further. This can be
situated on the local machine, on the Internet or inside the user’s head. The files used in the
project report are all medical hierarchies of symptoms and conditions.

In step 2, the structure of the document must be identified. This can be done automatically,
but the user must overlook the result to see whether the automatically generated structure
is correct. When done manually, the user specifies which branches of the taxonomy that is
supposed to be used further.

In step 3, the user must specify the classifications of the the different concepts in the document.
Symptoms and conditions must be tagged either by the ICPC or ICD-10 stadard, which are
medical ontologies where each condition corresponds to an unique number. In step 4, the user
selects parts of the text where relations shall be automatically extracted. All the parts are sent
to CORPORUM, where they are analyzed in CORPORUM’s layered architecture as described
in the beginning of this chapter.

In step 5, both the extracted and the manually defined relations are enhanced using dictionaries
such as WordNet and the On-line Medical Dictionary. Step 6 is the merging step, where the
newly discovered knowledge is integrated with the knowledge already present in Creek’s domain
model.

The import function is interesting since one of our subgoals is to import CORPORUM’s on-
tologies into Creek. Unfortunately, step 5 and 6 of the cycle was never implemented, so we can
not use the results directly. However, some important observations were made when analyzing
CORPORUM’s ability to extract relations from text.

52 6. CORPORUM

The big question is of course whether CORPORUM can extract relations that are valid in the
real world, or only within the document world. To check this, the following medical text were
used:

Chest pains are pains of all types experienced as originating from the chest. They can occur
in a large number of conditions. The dominating cause of chest pains is muscle tension in the
chest wall. Such pains are closely related to anxiety, depression or stress of a psychosocial
nature.

This text was made into an ideal model that expressed the correct causal and subclass rela-
tionships between the key concepts. After creating the ideal model, this was compared to a
model extracted by CORPORUM. It must be mentioned that the ideal model contained rela-
tion types that CORPORUM is unable to extract, such as causal relations. Nevertheless, one
should expect that the extracted model would grasp some of the text meaning.

The obtained results were summarized as follows [Tomassen 2002]:

� Most of the key concepts were included in CORPORUMS extracted model. However,
the most central concept, pain, was actually left out.

� The two models had few relations in common.

� There were no consistent method of mapping the automatically generated model to the
ideal model.

The conclusion is that even though the extracted model had grasped some of the essence of the
text, addition information was required to perform an adequate knowledge acquisition process.
The extracted model gives an indication of how concepts can be related, but this does not
necessarily apply to how the concepts are related in the real world.

Part IV

Results

53

Chapter 7

Functional Design

This chapter presents the functional design of the system we are about to implement. This
chapter is based on the prestudym, the functional requirements in section 1.4 and the analysis
of Creek and CORPORUM in chapter III.

7.1 Main System Components

The main components in this system are the knowledge-intensive CBR framework Creek
and the text analysis tool CORPORUM, which is implemented in the executable program
CoglibTest. CoglibTest delivers the light weight ontologies in two different formats; XML and
RDF. We have chosen to use RDF output in this project. This is because an OWL import
wizard is already implemented in TrollCreek, which have made it possible for us to reuse some
of the import functionality.

Having a direct communication between Creek and CORPORUM turned out difficult since
the tools we have been assigned are not designed for communicating. CoglibTest is locked for
modification, and we were unable to make Creek communicate directly with the executable
file. For this reason, we have chosen to let all communication between CORPORUM and
Creek go trough the user. The RDF delivered by CoglibTest must be temporarily stored
before manually importing it into Creek. See figure 7.1 for an illustration of the responsibility
distribution between the user and the different system components.

7.2 Text Case Representation

Because CORPORUM delivers its light weight ontologies in graph format, we have chosen to
use cases structured as networks. Each case consist of two parts; the RDF graph and the case
status, which is either ’Solved’ or ’Unsolved’. Solved cases have one more entry, namely the
solution of the case, which is always the category of the corresponding text. This category is
found in the first line of the text when it is inserted in CoglibTest.

The far most common for Textual CBR is having a one-to-one cardinality between texts and
cases, so that each text is represented in one case. In this project, however, we have experi-
mented with two different solutions:

55

56 7. Functional Design

Figure 7.1: Sequence Diagram

1. Each case represents one single text

2. Each case represents one entire category, which possibly consists of several texts

For simplicity, we will refer to the solutions as solution 1 and solution 2. The difference between
solution 1 and 2 is illustrated in figure 7.2. The first row of figure 7.2 shows three texts, where
two of these have category A and one has category B. In step 2, the texts have been transformed
to RDF graphs with nodes (concepts) and edges (relations between the concept). In step 3,
the cases have been generated, consisting of two parts: the RDF graph and the category label.
This corresponds to the standard CBR approach in solution 1. In the fourth row, the cases
have been generated according to solution 2. The two RDF files that are classified under the
same category are combined to generate a case that represents the whole category, rather than
just one single text.

7.3 RDF Import and Merging

It is possible to import any RDF file to Creek, as long as the file contains only well-formed
statements. We have implemented the RDF import function, and at the same time made it
possible to import more than one RDF file into the knowledge model. This means that the
concepts and relations of the imported RDF file will be merged with knowledge from other
cases. Regardless of which of the two solutions have been chosen, all concepts and relations
are added to the ontology as well as to the case.

The RDF merging has some interesting consequences for the ontology. For instance, assume

7.4. The CBR Matching 57

Figure 7.2: The Two Solution of Case Representation

that some concept is described in two different texts. The corresponding RDF files will probably
describe this concept with different relations. When the files are merged, this will result in an
extended representation where common concepts are described with relations extracted from
more than one text.

7.4 The CBR Matching

Comparing cases in Creek is done according to Creeks built-in CBR matching, as explained in
chapter 5. In both solution 1 and solution 2, the input case and the solved cases have the form
of labeled directed graphs. When finding the most similar case, the focus has now been moved
to finding the most similar graph.

The solution on calculating the similarity between two network based cases has been inspired
by Frode Sørmo’s work on Concept Maps. The definition of a Concept Map is an ordered set

58 7. Functional Design

M = {V,L,A} with the following properties [Sørmo 2007]:

V is a definite set of vertices) (7.1)
L is a definite set of link labels (7.2)

A ⊆ V × L× V defines the labeled arcs (7.3)

Translated to this domain, the relations are the arks A, the concepts are the vertices V and
the relation types (related to, weakly related to and strongly related to) are the link labels
L.

Frode Sørmo have defined the similarity between two concept maps M1 = (V1, L1, A1) and
M2 = (V2, L2, A2) as [Sørmo 2007]:

sim(M1,M2) =
|A1 ∩A2|
|A1 ∪A2|

(7.4)

This is in fact similar to the Jaccard Coeffisient presented in section 2.2.1. We have used this
similarity measure in case comparison, but it has been modified because the original measure
only considers the arcs A - i.e the relations. When evaluating CORPORUM’s graphs we
found the extracted entities are usually more in touch with the real content than the extracted
relationships. Therefore, we wanted to include both the relations A and the concepts V . This
will ensure that two graphs are matched if all relations differ, as long as they have some entities
in common.

The modified Jaccard Coeffisient used in this project is given by the following equation

sim(M1,M2, c) = c
|A1 ∩A2|
|A1 ∪A2|

+ (1− c)
|V1 ∩ V2|
|V1 ∪ V2|

(7.5)

where A is the relations, V is the entities and c ∈ [0, 1]. We have set c to 2/3, meaning that the
number of common entities yield one third of the total similarity. This is not really scientifically
justified, c could have been any number between 0 and 1.

As described in section 5.2.3, there is a CBR step that tries to deduce hidden knowledge by
looking for causal relations within the ontology. In this project, the only relations that appear
in the ontology are related to, weakly related to and strongly related to, and none of these are
causal. Therefore, no new properties will ever be deduced here. See chapter 10 for a broader
discussion on this point.

7.5 Process Decomposition

Figure 1.2 in the Requirement Specification indicates that the only time the user directly
communicates with the system is when inserting the input and receiving the output. This is
a simplified presentation, since the user will necessarily have to give input to the GUI several
times, for example when initiating a CBR session. In addition, the user must manually transfer
the RDF files from CoglibTest to Creek. This is all illustrated in figure 7.3.

All arrows in figure 7.3 refers to data flows between processes. As earlier, the user inserts cate-
gorized and uncategorized texts, but the output delivered in RDF must be manually modified
and stored before it is imported into Creek. The ’Solution’ arrow is a signal from the delivered
by the GUI, where the user is asked to choose which of the two solutions to use. When the

7.5. Process Decomposition 59

Figure 7.3: Mid-Level System Functionality with Manual Steps

user has imported all the cases, he or she can double-click an unsolved case to start a case
comparison. This is the ’GUI input’ arrow. The category is delivered to the user from the
graphical user interface.

The three processes in figure 7.3 have been analyzed and decomposed in figure 7.4, 7.5 and
7.8. All circles refer to processes that transform the input to some output, usually in another
format. The data flowing in and out of the processes have been illustrated with directed arrows.

7.5.1 Process 1: Analyze Text

Figure 7.4 shows the process of analyzing the text, decomposed into 7 subprocesses. The 6
first subprocesses correspond to the layers described in chapter 6. Since process 1.3 and 1.5
are run iteratively, this presentation does not describe the exact order, but is still useful for
demonstrating the data flow between layers. The seventh circle is the process of storing the
relations as RDF statements on the format described in section 4.4.2.

7.5.2 Process 2: Generate Cases

Figure 7.5 is a decomposition of the case generation process. The input is both the RDF file
delivered by process 1, and a variable expressing which solution is being used. This variable is

60 7. Functional Design

Figure 7.4: Decomposition of Process 1: Analyze Text

specified when the user imports the first RDF file and the GUI asks the user to choose between
solution 1 and 2.

Figure 7.5: Decomposition of Process 2: Generate Cases

Process 2.1, Analyze RDF, and process 2.2, Analyze Statements, are described in pseudocode
together in figure 7.6. Process 2.3, Make Creek Case, is described in pseudocode figure 7.7.

Basically, Analyze RDF reads an RDF file and outputs all the well-formed RDF statements
in the file, and Analyze Statements divides the statements into subject, predicate and object.
The title and file name of the RDF file is extracted as well. All subjects and objects are added
as entities in the ontology, and the subject-predicate-object triplets are added as relations. In
addition, all relations and entities are listed and outputted to the next process.

Process 2.3, Make Creek Case, takes the file name, category, entity list and relation list from
process 2.2 as input, and outputs a generated case, as illustrated in the pseudocode in figure
7.7. This pseudocode says that if the user has chosen solution 2, the whole category will be
represented in a case. Therefore, the system searches for a case with the same category as the
input case, and if this exists, the entities and relations will be added to this case. In all other
cases, a new case will be generated, and entities and relations are added here.

7.5. Process Decomposition 61

Pseudocode for Process 2.1 and 2.2
1 input = RDF f i l e F
2
3 for a l l statements ST in F
4 analyze ST
5 string S = the sub j e c t o f ST
6 string P = the pr ed i c a t e o f ST
7 string O = the ob j e c t o f ST
8
9 i f P equa l s ’ T i t l e ’

10 then
11 string FileName = S
12 string CaseCategory = O
13 end
14 end
15 else
16 en t i t y E1 = makeEntity (S)
17 en t i t y E2 = makeEntity (O)
18 r e l a t i o n R = makeRelation (S , P, O)
19 add E1 and E2 to Ent i tyL i s t
20 add R to Re l a t i onL i s t
21 end
22
23 output = FileName , CaseCategory , Ent i tyLi s t , Re l a t i onL i s t

Figure 7.6: Pseudocode for Process 2.1 and 2.2

Pseudocode for Process 2.3
1 input = string FileName , string CaseCategory , l i s t Ent i tyLi s t , l i s t

Re la t i onL i s t , i n t e g e r So lut i on)
2
3 i f (So lut i on = 1)
4 make new case C with name ’ FileName ’
5 end
6 else i f (So lut i on = 2)
7 i f (the re e x i s t case X with s o l u t i on ’ CaseCategory ’)
8 then
9 set case C to X

10 else
11 make new case C with name ’ CaseCategory ’
12 end
13 end
14
15 for a l l e n t i t i e s E in Ent i tyL i s t
16 add E to the domain model
17 add E to case C
18 end
19 for a l l r e l a t i o n s R in Re l a t i onL i s t
20 add R to the domain model
21 add R to case C
22 end
23
24 i f (CaseCategory equa l s ’ Ukjent ’)
25 then
26 CaseStatus = ’ Unsolved ’
27 else
28 CaseStatus = ’ So lved ’
29 end
30 add CaseStatus to case C
31
32 output = C

Figure 7.7: Pseudocode for Process 2.3

62 7. Functional Design

7.5.3 Process 3: Run CBR Session

Figure 7.8 illustrates the data flow in process 3. A CBR session is initiated when the user
selects and double-clicks an unsolved case in the GUI. The selected case is then compared
against the cases generated in process 2. This is done according to the method described in
chapter 5. The category is not directly returned to the user. Instead, the result of the CBR
session is presented in the GUI, where the user can clearly see the most similar case.

Figure 7.8: Decomposition of Process 3: Run CBR Session

Chapter 8

Implementation

This chapter describes the proof-of-concept implementation of the design proposed in the pre-
vious chapter. We will begin with discussing the process of implementation, before presenting
the implemented case structure, the case generation and the comparison between textual cases.

8.1 The Implementation Process

The implementation done in this project has been characterized by adjustment and modification
of old Creek code rather than making entirely new functions. Most of the functions needed in
this project have only been available in TrollCreek code, so they have been modified to fit to
the new code structure.

We soon discovered that the relations extracted by CoglibTest were less suitable for reasoning
with than first expected. Since the extracted relations was unfitted as causal relations, we
ended up with not using any of the knowledge present in the ontology. Because of this, we
made the decision to also implement solution 2. This solution is an effort to use the domain
knowledge that arises when many cases with the same category are imported.

At the starting point of the project, it seemed as the light weight ontologies could be directly
transferable to the case structure used in Creek. However, the entire case structure was radically
changed in March, and the new structure, probably superior to the old in many ways, was not as
intuitive as the old structure with respect to network cases. Since the cases are not supposed to
have DAG properties, it was difficult to utilize the knowledge given by the RDF representation.

Another characteristic of this implementation is that the code changes has been distributed
over a big number of classes and packages, from GUI-classes to reasoning and representation.
Both Creek and TrollCreek code has been used and combined. This makes the implementation
a bit difficult to follow, but we will still try to present a brief overview.

8.2 Case Representation

Remember from section 5.2.2 that Creek cases are structured as graphs with directions and no
cycles. All the edges in the RDF format are directed via one of the ’related to’ relations, but
we have no guarantee that the graph is free of cycles. Because of this, the concepts in the graph

63

64 8. Implementation

can not be directly inserted as as case features. Rather, the entire graph must considered an
entry of a flat case.

The RDF graphs have the functionality of Concept Maps, which have already been implemented
in TrollCreek’s Partition class. A partition is a subset of the ontology that consists of a
selection of entities and relations. Every relation/entity that exist in the partition must also
exist in the general ontology.

To add a labeled graph to a case, the clue is to add the entities and relations to a partition,
and then add this partition as a case entry. Figure 8.1 shows a textual case where this has
been done. The partition object, illustrated as a graph with concepts and relations, can be
seen in figure 8.2.

Parameter Type Value Unit of Measurement

Section 1
Solution Solved string
Category Klima string
Partition Partition Object partition

Figure 8.1: RDF Case Represented in Creek

Figure 8.2: A Partition Object

8.3 Adding Text Cases

8.3.1 Import RDF File

When the user selects ’Import XML’ from the GUI, an XMLimportAction is created. In the
original code, this class makes a new knowledge model, which erases any knowledge already
added by the user. We have modified the class so that instead of making a new model, it is
first checked whether there exist one in use.

If a knowledge model exists, all concepts and relations expressed by the RDF file will be added
to this model. If not, the user is asked through a GUI window whether to use solution 1
or solution 2, and a new knowledge model is created. This ensures that several files can be
imported into one knowledge model.

At this point, the responsibility is handed over to the ImportExportsWizards, which opens
a window that lets the user select the import format. Here, we have just added functionality
to choose RDF as well as OWL and XML. A screenshot of this wizard is shown in figure 8.3.

When selecting ’Cognit RDF’ in the wizard, an RDFimport is created. This class is new, but its
functionality is equal to the ’OWLimport class except that it initiates an RDFimportParser
rather than an OWLimportParser.

8.3. Adding Text Cases 65

Figure 8.3: Screenshot from Creek: The XML Import Wizard

The structure of the RDFimportParser class has been copied from OWLimportParser, but
all the functionality is new. This class is responsible for RDF analysis as well as transforming
the analyzed file to Creek cases. RDFimportParser has been modified so that it can implement
RDF rather than OWL. In addition, OWLimportParser is a TrollCreek class, and it had to
be adjusted to generate Creek cases.

Another difference is that in the old code, only some of the OWL statements actually concerned
the case. In this implementation, however, the entire file shall be added into a case partition
as well as the ontology.

8.3.2 Analyze RDF Statements

The main classes used in this part are RDFimportParser, KnowledgeModelImportUtilities
and KnowledgeModel. KnowledgeModel is the class that holds all program state information
such as the entities and relations that are contained in the ontology. KnowledgeModelImportUtilities
is the interface between KnowledgeModel and the import classes, which helps adding entities
and relations.

For the purpose of analyzing the RDF file, we used the Jena framework, which is designed
for building Semantic Web applications. Jena is an API in the Java programming language
that helps the user create, interpret and manipulate RDF graphs. We have used two of the
functions that is delivered by Jena. First, the entire RDF file is read trough and divided into
statements. Second, Jena analyzes of each statement and outputs the subject, predicate and
object. This delegation process is illustrated in figure 8.4.

66 8. Implementation

Figure 8.4: RDF Import Sequence

8.3.3 Generate Creek Case

As Jena analyzes a statements into concepts and relations, KnowledgeModelImportUtilities
adds these concepts and relations to the general ontology. The relation type must be defined
as an entity in the knowledge model before a relation can be added. Therefore, related to,
weakly related to and strongly related to have been predefined in the class SeparatedCaseModel,
which contains all entities and relations of the general ontology.

When adding entities to the ontology, these must be integrated with the general domain knowl-
edge to be used for reasoning later. This is done by letting all created entities be subclass of
Attribute and instance of Symbol, two of the entities defined in the SeparatedCaseModel.

After the whole RDF file is analyzed, the entities and relations must be added to a SeparatedCase.
Ignoring the section aspect, we have added the features directly to the case rather than to a
section. This have been possible because SeparatedCase inherits from the CaseSection class.

If solution 1 is chosen, RDFimportParser generates a new SeparatedCase as well as a new
Partition. In solution 2 has been chosen, Creek searches for a case that has the same name as
the category of the incoming text. If this is not found, a new case and partition is created.

All concepts and relations are then added to the partition. This functionality is contained in
the Partition class. Then, the Partition p is added to the SeparatedCase c with the following
code:

8.4. Case Matching 67

Entity e = new Entity(km, ”Partition: ” + filename, null);
e.setEntityObject(p);
c.addEntry(p, ” ”, e);

If the case category equals ’Ukjent’, there will be added a string entry to the case, with the
name ’CaseStatus’ and the value ’Unsolved’. Else, it will be set to solved, and the category
is added as a case entry as illustrated in figure 8.1. Then, the name of the SeparatedCase is
changed, either to the same as the file name (in solution 1) or the same as the category (in
solution 2). This is because categories can not be used as case names in solution 1, as each
case must have an unique name. File names are inappropriate as case names in solution 2,
because several files are combined to form a case.

8.4 Case Matching

When the user double-clicks an unsolved case in the GUI, a CBR process is run automatically.
The unsolved case is then compared against all texts in the database. First, a CaseComparison
is evoked. This returns the similarity between two input cases A and B. The CaseComparison
is the sum of all SectionComparisons, which in turn is composite of EntityComparisons.

When comparing two entries, the parameter type is checked. If both case A and case B
has an entry with parameter type T , the similarity between these entries are calculated.
We had to add Partition as parameter type, so that when two partitions are compared, a
PartitionComparison is evoked. A PartitionComparison inherits functionality from Comparison
and compares two entities e1 and e2.

PartitionComparison returns the similarity between the entities by extracting the partition.
The partition represented by entity e can be extracted from the entity with the method
e.getEntityObject().

The PartitionComparison returns the Jaccard Coeffisient between the partitions p1 and p2.
To help calculate this measure, there is generated four SubModels:

� The union of all entities in p1 and p2

� The union of all relations in p1 and p2

� The shared entities between p1 and p2

� The shared relations between p1 and p2

The Jaccard Coeffisient is calculated by dividing the size of the shared models on the size
of the union models, as described in chapter 7. This formula was already implemented in the
PartitionComparison class, but did not yield the correct answer and had to be re-implemented.

In addition, we have done minor changes to several other classes such as PartitionAttribute,
DefaultComparisonController and PartitionSimilarityMeasure, mainly because they used
inherited functionality that did not correspond to the new Creek code.

When all entry similarity are calculated, they are weighted and added to obtain section sim-
ilarity, and finally, case similarity. This process is then repeated between the unsolved case

68 8. Implementation

and all the solved cases, and the result is presented to the GUI. This is unchanged from the
original program.

The modified classes mentioned above can be found in the following Creek and TrollCreek
packages:

jcreek.cke.importexport.XMLimportAction
jcreek.cke.importexport.ImportExportsWizards
jcreek.cke.importexport.rdf.RDFimport
jcreek.representation.importexport.rdf.RDFimportParser
jcreek.representation.importexport.KnowledgeModelImportUtilities
jcreek.representation.KnowledgeModel
jcreek.representation.SeparatedCaseModel
jcreek.representation.SeparatedCase
jcreek.representation.CaseSection
jcreek.representation.Partition
jcreek.reasoning.PartitionComparison
jcreek.representation.entitytype.PartitionAttribute,
jcreek.reasoning.PartitionComparison.PartitionSimilarityMeasure
volve.cbr.DefaultComparisonController

Part V

Analysis

69

Chapter 9

Proof-of-Concept Testing

To test whether this system is superior to comparable systems on a real-life domain, numerous
tests would have to be carried out to make sure the results are statistically valid. To perform
one test, each single text must be inserted into CoglibTest, copied and temporarily saved,
manually modified, saved again and then finally being imported into Creek. Obviusly, a large-
scale testing would have been a too extensive task giving the time limitations. Therefore, we
have designed some basic proof-of-concept tests which demonstrate the general functionality
of the system.

In all the following tests, we have fed the framed text(s) into CoglibTest and modified the
output according the method described in chapter 6 to make it well-formed RDF. After that,
the output has been saved and imported to Creek.

9.1 Test 1: Run a general CBR session

In test 1, we want to find out whether there is possible to run a CBR session that categorizes
an unknown text. We have chosen input where the category names do not appear in the texts.
The ability to categorize such input is a requirement from section 1.4.

We have chosen the following input:

Text 1
Ukjent
Kvadratmeterprisen for leiligheten blir p̊a over 100.000 kroner. Selgeren kjøpte leiligheten i
1997 for åtte millioner kroner. Finansavisen beskriver salget som Norges mest innbringende
leilighetssalg.

Text 2
Klima
Det koster lite å begrense temperaturøkningen i verden til to grader, mener FNs klimapanel.
Prislappen er ca. 0,12 prosent av verdens BNP (brutto nasjonalprodukt).

71

72 9. Proof-of-Concept Testing

Text 3
Bolig
Leiligheten, som g̊ar over to etasjer, skal ikke ha vært til salgs, men da megleren p̊a vegne av
en klient ringte og fristet med millionene, slo eieren til.

Text 1 is uncategorized, but the content indicates that it should be categorized under the
heading ’Bolig’. We therefore expect Text 1 to be more similar to Text 2 than to Text 3.

Results of Test 1

Figure 9.1: Functionality Test 1: Run CBR Session

The result of this test can be seen in picture 9.1. In the bottom right corner we can observe
the case list. There has been generated three cases, which all have the same name as the
corresponding RDF file. The unknown test is correctly classified under the heading ’Bolig’. The
similarity between Text 1 and Text 3 has been calculated to be 9,52%. This is a sensible number,
considering that the two texts share a few words and probably also a few RDF relations. Text
2 is not at all similar, which is exactly as we expected.

9.2 Test 2: Visualize an RDF File

In test 2, we test whether there is possible to visualize the concepts of a text in the graphical
users interface. We have imported the following text:

9.3. Test 3: Combine Cases in the Domain Model 73

Bolig
Leiligheten, som g̊ar over to etasjer, skal ikke ha vært til salgs, men da megleren p̊a vegne av
en klient ringte og fristet med millionene, slo eieren til.

Results of Test 2

Figure 9.2: Functionality Test 2: Visualize an RDF File

The result has been demonstrated in figure 9.2, which shows a map view of all the concepts
that are extracted from the framed text. From this text, only related to relations have been
extracted, probably because it is short and contain no proper nouns or phrases. An arrow from
a concept to another means that the origin concept is related to the target concept.

9.3 Test 3: Combine Cases in the Domain Model

In this implementation, cases have the form as graphs consisting of entities and relations.
When two cases contain the same entities, they are merged together in the domain model. The
purpose of this test is to check whether the knowledge expressed in two different cases is really
integrated.

The test is performed by using the same texts as in the first test, loading them and opening a
map view on one of the common nodes.

74 9. Proof-of-Concept Testing

Figure 9.3: Functionality Test 3: Combine Cases in the Domain Model

Results of Test 3

The result has been demonstrated in figure 9.3, which shows a map view on the node ’lei-
lighet’. We observe that this concept appears in both texts (although in the grammatical tense
’leiligheten’). From the node view we can see that this node is now related to concepts that
appear in different text cases. For example, ’leilighet’ has a relation to both ’selger’ (mentioned
in Text 1) and to ’etasje’ (Text 3).

9.4 Test 4: Recognize a Duplicate

In this test, Text 2 is a duplicate of Text 1, and Text 3 is added as a control case. We expect
very high similarity between the first two texts.

Text 1
Ukjent
Kvadratmeterprisen for leiligheten blir p̊a over 100.000 kroner. Selgeren kjøpte leiligheten i
1997 for åtte millioner kroner. Finansavisen beskriver salget som Norges mest innbringende
leilighetssalg.

Text 2
Bolig
Kvadratmeterprisen for leiligheten blir p̊a over 100.000 kroner. Selgeren kjøpte leiligheten i
1997 for åtte millioner kroner. Finansavisen beskriver salget som Norges mest innbringende
leilighetssalg.

Text 3
Klima
Det koster lite å begrense temperaturøkningen i verden til to grader, mener FNs klimapanel.
Prislappen er ca. 0,12 prosent av verdens BNP (brutto nasjonalprodukt).

9.5. Test 5: Discover Changes to the Duplicate 75

Results of Test 4

Figure 9.4: Functionality Test 4: Recognize a Duplicate

The similarity between the original and the duplicate is calculated to be 82.22%. This can be
checked with figure 9.4. This is lower than we expected, which would of course be 100%. The
reason for this has to do with how the section comparison is implemented in Creek. Remember
that an unsolved case has only one section with two entries, namely the partition and the case
status. The duplicate, on the other hand, has one section with three entries: The partition,
case status and the category name. Since the section are compared directly, the cases will not
be 100% equal.

As long as the similarity between two general cases will never exceed the similarity obtained
by comparing two duplicates, the exact percentage is not really important. The next test is
designed to control that the similarity decreases when modifying the duplicate slightly.

9.5 Test 5: Discover Changes to the Duplicate

This test is performed by using the same texts from Test 4, but two of the 25 RDF statements
have been removed from the duplicate RDF file and added to the different RDF file.

We expect the similarity of the duplicate to be slightly reduced, and the non-duplicate to
become slightly more similar.

76 9. Proof-of-Concept Testing

Figure 9.5: Functionality Test 5: Discover Changes to Duplicate

Results of Test 5

Please compare figure 9.4 and 9.5. As can be seen in figure 9.5, the modified duplicate has now
a 79.55% similarity with the unsolved case, which is 2.67% less than the original duplicate.
Though the GUI only visualize the percentage of the best case, we can see by comparing figure
9.4 and 9.5 that Text 3 has gotten slightly more similar.

9.6 Test 6: Recognize a Duplicate Partition

The last test is performed on the implemented solution 2. The functionality in solution 2 is
exactly the same as in solution 1, except when encountering two cases that have the same
category.

In this test, we have divided the input case into two smaller texts, analyzed each of them with
CORPORUM, and imported both into Creek. Obviously, they share the same category, and
will therefore be added to the same case.

The purpose if this test is to check whether we can recognize an entire category if this is similar
to the input text. We expect that the case obtained by adding these text will be very similar
to the unsolved case.

9.6. Test 6: Recognize a Duplicate Partition 77

Text 1
Ukjent
Kvadratmeterprisen for leiligheten blir p̊a over 100.000 kroner. Selgeren kjøpte leiligheten i
1997 for åtte millioner kroner. Finansavisen beskriver salget som Norges mest innbringende
leilighetssalg.

Text 2
Bolig
Kvadratmeterprisen for leiligheten blir p̊a over 100.000 kroner. Selgeren kjøpte leiligheten i
1997 for åtte millioner kroner.

Text 3
Bolig
Finansavisen beskriver salget som Norges mest innbringende leilighetssalg.

Text 4
Klima
Det koster lite å begrense temperaturøkningen i verden til to grader, mener FNs klimapanel.
Prislappen er ca. 0,12 prosent av verdens BNP (brutto nasjonalprodukt).

Results of Test 6

First, observe from figure 9.6 that the cases are now named after the domains and not the text
files.

Second, the similarity percentage between the unsolved case and the ’Bolig’ case is 79.17%. As
expected, this is very close to the duplicate in test 3. The reason why the number is somewhat
lower is that some statements are created across sentences, as we described in chapter 6. Text
1 contains more information than the combined information extracted in Text 2 and Text 3.

78 9. Proof-of-Concept Testing

Figure 9.6: Functionality Test 6: Recognize a Duplicate Partition

Chapter 10

Discussion and Concluding
Remarks

10.1 Discussion

Because of the limited project scope, we have not carried out an extensive testing that would
ensure that the system can be run on a practical situation. Instead, we have tested the imple-
mented program on a controlled domain, where texts are equal in length, and the categories
(’bolig’ and ’klima’) are very dissimilar and therefore easy to differentiate by the system. Some
of the words in the input text have also occurred in the most similar output text. In all the
tests we have run, we have obtained good results that demonstrate the required functionality.
The question is, however, whether or not these results could have been extended to a more
realistic situation?

Since the similarity measure is dependent on the number of overlapping concepts and relations,
we know that the system will not recognize a text which have none of the word in common with
the unknown text, even if it can be argued that these share some semantic structure which
make them similar. However, neither can any word frequency based program do this, since
they would inevitably be dependent on the number of common word. To make recognition
on purely semantic basis possible, we would have to use an ontology that is separate from the
cases, where synonymy and relation information can be found.

All the text we have used for testing the implemented program have been of a similar length. On
a practical situation, texts will usually be much longer, and their lengths might be unequal.
We believe, however, that the program will perform equally well if the texts have different
length, as long as we assume that the proportion of common words is independent of the text
length. Even though a longer texts will generate bigger RDF graphs, the number of entities
and relations in common with the input case will also be higher, and the Jaccard Coefficient
will calculate this proportion.

10.1.1 Knowledge Containers in Implemented System

In the program we have implemented, knowledge is represented in the following three contain-
ers, which will be discussed in more details:

79

80 10. Discussion and Concluding Remarks

� The cases (text analysis and case generation)

� The calculation of case similarity

� The domain model

The Case Representation and Transformation

In this project, the texts have been represented in a network structure. This representation
is very knowledge-intensive, because both the important concepts and the relations between
them are considered. If the purpose is to get a complete representation of a text, graphs are a
very good choice.

The analysis of text have been implemented in CORPORUM’s CoglibTest, and we have not
had the opportunity to influence the results of this process. CORPORUM uses a layered
approach similar to that recommended for Textual CBR by M. Lenz [Lenz 1998]. It is difficult
to objectively evaluate the performance of CORPORUM when only considering a handful of
texts. It seems, though, that the relations extracted by Kernel 2 are not extremely useful for
our purpose. The relations extracted from CORPORUM was briefly evaluated in chapter 6,
and in section 6.4, S. Thomassen reached more or less the same conclusions as we did.

The cases we have used in this project consist of two parts, the problem and the solution.
We made the choice to transform the CORPORUM’s RDF output directly into problem part
of the Creek cases. This was the most obvious solution, but we could also have processed
the graph before transforming it into a case. For example, we could have used only the key
concepts, rather than the relations. However, this would reduce the degree of knowledge of the
case representation significantly. Alternatively, we could select only some relation types, for
example only the strongly related to relations, as these are supposedly more content bearing.

The Calculation of Case Similarity

In this project, we have been reasoning with texts represented as graphs. As similarity measure,
we used the modified Jaccard Coefficient in equation 10.1 for this purpose:

sim(M1,M2, c) = c
|A1 ∩A2|
|A1 ∪A2|

+ (1− c)
|V1 ∩ V2|
|V1 ∪ V2|

(10.1)

A is the relations, V is the entities and c ∈ [0, 1], where we used c = 2/3.

Comparing the portion of overlapping key concept is a based on the assumption that similar
documents will probably have many words in common. However, how do we know that they
will have a high number of similar relations? Once again, consider figure 6.2, 6.3, and 6.4. We
see very few cases where the presence of two equal relations would predict similarity better
than just the presence of the involved entities. Since phrases, such as ’global oppvarming’ has
been discovered and is stored as an entity in the domain model, the relation ’global - weakly
related to - global oppvarming’ is unnecessary in reasoning scenarios.

When two relations are compared, they are only matched if the relation type is the same.
This means that two concepts linked by the strongly related to will not match the same two
concepts linked by the weakly related to relation. Obviously, a partial match would have been
more intelligent than no match. We could instead use only one relation, related to, together
with a numeric weight that gives the degree of the relation.

10.1. Discussion 81

Human being see similarity as increasing with addition of common features and deletion of
distinctive features [Tversky 1977]. In other words, similarity measures based on set theory
are good when imitating human problem solving. However, we we could of course have used
another set theoretic similarity measure, for example the Overlap Coefficient from equation
2.4. This measure considers two measures: the number of common attributes and the size of
the smallest set. We believe, however, that this measure could lead to misleading results, since
it does not consider the fact that a very long text will probably have more words in common
with the unknown text, even if they do not belong under the same heading.

Another aspect that should be considered is the fact that a CBR session always returns the
category of the most similar text, as specified in the requirement specification. However,
most classification systems deploy a lower limit for categorization. When the result is below
this threshold value, the document is considered too dissimilar to fit in any of the predefined
categories. In the first functionality test in chapter 9, the most similar document share only
9% of the entities and relations in the input case. It can be questioned whether this percentage
is too low to qualify for categorization. Note, however, that the duplicate is only 80% similar,
so if the results were normalized, the test result would have been higher.

The General Domain Model

The general domain model in Creek is an ontology where all information in all the different cases
are specified. The concepts that appear in more than one text, have extended representations.
The generated ontology is very useful for representing the information contained in an entire
domain. However, the ontology have not been exploited to its full potential in this project,
because it is not used for reasoning. The relations within each case is used for reasoning, but
there are no synergy between cases that could allow them to use each other’s knowledge.

We actually considered letting the relations extracted by CORPORUM inherit the causal
property, so that a semantic transformation step would have been included. However, this
was dropped because the extracted relations had little in common with transitive relations.
Moreover, the relations tend to occur in clusters. Within the different clusters, most entities
are already related to each other, so almost no new properties would have been deduced. This
can be verified by looking at figure 6.2, 6.3 and 6.4 in chapter 6.

10.1.2 Alternative Exploitation of Knowledge Containers

The intended use of Creek is that more knowledge is represented in the domain model, and
less is represented in the cases. In fact, we believe that this solution is perhaps better than the
one that was chosen in this project. A case might just as well be only a lists of key words, and
the relations between these key words can be stored in the ontology. This solution would make
it easier for one case to use the knowledge expressed in another case. The ontology knowledge
could, for example, be used for in case transformation, exactly like is done in Creek today. The
success of Creek is a good indication of the benefits of this solution.

As mentioned in section 5.4, the Creek’s new case structure is not ideal for storing BOW texts,
because the parameter types within each section must be unique. The old case structure is
more flexible, and we think that this structure could have been useful for a BOW representation
of text. This would allow the cases and domain knowledge to be linked more closely. Since
the relations extracted from CORPORUM were no near being causal, and Creek’s new case
structure is unfitted for this, this solution would not have been applicable to this project.
However, it should be considered for future research.

82 10. Discussion and Concluding Remarks

10.1.3 The Second Solution

We tested solution 2 in test 6, and the results from this test is promising. However, in this
scenario, the entities and relations in the input case are similar to the entities and relations
obtained by adding all texts corresponding to a category. This is unlikely to happen in practical
situations, where the general ontology is probably many times bigger than the unsolved case.
However, we argue that this is not important, as long as the categories are of similar size.
Even if one category is bigger than the other, this should have no effect on the result when the
Jaccard Coeffisient is used, as explained in section 10.1.1.

Solution 2 is not widely used in CBR, it is rather a kind of category-based reasoning. A
related approach can be found in the exemplar-based reasoning framework PROTOS [Bareiss
1989]. Here, similar experiences are combined to form exemplars, which are used as basis for
categorization. Even if this approach is seldom used in CBR, we believe that it is very useful
for ontology building. The most common is building one ontology that contain all information
about a domain. In the implmeented solution 2, this is done in the general domain model, but
the partitions will contain the category information. The category will grow for each case that
is added.

Because of the polysemy that naturally occurs in natural language texts, the same word might
appear several times while describing different concepts. Combining knowledge is useful because
you get a clustering effect where more information can be deduced. However, there is always
a risk that different concepts might be represented as one. The result is that totally unrelated
concepts will appear to have some semantic link. When merging after category, this problem
might be reduced because there are no longer any intervention between separate domains.

10.2 Achievement of Goals

As mentioned in chapter I, the goal consists of several subgoals. The first was to study Case-
Based Reasoning and Information Extraction, Creek and CORPORUM. This has been done
thoroughly in the preliminary study of part II and III.

Subgoal #2 was to design a system for textual Case-Based Reasoning that uses CORPORUM’s
light weight ontologies as input and Creek as the classification tool. The functional design has
been done in chapter 7. The implementation in subgoal #3 has been done by extending and
modifying the Creek framework. The implementation process and details have been described
in chapter 8, and can be verified by inspecting the code and running the program.

The fourth subgoal was to test and evaluate the system. This has been hard to reach, because
of our initial plan to test our program in comparison to the master thesis written in 2005 by
Erik Rogstad and Øystein Ulset [Rogstad and Ulseth 2005] that was described in section 3.1.3.
Because of some missing program files and documentation, we were unable to run the program
made in this project. Neither could we compare the two approaches by using the same input
texts, because the training sets had been deleted.

Because of the time it takes to run one single test, we were also unable to run a full-scale
experimental testing. However, the functionality test in chapter 9 demonstrate the general
functionality of the system we have implemented. We will once again mention the requirements
from the requirement specification:

� The user shall provide no other input than the texts and categories

� Unsolved texts will be assigned one of the categories that has been inserted by the user

10.3. Further Research 83

� It must be possible to assign a category name that is not mentioned in the text

� Duplicates will obtain a match close to 100%

These requirements have all been reached, and can be verified by checking with the tests in
chapter 9.

10.3 Further Research

10.3.1 Creek and Textual CBR

We believe that Creek does not require substantial changes to be suitable for Textual CBR.
The success will probably depend on the relations in the general ontology. To actually utilize
the general knowledge in case transformation, the relations must be causal, and in order to
draw sensible conclusions, the should perhaps be specified by a domain expert. A text analysis
tools can extract key word and less consequential relationships, such as the similarity relation
between concepts. We suggest that if Creek should be deployed further for Textual CBR, more
relations than just formal causal relations should be used in reasoning. For example, knowing
what concepts are synonyms is obviously useful in text classification.

We also imagine a future scenario where the sections are used more as intended. One section
may contain data such as the title, author, ISBN code and publishing year of the text. This
knowledge should not be intervened with semantic information. Since it is possible to add
similarity measures for every new parameter type, this can be used intelligently. For examples,
the author of a text often includes several persons, so the similarity measure should reflect
the number of common authors. The ISBN code, on the other hand, should probably only be
matched syntactically.

If it was in fact possible to easily deduce FOPC axioms from text, this would be extremely useful
for Creek’s domain model. If some extraction tool could manage to discover predicates such
as ∀x(mammal(x) → animal(x)), this can easily be transformed to the causal creek relation
mammal implies animal, which can be used for sound deduction. Alternatively, the Lexico-
Syntactic Pattern Extraction approach that was explained in section 3.2.3, can extract simple
relationships such as the synonym and hyponym relationships from Creek’s textual knowledge
sources.

10.3.2 CORPORUM and Textual CBR

CognIT already have an algorithm that compares two light weight ontologies, and we can
only assume that it outperforms the measure implemented in this project. They also have a
visualization module, which we unfortunately were unable to test. Anyways, the Creek’s GUI
might be useful for CORPORUM, since there is possible to visualize the CBR session. There is
also possible to open map views on the different nodes and select which relations to see. When
graphs are complex, this is a desirable property.

CORPORUM is deployed in text analysis, but as far as we know, there has not been done
any effort in merging the texts to make extended domain models by combining the extracted
knowledge. In this project, we have made domain models that span over the entire domain as
well as one text category. This might be an interesting idea for CognIT to pursue further.

84 10. Discussion and Concluding Remarks

10.3.3 Further Cooperation

Can CORPORUM and Creek benefit from each others functionality? From CORPORUM’s
point of view, Creek have some interesting properties that should be looked further into, such
as the possibility to visualize the comparison between textual cases and combine texts in an
extended domain model.

From Creek’s point of view, the relations that are extracted from Kernel 2 are not very useful.
However, we know that CORPORUM is working on the subclass relations, and other relations
that might have a causal or is-a nature. When this functionality is finished, the situation will
appear different. Automatic extraction of relations that can be used in Creek’s domain model
would significantly reduce the knowledge acquisition needed that is needed to make an ontology
today.

10.4 Concluding Remarks

In this project we have made two different types of technology cooperate in categorizing un-
known texts. We have used the text analysis tool CORPORUM to generate a structured
representation of natural language texts, consisting of key concepts and the relations between
them. The knowledge-intensive Case-based Reasoning framework Creek have been extended
and modified so that it could reason with the output given by CORPORUM. When testing the
implemented system, we have observed that Creek and CORPORUM can cooperate in cate-
gorizing documents, even if Creek’s format of representing cases is different from the output
generated by CORPORUM. Because of differences in relation types between Creek and COR-
PORUM, the general domain knowledge of Creek was not fully utilized during case matching.
However, Creek might benefit greatly from using a text analysis tool such as CORPORUM for
ontology building.

Bibliography

Aamodt, A. (2004). Knowledge-intensive case-based reasoning in creek. Funk and Gonzáles-
Calero, (eds.) 7th European Conference on Case-Based Reasoning, Madrid, Spain.

Aamodt, A. and Plaza, E. (1994). Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications, pages 33–59.

Agichtein, E. and Gravano, L. (2000). Snowball: extracting relations from large plain-text
collections. ACM Press, pages 85–94.

Agrawal, R., Imielinski, T., and Swami, A. N. (1993). Mining association rules between sets of
items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison Wesley,
ACM Press.

Bareiss, R. (1989). Exemplar-based knowledge acquisition. Academic Press.

Barendregt, H. (1981). The Lambda Calculus, its Syntax and Semantics. North-Holland.

Barwise, J. (1977). An Introduction to First-Order Logic. North-Holland.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific American,
Inc.

Brill, E. (1992). A simple rule-based part of speech tagger. Proceedings, Third Conference on
Applied Natural Language Processing.

Brüninghaus, S. and Ashley, K. D. (2001). The role of information extraction for textual cbr.
Case-Based Reasoning Research and Development, Proceedings of the Fourth International
Conference on Case-Based Reasoning (ICCBR-01) (Lecture Notes in Artificial Intelligence,
2080), pages 74–89.

Brüninghaus, S. and Ashley, K. D. (2005). Reasoning with textual cases. Case-Based Reasoning
Research and Development, Proceedings of the Sixth International Conference on Case-Based
Reasoning (ICCBR-05) (Lecture Notes in Artificial Intelligence, 3620), pages 137–151.

Champin, P. and Solnon, C. (2003). Measuring the similarity of labeled graphs. Case-Based
Reasoning Research and Development: Proceedings of ICCBR 2003, pages 80–95.

Cowie, J. and Lehnert, W. (1996). Information extraction. Communications of the ACM,
39(1):80–91.

Cunningham, C., Weber, R., Proctor, J., Fowler, C., and Murphy, M. (2004). Investigating
graphs in textual case-based reasoning. Proceedings of the 7th European Conference of Case-
Based Reasoning.

85

86 BIBLIOGRAPHY

Davis, G., Wiratunga, N., Taylor, B., , and Craw, S. (2003). Matching smarthouse technology
to needs of the elderly and disabled. Workshop on CBR in the Health Sciences, ICCBR’03,
pages 29–36.

Dı́az-Agudo, B. and Gonzáles-Calero, A. (2001). A Declarative Similarity Framework for
Knowledge Intensive CBR. Case-Based Reasoning Research and Development : 4th Inter-
national Conference on Case-Based Reasoning, Vancouver, BC, Canada, 2001, Proceedings.

Deerwester, S., Dumais, S. T., Landauer, T., Furnas, G., and Harshman, R. A. (1990). Indexing
by latent semantic analysis. Journal of Documentation, pages 391–407.

Fellbaum, C. (1998). Wordnet: An electronic lexical database. MIT Press.

Gabel, T. and Stahl, A. (2004). Exploiting background knowledge when learning similarity
measures. Proceedings of the 7th European Conference on Case-Based Reasoning.

Galvez, C. and de Moya-Anegón, F. (2006). An evaluation of conflation accuracy using finite-
state transducers. Journal of Documentation, 62:328–349.

Gruber, T. (1994). An ontology for engineering mathematics. Proceedings of Comparison of
implemented ontology, ECAI’94 Workshop, pages 93–104.

Gupta, K. M. and Aha, D. W. (2004). Towards aquiring case indexing taxonomies from text.
Proceedings of the 7th Annual Conference of the International Florida Artificial Intelligence
Research Society, pages 172–177.

Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text corpora. Proceedings
of COLING-92, Nantes, pages 23–28.

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition. Upper
Saddle River, NJ: Prentice Hall (Prentice Hall series in artificial intelligence, edited by Stuart
Russell and Peter Norvig).

Kobayashi, M. and Takeda, K. (2000). Information retrieval on the web. ACM Computer
Survey, 32(2):144–173.

Konolige, K. (1994). Using default and causal reasoning in diagnosis. Annals of Mathematics
and Artificial Intelligence, pages 97–135.

Kroeger, P. (1992). Phrase Structure and Grammatical Relations in Tagalog. CSLI, Stanford,
California.

Kulyukin, V. and Burke, A. (2002). Mining free text for structure. Data Mining: Opportunities
and Challenges, Idea Group Publishing, Pensylvania.

Kvarv, G. S. (2007). Association Rules for Automatic Ontology Construction. Master’s thesis,
The Norwegian University Of Science and Technology.

Lech, T. C., de Smedt, K., and Bremdal, B. A. (2007). The effect of coreference chaining on
information systems. Corporum Documentation.

Lenz, M. (1998). Defining knowledge layers for textual case-based reasoning. Proceedings of
the 4th European Workshop on Advances in Case-Based Reasoning, pages 298–309.

Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., and Wess, S. (1998). Textual cbr. CBR tech-
nology: From foundations to applications. Berlin: Springer.

BIBLIOGRAPHY 87

Levesque, H. and Brachman, R. (1985). A fundamental tradeoff in knowledge representation
and reasoning. Levesque, editors, Readings in Knowledge Representation, Morgan Kaufmann,
Los Altos, CA, pages 41–70.

Lider, B. and Mosoiu, A. (2003). Building a metadata-based website. Boxes and Arrows.

Liu, H. and Singh, P. (2004a). Commonsense reasoning in and over natural language. Proceed-
ings of the 8th International Conference on Knowledge-Based Intelligent Information and
Engineering Systems.

Liu, H. and Singh, P. (2004b). Conceptnet - a practical commonsense reasoning tool-kit. BT
Technology Journal.

McGuinness, D. (2002). Ontologies come of age. The Semantic Web: Why, What, and How,
MIT Press 2002.

Mitchel, T. M. (1997). Machine Learning. McGraw-Hill International Editions.

Nilsson (1991). Logic and artificial intelligence. rtificial Intelligence 47, pages 31–56.

Pan, J. and Horrocks, I. (2003). Rdfs(fa) and rdf mt: Two semantics for rdfs. Proceedings of
ISWC, pages 30–46.

Patel-Schneider, P. F. and Fensel, D. (2002). Layering the semantic web: Problems and direc-
tions. First International Semantix Web Conference.

Platt, J. C., Cristianini, N., and Shawe-Taylor, J. (2000). Large margin dags for multiclass
classification. Advances in Neural Information Processing Systems. Cambridge, MA: MIT
Press, 12:547–553.

Recio, J. A., Dı́az-Agudo, B., Gómez-Mart́ın, M. A., and Wiratunga, N. (2005). Extending
jcolibri for textual cbr. H. Muñoz-Avila and F. Ricci, editors, Proceedings of the 6th Inter-
national Conference on Case-Based Reasoning, ICCBR 2005, volume 3620 of Lecture Notes
in Artificial Intelligence.

Richter, M. (1995). The knowledge contained in similarity measures. Invited Talk, The First
International Conference on Case-Based Reasoning, Sesimbra, Portugal.

Riloff, E. and Lehnert, W. (1994). Information extraction as a basis for high-precision text
classification. ACM Transactions on Information Systems, 12(3):296–333.

Rogstad, E. and Ulseth, y. (2005). Classification of text documents. Master’s thesis, The
Norwegian University Of Science and Technology.

Salton, G. and McGill, M. J. (1983). Introduction to modern information retrieval. New York:
McGraw-Hill.

Sørmo, F. (2007). Case-Based Tutoring with Concept Maps. PhD thesis, The Norwegian
University Of Science and Technology.

Tomassen, S. L. (2002). Semi-automatic generation of ontologies of knowledge-intensive CBR.
Master’s thesis, The Norwegian University Of Science and Technology.

Tversky, A. (1977). Features of similarity. Psychological Review, 34:327–352.

Uschold, M. and Gruninger, M. (1996). Ontologies: Principles, methods, and applications.
Knowledge Engineering Review, 11.

Voutilainen, A. (1995). A syntax-based part-of-speech analyser. EACL-95.

88 BIBLIOGRAPHY

Weber, R. O., Ashley, K. D., and Brüninghaus, S. (2006). Textual case-based reasoning. The
Knowledge Engineering Review, 20:3:255–260.

Wilson, D. and Bradshaw, S. (1999). Cbr textuality. Proceedings of the fourth UK Case-Based
Reasoning Workshop.

Appendix A

CORPORUM Coglibtest Light
Weight Ontology

A.1 Input

The input text:

Bolig
Leiligheten, som g̊ar over to etasjer, skal ikke ha vært til salgs, men da megleren p̊a vegne av
en klient ringte og fristet med millionene, slo eieren til.

Chosen language: Norwegian
Chosen output: getRDF

A.2 Output

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- Lightweight Ontology, generated by CMCogLib DLL CMCogLib: 1.0.4.30
CognIT a.s, Halden, Norway-->
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcq="http://purl.org/dc/qualifiers/1.1/"
xmlns:oe="http://ontoserver.cognit.no/otk_rdf/"
xmlns:do="http://www.test.com">

<!-- Begin Dublin Core Based Ontology Metadata -->

<rdf:Description about="">
<dc:Title>Bolig</dc:Title>

89

90 A. CORPORUM Coglibtest Light Weight Ontology

<dc:Creator>CMCogLib DLL CMCogLib: 1.0.4.30</dc:Creator>
<dc:description>Bolig

Leiligheten, som går over to etasjer, skal ikke ha vært til salgs, men
da megleren på vegne av en klient ringte og fristet med millionene,
slo eieren til.

</dc:description>
<dc:publisher>local workstation</dc:publisher>
<dc:date>2007-05-18</dc:date>
<dc:type>text</dc:type>
<dc:format>text/plain</dc:format>
<dc:language>en-us</dc:language>

</rdf:Description>

<!-- End Dublin Core Based Ontology Metadata -->

<!-- Begin Ontology Description-->

<rdf:Description rdf:about="http://www.test.com/mytest/index.html">
<oe:isAbout>

<rdf:type resource="do:bolig"/>
</oe:isAbout>

</rdf:Description>

<rdf:Description rdf:about="http://www.test.com/mytest/index.html">
<oe:isAbout>

<rdf:type resource="do:leilighet"/>
</oe:isAbout>

</rdf:Description>

<rdf:Description rdf:about="http://www.test.com/mytest/index.html">
<oe:isAbout>

<rdf:type resource="do:etasje"/>
</oe:isAbout>

</rdf:Description>

<rdf:Description rdf:about="http://www.test.com/mytest/index.html">
<oe:isAbout>

<rdf:type resource="do:skal"/>
</oe:isAbout>

</rdf:Description>

<rdf:Description rdf:about="http://www.test.com/mytest/index.html">
<oe:isAbout>

<rdf:type resource="do:he"/>
</oe:isAbout>

</rdf:Description>

<rdf:Description rdf:about="http://www.test.com/mytest/index.html">
<oe:isAbout>

<rdf:type resource="do:salg"/>

A.2. Output 91

</oe:isAbout>
</rdf:Description>

<rdf:Description rdf:about="http://www.test.com/mytest/index.html">
<oe:isAbout>

<rdf:type resource="do:megler"/>
</oe:isAbout>

</rdf:Description>

<rdf:Description rdf:about="http://www.test.com/mytest/index.html">
<oe:isAbout>

<rdf:type resource="do:klient"/>
</oe:isAbout>

</rdf:Description>

<rdf:Description rdf:about="http://www.test.com/mytest/index.html">
<oe:isAbout>

<rdf:type resource="do:million"/>
</oe:isAbout>

</rdf:Description>

<rdf:Description rdf:about="leilighet">
<oe:relatedTo rdf:resource="#etasje"/>

</rdf:Description>

<rdf:Description rdf:about="leilighet">
<oe:relatedTo rdf:resource="#skal"/>

</rdf:Description>

<rdf:Description rdf:about="leilighet">
<oe:relatedTo rdf:resource="#he"/>

</rdf:Description>

<rdf:Description rdf:about="leilighet">
<oe:relatedTo rdf:resource="#salg"/>

</rdf:Description>

<rdf:Description rdf:about="leilighet">
<oe:relatedTo rdf:resource="#megler"/>

</rdf:Description>

<rdf:Description rdf:about="leilighet">
<oe:relatedTo rdf:resource="#klient"/>

</rdf:Description>

<rdf:Description rdf:about="leilighet">
<oe:relatedTo rdf:resource="#million"/>

</rdf:Description>

<rdf:Description rdf:about="leilighet">
<oe:relatedTo rdf:resource="#eier"/>

92 A. CORPORUM Coglibtest Light Weight Ontology

</rdf:Description>

<rdf:Description rdf:about="etasje">
<oe:relatedTo rdf:resource="#leilighet"/>

</rdf:Description>

<rdf:Description rdf:about="etasje">
<oe:relatedTo rdf:resource="#skal"/>

</rdf:Description>

<rdf:Description rdf:about="etasje">
<oe:relatedTo rdf:resource="#he"/>

</rdf:Description>

<rdf:Description rdf:about="etasje">
<oe:relatedTo rdf:resource="#salg"/>

</rdf:Description>

<rdf:Description rdf:about="etasje">
<oe:relatedTo rdf:resource="#megler"/>

</rdf:Description>

<rdf:Description rdf:about="etasje">
<oe:relatedTo rdf:resource="#klient"/>

</rdf:Description>

<rdf:Description rdf:about="etasje">
<oe:relatedTo rdf:resource="#million"/>

</rdf:Description>

<rdf:Description rdf:about="etasje">
<oe:relatedTo rdf:resource="#eier"/>

</rdf:Description>

<rdf:Description rdf:about="skal">
<oe:relatedTo rdf:resource="#leilighet"/>

</rdf:Description>

<rdf:Description rdf:about="skal">
<oe:relatedTo rdf:resource="#etasje"/>

</rdf:Description>

<rdf:Description rdf:about="skal">
<oe:relatedTo rdf:resource="#he"/>

</rdf:Description>

<rdf:Description rdf:about="skal">
<oe:relatedTo rdf:resource="#salg"/>

</rdf:Description>

<rdf:Description rdf:about="skal">

A.2. Output 93

<oe:relatedTo rdf:resource="#megler"/>
</rdf:Description>

<rdf:Description rdf:about="skal">
<oe:relatedTo rdf:resource="#klient"/>

</rdf:Description>

<rdf:Description rdf:about="skal">
<oe:relatedTo rdf:resource="#million"/>

</rdf:Description>

<rdf:Description rdf:about="skal">
<oe:relatedTo rdf:resource="#eier"/>

</rdf:Description>

<rdf:Description rdf:about="he">
<oe:relatedTo rdf:resource="#leilighet"/>

</rdf:Description>

<rdf:Description rdf:about="he">
<oe:relatedTo rdf:resource="#etasje"/>

</rdf:Description>

<rdf:Description rdf:about="he">
<oe:relatedTo rdf:resource="#skal"/>

</rdf:Description>

<rdf:Description rdf:about="he">
<oe:relatedTo rdf:resource="#salg"/>

</rdf:Description>

<rdf:Description rdf:about="he">
<oe:relatedTo rdf:resource="#megler"/>

</rdf:Description>

<rdf:Description rdf:about="he">
<oe:relatedTo rdf:resource="#klient"/>

</rdf:Description>

<rdf:Description rdf:about="he">
<oe:relatedTo rdf:resource="#million"/>

</rdf:Description>

<rdf:Description rdf:about="he">
<oe:relatedTo rdf:resource="#eier"/>

</rdf:Description>

<rdf:Description rdf:about="salg">
<oe:relatedTo rdf:resource="#leilighet"/>

</rdf:Description>

94 A. CORPORUM Coglibtest Light Weight Ontology

<rdf:Description rdf:about="salg">
<oe:relatedTo rdf:resource="#etasje"/>

</rdf:Description>

<rdf:Description rdf:about="salg">
<oe:relatedTo rdf:resource="#skal"/>

</rdf:Description>

<rdf:Description rdf:about="salg">
<oe:relatedTo rdf:resource="#he"/>

</rdf:Description>

<rdf:Description rdf:about="salg">
<oe:relatedTo rdf:resource="#megler"/>

</rdf:Description>

<rdf:Description rdf:about="salg">
<oe:relatedTo rdf:resource="#klient"/>

</rdf:Description>

<rdf:Description rdf:about="salg">
<oe:relatedTo rdf:resource="#million"/>

</rdf:Description>

<rdf:Description rdf:about="salg">
<oe:relatedTo rdf:resource="#eier"/>

</rdf:Description>

<rdf:Description rdf:about="megler">
<oe:relatedTo rdf:resource="#leilighet"/>

</rdf:Description>

<rdf:Description rdf:about="megler">
<oe:relatedTo rdf:resource="#etasje"/>

</rdf:Description>

<rdf:Description rdf:about="megler">
<oe:relatedTo rdf:resource="#skal"/>

</rdf:Description>

<rdf:Description rdf:about="megler">
<oe:relatedTo rdf:resource="#he"/>

</rdf:Description>

<rdf:Description rdf:about="megler">
<oe:relatedTo rdf:resource="#salg"/>

</rdf:Description>

<rdf:Description rdf:about="megler">
<oe:relatedTo rdf:resource="#klient"/>

</rdf:Description>

A.2. Output 95

<rdf:Description rdf:about="megler">
<oe:relatedTo rdf:resource="#million"/>

</rdf:Description>

<rdf:Description rdf:about="megler">
<oe:relatedTo rdf:resource="#eier"/>

</rdf:Description>

<rdf:Description rdf:about="klient">
<oe:relatedTo rdf:resource="#leilighet"/>

</rdf:Description>

<rdf:Description rdf:about="klient">
<oe:relatedTo rdf:resource="#etasje"/>

</rdf:Description>

<rdf:Description rdf:about="klient">
<oe:relatedTo rdf:resource="#skal"/>

</rdf:Description>

<rdf:Description rdf:about="klient">
<oe:relatedTo rdf:resource="#he"/>

</rdf:Description>

<rdf:Description rdf:about="klient">
<oe:relatedTo rdf:resource="#salg"/>

</rdf:Description>

<rdf:Description rdf:about="klient">
<oe:relatedTo rdf:resource="#megler"/>

</rdf:Description>

<rdf:Description rdf:about="klient">
<oe:relatedTo rdf:resource="#million"/>

</rdf:Description>

<rdf:Description rdf:about="klient">
<oe:relatedTo rdf:resource="#eier"/>

</rdf:Description>

<rdf:Description rdf:about="million">
<oe:relatedTo rdf:resource="#leilighet"/>

</rdf:Description>

<rdf:Description rdf:about="million">
<oe:relatedTo rdf:resource="#etasje"/>

</rdf:Description>

<rdf:Description rdf:about="million">
<oe:relatedTo rdf:resource="#skal"/>

96 A. CORPORUM Coglibtest Light Weight Ontology

</rdf:Description>

<rdf:Description rdf:about="million">
<oe:relatedTo rdf:resource="#he"/>

</rdf:Description>

<rdf:Description rdf:about="million">
<oe:relatedTo rdf:resource="#salg"/>

</rdf:Description>

<rdf:Description rdf:about="million">
<oe:relatedTo rdf:resource="#megler"/>

</rdf:Description>

<rdf:Description rdf:about="million">
<oe:relatedTo rdf:resource="#klient"/>

</rdf:Description>

<rdf:Description rdf:about="million">
<oe:relatedTo rdf:resource="#eier"/>

</rdf:Description>

<rdf:Description rdf:about="eier">
<oe:relatedTo rdf:resource="#leilighet"/>

</rdf:Description>

<rdf:Description rdf:about="eier">
<oe:relatedTo rdf:resource="#etasje"/>

</rdf:Description>

<rdf:Description rdf:about="eier">
<oe:relatedTo rdf:resource="#skal"/>

</rdf:Description>

<rdf:Description rdf:about="eier">
<oe:relatedTo rdf:resource="#he"/>

</rdf:Description>

<rdf:Description rdf:about="eier">
<oe:relatedTo rdf:resource="#salg"/>

</rdf:Description>

<rdf:Description rdf:about="eier">
<oe:relatedTo rdf:resource="#megler"/>

</rdf:Description>

<rdf:Description rdf:about="eier">
<oe:relatedTo rdf:resource="#klient"/>

</rdf:Description>

<rdf:Description rdf:about="eier">

A.2. Output 97

<oe:relatedTo rdf:resource="#million"/>
</rdf:Description>

<!-- End Class Ontology -->
</rdf:RDF>

