
ISBN 978-82-326-3076-9 (printed ver.)
ISBN 978-82-326-3077-6 (electronic ver.)

ISSN 1503-8181

Doctoral theses at NTNU, 2018:143

Abdullah Al Hasib

Energy Efficient Computing on
Multi-core Processors

Vectorization and Compression Techniques

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2018:143
A

bdullah A
l H

asib

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r

th
e

D
eg

re
e

of
P

hi
lo

so
ph

ia
e

D
oc

to
r

Fa
cu

lt
y

of
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ri

ca
l

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r
Sc

ie
nc

e

Thesis for the Degree of Philosophiae Doctor

Trondheim, May 2018

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abdullah Al Hasib

Energy Efficient Computing on
Multi-core Processors

Vectorization and Compression Techniques

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Computer Science

© Abdullah Al Hasib

ISBN 978-82-326-3076-9 (printed ver.)
ISBN 978-82-326-3077-6 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2018:143

Printed by NTNU Grafisk senter

This thesis is dedicated to my parents
for their love, endless support and encouragement

Abstract

Over the past few years, energy consumption has become the main limiting
factor for computing in general. This has led CPU vendors to aggressively
promote parallel computing using multiple cores without significantly in-
creasing the thermal design power of the processor. However, achieving
maximum performance and energy efficiency from the available resources
on the multi-core and many-core platforms mandates efficient exploitation
of the existing and emerging architectural features at the application level.

This thesis presents the study of some of the existing and emerging techno-
logies in order to identify the potential of exploiting these technologies in
achieving high performance and energy efficiency for a set of Smart Grid
applications on Intel multi-core and many-core platforms.

The first part of this thesis explores the energy efficiency impact of different
multi-core programming techniques for a selected set of benchmarks and
smart grid applications on Intel SandyBridge and Haswell multi-core pro-
cessors. These techniques include different parallelism techniques such as
thread-level parallelism using OpenMP, task-based parallelism using OmpSs,
data parallelism using SIMD (Single Instruction Multiple Data) instruction
sets, code optimizations and use of different existing optimized math librar-
ies. In our initial case studies, SIMD vectorization is proven very effective
in providing both high performance and energy efficiency.

Though the SIMD vectorization is proven very effective, it can also exert
pressure on the available memory bandwidth for some applications like
Powel Time-Series Kernel, causing under-utilization of the computing re-
sources and thus energy inefficient executions. In the second part of this
research, we investigate the opportunities of improving the performance
of SIMD vectorization for memory-bound applications using SIMD data
compression, SIMD software prefetching, SIMD shuffling, code-blocking
and other code transformation techniques. The key idea is to reduce the

iii

iv Abstract

data movement across memory hierarchy by using the idle CPU time. We
show that integration of data compression is feasible on the Intel multi-
core platforms, as long as we can do it in a reasonable time. We present
a comprehensive discussion on the SIMD compression techniques and the
code transformations required for achieving efficient SIMD computations
for memory/cache bound applications using Powel time series kernel as a
demonstrator application.

Finally, we perform feasibility study of SIMD optimization and compres-
sion techniques across other application domains using k-means clustering
algorithm and full-search motion estimation algorithm. We also extended
our experiments on Intel many-core architecture using Intel Xeon Phi co-
processor.

Preface

This thesis is submitted to the Norwegian University of Science and Tech-
nology (NTNU) in partial fulfilment of the requirements for the degree of
philosophiae doctor (PhD). This doctoral work has been conducted at the
Department of Computer Science (IDI), NTNU, Trondheim, Norway. The
work has been performed under the supervision of Professor Lasse Natvig.

This PhD in Information Technology has been financed by the Faculty of
Information Technology and Electrical Engineering, NTNU, Trondheim.

v

Acknowledgements

First and foremost, I would like to express profound gratitude to my su-
pervisor Prof. Lasse Natvig for his helpful and invaluable support, encour-
agement and supervision throughout my Ph.D. studies. I have learned a
lot from him and his continuous guidance helped me to complete my PhD
studies successfully. I am thankful to my co-supervisors Jørn Amundsen and
Magnus Lie Hetland for the assistance in the early phases of the work and
for the valuable feedback and encouragement during the mid-term evalu-
ation meetings.

I extend my heartfelt gratitude to my former colleagues and co-authors Prof.
P. G. Kjeldsberg, Juan M. Cebrián and Nikita Nikitin for their great guid-
ance, insightful comments and wisdom during the time we had the chance
to work together. In addition, my sincere appreciation goes to all my col-
leagues in the CARD group and in the entire Department of Computer and
Information Science, for having created such a stimulating and pleasant
working environment.

All of this would not have been possible without the love of my parents. I
am as ever, especially indebted to my parents for their unceasing love, trust
and support throughout my life. They supported me to follow my dreams
with an endless source of morale and encouragement for me.

Finally, I would like to extend my deepest love and gratitude to my wife
Sanjeeda her support, encouragement, and patience, which always kept me
going, despite hardships. Without her enduring trust, love, and support
throughout these years, I would never have completed this work.

vii

Contents

Abstract iii

Preface v

Acknowledgements vii

Contents xiii

List of Tables xv

List of Figures xvii

List of Acronyms xix

Part I: Overview 1

1 Introduction 3

1.1 Chip Multiprocessors . 3

1.2 Energy Efficient Computation 4

1.3 Research Context . 6

ix

x CONTENTS

1.4 Approach and Main Issues . 6

1.5 Research Questions . 7

1.6 Thesis Outline . 7

2 Background 9

2.1 Multi-core and Many-core Processors 9

2.1.1 Trends in Parallel Computing Architectures 9

2.1.2 Dark Silicon and Heterogeneous Computing System . 11

2.2 Multi-core Computing . 12

2.2.1 OpenMP . 12

2.2.2 OmpSs . 12

2.2.3 TBB . 13

2.2.4 MPI . 13

2.2.5 Cilk Plus . 13

2.2.6 CUDA . 13

2.2.7 OpenCL . 14

2.2.8 Parallel Haskell . 14

2.3 Single Instruction Multiple Data Processing 15

2.3.1 SIMD Instruction Sets 15

2.3.2 SIMD Programming Methods 18

2.3.3 SIMD Optimization Techniques 19

2.4 Data Compression . 20

3 Methodology 23

3.1 Test Applications and Benchmarks 23

3.1.1 Benchmarks . 24

3.1.2 Smart Grid Applications 25

CONTENTS xi

3.1.3 Applications from Different Domain 28

3.2 Design Space Exploration . 29

3.3 Evaluation Framework . 31

3.3.1 Test Platforms . 31

3.3.2 Profiling and Tracing 33

3.3.3 Core Energy Estimation 34

3.3.4 System Energy Estimation 34

3.3.5 Evaluation of Energy Efficiency 35

4 Research Summary 37

4.1 Research Process . 37

4.1.1 Formalities . 37

4.1.2 Publications and Research Themes 37

4.2 Research Results . 41

4.2.1 A.1 . 41

4.2.2 A.2 . 42

4.2.3 A.3 . 43

4.2.4 B.1 . 45

4.2.5 C.1 . 46

4.2.6 C.2 . 47

4.3 Other Publications . 49

5 Concluding Remarks 51

5.1 Conclusion . 51

5.2 Future Work . 55

xii CONTENTS

Part II: Papers 69

A.1 Case Studies of Multi-core Energy Efficiency in Task Based Pro-
grams 71

1 Introduction . 75

2 Background . 76

3 Experiments and Results . 78

4 Related Works . 83

5 Conclusion and Future work 84

A.2 Performance and Energy Efficiency Analysis of Data Reuse Trans-
formation Methodology on Multicore Processor 87

1 Introduction . 91

2 Related Work . 91

3 Energy Efficient Methodology for Multicore Processor 92

4 Demonstrator Application: Motion Estimation Kernel 94

5 Results and Discussion . 97

6 Conclusion . 101

A.3 Performance Optimization and Evaluation of a Data Cleansing
Algorithm on Multicore Processors 105

1 Introduction . 109

2 Related Work . 109

3 Data Cleansing Algorithm . 110

4 Performance Optimization Strategies 111

5 Performance and Energy Efficiency Analysis 111

6 Conclusion . 112

B.1 V-PFORDelta: Data Compression for Energy Efficient Computa-
tion of Time Series 115

CONTENTS xiii

1 Introduction . 119

2 Related Work . 120

3 Powel Hydrological Compute Kernel 122

4 Time Series Datasets . 123

5 V-PFORDelta Compression Algorithm 124

6 Results and Discussion . 129

7 Conclusion . 139

C.1 Energy Efficiency Effects of Vectorization in Data Reuse Trans-
formations for Many-core Processors – A Case Study 145

1 Introduction . 149

2 Related Work . 150

3 Energy Efficient Methodology for Multi-core and Many-core
Processor . 152

4 Demonstrator Application: Full-Search Motion Estimation Al-
gorithm . 155

5 Results and Discussion . 162

6 Conclusion . 176

C.2 A Vectorized K-means Algorithm for Compressed Datasets – Design
and Experimental Analysis 183

1 Introduction . 187

2 Related Work . 189

3 K-means Clustering Overview 190

4 Multi-threaded Vectorized K-means with Compressed Dataset 192

5 Experiments and Results . 198

6 Conclusions and Future Work 209

List of Tables

2.1 Intel CPU architectures and trends 10

2.2 Summary of a few parallel programming models. 15

2.3 Evolution of SIMD extensions 18

3.1 Hardware specifications of the test platforms 32

3.2 Used PAPI event-set to monitor cache and memory related
events . 33

3.3 Model Specific Registers for energy measurements 34

4.1 Paper categories . 38

4.2 Paper category A . 38

4.3 Paper category B . 39

4.4 Paper category C . 40

4.5 Paper category D . 41

xv

List of Figures

1.1 Forty years of microprocessor trend data [6] 4

2.1 AVX register scheme as extension from the SSE (XMM0-XMM15) 16

2.2 AVX-512 register scheme as extension from the AVX (YMM0-
YMM15) and SSE (XMM0-XMM15) 17

3.1 Research methodology to conduct this research 30

xvii

List of Acronyms

ASIC Application Specific Integrated Circuit
ATLAS Automatically Tuned Linear Algebra Software
AVX Advanced Vector Extensions
BLAS basic linear algebra subprograms
CMOS Complementary Metal-Oxide Semiconductor
CMP Chip Multiprocessor
CUDA Compute Unified Device Architecture
EDP Energy Delay Product
FPGA Field Programmable Gate Array
GPU Graphic Processing Unit
HBM High-Bandwidth Memory
HPC High Performance Computing
IEC Intel Energy Checker
MCDRAM Multi-Channel Dynamic Random Access Memory
MIC Many Integrated Core
MPI Message Passing Interface
MSR Model Specific Register
OpenCL Open Computing Language
OpenMP Open Multi-Processing
PAPI Performance Application Programming Interface
SIMD single instruction multiple data
SMT Simultaneous Multi-threading
SSE Streaming SIMD Extensions
SVE Scalable Vector Extension
TBB Threading Building Blocks
TDP Thermal Design Power
VPU Vector Processing Unit

xix

Part I

Overview

1

Chapter 1

Introduction

1.1 Chip Multiprocessors
The CPU performance in single core architectures is traditionally improved
by the use of smaller, faster and more power efficient transistors in conjunc-
tion with the innovative techniques like pipelining, branch prediction, out-
of-order execution, multilevel cache hierarchy etc. However, as the single
core processor hits the power wall [1], the traditional way of improving its
performance through frequency scaling and instruction level parallelism be-
comes too expensive in terms of power and area cost [2]. As a consequence,
the enhancement of single core CPU performance is slowing down. To com-
pensate this slowness in performance enhancement and to improve power
efficiency, multi-core and many-core architectures are introduced. In these
designs, known as Chip Multiprocessors (CMPs), multiple low-power cores
are added on a single chip [3]. The underlying concept of CMPs is to
improve the throughput of the system by exploiting task-level or thread-
level parallelism using multiple cores without significantly increasing the
thermal design power (TDP) of the processor [4, 5]. Today, the mainstream
processors are equipped with multiple cores to handle computation intens-
ive applications. More complex system architectures are equipped with co-
processors or accelerators so that the applications can achieve the maximum
efficiency.

Figure 1.1 presents the trend of microprocessors for the last 40 years. Sev-
eral interesting observations can be made from the figure: First, the clock
speed is leveled off in the recent years due to power densities. Second, the
transistor counts continues to increase in accordance to Moore’s Law [7]

3

Chapter 1. Introduction

1970 1980 1990 2000 2010 2020
Year

100

101

102

103

104

105

106

107

108

109

Logical cores

Frequency (MHz)

Single thread performance (SpecINTx10^3)

Transistors (Thousands)

Typical power (Watts)

Figure 1.1: Forty years of microprocessor trend data [6]

as the core counts continues to grow for the last decade. Another import-
ant observation is that the single-threaded performance has kept increasing
slightly. This is attributed due to the use of energy efficient clever power
management and dynamic clock frequency adjustments such as Intel Turbo
Boost Technology, AMD Turbo Core Technology etc. These technologies en-
able the processor to run above its base operating frequency if it operates
operating below power, current, and temperature specification limits [8].

1.2 Energy Efficient Computation
We have entered an era where CMOS digital computing techniques are
reaching physical limits, increasing the importance of energy efficient com-
putations. A large number of research activities have been conducted to
develop different energy efficient techniques across different layers in a
multi-core system. Low-power circuit design, per-core as well as system
wide dynamic voltage and frequency scaling and dynamic power manage-
ment from operating system level are examples of such techniques [9, 10,
11]. In addition, the unprecedented growth of data, the need for sustain-
able improvements in computing capacity and energy efficiency in data sci-
ence, data analytics and scientific computing are becoming greater than

Chapter 1. Introduction 1.2. Energy Efficient Computation 5

ever. However, it is becoming increasingly difficult to extract more system
performance by adding more and more processing cores due to the lim-
itations of Dennard scaling [12, 13, 14]. The resulting slowdown in the
performance improvement is due to the fact that a significant fraction of
the cores has to be switched off (or operated at low frequencies) at any
point in time for the power and the thermal limits. This phenomenon is
known as Dark Silicon [15]. To bridge this dark silicon performance gap, it
is absolutely necessary to both improve the energy efficiency of hardware
components of the system and to exploit application level energy efficient
techniques.

However, for many applications (e.g. commercial applications), it is of-
ten undesirable to gain energy efficiency by sacrificing the performance.
Therefore, it is also important to realize that energy efficiency does not
necessarily mean a process to reduce the energy consumption through com-
promising the performance [2]. Achieving maximum performance from
the available resources on the multi-core platforms mandates the exploit-
ation of all architectural features and their intrinsic parallelism across all
granularities [16] such as thread/task-level parallelism and data parallel-
ism. To facilitate thread-level and task-level parallelism, new programming
languages, language extensions and libraries are continuously being de-
veloped. OpenMP [17], OmpSs [18], Cilk++ [19], Intel Threading Build-
ing Blocks (TBB) [20], CUDA [21], OpenCL [18] are some of the popular
programming constructs on multi-core and many-core platforms.

Most modern processors also support single instruction multiple data (SIMD)
instructions to provide additional throughput and power efficiency through
data parallelism [22]. Intel has started supporting 512-bit SIMD compu-
tations though Advanced Vector Extensions (AVX-512) [23] and ARM is
going to release Scalable Vector Extension (SVE) [24] instruction sets to
support up to 2048-bit vectors. Therefore, recent trends clearly show the
importance of vectorization in future High Performance Computing (HPC)
systems. However, SIMD computations can also turn a CPU bound applica-
tion into memory bound if the processor runs out of reservation stations or
load/store queue entries. Unfortunately, existing software tools and tech-
niques are not often fully able to exploit modern multi-core and many-core
architectures [25, 26]. As a consequence, a major research challenge of
today is to devise tools and techniques so as to translate the multi- and
many-core parallel resources into real application performance.

Chapter 1. Introduction

1.3 Research Context
Smart grids employ information technology to improve the efficiency, reli-
ability and security of the power generation, transmission and distribution
processes under the increasing energy demands. In support to the vast po-
tential for development in the Smart Grid sector, NTNU aims at establishing
a national center for smart grid research in co-operation with industries,
public bodies and other actors.

This dissertation is supported by a PhD fellowship in Smart Grid Research,
and was partly performed in cooperation with Powel AS. Powel AS is one of
the leading companies in Norway developing solutions to meet the require-
ments of smart grid technology. One of the smart grid applications studied
here is a hydrological time series compute kernel obtained from Powel AS
that receives multiple hydrological time series data from database (or reads
from file) and produces a summary series.

1.4 Approach and Main Issues
The energy efficiency of computer systems can be improved at various levels
and by many approaches. They include low power design and hardware
energy saving techniques, system architecture innovation and relevant par-
allelization techniques, dynamic power management at the OS level, re-
source scheduling and code optimization using energy aware algorithms
and data structures [27] etc. Recent research [22, 28, 16] has revealed
the potential of using SIMD execution units to improve the performance
and energy-efficiency of compute intensive applications in modern multi-
core systems [22, 28, 16]. However, despite the potential of SIMD instruc-
tions in developing energy efficient applications, modern compilers still do
not have adequate auto-vectorization support for complex codes [29, 30].
Moreover, extracting performance from SIMD and thread-level parallelism
is not trivial and a careless implementation can easily obliterate the advant-
ages of modern processors. As a consequence, these powerful processing
units (i.e. SIMD units) of modern multi- and many-core systems are often
largely underutilized.

It is also important to realize that a significant portion of the overall energy
consumption in modern processors is due to data communication across the
memory hierarchy [31]. Such consumption is expected to grow even bigger
with the unprecedented growth of big data and the emergence of exascale
computing. Therefore, it is important to improve the cache effectiveness
not only in terms of performance, but also for energy efficiency. SIMD pro-

Chapter 1. Introduction 1.5. Research Questions 7

cessing typically improves the CPU computational power and, if used wisely,
can be seen as an opportunity to improve on the application data transfers
by compressing/decompressing the data, specially for memory-bound ap-
plications.

This dissertation strives to improve energy efficiency of a set of compute
intensive as well as memory bound applications by fully exploiting the par-
allelism potential of SIMD architectures. We primarily focused on designing
SIMD friendly data structures and strategies to enhance the utilization of
SIMD execution unit as well as to increase the effective cache capacity us-
ing compression techniques and on-chip data availability so as to improve
the cache hit ratio at the Last Level Cache (LLC). Because of the well known
processor-memory performance gap (also called the memory wall), this will
significantly reduce the cost of data access and thus enhance the perform-
ance and power efficiency.

1.5 Research Questions
Our objective in this thesis is to explore and analyze different multi-core
programming methods to improve performance and energy efficiency of
some selected smart grid applications. Primarily we will focus on addressing
the following research questions:

RQ 1: To what extent multi-core programming, particularly multithreading
along with SIMD vectorization, can be suitable for the selected smart
grid applications?

RQ 2: To what extent can we improve the energy efficiency of the selected
applications by using SIMD compression techniques?

RQ 3: Can we extend our research results to another application domain?

1.6 Thesis Outline
This thesis contains an overview of the research context, research methods
and a collection of six papers being produced as a result of this thesis work.
The main work and contributions are in the enclosed papers. The overview
of the thesis is organized as follows: First, Chapter 2 presents the theoret-
ical background and the relevant research work. Chapter 3 illustrates the
methodology used to complete this research work. Chapter 4 contains a
brief summary of the included papers. Finally, 5 concludes the thesis with
some retrospective remarks and the possibilities of future enhancements.

Chapter 2

Background

This chapter provides more insights about the multi-core and many-core
architectures, multi-core programming, and data compression algorithms.

2.1 Multi-core and Many-core Processors

2.1.1 Trends in Parallel Computing Architectures

The demand for faster computers is ever increasing, but the dramatic growth
of single processor performance has come to an end due to several techno-
logical limitations (such as power wall, memory wall, ILP wall) [3]. To
overcome these technological barriers, the leading processor manufactures,
from Intel and AMD to Qualcomm and NVIDIA, have shifted their produc-
tion pipelines from single-core processors to multi-core processors where
multiple cores are put-together on a single chip to meet the performance
goals without using the maximum operating frequency. As a consequence,
multi-core processors result in dramatic increase in the MIPS-per-watt per-
formance compared to that of single-core processors [5, 3].

Today, multi-core processors have become the dominant architecture for the
mainstream processors to meet the demand of compute intensive applica-
tions. They usually feature up to 24 cores (Table 2.1), but can have beyond
60 cores. Such multi-core processors are often referred to as many-core to
express a high core count and are often used for high performance com-
puting (HPC). Often many-core processors have more complex architecture
consisting of co-processors, accelerators such as Graphic Processing Units
(GPUs) and Field Programmable Gate Arrays (FPGAs) over a PCIe intercon-
nect or even on the same chip.

9

Chapter 2. Background

Table 2.1: Intel CPU architectures and trends

Code Processor Product name Frequency Core(s) Thread(s) SIMD Process
name name (Intel Xeon) (GHz) width technology

Nehalem
Nehalem W5580 3.20 4 8 128 45 nm
Westmere W5680 3.33 6 12 128 32 nm

Sandy Bridge
Sandy Bridge E3-1280 3.50 4 8 256 32 nm
Ivy Bridge E7-4890 v2 2.80 15 30 256 22 nm

Haswell
Haswell E7-8890 v3 2.50 18 36 256 22 nm
Broadwell E7-8890 v4 2.20 24 48 256 14 nm

Skylake Skylake E3-1885 v5 3.50 4 8 512 14 nm
Knights Ferry Knights Ferry –1 1.20 32 128 512 45 nm
Knights Corner Knights Corner Phi 7120P 1.24 61 244 512 22 nm
Knights Landing Knights Landing Phi 7290F 1.50 72 288 512 14 nm

The recent trend in CPU architectures from Intel is presented in Table 2.1.
It is apparent that the evolution of Intel processor architectures has been
driven by the increased parallelism for the last decade. As the processor fre-
quency is coming down to reduce power dissipation, the core count is kept
increasing to meet the performance requirements using simultaneous mul-
tithreading (SMT), also known as hyper-threading which is a commercial
trademark for Intel’s proprietary implementation of SMT. The emergence
of Intel Many Integrated Core architecture (e.g. Knights Corner, Knights
Landing) featured with many lightweight cores (tens or even hundreds in
near-future) is therefore an attempt to address the problem of improving
the energy efficiency without compromising performance.

Also it can be noticed that Intel has given emphasis on achieving higher
performance for multimedia and other data-parallel applications through
introducing and extending SIMD architectures. Since the introduction of
SIMD architectures on general purpose processors, the width of the SIMD
registers (SIMD-width) has been increased gradually and now it has become
4-times greater than its initial width. This enhancement can potentially im-
prove the performance of integer and double-precision floating point com-
putations in video encoding, image processing, 3D modeling, scientific sim-
ulations, time-series and many other applications by up to 16- and 8-times
respectively using Advanced Vector Extensions (AVX-512) instruction set.
Moreover, the SIMD units are also augmented with special fused instruc-
tions (e.g Fused Multiply-Add, Fused Multiply-Subtract) to improve both
performance and energy efficiency.

1Product-name is not available, since it is not a commercial product.

Chapter 2. Background 2.1. Multi-core and Many-core Processors 11

2.1.2 Dark Silicon and Heterogeneous Computing System

With the introduction of many- and multi-core architectures, the number
of cores on die continues to increase to have enough parallelism for the
future applications. However, as Dennard Scaling (i.e. scaling feature sizes
and voltages by the same factor) can no longer be maintained with the
increasing number of cores, power density (i.e. power consumption per unit
area of silicon) continues to rise and is becoming a major limiting factor to
the performance of future computing systems. Consequently, these trends
might result in next generation chips having more on-chip resources (e.g.
processing cores, hardware accelerators, cache blocks and so on) than what
can be used simultaneously. In other words, due to the power and thermal
limits, a significant fraction of these on-chip resources has to be turned off at
any given point in time. This phenomenon is known as dark silicon [12, 13,
14]. The challenge is therefore how to make the best use of the abundance
of transistors in the dark silicon era [32].

Several techniques have been proposed to mitigate the effect of dark silicon.
Some of these techniques include near-threshold computing (i.e. operat-
ing at a very low voltage to power-on more cores) [33], selective boosting
(i.e. satisfy performance requirements by executing boosted cores at the
required frequencies for the entire boosting periods, while throttling down
the other cores) [34], "Cherry Picking" [35] of cores (i.e. exploiting pro-
cess variations to select a subset of cores, mapping threads to the selected
set of cores and assigning operating frequencies to each core to maximize
performance under power budget).

The dark silicon issue has also been studied in the context of Heterogeneous
computing systems (i.e. systems with many different types of processing
cores such as CPUs (Central Processing Units), GPUs (Graphics Processing
Units), DSPs (Digital Signal Processors), ASICs (Application Specific Integ-
rated Circuits) etc.). With the integration of specialized processing elements
for different types of software applications, the system can dynamically se-
lect only a subset of the available processing elements depending on the
workload characteristics. Such systems can provide substantial perform-
ance and power benefits over general purpose systems [36, 37]. General
purpose processors coupled with reconfigurable devices are another prom-
ising form of heterogeneous systems that can mitigate the effect of the dark
silicon phenomenon. Often such heterogeneous components can provide
more efficient solutions than full software based solutions on general pur-
pose processing elements. In this context, Microsoft is heading up deploying
FPGA-accelerated nodes to improve the performance of computationally ex-

Chapter 2. Background

pensive operations in Bing’s Indexserve engine [38]. However, the scope of
this thesis is limited to Intel multi-core and many-core systems only.

2.2 Multi-core Computing
Multi-core and many-core computing architectures exhibit multiple levels of
parallelism through a wide range of architectural features such as multith-
reading support using multiple cores and data-parallelism (per-core) using
SIMD instructions. The effective exploitation of the underlying hardware is
therefore crucial for achieving superior performance on current and future
processors. For the last few years, researchers have been continuously de-
veloping new programming languages, language extensions and libraries to
achieve the maximum efficiency by utilizing the modern processors. Here
we briefly highlight the key features of some of the well known program-
ming models.

2.2.1 OpenMP

Open Multi-Processing (OpenMP) is the de-facto standard for shared memory
programming [39]. It is featured with a set of compiler directives, en-
vironment variables and runtime library for explicitly expressing multith-
readed parallelism. OpenMP uses fork-join based execution model. It can
be classified as mid-level programming model as the implementation de-
tails of work-load partitioning, worker management and communication
synchronization are kept hidden from the programmer. On the other hand,
the programmer has the option to explicitly define scheduling, control the
thread affinity, etc. Originally, OpenMP used to provide data-parallelism
using these compiler directives. Since the release of OpenMP-3.0, it has
started to support task parallelism as well [40].

2.2.2 OmpSs

OmpSs is a task-based programming model and framework focused on sup-
porting heterogeneous multi-core and many-core architectures [18]. This
programming model puts an effort to glue the concepts of OpenMP and
StarSs [41] together by extending the OpenMP features through incorporat-
ing support for asynchronous task-parallelism and heterogeneous architec-
tures. Furthermore, it uses an extended memory model as well as thread-
pool execution model instead of fork-join model. Some of the new features
of OpenMP 4.0 are inherited from OmpSs. OmpSs is built on top of Mer-
curium compiler and Nanos++ runtime system [42].

Chapter 2. Background 2.2. Multi-core Computing 13

2.2.3 TBB

Threading building blocks (TBB) is another popular C++ runtime library
for parallel programming developed by the Intel Corporation [20]. It con-
tains data structures and algorithms used to parallelize an application and
to enhance performance on multi-core systems. TBB provides high-level
abstraction as it hides the details about the threading mechanisms for per-
formance and scalability. Threading building blocks introduces the concepts
of task-stealing, recursive splitting etc. Task-stealing allows TBB to signific-
antly reduce load imbalance as well as improve its performance scalability
[43].

2.2.4 MPI

Message Passing Interface (MPI) [44] is the dominant programming model
for programming distributed parallel machines. It provides a comprehens-
ive messaging API that can be used to communicate between processes
that reside in separate address spaces. Typically, the optimal performance
is achieved when each MPI process is mapped on a separate core. For
easier coordination among processes, MPI interface provides functionality
for communication, synchronization and virtual topology.

2.2.5 Cilk Plus

Cilk Plus is an extension to C/C++ to provide both task and data paral-
lelism [45]. Though Cilk Plus evolved from Cilk, it differs from Cilk in
different aspects such as support for loop, C++ language and constructs to
solve data race problems. It features simple but powerful ways of specifying
parallelism. Cilk Plus provides the _Cilk_spawn and _Cilk_sync keywords
to spawn and synchronize tasks; _Cilk_for loop is a parallel replacement
for sequential loops in C/C++. Tasks in the Cilk Plus environment are ex-
ecuted within a work-stealing framework. Every worker thread has deque2

of tasks and the thread treats its deque as a stack, by pushing and popping
tasks at the back of it. On the contrary, the thieves steal tasks from the front
of the deques [46].

2.2.6 CUDA

CUDA (Compute Unified Device Architecture) is a set of C++ language
extensions plus an accompanying runtime API for programming NVIDIA
Graphics Processing Units (GPUs) [21]. This programming model is primar-
ily developed for data parallel applications demanding intensive graphics

2A double-ended queue

Chapter 2. Background

processing. However, it does not provide any viable interface for creating
dynamic tasks or handling load balancing issues. Such support has to be
entirely coordinated by the programmer. Nevertheless, it includes explicit
memory management functions to assist programmers in extracting benefits
from the underlying hardware.

CUDA allows programmers to launch large batches of SIMT (Single Instruc-
tion Multiple Thread) threads. These threads are hierarchically organized
into warps, blocks, and grids, in which the finest thread group (e.g. a warp
of 32 threads) runs the same set of instructions in SIMD fashion. Threads
in a block are mapped into the same streaming microprocessor (SM) and
execute the same kernel in lock-step fashion. Threads in different SMs may
run different kernels without any performance penalty though. Finally, the
thread-blocks in a grid are executed independently and in an arbitrary or-
der.

2.2.7 OpenCL

OpenCL (Open Computing Language) is an open standard for parallel com-
puting on heterogeneous architecture [47]. One of the main objectives of
OpenCL is to increase portability across different platforms ranging from
simple embedded micro-controllers to general purpose CPUs and massively-
parallel GPGPU hardware pipelines. To this end, OpenCL provides a top
level abstraction to the low level hardware as well as consistent memory
and execution models. Though OpenCL provides functional code portab-
ility, its performance is not always portable across different platforms [48,
49].

2.2.8 Parallel Haskell

Haskell is a pure functional programming language [50]. Haskell offers
diverse extensions and libraries for developing parallel or concurrent pro-
grams. Some of the well-known extensions for developing parallel applica-
tions in Haskell are:

• Glasgow Parallel Haskell: an extension to provide thread-based semi-
explicit parallelism on multi-cores [51].

• Accelerate: an embedded domain-specific language for programming
the GPU [52].

• HaskellMPI, Glasgow Distributed Haskell, Eden, Cloud Haskell: to de-
velop programs on distributed computing environment [53, 54].

Chapter 2. Background 2.3. Single Instruction Multiple Data Processing 15

Table 2.2: Summary of a few parallel programming models.

Programming Memory Parallelism Levels of
models model model abstraction

data task

OpenMP shared mem X X mid
OmpSs shared mem X X mid
MPI msg passing X X low
Cilk Plus shared mem X X mid
TBB shared mem X X mid
OpenCL hierar. mem X X low
CUDA hierar. mem X - low
Parallel Haskell shared mem/msg passing X X high
SIMD - X - low

• Meta-par: aims to unify parallel heterogeneous programming using
Eden, Cloud Haskell [55].

Table 2.2 briefly summarizes the features of some of the well-known parallel
programming models.

2.3 Single Instruction Multiple Data Processing
In the recent years, support for fine grained data parallelism using SIMD in-
structions is becoming prevalent in virtually every processor in the market.
Most of the computers today implement some form of SIMD instruction set.
SIMD instructions provide higher performance, better energy efficiency and
greater resource utilization [22]. Applications with potential for perform-
ance improvement using SIMD instructions are very common. However,
despite the potential of SIMD instructions in developing energy efficient ap-
plications, modern compilers still do not have adequate auto-vectorization
support for complex codes [29, 26]. Therefore, manual vectorization is
often required to enhance code efficiency to a large extent.

2.3.1 SIMD Instruction Sets

MMXTM, Streaming SIMD Extensions (SSE) and Advanced Vector Exten-
sions (AVX) are some of the examples of SIMD instruction sets supported
by Intel. MMXTM, SSE, AVX and AVX512 support 64-bit, 128-bit, 256-bit
and 512-bit vector computations respectively. 3DNow! of AMD, NEON of

Chapter 2. Background

Figure 2.1: AVX register scheme as extension from the SSE (XMM0-XMM15)

ARM, AltiVec of IBM/Motorola are examples of SIMD instruction sets sup-
ported by other microprocessor vendors. However, here we briefly present
the key features of different SIMD instruction sets for Intel architectures
since our experiments have been conducted on Intel processors only.

MMXTM

The MMXTM instruction set was introduced in 1997 by Intel on Pentium
processors. This instruction set uses 8 64-bit MMX registers and the oper-
ations are limited to integer values only. MMX is seldom used in modern
processors; SSE and AVX are more commonly used SIMD instruction sets.

Streaming SIMD Extension

Streaming SIMD Extension was introduced with the Pentium III processor
in 1999 [56]. This instruction set uses 8 (xmm0 – xmm7) and 16 (xmm0
– xmm15) dedicated 128-bit XMM registers on 32-bit and 64-bit architec-
tures, respectively. SSE supports single-precision floating point operations
(but not double precision), and using XMM registers, it is possible to pro-
cess four floating point number simultaneously. SSE2 introduced in 2000
on Pentium 4 extends SSE by adding support of double precision floating
point and integer values (i.e. replaces MMX integer vector instructions) and
added over 70 new instructions. SSE4.1, available since the introduction of
Intel Penryn [57], consists of 47 instructions for media data manipulation
such as Single- and double-precision dot product, streaming load, packed
blending, packed integer min/max, sum of absolute differences for 4-byte
blocks. SSE4.2 is first available in Nehalem-based Core i7 processors [58]
and consists of 7 new instructions for text processing and some application-
specific operations such as CRC32 (calculates cyclic redundancy check of a
block of data) or POPCNT (counts the number of bits set in a word).

Chapter 2. Background 2.3. Single Instruction Multiple Data Processing 17

Figure 2.2: AVX-512 register scheme as extension from the AVX (YMM0-
YMM15) and SSE (XMM0-XMM15)

Advanced Vector eXtension

AVX is the next generation of the SIMD instruction sets supported from Intel
Sandy Bridge (i.e. since 2011) processors [59]. It offers instruction sets for
YMM registers. There are total 16 YMM registers (ymm0 – ymm15) in the
CPUs and the size of each YMM register is twice (i.e. 256-bit) as big as the
size of XMM register. The lower 128-bits of these registers are aliased to
the respective 128-bit XMM registers. It is possible to perform simultaneous
processing of eight single precision floating point numbers or four double
precision floating point numbers on these registers. AVX register scheme
is illustrated in Figure 2.1. AVX2 extends AVX by promoting most of the
128-bit SIMD integer instructions with 256-bit numeric processing capabil-
ities. It also provides enhanced functionality for broadcast/permute oper-
ations, vector shift instructions with variable-shift count as well as support
for fetching non-contiguous data elements from memory.

Advanced Vector eXtensions-512

The AVX-512 instruction set extends AVX to 512-bit. It was introduced in
Intel’s Xeon Phi x200 (i.e. Knights Landing in 2016) processor. Advanced
Vector eXtension-512 uses 32 512-bit ZMM registers (zmm0 – zmm31) to
enable processing of twice the number of data elements that AVX/AVX2 can
process with a single instruction and four times that of SSE. It is further
featured with 8 dedicated mask registers, a new set of blending instructions
using mask registers, embedded rounding and broadcast operations, addi-
tional gather/scatter support, high speed math instructions (e.g. new fused
multiply-add, exponential/reciprocal etc.). Figure 2.2 illustrates AVX-512
register scheme and Table 2.3 presents the evolution of SIMD instruction
sets for Intel architecture.

Chapter 2. Background

Table 2.3: Evolution of SIMD extensions

Year of SIMD Introduced Vector Major
Introduction Extension in size new features
1997 MMX Pentium MMX 64-bit Integer arithmetic operations
1999 SSE Pentium III Katmal 128-bit Single precision FP support
2000 SSE2 Pentium 4 Willamette 128-bit Integer and double precision FP supports
2004 SSE3 Pentium 4 Prescott 128-bit Complex arithmetic and graphics supports
2007 SSE4.1 Penryn 128-bit Dot product and conversion
2009 SSE4.2 Nehalem 128-bit POP-count, CRC
2011 AVX Sandy Bridge 256-bit Basic FP and elementary math operations
2013 AVX2 Haswell 256-bit Extension of SSE(2/4) instructions to 256-bit
2016 AVX512 Knights Landing 512-bit 512-bit extensions to the 256-bit AVX(2)

2.3.2 SIMD Programming Methods

SIMD programming can be mainly done using three methods such as inline
assembly [60], intrinsic function [61], and vector class [62].

Inline Assembly

Inline assembly allows a programmer to handle almost every part of the
program in order to gain maximum performance benefit from the system.
However, writing assembly code is complicated and it demands cautious
handling of data transfer between CPUs and memories. Listing 2.1 illus-
trates AT&T syntax based inline assembly codes [63] to perform summation
of two arrays, where the name of the vector registers (e.g. xmm0) to be
used with the opcodes are explicitly mentioned (e.g. movups).

1 asm v o l a t i l e (
2 " movups %1, %% xmm0 \n\ t " //Move va lues from A[i] to xmm0
3 " movups %2, %% xmm1 \n\ t " //Move va lues from B[i] to xmm1
4 " addps %% xmm0, %% xmm1 \n\ t " //Add packed s ing le−p r e c i s i o n

f l o a t i n g−point va lues from xmm0 to xmm1.
5 " movups %% xmm1, %0" //Move va lues from xmm1 to C[i]
6 :
7 "= m" (C[i]) //=m i n d i c a t e s C[i] i s an output and i t i s in

memory
8 :
9 "m" (A[i]) , //m i n d i c a t e s A[i] i s an input and i t i s in memory

10 "m" (B[i]) //m i n d i c a t e s B[i] i s an input and i t i s in memory
11) ;

Listing 2.1: Inline assembly code to perform summation of two arrays.

SIMD Intrinsic

SIMD intrinsic uses standard C/C++ language and thus coding is easier as
compared to the coding with inline assembly. However, it comes with the

Chapter 2. Background 2.3. Single Instruction Multiple Data Processing 19

cost of not having any guarantee that the code is optimized to the highest
level. Listing 2.2 shows SIMD intrinsic codes to sum-up two arrays. As we
can see in the example listing, SIMD variables (e.g. xmm_A) are used in
the code rather than explicitly using physical register names.

1 __m128 xmm_A = _mm_load_ps (A) ;
2 __m128 xmm_B = _mm_load_ps (B) ;
3 __m128 xmm_C = _mm_add_ps(xmm_A, xmm_B) ;
4 _mm_store_ps (C , xmm_C) ;

Listing 2.2: SIMD intrinsic code to perform summation of two arrays.

Vector Class

Vector class is a library that encapsulate SIMD intrinsics for different hard-
ware platforms behind a common interface. Compared to SIMD intrinsic
functions, vector class is easier to program with. It also leads to more port-
able code. However, the downside of this model is that it provides lower
performance than the other models. In Listing 2.3, the summation of two
arrays is done using vector class. In the listing, the type F32vec4 in example
is a class that encapsulates the intrinsic type __m128 which represents a
128-bit vector register holding 4 floating point numbers of 32 bits each.
Moreover, instead of using SIMD instructions or assembly codes, the over-
loaded operators + are used to add the vectors. Therefore, the code is much
easier to understand than the two other models.

1 F32vec4 vec_A ;
2 F32vec4 vec_B ;
3 F32vec4 vec_C ;
4 loadu (vec_A , A) ;
5 loadu (vec_B , B) ;
6 vec_C = vec_A + vec_B ;
7 s to reu (C , vec_C) ;

Listing 2.3: Vector class code to perform summation of two arrays.

2.3.3 SIMD Optimization Techniques

The following section briefly covers the different performance optimization
techniques using SIMD computations.

Data Packing

Using SIMD (e.g. SSE, AVX, AVX-512) instruction sets and their correspond-
ing vector registers (e.g. 128-bit XMM, 256-bit YMM, 512-bit ZMM), one
can pack multiple data into a single XMM/YMM/ZMM register. These data
items can be processed simultaneously. Moreover, SIMD instruction sets

Chapter 2. Background

also contain special instructions for frequently used- or critical-operations
such as matrix transpose, square root, sum of absolute difference etc. to
improve the performance even further.

Data Reuse

Vector register space is increasing gradually in the modern processors (e.g.
AVX-512 featured microprocessors have 32 ZMM registers representing 2
KB of register space). It is also possible to increase the performance of the
SIMD code using data reuse. SIMD intrinsics or inline assembly allows a
programmer to have control over this register space. Thus, a programmer
can use inline assembly or intrinsics to reuse existing registers effectively so
as to reduce unwanted data transfer.

Asynchronous Computation

Data transmission along the memory hierarchy is a slow process. SIMD com-
putation creates additional pressure to the memory hierarchy as it demands
simultaneous accesses of more data elements than the scalar computation.
Fortunately, this transmission process can be hidden to a certain degree us-
ing asynchronous computation, which is a technique to perform computa-
tion and data transmission simultaneously [64]. SIMD instructions provide
some basic prefetching methods to provide support of asynchronous com-
munication. Prefetching instructions provide hints to CPU for preloading
the data into cache before the actual computation begins [65]. It is import-
ant to note that these instructions do not force the data to be preloaded into
the cache. Thus it is not guaranteed that the data will be preloaded into the
cache.

2.4 Data Compression
In modern processors, a significant amount of energy is consumed in the
memory hierarchy due to data transmission. For instance, in Xeon Phi
Knight’s Corner (KNC) co-processor, caches are responsible for around 45%
and 12% of the core power distribution for non-compute-intensive and
compute-intensive applications, respectively [31]. Therefore, the use of
application specific compression methods can increase the effective cache
capacity, reduce cache misses and improve the performance and system en-
ergy. In this section, we present some of the most widely used loss-less
integer compression techniques.

Some of the earliest integer compression techniques are Delta coding [66],
Variable-byte (VarByte) coding [67], Rice and Golomb coding and Elias

Chapter 2. Background 2.4. Data Compression 21

Gamma coding [68]. Delta coding encodes integer numbers by subtract-
ing successive values. The fundamental concept is to code the first value as
it is. The remaining values are represented as the differences between suc-
cessive values. A good compression ratio can be achieved by this approach
if the differences between successive values are small. VarByte is a simple
byte-oriented compression method. It uses a variable number of bytes to
represent integer values (e.g. 34 is represented using 8 bits, 144 is rep-
resented using 16 bits). This compression technique is fast but it provides
low compression ratio. Golomb and Rice coding are bit oriented coding
schemes. In Golomb coding, an integer (i) is coded by quotient (q) and re-
mainder (r) of division by the divisor (d). In case of Rice coding, the divisor
used is a power of 2. These coding schemes provide good compression ra-
tio for small integer values but the decompression speed is quite slow. In
Elias Gamma coding, an integer (i) is encoded by its binary representation
preceded by blog2ic zeros. This relatively slow technique provides good
compression when small integers are more frequent than large integers.

In recent years, several fast compression techniques have been proposed,
including the Simple family (S9, S16) [69], Frame Of Reference (FOR)
or Patched Frame Of Reference (PFOR) [70]. Simple9 encoding technique
packs as many integers as possible in 32 bits (one word). This encoding
technique is fast and provides better compression ratio than VarByte. FOR
and PFOR coding compress a block of numbers at a time (e.g. 128 numbers).
A fixed number of bits are used to encode each regular number in case of
fixed-length encoding. The numbers that cannot be encoded using fixed
length bits are considered exceptions and stored using 4 bytes. In varint-
G8IU [71], a variable number of integers are encoded in 8 bytes. Once
encoded, they are grouped together along with a 1-byte descriptor contain-
ing the unary representations of the lengths of each encoded integer. 8 data
bytes can be used to encode from 2 to 8 integers depending on the size of
the encoded integers. The number of integers is encoded by the number of
zeros in the descriptor.

More recently, SIMD-based compression techniques have gained popularity.
Stepanov et al. presented a taxonomy for variable-length integer encoding
formats and presented a byte preserving integer encoding algorithm using
SIMD instructions [72]. Schlegel et al. applied SIMD-based decompression
algorithms to derive parallel versions of two well-known integer compres-
sion techniques: Null Suppression and Elias Gamma encoding [71]. In [73],
Ao et al. proposed a linear regression-based parallelized compression tech-
nique for lists intersection. In [74], Zhang et al. proposed a parallel com-

Chapter 2. Background

pression algorithm that aims to improve the instruction level parallelism by
exploiting a 4-way vertical data layout format. Lemire et al. proposed a
delta coding-based compression technique, FastPFOR, that uses vectorized
binary packing over blocks of 128 integers [75]. This scheme stores the
exceptions on a per page basis, but selects the base value b on a per block
basis. They had shown that their approach is nearly twice as fast as the pre-
viously fastest schemes on desktop processors (varint-G8IU and PFOR). The
authors have further extended their work by computing prefix sum using
SIMD operations in their proposed algorithm [76].

Chapter 3

Methodology

This chapter discusses the methodology used to conduct this research work.
This methodology involves choosing a set of applications to study, exploring
different techniques for energy efficient computations and identifying suit-
able methods for estimating or measuring consumed energy on the target
platforms. The rationale behind these selections are explained in this sec-
tion. Section 3.1 lists the applications and benchmarks that are chosen and
explains the reasons behind those selections. Then we discuss the program-
ming languages and techniques that are taken into considerations during
design space exploration in Section 3.2. Finally, the evaluation framework
used for obtaining and analyzing the results is presented in Section 3.3.

3.1 Test Applications and Benchmarks
A selected set of applications and benchmarks are used in the different ex-
periments presented in this research work. Here, we refer to an "applica-
tion" as a program designed to perform a group of coordinated functions,
tasks, or activities for the benefit of the user such as word processing pro-
gram. On the other hand, a "benchmark" refers to a program or a set of
programs that are commonly used in performance comparison of various
subsystems across different chip/system architectures. LINPACK [77] is an
example of a benchmark suite used to measure the floating point computing
power of a system.

Selection of applications and benchmarks used in this thesis is primarily
guided by the following two criteria.

• Research collaboration with industry and academia.

23

Chapter 3. Methodology

• Relevancy with the experiments as well as ease of integration with the
framework.

Application set selection process is predominantly based on the research
collaboration with the industry (e.g. Powel AS for Hydrological Timeseries)
and internal research group (e.g. Boye Annfelt Høverstad et al. for Data
cleansing). On the other hand, the selected benchmarks (FFTW, BlackScholes
etc) are widely used, well known representatives of important real-world
applications and can be integrated to our evaluation framework.

3.1.1 Benchmarks

1 dimensional FFTW (Fastest Fourier Transform in the West) kernel [78],
BlackScholes from the PARSEC (Princeton Application Repository for Shared-
Memory Computers) benchmark suite [79] and a tiled matrix-matrix multi-
plication routine [80] are chosen for evaluation.

1D FFTW

The Fastest Fourier Transform in the West (FFTW) is a software benchmark
that efficiently implements Discrete Fourier Transform [78]. The imple-
mentation takes advantage of the available vector units (e.g. SSE/SSE2/AVX,
Altivec) on the underlying platform. Performance of FFT heavily depends
on the design of the memory subsystem and how well it is exploited. In
general, FFTW delivers reasonably good performance on all hardware due
to its self tuning design. In the first step, it creates a plan of execution for
the given problem, and then it executes the plan. The plan is chosen by
heuristically tailoring execution to the current system (e.g. querying cache
sizes), and several different plans are tested to find the fastest candidate.

BlackScholes

BlackScholes is part of the PARSEC benchmark suite [79]. The PARSEC
benchmark suite consists of a number of multithreaded applications repres-
enting both current and emerging workloads for multi-processing systems.
Workloads in the benchmark cover different application domains (e.g. re-
cognition, mining, synthesis and systems application), different parallelism
granularity and exhibit different runtime behaviour. BlackScholes is con-
sidered as the simplest of all PARSEC workloads [81]. It uses Black-Scholes
partial Differential Equation (PDE) to calculate the prices for a portfolio of
European-style options. BlackScholes is a compute-bound workload, and
its performance is limited by the amount of floating-point calculations a
processor can perform.

Chapter 3. Methodology 3.1. Test Applications and Benchmarks 25

Matrix Multiplication

Matrix multiplication is widely used in many scientific and engineering ap-
plications. Double-precision GEneral Matrix-matrix Multiplication (DGEMM)
is an important routine of the LINPACK benchmark [77], which is used to
rank the top 500 supercomputers [82]. In this thesis, a tiled matrix multi-
plication algorithm is used. Matrices are decomposed into tiles of (M×N)
elements, and then the DGEMM routine is applied at the tile level. While
there exist several basic linear algebra subprograms (BLAS) libraries (such
as Intel Math Kernel Library, ATLAS and OpenBLAS) [83], we have used
ATLAS (Automatically Tuned Linear Algebra Software) library for the op-
timized DGEMM routine [84]. Being a portable library, ATLAS automatic-
ally tunes itself to the underlying architecture to maximize performance.
Furthermore, tiled matrix multiplication also suits very well to the work-
sharing constructs of parallel programming models like OpenMP, OmpSs
etc.

3.1.2 Smart Grid Applications

Powel Hydrological Time Series Kernel

Powel AS is one of the leading companies in Norway developing solutions
to meet the requirements of Smart Grid applications [85]. These solutions
contain computer programs and systems for maintaining maps over power
lines and pipes, metering of electricity, inflow modeling and forecasting
as well as power generation planning. Some of their developed products
include [86]:

• Inflow forecasting and power inflow: A program to forecast, simulate
and optimize hydropower generation process depending on weather
forecasts, snow cover, ground and landscape conditions.

• Hydrometric simulations and Powel Sim/Shop:

- Powel sim: Short term hydropower planning software to calcu-
late the consequence of a given plan by using inflow forecasts.

- Powel Shop: A program for short-term optimization of hydro-
power generation to find how to generate the contracted energy
at the lowest possible cost.

• Powel MDMS: Powel meter data management system consists of pro-
grams for metering, maintaining and performing computations on dif-
ferent time series data.

Chapter 3. Methodology

In this thesis, we have studied Powel hydrological time series kernel, a part
of Powel MDMS which is responsible for generating a summary series from
a number of time series data given as input to the system. Each series (si)
in the input dataset (ds) can be formally defined as,

ds={si}
n−1
i=0 , si = (ti, vi, qi)

where vi represents the hydrological in-flow measured in m3/sec at time
ti, and qi represents the status information (e.g. valid or invalid data) for
the measurement at time ti.

The kernel takes two time series as inputs at a time and performs compu-
tations as it passes over the data points at each time instance, generating a
new time series as output. Initially, it computes time axis t vector of the res-
ultant series from the given inputs. Next, for each ti in the resultant series,
the kernel takes the corresponding vi from the input series and computes
vi of the resultant series. Any missing value in the input series is estimated
using linear interpolation. The corresponding qi parameter is also updated
to indicate that the value is interpolated. Finally, all the aforementioned
steps are repeated until the entire dataset (ds) is processed.

Powel hydrological time series kernel is implemented in C++. It performs
computationally inexpensive O(n) operations and the data access pattern
is sequential. However, the kernel needs to process a huge volume of time
series data, and consequently it becomes limited by the memory subsystem.
Parallelism is handled at a higher level, serving multiple requests simultan-
eously, further increasing the pressure on the memory hierarchy.

Data Cleansing Application

Data cleansing is a process of detecting and correcting or removing corrup-
ted data in a dataset. Among the 4 different cleansing approaches (stat-
istical methods, clustering, pattern based methods and association rules)
[87], we studied a statistical method presented by Chen et al. in [88]. This
algorithm is used in a research study to understand the impact of it as a
pre-processing step for predicting loads in smart grids.

Data Cleansing model is based on the algorithm proposed by Chen et al.
in [88]. The essence of the proposed solution to the detection of corrupted
data is to model the intrinsic patterns or structure of load data. The model
found can be used to judge the presence of abnormal deviations from the
patterns, and thus to identify corruption of data. Assume that n data points
(ti, yi)

n
i=1 of a load curve have been collected. The underlying data gener-

Chapter 3. Methodology 3.1. Test Applications and Benchmarks 27

ation process is modeled as a continuous function.

yi = m(ti) + εi (3.1)

where yi is the data value at time ti,m(t) is the underlying function and εi
is the error term. It is assumed that the error term εi is normally and inde-
pendently distributed with the mean of zero and constant variance σ2. The
main task is to find an appropriate estimate of the function m(t), namely
(m̂)(t), using the collected load data as a sample of observations. Then the
point-wise confidence interval can be built based on the estimate of m(t).
A data point is judged as corrupted if it locates outside the confidence in-
terval. Corrupted data at t time will be replaced by the estimated value
(m̂)(t).

A smoothing parameter is used to control the curve smoothness. A smoother
curve m(t) tends to model global patterns since it is less sensitive to local
deviations, whereas a rougher curve m(t) is more capable of modeling local
patterns. Different settings of the smoothing parameter can be chosen to
model global or local patterns.

The basic idea of nonparametric smoothing is the local averaging procedure.
Specifically, the curve can be estimated by

m̂(ti) =
1

n

n∑
i=1

Wi(t)yi (3.2)

where {Wi(t)}
n
n=1 denotes a sequence of weights which depend on the

whole vector {Ti}
n
n=1. The idea is to approximate the function m(t) by

taking a weighted sum or linear combination of a sufficiently large number
K of basis functions ϕk(t)

m(ti) =

K∑
k=1

Ckϕk(t) (3.3)

where C=(c1, c2, . . ., cK) is the coefficient vector. To estimate coefficients
C from the observations (ti, yi)

n
i=1 , we define an n by K matrix

Chapter 3. Methodology

Φ =

∣∣∣∣∣∣∣∣∣
ϕ1(t1) ϕ2(t1) . . . ϕK(t1)
ϕ1(t2) ϕ2(t2) . . . ϕK(t2)

...
...

...
...

ϕ1(tn) ϕ2(tn) . . . ϕK(tn)

∣∣∣∣∣∣∣∣∣ (3.4)

A simple smoother could be obtained if the coefficients C are determined by
minimizing the Sum of Squared Error (SSE) as

SSE =

n∑
j=1

∣∣∣∣∣yj −

K∑
k=1

Ckϕk(t)

∣∣∣∣∣
2

(3.5)

m(ti) =

K∑
k=1

Ckϕk(t) = (~y−ΦT~c)T (~y−ΦT~c) (3.6)

Now, the coefficients can be estimated by minimizing the penalized sum of
squared errors (PENSSE). PENSSE is given by

PENSSEλ = (~y−ΦT~c)T (~y−ΦT~c) + λ~cTR~c (3.7)

Then the coefficients ~c can be estimated by setting the derivative of PENSSE
with respect to ~c to be zero

~̂c = (ΦTΦ+ λR)−1ΦT~y (3.8)

where λ is the smoothing parameter and R =
∫
D2~Φ(t)D2~Φ(t)Tdt.

Finally, the fitted value vector ~̂y is computed by

~̂y = Φ~̂c = Φ(ΦTΦ+ λR)−1ΦT~y (3.9)

3.1.3 Applications from Different Domain

Apart from the aforementioned applications, we have also considered data
mining (k-means) and multimedia (motion estimation) applications in our
evaluation process.

Chapter 3. Methodology 3.2. Design Space Exploration 29

K-means Algorithm

K-means is one of the most widely used clustering methods. Among the
different variants to this algorithm, we set our baseline as Lloyd’s algorithm
[89]. The advantage of this algorithm is its simplicity: starting with a set
of randomly chosen initial centers, the kernel repeatedly assigns each input
point to its nearest center, and then recomputes the centers given the point
assignment. However, the algorithm is sensitive to its initialization process
in obtaining a good solution. In [90], a randomized seeding technique is
proposed to improve the accuracy and speed of k-means algorithm.

More recent works involve optimizing k-means computations using distance
bounds and triangular inequality [91]. In [92], a fine-grained SIMD based
approach is proposed which computes n distances from the n data points to
the same centroid in one loop. In [93], Hadian and Shahrivari have used a
KD-tree (k-dimensional tree) based structure where each node for the KD-
tree is represented by a bounding box specifying the minimal axis-parallel
hyper-rectangle containing all associated points. Consequently, the search
for nearest centroid is accelerated. In [94, 95], the authors proposed an al-
gorithm that performs the distance calculations in parallel on the GPU while
sequentially updating the cluster centroids on the CPU based on the results
from the GPU calculations. In these optimization methods, parallelism is
done at the task level, where the data is divided into smaller chunks and
each chunk is processed in sub-tasks. All of these tasks execute the same
logic as in the Lloyd’s algorithm.

Full Search Motion Estimation

Motion Estimation (ME) is a core part of different video compression al-
gorithms. Block-based ME algorithms involve finding the candidate block
within a specified search area in a reference frame that is most similar to
the current block in the current frame. A "full-search motion estimation" al-
gorithm performs an exhaustive search over the entire search region to find
the optimal solution. This process is computationally intensive and costs
about 80% of the video frame encoding time [96]. Therefore, it has been
chosen as one of our test applications in the thesis.

3.2 Design Space Exploration
An important goal of this thesis is to improve performance and energy ef-
ficiency of a selected group of applications on multi-core and many-core
platforms. To this end, we explored a number of state-of-the-art multi-core
programming techniques (e.g. OpenMP, SIMD programming, optimized lib-

Chapter 3. Methodology

Figure 3.1: Research methodology to conduct this research

raries such as ATLAS, MKL) and followed some of the promising optimiz-
ation strategies (e.g. loop transformation, code reorganization, blocking,
lookup table usage) to port the selected set of applications and benchmarks
onto modern multi-core desktop processing systems. While doing so, we
focused on providing interesting insights on the effects of using these pro-
gramming tools and techniques on applications’ performance and energy
efficiency. Essentially, we focused on addressing the research question 1
(RQ-1) at this point.

The experimental evaluations of the studied techniques on different multi-
core systems provided satisfactory performance and energy efficiency im-
provements for regular data processing (e.g. data cleansing application with
regular loop structures). Particularly, SIMD vectorization appeared to be a
promising means of energy efficient software development. Unfortunately,
auto-vectorization was not fruitful for some of the selected applications,
such as applications with more complex loops (e.g. Powel time series ker-
nel). In such situations where codes are not prepared for SIMD, we resorted
to explicit vectorization which often involved algorithmic elements to meet
SIMD requirements, choosing appropriate data layouts and finally writing
down the codes using SIMD intrinsics.

The results of explicit vectorization were mixed: for the CPU-bound applic-
ations such as motion estimation kernel, the impact of explicit vectorization
on performance and energy efficiency was quite impressive. Where as for
the memory-bound applications such as Powel time series kernel, the overall
performance was lower than the expected level. It turned out that the eval-

Chapter 3. Methodology 3.3. Evaluation Framework 31

uated platform was unable to achieve memory bandwidth necessary for the
Powel time series kernel to perform simultaneous memory accesses for the
vector elements, thus creating a new bottleneck in the code. In an attempt
to improve performance and energy efficiency of memory-bound applica-
tions, we explored different SIMD compression techniques so as to trade
idle time for computation time by harnessing the power of the (usually)
underutilized vector processing units. We have also explored several non-
trivial low-level optimization strategies such as controlling thread-affinity
and fixing threads into the cores to reduce unnecessary data movement
across memory hierarchy, improving cache line utilization ensuring that
the adjacent data is actually used in the hot loops (i.e. where an applic-
ation spends most of its time), hiding data access latency by using SIMD
software-prefetching if data access patterns are predictable etc. Thus, we
sought the answer of research question 2 (RQ-2) by exploring some non-
trivial strategies including data compression techniques to improve energy
efficiency of those applications.

Finally, some of these energy efficient approaches are also deployed to k-
means algorithm as a part of addressing the research question 3 (RQ-3).
Figure 3.1 illustrates the research methodology used in this thesis. We fur-
ther extended our experiments on Intel many-core platform (Knights Land-
ing Co-processor) [97].

3.3 Evaluation Framework
In this section, we describe the hardware platforms on which the research
is conducted. In addition, we also describe the process we follow to track
micro-architectural activities as well as the tools and experimental frame-
work used in our research for evaluating performance and energy efficiency.

3.3.1 Test Platforms

Intel R© CoreTM i7-2600 and Intel R© CoreTM i7-4700K are chosen for multi-
core processors, and Intel R© Xeon Phi 7250 is chosen as a many-core pro-
cessor. This selection process is primarily guided by our research group.

Intel Multi-core Processors

For multi-core CPUs, Intel R© CoreTM i7-2600 (Sandy Bridge) and i7-4700K
(Haswell) processors are used in our evaluation framework. Both pro-
cessors consist of four physical cores and supports Hyper-Threading (HT)
that allows them to simultaneously process up to 8 threads i.e., 2 threads
per core. The memory hierarchy consists of a 32 KB Level-1 cache, a 256

Chapter 3. Methodology

Table 3.1: Hardware specifications of the test platforms

Processor Intel R© CoreTM i7-2600 Intel R© CoreTM i7-4700K Intel R© Xeon Phi 7250
Architecture SandyBridge Haswell Knights Landing
Clock Speed 1.6 – 3.4 GHz 0.8 – 3.5 GHz 1.4 Ghz
of Cores 4 cores / 8 threads 68 cores / 272 threads
L1 Cache 32 KB data + 32 KB instruction, private, 8-way associativity
L2 Cache 256 KB, private, 8-way associativity 1 MB, 16-way per 2 cores1

L3 Cache 8 MB, shared, 16-way associativity 16 GB, shared HBM-MCDRAM2

KB Level-2 cache and a 8192 KB Level-3 cache. Level-1 and Level-2 caches
are private to each core while the Level-3 cache is shared among the cores.
The base clock speeds of the processors are 3.4 GHz and 3.5 GHz for Sandy
Bridge and Haswell processors, respectively. When Turbo Boost is enabled,
the clock speeds can be as high as 3.9 GHz [8]. However, we disabled
dynamic frequency scaling (speed step and turbo boost) on both systems
to get more stable experimental results. Table 3.1 illustrates the hardware
specifications of the test platforms.

Intel Xeon Phi Co-processor

Our evaluation platform also consists of a Xeon Phi 7250 processor (Knights
Landing) featuring the second generation of Intel’s Many Integrated Core
Architecture (MIC) [97]. This product offers 68 cores running at 1.40 GHz
base clock speed and can have up to four threads per core with the poten-
tial peak performance close to 6 Tflops for single precision floating point.
These cores are based on the Silvermont Atom architecture, which is Intel’s
first low power core built at 22nm process technology. Cores are out of or-
der and tiled in pairs, where each pair of cores shares 1-Mbyte level-2 (L2)
cache. Each core contains two Vector Processing Units (VPUs), that work
with vector registers up to 512-bit wide. The VPUs are compatible with
SSE, AVX/AVX2 and AVX512. The memory architecture of KNL is designed
to support its large computational capability. KNL is equipped with High-
Bandwidth Memory (HBM) based on the Multi-Channel Dynamic Random
Access Memory (MCDRAM). MCDRAM is capable of delivering ≈4x per-
formance (≥ 400 GB/s) than DDR4 memory on the same platform (≥ 90
GB/s).

1Two cores share a 16-way associative, 1-Mbyte unified L2 cache
2Multi-Channel High Bandwidth (≈4x higher bandwidth than DDR4) DRAM

Chapter 3. Methodology 3.3. Evaluation Framework 33

Table 3.2: Used PAPI event-set to monitor cache and memory related events

Counters Counting
PAPI_L2_TCM L2 total cache misses
PAPI_L2_TCA L2 total cache accesses
PAPI_L3_TCM L3 cache misses
PAPI_TOT_INS Instructions completed
PAPI_TOT_CYC Total cycles
RESOURCE_STALLS:ANY Cycles stalled due to any re-

source related issue
RESOURCE_STALLS:SB Cycles stalled due to lack of Store

Buffers
RESOURCE_STALLS:RS Cycles stalled due to no eligible

Reservation Station entry
RESOURCE_STALLS:ROB Cycles stalled as the Re-Order

Buffer is full
UOPS_RETIRED:STALL_CYCLES Cycles without micro-operations

retired
PERF_COUNT_HW_CACHE_L1D:MISS L1 data cache misses
PERF_COUNT_HW_CACHE_L1D:ACCESS L1 data cache accesses
PERF_COUNT_HW_CACHE_L1D:WRITE L1 data cache writes

3.3.2 Profiling and Tracing

Profiling (i.e. summary statistics of performance metrics done by sampling)
of different micro-architectural activities is performed using Performance
Application Programming Interface (PAPI) tool on our test platforms [98].
PAPI relies on the hardware performance counters that are available on
most processors and provides a connection between software performance
and processor events. Table 3.2 presents a set of PAPI counters that are used
in this thesis to track cache and memory related events. The first five events
in the list are preset events that are accessible through PAPI interface. Rest
of the events in the list are platform dependent events and termed as native
events. Generally, each experiment is repeated for multiple times, outliers
are discarded and then mean value is computed to report the results.

DineroIV trace-driven cache simulator is used to measure compulsory, capa-
city and conflict cache misses [99]. We use the Lackey tool of Valgrind [100]
to produce memory traces (i.e. chronological records of events while an
application is running) to be analyzed by the DineroIV cache simulator.
However, we had to modify the Lackey tool to generate the trace format

Chapter 3. Methodology

supported by DineroIV simulator.

3.3.3 Core Energy Estimation

To estimate on-chip energy consumption, an energy collection framework
is developed as part of this thesis work [101]. Initially, the framework was
developed to read the model specific registers (MSRs) for providing en-
ergy measurements on a single socket Sandy Bridge system. Afterwards,
the framework has been extended to support dual socket Sandy Bridge as
well as Haswell systems. The developed framework is used to provide both
core- and package-energy readings from the supporting systems. In this
context, the ’core’ refers to the components of a processor that are involved
in executing instructions such as arithmetic logic unit, floating point unit,
L1 and L2 caches etc. On the other hand, the ’package’ refers to L3 cache,
quick-path interconnect controller, on-die memory controller, and other bus
controllers such as PCI Express including the core components [102]. The
framework reads a list of registers presented in Table 3.3 at a fixed core
frequency, and processes the raw data to compute energy efficiency. The
details of the energy efficiency metric is described in section 3.3.5.

Table 3.3: Model Specific Registers for energy measurements

Register Measured Energy
MSR_PP0_ENERGY_STATUS Core energy consumption
MSR_PKG_ENERGY_STATUS Package energy consumption

For KNL, the whole package energy (including core power and DRAM con-
troller traffic) is measured since the core energy counter is not available in
our pre-production system. These measurements can be done either by the
RAPL interface (root-level) or the powercap interface (user-level).

3.3.4 System Energy Estimation

To measure system energy consumption, we use an external power meter
(Yokogawa WT210) which is connected to a power outlet and an energy
server (part of the Intel Energy Checker (IEC) SDK) [103] system to log
the consumed energy at a certain interval. Measured readings are retrieved
by the Intel Energy Server process running on the energy server (ESRV)
system and written to a text file. Finally, the raw data written in the text file
is further processed to transfer the raw data into desired evaluation metrics.

Chapter 3. Methodology 3.3. Evaluation Framework 35

3.3.5 Evaluation of Energy Efficiency

We use execution time (in micro-seconds) as the metric for performance
evaluation. Energy efficiency is measured in terms of Energy Delay Product
(EDP: Js) [101]. Generally, the lower the EDP, the better the energy ef-
ficiency. Speedup and Relative EDP at a certain frequency are computed
with respect to the execution time and EDP of the Baseline kernel at the
corresponding frequency.

Chapter 4

Research Summary

This thesis is a collection of papers that I have authored or coauthored dur-
ing my PhD research work. This chapter provides an overview of these
papers. First, Section 4.1 briefly sketches the research themes and the pub-
lications. Section 4.2 presents more detailed outlines of the included papers
in the perspective of what they intend to achieve, and how do they relate
to the topic of this thesis. Finally, Section 4.3 lists the papers that were not
included in this thesis.

4.1 Research Process

4.1.1 Formalities

The research work described in this thesis was part of a four-year PhD re-
search fellowship programme conducted at the Department of Computer
and Information Science, Faculty of Information Technology, Mathematics
and Electrical Engineering, NTNU. 25% of this PhD period was dedicated to
teaching duty.

4.1.2 Publications and Research Themes

The main contributions of this thesis are published into different interna-
tional peer reviewed conference proceedings and journals. These papers
are grouped into 4 different categories which are presented in Table 4.1.
The research focus of each group is discussed in this section.

37

Chapter 4. Research Summary

Table 4.1: Paper categories

Category Name Papers
Total Included

A Programming model exploration 3 3
B SIMD-vectorization of a smart grid ap-

plication
1 1

C SIMD-vectorization of applications from
different application domains

2 2

D Demand Response optimization for
smart grids

2 0

Category A: Programming Model Exploration

The first research topic is represented in Category A and relates to the first
research question (RQ1). The papers in this category are originated from
the initial investigation on state of the art parallel programming models,
libraries and extensions. The papers included in Category A are summarized
and referenced in Table 4.2.

Table 4.2: Paper category A

ID Title Ref.
A.1 Case Studies of Multi-core Energy Efficiency in Task Based

Programs
[101]

A.2 Performance and Power Efficiency Analysis of Data Reuse
Transformation Methodology on Multi-core Processor

[104]

A.3 Performance Optimization and Evaluation of a Data
Cleansing Algorithm on Multi-core Processors

[105]

In paper A.1, we performed energy efficiency case studies of a task based
programming model (i.e. OmpSs) on some selected benchmark applica-
tions. The study provided insights on the impact of task based programming
model on applications’ energy efficiency. We further explored the effective-
ness of using SSE and AVX vectorization on the selected benchmarks. In
paper A.2, we integrated different data reuse transformation strategies with
OpenMP programming model and performed an energy efficiency analysis
of different transformation strategies. In the next paper, we made a com-
parative study of the state of the art BLAS libraries for a data cleansing al-
gorithm. We made several implementations of the data cleansing algorithm

Chapter 4. Research Summary 4.1. Research Process 39

using different BLAS libraries and analyzed the impact of those BLAS librar-
ies on its performance and energy efficiency.

In our initial investigations on different multi-core programming models
and techniques, the SIMD vectorization appeared to be a promising means
of providing energy efficient solutions for certain applications (in our case,
BlackScholes and FFTW benchmarks). As a consequence, we have decided
to use SIMD vectorization in order to improve the energy efficiency of the
selected applications.

Category B: SIMD-vectorization of Smart Grid Application

The paper in category B focused on addressing the second research question
(RQ2). To this end, our initial step was to profile the target application (i.e.
time series compute kernel) in order to identify the critical parts of it. In
the next step, we vectorized the identified critical parts of the application
in order to improve its performance and energy efficiency. However, the
vectorization did not pay-off as we expected. An in-depth investigation of
the application properties using micro-architectural activities (PAPI coun-
ters) revealed that the SIMD computations increased the pressure on the
memory subsystem, turning the application more and more memory/cache
bandwidth limited (e.g. CPU cycles stalls accounted for around 80% of the
total CPU cycles).

Table 4.3: Paper category B

ID Title Ref.
B.1 V-PFORDelta: Data Compression for Energy Efficient Com-

putation of Time Series
[106]

To address this problem, we presented a vectorized differential compression
method (V-PFORDelta) for cache/memory bound compute kernels (Table
4.3, Paper B.1). Our strategy is to increase the cache block utilization and to
reduce the total number of off-chip memory accesses by using a lightweight
real-time SIMD-based compression/decompression method. V-PFORDelta is
based on a hybrid data structure for the compressed data (AoS1+SoA2, aka
AoSoA3), regarded best practice in SIMD programming [107]. Our proposal
is also enhanced with SIMD prefetching to increase the data locality of the
application.

1Array of Structures.
2Structure of Arrays.
3Array of Struct of Arrays or Tiled Array of Structs.

Chapter 4. Research Summary

Category C: SIMD-vectorization of Applications from Different Application Domains

Once we improved the performance and energy efficiency using SIMD com-
pression on a time series compute kernel, we were interested in whether
our findings can be employed into applications from other domains as well.
Thereby, we aimed at addressing the third research question (RQ3). Table
4.4 lists papers that are relevant to RQ3.

Table 4.4: Paper category C

ID Title Ref.
C.1 A Vectorized k-means Algorithm for Compressed Datasets:

Design and Experimental Analysis
[108]

C.2 Energy Efficiency Effects of Vectorization in Data Reuse
Transformations for Many-core Processors - A Case Study

[109]

Paper C.1 particularly focused on exploring the effectiveness of SIMD com-
pression on different application domains. To this end, we chose k-means
algorithm to study which is one of the most influential data mining al-
gorithms. We made an efficient implementation of k-means algorithm by
integrating a lightweight SIMD compression method into k-means to re-
duce the total required number of memory accesses. We further enhanced
its performance by optimizing its loop traversal scheme and introducing an
in-register implementation of the most time-consuming function to optimize
data locality and conserve memory bandwidth. Paper C.2 was an extension
of our previous work done in Paper A.2. We extended our research work
by analyzing the effects of parallelism at different granularities by combin-
ing vectorization with multithreading. We consider both multi-core and
many-core system architectures in our study. Our experiments provided
clear indications that data reuse methodology in combination with a par-
allel programming model can significantly save energy as well as improve
performance of this type of applications running on multi-core processors.

Category D: Demand Response Optimization for Smart Grids

Papers in category D, as listed in Table 4.5, were produced by the author,
but not included in this PhD thesis. These papers present extended mod-
els of demand response (DR), which is an indispensable part of Smart Grid
technology. In paper D.I, we argued for the need to consider bidirectional
energy trading in DR and presented an efficient linear model for appliance
scheduling in a residential building with a hybrid power supply system and
an energy storage unit. In paper D.2, we proposed an ILP-based scheduling

Chapter 4. Research Summary 4.2. Research Results 41

algorithm for the presented model that minimizes the cost of energy con-
sumption while maximizing the comfort satisfaction in accordance with the
user-willingness to pay for comfort.

Table 4.5: Paper category D

ID Title Ref.
D.1 Load Scheduling in Smart Buildings with Bidirectional En-

ergy Trading
[110]

D.2 Cost-Comfort Balancing in a Smart Residential Building
with Bidirectional Energy Trading

[111]

4.2 Research Results
In this section, we present an overview of the papers included in this thesis.
The included papers are discussed in sections 4.2.1 through 4.2.6. These
sections contain the abstract of the paper and a description of the con-
tributions of the different co-authors. Most of the sections also contain a
discussion on how the paper is viewed in retrospective.

4.2.1 A.1

Case Studies of Multi-core Energy Efficiency in Task Based
Programs

H. Lien, L. Natvig, A. Al Hasib and J. C. Meyer
International Conference on ICT as Key Technology against Global

Warming
2012

Abstract

In this paper, we present three performance and energy case studies of
benchmark applications in the OmpSs environment for task based program-
ming. Different parallel and vectorized implementations are evaluated on
an Intel R© CoreTM i7-2600 quad-core processor. Using FLOPS/W derived
from chip MSR registers, we find AVX code to be clearly most energy effi-
cient in general. The peak on-chip GFLOPS/W rates are: Black-Scholes (BS)
0.89, FFTW 1.38 and Matrix Multiply (MM) 1.97. Experiments cover vari-
able degrees of thread parallelism and different OmpSs task pool schedul-
ing policies. We find that maximum energy efficiency for small and medium
sized problems is obtained by limiting the number of parallel threads. Com-

Chapter 4. Research Summary

parison of AVX variants with non-vectorized code shows ≈ 6 – 7x (BS) and
≈ 3 – 5x (FFTW) improvements in on-chip energy efficiency, depending on
the problem size and degree of multithreading.

Retrospective View

This paper presented energy efficiency results of task-based parallelism and
vectorization for three benchmark applications. At the time when the pa-
per was written, the energy efficiency analysis of task-based programming
model was largely an unexplored area. However, the implications of this
study might have been even wider and more comprehensive if we could
compare OmpSs results with other state-of-the-art programming models
(e.g. OpenMP) or estimate the overhead of OmpSs.

Roles of the Authors

Lien and Natvig came up with the initial idea and planned which experi-
ments to be carried out. Lien also conducted most of the experiments and
generated corresponding plots as part of his master’s thesis, while I con-
tributed to the paper by developing the energy estimation tool we used for
measuring core energy as well as by implementing and conducting the mat-
rix multiplication experiment.

Lien prepared the first draft of the paper while I contributed to the paper
by describing the energy measurement method. Natvig and Meyer gave ad-
vice on the benchmark applications and provided valuable comments which
improved the overall quality of the paper.

4.2.2 A.2

Performance and Power Efficiency Analysis of Data Reuse
Transformation Methodology on Multi-core Processor

A. Al Hasib, P. G. Kjeldsberg and L. Natvig
Euro-Par 2012: Parallel Processing Workshops

2012

Abstract

Memory latency and energy efficiency are two key constraints to high per-
formance computing systems. Data reuse transformations aim at reducing
memory latency by exploiting temporal locality in data accesses. Simultan-
eously, modern multi-core processors provide the opportunity of improving
performance with reduced energy dissipation through parallelization. In

Chapter 4. Research Summary 4.2. Research Results 43

this paper, we investigate to what extent data reuse transformations in com-
bination with a parallel programming model in a multi-core processor can
meet the challenges of memory latency and energy efficiency constraints.
As a test case, a "full-search motion estimation" kernel is run on the Intel R©

CoreTM i7-2600 processor. Energy Delay Product (EDP) is used as a met-
ric to compare energy efficiency. Achieved results show that performance
and energy efficiency can be improved by a factor of more than 6 and 15,
respectively, by exploiting a data reuse transformation methodology and
parallel programming model in a multi-core system.

Retrospective View

This paper was prepared to fulfill the requirement of a PhD course work,
where we investigated performance and energy efficiency effects of apply-
ing data-reuse transformations on a multi-core processor running a motion
estimation algorithm. The presentation in this paper could have been better.
In particular, the background information could be improved to allow the
reader to understand the context and significance of the data transfer and
storage exploration methodology. Moreover, from the perspective of this
thesis work, studying the effect of vectorization and performing scalability
analysis would have been very interesting. To this end, we continued this
work, which resulted in another research publication (Paper C.2).

Roles of the Authors

The initial idea and preliminary investigations were carried out by me.
The idea was then further refined through discussions with Kjeldsberg and
Natvig. Then I implemented the refined idea in our test framework, carried
out the planned experiments and analyzed the results.

I wrote the first draft of the paper. Kjeldsberg and Natvig contributed with
improvements of the paper.

4.2.3 A.3

Performance Optimization and Evaluation of a Data Cleansing
Algorithm on Multi-core Processors

A. Al Hasib and L. Natvig
Advanced Computer Architecture and Compilation for High-Performance

and Embedded Systems
2013

Chapter 4. Research Summary

Abstract

Due to the unceasing rising consciousness of energy and environment as
well as the requirement of high quality and reliable power supply for con-
sumers, smart grid has become a common aim of power electric devel-
opment throughout the world. Reliable and accurate power prediction
schemes are the basis of the smart grid technology. These prediction schemes
are generally based on complex formulations that are computationally ex-
pensive but often need to be solved in shorter time scales. In this paper,
we have studied the data cleansing step of a smart grid application, and
then applied several optimization techniques to accelerate its performance.
Finally we have evaluated the performance and energy efficiency of the im-
plemented algorithm on two multi-core platforms.

Retrospective View

This article featured preliminary survey of a set of BLAS libraries on a data
cleansing algorithm. The scope of paper was limited to making an efficient
implementation of the data cleansing algorithm and analyzing its perform-
ance and energy efficiency on Intel multi-core platforms. Data cleansing is
often used as a preprocessing step of load prediction method and it is in
general compute intensive process. Therefore, the contribution of the pa-
per could be improved by studying the impact of the performance of this
preprocessing step on short- and long-term load prediction process in the
smart grids. Additionally, it would have been interesting to perform a full
system energy efficiency evaluation rather than limiting it only to the core
energy evaluation. Moreover, this study could have been further improved
by performing the same experiments on many-core platforms.

Roles of the Authors

The initial idea and preliminary investigations were carried out by me. The
idea was then further refined through discussion with Natvig. Afterwards, I
implemented the refined idea in our test framework, carried out the planned
experiments and analyzed the results.

I wrote the first draft of the paper. Natvig contributed with supervision and
comments to the presentation, organization and language.

Chapter 4. Research Summary 4.2. Research Results 45

4.2.4 B.1

V-PFORDelta: Data Compression for Energy Efficient Computation
of Time Series

A. Al Hasib, J. M. Cebrián and L. Natvig
International Conference on High Performance Computing

2015

Abstract

Chip multiprocessors (CMPs) and heterogeneous architectures have become
predominant in all market segments, from embedded to high performance
computing. These architectures exacerbate on-chip data requirements, cre-
ating additional pressure on the memory subsystem. Consequently, effi-
cient utilization of on-chip memory space becomes critical for data intens-
ive applications. A promising means of addressing this challenge is to use
an effective compression method to reduce the data transmitted along the
memory hierarchy.

In this paper we present V-PFORDelta, a real-time vectorized integer dif-
ferential compression method for memory bound applications. We evalu-
ate the effectiveness of our SIMD (Single Instruction Multiple Data stream)
based compression method on an industrial hydrological time series data
processing kernel. We analyzed both Streaming SIMD Extensions (SSE) and
Advanced Vector Extensions 2 (AVX2) versions of the compression method.
Results show that the performance and energy efficiency can be improved
up to a factor of 3.1 and 8.2, respectively. The proposed method not only
outperforms the uncompressed SIMD implementations of the hydrological
kernel, but also reduces the data storage requirements by a factor of 1.56x
to 3.38x, depending on the analyzed dataset.

Retrospective View

In this paper, we demonstrated that the approach of using a SIMD-based
integer compression algorithm in a memory bound application is feasible,
as long as decompression can be performed in a reasonable time. How-
ever, there is still some room for improvement with respect to the evalu-
ation of the proposed method. For example, validating the feasibility of
the proposed approach using a diverse set of real-world datasets would
have strengthened our claim. Another aspect that was not covered is the
evaluation of our approach on many-core platform. Nevertheless, the con-
tinuation of this work for a different application domain lead to another

Chapter 4. Research Summary

research publication (Paper C.1).

Roles of the Authors

I carried out the preliminary investigation and came up with the initial idea.
The initial idea was then further refined through discussions with Cebrián
and Natvig. Next I planned which experiments to be carried out, conduc-
ted the planned experiments and analyzed the obtained results. Cebrián
worked as an advisor and provided necessary guidelines during the experi-
ments.

First draft of the paper was prepared by me. Cebrián and Natvig provided
valuable feedback on the draft to improve the overall quality of the paper.

4.2.5 C.1

A Vectorized K-means Algorithm for Compressed Datasets: Design
and Experimental Analysis

A. Al Hasib, J. M. Cebrián and L. Natvig
Journal of Supercomputing

2018

Abstract

Clustering algorithms (i.e., gaussian mixture models, k-means, etc.) tackle
the problem of grouping a set of elements in such a way that elements from
the same group (or cluster) have more similar properties to each other than
to those elements in other clusters. The specific properties are selected by
the users and can vary between executions. This simple concept turns out to
be the basis in complex algorithms from many application areas, including
sequence analysis and genotyping in bio-informatics, medical imaging, an-
timicrobial activity, market research, social networking etc. However, as the
data volume continues to increase, the performance of clustering algorithms
is heavily influenced by the memory subsystem, which is especially critical
in real-time data analysis.

In this paper, we propose a novel and efficient implementation of Lloyd’s
k-means clustering algorithm to substantially reduce data movement along
the memory hierarchy. Our contributions are based on the fact that the vast
majority of processors are equipped with powerful Single Instruction Mul-
tiple Data (SIMD) instructions that are, in most cases, underused. SIMD
improves the CPU computational power and, if used wisely, can be seen as

Chapter 4. Research Summary 4.2. Research Results 47

an opportunity to improve on the application data transfers by compress-
ing/decompressing the data, specially for memory-bound applications. Our
contributions include a SIMD-friendly data-layout organization, in-register
implementation of key functions and SIMD-based compression. We demon-
strate that using our optimized SIMD-based compression method, it is pos-
sible to improve the performance and energy of k-means by a factor of 4.5x
and 8.7x respectively for a i7 Haswell machine, and 22x and 22.2x for Xeon
Phi: KNL, running a single thread.

Retrospective View

This paper demonstrated the importance of vectorization in future HPC sys-
tems. Vectorization can turn CPU bound applications into memory bound,
leaving more idle time to compress-decompress, specially when the pro-
cessor runs out of reservation stations or load/store queue entries and it is
unable to improve on memory-level parallelism. We have shown that integ-
ration of compression is feasible, as long as we can do it in a reasonable
time. While the idea seemed to be a promising solution to make an efficient
implementation of Lloyd’s k-means algorithm, the experimental evaluations
could have been improved by making an extensive comparison of our im-
plementations with other parallel k-means implementations.

Roles of the Authors

I came up with the concept, performed preliminary investigation, planned
which experiments to be carried out and implemented and conducted the
planned experiments on multi-core systems. Cebrián helped us to get ac-
cess to many-core system (i.e. KNL co-processor) and executed planned
experiments on many-core system.

The first draft of the paper was prepared by me. Cebrián provided valuable
comments which improved the overall quality of the paper. Natvig reviewed
the paper and contributed to improve the presentation, organization and
language of the paper.

4.2.6 C.2

Energy Efficiency Effects of Vectorization in Data Reuse
Transformations for Many-core Processors – A Case Study

A. Al Hasib, L. Natvig, P. G. Kjeldsberg and J. M. Cebrián
Journal of Low Power Electronics and Applications

2017

Chapter 4. Research Summary

Abstract

Thread-level and data-level parallel architectures have become the design of
choice for a new era of energy efficient computing systems. However, these
architectures have substantially higher requirements on the memory sub-
system than scalar architectures, making memory latency and bandwidth
critical in their overall efficiency. Data reuse exploration aims at reducing
the pressure on the memory subsystem by exploiting the temporal locality
in data accesses. In this paper, we investigate the effects on performance
and energy efficiency from a data reuse methodology combined with par-
allelization and vectorization in many-core processors. As a test case, a
“full-search motion estimation" kernel is evaluated on an Intel R© CoreTM i7-
4700K (Haswell) multi-core processor as well as on an Intel R© Xeon PhiTM

many-core processor (Knights Landing). The Energy Delay Product (EDP) is
used as metric for evaluating energy efficiency. The initial results running a
single thread of scalar implementation of data reuse transformations show
that performance and energy efficiency can be improved by a factor of 3.3x
and 10.1x respectively on the Haswell system. The SSE version achieves
performance improvements of around 10x over the scalar, and 103x better
EDP. These results improve by 10 to 15% when using data reuse techniques.
Finally, the most optimized version using data reuse and AVX512 achieves
a speedup of 35.7x and an EDP improvement of 1271.6x when running a
single thread on the Xeon Phi system.

Retrospective View

Though this paper was an extension of paper A.2, there was still ample room
for improvement. The limitations and shortcoming of the paper are primar-
ily to be attributed to the use of only one demonstrator application. Hence,
the methodology could as well be tested with other real-world applications.
Additionally, the experimental evaluations on many-core platform (i.e. KNL
co-processor) could have been improved by evaluating all the different ker-
nel implementations that are also considered for multi-core platforms.

Roles of the Authors

I carried out the preliminary investigation and came up with the initial
idea. The initial idea was refined further through extensive discussions
with Natvig and Kjeldsberg. Next I planned which experiments to be carried
out, conducted the planned experiments and analyzed the obtained results.
Cebrián helped us to get access to many-core system (i.e. KNL co-processor)
in order to execute the planned experiments.

Chapter 4. Research Summary 4.3. Other Publications 49

The first draft of the paper was prepared by me. Natvig and Kjeldsberg read
the draft thoroughly and provided valuable comments which improved the
overall quality of the paper. Cebrián reviewed the paper as well as made
significant improvements on the presentation, organization and language
of the paper.

4.3 Other Publications
• Paper D.1: Abdullah Al Hasib, Nikita Nikitin and Lasse Natvig. Cost-

Comfort Balancing in a Smart Residential Building with Bidirectional
Energy Trading, 33rd International Performance, Computing, and Com-
munication Conference (IPCCC 2014), Austin, USA, 5-7 December,
2014.

• Paper D.2: Abdullah Al Hasib, Nikita Nikitin and Lasse Natvig. Cost-
Comfort Balancing in a Smart Residential Building with Bidirectional
Energy Trading. In Sustainable Internet and ICT for Sustainability
(SustainIT 2015), Madrid, Spain. 2015, pp. 1-6.

Chapter 5

Concluding Remarks

Lessons learnt and the contributions from this thesis are summarized in this
chapter. Section 5.1 gives an overview of the contributions in relation to the
research questions and challenges put together earlier in this thesis. Finally,
Section 5.2 lays down some future prospects as a direct consequence of this
work.

5.1 Conclusion
In this thesis we have analyzed different approaches to improve perform-
ance and energy efficiency of a set of benchmarks and smart grid applica-
tions on multi-core and many-core systems. Though there are several dif-
ferent popular programming techniques for multi-core systems, we have
primarily focused on vectorization techniques. These techniques showed
very promising results in our initial energy efficiency studies.

In the first part of this research we have studied Black-Scholes, FFTW and
Matrix multiplications to understand how vectorization techniques can im-
prove energy efficiency of these well-known benchmarks. This study has
demonstrated that vectorization can lead to a significant improvement on
the application’s energy efficiency. For instance, the AVX variant of Black-
Scholes is ≈7x more on-chip energy efficient than the corresponding scalar
variant.

In the next part, we have focused on smart grid applications, k-means clus-
tering algorithms and a motion estimation kernel. We have observed that
auto-vectorization performs rather poorly for these applications. For in-
stance, the performance gain using SSE vectorization for Lloyd’s k-means

51

Chapter 5. Concluding Remarks

clustering algorithm barely reached 30% using auto-vectorization. In con-
trast to the auto-vectorization, hand-tuned vectorization provided much
better results in compute bound applications, like the evaluated full-search
motion estimation kernel. However, for the time-series kernel, even the
hand-tuned vectorization resulted in no performance benefit. In that scen-
ario, the application turned into memory/cache bound due to simultaneous
accesses of multiple data elements. Data compression can be a promising
technique to address this limitation by reducing data movement across the
memory hierarchy and expanding the effective cache capacity with little
computational overhead. In the final part of this dissertation, we address
this question by analyzing the compressibility of several real-world applica-
tions on several Intel multi-core and many-core platforms. We have shown
that SIMD compression could in fact be beneficial to many real-world ap-
plications, particularly cache/memory bound applications.

The contributions of this study spread across different papers are here grouped
together by the research questions they address. Some of the papers ad-
dress multiple research questions, while most of the research questions are
addressed in more than one paper.

5.1.1 RQ 1: To what extent is multi-core programming suitable for the se-
lected smart grid applications?

Paper A.1, A.2, A.3 and B.1 shed light on this research question.

• Paper A.1: In paper A.1, we performed initial case-studies to demon-
strate the impact of performance and power efficiency of vectoriza-
tion and task-based programming in the OmpSs environment. We
demonstrated that a significant improvement in performance and on-
chip energy efficiency can be achieved using vectorization while the
performance improvement from thread parallelism using OmpSs does
not necessarily imply a better energy efficiency. We also found that the
energy efficiency varies with problem size of the selected application
kernels. This variation of energy efficiency with task size suggests that
energy-aware task scheduling may adapt task sizes for energy efficient
execution, which provides an interesting direction for future research.

• Paper A.2: In paper A.2, we presented a method to combine data re-
use transformations with the OpenMP parallel programming model,
so as to improve performance and energy efficiency of a motion es-
timation kernel on multi-core processors.

Chapter 5. Concluding Remarks 5.1. Conclusion 53

• Paper A.3: We further demonstrated in Paper A.3 that standard ker-
nel libraries such as Intel MKL (Math Kernel Library), ATLAS (Auto-
matically Tuned Linear Algebra Software) and LAPACK (Linear Al-
gebra PACKage) can be used to boost up the performance of compute-
intensive applications using data cleansing [88] as a demonstrator
application. Additionally, MKL appeared to be more energy efficient
than ATLAS or PLASMA (Parallel Linear Algebra Software for Multi-
core Architectures) [112] libraries on our test platforms even though
the performance of these libraries were comparable.

• Paper B.1: After the good results shown in Paper A.1 and A.2, we de-
cided to test the applicability of the vectorization on time series com-
pute kernel provided by Powel AS (Paper B.1). However, we observed
that simply using vectorization turned the kernel into memory bound,
and had a negative impact on the overall performance. The processing
units were often waiting for data to arrive from the memory subsys-
tem. Thus, we uncovered that cache/memory bandwidth can be a
bottleneck for an application when vectorization is applied, particu-
larly for memory bound applications unless it is applied carefully.

5.1.2 RQ 2: To what extent can we improve the energy efficiency of the
selected applications by using SIMD compression techniques?

• Paper B.1: The novelty of this work was to improve the perform-
ance and energy efficiency of a memory bound compute kernel (e.g.
the Powel Time series compute kernel) by using a SIMD based differ-
ential compression method. Our strategy was to increase the cache
block utilization and to reduce the total number of off-chip memory
accesses by using V-PFORDelta, a lightweight real-time SIMD-based
compression/decompression method based on a hybrid data structure
for the compressed data (AoS1+SoA2, aka AoSoA3).

5.1.3 RQ 3: Can we extend our research results to another application do-
main?

In papers C.1 and C.2, we extended our experiments into two different
application domains to evaluate the effectiveness of vector processing and
optimization. While C.1 paper contains the study of k-means - a widely used

1Array of Structures.
2Structure of Arrays.
3Array of Struct of Arrays OR Tiled Array of Structs

Chapter 5. Concluding Remarks

algorithm in data mining field, C.2 paper contains the study of a motion
estimation algorithm - a multimedia application kernel.

• Paper C.1: We make an efficient implementation of a state-of-the-art
k-means algorithm by using a SIMD-friendly data layout and by apply-
ing SIMD vectorization to make good use of the SIMD features avail-
able in modern architectures. Currently we have tested our proposal
using AVX512, but ARM is about to release SVE [24], with support for
up to 2048-bit vectors. This shows the importance of vectorization in
future HPC systems. However, vectorization can also turn CPU bound
applications into memory bound. In such scenario, it will leave more
CPU idle time for data compression-decompression. Here, we have
shown that integration of compression is feasible, as long as we can
do it in a reasonable time.

• Paper C.2: The use of data reuse transformations together with vec-
torization is a promising approach to improve the performance and
energy efficiency of massively parallel data-dominated applications
(such as motion estimation) on multi- and many-core systems. Signi-
ficant energy improvements can be achieved from throughput-oriented
architectures that rely on low-power processing cores (e.g. KNL cores),
especially if those cores provide SIMD/vector capabilities. These ar-
chitectures have better energy efficiency (simple cores with low clock
frequency) than complex cores available in commodity CPUs.

As compared to multithreaded parallelism, data-parallelism through
vector processing results in better energy savings even at peak core
frequency. While doubling the number of cores results in approxim-
ately double the average power dissipated by the CPU, using vector
units in Intel comes almost "for free" in terms of average power. Sim-
ilar results have also been reported for several Intel and ARM CPUs
in [113]. As a consequence, vector processing can be an attractive
solution to improve energy efficiency without sacrificing performance,
especially in a situation where performance trade-off is not desirable.

The deployment order of different optimization techniques has a great
impact on the application performance. First, we apply multithread-
ing to exploit explicit parallelism across multiple cores, which is fol-
lowed by fine-grained parallelism through vectorization at each core.
Finally, data reuse transformations are applied as it depends on both
multithreading and vectorization for further improvement. However,
on applications that face scalability issues, users may want to limit

Chapter 5. Concluding Remarks 5.2. Future Work 55

the amount of threads running in their application and rely more on
SIMD units, since the energy cost of running on extra physical cores
is much higher than using SIMD instructions.

5.2 Future Work
The foundation built in this research provides the opportunity to further
explore and conduct experiments in other related directions. The following
are a few of the possible fruitful extensions of this research work.

• In our research, we found that the energy efficiency varies with prob-
lem size of the selected application kernels. This variation of energy
efficiency with task size suggests that energy-aware task scheduling
may adapt task sizes for energy efficient execution, which provides an
interesting direction for future research. It would be also interesting
to extend our work by studying the impact of varying CPU clock fre-
quencies, task scheduling policies, and using Turbo Boost Technology.

• In k-means optimization, our initial study shows that the use of pre-
computed values using a look-up table can lead to more than 30%
performance improvement for the single threaded SSE vectorized k-
means kernel. This can be explored more extensively to understand
the effect of using a look-up table while approximating the distance
vector for determining the membership of a data point.

• Furthermore, our evaluation of k-means optimization was limited to
only a couple of data-sets. It would be also interesting to study our
proposed method using additional input sets with varying sizes and
compression ratios, to get a better idea of the potential of the pro-
posal in different fields of application. This work can be extended by
studying the effectiveness of SIMD compression method in other types
of data-structures (e.g. B-Trees) or algorithms as well.

• Our SIMD optimization of motion estimation kernel study was only
limited to static and dynamic scheduling (in the KNL co-processor).
Therefore, this work can be further extended to analyze the effect
of using more advanced scheduling method (e.g., guided scheduling)
along with compiler assisted selected lock assignment on the data re-
use transformations in the simultaneous multithreading environment.
Also extending our study by running the experiments on an execution
platform supporting a concept like drowsy cache that powers down

Chapter 5. Concluding Remarks

the unused parts of the cache would be interesting as it will give more
comparable results against the results of Wuytack et al [114].

Bibliography

[1] B. H. Calhoun, S. Khanna, R. Mann and J. Wang. ‘Sub-threshold
Circuit Design with Shrinking CMOS Devices’. In: IEEE International
Symposium on Circuits and Systems. May 2009, pp. 2541–2544. DOI:
10.1109/ISCAS.2009.5118319.

[2] Vivek De. ‘Energy-Efficient Computing in Nanoscale CMOS’. In: IEEE
Design Test 33.2 (Apr. 2016), pp. 68–75. ISSN: 2168-2356.

[3] Shekhar Borkar and Andrew A. Chien. ‘The Future of Micropro-
cessors’. In: Communications of the ACM 54.5 (May 2011), pp. 67–
77. ISSN: 0001-0782.

[4] P. Chaparro, J. Gonzalez, G. Magklis, Cai Qiong and A. Gonzalez.
‘Understanding the Thermal Implications of Multi-Core Architec-
tures’. In: IEEE Transactions on Parallel and Distributed Systems 18.8
(Aug. 2007), pp. 1055–1065. ISSN: 1045-9219. DOI: 10 . 1109 /

TPDS.2007.1092.

[5] David J. Brown and Charles Reams. ‘Toward Energy-efficient Com-
puting’. In: Communications of the ACM 53.3 (Mar. 2010), pp. 50–
58. ISSN: 0001-0782.

[6] Karl Rupp. 40 Years of Microprocessor Trend Data. URL: https://
www.karlrupp.net/2015/06/40-years-of-microprocessor-

trend-data/.

[7] G. E. Moore. ‘Cramming More Components onto Integrated Cir-
cuits’. In: Electronics 38.8 (Apr. 1965), pp. 114–117. ISSN: 1098-
4232. DOI: 10.1109/N-SSC.2006.4785860.

57

Chapter 5. Concluding Remarks

[8] Intel. Intel Turbo Boost Technology in Intel Core Microarchitecture
(Nehalem) Based Processors. Tech. rep. Nov. 2008.

[9] Luca Benini and Giovanni De Micheli. ‘"System-level Power Optim-
ization: Techniques and Tools"’. In: ACM Transaction on Design Auto-
mation of Electronic Systems 5.2 (Apr. 2000), pp. 115–192.

[10] V. Raghunathan, M. B. Srivastava and R. K. Gupta. ‘A Survey of
Techniques for Energy Efficient On-chip Communication’. In: IEEE
Design Automation Conference. June 2003, pp. 900–905.

[11] Parthasarathy Ranganathan. ‘Recipe for Efficiency: Principles of Power-
Aware Computing’. In: Communication of the ACM 53.4 (Apr. 2012).

[12] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. Leo Rideovt, E. Bas-
sous and A. R. Leblanc. ‘Design of Ion-implanted MOSFET’s with
Very Small Physical Dimensions’. In: IEEE Solid-State Circuits Soci-
ety Newsletter 12.1 (Oct. 2007), pp. 38–50. ISSN: 1098-4232.

[13] Cor Meenderinck and Ben Juurlink. ‘(When) Will CMPs Hit the
Power Wall?’ In: Proceedings of the Euro-Par Workshops - Parallel
Processing. Springer-Verlag, 2009, pp. 184–193.

[14] W. Huang, K. Rajamani, M. R. Stan and K. Skadron. ‘Scaling with
Design Constraints: Predicting the Future of Big Chips’. In: IEEE Mi-
cro 31.4 (July 2011), pp. 16–29. ISSN: 0272-1732. DOI: 10.1109/
MM.2011.42.

[15] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sank-
aralingam and Doug Burger. ‘Dark Silicon and the End of Multicore
Scaling’. In: Proceedings of the International Symposium on Com-
puter Architecture. ISCA ’11. New York, NY, USA, 2011, pp. 365–
376. ISBN: 978-1-4503-0472-6.

[16] Manuel F. Dolz, Francisco D. Igual, Thomas Ludwig, Luis Pinuel and
Enrique S. Quintana-Ortí. ‘Balancing Task- and Data-level Parallel-
ism to Improve Performance and Energy Consumption of Matrix
Computations on the Intel Xeon Phi’. In: Computers and Electrical
Engineering 46.C (Aug. 2015), pp. 95–111. ISSN: 0045-7906. DOI:
10.1016/j.compeleceng.2015.06.009.

[17] Barbara Chapman, Gabriele Jost and Ruud van der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming (Scientific and Engin-
eering Computation). The MIT Press, 2007. ISBN: 9780262533027.

Chapter 5. Concluding Remarks BIBLIOGRAPHY 59

[18] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesus Labarta,
Luis Martinell, Xavier Martorell and Judit Planas. ‘OmpSs - A Pro-
posal for Programming Heterogeneous Multi-core Architetcures’. In:
Parallel Processing Letters 21 (Mar. 2011), pp. 173–193.

[19] C. E. Leiserson. ‘The Cilk++ Concurrency Platform’. In: Proceedings
of the Design Automation Conference. July 2009, pp. 522–527. DOI:
10.1145/1629911.1630048.

[20] W. Kim and M. Voss. ‘Multicore Desktop Programming with Intel
Threading Building Blocks’. In: IEEE Software 28.1 (Jan. 2011),
pp. 23–31. ISSN: 0740-7459.

[21] Shane Cook. CUDA Programming: A Developer’s Guide to Parallel
Computing with GPUs. 1st. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2013. ISBN: 9780124159884.

[22] Juan M. Cebrián, Lasse Natvig and Jan Christian Meyer. ‘Perform-
ance and Energy Impact of Parallelization and Vectorization Tech-
niques in Modern Microprocessors’. In: Computing (2013). ISSN:
1436-5057.

[23] R. James. Additional AVX-512 Instructions. 2014. URL: https://
software.intel.com/en-us/blogs/additional-avx-512-

instructions.

[24] Nigel Stephens. Technology Update: The Scalable Vector Extension
(SVE) for the ARMv8-A architecture. 2016. URL: https://community.
arm.com/groups/processors/blog/2016/08/22/technology-

update- the- scalable- vector- extension- sve- for- the-

armv8-a-architecture.

[25] Muhammad Shafique, Siddharth Garg, Tulika Mitra, Sri Parameswaran
and Jorg Henkel. ‘Dark Silicon As a Challenge for Hardware/Soft-
ware Co-design: Invited Special Session Paper’. In: Proceedings of the
International Conference on Hardware/Software Codesign and System
Synthesis. CODES ’14. New Delhi, India: ACM, 2014, 13:1–13:10.
ISBN: 978-1-4503-3051-0. DOI: 10.1145/2656075.2661645.

[26] Dustin Feld, Thomas Soddemann, Michael Junger and Sven Mal-
lach. ‘Hardware-Aware Automatic Code-Transformation to Support
Compilers in Exploiting the Multi-Level Parallel Potential of Modern
CPUs’. In: Proceedings of the International Workshop on Code Optim-
isation for Multi and Many Cores. COSMIC ’15. San Francisco Bay
Area, CA, USA: ACM, 2015, 2:1–2:10. ISBN: 978-1-4503-3316-0.
DOI: 10.1145/2723772.2723776.

Chapter 5. Concluding Remarks

[27] Lasse Natvig and Alexandru C. Iordan. ‘Green Computing: Saving
Energy by Throttling, Simplicity and Parallelization’. In: CEPIS Up-
grade 12.4 (Oct. 2011), pp. 49–58. ISSN: 1684-5285.

[28] G. Lawson, M. Sosonkina and Y. Shen. ‘Energy Evaluation for Ap-
plications with Different Thread Affinities on the Intel Xeon Phi’. In:
Proceedings of the International Symposium on Computer Architec-
ture and High Performance Computing Workshop. Oct. 2014, pp. 54–
59.

[29] Davendar Kumar Ojha and Geeta Sikka. ‘A Study on Vectorization
Methods for Multicore SIMD Architecture Provided by Compilers’.
In: Advances in Intelligent Systems and Computing 248.1 (2014),
pp. 723–728. ISSN: 978-3-319-03107-1.

[30] Juan M. Cebrián, Magnus Jahre and Lasse Natvig. ‘Optimized Hard-
ware for Suboptimal Software: The Case for SIMD-aware Bench-
marks’. In: Proceedings of the International Symposium on Perform-
ance Analysis of Systems and Software. Mar. 2014, pp. 66–75.

[31] Avinash Sodani. Race to Exascale: Challenges and Opportunities. URL:
http://www.microarch.org/micro44/files/Micro%20Keynote%

20Final%20-%20Avinash%20Sodani.pdf.

[32] Hans Michael Gerndt, Michael Glaß, Sri Parameswaran and Barry L.
Rountree. ‘Dark Silicon: From Embedded to HPC Systems (Dagstuhl
Seminar 16052)’. In: Dagstuhl Reports 6.1 (2016). Ed. by Hans Mi-
chael Gerndt, Michael Glaß, Sri Parameswaran and Barry L. Roun-
tree, pp. 224–244. ISSN: 2192-5283. DOI: 10.4230/DagRep.6.1.
224.

[33] A. Pahlevan, J. Picorel, A. P. Zarandi, D. Rossi, M. Zapater, A. Bar-
tolini, P. G. Del Valle, D. Atienza, L. Benini and B. Falsafi. ‘Towards
Near-Threshold Server Processors’. In: 2016 Design, Automation Test
in Europe Conference Exhibition (DATE). Mar. 2016, pp. 7–12.

[34] J. Henkel, S. Pagani, H. Khdr, F. Kriebel, S. Rehman and M. Shafique.
‘Towards Performance and Reliability-Efficient Computing in the
Dark Silicon Era’. In: 2016 Design, Automation Test in Europe Con-
ference Exhibition (DATE). Mar. 2016, pp. 1–6.

[35] Bharathwaj Raghunathan, Yatish Turakhia, Siddharth Garg and Di-
ana Marculescu. ‘Cherry-picking: Exploiting Process Variations in
Dark-silicon Homogeneous Chip Multi-processors’. In: Proceedings
of the Conference on Design, Automation and Test in Europe. Gren-
oble, France, 2013, pp. 39–44. ISBN: 978-1-4503-2153-2.

Chapter 5. Concluding Remarks BIBLIOGRAPHY 61

[36] Qiang Liu and Wayne Luk. ‘Heterogeneous Systems for Energy Ef-
ficient Scientific Computing’. In: Proceedings of International Sym-
posium on Reconfigurable Computing: Architectures, Tools and Applic-
ations. Ed. by Oliver C. S. Choy, Ray C. C. Cheung, Peter Athanas
and Kentaro Sano. Springer Berlin Heidelberg, 2012, pp. 64–75.
ISBN: 978-3-642-28365-9.

[37] Lei Yang, Weichen Liu, Weiwen Jiang, Chao Chen, Mengquan Li,
Peng Chen and Edwin H.M. Sha. ‘Hardware-software Collabora-
tion for Dark Silicon Heterogeneous Many-core Systems’. In: Future
Generation Computer Systems 68 (2017), pp. 234–247. ISSN: 0167-
739X. DOI: http://doi.org/10.1016/j.future.2016.09.012.

[38] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott
Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka,
James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,
Phillip Yi Xiao and Doug Burger. ‘A Reconfigurable Fabric for Accel-
erating Large-scale Datacenter Services’. In: Proceeding of the Inter-
national Symposium on Computer Architecuture. Minneapolis, Min-
nesota, USA: IEEE Press, 2014, pp. 13–24. ISBN: 978-1-4799-4394-
4.

[39] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald and R.
Menon. Parallel Programming in OpenMP. 2001.

[40] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan and G. Zhang. ‘The Design of OpenMP
Tasks’. In: IEEE Transactions on Parallel and Distributed Systems 20.3
(Mar. 2009), pp. 404–418.

[41] Judit Planas, Rosa M. Badia, Eduard Ayguadé and Jesus Labarta.
‘Hierarchical Task-based Programming With StarSs’. In: The Inter-
national Journal of High Performance Computing Applications 23.3
(2009), pp. 284–299. DOI: 10.1177/1094342009106195.

[42] The nanos group site: The mercurium compiler. URL: http://nanos.
ac.upc.edu/mcxx.

[43] Thomas Willhalm and Nicolae Popovici. ‘Putting Intel Threading
Building Blocks to Work’. In: Proceedings of the International Work-
shop on Multicore Software Engineering. IWMSE ’08. Leipzig, Ger-
many: ACM, 2008, pp. 3–4. ISBN: 978-1-60558-031-9. DOI: 10.

1145/1370082.1370085.

Chapter 5. Concluding Remarks

[44] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker and
Jack Dongarra. MPI – The Complete Reference. 2nd. London, Eng-
land: The MIT press, 1998. ISBN: 9780124159334.

[45] Charles E. Leiserson. ‘The Cilk++ concurrency platform’. In: The
Journal of Supercomputing 51.3 (2010), pp. 244–257. ISSN: 1573-
0484. DOI: 10.1007/s11227-010-0405-3.

[46] Umut A. Acar, Arthur Chargueraud and Mike Rainey. ‘Scheduling
Parallel Programs by Work Stealing with Private Deques’. In: Pro-
ceedings of the Symposium on Principles and Practice of Parallel Pro-
gramming. PPoPP ’13. Shenzhen, China: ACM, 2013, pp. 219–228.
ISBN: 978-1-4503-1922-5. DOI: 10.1145/2442516.2442538.

[47] J. E. Stone, D. Gohara and G. Shi. ‘OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems’. In: Computing in
Science Engineering 12.3 (May 2010), pp. 66–73. ISSN: 1521-9615.
DOI: 10.1109/MCSE.2010.69.

[48] J. Fang, A. L. Varbanescu and H. Sips. ‘A Comprehensive Perform-
ance Comparison of CUDA and OpenCL’. In: Proceedings of the In-
ternational Conference on Parallel Processing. Sept. 2011, pp. 216–
225.

[49] S.J. Pennycook, S.D. Hammond, S.A. Wright, J.A. Herdman, I. Miller
and S.A. Jarvis. ‘An investigation of the performance portability of
OpenCL’. In: Journal of Parallel and Distributed Computing 73.11
(2013). Novel architectures for high-performance computing, pp. 1439–
1450. ISSN: 0743-7315. DOI: http://doi.org/10.1016/j.jpdc.
2012.07.005.

[50] D.J.N. van Doets H.C.; Eijck. ‘The Haskell Road to Logic, Maths and
Programming, Second Edition’. In: Texts in Computing 4 (2012),
pp. 1–34. ISSN: 978-0-9543006-9-2.

[51] Kevin Hammond. ‘Glasgow Parallel Haskell (GpH)’. In: Encyclopedia
of Parallel Computing. Ed. by David Padua. Boston, MA: Springer
US, 2011, pp. 768–779. ISBN: 978-0-387-09766-4.

[52] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. Mc-
Donell and Vinod Grover. ‘Accelerating Haskell Array Codes with
Multicore GPUs’. In: Proceedings of the Workshop on Declarative As-
pects of Multicore Programming. DAMP ’11. Austin, Texas, USA: ACM,
2011, pp. 3–14. ISBN: 978-1-4503-0486-3. DOI: 10.1145/1926354.
1926358.

Chapter 5. Concluding Remarks BIBLIOGRAPHY 63

[53] Silvia Breitinger, Ulrike Klusik and Rita Loogen. ‘From (Sequential)
Haskell to (Parallel) Eden: An Implementation Point of View’. In:
Proceedings of International Symposium on Principles of Declarative
Programming. Ed. by Catuscia Palamidessi, Hugh Glaser and Karl
Meinke. Springer Berlin Heidelberg, 1998, pp. 318–334. ISBN: 978-
3-540-49766-0.

[54] Jeff Epstein, Andrew P. Black and Simon Peyton-Jones. ‘Towards
Haskell in the Cloud’. In: SIGPLAN Not. 46.12 (Sept. 2011), pp. 118–
129. ISSN: 0362-1340. DOI: 10.1145/2096148.2034690.

[55] Prabhat Totoo and Hans-Wolfgang Loid. ‘Parallel Haskell implement-
ations of the N-body problem’. In: Concurrency and Computation -
Practice and Experience 72.0 (2012), pp. 1–34. ISSN: 0743-7315.

[56] Daniel Kusswurm. ‘Streaming SIMD Extensions’. In: Modern X86
Assembly Language Programming. Apress, Berkeley, CA, Nov. 2014,
pp. 179–206. ISBN: 978-1-4842-0064-3.

[57] Varghese George, Sanjeev Jahagirdar, Chao Tong, K. Smits, Satish
Damaraju, S. Siers, Ves Naydenov, Tanveer Khondker, Sanjib Sarkar
and Puneet Singh. ‘Penryn: 45-nm next generation Intel R© CoreTM

2 processor’. In: Proceedings of the Asian Solid-State Circuits Confer-
ence. Nov. 2007, pp. 14–17. DOI: 10.1109/ASSCC.2007.4425784.

[58] N. Kurd, J. Douglas, P. Mosalikanti and R. Kumar. ‘Next Generation
Intel Micro-architecture (Nehalem) Clocking Architecture’. In: Pro-
ceedings of the Symposium on VLSI Circuits. June 2008, pp. 62–63.
DOI: 10.1109/VLSIC.2008.4585952.

[59] Intel. Intel Advanced Vector Extensions Programming Reference. June
2011. URL: http://software.intel.com/file/36945.

[60] Paul Cockshott and Kenneth Renfrew. ‘SIMD Programming in As-
sembler and C’. In: SIMD Programming Manual for Linux and Win-
dows. London: Springer London, 2004, pp. 23–46. ISBN: 978-1-
4471-3862-4. DOI: 10.1007/978-1-4471-3862-4_3.

[61] Intel. Intel Intrinsics Guide. URL: http://software.intel.com/
sites/landingpage/IntrinsicsGuide/.

[62] Agner Fog. VCL: C++ Vector Class Library. URL: http://www.

agner.org/optimize/vectorclass.pdf.

[63] Clark L. Coleman. Using Inline Assembly With gcc. Nov. 2011. URL:
http://www.mujweb.cz/tvrzsky/asm/gcc-inline-asm.pdf.

Chapter 5. Concluding Remarks

[64] M. A. Nichols, H. J. Siegel and H. G. Dietz. ‘Data management
and control-flow aspects of an SIMD/SPMD parallel language/com-
piler’. In: IEEE Transactions on Parallel and Distributed Systems 4.2
(Feb. 1993), pp. 222–234. ISSN: 1045-9219. DOI: 10.1109/71.
207596.

[65] Jaekyu Lee, Hyesoon Kim and Richard Vuduc. ‘When Prefetching
Works, When It Doesn’t, and Why?’ In: ACM Transactions on Archi-
tecture and Code Optimization 9.1 (Mar. 2012), pp. 1–29.

[66] Keith E Mathias and L. Darrell Whitley. ‘Changing Representations
During Search: A Comparative Study of Delta Coding’. In: Evolu-
tionary Computation 2.3 (1994), pp. 249–278.

[67] Hugh E. Williams and Justin Zobel. ‘Compressing Integers for Fast
File Access’. In: The Computer Journal 42.3 (1999), pp. 192–201.
DOI: 10.1093/comjnl/42.3.193.

[68] PG Howard and JS Vitter. ‘Arithmetic Coding for Data Compres-
sion’. In: Proceedings of the IEEE 82.6 (1994), pp. 857–865. ISSN:
0018-9219. DOI: 10.1109/5.286189.

[69] Jiangong Zhang, Xiaohui Long and Torsten Suel. ‘Performance of
Compressed Inverted List Caching in Search Engines’. In: Proceed-
ings of the International Conference on World Wide Web. Apr. 2008,
pp. 387–396. ISBN: 978-1-60558-085-2. DOI: 10.1145/1367497.
1367550.

[70] Jonathan Goldstein, Raghu Ramakrishnan and Uri Shaft. ‘Compress-
ing Relations and Indexes’. In: Proceedings of the International Con-
ference on Data Engineering. Feb. 1998, pp. 370–379.

[71] Benjamin Schlegel, Rainer Gemulla and Wolfgang Lehner. ‘Fast In-
teger Compression using SIMD Instructions’. In: International Work-
shop on Data Management on New Hardware. June 2010, pp. 34–40.

[72] Alexander A. Stepanov and Anil R. Gangolli. ‘SIMD Based Decoding
of Posting Lists’. In: Proceedings of the International Conference on
Information and Knowledge Management. Oct. 2011, pp. 317–326.

[73] Naiyoung Ao, Fan Zhang, Di Wu, Douglas S. Stones, Gang Wang,
Xiaoguang Liu, Jing Liu and Sheng Lin. ‘Efficient Parallel Lists In-
tersection and Index Compression Algorithms using Graphics Pro-
cessing Units’. In: Proceedings of the VLDB Endowment. Vol. 4. Sept.
2011, pp. 470–481.

Chapter 5. Concluding Remarks BIBLIOGRAPHY 65

[74] Xudong Zhang, Wayne Xin Zhao, Dongdong Shan and Hongfei Yan.
‘Group-Scheme: SIMD-based Compression Algorithms for Web Text
Data’. In: Proceedings of the International Conference on BigData.
Oct. 2013, pp. 525–530. ISBN: 978-1-4799-1292-6.

[75] D. Lemire and L. Boytsov. ‘Decoding Billions of Integers Per Second
through Vectorization’. In: Software: Practice and Experience 45 (Jan.
2015), pp. 1–29.

[76] Daniel Lemire, Leonid Boytsov and Nathan Kurz. ‘SIMD Compres-
sion and the Intersection of Sorted Integers’. In: Software: Practice
and Experience (Apr. 2015).

[77] Jack J. Dongarra, Piotr Luszczek and Antoine Petitet. ‘The LINPACK
Benchmark: Past, Present and Future’. In: Concurrency and Com-
putation: Practice and Experience 15.9 (2003), pp. 803–820. ISSN:
1532-0634. DOI: 10.1002/cpe.728.

[78] Matteo Frigo and Steven G. Johnson. ‘The Design and Implement-
ation of FFTW3’. In: Proceedings of the IEEE 93.2 (2005). Special
issue on “Program Generation, Optimization, and Platform Adapta-
tion”, pp. 216–231.

[79] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh and Kai Li.
‘ The PARSEC Benchmark Suite - Characterization and Architectural
Implications’. In: Proceedings of the Conference on International Con-
ference on Parallel Architectures and Compilation Techniques. PACT
’08. 2008, pp. 72–81.

[80] J. Planas, R. M. Badia, E. Ayguade and J. Labarta. ‘Self-Adaptive
OmpSs Tasks in Heterogeneous Environments’. In: International Sym-
posium on Parallel and Distributed Processing. May 2013, pp. 138–
149. DOI: 10.1109/IPDPS.2013.53.

[81] Fischer Black and Myron S Scholes. ‘The Pricing of Options and
Corporate Liabilities’. In: Journal of Political Economy 81.3 (1973),
pp. 637–54.

[82] Top500 Supercomputer Sites. URL: http://www.top500.org.

[83] BLAS (Basic Linear Algebra Subprograms). URL: http://www.netlib.
org/blas/.

[84] R. Clint Whaley and Jack J. Dongarra. ‘Automatically Tuned Linear
Algebra Software’. In: Proceedings of the International Conference
on Supercomputing. SC ’98. San Jose, CA: IEEE Computer Society,
1998, pp. 1–27. ISBN: 0-89791-984-X. URL: http://dl.acm.org/
citation.cfm?id=509058.509096.

Chapter 5. Concluding Remarks

[85] The Power of Powel. URL: http://www.powel.com/About-Powel/.

[86] Ole Martin Sørli and Magne Tøndel. ‘Efficient multicore program-
ming for industrial applications’. MA thesis. Norwegian University
of Science and Technology (NTNU), June 2010.

[87] Oded Maimon and Lior Rokach. Data Mining and Knowledge Discov-
ery Handbook. Springer, 2010. ISBN: 978-0-387-09822-7.

[88] J. Chen, W. Li, A. Lau, J. Cao and K. Wang. ‘Automated Load Curve
Data Cleansing in Power Systems’. In: IEEE Transactions on Smart
Grid 1.2 (Sept. 2010), pp. 213–221. ISSN: 1949-3053. DOI: 10.

1109/TSG.2010.2053052.

[89] S. Lloyd. ‘Least Squares Quantization in PCM’. In: IEEE Transaction
Information Theory 28.2 (Sept. 2006), pp. 129–137. ISSN: 0018-
9448.

[90] David Arthur and Sergei Vassilvitskii. ‘K-means++: The Advantages
of Careful Seeding’. In: Proceedings of the Annual ACM-SIAM Sym-
posium on Discrete Algorithms. 2007, pp. 1027–1035. ISBN: 978-0-
898716-24-5.

[91] Greg Hamerly. ‘Making K-means Even Faster’. In: Proceedings of the
International Conference on Data Mining. Apr. 2010, pp. 130–140.

[92] Fuhui Wu, Qingbo Wu, Yusong Tan, Lifeng Wei, Lisong Shao and
Long Gao. ‘A Vectorized K-means Algorithm for Intel Many Integ-
rated Core Architecture’. In: International Symposium on Advanced
Parallel Processing Technologies. Aug. 2013, pp. 277–294. ISBN: 978-
3-642-45292-5.

[93] Ali Hadian and Saeed Shahrivari. ‘High Performance Parallel K-means
Clustering for Disk-resident Datasets on Multi-core CPUs’. In: The
Journal of Supercomputing 69.2 (2014), pp. 845–863.

[94] Mario Zechner and Michael Granitzer. ‘K-Means on the Graphics
Processor: Design And Experimental Analysis’. In: International Journal
on Advances in Systems and Measurements 2.3 (2009), pp. 224–235.
ISSN: 1942-261x.

[95] J. Mathew and R. Vijayakumar. ‘Enhancement of Parallel K-means
Algorithm’. In: Proceedings of the International Conference on Innov-
ations in Information, Embedded and Communication Systems. Mar.
2015, pp. 1–6.

Chapter 5. Concluding Remarks BIBLIOGRAPHY 67

[96] Hari Kalva, Aleksandar Colic, Adriana Garcia and Borko Furht. ‘Par-
allel Programming for Multimedia Applications’. In: Multimedia Tools
Applications 51.2 (2011), pp. 801–818.

[97] A. Sodani. ‘Knights landing (KNL) - 2nd Generation Intel Xeon Phi
processor’. In: 2015 IEEE Hot Chips 27 Symposium (HCS). Aug.
2015, pp. 1–24. DOI: 10.1109/HOTCHIPS.2015.7477467.

[98] Performance Application Programming Interface. URL: http://icl.
cs.utk.edu/papi/index.html.

[99] Jan Edler. Dinero IV Trace-Driven Uniprocessor Cache Simulator. URL:
http://www.cs.wisc.edu/~markhill/DineroIV.

[100] Valgrind. Lackey: An Example Tool. URL: http://valgrind.org/
docs/manual/lk-manual.html.

[101] Hallgeir Lien, Lasse Natvig, Abdullah Al Hasib and Jan Christian
Meyer. ‘Case Studies of Multi-core Energy Efficiency in Task Based
Programs’. In: Proceedings of the International Conference on ICT
as Key Technology against Global Warming. Vol. 7453. Sept. 2012,
pp. 44–54.

[102] Johannes Hofmann, Jan Eitzinger and Dietmar Fey. ‘Execution-Cache-
Memory Performance Model: Introduction and Validation’. In: CoRR
abs/1509.03118 (2015). URL: http://arxiv.org/abs/1509.
03118.

[103] Intel. Intel Energy Checker. 2010. URL: https://software.intel.
com/sites/default/files/m/6/6/4/5/0/Intel_R__Energy_

Checker_SDK--Companion_Applications_User_Guide.pdf.

[104] Abdullah Al Hasib, Per Gunnar Kjeldsberg and Lasse Natvig. ‘Per-
formance and Energy Efficiency Analysis of Data Reuse Transform-
ation Methodology on Multicore Processor’. In: Proceedings of the
Euro-Par 2012: Parallel Processing Workshops. Vol. 7640. LNCS. 2013,
pp. 337–346. ISBN: 978-3-642-36949-0.

[105] Abdullah Al Hasib and Lasse Natvig. ‘Performance Optimization and
Evaluation of a Data Cleansing Algorithm on Multicore Processors’.
In: The 9th International Summer School on Advanced Computer Ar-
chitecture and Compilation for High-Performance and Embedded Sys-
tems. Academia Press, 2013. ISBN: 9789038221908.

[106] Abdullah Al Hasib, Juan M. Cebrián and Lasse Natvig. ‘V-PFORDelta:
Data Compression for Energy Efficient Computation of Time Series’.
In: 22nd International Conference on High Performance Computing.
Dec. 2015, pp. 44–54.

Chapter 5. Concluding Remarks

[107] Amanda Svensson Marvel. Memory Layout Transformations. 2013.
URL: https://software.intel.com/en-us/articles/memory-
layout-transformations.

[108] Abdullah Al Hasib, Juan M. Cebrián and Lasse Natvig. ‘A Vectorized
k-means Algorithm for Compressed Datasets: Design and Experi-
mental Analysis’. In: Proceedings of the International Conference on
High Performance Computing. May 2017, pp. 1–10.

[109] Abdullah Al Hasib, Lasse Natvig, Per Gunnar Kjeldberg and Juan
M. Cebrián. ‘Energy Efficiency Effects of Vectorization in Data Re-
use Trans- formations for Many-core Processors - A Case Study’. In:
Journal of Low Power Electronics and Applications (May 2017).

[110] A. A. Hasib, N. Nikitin and L. Natvig. ‘Load Scheduling in Smart
Buildings with Bidirectional Energy Trading’. In: Proceedings of the
IEEE International Performance Computing and Communications Con-
ference. Dec. 2014, pp. 1–2.

[111] A. A. Hasib, N. Nikitin and L. Natvig. ‘Cost-comfort Balancing in a
Smart Residential Cuilding with Bidirectional Energy Trading’. In:
Proceedings of the Conference on Sustainable Internet and ICT for Sus-
tainability. Apr. 2015, pp. 1–6.

[112] PLASMA - Parallel Linear Algebra Software for Multicore Architec-
tures. URL: http://icl.cs.utk.edu/plasma/.

[113] Juan M. Cebrián, Magnus Jahre and Lasse Natvig. ‘ParVec: Vector-
izing the PARSEC Benchmark Suite’. In: Computing 97.11 (2015),
pp. 1077–1100. ISSN: 1436-5057.

[114] J.Ph. Diguet, S. Wuytack, F. Catthoor et al. ‘Formalized Methodo-
logy for Data Reuse Exploration for Low-Power Hierarchical Memory
Mappings’. In: IEEE Transactions on VLSI Systems 6 (1998), pp. 529–
537.

Part II

Papers

69

Paper A.1

Case Studies of Multi-core
Energy Efficiency in Task
Based Programs

Hallgeir Lien, Lasse Natvig, Abdullah Al Hasib, and Jan Christian Meyer

2nd International Conference on ICT as Key Technology against Global
Warming

71

Paper A.1 73

Abstract

In this paper, we present three performance and energy case studies of
benchmark applications in the OmpSs environment for task based program-
ming. Different parallel and vectorized implementations are evaluated on
an Intel R© CoreTM i7-2600 quad-core processor. Using FLOPS/W derived
from chip MSR registers, we find AVX code to be clearly most energy effi-
cient in general. The peak on-chip GFLOPS/W rates are: Black-Scholes (BS)
0.89, FFTW 1.38 and Matrix Multiply (MM) 1.97. Experiments cover vari-
able degrees of thread parallelism and different OmpSs task pool schedul-
ing policies. We find that maximum energy efficiency for small and medium
sized problems is obtained by limiting the number of parallel threads. Com-
parison of AVX variants with non-vectorized code shows ≈ 6–7x (BS) and
≈ 3–5x (FFTW) improvements in on-chip energy efficiency, depending on
the problem size and degree of multithreading.

Paper A.1 1. Introduction 75

1 Introduction
Saving energy is now a top priority in most computing systems. Sensor
networks which report over long time frames are installed in environments
where it is expensive or impossible to replace batteries. Mobile computing
devices have severely restricted operation time without recharging. Com-
puters produce less heat, less noise, and are cheaper to operate if they con-
sume less energy.

Recently, we have seen a convergence between embedded systems and High
Performance Computing. Both these market segments now have energy ef-
ficiency as a major design goal. The convergence is exemplified in the Mont
Blanc project, which is part of the European Exascale Software Initiative
(EESI). Mont Blanc aims at developing a European scalable and power effi-
cient HPC platform based on low-power embedded technology [1].

The Green500 list ranks the world’s most energy efficient supercomputers
[2]. The ranking is based on the FLOPS/W metric for LINPACK and the top
entry in the November 2011 list achieved 2.03 GFLOPS/W. Motivated by
Mont Blanc targeting the Green500 list, we selected FLOPS/W as a metric
for our studies.

Task Based Programming (TBP) has recently gained increasing interest. In
some TBP systems the programmer must take care of all data dependen-
cies between the tasks by explicit synchronizations. In newer, dependency
aware TBP systems [3] the cumbersome synchronization is transferred to
the run- time system. OmpSs uses this automatic run-time parallelization
approach, and provides mechanisms for executing tasks on accelerators
such as GPUs [4], thus simplifying the programming of heterogeneous and
hybrid architectures. OmpSs will be used in the Mont Blanc project [5].
We have chosen the Black-Scholes benchmark and Matrix Multiply already
implemented with OmpSs for our case studies. In addition, we adapted an
OpenMP benchmark of FFTW for OmpSs. We implemented SSE and AVX
vectorization for Black-Scholes and compiled FFTW without vectorization,
with SSE and with AVX, while Matrix Multiply was already vectorized with
AVX through its use of ATLAS [6].

This paper presents energy efficiency results for three benchmarks, compar-
ing the effects of applying vectorization and thread parallelism. Problem
sizes are restricted to minimize interactions with memory, isolating on-chip
energy consumption. It is an initial effort toward understanding overall
system power by examining incremental sets of subsystems.

Paper A.1

Figure 1: Intel R© CoreTM i7-2600 Sandy Bridge multi-core processor archi-
tecture (left) and specification (right)

Our contributions are on-chip energy efficiency results for Black-Scholes,
FFTW and matrix multiplication on the recent Intel Sandy Bridge architec-
ture, and discussion of the relative benefits of parallelization and vectoriza-
tion.

The paper is organized as follows: Section 2 describes the computer used
in the experiments, motivates and defines the selection of energy efficiency
metric, and introduces the selected benchmarks. Section 3 explains how
we performed the energy measurements, and organized the experiments to
achieve stable and reproducible results. We outline the vectorization and
parallelizations, followed by a discussion of the main results. Section 4
describes related work, before the paper is concluded in Section 5.

2 Background

2.1 Execution Platform, SSE and AVX

All experiments were executed on a four core desktop computer that can
execute 8 threads using Intel HyperthreadingTM. Its main architecture and
specifications are shown in Figure 1.

All cores were clocked at their maximum rate of 3.4 GHz. Cache sizes, line
sizes and associativity are described in Table 1. Latencies are taken from
[7]. The Intel Sandy Bridge processors allow vectorization using SSE or
AVX. AVX registers extend the 128 bit SSE registers with an additional 128

Paper A.1 2. Background 77

Table 1: Cache information for Intel Core i7-2600, 3.4GHz

Cache Size Sharing Ways of Line Latency
Associativity size (cycles)

Level 1 Instruction 32 KB Private 8 64 B 4
Level 1 Data 32 KB Private 8 64 B 4
Level 2 256 KB Private 8 64 B 12
Level 3 8 MB Shared 16 64 B 26-31

bits, and can theoretically double the throughput [8]. SSE and AVX are
programmed using intrinsics, inline assembly, or automatic vectorization by
the compiler.

2.2 Performance and Energy Metrics

There is a trade-off between the partly conflicting goals of high perform-
ance and low energy consumption. Comparing systems based on energy
consumption alone would motivate the use of very slow processors with
low frequency, since energy is the product of power and execution time.
The Energy-Delay Product (EDP) places greater emphasis on performance,
and corresponds to the reciprocal of performance pr. energy unit. Different
metrics are appropriate to different cases when studying energy efficiency.
Rivoire et al. [9] give a readable introduction to the pros and cons of vari-
ous energy efficiency metrics. PerformanceN/Watt is among the most
general, as it allows adjusting the balance between high performance and
low energy consumption. N = 0 implies a focus on the power consumption
alone, while N = 2 corresponds to EDP.

Any FLOPS performance metric implies a definition of how many floating
point operations are required to handle a given problem size. One method
would be to measure the number of operations per experiment, using per-
formance counters. This would also count unnecessary operations, and be
poorly suited to comparing performance between implementations. In this
work, FLOPS rate was measured by counting or estimating the number of
useful floating point operations and dividing by execution time. Integer op-
erations such as bit-wise logical operations and shifts were ignored. Further
details on the operation counts can be found in [10].

Energy measurements were obtained from the energy consumption fields of
the non-architectural Machine State Registers (MSRs) made available by the
Running Average Power Limit (RAPL) interface [11]. Because these values

Paper A.1

only reflect chip level energy consumption, we observe the L3 miss rate
to find the range of problem sizes where the application is being executed
on-chip. As long as the L3 miss rate is close to zero, our on-chip energy
measurements give a fair comparison of energy efficiency for the different
implementations.

2.3 Selection of Benchmarks

Our choice of applications is motivated by the Mont Blanc project, leading
to use of OmpSs, and benchmark selection from potential target applica-
tions [5]. Black-Scholes is part of the PARSEC Benchmark Suite for shared
memory computers [12]. It calculates prices for a portfolio of European
stock options by evaluating the Black-Scholes formula for each element of
a data set. A financial market is modeled by repeating this computation
over time. FFTW (Fastest Fourier Transform in the West) is a widely used
FFT library. The FFTW library achieves high performance by automatically
adapting its algorithm for the machine it is run on. It first creates a plan of
execution for the given problem, and then executes it. A plan is created by
heuristically tailoring execution to the current system (e.g. querying cache
sizes), and several different plans are tested to find the fastest candidate.
Measurement can be omitted to save plan creation time, when less efficient
execution is acceptable [13]. The third application studied is Matrix Mul-
tiplication implemented with OmpSs. It creates tasks from multiplication
tiles, calling BLAS gemm at the tile level. We use the ATLAS library for this,
because of its AVX support.

3 Experiments and Results

3.1 Methods

We use the RAPL MSR interface to read out energy used by the processor
chip. The bits 12:8 of the MSR_RAPL_POWER_UNIT register describe the
granularity of the energy values. The default value is 2−16J ≈ 15.3µJ. Con-
sumed energy is read from the bits 31:0 of the MSR_PKG_ENERGY_STATUS
register, which has a wrap- around time of about 60 seconds on high pro-
cessor load [11]. Our experiments complete in a few seconds, remaining
safely within this limit. Data access was kept within the multi-core chip
by limiting problem sizes to fit in the last level cache (LLC). As the RAPL
registers do not reflect the cost of off-chip memory, its magnitude is not
visible in our results, making it necessary to restrict its influence. LLC miss
rates were recorded using performance monitoring counters, in order to
validate that predicted limits for on-chip problem sizes are correct. The

Paper A.1 3. Experiments and Results 79

Figure 2: Performance vs. problem size for Black-Scholes. The vertical line
marks the 8MB point, i.e. the problem size where application data require
the entire LLC.

changes in application behavior observed at the LLC limit are visible in our
performance results. Every experiment was run 10 times and we plot the
median value for each problem size. The first sample points are discarded,
in order to remove cache cold start effects. The results are reproducible
and stable, with a relative standard deviation less than 3% for the relevant
problem sizes. The standard deviations of runs are far smaller than the mar-
gins separating different implementations. All experiments were run under
openSuse 11.4 (x86_64) running Linux kernel 2.6.37.6, and all OmpSs ap-
plications were compiled using sscc from the OmpSs package. As sscc trans-
lates at source level, gcc 4.7.0 generated the native code. Nanos++ runtime
version 0.6a was used for all experiments.

3.2 Black-Scholes

Vectorization of Black-Scholes made it necessary to implement natural log-
arithm and exponential functions. We adapted code from the Cephes Math-
ematical Library [13]; further details can be found in H. Lien’s Master thesis
[10]. Black-Scholes uses 6 input- and one output-array, each containing
N 32-bit floating point numbers, giving a memory footprint of 28N bytes,

Paper A.1

Figure 3: Energy efficiency vs. problem size for Black-Scholes. The vertical
line marks the 8MB point, i.e. the problem size where application data
require the entire LLC.

where N is the problem size. The largest problem that can fit the LLC is N
= 218, as 218 · 28 B = 7 MB. The LLC miss rate is below 0.1% for N up to
and including 215, 0.56% for N = 216 were the memory footprint is 1.75
MB, and it increases dramatically for N = 217 and larger problems. Results
are shown in Figure 2 and Figure 3.

Task sizes S for Black-Scholes were chosen so that task scheduling overhead
has little effect on performance. S = 2048 was used for large problems, and
S = max(N/8,16) for small problems. The work-first scheduling algorithm
in OmpSs was used since it gave high and stable performance. Relative
standard deviation (RSD) per benchmark was typically less than 3% for
N > 25.

3.3 FFTW

FFTW already supports OpenMP, which allowed us to create a straightfor-
ward OmpSs port. This was done by replacing omp parallel for constructs
with omp task loop bodies, and their associated implicit barriers with omp
taskwait. A single precision out-of-place transform was performed, which

Paper A.1 3. Experiments and Results 81

Figure 4: Performance vs. problem size for FFTW. The 8MB point is marked
by the vertical line.

requires two arrays of N complex numbers each. This gives a memory foot-
print of 16N bytes. Thus, the largest problem that possibly could fit in the
LLC is N = 219, as 219 · 16 B = 8 MB. We obtained LLC miss rates less than
0.1% for problem sizes up to and including N = 217, and rapid increases
above this limit. RSD was less than 3% for N > 27. Results are shown in
Figure 4 and Figure 5.

3.4 Matrix Multiplication

Our initial experiments with the OmpSs Matrix Multiply use ATLAS with
AVX. They give a peak performance at 149.7 GFLOPS running 4 threads on a
8192 × 8192 matrix. The peak on-chip energy efficiency is 1.97 GFLOPS/W
for the same configuration, and we found the LLC misses per floating point
operation to be less or equal to 3.8 × 10−5 for all problem sizes. The results
are summarized in Figure 6 and Figure 7.

3.5 Discussion

We compare observations of energy efficiency improvement to correspond-
ing parallel speedup, in order to evaluate the benefit of adding parallelism.
As seen in Figures 2 and 3, Black-Scholes scales favorably. 4-thread runs

Paper A.1

Figure 5: Energy efficiency vs. problem size for FFTW. The 8MB point is
marked by the vertical line.

become advantageous at problem sizes N = 212 and N = 213, and 8-thread
runs show energy benefits upwards of N = 214. It is also visible that Black-
Scholes retains energy efficiency for out-of-cache problem sizes, albeit with
a peak at N = 216. Speedup with hyperthreading (8 threads) is distinctly
sub-linear, but there is a clear improvement which admits evaluation of the
return on energy investment.

Figures 4 and 5 show that FFTW reaps no benefit from hyperthreading,
and clearly becomes bandwidth bound for problem sizes beyond available
cache space. This limit is characteristic of the kernel, and also witnessed
by the results of Frigo and Johnson [14]. For problem sizes up to N =
214, energy efficiency is higher for vectorized single-thread than for parallel
execution, and AVX provides further benefits over SSE. It is interesting to
note that the intersection coincides with L2 cache size. For the last-level
cache problem sizes of 214 through 218, 4-thread execution provides higher
energy efficiency, in proportion to the speedup. For matrix multiplication,
Figures 6 and 7 show that even though eight threads perform significantly
better than one, energy efficiency is lower for all problem sizes due to a
higher energy consumption rate. As the ALU and L1/L2 caches are shared

Paper A.1 4. Related Works 83

Figure 6: Performance in MFLOPS of matrix multiplication for different
problem sizes. The 8MB point is marked by the vertical line.

between hyperthreads on a single core, the performance using eight threads
is lower than with four, because tiled, dense matrix-matrix multiplication is
computation bound.

4 Related Works
Duran et al. [4] evaluate OmpSs implementations of Black-Scholes and
Matrix Multiply, but focus on performance only. Comparing with their 4-
core result, we get a performance improvement in excess of factor 10. We
attribute the difference to the higher CPU clock frequency of our test system,
and AVX vectorization. Ge et al. [15] show how the PowerPack framework
can be used to study in depth the energy efficiency of parallel applications
on clusters with multi-core nodes. The framework is measurement based,
and can be used to identify the energy consumption of all major system
components. Li and Martinez [16] develop and use an analytical model of
the power- performance implications of degree of parallelism and voltage/-
frequency scaling. They confirm their analytical results by detailed sim-
ulation. Molka et al. [17] discuss weaknesses of the Green500 list with
respect to ranking HPC system energy efficiency. They introduce their own
benchmark using a parallel workload generator to stress main components

Paper A.1

Figure 7: Energy efficiency in MFLOPS/watt of matrix multiplication for
different problem sizes. The 8MB point is marked by the vertical line.

in a HPC system. Anzt et al. [18] present an energy performance analysis
of different iterative solver implementations on a hybrid CPU-GPU system.
The study is based on empirical measurements, and energy is saved by us-
ing DVFS (Dynamic Voltage and Frequency Scaling) to lower the CPU clock
frequency while computations are offloaded to the GPU.

5 Conclusion and Future work
Using chip energy performance counters to instrument three floating-point
intensive benchmarks, our experiments show that vectorization provides a
significant improvement in on-chip energy efficiency, and that energy ef-
ficiency varies with problem size in common application kernels. In our
results we have seen that vectorization improves both performance and
energy efficiency, while the performance improvement from thread paral-
lelism does not necessarily imply a better energy efficiency. Variation of
energy efficiency with task size suggests that energy-aware task scheduling
may adapt task sizes for energy efficient execution, which provides an in-
teresting direction for future research. We also plan to extend the work by
studying the impact of varying CPU clock frequencies, OmpSs scheduling
policies, and using Turbo Boost Technology. We will apply the Intel Energy

Paper A.1 REFERENCES 85

Checker SDK and Yokogawa WT210 Power analyzer, to refine energy pro-
files by including off-chip bandwidth and memory system parameters. The
experiments will be extended to a SGI Altix ICE X supercomputer, featuring
2 × 8 Sandy Bridge multi-core processors.

References
[1] Mont Blanc Project Website. URL: http://www.montblanc-project.

eu/.

[2] The Green 500 - Ranking the World’s Most Energy Efficient Supercom-
puters. URL: http://www.green500.org.

[3] J.M. Perez, R.M. Badia and J. Labarta. ‘A Dependency-aware Task-
based Programming Environment for Multi-core Architectures’. In:
International Conference on Cluster Computing. Oct. 2008, pp. 142–
151.

[4] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesus Labarta,
Luis Martinell, Xavier Martorell and Judit Planas. ‘OmpSs - A Pro-
posal for Programming Heterogeneous Multi-core Architetcures’. In:
Parallel Processing Letters 21 (Mar. 2011), pp. 173–193.

[5] Alex Ramirez. European Scalable and Power Efficient HPC Platform
Based on Low-Power Embedded Technology. Presentation at the EESI
conference. Oct. 2011. URL: http://www.eesi-project.eu/.

[6] R. Clint Whaley, Antoine Petitet and Jack J. Dongarra. ‘Automated
Empirical Optimizations of Software and the ATLAS Project’. In: Par-
allel Computing 27.12 (Jan. 2001), pp. 3–35. ISSN: 0167-8191.

[7] Intel 64 and IA-32 Architectures Optimization Reference Manual. Apr.
2012. URL: http://www.intel.com/content/www/us/en/

architecture-and-technology/64-ia-32-architectures-

optimization-manual.html.

[8] Intel. Avoiding AVX-SSE Transition Penalties. Nov. 2011. URL: http:
//software.intel.com/file/39798.

[9] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, Chris-
tos Kozyrakis and Justin Meza. ‘Models and Metrics to Enable Energy-
Efficiency Optimizations’. In: Computer 40.12 (Dec. 2007), pp. 39–
48.

[10] Hallgeir Lien. ‘Case Studies in Multi-core Energy Efficiency of Task
Based Programs (preliminary title)’. MA thesis. Norwegian Univer-
sity of Science and Technologoy, 2012.

Paper A.1

[11] Intel. Intel 64 and IA-32 Architectures Software Development Manual.
Dec. 2011. URL: http://download.intel.com/products/processor/
manual/325462.pdf.

[12] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh and Kai Li.
‘ The PARSEC Benchmark Suite - Characterization and Architectural
Implications’. In: Proceedings of the Conference on International Con-
ference on Parallel Architectures and Compilation Techniques. PACT
’08. 2008, pp. 72–81.

[13] Stephen L. Moshier. Cephes Math Library. URL: http://www.netlib.
org/cephes.

[14] M. Frigo and S.G. Johnson. ‘The Design and Implementation of
FFTW3’. In: Proceedings of the IEEE 93.2 (Feb. 2005), pp. 216–231.

[15] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong
Li and K.W. Cameron. ‘PowerPack: Energy Profiling and Analysis of
High-Performance Systems and Applications’. In: Parallel and Dis-
tributed Systems, IEEE Transactions on 21.5 (May 2010), pp. 658–
671. ISSN: 1045-9219.

[16] Jian Li and José F. Martínez. ‘Power-Performance Considerations of
Parallel Computing on Chip Multiprocessors’. In: ACM Transactions
on Architecture and Code Optimization 2.4 (Dec. 2005), pp. 397–
422. ISSN: 1544-3566. URL: http://doi.acm.org/10.1145/
1113841.1113844.

[17] Daniel Molka, Daniel Hackenberg, Robert Schone, Timo Minartz
and Wolfgang Nagel. ‘Flexible Workload Generation for HPC Cluster
Efficiency Benchmarking’. In: Computer Science - Research and De-
velopment (), pp. 1–9. ISSN: 1865-2034. URL: http://dx.doi.
org/10.1007/s00450-011-0194-9.

[18] Hartwig Anzt, Maribel Castillo, Juan C. Fernández, Vincent Heuve-
line, Francisco D. Igual, Rafael Mayo and Enrique S. Quintana-Ortí.
‘Optimization of Power Consumption in the Iterative Solution of
Sparse Linear Systems on Graphics Processors’. In: Computer Sci-
ence - Research and Development 27.4 (Nov. 2012), pp. 299–307.
ISSN: 1865-2042. DOI: 10.1007/s00450-011-0195-8.

Paper A.2

Performance and Energy
Efficiency Analysis of Data
Reuse Transformation
Methodology on Multicore
Processor

Abdullah Al Hasib, Per Gunnar Kjeldsberg, and Lasse Natvig

Euro-Par 2012: Parallel Processing Workshops

87

Paper A.2 89

Abstract
Memory latency and energy efficiency are two key constraints to high per-
formance computing systems. Data reuse transformations aim at reducing
memory latency by exploiting temporal locality in data accesses. Simultan-
eously, modern multicore processors provide the opportunity of improving
performance with reduced energy dissipation through parallelization. In
this paper, we investigate to what extent data reuse transformations in com-
bination with a parallel programming model in a multicore processor can
meet the challenges of memory latency and energy efficiency constraints.
As a test case, a “full-search motion estimation" kernel is run on the Intel R©

CoreTM i7-2600 processor. Energy Delay Product (EDP) is used as a met-
ric to compare energy efficiencies. Achieved results show that performance
and energy efficiency can be improved by a factor of more than 6 and 15,
respectively, by exploiting a data reuse transformation methodology and
parallel programming model in a multicore system.

Paper A.2 1. Introduction 91

1 Introduction
The rapid growth of microprocessor performance for the last two decades
has provided us the opportunity to solve increasingly advanced problems
that require very large scale computations. However, memory latency has
not been improved at a comparable rate and has become a major limiting
factor for system performance. System performance is further impeded by
battery capacity for handheld devices and by heat dissipation constraints
for high performance processor designs [1]. Therefore, improvement of
energy efficiency and memory latency has now become a major concern in
contemporary computer architectures.

For data-dominated applications such as multimedia algorithms, Data Trans-
fer and Storage Exploration (DTSE) offers a complete methodology for
obtaining and evaluating a set of data reuse transformations in terms of
memory energy [2]. The fundamental idea behind data reuse transform-
ations is to move the data accesses from background memories to smaller
and less energy intensive foreground memory blocks in a systematic way.
This approach eventually results in significant energy savings.

In this paper, we present a technique that combines a data reuse transform-
ation methodology with a parallel programming model to improve energy
efficiency. We evaluate the performance and energy efficiency of our com-
bined technique on a quad-core processor. We have used a “full-search mo-
tion estimation" algorithm as our test application.

This paper is organized as follows: Section 2 describes related work. Sec-
tion 3 presents our methodology to improve energy efficiency and 4 illus-
trates our methodology using the motion estimation algorithm. Section 5
presents and discusses our results. Finally, we conclude the paper in Sec-
tion 6.

2 Related Work
Research on data reuse transformation methodologies for multimedia ap-
plications has been actively performed for the last few decades and has led
to numerous approaches to improve memory latency. Wuytack et al. [2]
present a formalized methodology for data reuse exploration to reduce
memory energy consumption by exploiting temporal locality of memory ac-
cesses using an optimized custom memory hierarchy. It is taken further and
oriented towards predefined memory organizations in [3]. In [4, 5], the
authors evaluated the effect of data reuse decisions on power, performance

Paper A.2

and area in embedded processing systems. The effect of data reuse trans-
formations on a general purpose processor has been explored in [6]. In [7],
the authors presented the effect of data reuse transformations on multime-
dia applications on application specific processors. The research described
so far emphasizes on single-core systems and relies on simulation based
modeling when energy efficiency is estimated.

In [8], Kalva et al. presented the effect of parallel programming on multi-
media applications but it lacks energy efficiency analysis. In [9], Chen et
al. presented different optimization opportunities of the Fast Fourier Trans-
form (FFT) to achieve a high performance implementation on IBM Cyclops-
64 chip architecture. In [10], Zhang et al. presented an inter-core data
reuse technique to exploit all the available cores to boost overall applica-
tion performance. These earlier studies on parallel architectures emphasize
performance rather than energy efficiency. In contrast, we have performed
energy efficiency analysis on a state-of-the-art multicore processor with four
cores and have used Model Specific Registers of the processor to accurately
measure the consumed energy.

The previous work closest to ours is done by Marchal et al. [11]. It presents
an approach for integrated task-scheduling and data-assignment for redu-
cing SDRAM costs for multi-threaded applications. It does not couple the
data reuse analysis with a parallel programming model the way we do here,
however.

3 Energy Efficient Methodology for Multicore Processor
In this paper, we present an approach that combines the concepts from a
data reuse transformation methodology with a parallel programming model
to get better performance and energy efficiency.

Data Reuse Transformation: The fundamental concept of a data reuse trans-
formation is to optimize an application and/or introduce a custom memory
hierarchy to exploit the temporal locality of data accesses [2]. The memory
hierarchy consists of layers of gradually smaller memories. The application
code is optimized so that data that is accessed multiple times, i.e., has a
high reuse factor, is copied from larger to smaller memories closer to the
data path. Unless the memory hierarchy is fixed, the size and interconnect
of each layer can also be optimized. For data-intensive applications, this
approach gives significant energy savings since smaller memories consume
less energy per access.

Parallel Programming: Multicore processors can achieve higher perform-

Paper A.2 3. Energy Efficient Methodology for Multicore Processor 93

ance with lower energy consumption compared to a uniprocessor system. It
is, however, a challenging job to develop efficient parallel applications that
exploit the advantages of hardware parallelism. Different parallel program-
ming models have been developed that can speed up applications when
multiple threads or multiple processes are used [12]. At this level, parallel
programs can be written using multi threaded programming and using ex-
plicit threading supported by the operating system or using programming
frameworks such as OpenMP [13].

In our approach, initially we have applied different possible data reuse
transformations described in [2] to optimize energy efficiency for a given
algorithm. The first step identifies data sets that are reused multiple times
within a short period of time, i.e., copy candidates. For each of the identi-
fied data sets, a copy to a smaller memory can be introduced so that data
is accessed using less energy. Based on a cost trade off with extra copy-
ing of data and chip area overhead, a hierarchical memory organization is
generated and an optimized set of copy candidates are utilized. After data
reuse optimization, we develop a parallel algorithm based on the optimized
solution.

Algorithm 1 Sequential Unoptimized Motion Estimation Algorithm [14]

1: for g=0; g<H/n; g++ do
2: for h=0; h<W/n; h++ do
3: ∆opt[g][h] = +∞
4: for i=-m; i<m; i++ do
5: for j=-m; j<m; j++ do
6: ∆ = 0

7: for k=0; k<n; k++ do
8: for l=0; l<n; l++ do
9: ∆+= abs(Cur[g×n+k][h×n+l] -

Ref[g×n+i+k][h×n+j+l])
10: end for
11: end for
12: ∆opt[g][h] = min(∆,∆opt[g][h])
13: end for
14: end for
15: end for
16: end for

Paper A.2

4 Demonstrator Application: Motion Estimation Kernel
We have used a “full-search motion estimation" algorithm to evaluate the
performance and energy efficiency of our combined approach.

4.1 Sequential Unoptimized Motion Estimation Algorithm

Motion Estimation (ME) is a core part of different video compression al-
gorithms. Block-based ME algorithms involve finding the candidate block
within a specified search area in a reference frame that is most similar to
the current block in the current frame. A “full-search motion estimation" al-
gorithm performs an exhaustive search over the entire search region to find
the optimal solution. This process is computationally intensive and costs
about 80% of the encoding time [8]. Therefore, we have chosen it as a test
application in our experiment.

Full-search motion estimation is illustrated in Algorithm 1. The implement-
ation of the ME algorithm consists of a number of nested loops. The basic
operation at the innermost loop consists of an accumulation of pixel dif-
ferences, while the basic operation two levels higher in the loop hierarchy
consists of the selection of the new minimum. This algorithm is a sequen-
tial implementation without exploiting any data reuse transformation tech-
nique and referred as sequential unoptimized solution in this paper. For our
experiment, we have used parameters of the QCIF format (W=176, H=144,
m=n=8) [14].

4.2 ME Optimization Using Data Reuse Transformations

We have followed a systematic approach presented in [2] to transform the
Basic ME Algorithm into an optimized solution that maps selected copies
of data on a memory hierarchy to exploit temporal locality. Fig. 1 presents
different possible transformations for the ME algorithm.

Each branch in the copy candidate tree corresponds to a potential memory
hierarchy for different data-reuse transformations. Dashed lines in the fig-
ure indicate levels of the hierarchy. Each rectangle in the hierarchy corres-
ponds to a copy candidate, i.e., a block of data that can benefit from being
accessed multiple times from the given hierarchy level. Each copy candid-
ate is annotated with its size. The highlighted path in the figure indicates
a 3 layer memory hierarchy for data reuse transformations on the reference
frame. The hierarchy is comprised of a H×W block for the full frame, a
(2m+n-1)×(2m+n-1) block and a (2m+n-1)×n block for smaller copy can-
didates. In addition, a 2 layer memory hierarchy for the current frame with

Paper A.2 4. Demonstrator Application: Motion Estimation Kernel 95

Current
Frame

2
m

+n
-1

2m+n-1

n

n

H

M

H

M

n

n

2m+n-1

n

n

n

n

n

Reference
Frame

Figure 1: Copy candidate tree for data reuse decision for Motion Estim-
ation Algorithm. The process of constructing such copy candidate tree is
explained in[2]

a H×W frame memory and a n×n copy candidate is also introduced.

To evaluate the performance and energy efficiency of the different data re-
use transformations presented in Fig. 1, the basic ME algorithm has been
modified into different versions to exploit different possible transforma-
tions. Achieved performance and energy efficiency of all transformed al-
gorithms are then measured and compared. The transformation that provides
the best energy efficiency is converted to a parallel program. Algorithm 2
depicts an example of the transformed ME algorithm with two layers. The
transformed algorithm introduces a smaller memory block (Buffer) to which
the copy candidate is copied.

4.3 Parallel Optimized Motion Estimation Algorithm

The Motion Estimation algorithm also exhibits important properties of data
parallelism. In QCIF format, a video frame is comprised of a fixed num-
ber of macro blocks (8×8 non-overlapping blocks). Prediction for a given
block is determined by finding a block in a given search range of the refer-
ence frame that is closest to the current block. For each macro block (MB),
this estimation can be done in parallel. Algorithm 2 represents our par-
allel ME algorithm. We have made our 2 layer ME algorithm parallel by
adding the #pragma omp parallel for directive of the OpenMP program-
ming model [13] at the outermost for loop. This directive will instruct the
compiler to distribute the work done in the for-loop immediately follow-
ing the directive among all processors (cores) of the system. Variables Ref,
Cur and ∆opt are shared among the threads whereas (h, Buffer) are private
to each thread. Note that threads should be properly synchronized while

Paper A.2

Algorithm 2 Parallel Optimized Motion Estimation Algorithm

1: #pragma omp parallel for shared(Ref, Cur, ∆opt) private(h, Buffer)
2: for g=0; g<H/n; g++ do
3: for h=0; h<W/n; h++ do
4: for k=0; k<2m+n-1; k++ do
5: for l=0; l<2m+n-1; l++ do
6: Buffer[k][l]=Ref[g×n-m+k][h×n-m+l]
7: end for
8: end for
9: ∆opt[g][h] = +∞

10: for i=0; i<2m-1; i++ do
11: for j=0; j<2m-1; j++ do
12: ∆ = 0

13: for k=0; k<n; k++ do
14: for l=0; l<n; l++ do
15: ∆+=abs(Cur[g×n+k][h×n+l]-Buffer[i+k][j+l])
16: end for
17: end for
18: #pragma omp critical
19: ∆opt[g][h] = min(∆,∆opt[g][h])
20: end for
21: end for
22: end for
23: end for

Paper A.2 5. Results and Discussion 97

computing the minimum ∆opt. Therefore a #pragma omp critical directive
is used to ensure that ∆opt is accessed by a single thread at a time. We
have also set the GOMP_CPU_AFFINITY environment variable to bind each
thread, i.e., each instance of the for-loop, to a specific core.

4.4 System Architecture and Energy Measurement

System Architecture: In our experiment, we have used the Intel R© CoreTM

i7-2600 processor which consists of four physical cores. It supports Hyper-
Threading allowing it to simultaneously process up to 8 threads, i.e., 2
threads per core. The memory hierarchy consists of a 32 KB Level-1 cache,
a 256 KB Level-2 cache and an 8192 KB Level-3 cache. Level-1 and Level-2
caches are private to each core while the Level-3 cache is shared among
the cores. Note that this is a memory hierarchy with a fixed number of
levels and sizes, typical for a standard processor. This is different from the
assumption in [2], where an application specific memory hierarchy is as-
sumed. The base clock speed of the processor is 3.4 GHz, but it can go as
high as 3.8 GHz when Turbo Boost is enabled [15].

Energy Measurement Policy: We read the non-architectural Model Specific
Registers of the processor to estimate on-chip energy consumption [15].
The MSR_PP0_ENERGY_STATUS register gives us aggregate energy consumed
by the cores as well as caches. We read this register at a fixed core frequency
(3.4 GHz) and process the raw data to compute energy efficiency.

Energy Efficiency Metric: We report energy efficiency in terms of the Energy-
Delay-Product (EDP) metric [16]. Measured units for Energy and Delay are
Joule(J) and second(s) respectively. Therefore, the unit of the EDP metric is
Js. Generally, the lower the EDP, the better the energy efficiency is.

OS and Compiler Parameters: We execute our experiment on OpenSuse 11.4
(x86 64) running Linux kernel 2.6.37.6. The parallel application is com-
piled using the gcc compiler with -fopenmp flag and optimized with -O3
flag.

5 Results and Discussion

Energy Efficiency Evaluation of Sequential ME Algorithm:

Different data reuse transformations of the sequential ME algorithm and
their corresponding energy efficiencies are presented in Fig. 2.

Fig. 2 shows that energy efficiency is improved significantly due to data
reuse transformation techniques despite of the fact that such transforma-

Paper A.2

Reference
Frame

Current
Frame

2m+n-1

2
m

+n
-1

2m+n-1

n

n

n

n

n

H

M

H

n

n

M
EDP=41.7

(sequential 2 layer)

ED
P

=2
2

9
.7

(s
eq

u
en

ti
al

 u
n

o
p

ti
m

iz
ed

)

EDP=47.8
(sequential 3 layer (A))

ED
P

=9
6

.7
Se

q
u

en
ti

al
 3

 la
ye

r(
B

)ED
P

=9
6

.8

n

n

ED
P

=1
3

1
.9

Figure 2: EDP (Js×10−8) of different transformations

tions introduce both area and computational overheads. For instance, the
sequential 2 layer transformation introduces a (2m+n-1)×(2m+n-1) block
buffer for the reference frame and a (n×n) block buffer for the current frame
and these additional buffers cost 2372 Bytes of area overhead. The com-
putational and energy overhead to copy the copy candidates into the buf-
fer are 0.31 microsecond and 6.67 millijoule, respectively. Therefore, in
terms of EDP, the overhead is approximately 0.207×10−8 Js for each new
frame. Despite these overheads, we have observed that achieved EDP for
the complete handling of one new frame is 229.7×10−8 Js for the sequential
unoptimized ME Algorithm whereas the EDP of the sequential 2 layer trans-
formation is 41.7×10−8 Js. This improvement is attributed to the use of
smaller buffers since a block of (2m+n-1)×(2m+n-1) integer-numbers cor-
responds to 2116 (23×23×4) bytes which is less than the Level-1 cache size
in our system. As a result, the buffer can be brought into the Level-1 cache
during the computation which significantly reduces the cost of expensive
memory accesses and improves performance as well as energy efficiency.

An important observation from Fig. 3 is that the efficiency is at a peak with
a 2 layer memory hierarchy and it degrades with the introduction of any
additional layers of smaller memory blocks. Two factors that contribute
to this result are: (i) Additional memory layers also introduce additional
area and computational overheads (ii) Smaller data blocks are copied into
relatively larger cache-blocks due to the fixed-sized caches, which ultimately
negate the advantage of using additional memory layers.

Paper A.2 5. Results and Discussion 99

sequential unoptimized

sequential 2 Layer

sequential 3 Layer(A)

sequential 3 Layer(B)
0

50

100

150

200

250

E
D

P
 (

Js
 x

 1
0
−
8
)

Figure 3: Data reuse transformations and their energy efficiencies measured
in EDP

Energy Efficiency Evaluation of Parallel ME Algorithm:

To maximize the energy efficiency, we have converted the optimized ME
algorithm that uses a 2 layer memory hierarchy into a parallel one by using
the OpenMP programming model and executed it on our system with a
varying number of threads. Fig. 4 presents the obtained result.

Fig. 4 implies that parallel programming improves energy efficiency of both
optimized (that exploits data reuse transformation methodology) and un-
optimized solutions (not using data reuse transformations). We can see
that EDP values drop rapidly with increasing number of threads and reach
their minimum when 4 threads are used. Since the Intel R© CoreTM i7-2600
processor consists of 4 physical cores which are shared among the threads
in Hyper-Threading mode, cache pollution causes the parallel unoptimized
solution to increase the EDP values with the increasing number of threads.
In contrast to the unoptimized solution, the optimized solution exhibits bet-
ter cache behavior due to the use of smaller memory blocks. Hence, EDP
remains almost constant during the Hyper-Threading mode.

Table 1 presents a summary of our results which reveal that data reuse
transformations significantly improve energy efficiency and that the par-
allel optimized solution is the most energy efficient transformation for ME

Paper A.2

1 2 3 4 5 6 7 8
Number of Threads

50

100

150

200

250
E
D

P
 (

Js
 x

 1
0
−
8
)

Parallel Unoptimized
Parallel Optimized

Figure 4: Improved energy efficiency using optimized parallel ME algorithm

algorithm. Normalized EDP values (with respect to optimized parallel solu-
tion) in the Table indicate that, sequential optimized and sequential unop-
timized solutions are energy in-efficient by a factor of 2.7 and 15.1, respect-
ively. The execution time for performing ME on one complete new frame is
improved with a factor of 6.5 going from sequential unoptimized to parallel
optimized.

In contrast to our results, in which we have obtained the best energy ef-
ficiency by using a 2 layer memory hierarchy, Wuytack et al. in [2] have
shown that a 3 layer memory hierarchy is the most energy efficient scheme
for the ME algorithm. However, our experiments differ from their as fol-
lows: First, we have experimented on a processor with a memory hierarchy

Table 1: Results of different data reuse transformations

Version Execution Time Energy Energy Efficiency Normalized
Second×10−6 Joule×10−3 (EDP) Js×10−8 EDP

Sequential Unoptimized 10.9 210.7 229.7 15.1
Sequential 2 Layer 4.3 97.0 41.7 2.7
Sequential 3 Layer 4.6 104.1 47.8 3.1
Parallel Unoptimized 3.2 161.4 51.6 3.4
Parallel Optimized 1.7 89.7 15.2 1.0

Paper A.2 6. Conclusion 101

of fixed sized cache-blocks. The copy candidates are hence mapped to a
portion of these fixed-size system caches, and consequently our measure-
ments consider the energy consumed by both used and idle cache lines.
Wuytack et al. did their experiment in a simulation environment that cre-
ated a hierarchy of memory blocks that perfectly fit the data blocks. There-
fore, extra energy consumption due to unused cache area is avoided. To
avoid extra energy consumption in our experiment, we would need to have
an execution platform using a concept like drowsy cache [17] that powers
down unused parts of the cache. This would give more comparable results
between the two methods. It is not available in the CoreTM i7 processor,
however. Second, we have measured energy efficiency of the complete pro-
gram rather than a part of the program that deals with data transfer. Third,
we have measured on-chip memory and core energy consumption rather
than considering only memory energy consumption. Fourth, their simula-
tion environment assumes that data can be directly copied from a low-level
hierarchy to a high-level hierarchy bypassing any intermediate layer. This is
not possible in our system.

6 Conclusion
In this paper, we have investigated performance and energy efficiency ef-
fects of applying data-reuse transformations on a multicore processor run-
ning a motion estimation algorithm. We have shown that for a sequential
Motion Estimation kernel, energy efficiency can be improved up to 5.5 times
by using appropriate data-reuse transformation techniques, which can be
further extended to 15.1 times by incorporating the OpenMP parallel pro-
gramming model. We have also shown that Hyper-Threading degrades both
performance and energy efficiency of the unoptimized solution. This gives
clear indications that a data reuse transformation methodology in combin-
ation with a parallel programming model can significantly save energy as
well as improve performance of this type of applications running on mul-
ticore processors.

References
[1] Susanne Albers. ‘Energy-Efficient Algorithms’. In: Communications

of the ACM 53.5 (May 2011), pp. 86–96. DOI: 10.1145/1735223.
1735245.

[2] J.Ph. Diguet, S. Wuytack, F. Catthoor et al. ‘Formalized Methodo-
logy for Data Reuse Exploration for Low-Power Hierarchical Memory

Paper A.2

Mappings’. In: IEEE Transactions on VLSI Systems 6 (1998), pp. 529–
537.

[3] Francky Catthoor, Koen Danckaert, Chidamber Kulkarni, Erik Brock-
meyer, Per Gunnar Kjeldsberg, Tanja Van Achteren and Thierry Omnes.
Data Access and Storage Management for Embedded Programmable
Processors. Dordrecht, The Netherlands: Kluwer Academic Publish-
ers, 2002. ISBN: 9780792376897.

[4] Francky Catthoor, Sven Wuytack, G.E. de Greef and et al. Custom
Memory Management Methodology: Exploration of Memory Organ-
isation for Embedded Multimedia System Design. Norwell, MA, USA:
Kluwer Academic Publishers, 1998. ISBN: 0792382889.

[5] Nikos D. Zervas, Kostas Masselos and C. E. Goutis. ‘Data-Reuse Ex-
ploration for Low-Power Realization of Multimedia Applications on
Embedded Cores’. In: Proceedings of the International Workshop on
Power and Timing Modeling, Optimization and Simulation. PATMOS’99.
1999, pp. 71–80.

[6] Alexander Chatzigeorgiou, Er Chatzigeorgiou, Stamatiki Kougia and
et al. Evaluating the Effect of Data-Reuse Transformations on Pro-
cessor Power Consumption. 2001. URL: http://egnatia.ee.auth.
gr/~alec/patmos2001.pdf.

[7] N. Vassiliadis, A. Chormoviti, N. Kavvadias and et al. ‘The Effect of
Data-Reuse Transformations on Multimedia Applications for Applic-
ation Specific Processors’. In: Proceedings of the International Confer-
ence on Intelligent Data Acquisition and Advanced Computing Systems
Technology and Applications. IDAACS’05. Sept. 2005, pp. 179–182.

[8] Hari Kalva, Aleksandar Colic, Adriana Garcia and Borko Furht. ‘Par-
allel Programming for Multimedia Applications’. In: Multimedia Tools
Applications 51.2 (2011), pp. 801–818.

[9] Long Chen, Ziang Hu, Junmin Lin and et al. ‘Optimizing the Fast
Fourier Transform on a Multi-core Architectures’. In: Proceedings of
the Parallel and Distributed Processing Symposium. IPDPS’07. Mar.
2007, pp. 1–8.

[10] Yuanrui Zhang, Mahmut Kandemir and Taylan Yemliha. ‘Studying
Inter-core Data Reuse in Multicores’. In: Proceedings of the Interna-
tional Conference on Measurement and Modeling of Computer Sys-
tems. SIGMETRICS ’11. 2011, pp. 25–36.

Paper A.2 REFERENCES 103

[11] Paul Marchal, Francky Catthoor, Davide Bruni and et al. ‘Integrated
Task Scheduling and Data Assignment for SDRAMs in Dynamic Ap-
plications’. In: IEEE Design & Test of Computers 21.5 (Sept. 2004),
pp. 378–387. DOI: 10.1109/MDT.2004.66.

[12] A. Podobas, M. Brorsson and K. Faxen. ‘A Performance Compar-
ison of Some Recent Task-based Parallel Programming Models’. In:
Proceedings of the International Conference on High-Performance and
Embedded Architectures and Compilers. Pisa, Italy, Jan. 2010.

[13] OpenMP Architecture Review Board. OpenMP Application Program
Interface. July 2011. URL: http://www.openmp.org/mp-documents/
spec30.pdf.

[14] T. Komarek and P. Pirsch. ‘Array Architectures for Block Match-
ing Algorithms’. In: IEEE Transactions on Circuits and Systems 36.10
(Oct. 1989), pp. 1301–1308.

[15] Intel. Intel 64 and IA-32 Architectures Software Development Manual.
Dec. 2011. URL: http://download.intel.com/products/processor/
manual/325462.pdf.

[16] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan and et
al. ‘Models and Metrics to Enable Energy-Efficiency Optimizations’.
In: Computer 40.12 (Dec. 2007), pp. 39–48.

[17] Krisztián Flautner, Nam Sung Kim, Steve Martin and et al. ‘Drowsy
Caches: Simple Techniques for Reducing Leakage Power’. In: Pro-
ceedings of the Annual International Symposium on Computer Archi-
tecture. ISCA ’02. Washington, DC, USA, 2002, pp. 148–157.

Paper A.3

Performance Optimization and
Evaluation of a Data Cleansing
Algorithm on Multicore
Processors

Abdullah Al Hasib and Lasse Natvig

The 9th International Summer School on Advanced Computer Archi-
tecture and Compilation for High-Performance and Embedded Systems,
2013

105

Is not included due to copyright

Paper B.1

V-PFORDelta: Data
Compression for Energy
Efficient Computation of Time
Series

Abdullah Al Hasib, Juan M. Cebrián and Lasse Natvig

The 22nd International Conference on High Performance Computing,
2015

115

Paper B.1 117

Abstract
Chip multiprocessors (CMPs) and heterogeneous architectures have become
predominant in all market segments, from embedded to high performance
computing. These architectures exacerbate on-chip data requirements, cre-
ating additional pressure on the memory subsystem. Consequently, effi-
cient utilization of on-chip memory space becomes critical for data intens-
ive applications. A promising means of addressing this challenge is to use
an effective compression method to reduce the data transmitted along the
memory hierarchy.

In this paper we present V-PFORDelta, a real-time vectorized integer dif-
ferential compression method for memory bound applications. We evalu-
ate the effectiveness of our SIMD (Single Instruction Multiple Data stream)
based compression method on an industrial hydrological time series data
processing kernel. We analyzed both Streaming SIMD Extensions (SSE) and
Advanced Vector Extensions 2 (AVX2) versions of the compression method.
Results show that the performance and energy efficiency can be improved
up to a factor of 3.1 and 8.2, respectively. The proposed method not only
outperforms the uncompressed SIMD implementations of the hydrological
kernel, but also reduces the data storage requirements by a factor of 1.56x
to 3.38x, depending on the analyzed dataset.

Paper B.1 1. Introduction 119

1 Introduction
The performance gap between processors and main memory along with the
increasing data movement requirements in both memory and cache bound
applications makes processors likely to spend a significant fraction of their
runtime stalled [1]. Effective data compression can play an important role
in reducing the amount of data to be transfered along the memory hier-
archy [2]. However, the compression and decompression processes incur
additional computational overheads that can nullify the benefits of data
compression. Therefore, the compression algorithm has to be chosen care-
fully to realize the concept of improving the application performance by
reducing the data transmission requirements.

Time series are widely used in many scientific and engineering fields, such
as analytical studies like weekly share-prices and monthly profit analysis in
economics, weather forecasting in meteorology or power generation and
prediction in control engineering [3, 4]. Generally, time series data pro-
cessing (TSDP) deals with fairly large data sets that exhibit good correl-
ation among the data points. This makes TSDP an interesting domain to
evaluate the effectiveness of data compression algorithms when optimizing
applications for energy efficiency and performance.

Over the last few years, support for fine grained data parallelism using SIMD
instructions has become prevalent in virtually every processor in the market.
SIMD issue width has increased at the same rate as cores have been added
to the chip, and this trend is expected to continue [5]. Some common ex-
amples of SIMD instruction set extensions include Intel’s SSE and AVX fam-
ily, AMD’s 3DNow!, ARM NEON, Motorola’s AltiVec and IBM’s BlueGene/L
SIMD instructions. SIMD instructions provide higher performance, better
energy efficiency and greater resource utilization [6, 7]. There are many
applications which can potentially benefit from SIMD instructions to im-
prove performance. However, despite the potential of SIMD instructions in
developing energy efficient applications, modern compilers still do not have
adequate auto-vectorization support for complex codes [8, 9]. Therefore,
when code efficiency is required, it is often written manually in assembly
language or using SIMD intrinsics.

Taking these facts into consideration we present V-PFORDelta, a vector-
ized Patched-Frame-Of-Reference Delta compression algorithm which aims
at improving the energy efficiency and performance of a cache/memory
bound application while reducing the capacity requirements of the data-
sets. The contributions of this paper can be summarized as follows:

Paper B.1

• We investigate several aspects of an industrial time series application.
We believe that the overall performance of the application can be
improved by exploiting the existing redundancy in the dataset, com-
pressing data at the expense of additional computational resources
during the decompression process.

• We present a vectorized differential compression method (V-PFORDelta)
for cache/memory bound compute kernels. Our strategy is to increase
the cache block utilization and to reduce the total number of off-chip
memory accesses by using a lightweight real-time SIMD-based com-
pression/decompression method. V-PFORDelta is based on a hybrid
data structure for the compressed data (AoS1+SoA2, aka AoSoA3),
regarded best practice in SIMD programming [10]. Our proposal is
also enhanced with SIMD prefetching to increase the data locality of
the application.

• We evaluate the feasibility of our approach on a demonstrator applic-
ation (i.e. an industrial time series application) with different hydro-
logical time series datasets (both synthetic and real world). Results
show that the proposed approach can provide a significant perform-
ance and energy efficiency gain over the uncompressed SIMD compu-
tations.

• We also study the effects of voltage and frequency scaling on the dif-
ferent implementations to further improve its energy efficiency. Fre-
quency has a higher impact on the performance of V-PFORDelta since
it requires additional computations to decompress the data, becoming
more CPU-bound than the uncompressed alternatives.

2 Related Work
Integer compression has received a lot of attention over the years. However,
in this literature review, we primarily focus on the lossless integer compres-
sion techniques.

Some of the earliest integer compression techniques are Delta coding [11],
Variable-byte (VarByte) coding [12], Rice and Golomb coding and Elias
gamma coding [13]. Delta coding encodes integer numbers by subtract-
ing successive values. The fundamental concept is to code the first value as

1Array of Structures.
2Structure of Arrays.
3Array of Struct of Arrays OR Tiled Array of Structs.

Paper B.1 2. Related Work 121

it is. The remaining values are represented as the differences between suc-
cessive values. A good compression ratio can be achieved by this approach
if the differences between successive values are small. VarByte is a simple
byte-oriented compression method. It uses a variable number of bytes to
represent integer values (e.g. 34 is represented using 8 bits, 144 is rep-
resented using 16 bits). This compression technique is fast but it provides
low compression ratio. Golomb and Rice coding are bit oriented coding
schemes. In Golomb coding, an integer (i) is coded by quotient (q) and
remainder (r) of division by the divisor (d). In case of Rice coding, the di-
visor used is a power of 2. These coding schemes provide good compression
ratio for small integer values but the decompression speed is quite slow. In
Elias Gamma coding, an integer (i) is encoded by its binary representation
preceded by blog2ic zeros. This relatively slow technique provides good
compression for small integers but not for the large ones.

In recent years, several fast compression techniques have been proposed,
including the Simple family (S9, S16) [14], Frame Of Reference (FOR) or
Patched Frame Of Reference (PFOR) [15]. Simple9 encoding technique
packs as many integers as possible in 32 bits (one word). This encoding
technique is fast and provides better compression ratio than Variable-byte.
FOR and PFOR coding compress a block of numbers at a time (e.g. 128
numbers). A fixed number of bits are used to encode each regular num-
ber in case of fixed-length encoding. The numbers that cannot be encoded
using fixed length bits are considered exceptions and stored using 4 bytes.
In varint-G8IU [16], a variable number of integers are encoded in 8 bytes.
Once encoded, they are grouped together along with a 1-byte descriptor
containing the unary representations of the lengths of each encoded in-
teger. 8 data bytes can be used to encode from 2 to 8 integers depending
on the size of the encoded integers. The number of integers is encoded by
the number of zeros in the descriptor. More recently, SIMD-based compres-
sion techniques have gained popularity. Stepanov et al. presented a tax-
onomy for variable-length integer encoding formats and presented a byte
preserving integer encoding algorithm using SIMD instructions [17]. Schle-
gel et al. applied SIMD-based decompression algorithms to derive parallel
versions of two well-known integer compression techniques: null suppres-
sion and Elias gamma encoding [16]. In [18], Ao et al. proposed a linear
regression-based parallelized compression technique for lists intersection.
In [19], authors proposed a parallel compression algorithm that aims to im-
prove the instruction level parallelism by exploiting a 4-way vertical data
layout format. Lemire et al. proposed a delta coding-based compression
technique, FastPFOR, that uses vectorized binary packing over blocks of

Paper B.1

128 integers [20]. This scheme stores the exceptions on a per page basis,
but selects the base value b on a per block basis. They had shown that
their approach is nearly twice as fast as the previously fastest schemes on
desktop processors (varint-G8IU and PFOR). The authors have further ex-
tended their work by computing prefix sum using SIMD operations in their
proposed algorithm [21].

Our compression method is primarily motivated by the algorithm presented
in [21]. However, the method presented in that paper is a block-based com-
pression method that operates on a list of sorted integers (in non-decreasing
order). Whereas we propose a streaming compression method that does not
assume that the data is sorted in any order. Moreover, we trade-off compres-
sion ratio in favor of decoding speed to reduce the computational overhead
during the decompression process.

3 Powel Hydrological Compute Kernel
Powel AS is one of the leading providers of software and services to the
utility companies in Scandinavia [22]. To evaluate the feasibility of our
proposed approach, we use a hydrological time series compute kernel de-
veloped in Powel AS. The compute kernel produces a summary series from
a number of time series data that receives as input from a database. Each
series (si) in the input dataset (ds) can be formally defined as,

ds={si}
n−1
i=0 , si = (ti, vi, qi)

where vi represents the hydrological in-flow measured in m3/sec at time
ti, and qi represents the status information (e.g. valid or invalid data) for
the measurement at time ti.

The kernel takes two time series as inputs at a time and performs compu-
tations as it passes over the data points at each time instance, generating a
new time series as output. Initially, it computes time axis t vector of the res-
ultant series from the given inputs. Next, for each ti in the resultant series,
the kernel takes the corresponding vi from the input series and computes
vi of the resultant series. Any missing value in the input series is estimated
using linear interpolation. The corresponding qi parameter is also updated
to indicate the value is interpolated. Finally, all the aforementioned steps
are repeated until the entire dataset (ds) is processed.

The exact pseudo-code of this compute kernel is subject to a non-disclosure
agreement (NDA), and thus can not be presented in this paper. What we
can tell is that the kernel is implemented in C++, performs computationally

Paper B.1 4. Time Series Datasets 123

_mm_load_si128

_mm_compgt_epi32

_mm_and_si128

_mm_and_epi32

_mm_shuffle_epi8

x=xi xi+1 xi+2 xi+3

Z

_mm_sub_epi32

y=yi yi+1 yi+2 yi+3

_mm_load_si128

mm_set1_epi32(-128) mm_set1_epi32(127)

(a) Delta computations for 4 data points

_mm_load_si128

_mm_and_si128

_mm_movemask

_mm_set1_epi32(127)

x=xi xi+1 xi+2 xi+3 y=yi yi+1 yi+2 yi+3

Z

_mm_sub_epi32

_mm_compgt_epi32

_mm_load_si128

_mm_compgt_epi32

_mm_set1_epi32(-128)

(b) 4-bit bitmask for 4 delta values

Figure 1: Data Flow Graph (DFG) of the compression algorithm. Four 32-bit
integers are loaded into each 128-bit SIMD register to compute four 8-bit
delta values and corresponding 4-bit bitmask. The repeating operations
in the figures are only for illustration purpose; the implementation of the
algorithm avoids those repeating operations.

inexpensive O(n) operations, and that the data access pattern is sequential.
However, the kernel needs to process a huge volume of time series data,
and consequently it becomes limited by the memory subsystem. Parallelism
is handled at a higher level, serving multiple requests simultaneously, fur-
ther increasing the pressure on the memory hierarchy. In Section 6 we will
describe different performance related aspects of this application, including
performance variations when scaling core frequency, cache and memory re-
lated events and percentage of stalled CPU cycles due to lack of resources.

4 Time Series Datasets
The following hydrological time series datasets are used in our experiments.

Synthetic data (Powel dataset): We were given a real-world hydrological
time series dataset by Powel. The dataset contains 5 different time series
and requires 2.3 MB of internal storage. However, this dataset is not large
enough to be used in our experiment since it fits on the last level cache
(LLC) of the processor. We generate a synthetic dataset of 105 MB contain-
ing 250 time series as a viable alternative to a larger dataset based on the

Paper B.1

Table 1: Required C/C++ Intrinsics to Implement V-PFORDelta Compres-
sion Algorithm

Operation SSE AVX2 KNC
bitwise OR _mm_or_si128 _mm256_or_si256 _mm512_or_si512
bitwise AND _mm_and_si128 _mm256_and_si256 _mm512_and_si512
shift right by a number of bytes _mm_srli_si128 _mm256_srli_si256 _mm512_srli_si512
shift left by a number of bytes _mm_slli_si128 _mm256_slli_si256 _mm512_slli_si512
add four 32-bit integers _mm_add_epi32 _mm256_add_epi32 _mm512_add_epi32
shuffle four 32-bit integers _mm_shuffle_epi32 _mm256_shuffle_epi32 _mm512_shuffle_epi32
compare four 32-bit integers _mm_cmpgt_epi32 _mm256_cmpgt_epi32 _mm512_cmpgt_epi32
store a 128-bit register _mm_storeu_si128 _mm256_storeu_si256 _mm512_storeu_si512
load to 128-bit register _mm_loadu_si128 _mm256_loadu_si256 _mm512_loadu_si512
mask from most significant bits of 32-bit elements _mm_movemask_ps _mm256_movemask_ps -
unpack and interleave 32-bit integers _mm_unpacklo_epi32 _mm256_unpacklo_epi32 -
convert 8-bit integers to 32-bit integers _mm_cvtepi8_epi32 _mm256_cvtepi8_epi32 -

given fractional dataset. Each series in the synthetic dataset is generated by
randomly choosing a fixed number of unique vi values in the corresponding
real-world series, and updating all the occurrences of the selected values
by ±10%. Finally, all the synthetic series generated from the same original
series are interleaved with the synthetic series. The data compression ratio
of this dataset is 1.56, which is close to the compression ratio of the original
dataset (< 3%).

Real-world data (MOPEX dataset): This dataset is obtained from the Na-
tional Weather Service Hydrology Laboratory which is used in Model Para-
meter Estimation Experiment (MOPEX) [23]. The dataset contains the re-
cords of hourly precipitation flows in millimeter from 438 MOPEX basins
from the year 1948 to 2003. However, in our evaluation, we use the data
from 20 basins out of 438 to produce a real-world dataset of 153 MB, which
is large enough to be used in our experiment (i.e., does not fit on the LLC).
The data compression ratio of this dataset is 3.38.

5 V-PFORDelta Compression Algorithm
TSDP datasets tend to vary smoothly over time, and hence can be encoded
using delta coding effectively [20]. V-PFORDelta exploits the existing cor-
relation among the data points by using SIMD-based differential compres-
sion and binary packing methods. SIMD operations will improve encoding
and decoding speed significantly with the cost of compression ratio. We use
a hybrid data structure to represent the compressed data, improving data
locality. In addition, we use SIMD prefetch instructions for better memory
management. The implementation details of V-PFORDelta are given for
SSE. Support for AVX2 is achieved using equivalent AVX2 intrinsics and
256-bit registers (Table 1).

Paper B.1 5. V-PFORDelta Compression Algorithm 125

5.1 Encoding

V-PFORDelta coding scheme is illustrated in Algorithm 3.

Delta computation: Assume that v1, v2 . . . vn are the in-flow measure-
ments to be compressed using the differential encoding technique. To en-
able SIMD computation, each value at index i is subtracted from the value at
index i−4 i.e. δi = vi−vi−4. We tune the bit width (w) of delta to 8 to min-
imize the value of {n×b + c(w)×32} where n is the length of time series
and c(w) is the number of exceptions. The process of generating 8-bit delta
values using SSE intrinsics is illustrated in Fig. 1a. Each round box in the
figure denotes a 128-bit vector register and each small square in the ellipt-
ical circle denotes an 8-bit value. The operations performed on the vector
registers (with mm_ prefix) are denoted by SSE intrinsics with _mm_ prefix.
The dashed-lines represent the vector registers involved in a specific oper-
ation. In Fig. 1a, two vectors x={vi+1, vi+2, vi+3, vi+4} and y={vi−3, vi−2,

vi−1, vi} are used to compute four 8-bit delta values. Each element of the
vectors is shown separately as xi, yi. First, elements xi and yi are loaded
into the SSE registers (_mm_load_si128). Then yi is subtracted from xi
(_mm_sub_epi32) and the result zi is checked (_mm_cmpgt_epi32) to be
within the range [-128, 127] or not (range is set using _mm_set_epi32). If
zi is not within the range, it will be set to 0 using _mm_and_si128. The
low-order 8-bits of each zi in the vector register are placed in consecutive
locations (_mm_shuffle_epi8).

Binary packing: Generally, in-flow measurements tend to vary smoothly
over time, and it is expected that a significant portion of the delta values
can be represented using a small number of bits. We tweak this compression
parameter allocating 8-bits for each delta value (δi). Values that do not
fall into this limit (i.e. δi < −128 or δi > 127) are considered exceptions.
When an exception is detected, the corresponding delta value (δi) is set to
0 and a 32-bit field is used to hold the original value (vi). Similar to the
delta sequence, exceptions are stored in consecutive memory locations, but
in a separate location from the delta sequence. To distinguish between the
exceptions and the regular delta values, a 1-bit mask (mi) is used for each
δi. The bitmask sequence is placed right after the delta sequence in the
memory. The process of generating a 4-bit bitmask using SSE intrinsics is
illustrated in Fig. 1b. In the first four levels of the figure, data values are
loaded into 128-bit vector registers, delta values are computed and then
checked to be within the range [-128, 127]. Finally, the most significant bits
of each 32-bit resultant values are extracted to generate the 4-bit bitmask
(_mm_movemask_ps).

Paper B.1

Algorithm 3 V-PFORDelta Encoding Algorithm
Input: a list of 32-bit integers (X), shuffle table
Assume: length(X) is multiple of 4
Output: vectors of delta (δ), bitmask (m) and exceptions (exp)

1: mm_x← load(X[0]) . load 4 integers into SIMD register
2: i← 0 . loop counter
3: while i < length(X) do
4: mm_y← load(X[i]) . load next 4 integers

Phase 1 - Delta computation

5: mm_z← mm_x - mm_y . compute 32-bit delta
6: δ← shuffle(mm_z, MASK) . generate 8-bit delta
7: δ← shiftLeft(δ, 1)

Phase 2 - Bitmask computation

8: mm_lowerBound← mm_z > -128 . z_i > -128 ?
9: mm_upperBound← mm_z < 128 . z_i < 128 ?

10: mm_range← mm_lowerBound & mm_upperBound
11: bitmask← moveMask(mm_range) . extract MSB

Phase 3 - Exception compaction

12: m← lookup(shuffleTable, bitmask) . extract shufflemask m
13: exp← shuffle(mm_y, m) . compact exception stream exp
14: mm_x← mm_y . update X-vector
15: i← i+4 . update loop counter
16: end while

Algorithm 4 V-PFORDelta Decoding Algorithm
Input: baseT, baseV, baseQ, comp, bitmask, exp
Output: time, value, status

1: loadData(baseT, baseQ, exp, comp.deltaT, comp.deltaQ, comp.deltaV)
2: for i=0 to 15 do
3: time[i]← expandAndAdd(mm_deltaT, mm_baseT)
4: status[i]← expandAndAdd(mm_deltaQ, mm_baseQ)
5: mm_baseV← getBase(mm_exception, bitmask)
6: value[i]← expandAndAdd(mm_deltaV, mm_baseV)
7: mm_deltaT← shiftRight(mm_deltaT, bitmask, 4)
8: mm_deltaQ← shiftRight(mm_deltaQ, bitmask, 4)
9: mm_deltaV← shiftRight(mm_deltaV, bitmask, 4)

10: i← i+4
11: end for

Exception compaction: Exceptions are stored in consecutive memory loc-
ations, but the order of appearance in the data sequence is random. There-

Paper B.1 5. V-PFORDelta Compression Algorithm 127

fore, we need to compact the exception stream to place the sparsely distrib-
uted exceptions one after another. This is done by identifying the values
vi in the data stream that cause the exceptions using a bitmask, and then
reordering the vi to put all the exceptions together. Relative positions of
exceptions in a vector register are defined by a shuffle-mask, which is gen-
erated from the bitmask sequence. The shuffle-mask generation process is
computationally expensive. To reduce the associated computational over-
head, these masks (i.e. 16 shuffle-masks for both SSE and AVX2 based com-
putations) are precomputed and stored in a shuffle-table.

Let us explain the exception stream compaction process with a simple ex-
ample. Assume that yi = {10234, 2010, 5323, 3050} and xi = {10000,
2000, 5000, 3000} for i=1. . . 4; So the delta, δi = yi-xi = {234, 10, 323,
50} and the corresponding bitmask, mi = 0101. Consequently, the shuffle-
mask is calculated as, si = {1, 3, 128, 128}. After the stream compaction
phase, the final result will be: {10234, 5323, 0, 0}. SIMD DFG of the ex-
ception compaction is depicted in Fig. 2.

…

bitmask

shuffle table

shuffle mask exception stream

compacted exception stream

Figure 2: Exception stream compaction using SSE permutation. Bitmask
identifies the exceptions and points to a specific shuffle mask to permute
exceptions and place them sequentially in memory.

5.2 Decoding

The decoding algorithm takes the initial time (base_T), status values (base_Q),
compressed data (comp), and stream of exceptions (exp) as input, and de-
compresses a block of 16 data elements at a time. Algorithm 4 presents

Paper B.1

our proposed SIMD-based decoding algorithm. In the decoding process,
the first 8-bit delta values are loaded into a SIMD register and extended
into 32-bit signed integers values using _mm_cvtepi8_epi32. Similarly, the
exception streams are loaded into 4 different SIMD registers. After that,
the first 32-bits in each SIMD registers are unpacked and interleaved using
_mm_unpacklo_epi32. This way, we generate the base values of the differ-
ential codes which are stored in a separate SIMD register. These base values
are then added with the 32-bit delta values in order to produce the original
values. Finally, based on the bitmask value, the low order 32-bits of each ex-
ception stream are shifted out of the registers (_mm_srli_epi32). The SIMD
DFG of the decoding process is illustrated in Fig. 3.

_mm_load_si128

co
m

p
ac

te
d

 e
xc

ep
ti

o
n

s

_mm_cvtepi8_epi32 _mm_unpacklo_epi32

_mm_add

compressed delta

decoded values

Figure 3: DFG of the decoding process. 8-bit delta values are expanded to
32-bit values and added with the base-values to generate 32-bit integers.

5.3 Compressed data structure and prefetching

We introduce the following data structure for the compressed time series
dataset in order to improve the data locality property as well as to facilitate
vector computations.

struct CTSstruct {
int16_t delta_t[16];
int8_t delta_v[16];
int8_t delta_q[16];

};

Paper B.1 6. Results and Discussion 129

Table 2: Hardware Specifications of the Test Platforms

Processor Intel R© CoreTM i7-2600 Intel R© CoreTM i7-4700K
Architecture Sandy Bridge Haswell
Clock Speed 1.6 – 3.4 GHz 0.8 – 3.5 GHz
of Cores 4 physical cores with 8 threads
L1 Cache 32 KB data + 32 KB instruction, private, 8-way associativity
L2 Cache 256 KB, private, 8-way associativity
L3 Cache 8 MB, shared, 16-way associativity

We keep the size of CTSstruct comparable to the cache line size of our test
platforms (i.e. 64 Bytes in Sandy Bridge and Haswell system), and pack
several compressed values of time, status and in-flow measurements. This
hybrid between array of structures + structure of arrays keeps data in the
same cache line to improve the spatial locality of the compressed data struc-
ture. A typical computation in the Powel compute kernel involves one time
value, one status value and one inflow-status value from each source and
destination series. The designed data structure contains all the three re-
quired elements in the same cache line so that the elements can be loaded
from the memory into the cache using a single memory access. Addition-
ally in CTSstruct, a group of 16 time values are compressed and stored in
consecutive memory locations. This is true for status and in-flow data as
well. Consequently, CTSstruct facilitates SIMD-based computations as all
the 16 delta_v or delta_q elements or 8 delta_t elements can be loaded
into a 128-bit vector register using a single operation (_mm_load_si128).
We further optimize the performance of V-PFORDelta by manually insert-
ing prefetch requests in the code. To enable software prefetching, we use
SIMD prefetch intrinsics (_mm_prefetch) [24] and set the cache-level place-
ment hint to _MM_HINT_T0 so that each block of data in the CTSstructure
is brought into L1 cache in advance. This will eventually reduce memory
latency provided that the prefetch requests are sent early enough.

6 Results and Discussion
This section presents the results of a set of experiments we conduct to
demonstrate the effectiveness of our proposed approach. For this purpose,
we implement the following five variants of Powel kernel:

• Baseline: Powel kernel implemented using C++ programming lan-
guage.

Paper B.1

• SIMD_SSE: Vectorized Powel kernel using SSE instructions.

• SIMD_AVX2: Vectorized Powel kernel using AVX2 instructions.

• COMP_SSE: SSE-vectorized Powel kernel with integrated V-PFORDelta
coding.

• COMP_AVX2: AVX2-vectorized Powel kernel with integrated V-PFORDelta
coding.

The performance and energy efficiency evaluation will be complemented
by a detailed analysis of the processor’s internal performance counters.
This analysis includes processor stalls and cache accesses/misses for single
threaded kernels. Our goal is to gain an insight of the effects of different im-
plementations on the processor’s usage of internal resources. This analysis
may reveal bottlenecks to be solved in future work.

Core frequency has a linear impact on performance, as long as we have
a high activity factor. However, for memory-bound applications, reducing
frequency has minimal effect on performance, improving energy efficiency.
As a result, the best energy efficiency for TSDP can be expected at low
frequencies. Nonetheless, V-PFORDelta requires additional computations
to decompress the data, making the kernel more CPU-bound. We perform
a voltage and frequency analysis to detect negative/positive effects of fre-
quency scaling on the overall performance and energy efficiency of the dif-
ferent implementations, and we see it reflected in our results.

We use two desktop processing systems namely Sandy Bridge (SB) and
Haswell (HL) in our experiments. The hardware specifications of these sys-
tems are presented in Table 2. Both systems run with Ubuntu 14.04.1 LTS
64-bit OS. Intel C++ compiler (14.0.1) with -O3 optimization flag is used
to generate the executables. Turbo Boost Technology is disabled in the BIOS
and CPU frequency is set to a certain value (using cpufreq-set) while taking
the measurements on both systems. AVX2-based kernels are evaluated only
on the HL platform as the SB processor does not support AVX2. We could
not extend our experiments on the Intel R© many-core platforms, as the cur-
rent Xeon Phi Knights Corner instruction set does not offer the full support
for integer operations, which is required to implement our algorithm (see
Table 1). However, we expect it to be possible in the upcoming Knights
Landing co-processor, since it offers full support for AVX512 [25].

Paper B.1 6. Results and Discussion 131

1600 2000 2400 2800 3400
Frequency (MHz)

0
10
20
30
40
50
60

T
im

e
 (

sx
1
0−

3
)

Mopex dataset

Baseline SIMD_SSE COMP_SSE

1600 2000 2400 2800 3400
Frequency (MHz)

0
5

10
15
20
25
30
35
40
45

T
im

e
 (

sx
10
−
3
)

Powel dataset

Baseline SIMD_SSE COMP_SSE

(a) Execution time on SB

1600 2000 2400 2800 3400
Frequency (MHz)

0

200

400

600

800

1000

1200

E
n
e
rg

y
 (

Jx
10
−
3
)

Mopex dataset

Baseline SIMD_SSE COMP_SSE

1600 2000 2400 2800 3400
Frequency (MHz)

0

100

200

300

400

500

600

E
n
e
rg

y
 (

Jx
1
0
−
3
)

Powel dataset

Baseline SIMD_SSE COMP_SSE

(b) Energy consumption on SB

1600 2000 2400 2800 3400
Frequency (MHz)

0

10000

20000

30000

40000

50000

60000

E
D

P
 (

Js
x
10
−
6
)

Mopex dataset

Baseline SIMD_SSE COMP_SSE

1600 2000 2400 2800 3400
Frequency (MHz)

0

2000

4000

6000

8000

10000

12000

E
D

P
 (

Js
x
10
−
6
)

Powel dataset

Baseline SIMD_SSE COMP_SSE

(c) Energy efficiency on SB

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0

20

40

60

80

100
T
im

e
 (

sx
1
0−

3
)

Mopex dataset

Baseline

SIMD_SSE

COMP_SSE

SIMD_AVX2

COMP_AVX2

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0
10
20
30
40
50
60
70

T
im

e
 (

sx
1
0−

3
)

Powel dataset

Baseline

SIMD_SSE

COMP_SSE

SIMD_AVX2

COMP_AVX2

(d) Execution time on HL

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0
20
40
60
80

100
120
140
160

E
n
e
rg

y
 (

Jx
10
−
3
)

Mopex dataset

Baseline

SIMD_SSE

COMP_SSE

SIMD_AVX2

COMP_AVX2

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0
10
20
30
40
50
60
70
80

E
n
e
rg

y
 (

Jx
1
0−

3
)

Powel dataset

Baseline

SIMD_SSE

COMP_SSE

SIMD_AVX2

COMP_AVX2

(e) Energy consumption on HL

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0

1000

2000

3000

4000

5000

6000

E
D

P
 (

Js
x
10
−
6
)

Mopex dataset

Baseline

SIMD_SSE

COMP_SSE

SIMD_AVX2

COMP_AVX2

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0

200

400

600

800

1000

1200

E
D

P
 (

Js
x
1
0−

6
)

Powel dataset

Baseline

SIMD_SSE

COMP_SSE

SIMD_AVX2

COMP_AVX2

(f) Energy efficiency on HL

Figure 4: Execution time, core-energy consumption and energy efficiency
in terms of energy delay product (EDP) at different frequencies on SB and
HL systems.

Paper B.1

6.1 Metrics used for the analysis

We use execution time (in seconds) as the metric for performance evalu-
ation. Since the V-PFORDelta performs offline data compression, only de-
compression time is included in the COMP kernels evaluation. Energy effi-
ciency is measured in terms of Energy Delay Product (EDP: Js) [26]. Gener-
ally, the lower the EDP, the better the energy efficiency. Speedup and Relat-
ive EDP at a certain frequency are computed with respect to the execution
time and EDP of the Baseline kernel at the corresponding frequency. Both
core-energy and system-energy consumptions are considered to analyze en-
ergy efficiency. We use Yokogawa WT210 external power meter to meas-
ure system-energy consumption, and read Model Specific Registers of the
Intel R© processors to estimate core-energy (PP0) consumption [24]. PAPI
native counters [27] are used to track cache and memory related events, as
well as DineroIV [28] (a trace-driven cache simulator) is used to analyze the
nature of cache misses (i.e., compulsory, capacity and conflict). The input
traces for the DineroIV are generated using the Lackey tool of Valgrind [29].

6.2 Performance analysis

In our first set of experiments, as depicted in Fig. 4, we compare perform-
ance and core-energy consumptions of different kernels on our evaluation
platforms. It can be seen from the figures (Fig. 4a and 4d) that at high
core frequencies performance of the Baseline kernel tends to be blocked by
the memory subsystem, since the CPU spends many cycles waiting for data
transfers (as shown in the Fig. 11). The uncompressed SIMD implement-
ations further increase the pressure on the memory subsystem, since each
operation now requires four to eight (SSE, AVX2) data values to be moved
into the registers. COMP kernels use a portion of this idle CPU time to ex-
tract the compressed dataset. As a result, the overall performance of the
TSDP does not deteriorate due to the additional computational overhead of
data decompression; rather it improves as the compression helps to reduce
the amount of data to be transmitted across the memory hierarchy (and
thus the total waiting time). In fact, total number of L1 data cache accesses
(and misses) for COMP_SSE kernel is reduced to half of those required by
the SIMD_SSE kernel on SB system as shown in Table 3. It is important to
note that the COMP kernels benefit more from increased core frequency due
to the increase in computation requirements during decompression.

At a low core frequency, the uncompressed SIMD-based computations reduce
the execution time up to 30% over the Baseline kernel execution time. At
such low frequencies, the ratio of data that can be served by the memory

Paper B.1 6. Results and Discussion 133

1600 2000 2400 2800 3400
Frequency (MHz)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

S
p
e
e
d
u
p

1
.0 1

.3

1
.9

1
.0 1

.2

2
.0

1
.0 1
.1

2
.1

1
.0 1
.1

2
.2

1
.0 1
.0

2
.5

Mopex dataset

Baseline SIMD_SSE COMP_SSE

1600 2000 2400 2800 3400
Frequency (MHz)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

S
p
e
e
d
u
p

1
.0

1
.3 1

.5

1
.0

1
.3 1

.5

1
.0

1
.3 1

.6

1
.0

1
.3 1

.6

1
.0

1
.3 1

.6

Powel dataset

Baseline SIMD_SSE COMP_SSE

Figure 5: Speedup on SB.

subsystem increases, since frequency scaling only affects the CPU and caches.
In this scenario, using a SIMD implementation provides greater benefits
than at higher frequencies (specially in terms of energy and EDP), since
we compute additional data per instruction. An important concluding re-
mark is that, when the memory subsystem limits the performance benefits
of a SIMD implementation, reducing the operating frequency can greatly
improve the energy efficiency of the application.

We further investigate the effect of data compression ratio on the perform-
ance of COMP kernels. Ideally, a single SSE load contains 16 8-bit delta
values that can be extracted into 16 integer values. But in reality, there
exists exceptions in the data stream, and each exception contributes one ad-
ditional load or shift operation. Consequently, the speedup depends on the
correlation among the data points. The higher the correlation among the
time series data points, the higher its compression ratio and the better its
speedup. Since MOPEX dataset has better compression ratio than that of
Powel, COMP kernels provide greater speedups (up to 3.1) for MOPEX data-
set compared to Powel dataset (up to 1.8) in Fig. 5 and Fig. 6. Still, COMP
kernels manage to outperform both the Baseline and the uncompressed SIMD
kernels for all core frequencies and input sets.

Paper B.1

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0

1

2

3

4

5

6
S
p
e
e
d
u
p

1
.0 1
.2 1
.3

2
.0 2

.3

1
.0 1
.3

1
.2

2
.1 2

.4

1
.0 1
.2

1
.2

2
.1 2

.4

1
.0 1
.2

1
.2

2
.2 2
.5

1
.0 1
.1

1
.1

2
.3 2

.6

1
.0 1
.1

1
.1

2
.4 2

.9

1
.0 1
.1

1
.1

2
.8 3

.1

Mopex dataset

Baseline

SIMD_SSE

SIMD_AVX2

COMP_SSE

COMP_AVX2

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0

1

2

3

4

5

S
p
e
e
d
u
p

1
.0 1

.3
1

.3 1
.5 1
.7

1
.0 1

.3
1

.3 1
.5 1
.7

1
.0 1

.3
1

.3 1
.5 1
.7

1
.0 1

.3
1

.3 1
.6 1
.8

1
.0 1

.3
1

.3 1
.5 1
.7

1
.0 1
.2

1
.2 1

.6 1
.7

1
.0 1

.2
1

.2 1
.6 1
.8

Powel dataset

Baseline

SIMD_SSE

SIMD_AVX2

COMP_SSE

COMP_AVX2

Figure 6: Speedup on HL.

6.3 Energy efficiency analysis

To analyze the energy efficiency of our proposed approach, we consider
both core and system energy consumption. From the figures in Fig. 4b and
Fig. 4e, we can see the expected correlation between core energy consump-
tion and core frequency (i.e. the more frequency, the more energy). What is
important to notice is that, for the Baseline and uncompressed SIMD kernels,
the additional power dissipation at high frequencies does not translate into
a linear performance improvement. This is, as mentioned previously, due to
the memory-bound nature of the kernel. Computations are performed faster
and cost more power, but the processor still has to wait for the memory
to serve all the data. As a result, total core energy consumption increases
significantly at high core frequencies. On the other hand, the COMP ker-
nels consume less energy, even at high core frequencies. Our compres-
sion method reduces both on-chip and off-chip memory bandwidth require-
ments at the expense of additional computational requirements (decom-
pression). As a result, the system benefits from increasing core frequency,
since computations are now critical to decompress the required data. The
complete (at-the-wall) system energy consumption shows similar trends in
Figure 8. These measurements consider both core and uncore components
(e.g. motherboard, memory, etc).

Paper B.1 6. Results and Discussion 135

1600 2000 2400 2800 3400
Frequency (MHz)

0
1
2
3
4
5
6
7
8
9

R
e
la

ti
v
e
 E

D
P

1
.0 1

.7

3
.9

1
.0 1

.6

4
.2

1
.0 1
.4

4
.7

1
.0 1
.3

5
.2

1
.0 1
.2

6
.9

Mopex dataset

Baseline SIMD_SSE COMP_SSE

1600 2000 2400 2800 3400
Frequency (MHz)

0
1
2
3
4
5
6
7
8
9

R
e
la

ti
v
e
 E

D
P

1
.0

1
.8

2
.7

1
.0

1
.8 2

.7

1
.0

1
.8

2
.7

1
.0

1
.8

2
.7

1
.0 1

.8

2
.8

Powel dataset

Baseline SIMD_SSE COMP_SSE

Figure 7: Relative EDP on SB.

In terms of EDP, depicted in the figures Fig. 4c, Fig. 4f and Fig. 10, Baseline
and uncompressed SIMD kernels exhibit lower EDP at higher core frequen-
cies. EDP emphasizes on performance given similar energy consumption.
Since the frequency impact on performance for these kernels is limited by
the memory subsystem, the effects on EDP are negative. On the other hand,
the additional computational requirements of the COMP kernels translate
into EDP improvements as we increase core frequency. Looking at the rel-
ative energy efficiency of different kernels (Fig. 7 and Fig. 9), we find that

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

101

102

103

104

E
n
e
rg

y
 (

Jx
10
−
3
)

Mopex dataset

Baseline

SIMD_SSE

COMP_SSE

SIMD_AVX2

COMP_AVX2

core_energy

Baseline

SIMD_SSE

COMP_SSE

SIMD_AVX2

COMP_AVX2

core_energy

Figure 8: System energy consumption.

Paper B.1

Table 3: Average Cache and Memory Related Events on Haswell Processor

Powel L1 data cache L2 cache L3 cache Total L1 data Total L1 data Total L3 L1 data Total
kernel miss rate (%) miss rate (%) miss rate (%) cache misses cache accesses cache misses prefetch instruction count

P M P M P M P M P M P M P M P M
Baseline 6.40 6.42 22.16 50.48 4.04 20.98 59987609 88373145 3838612 5676306 71741 71741 1642122 9350788 77886930 114747225
SIMD_SSE 20.65 20.74 36.71 62.86 4.44 24.39 18326079 26999387 3784318 5598951 156674 61740 861536 5766500 44983182 66271226
SIMD_AVX2 41.13 41.45 44.11 65.72 8.55 29.13 9163079 13507921 3769232 5599101 156674 144321 1072368 5766500 19993182 29454027
COMP_SSE 19.65 20.34 19.64 29.65 5.97 7.43 8794528 12387811 1728335 2520223 44953 20195 54229 4170770 59734332 83074329
COMP_AVX2 20.07 21.90 21.63 36.18 6.78 9.60 6002619 8119767 1727529 2524005 44953 25315 87837 4170770 38332660 52757265
P=Powel dataset M=MOPEX dataset

the COMP kernels are more energy efficient in all respects. It is also clear
that AVX2 instructions do not provide any significant energy efficiency gain
over the SSE instructions for uncompressed SIMD kernels. The memory sub-
system becomes a bottleneck and cannot provide data fast enough to feed
the AVX2 256-bit registers. In contrast, the improvements on total data-
elements loaded per cache access of the COMP kernels is enough to make
AVX2 beat SSE in terms of performance and energy.

It is also interesting to note that the system energy consumption is sig-
nificantly dominated by the uncore part of the system, especially at low
core frequencies (Fig. 8). The memory-boundedness nature of the applic-
ation makes core power dissipation small, far from its design limits (TDP).
Moreover, the core-energy consumption increases for the Baseline and un-
compressed SIMD kernels with core frequency, but the additional frequency
does not help to reduce the system energy consumption. As the COMP ker-
nels use the idle CPU cycles to reduce the memory traffic, the system energy
consumption is reduced at high core frequencies.

6.4 Memory statistics

We have established that the performance of the Baseline kernel in Fig. 4
is limited by the memory hierarchy at a high core frequencies. To validate
this assumption and identify the root of this behavior, we analyze differ-
ent micro-architectural properties of the system, such as the percentage of
stalled CPU cycles due to lack of resources, including Re-Order Buffer (ROB)
hazards, unavailable Reservation Station (RS) slots, unavailable Load/Store
Queue (LSQ) slots, and contention for Floating Point (FP) units. The res-
ult is presented in Fig. 11. From the figure, we observe that approxim-
ately 44% of the CPU cycles are stalled for resource related reasons and the
memory stalls account for 34% at the lowest core frequency. But as the core
frequency increases, the percentage of stalled-cycles increases, eventually
reaching ≈59%. The memory resources become the most dominant contrib-
utor of the stalled CPU cycles (approximately 57.6% at the highest core fre-
quency), and account for the limited performance when scaling frequency.

Paper B.1 6. Results and Discussion 137

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0
2
4
6
8

10
12
14

R
e
la

ti
v
e
 E

D
P

1
.0 2

.0
2

.0
4

.9
6

.6

1
.0 1

.9
2

.0
5

.0
6

.6

1
.0 1
.6 1
.7

4
.6 5

.7

1
.0 1
.5 1
.6

5
.1

6
.7

1
.0 1
.4 1
.5

5
.0

7
.2

1
.0 1
.5 1
.6

5
.7

7
.8

1
.0 1
.2 1
.2

6
.6

8
.2

Mopex dataset

Baseline

SIMD_SSE

SIMD_AVX2

COMP_SSE

COMP_AVX2

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0
1
2
3
4
5
6
7
8

R
e
la

ti
v
e
 E

D
P

1
.0

1
.9

1
.9
2

.7 3
.4

1
.0

1
.8 1
.9

2
.8

3
.7

1
.0
1

.7
1

.7 2
.4

3
.2

1
.0

1
.8

1
.7

2
.9 3

.4

1
.0 1

.6 1
.7

2
.8 3
.1

1
.0 1

.6 1
.7

2
.8 3
.1

1
.0 1

.6
1

.7
2

.7 3
.0

Powel dataset

Baseline

SIMD_SSE

SIMD_AVX2

COMP_SSE

COMP_AVX2

Figure 9: Relative EDP on HL.

In addition, SIMD computations increase the pressure on the memory sub-
system, increasing CPU stalls up to 80% of the total stalled CPU cycles.
For this reason, SIMD extensions of the Baseline kernel (i.e. uncompressed
SIMD) are not able to make the best use of the SIMD hardware.

In contrast to the Baseline and uncompressed SIMD kernels, the COMP ker-
nels show much better performance and energy efficiency. We argue that
the integration of V-PFORDelta coding helps to to minimize the stall time

800 1200 1600 2000 2500 2900 3500
Frequency (MHz)

0
50

100
150
200
250
300
350
400
450

E
D

P
 (

Js
x
10
−
3)

Mopex dataset

Baseline

SIMD_SSE

COMP_SSE

SIMD_AVX2

COMP_AVX2

Figure 10: System EDP on HL.

Paper B.1

1600 2000 2400 2800 3400
Frequency (MHz)

0

20

40

60

80

100
C

P
U

 c
y
cl

e
s

(%
)

Baseline

SIMD_SSE

COMP_SSE Total_stalls

Memory_stalls

Figure 11: Percentage (%) of CPU cycles stalled due to memory resource
limitation on SB system for Powel dataset.

due to memory hierarchy by reducing the amount of data need to be trans-
ferred along the memory hierarchy. Additionally, the use of SIMD prefetch
instruction to load the data from the main memory to the L1 data cache
ahead of their expected usage also helps to improve the data locality prop-
erty of the COMP kernels. To support these claims, we present the statistics
of memory related events in Table 3 and Table 4. In Table 3, we can ob-
serve that the COMP_SSE kernel reduces the total number of L1 data cache
accesses (and misses) down to half of the number of accesses (and misses)
required by the SIMD_SSE kernel on SB system. This eventually reduces
the percentage of memory access waiting time down to 2% (from 33% on
Powel dataset at peak frequency on SB) of the total CPU cycles and leads to
significant performance and energy efficiency improvements. Additionally,
SIMD prefetching also helps to improve performance by around 2%.

In Table 4, we present the results of different types of cache misses obtained
from DineroIV cache simulator. From the figure, we can see that, most cache
misses are due to compulsory and capacity misses for the Baseline kernel.
This is because the time series dataset is fairly large, and it exhibits poor

Table 4: Cache-miss Statistics from DineroIV Cache Simulator for part of
the MOPEX Dataset

Kernel L1 cache misses L2 cache misses L3 cache misses
total compulsory capacity conflict total compulsory capacity conflict total compulsory capacity conflict

Baseline 1827136 652506 1111351 63279 1759536 652506 1106856 174 1758535 652506 1105978 51
SIMD_SSE 1947530 652509 1233761 61260 1880533 652509 1227791 233 1822096 652509 1169406 181
COM_SSE 1281381 342123 934314 4944 1270162 342123 927883 156 516574 342123 153377 54

Paper B.1 7. Conclusion 139

temporal locality. Since the COMP_SSE kernel uses V-PFORDelta coding
technique to operate with the compressed dataset, the number of compuls-
ory and capacity cache misses is reduced significantly. It is also important to
note that conflict misses are also reduced for the COMP_SSE kernel. Since
the compressed data structure in the COMP_SSE kernel is designed to place
the data involved in a certain computation in the same cache block, it re-
duces unnecessary cache eviction and increases the cache block utilization.

6.5 Compression ratio and decompression speed

In the last but equally important study, we emphasize on comparing the
compression ratio and decompression rate of V-PFORDelta coding with sev-
eral other integer compression methods. To conduct this experiment, we
use (vi) vectors from both Powel and Mopex datasets as input data. The
results are presented in Table 5.

As expected, Simple9 provides better compression ratio as well as decom-
pression rate compared to the VarByte coding scheme for both datasets.
However, Frame-of-reference (e.g SimpleFOR, FastPFOR, SIMDFastPFOR)
coding schemes appear to be more suitable for the time series data compres-
sion as the differences among the consecutive data points in each time series
dataset are small. Nevertheless, V-PFORDelta coding outperforms the afore-
mentioned coding methods in terms of decoding speed by at least (3.5% –
6.0%) depending on the dataset used as input. As we opted to trade-off
compression ratio in favor of decompression speed, unlike the block-based
compression algorithms (e.g. SIMDFastPFOR), V-PFORDelta keeps the bit-
length of the delta-bits same over the complete dataset so as to facilitate
on-the-fly decompression.

7 Conclusion
This paper presents V-PFORDelta – a SIMD-based differential compression
method for cache/memory bound applications. V-PFOR-Delta not only re-
duces the amount of data to be transferred along the memory hierarchy, but
also reduces data storage requirements and minimizes total cache accesses
and misses, leading to overall performance and energy efficiency improve-
ments. Furthermore, the effectiveness of V-PFORDelta is demonstrated us-
ing SSE and AVX2-based SIMD computations on an industrial hydrological
time series application. The experimental results show that the SSE-based
implementation can improve the performance and energy efficiency of the
application up to 2.8 and 6.6 times, respectively. AVX2-based implementa-
tion achieves even better results by improving the performance and energy

Paper B.1

Table 5: Results of Compression Ratio and Decompression Speed on Sandy
Bridge Processor Using Powel and Mopex Time Series Dataset.

Compression Method Powel Dataset Mopex Dataset
bits/int Mint/sec bits/int Mint/sec

VarByte 13.23 626 8.98 706
Simple9 10.17 898 5.56 882
VarIntGB 14.25 914 10.74 1260
SimpleFOR 11.12 1285 4.89 984
FastPFOR 11.12 1340 5.10 1140
SIMDFOR 32.00 1425 32.00 1430
SIMDSimpleFOR 11.12 1562 4.89 1179
SIMDFastPFOR 11.12 1718 5.10 1503
V-PFORDelta 15.18 1776 9.32 1598
Mint=Millions of integers

efficiency up to 3.1 and 8.2 times, respectively, on different Intel multi-core
systems. The compressed kernels benefit more from frequency scaling than
the baseline code, that no longer benefits after one GHz (in energy terms).

In future, we would like to make a fine-grain multi-threaded implement-
ation of the proposed method and evaluate its effectiveness on many-core
platform (e.g. Xeon Phi).

References
[1] Sparsh Mittal and Jeffrey Vetter. ‘A Survey Of Architectural Ap-

proaches for Data Compression in Cache and Main Memory Sys-
tems’. In: IEEE Transactions on Parallel and Distributed Systems 99.1
(2015), pp. 1–14.

[2] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei
Jiang and Yan Solihin. ‘Scaling the Bandwidth Wall: Challenges
in and Avenues for CMP Scaling’. In: Proceedings of the Interna-
tional Symposium on Computer Architecture. 2009, pp. 371–382.
ISBN: 978-1-60558-526-0.

[3] Ma Lei, Luan Shiyan, Jiang Chuanwen, Liu Hongling and Zhang
Yan. ‘A Review on the Forecasting of Wind Speed and Generated
Power’. In: Renewable and Sustainable Energy Reviews 13.4 (2009),
pp. 915–920.

Paper B.1 REFERENCES 141

[4] Tim Bollerslev. ‘A Conditionally Heteroskedastic Time Series Model
for Speculative Prices and Rates of Return’. In: The Review of Eco-
nomics and Statistics 69.3 (1989), pp. 542–547.

[5] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach, Fifth Edition. Morgan Kaufmann Publishers
Inc., 2012.

[6] Juan M. Cebrián, Magnus Jahre and Lasse Natvig. ‘Optimized Hard-
ware for Suboptimal Software: The Case for SIMD-aware Bench-
marks’. In: Proceedings of the International Symposium on Perform-
ance Analysis of Systems and Software. Mar. 2014, pp. 66–75.

[7] Matthias Boettcher, Bashir M. Al-Hashimi, Mbou Eyole, Giacomo
Gabrielli and Alastair Reid. ‘Advanced SIMD: Extending the Reach
of Contemporary SIMD Architectures’. In: Proceedings of the Confer-
ence on Design, Automation & Test in Europe. 2014, pp. 1–4.

[8] Davendar Kumar Ojha and Geeta Sikka. ‘A Study on Vectorization
Methods for Multicore SIMD Architecture Provided by Compilers’.
In: Advances in Intelligent Systems and Computing 248.1 (2014),
pp. 723–728. ISSN: 978-3-319-03107-1.

[9] Changkyu Kim, Nadathur Satish, Jatin Chhugani, Hideki Saito, Rakesh
Krishnaiyer, Mikhail Smelyanskiy, Milind Girkar and Pradeep Dubey.
Technical Report: Closing the Ninja Performance Gap through Tradi-
tional Programming and Compiler Technology. 2012.

[10] Amanda Svensson Marvel. Memory Layout Transformations. 2013.
URL: https://software.intel.com/en-us/articles/memory-
layout-transformations.

[11] Keith E Mathias and L. Darrell Whitley. ‘Changing Representations
During Search: A Comparative Study of Delta Coding’. In: Evolu-
tionary Computation 2.3 (1994), pp. 249–278.

[12] Hugh E. Williams and Justin Zobel. ‘Compressing Integers for Fast
File Access’. In: The Computer Journal 42.3 (1999), pp. 192–201.
DOI: 10.1093/comjnl/42.3.193.

[13] PG Howard and JS Vitter. ‘Arithmetic Coding for Data Compres-
sion’. In: Proceedings of the IEEE 82.6 (1994), pp. 857–865. ISSN:
0018-9219. DOI: 10.1109/5.286189.

Paper B.1

[14] Jiangong Zhang, Xiaohui Long and Torsten Suel. ‘Performance of
Compressed Inverted List Caching in Search Engines’. In: Proceed-
ings of the International Conference on World Wide Web. Apr. 2008,
pp. 387–396. ISBN: 978-1-60558-085-2. DOI: 10.1145/1367497.
1367550.

[15] Jonathan Goldstein, Raghu Ramakrishnan and Uri Shaft. ‘Compress-
ing Relations and Indexes’. In: Proceedings of the International Con-
ference on Data Engineering. Feb. 1998, pp. 370–379.

[16] Benjamin Schlegel, Rainer Gemulla and Wolfgang Lehner. ‘Fast In-
teger Compression using SIMD Instructions’. In: International Work-
shop on Data Management on New Hardware. June 2010, pp. 34–40.

[17] Alexander A. Stepanov and Anil R. Gangolli. ‘SIMD Based Decoding
of Posting Lists’. In: Proceedings of the International Conference on
Information and Knowledge Management. Oct. 2011, pp. 317–326.

[18] Naiyoung Ao, Fan Zhang, Di Wu, Douglas S. Stones, Gang Wang,
Xiaoguang Liu, Jing Liu and Sheng Lin. ‘Efficient Parallel Lists In-
tersection and Index Compression Algorithms using Graphics Pro-
cessing Units’. In: Proceedings of the VLDB Endowment. Vol. 4. Sept.
2011, pp. 470–481.

[19] Xudong Zhang, Wayne Xin Zhao, Dongdong Shan and Hongfei Yan.
‘Group-Scheme: SIMD-based Compression Algorithms for Web Text
Data’. In: Proceedings of the International Conference on BigData.
Oct. 2013, pp. 525–530. ISBN: 978-1-4799-1292-6.

[20] D. Lemire and L. Boytsov. ‘Decoding Billions of Integers Per Second
through Vectorization’. In: Software: Practice and Experience 45 (Jan.
2015), pp. 1–29.

[21] Daniel Lemire, Leonid Boytsov and Nathan Kurz. ‘SIMD Compres-
sion and the Intersection of Sorted Integers’. In: Software: Practice
and Experience (Apr. 2015).

[22] The Power of Powel. URL: http://www.powel.com/About-Powel/.

[23] Q. Duan, J. Schaake, V. Andreassian, S. Franks, G. Goteti, H.V.
Gupta, Y.M. Gusev, F. Habets, A. Hall, L. Hay, T. Hogue, M. Huang,
G. Leavesley and X. Liang. ‘Model Parameter Estimation Experiment
(MOPEX): An Overview of Science Strategy and Major Results from
the Second and Third Workshops’. In: Journal of Hydrology 320
(2006), pp. 3–17.

Paper B.1 REFERENCES 143

[24] Intel. Intel 64 and IA-32 Architectures Software Development Manual.
Dec. 2011. URL: http://download.intel.com/products/processor/
manual/325462.pdf.

[25] R. James. Additional AVX-512 Instructions. 2014. URL: https://
software.intel.com/en-us/blogs/additional-avx-512-

instructions.

[26] Hallgeir Lien, Lasse Natvig, Abdullah Al Hasib and Jan Christian
Meyer. ‘Case Studies of Multi-core Energy Efficiency in Task Based
Programs’. In: Proceedings of the International Conference on ICT
as Key Technology against Global Warming. Vol. 7453. Sept. 2012,
pp. 44–54.

[27] Performance Application Programming Interface. URL: http://icl.
cs.utk.edu/papi/index.html.

[28] Jan Edler. Dinero IV Trace-Driven Uniprocessor Cache Simulator. URL:
http://www.cs.wisc.edu/~markhill/DineroIV.

[29] Valgrind. Lackey: An Example Tool. URL: http://valgrind.org/
docs/manual/lk-manual.html.

Paper C.1

Energy Efficiency Effects of
Vectorization in Data Reuse
Transformations for Many-core
Processors – A Case Study

Abdullah Al Hasib, Lasse Natvig, Per Gunnar Kjeldsberg and Juan M.
Cebrián

Journal of Low Power Electronics and Applications, 2017

145

Paper C.1 147

Abstract
Thread-level and data-level parallel architectures have become the design
of choice in many of today’s energy-efficient computing systems. However,
these architectures put substantially higher requirements on the memory
subsystem than scalar architectures, making memory latency and band-
width critical in their overall efficiency. Data reuse exploration aims at re-
ducing the pressure on the memory subsystem by exploiting the temporal
locality in data accesses. In this paper, we investigate the effects on per-
formance and energy from a data reuse methodology combined with par-
allelization and vectorization in multi- and many-core processors. As a test
case, a full-search motion estimation kernel is evaluated on Intel R© CoreTM

i7-4700K (Haswell) and i7-2600K (Sandy Bridge) multi-core processors, as
well as on an Intel R© Xeon PhiTM many-core processor (Knights Landing)
with Streaming Single Instruction Multiple Data (SIMD) Extensions (SSE)
and Advanced Vector Extensions (AVX) instruction sets. Results using a
single-threaded execution on the Haswell and Sandy Bridge systems show
that performance and EDP (Energy Delay Product) can be improved through
data reuse transformations on the scalar code by a factor of ≈3x and ≈6x,
respectively. Compared to scalar code without data reuse optimization, the
SSE/AVX2 version achieves ≈10x/17x better performance and ≈92x/307x
better EDP, respectively. These results can be improved by 10% to 15% us-
ing data reuse techniques. Finally, the most optimized version using data
reuse and AVX512 achieves a speedup of ≈35x and an EDP improvement of
≈1192x on the Xeon Phi system. While single-threaded execution serves as
a common reference point for all architectures to analyze the effects of data
reuse on both scalar and vector codes, scalability with thread count is also
discussed in the paper.

Paper C.1 1. Introduction 149

1 Introduction
The continuously-increasing computational demands of advanced scientific
problems, combined with limited energy budgets, has motivated the need to
reach exascale computing center systems under reasonable power budgets
(below 20 MW) by the year 2020. Such systems will require huge im-
provements in energy efficiency at all system levels. Indeed, system effi-
ciency needs to increase from the current 33 Pflops/17 MW (515 pJ/op) to
1 Eflops/20 MW (20 pJ/op) [1]. Most performance and energy improve-
ments will come from heterogeneity combined with coarse-grained parallel-
ism, through Simultaneous Multithreading (SMT) and Chip Multiprocessing
(CMP), as well as fine-grained parallelism, through Single Instruction Mul-
tiple Data (SIMD) or vector units.

Streaming SIMD Extensions (SSE) and Advanced Vector Extensions (AVX)
are SIMD instruction sets supported by Intel. SSE, AVX and AVX512 support
128-bit, 256-bit and 512-bit vector computations respectively. Addition-
ally, NEON and SVE in ARM, AltiVec in Motorola and IBM and 3DNow! in
AMD are examples of SIMD instruction sets to enable vectorization in differ-
ent platforms. Many applications can potentially benefit from using SIMD
instructions for better performance, higher energy efficiency and greater
resource utilization [2]. However, modern compilers do not yet have ad-
equate auto-vectorization support for complex codes to maximize the po-
tential of SIMD instructions [3, 4]. Consequently, when code efficiency is
required, the vectorization is often written manually in assembly language
or using SIMD intrinsics.

In addition, while processor performance has increased significantly, the
memory subsystem has not improved at the same rate. SIMD architec-
tures push the limits of the memory subsystem even further, since now, a
single instruction works with N data elements simultaneously, which need
to be transferred along the memory hierarchy. Such architectures can even
turn CPU-bound applications into memory-bound, depending on the vector
length and the arithmetic intensity of the computations (seen as floating
point operations per byte of data). Improvements in memory latency/band-
width (the amount of data that can be accessed in a given period of time),
reduction of the energy cost when accessing the data, alongside with better
data reuse strategies, are now considered as the key challenges in contem-
porary computer architectures.

For data-dominated and memory-bound applications such as multimedia al-
gorithms, the Data Transfer and Storage Exploration (DTSE) is a complete

Paper C.1

methodology for obtaining and evaluating a set of data reuse code trans-
formations [5]. The fundamental idea behind these transformations is to
systematically move data accesses from background memories to smaller
foreground memory blocks using less energy. Smaller memories can have
reduced access latency, while dissipating less power. This approach eventu-
ally results in significant improvements in performance and energy savings.

To sum up, it is becoming crucial to exploit both parallelization via mul-
tithreading and through the use of vectorization (i.e., multilevel parallel-
ism) to achieve the required performance on current and future multi-core
and many-core processors that run memory bound applications. This paper
presents a case-study of the effects of multilevel parallelism combined with
the DTSE methodology. The contributions of the paper can be summarized
as follows:

• We present a set of data reuse transformation strategies and evaluate
the effect of data-parallelism using vectorization on these transforma-
tion methodologies on a single core. We further extend our study by
analyzing the effects of parallelism at different granularities by combin-
ing vectorization with multithreading. For coarse-grained parallelism,
the OpenMP parallel programming model is used to provide multith-
reading across multiple cores. On the other hand, SSE-/AVX-based vec-
torization on each core is used for fine-grained data parallelism.

• We consider both multi-core and many-core system architectures in
our study. For multi-core architecture, Intel Sandy Bridge and Haswell
multi-core CPUs are used. For many-core architecture, the Intel Xeon
Phi Knights Landing (KNL) processor is used. A full-search motion es-
timation kernel is used as a test application.

This paper is organized as follows: Section 2 describes related work. Section
3 presents the applied methodology to improve energy efficiency, and 4
illustrates the use of the methodology on the motion estimation algorithm.
Section 5 presents and discusses our results. Finally, we conclude the paper
in Section 6.

2 Related Work
A large body of research on data reuse exploration methodologies for multi-
media applications has led to numerous approaches for improving memory
latency and reducing their energy footprint. Wuytack et al. [5] presented

Paper C.1 2. Related Work 151

almost 20 years ago a formalized methodology for data reuse exploration.
The idea is to exploit temporal locality of memory accesses using an op-
timized custom memory hierarchy. It is taken further and oriented towards
predefined memory organization in [6]. The authors in [7, 8] study the ef-
fects of data reuse decisions on power, performance and area in embedded
processing systems. The effect of data reuse transformations on a general
purpose processor has been explored in [9]. In [10], the authors presented
the effect of data reuse transformations on multimedia applications using
an application-specific processor. The research described so far focuses on
single-core systems and mainly relies on simulation-based modeling when
estimating energy efficiency.

In [11], Kalva et al. studied parallel programming on multimedia applic-
ations, but lacked energy-efficiency analysis. In [12], Chen et al. presen-
ted different optimization opportunities of the Fast Fourier Transform (FFT)
to improve performance on the IBM Cyclops-64 chip architecture. In [13],
Zhang et al. studied both intra-core and inter-core data reuse and presented
a technique to exploit all of the available cores to boost overall application
performance. In [14], He et al. proposed a bilinear quarter approxima-
tion strategy for fractional motion estimation design together with a data
reuse strategy for ultrahigh definition video applications. Lifflander et al. in
[15] presented a work-stealing algorithm for fork-/join-based parallel pro-
gramming models to gain performance boost-up though improving the data
locality property.

These earlier studies on parallel architectures emphasized performance rather
than energy efficiency. In contrast, our work is not limited to performance
analysis only; rather, it is extended by energy efficiency analysis on three dif-
ferent state-of-the-art multi- or many-core processors, namely Sandy Bridge
and Haswell CPUs and the Xeon Phi KNL processor.

In [16], Marchal et al. presented an approach for integrated task-scheduling
and data-assignment for reducing SDRAM costs for multithreaded applica-
tions. However, this work did not couple the data reuse analysis with a par-
allel programming model the way we do here. Here, we extend our previous
work presented in [17], where we analyzed the effect on the performance
and energy efficiency of coupling multithreaded parallelism with the data
reuse transformations. However, [17] was limited to a single multi-core
platform, and the effect of fine-grained data-parallelism through vectoriza-
tion was not covered.

Data reuse techniques (mainly blocking) and other low level optimizations

Paper C.1

for Intel’s many-core architectures are covered in [18]. A combination of
programming language features, compiler techniques and operating system
interfaces are presented in [19] that can effectively hide memory latency
for the processing lanes. Their study is based on the active memory cube
system, a novel heterogeneous computing system, substantially different
from our test platforms. Dong et al. in [20] made a custom implementa-
tion of linear algebra kernels for GPUs to obtain ≈10% power savings for
a hydrometric kernel. In [21], the authors presented a micro-architectural
technique to approximate load values on load misses so as to reduce the cost
of memory accesses. In [22], the authors provided emphasis on making effi-
cient use of hardware vector units in order to achieve optimal performance
on multi- and many-core architectures. They also demonstrated the limita-
tions of auto-vectorization over hand-tuned intrinsic-based vectorization for
the applications with irregular memory accesses on a Xeon Phi co-processor.
Furthermore, the authors in [23] argued for Cray-style temporal vector pro-
cessing architectures as an attractive means of exploiting parallelism for the
future high performance embedded devices.

Though these articles demonstrated the importance of vector processing in
achieving better performance as we do in this paper, they do not provide
energy efficiency or DTSE-like analysis for a full-search motion estimation
or similar kernels.

3 Energy Efficient Methodology for Multi-core and Many-core
Processor

The approach presented in this paper is a combination of three techniques:
the data reuse transformation methodology, parallelization by dividing com-
putational work on several cores and vectorization by using the SIMD in-
structions available in each core. Note that vectorization is also a technique
for parallelization. For example, an application divided onto four cores each
using a four-way vectorization exhibits, in total, a 16-way parallelization.

3.1 Approaches to Improve Performance and Energy Efficiency

Data Reuse Transformation

The most central concept of a data reuse transformation is the use of a
memory hierarchy that exploits the temporal locality of the data accesses
[5]. This memory hierarchy consists of smaller memories where copies of
data from larger memories that expose high data reuse are stored. For data-
intensive applications, this approach causes significant energy savings since

Paper C.13. Energy Efficient Methodology for Multi-core and Many-core Processor 153

smaller memories built on similar technology consume less energy per ac-
cess and have significantly shorter access times. In addition, the average
access latency to data is reduced, since the transformations act as a com-
plex software prefetching mechanism.

Parallelization

Multi-core processors can potentially achieve higher performance with lower
energy consumption compared to uni-processor system. However, there are
challenges in exploiting the available hardware parallelism without adding
too much overhead. Different parallel programming models have been de-
veloped for speeding up applications by using multiple threads or processes
[24]. Parallel programs can be developed by using specific programming
models (e.g., OpenMP, OmpSs, Cilk) [25] or can use explicit threading sup-
port from the operating system (e.g., POSIX (Portable Operating System
Interface) threads).

Vectorization

Vectorization using SIMD constructs is very efficient in exploring data level
parallelism since it executes multiple data operations concurrently using a
single instruction. Therefore, SIMD-computations often result in signific-
ant performance improvements and reduced memory accesses, eventually
leading to higher energy efficiency for an application [26]. However, ex-
tracting performance from SIMD-based computations is not trivial as it can
be significantly affected by irregular data access. In multi-core program-
ming memory bandwidth often becomes a critical bottleneck, as the data
movement from memory to the register bank increases with both vector-
ization and parallelization [2]. On the other hand, memory latency can
sometimes be hidden by optimization techniques, such as SIMD prefetching
or improved data locality (e.g., cache blocking).

3.2 Data Reuse Transformations with Parallelization and Vectorization

In our case-study, we combine the aforementioned approaches to further
optimize the performance and energy efficiency of data reuse transforma-
tions. Our approach consists of the following main steps.

• In the first step, the sequential optimized algorithm is translated into
a parallel algorithm that follows a typical parallel workflow:

– The original workload is divided into a number of p smaller sub-
workloads. Each of the p sub-workloads is assigned to a thread

Paper C.1

for completion.

– Multiple threads are executed simultaneously on different cores,
and each thread operates independently on its own sub-workload.

– When all of the sub-workloads are completed by the threads, an
implicit barrier ensures that all of the local results of the com-
pleted sub-workloads are combined together through a reduc-
tion step.

At this stage, coarse-grained parallelism is applied through multith-
reading/simultaneous multithreading on multiple cores.

• Next, to exploit the data parallelism support available in the sys-
tems, we use SIMD computations on each thread. Since modern com-
pilers still do not have adequate auto-vectorization support for com-
plex codes [3, 4], we use the SSE, AVX2 and AVX512 intrinsics to
manually perform the SIMD computations. We ensure that the data
layout of the demonstrator application is properly aligned with the
boundaries of the vector registers. SIMD prefetching is used to copy
the copy-candidates described below into smaller buffers to hide the
latency of the memory transfer.

• In the final step, we apply the proposed model for data reuse trans-
formations as presented in [5]. Here, we identify the datasets that
are reused multiple times within a short period of time. These are
called copy-candidates. In this study, the copy-candidate tree from
[5] is used for the scalar version of the demonstrator kernel, whereas
it has been slightly changed when SIMD computations are used. De-
pending on their size and position in the tree, the copy-candidates are
mapped into appropriate layers of the system’s memory hierarchy. To
map a data block into its layer, we use the SIMD-prefetch intrinsic
(i.e., _mm_prefetch) with the appropriate hint options for both scalar
and vectorized codes. Generally, _MM_HINT_T0, _MM_HINT_T1 and
_MM_HINT_T2 options can be used for prefetching data into L1, L2
and L3 caches, respectively [27]. Compiler-assisted software prefetch-
ing is disabled to avoid auto-prefetching of data from memory. Fur-
thermore, we also use SIMD stream intrinsics (_mm_stream_load and
_mm_stream) in our vectorized codes to limit cache pollution due to
movement of data across the memory hierarchy.

Paper C.14. Demonstrator Application: Full-Search Motion Estimation Algorithm 155

4 Demonstrator Application: Full-Search Motion Estimation Al-
gorithm

To evaluate the efficiency of the combined approach, we have used a full-
search motion estimation algorithm as a case-study. In this section, we use
it to describe the main steps of the approach.

Algorithm 1 Motion estimation kernel (source: [28, 5]).
Input: Current frame (Cur), Reference frame (Ref), frame Height (H), frame
Width (W), search range (m), block size (n).
Output: motion vector (∆opt).

1: for g=0; g<H/n; g++ do . Vertical current block counter
2: for h=0; h<W/n; h++ do . Horizontal current block counter
3: ∆opt[g][h] = ∆opt[g][h] +∞
4: for i= -m; i<m; i++ do . Vertical searching of reference

window
5: for j= -m; j<m; j++ do . Horizontal searching of reference

window
6: ∆ = 0

7: for k=0; k<n; k++ do . Vertical traversal of MB
8: for l=0; l<n; l++ do . Horizontal traversal of MB
9: ∆ = ∆ + | Cur[g×n+k][h×n+l] -

Ref[g×n+i+k][h×n+j+l]) |

10: end for
11: end for
12: ∆opt[g][h] = min(∆,∆opt[g][h])

13: end for
14: end for
15: end for
16: end for

4.1 Sequential Motion Estimation Algorithm

Motion Estimation (ME) is used in most video compression algorithms as it
can be used to find temporal redundancy in a video sequence. In a block-
matching ME algorithm, a video frame (W × H) is divided into a number

Paper C.1

of (n × n) non-overlapping blocks called Macro-Blocks (MBs), where the
value of n can be {2,4,8,16, . . . }. Next, for each MB in the Current frame
(Cur), a matching MB within the search area (m × m) in the Reference
frame (Ref) is selected having the least cost value. There are several pos-
sible cost functions. The Sum of Absolute Difference (SAD) is widely used
and computationally inexpensive and so selected for this study. The SAD
between an MB in Cur and an MB in Ref is given by,

SAD =

i=n∑
i=1

j=n∑
j=1

| Curij − Refij | (1)

where Curij and Refij are the pixel values at position (i, j) in the MBs of
Cur and Ref, respectively.

Finally, the relative displacement of the current MB and its matching MB
is the motion vector. A full-search ME algorithm performs an exhaustive
search over the entire search region to find the best match. Running this al-
gorithm is computationally intensive and can account for as much as 80% of
the encoding time [11]. This computationally-intensive algorithm exhibits
the properties of data reuse and parallelization and is therefore well suited
as a test application for our approach.

The full-search ME kernel used in our work is presented in Algorithm 1 [28,
5]. The implementation consists of a number of nested loops. The basic
operation at the innermost loop consists of an accumulation of pixel dif-
ferences (i.e., the SAD computation), while the basic operation two levels
higher in the loop hierarchy consists of the calculation of the new minimum.
In our experiments, we use the parameters of the QCIF (Quarter Common
Intermediate Format) format (W = 176, H = 144, m = 16, n = 8) on
the multi-core system and the Full HD format (W = 1920, H = 1080, m =
16, n = 8) on the many-core platform [29]. In the remainder of this paper,
we simply refer to this as the ME application.

4.2 Parallel ME Application across Multiple Cores

In the process of ME algorithm parallelization, we design a multi-core com-
puting model to exploit the data parallelism properties inherent in the ME
algorithm. In the algorithm, there is no data dependency between two
macro-blocks’ SAD. Thus, the SADs of different macro-blocks can be com-
puted in parallel. Considering this, we divide Cur into the same number of
subsections as there are threads and assign each subsection to a particular
thread. Eventually, all of the threads run in parallel across multiple cores to

Paper C.14. Demonstrator Application: Full-Search Motion Estimation Algorithm 157

Figure 1: Illustrative motion estimation multi-core computation model.
First, a frame is divided into four subsections, each of which consists of
four macro-blocks of a size of 4×4 pixels. Then, a thread is assigned for
each subsection, and the Sum of Absolute Difference (SAD) computations
are done in parallel by multiple threads on multiple cores.

execute the SAD processing. The benefit of this division into subsections is
to make full use of the available cores on the underlying platforms. Figure 1
illustrates a four-threaded computation model for an 8×8 frame.

Algorithm 2 represents our parallel ME algorithm, which shows OpenMP
parallel programming constructs used to achieve thread-level parallelism
across multiple cores [25]. As we can see, the #pragma omp parallel for
collapse(2) directive of the OpenMP programming model is used at the
outermost for-loop. The inclusion of this directive will instruct the com-
piler to fuse the next two loops into a single loop, increasing the amount
of work that can be assigned to all processors (cores) of the system. We
have also set the KMP_AFFINITY environment variable to bind each thread,
i.e., each instance of the for-loop, to a specific core. We further use the
OMP_NUM_THREADS environment variable to control the number of threads
to be created at a particular time. Note that though we have used loop-
based work-sharing constructs of OpenMP here, other types of work shar-
ing constructs, such as OpenMP tasking constructs (#pragma omp parallel,
#pragma omp task) can be used, as well.

Paper C.1

Algorithm 2 Optimized parallel motion estimation algorithm.
Input: Current frame (Cur), Reference frame (Ref), frame Height (H), frame
Width (W), search range (m), block size (n).
Output: motion vector (∆opt)

1: #pragma omp parallel for schedule(static, <chunksize>) col-
lapse(2)

2: for g=0; g<H/n; g++ do . Vertical current block counter
3: for h=0; h<W/n; h++ do . Horizontal current block counter
4: for k=0; k<2m+n-1; k++ do . Copy-candidates are copied to

a smaller memory block
5: for l=0; l<2m+n-1; l++ do
6: Buffer_ref[k][l] = Ref[g×n-m+k][h×n-m+l]
7: end for
8: end for
9: for k=0; k<n; k++ do . Copy-candidates are copied to a

smaller memory block
10: for l=0; l<n; l++ do
11: Buffer_cur[k][l] = Cur[g×n+a][h×n+b]
12: end for
13: end for
14: ∆opt[g][h] = ∆opt[g][h] +∞
15: for i=0; i<2m-1; i++ do . Vertical searching of reference

window
16: for j=0; j<2m-1; j++ do . Vertical searching of reference

window
17: ∆ = 0

18: for k=0; k<n; k++ do . Vertical traversal of MB
19: for l=0; l<n; l++ do . Horizontal traversal of MB
20: ∆ += | (Buffer_cur[k][l]- Buffer_ref[i+k][j+l]) |

21: end for
22: end for
23: ∆opt[g][h] = min(∆,∆opt[g][h])

24: end for
25: end for
26: end for
27: end for

Paper C.14. Demonstrator Application: Full-Search Motion Estimation Algorithm 159

Ta
bl

e
1:

R
eq

ui
re

d
C

/C
+

+
in

tr
in

si
cs

to
im

pl
em

en
t

th
e

M
ot

io
n

Es
ti

m
at

io
n

(M
E)

al
go

ri
th

m
.

St
re

am
in

g
Si

ng
le

In
-

st
ru

ct
io

n
M

ul
ti

pl
e

D
at

a
(S

IM
D

)
Ex

te
ns

io
ns

(S
SE

),
A

dv
an

ce
d

Ve
ct

or
Ex

te
ns

io
ns

(A
V

X
)

2
an

d
AV

X
51

2
ar

e
th

e
SI

M
D

in
st

ru
ct

io
n

se
ts

th
at

op
er

at
e

on
12

8-
bi

t,
25

6-
bi

t
an

d
51

2-
bi

t
ve

ct
or

re
gi

st
er

s,
re

sp
ec

ti
ve

ly
.

O
pe

ra
ti

on
SS

E
AV

X
2

AV
X

51
2

bi
tw

is
e

O
R

_m
m

_o
r_
si
1
2
8

_m
m
2
5
6
_o

r_
si
2
5
6

_m
m

51
2_

or
_s

i5
12

bi
tw

is
e

A
N

D
_m

m
_a

n
d

_s
i1
2
8

_m
m
2
5
6
_a

n
d

_s
i2
5
6

_m
m

51
2_

an
d_

si
51

2
sh

if
t

ri
gh

t
by

a
nu

m
be

r
of

by
te

s
_m

m
_s
rl
i_
si
1
2
8

_m
m
2
5
6
_s
rl
i_
si
2
5
6

_m
m

51
2_

sr
li_

si
51

2
sh

if
t

le
ft

by
a

nu
m

be
r

of
by

te
s

_m
m

_s
ll
i_
si
1
2
8

_m
m
2
5
6
_s
ll
i_
si
2
5
6

_m
m

51
2_

sl
li_

si
51

2
ad

d
fo

ur
32

-b
it

in
te

ge
rs

_m
m

_a
d
d

_e
p
i3
2

_m
m
2
5
6
_a

d
d

_e
p
i3
2

_m
m

51
2_

ad
d_

ep
i3

2
sh

uf
fle

fo
ur

32
-b

it
in

te
ge

rs
_m

m
_s

hu
ffl

e_
ep

i3
2

_m
m

25
6_

sh
uf

fle
_e

pi
32

_m
m

51
2_

sh
uf

fle
_e

pi
32

co
m

pa
re

fo
ur

32
-b

it
in

te
ge

rs
_m

m
_c
m
p
g
t_
e
p
i3
2

_m
m
2
5
6
_c
m
p
g
t_
e
p
i3
2

_m
m

51
2_

cm
pg

t_
ep

i3
2

st
or

e
a

12
8-

bi
t

re
gi

st
er

_m
m

_s
to
re
u

_s
i1
2
8

_m
m
2
5
6
_s
to
re
u

_s
i2
5
6

_m
m

51
2_

st
or

eu
_s

i5
12

lo
ad

to
12

8-
bi

t
re

gi
st

er
_m

m
_l
o
a
d
u

_s
i1
2
8

_m
m
2
5
6
_l
o
a
d
u

_s
i2
5
6

_m
m

51
2_

lo
ad

u_
si

51
2

un
pa

ck
an

d
in

te
rl

ea
ve

32
-b

it
in

te
ge

rs
_m

m
_u

n
p
a
c
k
lo

_e
p
i3
2

_m
m
2
5
6
_u

n
p
a
c
k
lo

_e
p
i3
2

_m
m

51
2_

un
pa

ck
lo

_e
pi

32
co

nv
er

t
8-

bi
t

in
te

ge
rs

to
32

-b
it

in
te

ge
rs

_m
m

_c
v
te
p
i8

_e
p
i3
2

_m
m
2
5
6
_c
v
te
p
i8

_e
p
i3
2

_m
m

51
2_

cv
te

pi
8_

ep
i3

2
el

em
en

t-
by

-e
le

m
en

t
bi

tw
is

e
A

N
D

on
32

-b
it

in
te

ge
rs

-
-

_m
m

51
2_

m
as

k_
an

d_
ep

i3
2

co
m

pa
re

pa
ck

ed
32

-b
it

in
te

ge
rs

,a
nd

st
or

e
th

e
re

su
lt

s
in

m
as

k
ve

ct
or

k
-

-
_m

m
51

2_
cm

pg
t_

ep
i3

2_
m

as
k

co
m

pa
re

pa
ck

ed
32

-b
it

in
te

ge
rs

,a
nd

st
or

e
th

e
re

su
lt

s
in

m
as

k
ve

ct
or

k
-

-
_m

m
51

2_
cm

pl
t_

ep
i3

2_
m

as
k

re
du

ce
32

-b
it

in
te

ge
rs

in
a

by
ad

di
ti

on
us

in
g

m
as

k
k

-
-

_m
m
5
1
2
_m

a
sk

_r
e
d
u
c
e
_a

d
d

_e
p
i3
2

st
or

e
a

12
8-

bi
t

re
gi

st
er

_m
m

_s
tr
e
a
m

_l
o
a
d

_s
i1
2
8

_m
m
2
5
6
_s
tr
e
a
m

_l
o
a
d

_s
i2
5
6

_m
m

51
2_

st
re

am
_l

oa
d_

si
51

2
st

or
e

to
12

8-
bi

t
re

gi
st

er
_m

m
_s
tr
e
a
m

_s
i1
2
8

_m
m
2
5
6
_s
tr
e
a
m

_s
i2
5
6

_m
m

51
2_

st
re

am
_s

i5
12

R
ed

uc
e

32
-b

it
in

te
ge

rs
by

ad
di

ti
on

us
in

g
m

as
k

k
an

d
re

tu
rn

s
th

e
su

m
-

-
_m

m
51

2_
m

as
k_

re
du

ce
_a

dd
_e

pi
32

Paper C.1

4.3 Data Parallelism in Each Core through Vectorization

The use of SIMD intrinsics will help to reduce the number of memory ac-
cesses and instructions in comparison to the sequential execution on both of
the considered architectures. The inner loop of the SAD calculation of one
macro-block (SSE/AVX2) or two macro-blocks (AVX512) can be partially
executed in parallel by using SIMD instructions. Within each iteration of
the loop over all block rows, one complete cache-line of the reference and
one of the candidate block are loaded into two separate vector registers,
and their row-wise SAD value is accumulated over all rows. The AVX512
and SSE/AVX2 instruction-set extensions of the Intel architecture feature a
single instruction, computing the element-wise absolute difference of two
vector registers and internally reducing each vector of eight consecutive ab-
solute difference values to one 32-bit element. Finally, the accumulated
32-bit SAD value, which is generated for each row of the current block,
needs to be extracted from the vector register into a scalar register. Table 1
lists a set of SSE, AVX2 and AVX512 intrinsics used in the ME algorithm im-
plementations.

4.4 ME Optimization Using Data Reuse Transformation

In the final stage of the optimization process, we integrate data reuse trans-
formation strategies into our optimized ME kernel to gain further perform-
ance and energy efficiency improvements. Our study is based on a research
work of Wuytack et al., who used the DTSE methodology for data reuse
transformations and presented a number of different possible transform-
ations using a copy-candidate tree for the ME algorithm [5]. However, in
this study, we only consider the subset of transformations reported to be the
more energy efficient in [5] and which also fit to the memory hierarchy of
our test systems. Figure 2 presents different possible transformations that
are considered to optimize the ME algorithm in this work.

In Figure 2, each branch in the copy-candidate tree corresponds to a poten-
tial memory hierarchy for a given data-reuse transformation. The vertical
dashed lines in the figure indicate the levels of the hierarchy. Each rectangle
in the hierarchy is a copy-candidate and corresponds to a block of data to
be stored in memory. Each block is annotated with its size. The highlighted
branches in the figure (i.e., the branching option with the blue rectangu-
lar boxes) indicate a two-layer memory hierarchy for a possible data reuse
transformation in each of the frames. For the reference frame, the hierarchy
is comprised of an H × W block and a (2m + n − 1) × (2m + n − 1) block
memory. These blocks are mapped into the L3 and L2 caches of our test

Paper C.14. Demonstrator Application: Full-Search Motion Estimation Algorithm 161

Reference
Frame

Current
Frame

2m+n-1

2
m

+n
-1

2m+n-1 n

n

n

n

H

W

H

n

n

W

(2 layer)

(s
in

gl
e

 la
ye

r)

(3 layer (A))E2

n

n
n

E1
E3

(2
 la

ye
r)

(3
 la

ye
r

(B
))

(4
 la

ye
r)

(2
 la

ye
r)

E0

Figure 2: Copy-candidate tree for data reuse decision for the motion estim-
ation algorithm (source: [5]).

platforms. In addition, a two-layer memory hierarchy for the current frame
with an H × W and an n × n memory block is also introduced. The blocks
are mapped into the L3 and L1 caches, respectively. Among the different
possible transformation options presented in the copy candidate tree, the
options that are labeled with E are analyzed in detail in the Results section.

To evaluate the performance and energy efficiency of the different data-
reuse transformations presented in Figure 2, the basic ME algorithm (Al-
gorithm 1) has been modified into different versions to exploit different
possible transformations. This modification is done by introducing smaller
memory blocks (Buffer_cur, Buffer_ref) to which the copy-candidates (e.g.,
each line in the reference window) of the reference frame are copied. The
algorithm illustrated in Algorithm 2 presents the most effective solution in
terms of performance and energy among the different transformation op-
tions we have analyzed in this study. The solution introduces two small buf-
fers for two copy-candidates; one of them is for the Current frame (Cur),
and the other one is for the Reference frame (Ref).

It is also important to note that the copy-candidate tree presented in Fig-
ure 2 is used in all of our experiments, except the experiments with AVX512.
Architectures supporting AVX512 intrinsics (e.g., KNL) are featured with
512-bit SIMD registers, that operate with 512-bits of data at the same time.
Therefore, AVX512 intrinsics access the pixels in two macro-blocks of size

Paper C.1

8×8 at the same time. Consequently, a copy candidate of size n × n becomes
less efficient for AVX512-based computations. To address this problem, in-
stead of defining a copy-candidate of size n × n, we define a copy-candidate
of size 2n× n for AVX512 computations.

5 Results and Discussion
In this section, we present several experiments to study the effect of vec-
torization on data reuse transformations. We implement ten different vari-
ants of the ME kernel following the data reuse transformation techniques
illustrated in Figure 6. The experiment names reflect the different copy-
candidates (E0 through E3) in Figure 6. The kernels are implemented in
C++ using SSE, AVX2 and AVX512 intrinsics. The ten variants are:

1. Scalar_E0: Implementation of the ME kernel (Algorithm 1) without
any of the optimization techniques covered in this study (i.e., no data
reuse transformations or vectorization). This sequential implementa-
tion is the baseline to which we make a comparative study of different
kernel implementations.

2. Scalar_E1: Non-vectorized ME kernel with data reuse transformation
using the n × n copy-candidate.

3. Scalar_E2: Non-vectorized ME kernel with data reuse transformation
using the (2m+ n+ 1) × (2m+ n+ 1) copy-candidate.

4. Scalar_E3: Non-vectorized ME kernel with data reuse transformation
using the (2m+ n+ 1) × (2m+ n+ 1) and n × n copy-candidates.

5. SSE_E0: SSE-vectorized ME kernel without any data reuse transform-
ations.

6. SSE_E2: SSE-vectorized ME kernel with data reuse transformation
using the (2m+ n+ 1) × (2m+ n+ 1) copy-candidate.

7. AVX2_E0: AVX2-vectorized ME kernel without any data reuse trans-
formations.

8. AVX2_E2: AVX2-vectorized ME kernel with data reuse transformation
using the (2m+ n+ 1) × (2m+ n+ 1) copy-candidate.

9. AVX512_E0: AVX512-vectorized ME kernel without any data reuse
transformations.

Paper C.1 5. Results and Discussion 163

Table 2: Hardware Specifications of the Test Platforms

Processor Intel R© CoreTM i7-2600K Intel R© CoreTM i7-4700K Intel R© Xeon Phi 7250
Architecture SandyBridge Haswell Knights Landing
Clock Speed 1.6 – 3.4 GHz 0.8 – 3.5 GHz 1.4 Ghz
of Cores 4 cores / 8 threads 68 cores / 272 threads
L1 Cache 32 KB data + 32 KB inst, 8-way private
L2 Cache 256 KB, 8-way private 1 MB, 16-way per 2 cores

10. AVX512_E2: AVX512-vectorized ME kernel with data reuse transform-
ation using the (2m+ n+ 1) × (2m+ n+ 1) copy-candidate.

5.1 Test System Architecture

This subsection describes the platforms used in our evaluation. It is import-
ant to note that since we conduct our experiment on multi- and many-core
systems with a memory hierarchy of fixed sized cache-blocks, the copy-
candidates are mapped into system caches according to their sizes (Table
2).

Intel R© CoreTM CPUs

In our experiments, we have used the Intel R© CoreTM i7-4700K (Haswell)
and i7-2600K (Sandy Bridge) processors consisting of four physical cores.
Both support Hyper-Threading (HT), which allows the CPU to simultan-
eously process up to eight threads (i.e., two threads per core). The memory
hierarchy consists of a 32-KB Level-1 cache, a 256-KB Level-2 cache and
a 8192-KB Level-3 cache. Level-1 and Level-2 caches are private to each
core, while the Level-3 cache is shared among the cores. Note that this is
a memory hierarchy with a fixed number of levels and sizes, typical for a
standard processor. This is different from the assumption in [5], where an
application-specific memory hierarchy is assumed. The base clock speeds of
the processors are 3.5 GHz and 3.4 GHz, respectively, but it can go as high as
3.9 GHz when Turbo Boost is enabled [27]. However, we disabled dynamic
frequency scaling (SpeedStep and Turbo Boost) to get more stable results
from the experiments. The systems run under Ubuntu 14.04.3 LTS. All of
the kernels are compiled using Intel C++ compiler (ICC Version 14.0.1)
with the -O2 option.

Intel Xeon Phi Processor

Xeon Phi: Knights Landing (KNL) is the second revision of Intel’s Many
Integrated Core Architecture (MIC). Many-core architectures offer a high
number of cores (68 in our evaluation platform) with up to four threads per

Paper C.1

core and a potential peak performance close to 6 Tflops for single precision
floating point. These cores are based on the Silvermont Atom architecture.
Cores are out of order and tiled in pairs. Each core contains two Vector
Processing Units (VPUs), which work with vector registers up to 512 bits
wide. The VPUs are compatible with SSE, AVX/AVX2 and AVX512.

Each tile in the processor shares 1 MB of L2 memory, using a 2D mesh
interconnect (or NOC (Network On Chip)) for communication. This inter-
connect also links the tiles to two DDR4 memory controllers, with a capacity
of up to 384 GB and a bandwidth of 90 GB/s. In addition, some KNL models
feature a High Bandwidth Memory Multi-Channel DRAM (HBM-MCDRAM),
which is accessed using the NOC. This memory is divided into eight stacks,
adding up to 16 GB of capacity, and has a bandwidth close to 400 GB/s.
The HBM memory can work in different modes, as a scratchpad memory, as
an additional cache level or in hybrid mode (combination of the previous
two modes).

Our evaluated Xeon Phi platform is based on the Xeon Phi 7250 processor.
This processor features 68 cores running at 1.40 GHz. The system runs
SUSE Linux Enterprise Server 12 SP1, and the binaries are generated us-
ing Intel C++ compiler (Version 17.0.035) with the -O2 optimization level
and the -xMIC-AVX512 flag to generate AVX512 code. The devices are con-
figured to work in cache mode, where the HBM acts as an L3.

5.2 Metrics Used for Analysis

We use execution time (in micro-seconds) as the metric for performance
evaluation. To estimate on-chip energy consumption, we read the Model-
Specific Registers (MSRs) that provide energy measurements for the cores
in Haswell and Sandy Bridge [27], since package measurements include
the integrated GPU power, and we are not interested in that. For KNL,
we measure the whole package energy (including core power and DRAM
controller traffic), since the core energy counter is not available in our pre-
production system. In addition, we have not found any accurate descrip-
tion of what the DRAM controller actually measures as the measurements
might include memory controller and caches, or the accesses to the DDR
modules (it should not, since manufacturers can have any brand/techno-
logy attached to the system and dissipate different power). We decided to
go for the isolated core energy (PP0 i.e. Power-Plane 0) and Package en-
ergy (PKG) since both are properly defined. These counters can be accessed
either by the RAPL (Running Average Power Limit) interface (root-level) or
the powercap interface (user-level). We report both core/package-energy

Paper C.1 5. Results and Discussion 165

consumption and Energy Delay Product (EDP: Joule × Second) [30, 31]
to perform energy efficiency analysis. For both, lower values corresponds
to better energy efficiency. Speedup, relative on-chip energy and relative
EDP at a certain frequency are all computed with respect to the baseline
kernel (Scalar_E0). The PAPI (Performance Application Programming In-
terface) [32] is used to track cache- and memory-related events.

5.3 Performance analysis on the Haswell and Sandy Bridge Platforms

In the first set of experiments, our goal is to gain insight into the effects
of vectorization on data reuse transformations. Figure 3 compares the per-
formance of different kernel implementations at different core frequencies
on the Haswell platform.

In Figure 3a, we observe a linear impact of core frequency on the perform-
ance of the implemented kernels. The kernel execution time decreases with
increasing core frequency. The figure also confirms that the performance
of the kernel can be improved by using data reuse transformation tech-
niques despite the overhead of copying the copy-candidates into the buf-
fers. Among the three different data reuse transformation techniques (E1,
E2 and E3), E2 appeared to be more effective than the other two trans-
formations, and it (i.e., Scalar_E2) provides more than a two-fold perform-
ance gain over the unoptimized (i.e., Scalar_E0) solution when integrated
with the scalar ME kernel in a single core on the Haswell system. This
improvement is attributed to the use of a smaller block size, since a block
of (2m+ n− 1) × (2m+ n− 1) unsigned-characters corresponds to 2209
(47 × 47 ×1) bytes, which is less than the Level-1 cache size in our system.
Therefore, a full block is brought into the Level-1 cache during computation,
which significantly reduces the cost of expensive memory accesses. This cost
reduction is evident in the data presented in Table 3, as the total number
of stalled CPU cycles on memory subsystems is reduced to one third of the
stalled cycles for Scalar_E0. It is also interesting to note that the L1D/L2
cache miss rate for SIMD computations is much higher than the scalar com-
putations, and the cache miss rates increase as the width of SIMD register
increases. This observation leaves us room for further optimization, partic-
ularly for the systems with wider SIMD registers, such as Scalable Vector
Extensions (SVE) [33], which are designed to support up to 2048-bit re-
gisters.

Now, comparing the performance of the vectorized kernels with the scalar
kernels, the vectorized kernels clearly outperform the scalar kernels by a
significant margin (≈10× and ≈17× for SSE and AVX2, respectively). This

Paper C.1

800 1200 1600 2100 2500 2900 3500
Core frequency (MHz)

104

105

106

E
x
e
cu

ti
o
n
 t

im
e
 (
m
s)

Scalar_E0

Scalar_E1

Scalar_E2

Scalar_E3

SSE_E0

SSE_E2

AVX2_E0

AVX2_E2

(a) Execution time

800 1200 1600 2100 2500 2900 3500
Core frequency (MHz)

100

101

102

103

C
o
re

 e
n
e
rg

y
 c

o
n
su

m
p
ti

o
n
 (
m
j)

Scalar_E0

Scalar_E1

Scalar_E2

Scalar_E3

SSE_E0

SSE_E2

AVX2_E0

AVX2_E2

(b) Core energy consumption

1 2 4 6 8
No of threads

0

5

10

15

20

25

30

35

40
R

e
la

ti
v
e
 c

o
re

 e
n
e
rg

y

 1
.0

 0
.9 2

.5
 9

.9 1
2

.0
 1

8
.3

 2
2

.0

 0
.9

 0
.9 2

.5
 1

0
.4 1

2
.4

 1
9

.3
 2

2
.7

 0
.8

 0
.8 2

.2
 9

.1
 1

3
.3

 1
6

.9
 2

4
.4

 0
.6

 0
.7 1

.6
 6

.5 7
.9

 1
2

.1 1
4

.4

 0
.6

 0
.6

 1
.1 2

.1
 2

.5 3
.8 4
.5

Scalar_E0

Scalar_E1

Scalar_E2

SSE_E0

SSE_E2

AVX2_E0

AVX2_E2

(c) Core energy reduction

Figure 3: Execution time, core-energy consumption and energy efficiency in
terms of relative core energy reduction factor (at frequency 3500 MHz) with
respect to the core energy consumption of the baseline kernel on Haswell
system. (a) Execution time; (b) core energy consumption; (c) core energy
reduction.

performance improvement is expected as SIMD computation provides two-
fold benefits in this circumstance.

First, it reduces the number of instructions needed to be executed for com-
pleting the task by simultaneously processing multiple data points using
the vector registers. Since the SSE registers are 128-bit wide, SSE-based
SIMD computations can process up to 16 unsigned characters (8-bit) at a
time. Therefore, we can potentially achieve 16× performance speedup us-
ing SSE-based vectorization in the ME kernel. However, due to the inherent

Paper C.1 5. Results and Discussion 167

1 2 4 6 8
No of threads

0

10

20

30

40

50

S
p
e
e
d
u
p

 1
.0

 1
.0 2

.5
 1

0
.2

 1
1

.7
 1

7
.4 1

9
.8

 2
.0

 1
.9 4

.7
 1

6
.6 1
8

.7
 2

7
.6

 3
2
.0

 3
.4

 3
.6

 8
.5

 2
1

.5 2
4

.7
 3

3
.1 3
5

.4

 2
.8

 2
.7

 6
.0

 1
9

.3 2
1

.7 2
4

.3
 2

4
.5

 3
.5

 3
.4

 7
.0

 1
4

.9 1
7

.6 1
9

.9
 2

1
.5

Scalar_E0

Scalar_E1

Scalar_E2

SSE_E0

SSE_E2

AVX2_E0

AVX2_E2

(a) Speedup at 800 MHz

1 2 4 6 8
No of threads

0

10

20

30

40

50

S
p
e
e
d
u
p

 1
.0

 1
.0 2

.4
 9

.5 1
0

.9
 1

7
.3 1
9

.5

 2
.0

 1
.9 4

.5
 1

4
.9

 1
6

.6
 2

7
.3

 3
1

.8

 3
.2

 3
.0

 6
.8

 1
9

.3
 2

1
.2

 3
2

.8
 3

4
.2

 2
.8

 2
.7 5

.5
 1

5
.7

 1
6

.2 1
8

.4
 1

9
.3

 2
.9

 3
.1 5

.1 7
.9

 7
.6 8
.5

 8
.8

Scalar_E0

Scalar_E1

Scalar_E2

SSE_E0

SSE_E2

AVX2_E0

AVX2_E2

(b) Speedup at 2500 MHz

1 2 4 6 8
No of threads

0

10

20

30

40

50

S
p
e
e
d
u
p

 1
.0

 1
.0 2

.4
 9

.2 1
0

.7
 1

7
.2

 1
8

.2

 2
.0

 1
.9 4

.5
 1

4
.1

 1
5

.7
 2

7
.2

 2
8

.9

 3
.6

 2
.6

 7
.8

 1
7

.6 2
0

.9
 3

2
.6

 3
3

.3

 2
.7

 2
.7 5

.5
 1

4
.8

 1
6

.0 1
8

.1
 1

8
.5

 2
.5

 2
.7 4

.1 5
.9 6
.9 7
.7

 7
.8

Scalar_E0

Scalar_E1

Scalar_E2

SSE_E0

SSE_E2

AVX2_E0

AVX2_E2

(c) Speedup at 3500 MHz

Figure 4: Achieved speedup of multithreaded ME-kernel implementations
at different core frequencies on Haswell system.

complexity of the algorithm (e.g., 8-bit values need to be converted into 32-
bit values to continue further computations), we ended up with ≈10× spee-
dup for SSE_E0 over Scalar_E0. Similarly, using 256-bit SIMD registers for
AVX2-based computations, we have achieved speedup ≈17× for AVX2_E0
over Scalar_E0. This speedup is shown in Figure 4, and the reduction of
instruction counts are presented in Table 3. Second, the SIMD computation
also reduces the required number of cache/memory accesses by simultan-
eously loading/storing multiple data points using a single load/store oper-
ation. This can eventually reduce the CPU waiting time for the memory
subsystems and improve the overall system’s performance. On the other
hand, for bandwidth-bound applications, the increased bandwidth demand
caused by the SIMD computations can limit the potential performance im-

Paper C.1

1 2 4 6 8
No of threads

0

5

10

15

20

25

30

S
ta

lle
d
 c

y
cl

e
s

in
 m

e
m

o
ry

 s
u
b
sy

st
e
m

s(
%

)

 0
.4

 0
.5

 0
.4 1

.9
 1

.7

 0
.6

 0
.6

 0
.8

 3
.4

 3
.5

 2
.6

 1
.6 2

.8
 5

.8 6
.3

 1
0
.4

 7
.9

 1
3
.2

 1
2
.6

 1
0
.8

 1
4
.9

 1
2
.8

 2
2
.0

 1
8
.7

 1
5
.2

Scalar_E0

Scalar_E1

Scalar_E2

SSE_E0

SSE_E2

(a) Stalled cycle at 800 MHz

1 2 4 6 8
No of threads

0

5

10

15

20

25

30

S
ta

lle
d
 c

y
cl

e
s

in
 m

e
m

o
ry

 s
u
b
sy

st
e
m

s(
%

)

 0
.4

 0
.5

 0
.5

 2
.7

 2
.4

 0
.7

 0
.8

 1
.0

 4
.5

 4
.9

 3
.1

 2
.1

 2
.2

 7
.4

 1
1

.7

 9
.7

 8
.1

 1
3

.4
 1

1
.4

 1
1

.0 1
3

.1
 1

2
.4

 2
1

.7
 1

2
.9

 1
3

.8

Scalar_E0

Scalar_E1

Scalar_E2

SSE_E0

SSE_E2

(b) Stalled cycle at 2500 MHz

1 2 4 6 8
No of threads

0

5

10

15

20

25

30

S
ta

lle
d
 c

y
cl

e
s

in
 m

e
m

o
ry

 s
u
b
sy

st
e
m

s(
%

)

 0
.5

 0
.6

 0
.6

 3
.1

 3
.1

 0
.8

 0
.8

 1
.2

 5
.2 5
.6

 2
.6

 2
.4 3

.8
 8

.3 9
.3

 9
.7

 8
.0

 1
0

.3
 1

2
.8

 1
2

.3

 1
2

.4
 1

1
.5 1

3
.3

 1
2

.7
 1

2
.7

Scalar_E0

Scalar_E1

Scalar_E2

SSE_E0

SSE_E2

(c) Stalled cycle at 3500 MHz

Figure 5: Percentage of stalled CPU cycles on memory subsystem for
multithreaded ME-kernel implementations at different core frequencies on
Haswell system.

provements if the memory subsystem cannot sustain such demand. Indeed,
the data presented in Table 3 shows that the absolute number of stalled
CPU cycles on the memory system for the vectorized ME kernels is reduced,
but represents a higher percentage of the overall execution (estimated to be
Figure 5).

Another important observation is the fact that the impact of data reuse
transformation is greater for the performance of the scalar ME than for
the vectorized ME. As shown in Figure 4, the data reuse transformations
provide two-fold performance gain as we move from E0 to E2 optimizations

Paper C.1 5. Results and Discussion 169

Table 3: Average execution time and energy consumption of sequential ker-
nel implementations at a peak core frequency on the Haswell system. EDP,
Energy Delay Product.

ME Execution Stalled CPU Total CPU Core energy EDP Instruction Relative Cache Miss
kernel time cycles cycles consumption count Energy Rate (L2)

Scalar_E0 48480 564838 164147540 132 6256000 631036879 1 1 28%
Scalar_E1 50745 403386 165314558 136 6292469 631292899 1 1 21%
Scalar_E2 20491 120485 67881181 49 966100 187288526 3 2 12%
Scalar_E3 23008 1828712 80570952 57 1311456 199778723 2 2 11%
SSE_E0 5422 148615 14696743 13 44341 54934069 11 9 35%
SSE_E2 4597 150375 12574005 9 32445 37939611 14 13 29%
AVX2_E0 2991 119285 10616947 7 20937 30518927 18 21 42%
AVX2_E2 2619 121012 9672043 6 15714 22057913 21 25 37%

for the scalar ME kernel. However, with the vectorized ME, the performance
is improved by only 10% to 15% on the Haswell system. Three factors can
contribute to this limited improvement. First, the total number of memory
accesses is greatly reduced by the vectorized computations (e.g., ≈10× less
number of memory accesses for SSE). Second, the copy-candidate sizes can
also be affected by the length of the vector register and may increase the
overhead of copying the data into the buffer. Finally, the relative stalled
CPU cycles on the memory subsystems are increased due to the increased
bandwidth demands of SIMD computations, which can be clearly seen in
Figure 5.

Figure 4 and Table 4 present the multithreaded performance of different
kernel implementations at different core frequencies. From the figure, we
can observe that the performance of all of the kernels increases with the
increasing number of threads as long as only one thread runs on a given
physical-core. AVX2_E2 provides the best performance in all cases and can

Table 4: Average execution time and core-energy consumption of multi-
threaded kernel implementations on Haswell system at a peak core fre-
quency.

ME Execution Time Core Energy
kernel 1-thread 2-threads 4-threads 8-threads 1-thread 2-threads 4-threads 8-threads

Scalar_E0 48480.38 25384.31 13714.04 19854.64 131.66 135.28 162.45 216.62
Scalar_E1 50745.10 26383.63 19607.79 18884.49 136.00 138.97 157.97 203.58
Scalar_E2 20491.06 11200.93 6394.28 12140.29 49.35 49.80 55.82 113.85
SSE_E0 5421.62 3547.64 2844.55 8445.98 12.60 12.02 13.67 60.22
SSE_E2 4697.03 3188.25 2395.11 7292.13 10.42 10.10 9.41 50.97
AVX2_E0 2991.48 1842.71 1535.45 6510.13 6.21 6.49 7.41 32.52
AVX2_E2 2619.03 1733.14 1502.45 6412.13 5.18 5.51 5.13 27.58

Paper C.1

Reference
Frame

Current
Frame

2m+n-1

2m
+n

-1

2m+n-1 n

n

n

n

n

H

M

H

n

n

M

EDP=41.8
(2 layer)

E
D

P=
2

2
9

.1
(s

in
gl

e
la

ye
r)

EDP=48.2
(3 layer (A))

3
la

ye
r(

B
)

ED
P=

9
6

.7
ED

P=
96

.8

n

n

E
D

P=
1

3
1

.8

Figure 6: Energy-efficiency optimization using different possible data-reuse
transformations on Sandy Bridge system.

provide speedup up to 34× on the Haswell system over the unoptimized
scalar kernel (SSE_E0) when four threads are used. However, beyond four
threads, when hyper-threading is used, the performance is degraded. This
performance is less than what we could potentially achieve with the combin-
ation of multithreading (≈4×), vectorization (≈16× using SSE and ≈32×
using AVX2 for an 8-bit value) and data reuse transformations.

In summary, based on our observation, we can conclude that vectorization
accelerates the performance of the motion estimation kernel by reducing the
total number of instructions and memory accesses through data paralleliza-
tion. On top of that, data reuse transformations reduce expensive memory
accesses to upper cache levels, by improving locality on lower levels. When
combined with vectorization, data reuse transformation helps to keep the
amount of stalled cycles due to memory accesses low, despite the extra pres-
sure on the memory system. Finally, thread-level parallelism provides fur-
ther performance improvements on multi-core platforms regardless of the
frequency, as long as physical cores are used.

5.4 Energy efficiency analysis on the Haswell and Sandy Bridge Platforms

In this section, we present the implications of different strategies on im-
proving the energy efficiency. Figure 6 presents the EDP measurements on
the Sandy Bridge system for the different data reuse transformation options
presented in Figure 2 for a sequential ME kernel.

The use of data reuse transformations in the motion estimation kernel re-

Paper C.1 5. Results and Discussion 171

Table 5: Results of different data reuse transformations on Sandy Bridge
system.

Version Execution Time Energy Energy Efficiency Relative Relative
millisec milliJoule (EDP) Js×10−9 Energy EDP

Scalar_E0 0.01379 378.71 5224.4 1.00 1.00
Scalar_E2 0.00461 130.29 608.8 2.91 8.58
Scalar_E3 0.00488 137.93 673.2 2.74 7.76
Parallel_E0 0.00143 141.03 201.1 2.69 25.98
Parallel_E2 0.00135 139.18 187.9 2.72 27.80

duces the accesses to the larger memories in the memory hierarchy. There-
fore, it is expected that the kernels with data reuse transformations consume
less energy than the unoptimized kernels. Indeed, Figure 6 shows a signific-
ant improvement in energy efficiency due to the data-reuse transformation
techniques. The core energy consumption of the sequential motion estim-
ation kernel is reduced to one-third of its original energy consumption by
the deployment of data reuse transformations (in Table 5). In terms of the
energy-delay product, the EDP of Scalar_E0 is 5224.4 Js×10−9, whereas
the EDP of the Scalar_E2 kernel that uses an additional memory hierarchy
of block size (2m + n − 1) × (2m + n − 1) is 608.8 Js×10−9, which is an
≈9× improvement in energy efficiency in terms of EDP.

An important observation from Figure 6 is that the efficiency peaks with a
two-layer memory hierarchy of (2m+n−1)× (2m+n−1) block memory and
degrades with the introduction of any additional layers of smaller memory
blocks. Two factors that can contribute to this result are: (i) data-reuse
transformations generally make the code more complex and increase the
code size; (ii) due to fixed-size caches, smaller data blocks are mapped to
relatively larger cache blocks, which negate the advantage of using addi-
tional memory layers.

On the Haswell system, we also see that relative EDP measurements are
improved by the data-reuse transformations techniques. Figure 7 illustrates
that both parallelization and vectorization improve the energy efficiency in
terms of EDP for the optimized (that exploits the data-reuse transforma-
tion methodology), as well as the unoptimized ME kernels (that does not
use data-reuse transformations). Among the different possible ME kernels,
AVX2_E2 consumes the least amount of core energy (shown in Figure 3b),
and the relative EDP values are improved rapidly with increasing number
of threads and reach the maximum value when the total number of threads
is four (in Figure 7). However, once the number of threads exceeds four,

Paper C.1

1 2 4 6 8
No of threads

0

200

400

600

800

1000

1200

R
e
la

ti
v
e
 c

o
re

 e
n
e
rg

y
 e

ff
ic

ie
n
cy

 (
E
D

P
)

 1
.0

 0
.9

 5
.9

 1
0

2
.3

 1
3

9
.1

 3
4

9
.3

 4
8

7
.4

 3
.2

 2
.9

 1
6

.9
 2

5
9

.2 3
5

2
.9

 6
0

6
.9

 7
4

7
.7

 3
.0

 3
.3

 1
9

.1
 2

1
5

.4 3
1

4
.9

 5
6

4
.1

 7
0

2
.7

 1
.9

 1
.9

 1
0

.0
 1

4
5

.6
 2

0
7

.5
 3

4
4

.9
 4

9
4

.0

 2
.6

 2
.8

 1
2

.8 8
3

.6
 1

1
7

.8 1
9

5
.6 3

0
2

.4

Scalar_E0

Scalar_E1

Scalar_E2

SSE_E0

SSE_E2

AVX2_E0

AVX2_E2

(a) Relative EDP at 800 MHz

1 2 4 6 8
No of threads

0

200

400

600

800

1000

1200

R
e
la

ti
v
e
 c

o
re

 e
n
e
rg

y
 e

ff
ic

ie
n
cy

 (
E
D

P
)

 1
.0

 0
.9

 5
.8

 9
3

.2
 1

2
8

.0
 3

1
9

.6
 4

5
9

.9

 1
.8

 1
.7

 1
0

.3
 1

4
1

.7
 1

9
4

.4
 5

1
1

.3 5
8

7
.2

 2
.2

 2
.0

 1
2

.8
 1

6
4

.3 2
8

4
.1

 6
7

8
.6

 8
0

9
.2

 1
.5

 1
.5

 7
.7

 8
8

.4
 1

3
1

.7 2
3

6
.6 3

5
2

.7

 1
.6

 1
.7

 5
.5

 1
7

.5
 1

7
.2

 3
0

.4
 4

4
.1

Scalar_E0

Scalar_E1

Scalar_E2

SSE_E0

SSE_E2

AVX2_E0

AVX2_E2

(b) Relative EDP at 2500 MHz

1 2 4 6 8
No of threads

0

200

400

600

800

1000

1200
R

e
la

ti
v
e
 c

o
re

 e
n
e
rg

y
 e

ff
ic

ie
n
cy

 (
E
D

P
)

 1
.0

 0
.9

 6
.2

 9
1

.5
 1

2
7

.8
 3

0
6

.9 4
2

0
.3

 1
.8

 1
.7

 1
1

.2
 1

4
6

.6
 1

9
4

.2
 5

2
2

.9
 6

5
4

.8

 2
.8

 2
.0

 1
7

.5
 1

6
0

.8 2
7

7
.4

 5
4

9
.6

 8
1

1
.3

 1
.7

 1
.7

 9
.1

 9
7

.0
 1

2
5

.7 2
1

8
.8

 2
6

6
.1

 1
.5

 1
.6

 4
.5

 1
2

.3
 1

6
.8

 2
9

.5
 3

5
.4

Scalar_E0

Scalar_E1

Scalar_E2

SSE_E0

SSE_E2

AVX2_E0

AVX2_E2

(c) Relative EDP at 3500 MHz

Figure 7: Relative EDP of multithreaded ME-kernel implementations at dif-
ferent core frequencies on the Haswell system. Higher relative EDP value
indicates better energy efficiency.

relative EDP begins to decline.

It is also interesting to note that the multithreaded parallelization of the
motion estimation kernel does not lead to core-energy savings despite the
reduction in execution time due to parallelization at a peak core frequency
on the Haswell system. This is an expected behavior if proper power saving
mechanisms are in place, meaning that idle cores go into low power mode
and do not contribute significantly to the total energy consumed during the
application run. This is illustrated in Figure 3c. In contrast, vectorization
results in quite a significant amount of core energy savings for the motion
estimation kernel. This is due to several reasons. First, Intel processors do
not have a separate vector unit or separate vector registers. This translates

Paper C.1 5. Results and Discussion 173

1 2 4 6 8
No of threads

0

50

100

150

200

250
S
p
e
e
d
u
p

 1
.0

 2
.5 1

3
.9 3

4
.7

 2
.0

 4
.8

 2
6

.0

 6
3

.6

 3
.8 9
.2

 4
7

.1

 9
6

.2

 5
.5 1
2

.5

 6
5

.2

 1
3

0
.8

 7
.2 1

6
.3

 8
1

.9

 1
4

6
.0

scalar_E0

scalar_E2

AVX-512_E0 AVX-512_E2

16 32 64 128 256
No of threads

0

50

100

150

200

250

S
p
e
e
d
u
p

 1
4
.5 2
9
.0

 1
3
8
.8

 1
7
4
.3

 2
7
.7 4

5
.5

 1
6
6
.2

 1
8
2
.8

 5
0
.0 6
2
.1

 1
8
2
.3

 1
9
2
.2

 4
9
.2 6

8
.6

 1
3
4
.7

 1
4
4
.3

 4
4
.8

 3
9
.5

 9
8
.7

 1
0
3
.7

scalar_E0

scalar_E2

AVX-512_E0 AVX-512_E2

Figure 8: Achieved speedup of multithreaded ME-kernel implementation on
KNL Xeon Phi processor.

into a small increase in the power dissipated by the ALUs/register bank
working with SIMD instructions instead of scalar. In fact, GCC/ICC com-
pilers no longer generate the scalar assembly, but rather SIMD instructions
working only with the lowest vector lane. In addition, when working with
vectors, the system spends more idle waiting time for memory, and there-
fore, cores can go into low power mode more often. This demonstrates
that vectorization can lead to significant core energy savings if they can be
applied effectively.

Table 5 gives a summary of our results for the Sandy Bridge platform. They
show that data reuse transformations significantly improve the energy effi-
ciency of the ME algorithm. The Relative EDP column in the table presents
EDP values of different approaches normalized with respect to the EDP
value of optimized parallel ME kernel. Relative EDP values indicate that
the best energy efficiency can be achieved by using the parallel-optimized
solution. Compared to the optimized serial solution (Scalar_E2), the par-
allel optimized solution (Parallel_E2) gives 3× better EDP, and the serial
unoptimized solution (Scalar_E0) provides 28× higher EDP.

5.5 Performance and energy efficiency analysis on the KNL coprocessor

In our last set of experiments, we study the same problem in the many-
core context. To this end, the best performing transformation options (E2
kernels) are chosen along with the baseline (E0) to carry out scalability
tests on the Intel Xeop Phi Co-processor (KNL). However, unlike the exper-
iments done on the multi-core platforms, experiments on the KNL platform
deal with full HD frames (1920×1080) as an input rather than the QCIF
format. Figures 8 and 9 present improvements for the speedup and energy
efficiency metrics that can be achieved through the optimized kernels when
run on up to 256 threads on KNL (64 cores running four threads each; the

Paper C.1

1 2 4 6 8
No of threads

100

101

102

103

104

105

106

107

R
e
la

ti
v
e
 c

o
re

 e
n
e
rg

y
 e

ff
ic

ie
n
cy

 (
E
D

P
)

 1
.0

 6
.2

 1
9

3
.1 1

1
9

1
.8

 3
.9

 2
3

.7

 6
7

9
.1 4

0
5

5
.7

 1
4

.0

 8
3

.3

 2
2

3
5

.4

 9
2

6
7

.7

 3
0

.8

 1
5

9
.8

 4
3

6
2

.9

 1
7

3
6

5
.8

 5
3

.2

 2
7

4
.4

 6
9

9
8

.2

 2
1

8
0

9
.9

scalar_E0

scalar_E2

AVX-512_E0 AVX-512_E2

16 32 64 128 256
No of threads

100

101

102

103

104

105

106

107

R
e
la

ti
v
e
 c

o
re

 e
n
e
rg

y
 e

ff
ic

ie
n
cy

 (
E
D

P
)

 1
9
0
.4 7

7
1
.9

 1
7
6
8
7
.6

 2
8
7
8
6
.0

 6
1
3
.3

 1
7
0
4
.6

 2
3
8
0
0
.2

 3
2
5
1
7
.8

 1
6
6
8
.3

 2
6
9
2
.2 2

8
2
8
8
.1

 3
5
6
6
2
.9

 1
5
2
8
.1

 3
0
7
1
.9

 1
3
4
5
8
.5

 1
5
9
8
8
.5

 1
2
6
8
.8

 9
6
1
.8

 7
0
9
6
.3

 7
9
4
4
.6

scalar_E0

scalar_E2

AVX-512_E0 AVX-512_E2

Figure 9: Relative EDP of multithreaded ME-kernel implementations on
KNL Xeon Phi processor.

rest of the cores are reserved to manage the operating system). In Figure 8,
observations on the single core performance highlight two interesting as-
pects of the kernels being investigated. First, Scalar_E0 (i.e., unoptimized)
and Scalar_E2 (i.e., optimized using data reuse transformations) kernels
exhibit ≈3× performance increase, which is similar to what was observed
on the Haswell system. Therefore, we can conclude that the data reuse
transformations on a single core in a KNL coprocessor are as effective as the
transformations on a single core in the Haswell system. Second, once again,
the performance difference between a non-vectorized and vectorized kernel
is quite significant; for example, the single-threaded AVX512_E2) kernel is
≈35× faster than the single-threaded (Scalar_E0) kernel on the Haswell
system (Figure 4c). Third, a significant amount of performance improve-
ment can be observed by the deployment of data reuse transformations in
conjunction with the AVX512 vectorization technique. Particularly for lower
number of threads (i.e., <8), AVX512_E2 provides ≈2× better performance
than AVX512_E0. Furthermore, we can also observe that the performance is
increased with the increasing number of threads until it passes 64 threads
and simultaneous multithreading takes place.

In terms of energy efficiency, we have also achieved improved results as
shown in Figure 9. This metric is also scalable across multiple threads as
long as only one thread runs per core. The energy efficiency improve-
ments on the KNL platform are much larger than for the Haswell platform,
which may seem surprising. The governor for our KNL system is set to per-
formance, and it will therefore never throttle the core frequency down. In
addition, there is probably not enough time to disable cores. According to
Intel, it takes around one minute for an idle KNL core to go completely off-
line. On low core count, the OS may be jumping/sending system processes
to different cores, so none will ever go offline. At best, the OS could use

Paper C.1 5. Results and Discussion 175

DVFS (Dynamic voltage and frequency scaling) to reduce core frequency,
but our governor prevents this. Since we do not have root access, we can-
not test shield cores (prevent scheduling of OS processes into specific cores),
nor bind all OS processes into a single core, nor change the governor. Nev-
ertheless, this would be the common case for most end users.

5.6 Summary of Findings

We now summarize the key results and observations from our performance
and energy efficiency evaluation of different data reuse transformations on
Intel multi- and many-core systems.

1. Use of data reuse transformations together with vectorization is a prom-
ising approach to improve the performance and energy efficiency of
massively parallel data-dominated applications (such as motion es-
timation) on multi- and many-core systems. Significant energy im-
provements can be achieved from throughput-oriented architectures
that rely on low-power processing cores (e.g., KNL cores), especially if
those cores provide SIMD/vector capabilities. These architectures have
better energy efficiency (simple cores with low clock frequency) than
complex cores available in commodity CPUs.

2. As compared to multi-threaded parallelism, data-parallelism through
vector processing results in better energy savings even at peak core fre-
quency. While doubling the number of cores results in approximately
double the average power dissipated by the CPU, using vector units in
Intel comes almost “for free” in terms of average power. Similar res-
ults have also been reported for several Intel and ARM CPUs in [2].
As a consequence, vector processing can be an attractive solution to
improve energy efficiency without sacrificing performance, especially
in a situation where performance trade-off is not desirable.

3. The deployment order of different optimization techniques has a great
impact on the application performance. First, we apply multithread-
ing to exploit explicit parallelism across multiple cores, which is fol-
lowed by fine-grained parallelism through vectorization at each core.
Finally, data reuse transformations are applied as it depends on both
multithreading and vectorization for further improvement. However,
on applications that face scalability issues, users may want to limit the
amount of threads running in their application and rely more on SIMD
units, since the energy cost of running on extra physical cores is much
higher than using SIMD instructions.

Paper C.1

4. In contrast to the results of Wuytack et al. in [5] where they have
shown that a three-layer memory hierarchy is the most energy-efficient
scheme for the ME algorithm, our results show that a two-layer memory
hierarchy is more energy efficient. However, there exists a funda-
mental difference between these two experiments: First, we conduct
our experiment on multi-core and many-core systems with a memory
hierarchy of fixed sized cache-blocks, and thus, the copy-candidates are
mapped into these fixed-size system caches. Since we cannot manually
turn off the part of the caches not being used, our measurements in-
clude the energy consumed by both used and idle cache lines. Wuytack
et al. avoided this extra energy consumption by conducting their ex-
periment in a simulation environment where they created a hierarchy
of memory blocks perfectly fitting the data blocks.

6 Conclusion
In this paper, we have investigated the performance and energy efficiency
effects of applying data-reuse transformations on a multi-core processor
running a motion estimation algorithm. We have shown that the perform-
ance can be improved up to 35×, and core energy consumption can be
reduced by 25× on multi-core platforms (Haswell and Sandy Bridge) using
appropriate data-reuse transformation techniques in combination with par-
allelization and vectorization. For a KNL many-core processor platform, this
improvement can reach up to 192× and 185× (EDP 35,662×) for perform-
ance and core energy efficiency respectively when it runs with 64 threads.
This gives clear indications that a data reuse methodology in combination
with a parallel programming model can significantly save energy, as well as
improve the performance of this type of application running on multi- and
many-core processors.

In our experiments, simultaneous multithreading causes performance de-
gradation. As our study was only limited to static and dynamic scheduling
(in the KNL coprocessor), we plan to further extend our study to analyze the
effect of using a more advanced scheduling method (e.g., guided schedul-
ing) along with compiler-assisted selected lock assignment on the data reuse
transformations in the simultaneous multithreading environment.

In the future, we will extend our study by running the experiments on an
execution platform supporting a concept like drowsy cache [34] that powers
down the unused parts of the cache. This would give more comparable
results against the results of Wuytack et al.

Paper C.1 REFERENCES 177

Acknowledgments

The work presented in this paper was supported by the Faculty of Inform-
ation Technology and Electrical Engineering, Norwegian University of Sci-
ence and Technology.

Author contributions

All authors contributed extensively to the work presented in this paper.
A.A.H. and P.G.K. developed the initial concept of the paper, and the ex-
tension of the initial concept was made by A.A.H. and L.N., and later on
agreed upon by P.G.K.. A.A.H. designed and implemented the experiments
under the supervision of L.N. and P.G.K. for multi-core systems and J.M.C.
for the KNL coprocessor. A.A.H. and J.M.C. conducted the experiments on
multi-core and many-core systems, respectively. All authors discussed the
results and implications and commented on the manuscript at all stages.

Conflicts of interest

The authors declare no conflicts of interest.

References
[1] S. Ashby, P. Beckman and J. Chen. The Opportunities and Challenges

of Exascale Computing. Report of the Advanced Scientific Computing
Advisory Committee (ASCAC) subcommittee at the US Department
of Energy Office of Science. 2010.

[2] Juan M. Cebrián, Magnus Jahre and Lasse Natvig. ‘ParVec: Vector-
izing the PARSEC Benchmark Suite’. In: Computing 97.11 (2015),
pp. 1077–1100. ISSN: 1436-5057.

[3] Davendar Kumar Ojha and Geeta Sikka. ‘A Study on Vectorization
Methods for Multicore SIMD Architecture Provided by Compilers’.
In: Advances in Intelligent Systems and Computing 248.1 (2014),
pp. 723–728. ISSN: 978-3-319-03107-1.

[4] Changkyu Kim, Nadathur Satish, Jatin Chhugani, Hideki Saito, Rakesh
Krishnaiyer, Mikhail Smelyanskiy, Milind Girkar and Pradeep Dubey.
Technical Report: Closing the Ninja Performance Gap through Tradi-
tional Programming and Compiler Technology. 2012.

[5] J.Ph. Diguet, S. Wuytack, F. Catthoor et al. ‘Formalized Methodo-
logy for Data Reuse Exploration for Low-Power Hierarchical Memory

Paper C.1

Mappings’. In: IEEE Transactions on VLSI Systems 6 (1998), pp. 529–
537.

[6] Francky Catthoor, Koen Danckaert, Chidamber Kulkarni, Erik Brock-
meyer, Per Gunnar Kjeldsberg, Tanja Van Achteren and Thierry Omnes.
Data Access and Storage Management for Embedded Programmable
Processors. Dordrecht, The Netherlands: Kluwer Academic Publish-
ers, 2002. ISBN: 9780792376897.

[7] Francky Catthoor, Sven Wuytack, G.E. de Greef and et al. Custom
Memory Management Methodology: Exploration of Memory Organ-
isation for Embedded Multimedia System Design. Norwell, MA, USA:
Kluwer Academic Publishers, 1998. ISBN: 0792382889.

[8] Nikos D. Zervas, Kostas Masselos and C. E. Goutis. ‘Data-Reuse Ex-
ploration for Low-Power Realization of Multimedia Applications on
Embedded Cores’. In: Proceedings of the International Workshop on
Power and Timing Modeling, Optimization and Simulation. PATMOS’99.
1999, pp. 71–80.

[9] Alexander Chatzigeorgiou, Er Chatzigeorgiou, Stamatiki Kougia and
et al. Evaluating the Effect of Data-Reuse Transformations on Pro-
cessor Power Consumption. 2001. URL: http://egnatia.ee.auth.
gr/~alec/patmos2001.pdf.

[10] N. Vassiliadis, A. Chormoviti, N. Kavvadias and et al. ‘The Effect of
Data-Reuse Transformations on Multimedia Applications for Applic-
ation Specific Processors’. In: Proceedings of the International Confer-
ence on Intelligent Data Acquisition and Advanced Computing Systems
Technology and Applications. IDAACS’05. Sept. 2005, pp. 179–182.

[11] Hari Kalva, Aleksandar Colic, Adriana Garcia and Borko Furht. ‘Par-
allel Programming for Multimedia Applications’. In: Multimedia Tools
Applications 51.2 (2011), pp. 801–818.

[12] Long Chen, Ziang Hu, Junmin Lin and et al. ‘Optimizing the Fast
Fourier Transform on a Multi-core Architectures’. In: Proceedings of
the Parallel and Distributed Processing Symposium. IPDPS’07. Mar.
2007, pp. 1–8.

[13] Yuanrui Zhang, Mahmut Kandemir and Taylan Yemliha. ‘Studying
Inter-core Data Reuse in Multicores’. In: Proceedings of the Interna-
tional Conference on Measurement and Modeling of Computer Sys-
tems. SIGMETRICS ’11. 2011, pp. 25–36.

Paper C.1 REFERENCES 179

[14] G. He, D. Zhou, Y. Li, Z. Chen, T. Zhang and S. Goto. ‘High-Throughput
Power-Efficient VLSI Architecture of Fractional Motion Estimation
for Ultra-HD HEVC Video Encoding’. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 23.12 (Dec. 2015), pp. 3138–
3142. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2014.2386897.

[15] Jonathan Lifflander, Sriram Krishnamoorthy and Laxmikant V. Kale.
‘Optimizing Data Locality for Fork/Join Programs Using Constrained
Work Stealing’. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. SC
’14. New Orleans, Louisana: IEEE Press, 2014, pp. 857–868. ISBN:
978-1-4799-5500-8. DOI: 10.1109/SC.2014.75.

[16] Paul Marchal, Francky Catthoor, Davide Bruni and et al. ‘Integrated
Task Scheduling and Data Assignment for SDRAMs in Dynamic Ap-
plications’. In: IEEE Design & Test of Computers 21.5 (Sept. 2004),
pp. 378–387. DOI: 10.1109/MDT.2004.66.

[17] Abdullah Al Hasib, Per Gunnar Kjeldsberg and Lasse Natvig. ‘Per-
formance and Energy Efficiency Analysis of Data Reuse Transform-
ation Methodology on Multicore Processor’. In: Proceedings of the
Euro-Par 2012: Parallel Processing Workshops. Vol. 7640. LNCS. 2013,
pp. 337–346. ISBN: 978-3-642-36949-0.

[18] James Jeffers James Reinders Avinash Sodani. Intel Xeon Phi Pro-
cessor High Performance Programming. Morgan Kaufmann Publish-
ers Inc., 2016.

[19] Zehra Sura, Arpith Jacob, Tong Chen, Bryan Rosenburg, Olivier
Sallenave, Carlo Bertolli, Samuel Antao, Jose Brunheroto, Yoonho
Park, Kevin O’Brien and Ravi Nair. ‘Data Access Optimization in a
Processing-in-memory System’. In: Proceedings of International Con-
ference on Computing Frontiers. CF ’15. Ischia, Italy, 2015, 6:1–6:8.
ISBN: 978-1-4503-3358-0. DOI: 10.1145/2742854.2742863.

[20] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov and J. Dongarra.
‘A Step towards Energy Efficient Computing: Redesigning a Hydro-
dynamic Application on CPU-GPU’. In: Proceedings of the Interna-
tional Symposium on Parallel and Distributed Processing. May 2014,
pp. 972–981. DOI: 10.1109/IPDPS.2014.103.

[21] J. S. Miguel, M. Badr and N. E. Jerger. ‘Load Value Approximation’.
In: Proceedings of the International Symposium on Microarchitecture.
Dec. 2014, pp. 127–139. DOI: 10.1109/MICRO.2014.22.

Paper C.1

[22] I Z. Reguly, Endre Lfffdfffdszlfffdfffd, Gihan R. Mudalige and Mike
B. Giles. ‘Vectorizing Unstructured Mesh Computations for Many-
core Architectures’. In: Concurrency and Computation: Practice and
Experience 28.2 (2016), pp. 557–577. ISSN: 1532-0634. DOI: 10.
1002/cpe.3621.

[23] Daniel Dabbelt, Colin Schmidt, Eric Love, Howard Mao, Sagar Karandikar
and Krste Asanovic. ‘Vector Processors for Energy-Efficient Embed-
ded Systems’. In: Proceedings of the International Workshop on Many-
core Embedded Systems. MES ’16. Seoul, Republic of Korea: ACM,
2016, pp. 10–16. ISBN: 978-1-4503-4262-9. DOI: 10.1145/2934495.
2934497.

[24] A. Podobas, M. Brorsson and K. Faxen. ‘A Performance Compar-
ison of Some Recent Task-based Parallel Programming Models’. In:
Proceedings of the International Conference on High-Performance and
Embedded Architectures and Compilers. Pisa, Italy, Jan. 2010.

[25] OpenMP Architecture Review Board. OpenMP Application Program
Interface. July 2011. URL: http://www.openmp.org/mp-documents/
spec30.pdf.

[26] Juan M. Cebrián, Magnus Jahre and Lasse Natvig. ‘Optimized Hard-
ware for Suboptimal Software: The Case for SIMD-aware Bench-
marks’. In: Proceedings of the International Symposium on Perform-
ance Analysis of Systems and Software. Mar. 2014, pp. 66–75.

[27] Intel. Intel 64 and IA-32 Architectures Software Development Manual.
Dec. 2011. URL: http://download.intel.com/products/processor/
manual/325462.pdf.

[28] T. Komarek and P. Pirsch. ‘Array Architectures for Block Match-
ing Algorithms’. In: IEEE Transactions on Circuits and Systems 36.10
(Oct. 1989), pp. 1301–1308.

[29] J. Ott, C. Borman, G. Sullivan and et al. RTP Payload Format for ITU-
T Rec. H.263 Video. 4629. Jan. 2007. URL: http://tools.ietf.
org/html/rfc4629.

[30] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan and et
al. ‘Models and Metrics to Enable Energy-Efficiency Optimizations’.
In: Computer 40.12 (Dec. 2007), pp. 39–48.

Paper C.1 REFERENCES 181

[31] Hallgeir Lien, Lasse Natvig, Abdullah Al Hasib and Jan Christian
Meyer. ‘Case Studies of Multi-core Energy Efficiency in Task Based
Programs’. In: Proceedings of the International Conference on ICT
as Key Technology against Global Warming. Vol. 7453. Sept. 2012,
pp. 44–54.

[32] Performance Application Programming Interface. URL: http://icl.
cs.utk.edu/papi/index.html.

[33] John Russell. ARM Unveils Scalable Vector Extension for HPC at Hot
Chips. URL: https://www.hpcwire.com/2016/08/22/arm-
unveils-scalable-vector-extension-hpc-hot-chips/.

[34] Krisztián Flautner, Nam Sung Kim, Steve Martin and et al. ‘Drowsy
Caches: Simple Techniques for Reducing Leakage Power’. In: Pro-
ceedings of the Annual International Symposium on Computer Archi-
tecture. ISCA ’02. Washington, DC, USA, 2002, pp. 148–157.

Paper C.2

A Vectorized K-means
Algorithm for Compressed
Datasets – Design and
Experimental Analysis

Abdullah Al Hasib, Juan M. Cebrián and Lasse Natvig

Journal of Supercomputing, 2018

183

Paper C.2 185

Abstract
Clustering algorithms (i.e., gaussian mixture models, k-means, etc.) tackle
the problem of grouping a set of elements in such a way that elements from
the same group (or cluster) have more similar properties to each other than
to those elements in other clusters. This simple concept turns out to be
the basis in complex algorithms from many application areas, including se-
quence analysis and genotyping in bio-informatics, medical imaging, anti-
microbial activity, market research, social networking etc. However, as the
data volume continues to increase, the performance of clustering algorithms
is heavily influenced by the memory subsystem.

In this paper, we propose a novel and efficient implementation of Lloyd’s
k-means clustering algorithm to substantially reduce data movement along
the memory hierarchy. Our contributions are based on the fact that the vast
majority of processors are equipped with powerful Single Instruction Mul-
tiple Data (SIMD) instructions that are, in most cases, underused. SIMD
improves the CPU computational power and, if used wisely, can be seen as
an opportunity to improve on the application data transfers by compress-
ing/decompressing the data, specially for memory-bound applications. Our
contributions include a SIMD-friendly data-layout organization, in-register
implementation of key functions and SIMD-based compression. We demon-
strate that using our optimized SIMD-based compression method, it is pos-
sible to improve the performance and energy of k-means by a factor of ≈5x
and ≈9x respectively for a i7 Haswell machine, and ≈22x and ≈22x for
Xeon Phi: KNL, running a single thread.

Paper C.2 1. Introduction 187

1 Introduction
Clustering algorithms try to group a set of elements in such a way that
elements from the same group (or cluster) have more similar properties to
each other than to those elements in other clusters. Clustering is considered
as a central problem in data management and data mining, as well as the
basis in complex algorithms from many fields of application. Clustering is
used in bio-informatics for sequence analysis and genotyping, to group ho-
mologous sequences into gene families. On PET1 scans (medical imaging),
cluster analysis can be used to differentiate between different types of tis-
sue and blood in a three-dimensional image. It can also be used to analyse
patterns of antibiotic resistance in medical research, to analyze multivari-
ate data from surveys and test panels in market research or to to recognize
communities within large groups of people in social networks.

Among the many different clustering methods, k-means is one of the most
widely used. The advantage of k-means is its simplicity: starting with a set
of randomly chosen initial centers, the kernel repeatedly assigns each input
point to its nearest center, and then recomputes the centers given the point
assignment. From a theoretical standpoint, k-means is not a good clustering
algorithm in terms of efficiency or quality: the running time can be expo-
nential in the worst case and even though the final solution is locally op-
timal, it can be far from the global optimum (even under repeated random
initializations). Therefore, recent works e.g. k-means++ focus on improv-
ing the initialization procedure, increasing performance, convergence and
quality [1].

In recent years, we have witnessed an explosive growth of big data [2].
The overwhelming data inputs raise compelling computational challenges
to data intensive kernels, such as clustering. Despite the advent of multi-
core and many-core systems, the performance of data intensive computa-
tions is often largely inhibited by slow disk accesses as well as the limited
bandwidth or latency for data transfers across the memory hierarchy. This
is especially critical in real-time or near real-time scenarios (e.g., analyzing
a high resolution medical image in a few hours rather than days can be
extremely beneficial for a patient). Effective data compression algorithms
can be used to mitigate this problem by reducing the amount of data to be
transferred across the memory hierarchy as well as the number of required
memory/disk accesses.

1Positron Emission Tomography.

Paper C.2

Modern processors equipped with extra-wide registers for SIMD (Single
Instruction Multiple Data) instructions provide us with an opportunity to
achieve better compression performance. For instance, Intel has been sup-
porting data parallelism through 128-bit and 256-bit SIMD computations
using SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Exten-
sions) instructions and recently extends their support further by introducing
AVX-512 (512-bit extensions to the 256-bit AVX) SIMD instructions. ARM is
going to release Scalable Vector Extension (SVE) [3] instruction set to sup-
port up to 2048-bit vectors. Therefore, the emerging trends clearly show
that vectorization is going to play an important role in the future High Per-
formance Computing (HPC) systems. Consequently, many researchers seek
to exploit the vector units in the recent hardware to improve the decoding
speed of compression algorithms [4, 5]. In particular, the authors in [6]
have demonstrated the effectiveness of using a SIMD compression method
to improve performance and energy efficiency of cache/memory bound time
series processing.

Based on the aforementioned findings, here we present a simple, yet effi-
cient implementation of Lloyd’s algorithm [7] by using an effective SIMD
based compression approach to accelerate the performance of integer k-
means clustering on compressed data sets. The idea is to improve data
locality and decrease the memory bandwidth requirements of SIMD based
computations by using a lightweight compression method without signific-
antly increasing the computational requirements. The algorithm begins by
storing data points in a block data layout format where each block is com-
pressed using the V-PFORDelta coding method described in [6].

Our key contributions in this paper are:

• We make an efficient implementation of a state-of-the-art k-means al-
gorithm (Lloyd et al. [7]) by optimizing its loop traversal scheme and
by using a block data layout format to store the data. This is key to
make the overall computations more SIMD-efficient and to improve
the data locality of the algorithm. This layout also enables SIMD soft-
ware prefetching to further improve performance.

• We introduce an in-register implementation of the most time-consuming
function (namely ArgMin, discussed in Section 3) to optimize data loc-
ality and conserve memory bandwidth.

• The distance vector of the clustering algorithm does not need to be
completely accurate, as long as elements are clustered in the same

Paper C.2 2. Related Work 189

way. We use a scalar product based approximation to the euclidean
distance computation in order to reduce the computational require-
ments (Section 4.2).

• We present a method to reduce the increased pressure on the memory
subsystem due to vectorization using a lightweight SIMD-based data
compression method [6]. The underlying concept here is to reduce the
total number of required memory accesses by accessing compressed
data. We show that integration of compression is feasible, specially
when the processor runs out of reservation stations or load-store-
queue entries and memory-level parallelism (MLP) is degraded.

• Finally, we demonstrate the effectiveness of our proposed approach in
terms of performance and energy-efficiency on Intel multi-core (Haswell)
and many-core (Xeon Phi: Knights Landing (KNL)) platforms.

2 Related Work
Clustering problems have been frequent and important objects of study for
the past many years by data management and data mining researchers.
One of the most popular heuristics for solving these problems is based on a
simple iterative scheme for finding a locally minimal solution, often known
as k-means algorithm. There are a number of variants to this algorithm, so,
to clarify which version we are using, we will set our baseline as Lloyd’s
algorithm [7]. The initialization process of the algorithm is crucial for ob-
taining a good solution [8].

In this paper we primarily focus on the acceleration of the k-means al-
gorithm using thread and data-level parallelism. This goal has been the
target of many recent researches to accelerate the k-means algorithm. In
[9], the authors have explored the performance of general-purpose applica-
tions including a CUDA implementation of a k-means algorithm on graphics
processors. In [2, 10], the authors proposed an algorithm that performs
the distance calculations in parallel on the GPU while sequentially updating
the cluster centroids on the CPU based on the results from the GPU calcu-
lations. In the aforementioned optimization methods, parallelism is done
at the task level, where the data is divided into smaller chunks and each
chunk is processed in sub-tasks. All of these tasks execute the same logic as
in the baseline k-means algorithm. In contrast, our proposed implementa-
tion method slightly differs from the baseline as it integrates a compression
method for further optimization.

Paper C.2

In [11], Hadian and Shahrivari have used a KD-tree (k-dimensional tree)
based structure where each node for the KD-tree is represented by a bound-
ing box specifying the minimal axis-parallel hyper-rectangle containing all
associated points. Consequently, the search for nearest centroid is accel-
erated. Our work is closely related to the paper [12], where the authors
proposed a fine-grained SIMD based approach which computes n distances
from the n data points to the same centroid in one loop. Hence, this ap-
proach is termed as centroid-oriented approach. We have made an im-
provement over this approach by performing in-register Arg-min computa-
tion along with computations using compressed data set. Moreover, none
of the aforementioned approaches has performed the energy efficiency ana-
lysis. In addition, to the best of our knowledge, the systematic investigation
of k-means implementation using SIMD instruction sets has not been per-
formed on Intel’s Knights Landing platform before.

3 K-means Clustering Overview

3.1 Single-threaded Scalar K-means

Let X = {x1, . . . , xn} be a set of data points in the d-dimensional space
and let k be a positive integer specifying the number of clusters. Let C
= {c1, . . . , ck} divide X into k clusters (X′

j ⊂ X, j = {1, . . . , k}), where cj
is the centroid of cluster X′

j. The distance from a data point (xj) to a
centroid (cj) is determined by the Euclidean Distance denoted as φ(xi, cj) =√∑d

k=1(x
k
i − ckj)

2. The optimal set C of k centroids can be found by min-
imizing the following function:

Θ =
∑

xi∈X,cj∈C
φ(xi, cj)

A single-threaded scalar k-means algorithm is illustrated in Algorithm 1.
The algorithm is divided into 3 states namely seeding state, labeling state
and cluster update state. In the seeding state, the initial set of centroids is
chosen by k random values from the set of data points X. In every iteration
of the labeling state, each data point xi ∈ X is assigned to the cluster Cli

with the closest centroid cli . This is implemented in the ArgMin
cj∈C

φ(xi, cj)

function, which returns the number li (the label for datapoint xi) of the
cluster that minimizes φ(xi, cj) in line 5. Line 6 forms the new updated
clusters, but does not update the position of its centroid, which is done in
next state, the cluster update state. Here the new cluster value (the position

Paper C.2 3. K-means Clustering Overview 191

Algorithm 1 Sequential k-means Algorithm
Input: data (X), number of clusters (k) | Output: centroids (C)

Seeding state

1: cj ∈ C← random xi ∈ X, i = 1..., n; j = 1, ..., k

Labeling state

2: repeat
3: X′

1..k = {}

4: for Each xi ∈ X do
5: li ← ArgMin

cj∈C
φ(xi, cj)

6: X′
li
← X′

li
∪ xi

7: end for

Cluster update state

8: for Each cj ∈ C do

9: cj ← 1

| X′
j |

∑
xj ∈ X′

j

10: end for
11: until convergence

of the centroid, cj) is computed for each of the updated clusters X′
j by di-

viding the sum of the cluster-values with the number of data points in each
cluster (namely mj).

3.2 Multi-threaded Scalar K-means

We use the OpenMP [13] API to make a parallel implementation of the
algorithm. In the parallel implementation of the k-means algorithm, the
labeling state (i.e. li computation) is identified as being inherently data
parallel. Therefore, Algorithm 1 can be translated into a multi-threaded
implementation by the following two steps (See Algorithm 2):

• Divide the data set X to be clustered into p blocks and assign one
thread for each block. Each thread executes independently the la-
beling step (lines 5–9) in parallel. This implies also to update its par-
tial sum of points in cluster li and m-value (number of elements in
cluster).

• Once the labeling step is completed, an implicit barrier allows the
reduction step to combine all thread-local partial sum- and m-values
together [13]. Then we update the centroids accordingly.

Paper C.2

Algorithm 2 Parallel k-means Algorithm
Input: data (X), number of clusters (k) | Output: centroids (C)

1: cj ∈ C← random xi ∈ X, j=1, ..., k
2: repeat
3: sum1..k = m1..k = 0
4: #pragma omp parallel for reduction(+: sum1..k,m1..k)
5: for Each xi ∈ my block of X do
6: li ← ArgMin

cj∈C
φ(xi, cj)

7: sumli ← sumli + xi
8: mli ← mli + 1
9: end for

10: for Each cj ∈ C do

11: cj ← sumj

mj

12: end for
13: until convergence

4 Multi-threaded Vectorized K-means with Compressed Data-
set

To exploit the full performance potential of the modern micro-architectures
supporting SIMD operations, we have carefully chosen the following strategies:

• Memory hierarchy sensitive strategies to efficiently transfer data into
the registers.

• Approximate the Euclidean distance computation by using precom-
puted scalar products.

• In-register ArgMin computation to optimize data locality.

• SIMD data compression to conserve bus-bandwidth and reduce the
number of cache accesses.

4.1 Loop Traversal Strategy and Data Layout Optimization

The ArgMin computation step of the k-means algorithm is typically imple-
mented by three nested loops iterating over data points (n), cluster repres-
entations (k) and dimensions (d). Therefore, the loop traversal strategy of
this step can also be defined by the n-k-d space. In order to optimize the
data locality property of this ArgMin computation, we divide the input data
stream into smaller blocks.

Paper C.2 4. Multi-threaded Vectorized K-means with Compressed Dataset 193

1 2 3

4 5 6

7 8 9

10 11

k

d

n

12

Figure 1: Loop traversal strategy for SSE-SIMD k-means.

Figure 1 illustrates the loop traversal strategy that is deployed in our multi-
threaded vectorized k-means implementation. In the figure we can observe
that the outermost loop iterates over the data points xi, the nested loop
iterates over the cluster representatives cj and the innermost loop iterates
over the dimensions d. For SSE, each block in the n-k-d space involves
4 data points (the same as the number of uint32_t values we can fit in a
SSE register), 4 cluster representatives (also equal to the data we can fit
in the SSE register) and 1 dimension. Once this step is repeated over the
d dimension, as indicated by the orange zig-zag arrow in the Figure 1, the
ArgMin computations for the 4 data points (green circles) are completed.
Next, the ArgMin computations for the next 4 points can begin.

Figure 2: Block data layout for locality optimization.

Paper C.2

It is important to note that all the data points fitted into the vector registers
first complete their computations across all dimensions (d), before the next
set of data points are loaded into the vector register. Hence, neither the
row-major layout nor the column-major layout is efficient for storing the
data block into the memory. Instead, a block data layout of (s × d) is used
to store the data into memory, where s is the vector register size divided
by element size, or SIMD_WIDTH, and d is the dimension. Figure 2 illus-
trates the block data layout format used in our multi-threaded k-means im-
plementation. The combination of block data layout with our chosen data
access strategy has the following advantages:

• The loop traversal strategy is efficient as the n data points are streamed
into the SIMD register only once. Also the k cluster representatives are
streamed into the registers only once for the n different data points
within a n-k-d block. As a result, it reduces the required number of
repeated transfers of the cluster representatives to the registers.

• The block data layout minimizes memory bank conflicts by grouping
the contiguously used data together. Also the disturbance of temporal
data held within processors caches is minimized by using streaming
store instructions2.

• The SIMD based ArgMin computation does not require horizontal ad-
dition3 anymore. Thereby the overall computations become more
SIMD efficient.

4.2 Approximate Euclidean Distance Computation

In the k-means algorithm, the Euclidean distance metric is used for compar-
ison purposes only, rather than computing the actual distance. Therefore,
the distance vector does not need to be completely accurate. Considering
this, we have adopted an indirect approach to compute this distance using
a scalar product.

Let us consider, ~x1 and ~c1 represent a multi-dimensional data point and a
cluster representative respectively, and the dimension is d in both cases. Let
us also assume that {x11

, . . . , x1d
} and {c11

, . . . , c1d
} are the values of ~x1

and ~c1 across d dimensions. Now, the formulas for the Euclidean distance

2An store instructions that skips the first level of the cache hierarchy.
3The addition of all the data values within a vector register.

Paper C.2 4. Multi-threaded Vectorized K-means with Compressed Dataset 195

‖ ~x1 − ~c1 ‖ and scalar distance 〈~x1,~c1〉 [14] can be defined as:

‖ ~x1 − ~c1 ‖=

√√√√ d∑
i=1

(x1i
− c1i

)2, 〈~x1,~c1〉 =
d∑

i=1

x1i
· c1i

The Euclidean distance computation can be re-written as:

‖ ~x1 − ~c1 ‖2 =

d∑
i=1

(x1i
− c1i

)2

=

d∑
i=1

(x21i
+ c21i

− 2x1i
c1i

)

=

d∑
i=1

x1i
· x1i

+

d∑
i=1

c1i
· c1i

− 2

d∑
i=1

x1i
· c1i

= 〈~x1,~x1〉+ 〈~c1,~c1〉− 2〈~x1,~c1〉

In the labeling state of k-means algorithm, the Euclidean distance between
a data point ~x1 and all cluster representatives ~c1,. . .,~ck is computed. There-
fore, we can pre-compute 〈~c1,~c1〉, . . ., 〈~ck,~ck〉 before starting the labeling
state. As a result, the membership id (label) (l) of a data point ~xi can be
defined as:

li = ArgMin
1≤j≤k

‖ ~xi − ~cj ‖2

= ArgMin
1≤j≤k

〈~xi,~xi〉+ 〈~cj,~cj〉− 2〈~xi,~cj〉

= ArgMin
1≤j≤k

1

2
〈~cj,~cj〉− 〈~xi,~cj〉

since xi is identical for all j, we can skip 〈~xi,~xi〉 computation and divide
the operand of ArgMin by the positive constant two. Consequently this
approximation computation requires d multiplications and d additions or
subtractions and one array lookup as compared to original d multiplications
and 2d-1 additions or subtractions.

Paper C.2

x1
x2

x3
x4

c1
c2

c3
c4

d
1

d
2

d
3

d
4

u
1

u
2

u
3

u
4

m
1

m
2

m
3

m
4

∞

∞

∞

∞

x1
x2

x3
x4

c1
c2

c3
c4

d
1

d
2

d
3

d
4

m
1

m
2

m
3

m
4

x1
x2

x3
x4

c1
c2

c3
c4

d
1

d
2

d
3

d
4

m
1

m
2

m
3

m
4

x1
x2

x3
x4

c1
c2

c3
c4

d
1

d
2

d
3

d
4

m
1

m
2

m
3

m
4

u
1

u
2

u
3

u
4

u
1

u
2

u
3

u
4

u
1

u
2

u
3

u
4

m
1

m
2

m
3

m
4

m
1

m
2

m
3

m
4

m
1

m
2

m
3

m
4

P
re

-c
o

m
p

u
te

d

Sc
al

ar
 P

ro
d

. (
U

)
D

at
a

St
re

am
 (

X
)

C
lu

st
er

 S
tr

ea
m

(C

)
O

u
tp

u
t

C
lu

st
er

m
m

_s
tr

ea
m

_s
i3

2

Sy
st

em
 M

em
o

ry

m
m

_m
u

l_
ep

i3
2

m
m

_s
h

u
ff

le
_e

p
i3

2

m
m

_s
et

_e
p

i3
2

m
m

_m
in

_e
p

i3
2

m
m

_s
h

u
ff

le
_e

p
i3

2

m
m

_l
o

ad
_e

p
i3

2

m
m

_s
h

u
ff

le
_e

p
i3

2
m

m
_s

h
u

ff
le

_e
p

i3
2

m
m

_m
in

_e
p

i3
2

m
m

_m
in

_e
p

i3
2

m
m

_m
in

_e
p

i3
2

Fi
gu

re
3:

W
or

k
flo

w
of

in
-r

eg
is

te
r

Ar
gM

in
ca

ll
fo

r
4

da
ta

po
in

ts
of

d
di

m
en

si
on

s
w

it
h

4
ce

nt
ro

id
va

lu
es

us
in

g
SS

E-
SI

M
D

in
tr

in
si

cs
.

O
nc

e
th

e
ce

nt
ro

id
s

va
lu

es
(i

.e
.
c
1
,c

2
,c

3
,c

4
)

ar
e

lo
ad

ed
in

to
a

SI
M

D
re

gi
st

er
,

th
e

ce
nt

ro
id

s
ar

e
sh

uf
fle

d
ar

ou
nd

in
th

e
di

st
an

ce
co

m
pu

ta
ti

on
st

ep
.

Th
is

al
lo

w
s

to
co

m
pu

te
fo

ur
pa

rt
ia

ld
is

ta
nc

es
(i

.e
.
d
1 1
,d

2 1
,d

3 1
,d

4 1
)

be
tw

ee
n

da
ta

po
in

ts
an

d
ce

nt
ro

id
s

(c
1
,c

2
,c

3
,c

4
)

fo
r

ea
ch

of
th

e
lo

ad
ed

da
ta

po
in

ts
(e

.g
.
x
1
)

us
in

g
on

ly
a

si
ng

le
lo

ad
op

er
at

io
n

fo
r

th
e

fo
ur

ce
nt

ro
id

va
lu

es
.

Paper C.2 4. Multi-threaded Vectorized K-means with Compressed Dataset 197

4.3 In-register ArgMin Computation

As loading causes an entire cache line to be moved into the cache hierarchy,
any load operation looks more or less the same from a memory bandwidth
perspective irrespective of the size of the data operand. Moreover, many
small loads often consume more microarchitectural resources, which may
cause the processor to stall and reduce the MLP. Therefore, while perform-
ing ArgMin computation, we aim to minimize the required number of load
operations while maximizing the utilization of the data that are loaded into
the register. In our ArgMin computation scheme, as illustrated in Figure 3,
the number of load operations is reduced as the block data layout puts rel-
evant data close to each other. Additionally, we can reuse the loaded data in
several iterations of the ArgMin computation by shuffling the register con-
tents. For instance, once centroids values (i.e. c1, c2, c3, c4) are loaded into
a SIMD register, the values are shuffled around to compute the distances of
the 4-centroids from each data point (e.g. x1). As a consequence, repetitive
transfer of cluster representatives is avoided for each point xi, thus reducing
the memory bandwidth requirements.

4.4 Bus-bandwidth Conservation Through Vectorized Data Compression

We further attempt to reduce pressure on the memory subsystem by load-
ing and storing more data to/from the same DRAM page. With this aim,
we split the data stream into blocks of (s × d) integers, where each block
of data is compressed using a SIMD compression method. The process is
similar to algorithm 2, but has an additional step where each block of data
is decompressed in parallel (between lines 4 and 5).

The scope of the paper is limited to integer compression on integer inputs.
Centroids are approximated to their nearest integer so that integer com-
pression techniques can be applied. This is not mandatory in our proposal,
but not doing so reduces the compression ratio for large high-dimensional
cluster sets. This approximation is applied to all kernels in order to avoid
reporting any unfair benefits that it may cause.

For compressing a data block we use the V-PFORDelta coding scheme pro-
posed in [6]. V-PFORDelta is a delta coding-based compression technique
which uses vectorized binary packing over blocks of integers. This scheme
uses b bits to represent each integer value and stores exceptions that cannot
be represented by b bits on a per block basis. Then, successive values are
stored using b bits per integer using a fast bit packing functions. The factors
that determine the storage cost of a given block in binary packing are:

Paper C.2

• the number of bits (b) used to present the delta value.

• the block length (B = s × d)

• a fixed per-block overhead (κ)

The total storage cost for one block is bB + κ. We tune the bit width (b) of
delta to 16 to minimize the value of ((s × d) × b + c(w) × 32) where (s ×
d) is the length of block and c(w) is the number of exceptions. For further
details about the SIMD implementation of V-PFORDelta please refer to [6].

5 Experiments and Results
There are many optimizations available for k-means, so it is hard to choose
a baseline for comparison in our specific evaluation environment. In ad-
dition, replication of results if no source-codes are provided is a real chal-
lenge. To minimize the sources of error, we chose a simple algorithm [2]
and the available OpenMP implementation as baseline. This selection en-
sures that we can isolate the effects of SIMD-friendly data structures and
SIMD-compression from other optimizations [15].

Most of the related work optimizations are orthogonal to ours, and many
others can be suitable for compression. Note that the main goal of this pa-
per is "to improve on the behaviour of memory/latency bound applications
through compression techniques". We are not trying to compete for best
speedup, but to show the feasibility and what results can be expected from
SIMD-based compression. Table 1 shows the expected compatibility with
other optimizations available in the literature to achieve best performance.

Moreover, we are considering the following assumptions in our evaluation:

• Compression is done offline. In many big-data applications, specially
those with low insertion count, storing datasets in compressed formats
that can be directly accessed is the most promising solution.

• Centroids are approximated to their nearest integers. This is not an
obligatory part of our proposal. The approximation can be avoided by
one additional SIMD-conversion (int to float) on top of D (= SIMD-
width) uncompressed integers to continue with floating point opera-
tions. This will prevent compressing the cluster values with the selec-
ted integer compression technique though. Also note that accuracy is
not an issue, since iterative algorithms usually stop on a convergence

Paper C.2 5. Experiments and Results 199

Table 1: Compatibility analysis of stat-of-the-art proposals with our pro-
posed scheme

Paper Contributions Compatibility
SIMD SIMD Block-data-layout In-register Argmin

Proposal comp. compression + distance Approx.
loop-opt. comp.

[1] Improved seeding algorithm No Yes Yes Yes Yes
[2] Heterogeneous computation: labeling on

GPU, cluster update on CPU
Yes Yes Yes Yes Yes

[16] Use of KD-tree to filter out a candidate No Yes No No Yes
[12] Heterogeneous computation: centroid

labeling on KNC, cluster update on CPU
Yes Yes No No Yes

[17] Avoids distance computations using dis-
tance bounds and triangular inequality

No Yes No No Yes

[18] Use of MapReduce, iteration dependence
is reduced using probability sampling

No Yes Yes Yes Yes

[19] Approximation using binary-tree cluster
closure

No Yes No No Yes

[20] Encode high dimensional data points No Yes Yes Yes Yes

criteria, that is respected when using approximation to integers. The
overhead in iteration count is relatively small (< 4%).

5.1 Experimental Setup

We present the following seven variants of k-means implementations to
demonstrate the effectiveness of our proposed approach:

• Scalar: A simple implementation of k-means algorithm using C++.

• SSE_auto: Auto-vectorization of Scalar implementation (using -msse2
compiler flag to prevent AVX code generation).

• SSE_basic: Hand-tuned SSE-based vectorization of k-means algorithm
over data dimension.

• SSE_optimized: SSE-based vectorization of the proposed SIMD-optimized
k-means algorithm.

• SSE_compressed: SSE_optimized implementation integrated with V-
PFORDelta coding technique.

• AVX512_auto: Auto-vectorization of Scalar kernel using -xMIC-AVX512
flag.

• AVX512_compressed: Hand-tuned AVX512-based vectorization of the
optimized kernel integrated with V-PFORDelta.

Paper C.2

Table 2: Hardware Specifications of the Test Platforms

Processor Intel R© CoreTM i7-4700K Intel R© Xeon Phi 7250
Architecture Haswell Knights Landing
Clock Speed 0.8 – 3.5 GHz 1.4 Ghz
of Cores 4 cores / 8 threads 68 cores / 272 threads
L1 Cache 32 KB data + 32 KB inst, 8-way private
L2 Cache 256 KB, 8-way private 1 MB, 16-way per 2 cores
L3 Cache 8 MB, shared, 16-way associativity 16 GB, shared HBM-MCDRAM

In this experiment, we have used Intel R© CoreTM i7-4700K desktop pro-
cessing system. The system runs with Ubuntu 14.04.1 LTS 64-bit OS. In-
tel C++ compiler (version 14.0.1) with -O3 optimization flag is used to
generate the executables. Turbo Boost Technology is disabled in the BIOS
and the CPU frequency is set to a certain value while taking the measure-
ments. In addition, we have also tested our implementations in a Xeon
Phi 7250 processor with 68 cores running at 1.40 GHz. The system runs
SUSE Linux Enterprise Server 12 SP1 and the binaries are generated using
Intel C++ compiler (version 17.0.035) with -O3 optimization level and the
-xMIC-AVX512 flag to generate AVX512 code. We only use 64 cores, and
leave 4 cores to handle the OS (recommended by Intel). The hardware
specifications of our test platforms are presented in Table 2.

Knights Landing (KNL) offers a high number of cores (68 in our evaluation
platform) with up to four threads per core. The cores are based on Silver-
mont Atom out of order cores, tiled in pairs. Each core contains two Vector
Processing Units (VPUs), that work with vector registers up to 512-bit wide.
The VPUs are compatible with SSE, AVX and AVX512, but only one of the
VPUs will be used for SSE-AVX codes. If the user wants to get the full po-
tential of the VPUs the code needs to be recompiled for AVX512 (we recom-
piled SSE versions to run on KNL). In addition, each tile shares 1 MB of L2
memory, that are linked together using a 2D mesh interconnect (or NOC4).
This interconnect hooks the cores to two DDR4 memory controllers (384
GB with a bandwidth of 90 GB/sec) and eight stacks of high bandwidth
memory (HBM-MCDRAM, 16 GB with a bandwidth close to 400 GB/sec).
The HBM memory can work in different modes, as a scratchpad memory, as
an additional cache level or in hybrid mode (combination of the previous
two modes). Our system is configured to use the HBM as cache (L3). An-
other key feature of KNL as compared to KNC or other Many-core platforms

4Network on Chip.

Paper C.2 5. Experiments and Results 201

Stream 3Stream 0 Stream 1 Stream 2

Input Stream Output Stream

Barrier

System Memory

Cache

Figure 4: The basic workflow of parallel k-means using compressed data set
on multi-core systems.

(like GPGPUs) is that it can work as an stand-alone processor, being the first
bootable implementation of what was, up until now, a coprocessor handled
by a host CPU.

5.2 Multi and Many-core Implementations

We have used OpenMP to achieve thread-level parallelism for our k-means
algorithm. We implemented our code using a wrapper library, rather than
writing intrinsics directly on the code. This wrapper library is contained in
a header file that is imported by the k-means code, making the code more
readable and easy to modify/migrated between architectures. For example,
an integer SIMD addition (simd_add_i(x,y)) is defined in the wrapper lib-
rary as a macro that translates to _mm512_add_epi32(x,y) for AVX512 and
_mm_add_epi32(x,y) for SSE. The source code uses simd_add_i(x,y) for
SIMD integer additions, and the pre-processor translates the macros to the
appropriate target architecture. This implementation allows us to keep al-
most the same code for SSE and AVX512, except for instructions that merge
register types (e.g., cvtepi8_epi32). Performance and energy of intermediate
vector size implementations (i.e., AVX2 256-bit) are not shown to improve
legibility but can be extrapolated from SSE (128-bit) and AVX512 (512-bit).
The thread schedule is set as static (i.e. default) for the Haswell system, so
that the iterations are partitioned into chunks which are allocated to the
threads in a round-robin manner. The thread affinity is set as scatter to
make the best use of each core first. The work flow of our proposed method
is illustrated on Figure 4. However, the KNL system showed slightly better
performance with the dynamic thread scheduling than static (around 5%)
when working with high number of threads, even though we don’t have

Paper C.2

explicit synchronization between threads. Scatter thread affinity outper-
formed compact by a factor of 2x on both static and dynamic scheduling.
The scheduling analysis is not shown since we feel it is not relevant to the
publication, but it can be included upon request.

5.3 Datasets

Real-world Data

To understand the relative efficiency of this algorithm under practical cir-
cumstances, we use KDDCupBio04: a multidimensional biological dataset
which is used in several scientific research works [21, 22, 23] involving
clustering of high dimensional data. This dataset consists of 145751 multi-
dimensional (74 dimensions) data points. The data compression ratio of
this dataset is around 1.63. Note that, not all the ’clustering datasets’ in
these dataset repositories [24, 25] can be used directly in our experiments
as many of these datasets contain non-numeric/missing values for some
attributes or the size of the dataset is not large enough to provide any inter-
esting insight.

Synthetic Data

For some real-world, it is possible to achieve even greater compression ra-
tio than the ratio of KDDCupBio04. For instance, the compression ratio
of synthetically generated control charts dataset [26] is around 3.80. Un-
fortunately, the size of this dataset is too small (288 KB) for us to test
with. To overcome this limitation, we have generated a synthetic dataset
with greater compression reatio consisting of 164 dimensional 145728 data
points. These points were distributed evenly among 50 clusters as follows:
The 50 cluster centers were sampled from a uniform distribution over the
hypercube [1, 1]d. A Gaussian distribution was then generated around each
center, where each coordinate was generated independently from a univari-
ate Gaussian with a given standard deviation. The standard deviation varied
from 0.01 (very well-separated) up to 0.7 (virtually unclustered). The ini-
tial centers were chosen by taking a random sample of data points. The data
compression ratio of this dataset is 3.32 using V-PFORDelta coding. Note
that the contrasting nature of the chosen real-world and synthetic datasets
can provide us an important insight of the effectiveness of our proposed
optimization techniques against the dataset of different sizes, dimensions
and compression-ratios. The selected datasets can be seen as upper-lower
bounds. We can add a few more real-world datasets, but we feel it will only
dim the results.

Paper C.2 5. Experiments and Results 203

1000 1500 2000 2500 3000 3500
104

105

106

E
x
e
cu

ti
o
n
 t

im
e
 (
µ
s)

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1000 1500 2000 2500 3000 3500

Core frequency (MHz)

107

108
E
x
e
cu

ti
o
n
 t

im
e
 (
µ
s)

Synthetic dataset

(a) 1 thread

1000 1500 2000 2500 3000 3500
104

105

106

E
x
e
cu

ti
o
n
 t

im
e
 (
µ
s)

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1000 1500 2000 2500 3000 3500

Core frequency (MHz)

107

108

E
x
e
cu

ti
o
n
 t

im
e
 (
µ
s)

Synthetic dataset

(b) 4 threads

1000 1500 2000 2500 3000 3500
104

105

106

E
x
e
cu

ti
o
n
 t

im
e
 (
µ
s)

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1000 1500 2000 2500 3000 3500

Core frequency (MHz)

107

108

E
x
e
cu

ti
o
n
 t

im
e
 (
µ
s)

Synthetic dataset

(c) 8 threads

Figure 5: Execution time of the implementations of multi-threaded kernels
at different frequencies on HL (Haswell) system.

5.4 Performance Analysis

The performance analysis will be carried out in both the Haswell and the
KNL systems for the aforementioned k-means kernel implementation strategies
and features. Figure 5 and Figure 6 present the execution time and spee-
dup of the different strategies when varying the core frequency on Haswell
while Figure 7 shows the speedup for KNL. The speedup at a certain core
frequency is computed by considering the execution time of the single-
threaded kernel as baseline at the same core frequency. To gain further
insights into the key drivers of performance variations of different kernel
implementations, we also consider certain hardware performance counters
provided by PAPI [27]. The list of these counters including the counter-
values is presented in Tables 3 and 4.

Paper C.2

1 2 4 6 8
0

5

10

15

20

25

S
p
e
e
d
u
p

 1
.0

 1
.4 2
.7

 3
.3

 3
.5

 2
.0 3
.4 5

.1 6
.1

 6
.3

 3
.6 5

.7
 9

.7 1
1

.6
 1

1
.9

 3
.5 5

.5 7
.1 1

0
.5

 1
1

.4

 3
.3 4
.8
 8

.8 1
0

.4
 1

1
.1

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1 2 4 6 8

No of threads

0

5

10

15

20

S
p
e
e
d
u
p

 1
.0

 1
.3 2
.5 3
.5

 3
.6

 1
.6 3

.2 5
.0 6

.9
 7

.3

 3
.0 4

.4
 1

0
.0 1

3
.8

 1
4

.1

 2
.5 3
.5

 8
.8

 1
3

.0
 1

3
.7

 4
.1 5
.1

 9
.7
 1

2
.8

 1
3

.6

Synthetic dataset

(a) Speedup on HL (800 MHz)

1 2 4 6 8
0

5

10

15

20

25

S
p
e
e
d
u
p

 1
.0

 1
.4 2
.6

 3
.4

 4
.0

 2
.0 3

.7 5
.0

 5
.9 7
.3

 3
.2 5

.1 7
.1 1

0
.1

 1
1
.6

 3
.6 5

.4 6
.9 9

.8 1
1
.5

 3
.9 4
.9 6

.8 8
.4 9
.9

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1 2 4 6 8

No of threads

0

5

10

15

20

S
p
e
e
d
u
p

 1
.0

 1
.3 2
.5 3
.5

 4
.0

 1
.8 3
.0 5

.0 6
.9 7
.9

 2
.1 4

.4
 8

.6
 1

3
.7 1

7
.6

 2
.7 3
.8

 8
.3

 1
2
.2

 1
3
.2

 4
.1 5

.8
 9

.2 1
1
.9 1

5
.3

Synthetic dataset

(b) Speedup on HL (2500 MHz)

1 2 4 6 8
0

5

10

15

20

25

S
p
e
e
d
u
p

 1
.0

 1
.4 2
.6

 3
.4

 4
.1

 1
.9 3
.4 5
.0 6
.3 7
.4

 3
.2 5

.3 7
.1 1

0
.2

 1
2
.2

 3
.2 5

.3 6
.9 8

.9 1
0
.9

 3
.1 4
.6 6
.1 7
.1 8

.7

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1 2 4 6 8

No of threads

0

5

10

15

20

S
p
e
e
d
u
p

 1
.0

 1
.3 2
.5 3
.5 4
.5

 1
.8 2
.8 5

.0 6
.6 7

.9

 3
.0 4

.5
 7

.9 1
0
.8 1

5
.0

 2
.8 3
.7

 7
.8 1

0
.6 1

3
.2

 3
.4 4

.7
 8

.2 1
0
.0 1

2
.9

Synthetic dataset

(c) Speedup on HL (3500 MHz)

Figure 6: Speedup of the multi-threaded k-means kernel implementations
at different frequencies on HL (Haswell) system.

We can make several important observations from Figure 5. First, the per-
formance curve in Figure 5a shows that the core frequency has a linear
impact on the performance of different kernel implementations as the exe-
cution time decreases linearly with the increase of core frequency. For both
architectures, running more than one thread per core (SMT) has a negative
effects on performance.

It is also shown in Figure 5 and 7 that both SSE_auto and AVX512_auto ker-
nels provide better performance than the Scalar kernel, though the achieved
speedup (i.e. 1.4 for SSE and 8.2 for AVX512) is much lower than the
ideal speedup (i.e. 4/16). SSE_basic kernel clearly outperforms SSE_auto
kernel for both synthetic and real-world datasets. Having a closer look
at the counter values of these two kernel implementations, we can find

Paper C.2 5. Experiments and Results 205

Table 3: Average Cache and Memory Related Events for single threaded
kernel implementations on Haswell processor

Kmeans L1 Data L1 Data L1 Data Stalled cycles on Total Instruction
Kernel cache accesses cache misses cache write mem. subsystem cycles count

R S R S R R S R S R S
Scalar 209967449 288984692659 6307484 8890233722 57397 471240 459710883 363486528 99342163994 1324809657 1834921001955
SSE_auto 51479506 72141873865 6313758 8888548471 56752 2698435 925356343 259319085 73511519337 710537090 990970043470
SSE_basic 55679577 73879158008 6287243 8891312454 37542 1562250 779375650 136502855 39371898023 304937969 406358865890
SSE_optimized 13620296 17981569831 1636397 2240184825 80584 5825528 1528259338 104098777 28227451532 235781815 332783146983
SSE_compressed 13150228 11277606810 1635752 2240555095 70202 195166 283349789 87650731 24933051932 223216928 321490559724
R=Real dataset S=Synthetic dataset

out that the cache accesses for SSE_auto kernel is comparable with that
of SSE_basic kernel, but the instruction count is doubled for SSE_auto ker-
nel over SSE_basic kernel. Therefore, we can conclude that compiler auto-
vectorization adds some extra instructions in the code that cause a perform-
ance penalty when compared with manual vectorization.

Our second observation is that SSE_optimized kernel can achieve a speedup
of up to 3.6 for single threaded implementation at a peak core frequency
(i.e. 3500) on Haswell, which is about 30% better performance over the
SSE_basic kernel and 6.8 for the KNL. Since in SSE_optimized strategy, the
total number of memory/cache accesses is further reduced due to in-register
ArgMin computations and the use of blocked data layout format, the overall
performance improvement was expected. This reduction in the number of
required cache/memory accesses is apparent in Table 3. The superlinear
scaling on the KNL comes from a substancial reduction on the L1D cache
misses (Table 4). Since L1D caches from both systems are very similar we
can only guess that prefetching is working much better with the new data
layout on KNL, but we cannot validate this assumption since we don’t have
access to that specific performance counter yet. We see the same trend when

1 2 4 6 8
No of threads

100

101

102

103

S
p
e
e
d
u
p

 1
.0

 3
.5

 6
.8

 4
.7

 8
.3

 2
2

.0

 2
.0

 7
.2

 1
3

.7
 9

.5
 2

1
.8

 4
4

.1

 3
.8

 1
3

.6
 2

5
.8

 1
7

.8
 4

3
.9

 1
1

8
.7

 5
.7

 2
0

.5
 3

8
.6

 2
6

.7
 6

0
.3

 1
5

4
.6

 7
.6

 2
7

.3
 5

1
.1

 3
5

.4
 7

9
.9

 2
8

2
.1

scalar

sse_basic

sse_opt

sse_cmp

avx512_auto

avx512_cmp

16 32 64 128 256
No of threads

102

103

S
p
e
e
d
u
p

 1
5

.1
 5

4
.3

 9
9

.6
 6

9
.8

 1
5

6
.9

 4
7

7
.8

 2
9

.8
 1

0
5

.9
 1

8
9

.1
 1

3
4

.7
 2

8
3

.5
 7

3
0

.8

 5
8

.4
 1

9
8

.2
 3

4
0

.9
 2

5
2

.3
 4

9
1

.0 6
8

2
.0

 6
6

.9
 2

0
4

.8
 3

5
3

.1
 3

0
3

.7
 5

5
0

.4
 6

8
2

.0

 6
6

.0
 1

9
4

.3 2
9

7
.4

 3
0

2
.2 4

3
4

.1
 5

2
5

.8

scalar

sse_basic

sse_opt

sse_cmp

avx512_auto

avx512_cmp

Figure 7: Speedup of the multi-threaded k-means kernel implementations
on KNL system (log scale).

Paper C.2

Table 4: Cache performance counters and instruction count for single
threaded kernel on the KNL processor

Kmeans L1 Data L1 Data Instruction
kernel cache accesses cache misses count

Scalar 292535065167 318225301 1799359093827
SSE_basic 75702075624 439620351 513924495386
SSE_opt 18016121321 84379111 261087333119
SSE_comp 11347608934 85922280 258738990685
AVX512_auto 19327764016 3154904399 129678790549
AVX512_Comp 803823687 61285372 45527089021

comparing AVX512_auto and AVX512_Comp, with a substantial reduction
on both cache accesses and misses.

Finally, the SSE_comp kernel outperforms all implementations on Haswell,
specially when the synthetic dataset is used. As we have already discussed,
if the datapoints in the dataset exhibit good correlation among them, the
compressed dataset can be used to further reduce the number of memory
access. In Table 3, we can observe that the number of memory accesses
for synthetic dataset is reduced significantly, which is not the case for the
real-world dataset. Therefore, SSE_comp does not get much performance
benefit for the read-world dataset as the overhead of the decompressing
process is not nullified by the reduced number of memory accesses. It is
important to note that the performance is increased only at the higher core
frequencies, which is reasonable, as the decompression process requires to
perform some additional computations. That, and the incredibly low cache
miss-rate on the optimized code justifies the "poor" performance of the com-
pressed versions on KNL, since it operates at a low frequency (1.4 Ghz).
Still, AVX512_Comp achieves a 22x speedup over the scalar version. There-
fore, we can conclude that the level of speedup for the SIMD_comp kernel
is sensitive to the compression ratio and core frequency, but has a worst-
case performance similar to that of the uncompressed implementation on
regular CPUs. It should be worth considering moving the compression to
hardware for low frequency architectures.

5.5 Energy Efficiency Analysis

In this section we discuss the implications of the different approaches on
the energy efficiency of the analyzed systems. Both Intel Core i7 and Xeon
Phi processors have internal counters to estimate the energy consumed by

Paper C.2 5. Experiments and Results 207

1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

C
o
re

 e
n
e
rg

y
 (
m
j)

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1000 1500 2000 2500 3000 3500

Core frequency (MHz)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

C
o
re

 e
n
e
rg

y
 (
m
j)

Synthetic dataset

(a) 1 thread

1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

C
o
re

 e
n
e
rg

y
 (
m
j)

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1000 1500 2000 2500 3000 3500

Core frequency (MHz)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

C
o
re

 e
n
e
rg

y
 (
m
j)

Synthetic dataset

(b) 4 threads

1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

C
o
re

 e
n
e
rg

y
 (
m
j)

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1000 1500 2000 2500 3000 3500

Core frequency (MHz)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

C
o
re

 e
n
e
rg

y
 (
m
j)

Synthetic dataset

(c) 8 threads

Figure 8: Core energy of the multi-threaded k-means implementations at
different frequencies on HL (Haswell) system.

different zones of the processor (also known as power planes). We will
provide energy measurements for the whole package (including core power
and DRAM controller traffic). These counters can be accessed either by the
RAPL interface (root-level) or the powercap interface (user-level).

Figure 8 shows the total energy used by the Haswell cores as we vary core
frequency and number of threads. Total energy remains similar as we in-
crease the number of cores, meaning that we are not wasting power when
adding additional cores in idle time or unprofitable computations. It is also
important to note that energy used by the compressed SSE version is very
similar to that used by the optimized SSE version. This means that the
extra computations performed when compressing/decompressing the data

Paper C.2

1 2 4 6 8
0

20

40

60

80

100

R
e
la

ti
v
e
 E

D
P

 1
.0

 2
.2 7
.4 1
2
.3

 1
5
.5

 3
.5 9

.6 2
2
.8 3

6
.1

 4
2
.8

 4
.4 1

0
.6 2

4
.0 4

1
.5

 4
7
.7

 3
.2 8
.2 1
3
.8 3

2
.5

 3
9
.2

 2
.4 7
.0 2

0
.2 3
2
.1

 4
0
.0

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1 2 4 6 8

No of threads

0
10
20
30
40
50
60
70
80
90

R
e
la

ti
v
e
 E

D
P

 1
.0

 1
.9 6
.6

 1
9
.5 3

1
.4

 2
.0 5
.9

 2
0
.9

 4
6
.6

 4
9
.5

 2
.3 5
.5

 2
7
.9

 6
2
.4

 6
7
.0

 1
.3

 2
.7

 2
1
.7

 5
1
.5

 5
5
.9

 2
.3 5
.3

 2
3
.7

 4
9
.2 5
7
.1

Synthetic dataset

(a) 800 MHz

1 2 4 6 8
0

20

40

60

80

100

R
e
la

ti
v
e
 E

D
P

 1
.0

 2
.0 6
.6 1

3
.9

 1
6

.7

 1
.9 6
.6 1
1

.6
 1

9
.4

 2
8

.5

 2
.5

 6
.0 1

2
.1 2

4
.6 3
4

.1

 2
.5 6
.3 1
0

.2 2
1

.7
 3

0
.3

 2
.3

 4
.6 9
.1 1
3

.4
 2

0
.6

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1 2 4 6 8

No of threads

0
10
20
30
40
50
60
70
80
90

R
e
la

ti
v
e
 E

D
P

 1
.0

 1
.9 6
.3 1

4
.1

 1
6

.9

 1
.4

 3
.9 1

0
.7 2

5
.7

 3
0

.0

 1
.5 4
.5
 1

6
.5

 4
4

.8 5
7

.3

 1
.6

 3
.0 1

3
.6

 3
2

.0
 3

5
.4

 2
.1

 4
.6

 1
7

.0
 3

6
.3 5

1
.0

Synthetic dataset

(b) 2500 MHz

1 2 4 6 8
0

20

40

60

80

100

R
e
la

ti
v
e
 E

D
P

 1
.0

 2
.1 6
.8 1

3
.3

 1
7

.4

 2
.1 6
.6 1
2

.4 2
3

.3
 3

1
.0

 3
.2 7
.3 1

4
.8 3

1
.0 4

5
.5

 2
.6 7
.4 1
2

.3 2
5

.6
 3

2
.7

 1
.9

 4
.6 9
.4 1
3

.2
 2

0
.2

Real-world dataset

Scalar

SSE_auto

SSE_basic

SSE_opt

SSE_comp

1 2 4 6 8

No of threads

0
10
20
30
40
50
60
70
80
90

R
e
la

ti
v
e
 E

D
P

 1
.0

 1
.9 6
.5 1

4
.9

 1
9

.2

 1
.7

 3
.9 1

2
.2 2

7
.3

 3
3

.4

 2
.5 6
.0

 1
9

.1 3
5

.2
 6

0
.8

 1
.7

 3
.4
 1

5
.4

 3
3

.6 4
3

.2

 2
.3

 4
.6

 1
8

.8
 3

7
.6 5

3
.1

Synthetic dataset

(c) 3500 MHz

Figure 9: Relative EDP of the multi-threaded k-means implementations at
different frequencies on HL (Haswell) system.

will burn equal (or less, for high frequencies) energy than the uncompressed
version, while performing much better. As for the overall energy reduction,
SSE shows improvements in the order of 3.7x (14.9x) for the real-world
dataset and 4.2x (16.9x) for the synthetic dataset when running on a single
(four) thread(s).

When looking at EDP (Figure 9 and 10) we can clearly see the benefits of
our proposed implementations. Both the optimized and the compressed
SSE (AVX512) versions considerably outperform the scalar codes. SSE-
compressed achieves an EDP improvement factor of 10x (29x) when run-
ning the real world (synthetic) dataset on four threads at the lowest fre-
quency we can test. When running at 3.5Ghz, the EDP benefits peak when

Paper C.2 6. Conclusions and Future Work 209

1 2 4 6 8
No of threads

100

101

102

103

104

105

106

107

R
e
la

ti
v
e
 c

o
re

 e
n
e
rg

y
 e

ff
ic

ie
n
cy

 (
E
D

P
)

 1
.0

 1
2

.1
 4

6
.3

 2
2

.2 6
8

.4
 4

9
0

.0

 4
.0

 5
1

.5 1
8

6
.1

 8
9

.0
 4

6
9

.9 1
9

1
7

.5

 1
4

.4
 1

8
2

.8 6
6

0
.3

 3
1

4
.7
 1

7
5

2
.1 9

4
6

1
.3

 3
1

.4
 4

0
3

.4 1
4

4
3

.8
 6

8
9

.1 3
4

5
4

.5 1
7

5
9

7
.9

 5
5

.5
 6

9
7

.6 2
4

5
4

.6
 1

1
8

8
.4 5

9
4

4
.0 4

0
7

4
7

.1

scalar

sse_basic

sse_opt

sse_cmp

avx512_auto

avx512_cmp

16 32 64 128 256
No of threads

100

101

102

103

104

105

106

107

R
e
la

ti
v
e
 c

o
re

 e
n
e
rg

y
 e

ff
ic

ie
n
cy

 (
E
D

P
)

 2
0

5
.9

 2
5

0
8

.6
 8

5
2

0
.4

 4
2

4
9

.0 2
0

6
8

7
.6

 1
1

5
6

2
9

.7

 6
9

3
.7

 8
0

2
2

.3
 2

6
0

1
1

.8
 1

3
4

2
8

.4
 5

6
9

1
0

.6
 2

5
8

8
6

8
.3

 2
0

6
7

.2
 2

0
8

3
8

.5
 6

4
2

6
5

.3
 3

6
1

0
8

.2
 1

2
9

7
4

5
.2

 2
9

2
8

4
7

.9

 2
5

1
7

.1
 2

1
1

2
8

.4
 6

3
1

5
3

.2
 4

7
1

9
4

.5
 1

5
2

2
6

5
.4

 2
5

4
5

3
0

.6

 2
3

9
8

.2 1
8

6
1

2
.9

 4
4

4
2

8
.1

 4
5

6
1

0
.6

 9
5

6
7

9
.7

 1
4

7
5

3
7

.4

scalar

sse_basic

sse_opt

sse_cmp

avx512_auto

avx512_cmp

Figure 10: EDP improvements of the multi-threaded k-means kernel imple-
mentations on KNL system (log scale).

running on four threads with 14x and 24x EDP improvements over the
scalar version running on four threads for the real-world and synthetic data-
sets (respectively). On KNL, the AVX512_comp EDP improvements reach
490x on a single thread, with a peak of 292848x better EDP when running
on 64 threads over the scalar version running on a single thread. This super-
linear scaling reveals a high power dissipation of the idle cores of the KNL
platform as the governor of the KNL system is set to performance, which
forces the CPU to use highest possible clock frequency. Since we do not
have root access privilege, we could not change the CPU governor or bind
the system processes onto a single core so as to prevent the OS scheduler
from keeping the cores busy. Nevertheless, this would be the common case
for most end users. Finally, it is also worth mentioning that the compressed
codes outperform the optimized codes by a factor of 1.47x to 1.72x for four
threads and real-world/synthetic datasets (respectively) when running at
high frequencies (Haswell), but perform similarly at low frequencies (worst
for KNL). This is consequent with the performance of the compressed codes
at high frequencies.

6 Conclusions and Future Work
Grouping a set of elements that have similar properties to each other than
to other elements in a different cluster is a problem present in many fields
of applications. This technique can be applied to both integer and floating-
point application domains. Pixel coordinates on medical imaging, DNA se-
quence analysis (Guanine Cytosine Adenine Thymine), multivariate data
surveys or IDs in social networks are some examples of the integer domain.
In this paper, we present a modified integer k-means algorithm that achieves
both thread-level and data-level parallelism (vectorization).

Paper C.2

We use a new SIMD-friendly data layout that improves data locality. In ad-
dition, we also perform an in-register implementation of key functions to
minimize data transfers from/to the processor register bank. To further re-
duce the pressure on the memory subsystem, we improve on the optimized
SIMD version to support compressed datasets. Software compression trades
computation cycles (+) with memory bandwidth requirements (-). SIMD
can compute more data with less instructions, and, if used wisely, become
an opportunity to improve on the application data transfers by compress-
ing/decompressing the data.

We have shown that integration of SIMD-based compression is feasible, as
long as we can do it in a reasonable time. Results show improvements on
performance and core energy consumption of a state-of-the-art k-means im-
plementation when running on a single thread by 4.5x and 8.7x respectively.
EDP improvements range between 15x to 57x, depending on the input set,
for an i7 Haswell CPU. On the Xeon Phi KNL architecture results are even
better, with ∼22x improvements on both performance and energy and EDP
improvements of 490x for a single thread. Compression will become of crit-
ical importance as the use of wide vectors turns CPU bound applications into
memory bound, leaving more idle time to compress-decompress (note: Intel
512-bits, ARM-SVE 2048-bits). However, there may be cases where better
compression algorithms or hardware support becomes necessary, specially
on systems that run below 2GHz, and we are working to solve that issue.

Improving the performance of clustering algorithms improves time to solu-
tion, that can be critical in market research and other close to real-time
scenarios. In addition, it allows to compute bigger datasets in a "reasonable"
time. For example, image processing of medical images for personalized
medicine can highly benefit from this, increasing resolution of the images
or resonances while producing the output in a similar time frame. On the
other hand, improving the energy efficiency translates into a reduction on
operation and running costs, a reduction on cooling needs and that usually
translates into a reduction on the size of the machinery that computes the
algorithms. This can mean a huge improvement on personalized medicine,
making PET scans, antibiotic resistance or blood tests more accessible to
small clinics.

In future, we would like to extend our study on evaluating the effect of us-
ing a look-up table for the approximate computation (precomputed 〈~ci,~ci〉
values) in the labeling state. Our initial study shows that, the use of precom-
puted values using look-up table can lead to more than 30% performance
improvement for the single threaded SSE_opt kernel implementation. It is

Paper C.2 REFERENCES 211

also a part of our future work to use compression in other algorithms. In fact
we are currently working with compression on B-Trees, in addition to previ-
ous work on industrial time series compute kernels. Furthermore, widening
the coverage to floating point is a necessary future step. Changing the com-
pression algorithm for one with floating-point support is straight-forward.
The feasibility on that domain will depend on the computational require-
ments of the compression algorithm and the compression ratios achieved.

References
[1] David Arthur and Sergei Vassilvitskii. ‘K-means++: The Advantages

of Careful Seeding’. In: Proceedings of the Annual ACM-SIAM Sym-
posium on Discrete Algorithms. 2007, pp. 1027–1035. ISBN: 978-0-
898716-24-5.

[2] Mario Zechner and Michael Granitzer. ‘K-Means on the Graphics
Processor: Design And Experimental Analysis’. In: International Journal
on Advances in Systems and Measurements 2.3 (2009), pp. 224–235.
ISSN: 1942-261x.

[3] Nigel Stephens. Technology Update: The Scalable Vector Extension
(SVE) for the ARMv8-A architecture. 2016. URL: https://community.
arm.com/groups/processors/blog/2016/08/22/technology-

update- the- scalable- vector- extension- sve- for- the-

armv8-a-architecture.

[4] Daniel Lemire, Leonid Boytsov and Nathan Kurz. ‘SIMD Compres-
sion and the Intersection of Sorted Integers’. In: Software: Practice
and Experience (Apr. 2015).

[5] Sparsh Mittal and Jeffrey Vetter. ‘A Survey Of Architectural Ap-
proaches for Data Compression in Cache and Main Memory Sys-
tems’. In: IEEE Transactions on Parallel and Distributed Systems 99.1
(2015), pp. 1–14.

[6] Abdullah Al Hasib, Juan M. Cebrián and Lasse Natvig. ‘V-PFORDelta:
Data Compression for Energy Efficient Computation of Time Series’.
In: Proceedings of the International Conference on High Performance
Computing. Dec. 2015, pp. 416–425.

[7] S. Lloyd. ‘Least Squares Quantization in PCM’. In: IEEE Transaction
Information Theory 28.2 (Sept. 2006), pp. 129–137. ISSN: 0018-
9448.

Paper C.2

[8] Sherri Burks, Greg Harrell and Jin Wang. ‘On Initial Effects of the
K-means Clustering’. In: Proceedings of the International Conference
on Scientific Computing. Dec. 2015, pp. 200–205.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy
W. Sheaffer and Kevin Skadron. ‘A Performance Study of General-
purpose Applications on Graphics Processors Using CUDA’. In: Journal
of Parallel and Distributed Computing 68.10 (Oct. 2008), pp. 1370–
1380. ISSN: 0743-7315.

[10] J. Mathew and R. Vijayakumar. ‘Enhancement of Parallel K-means
Algorithm’. In: Proceedings of the International Conference on Innov-
ations in Information, Embedded and Communication Systems. Mar.
2015, pp. 1–6.

[11] Ali Hadian and Saeed Shahrivari. ‘High Performance Parallel K-means
Clustering for Disk-resident Datasets on Multi-core CPUs’. In: The
Journal of Supercomputing 69.2 (2014), pp. 845–863.

[12] Fuhui Wu, Qingbo Wu, Yusong Tan, Lifeng Wei, Lisong Shao and
Long Gao. ‘A Vectorized K-means Algorithm for Intel Many Integ-
rated Core Architecture’. In: International Symposium on Advanced
Parallel Processing Technologies. Aug. 2013, pp. 277–294. ISBN: 978-
3-642-45292-5.

[13] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan and G. Zhang. ‘The Design of OpenMP
Tasks’. In: IEEE Transactions on Parallel and Distributed Systems 20.3
(Mar. 2009), pp. 404–418.

[14] Hamid Ravaee. ‘Finding Protein Complexes via Fuzzy Learning Vec-
tor Quantization Algorithm’. In: Protein-Protein Interactions - Com-
putational and Experimental Tools. InTech, 2012, pp. 273–284.

[15] Northwestern University, USA. Parallel K-means Data Clustering. URL:
http://www.ece.northwestern.edu/~wkliao/Kmeans/index.

html.

[16] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine
D. Piatko, Ruth Silverman and Angela Y. Wu. ‘An Efficient K-means
Clustering Algorithm: Analysis and Implementation’. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 24.7 (July 2002),
pp. 881–892. ISSN: 0162-8828.

[17] Greg Hamerly. ‘Making K-means Even Faster’. In: Proceedings of the
International Conference on Data Mining. Apr. 2010, pp. 130–140.

Paper C.2 REFERENCES 213

[18] Xiaoli Cui, Pingfei Zhu, Xin Yang, Keqiu Li and Changqing Ji. ‘Op-
timized Big Data K-means Clustering Using MapReduce’. In: Journal
of Supercomputing 70.3 (Dec. 2014), pp. 1249–1259. ISSN: 0920-
8542.

[19] Gang Zeng. ‘Fast Approximate K-means via Cluster Closures’. In:
Proceedings of the 2012 IEEE Conference on Computer Vision and Pat-
tern Recognition. CVPR’12. Washington, DC, USA, 2012, pp. 3037–
3044. ISBN: 978-1-4673-1226-4.

[20] J. Wang, J. Wang, J. Song, X. S. Xu, H. T. Shen and S. Li. ‘Optimized
Cartesian K-Means’. In: IEEE Transactions on Knowledge and Data
Engineering 27.1 (Jan. 2015), pp. 180–192. ISSN: 1041-4347.

[21] Lizhong Xiao, Zhiqing Shao and Gang Liu. ‘K-means Algorithm Based
on Particle Swarm Optimization Algorithm for Anomaly Intrusion
Detection’. In: Proceedings of the World Congress on Intelligent Con-
trol and Automation. Vol. 2. June 2006, pp. 5854–5858.

[22] R. Mall, V. Jumutc, R. Langone and J. A. K. Suykens. ‘Represent-
ative Subsets for Big Data Learning Using K-NN Graphs’. In: IEEE
International Conference on Big Data. Oct. 2014, pp. 37–42.

[23] Raghvendra Mall. ‘Sparcity in Large Scale Kernel Models’. PhD thesis.
Leuven Arenberg Doctoral School, 2015.

[24] University of Eastern Finland. Clustering Datasets. URL: https://
cs.joensuu.fi/sipu/datasets/.

[25] University of California, Irvine. Machine Learning Repository. URL:
https://archive.ics.uci.edu/ml/datasets.html.

[26] University of California, Irvine. Synthetic Control Chart Dataset. URL:
http://archive.ics.uci.edu/ml/machine-learning-databases/

synthetic_control-mld/synthetic_control.data.html.

[27] Performance Application Programming Interface. URL: http://icl.
cs.utk.edu/papi/index.html.

	94879_Innmat_01_1_PhDCover
	94879_phd_hasib_b5

