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Abstract

Two-dimensional hybrid superconductor-semiconductor structures provide a promising
platform for realising networks of Majorana fermions for fault-tolerant quantum comput-
ing, and, as such, are attracting a lot of attention. Recently, two-dimensional superconductor-
normal material-superconductor (SNS) junctions created in such hybrid systems, exhib-
ited dramatic asymmetries in their Fraunhofer-like patterns of the critical current as a
function of applied magnetic field. It was proposed that, apart from spin-orbit interac-
tion and Zeeman effects, disorder inside the junction can play an important role in the
appearance of these asymmetries.

This thesis investigates the role of disorder in two-dimensional SNS-junctions by de-
veloping a toy model in a semiclassical picture. This model assumes two distinct paths
across the junction, connected by beamsplitters at the normal material-superconductor
(NS) interfaces, enclosing a magnetic flux. By describing these paths as ballistic, one-
dimensional nanowires, and using a scattering matrix approach to describe the beam-
splitters, we develop a method for calculating the transmission and reflection coefficients
of the junction as a whole. This allows us to control the coupling between the nanowires
and the NS-interfaces, as well as to introduce an asymmetric probability injection into
the two arms and to incorporate a difference in the two path lengths.

The supercurrent through the junction is found from the energy of the Andreev bound
states, which allows us to investigate the critical current as a function of the magnetic
flux penetrating the surface enclosed by the two paths. We find that, in the absence of
spin-dependent effects such as spin-orbit interaction and the Zeeman effect, none of the
combinations of asymmetric probability injection, different path lengths, modifications
of the chemical potential or NS coupling strength produces asymmetries in the critical
current, such as observed in the experiment. We thus conclude that either our toy model
is not sufficiently complex, e.g., one would need more than two interfering trajectories, or
that disorder alone is not sufficient to produce asymmetric patterns of critical currents.
Further research is required to in order to to determine which conclusion is correct.
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Sammendrag

Todimensjonale hybridstrukturer av superledere - halvledere er lovende plattformer for
å skape majoranafermion-nettverk, som er en mulig byggestein for kvantedatamaskiner.
Nylig har man oppdaget asymmetriske Fraunhofermøsntre i den kritiske strømmen som
en funksjon av magnetisk felt i todimensjonale superledere - normalt materiale - su-
perleder (SNS) koblinger, av nettopp slike hybridstrukturer. Det har blitt foresl̊att at
uorden, i tillegg til spinn-bane-kobling og Zeemaneffekter, kan spille en avgjørende rolle
i mekanismen bak disse asymmetriene. Denne masteroppgaven fokuserer p̊a å utforske
uorden i SNS-koblinger ved å bygge opp en forenklet modell for uordnede, todimen-
sjonale SNS-koblinger i en semiklassisk tilnærming. Modellen best̊ar av to mulige baner
over koblingen, koblet sammen med str̊alespredere p̊a normalt material - superleder (NS)
overflaten. P̊a denne m̊aten kan man ha en innesluttet magnetfluks og en Aharanov-
Bohm-effekt. Ved å beskrive banene som ballistiske, endimensjonale nanotr̊ader kan vi
finne transmisjon- og refleksjonskoeffisientene i koblingen. Vi tar i bruk en sprednings-
matrisemetode for str̊alesprederne, noe som tillater oss å kontrollere koblingen mellom
nanotr̊adene og NS-overflaten, samt mulige asymmetriske sannsynligheter for valg av
bane. Asymmetriske banelengder er ogs̊a inkludert. Superstrømmen gjennom koblingen
blir funnet via Andreev-bundende tilstander, noe som tillater oss å utforske den kritiske
strømmen som en funksjon av magnetfluks. Vi finner at, i fraværet av spinneffekter
som spinn-bane-kobling og Zeemaneffekter, ingen mulige kombinasjoner av kobling mel-
lom NS-overflatene og banene, asymmetrisk sannsynlighet, asymmetrisk banelengde eller
endringer i det kjemiske potensialet klarer å gjenskape de nevnte asymmetriene i den
kritiske strømmen.Vi m̊a derfor konkludere med at den forenklede modellen v̊ar enten
ikke er kompleks nok, ved at to baner ikke er nok, eller at uorden alene ikke er nok til
å skape asymmetriske Fraunhofermønstre i den kritiske strømmen.Et endelig svar krever
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1 — Introduction

Technological development and growing improvement of crystal growth methods over the
last few decades have allowed researchers to investigate tailor-made quantum structures.
This has led to an intense research activity into the field of spintronics, or spin electronics.
The central theme of this field is the manipulation of spin degrees of freedom; to under-
stand the interaction between the spin of a particle and its environment and how this can
be applied to create useful devices. The most important areas of study are spin transport
in electronic systems, spin dynamics and spin relaxation in different environments [1].

Among the most significant spin effects is the spin-orbit interaction (SOI), also known
as spin-orbit coupling. SOI is a relativistic effect where the spin of the electron couples to
the orbital movement in the presence of an electric field. In crystals lacking an inversion
center, SOI has the effect of spin splitting the electronic energy bands, even without a
magnetic field, thus removing the spin degeneracy in momentum space [2]. A Lorentz
transformation of an electric field E, arising from e.g. a confinement potential (caused by
inversion asymmetry) or the electrostatic gate potential, to the rest frame of a particle
moving through said field, yields a term which couples E× p̂ to the spin of the particle,
i.e. an effective magnetic field. p̂ is the quantum mechanical momentum operator. The
importance of this effective field lies in the possibility to manipulate and control the
spin of an electron using electric fields rather than actual magnetic fields [3, 4, 5]. A
conceptually simple example of of such control is the fact that the electric field can be
used as a control knob for the spin precession through materials. The effective magnetic
field will make the spin of the electron precess around it. Thus, by controlling the electric
field with e.g. a gate voltage, one can alter the angular frequency of the Larmor precession
of the spin and therefore the angle through which it precesses while it moves through the
material. This has been demonstrated in for example InGaAs/InAlAs heterostructures [6]
and HgTe quantum wells [7]. The control over spin polarisation is extremely important
for spintronic devices, like those based on spin currents and information storage with
spins. Figure 1.1 shows some areas of study where this is realised by the means of the
SOI. Electric control of spin states is an enticing alternative to magnetic control based
on ferromagnetic elements, as electric control is superior to magnetic control because
of more accurate scalability, lower power consumption and the capability of locale spin
manipulation [8]. For example, electronic separation of spin states has been demonstrated
in quantum point contacts [9]. Methods like this are also a demonstrated way to create
spin-filters [10].

One exciting example of a proposed spintronic application that relies on the abil-
ity to separate and control the spin states of electrons electrically, is quantum bits, or
qubits. Qubits are two-level quantum systems intended for use in quantum information
processing, and they are the quantum analogue to the classical bits, representing units
of quantum information. The great advantage qubits have over conventional bits is that
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CHAPTER 1. INTRODUCTION

Figure 1.1: This figure shows various sub-fields of spin-orbitronics, where the SOI is
responsible for electrical control over spin and magnetisation. Adapted from [8].

they can exist in superpositions, they can be both ”0” and ”1” at the same time, as well
as entangled with each other. The Hilbert space of a set of N qubits will have dimensions
2N , which means that the number of classical bits required to represent the information
stored in N qubits is proportional to (2N − 1) [11]. This is a staggering gain in informa-
tion storage capabilities compared to classical bits. One proposed qubit implementation
is an electron confined in a quantum well, where spin up and down are the two levels.
It is a so-called spin qubit, where electrical control is preferred over magnetic control.
SOI provides such a control method, and such ”spin-orbit” qubits have been realised in
quantum dots [12] and in quantum wires [13].

An inherent problem with qubits is decoherence. Quantum systems become decoher-
ent when interacting with their surroundings, by randomisation of the phase of the system.
The implementation of qubits is a challenge from this perspective, since they require both
good interaction with their surroundings for reliable quantum control; as well as isolation
to ensure suffucient coherence times [14]. One proposed way for fault-tolerant quantum
computing is by encoding the qubits into Majorana fermions (MF) [15], fermions which
are their own antiparticles. These fermions can then be used to manipulate quantum
information in topologically protected procedures [16]. MF’s can theoretically appear
in a wide variety of solid state materials, such as p-wave superconductors [17]. Let us
quickly introduce superconductivity and how MF’s appear in superconductors.

Superconductivity is an effect discovered at the beginning of the 20th century and
is mainly characterised by complete zero-resistivity conduction (the so-called ”supercur-
rent”) and the expulsion of magnetic fields. At a critical temperature, a phase transition
takes place, from a normal conducting phase to a superconducting one. The phase tran-
sition normally takes place in the range between 0 and 40 kelvin (K) [18], yet critical
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CHAPTER 1. INTRODUCTION

temperatures up to 203K have been experimentally proven in exotic compounds [19].
Supercurrents can prevail up until either too strong of a current is passed through the
material or a too strong external magnetic field is applied, which are called the criti-
cal current and the critical magnetic field, respectively. Both of these events suppress
the superconducting phase state and cause the transition to a normal state of matter.
Single-particle excitations in a superconductor are Bogoliubov quasiparticles, or excita-
tions, coherent superpositions of electrons and holes, mirroring the particle-antiparticle
representation of particle physics. Electrons (holes) are filled (empty) states with energy
E above (below) the chemical potential µ with negative (positive) charge. Energy is con-
ventionally measured from µ when discussing quasiparticles, giving E = 0 at µ. If there
is an odd number of states, particle-hole symmetry ensures that one of these lies at zero
energy (at the Fermi level) [8], a neutrally charged eigenstate. This state is called a MF,
since it is its own antiparticle. The creation γ̂†(E) and annihilation γ̂(E) Bogoliubov
operators for excitations are related through

γ̂(E) = γ̂†(−E), (1.1)

which at zero energy means that the electron (particle) and hole (anti-particle) coincide;
and therefore it is a Majorana fermion [20].

Such MF zero modes (E = 0) are strictly forbidden to take place in conventional
s-wave superconductors, but can occur in rare p-wave superconductors. However, when
s-wave superconductivity is induced by the proximity effect onto topological insulators
with strong SOI, MF’s can appear. They will be located in Abrikosov vortices and at
edges of the topological insulator [21]. This type of vortex serves as a topological defect,
which, when hosting a MF, follows non-Abelian statistics. The underlying physical in-
gredient allowing for the theoretical existence of MF’s is the strong SOI, which gives rise
to an odd number of states [17]. Thus topological superconductors is a promising way of
creating MF’s [22]. As already mentioned, the importance of MF’s in condensed matter
physics is most appreciated when trying to minimise the errors that can occur in quantum
computing. Small cumulative perturbations cause the states to decohere, which intro-
duces errors in computations based on qubits. This decoherence problem can be solved by
hiding the phase of the qubits through a procedure called braiding; adiabatic interchange
of two Majorana bound states in closed loops around each other in three-dimensional
spacetime [20]. As a result, the computing operations are topologically protected, which
is the premise of topological quantum computers. Experiments have been performed in
semiconducting nanowires [23, 24], topological insulators [25] and magnetic atom chains
[26]. These experiments provide convincing arguments for the existence of Majorana
fermions. However, the correlation between MF’s and these results is still up for debate.
The ongoing work faces challenges on how to implement networks of Majorana fermions
to create logical gates for quantum computing (analogous to transistor gates in classical
computing). One proposal is a two-dimensional electron gas on a superconducting layer
as a platform for networks of Majorana fermions [27, 28]. Frameworks for how to imple-
ment these networks into quantum computing by Majorana fermion codes are also being
developed [29]. The spin-orbit plays a crucial role in all of this, since it ensures an odd
number of states [8] while also playing a critical role in the search for MF’s in nanowires
on superconductors [30, 31]. MF’s are supposed to manifest themselves as peaks in the
conductance at zero gate voltage at finite magnetic fields.

We can conclude from all of the above that SOI is not only important for realisation of
spintronic devices, but it also plays a crucial role in proposals to establish fault-tolerant
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CHAPTER 1. INTRODUCTION

quantum computing. Also, the recent interest in hybrid heterostructures (involving su-
perconductors and non-superconducting materials), spurred by the aforementioned de-
velopment of advanced nanostructures, has called for a more thorough understanding of
transport phenomena in these structures and their respective properties. The Josephson
effect and the possibility offered by nanostructures to control appropriate parameters
present a convenient way to investigate transport and other properties of several ma-
terials by studying the supercurrent [32]. Properties of 2D-epitaxial structures (which
are more amendable for quantum computing with MF’s), such as the SOI-strength, the
effective SO-field, the importance of impurities and how to disentangle SOI-effects and
other mechanisms, are not yet well understood. For example, experiments claiming MF-
existence are somewhat controversial, since other mechanisms may also be responsible for
the reported results [17]. Also, many applications require magnetic fields, so understand-
ing the behaviour of structures when applying magnetic fields of different orientations,
can be essential. Superconductor - normal material - superconductor junctions (SNS-
junction) with strong SOI form a well-known base from which to study these properties
further, for example by studying the supercurrent as a function of magnetic field. Let us
therefore introduce SNS-junctions and the Josephson effect here.

Normal material - superconductor (NS) interfaces, such as topological insulator - su-
perconductor interfaces, can cause a rather special reflection. Low-energy electrons that
are incident on the interface will cause the injection of a Cooper pair into the supercon-
ductor, and the generation of a reflected hole. This process is known as Andreev reflection
[33, 34] and gives rise to Andreev bound states (ABS) if the normal material is sand-
wiched between two superconducting leads. The ABS arises when excitation (electron-
or hole-like) carries out a periodic motion, resulting in resonant standing waves between
the superconducting leads. This leads to quantisation of the excitation energy levels [35].
This kind of structure is called a SNS-junction, where the ABS supports supercurrent
through the normal material by ”tunneling” of Cooper pairs. The effect where a super-
current flows across a SNS-junctions withput external electric fields is the so-called DC
Josephson effect [36], where the supercurrent is often referred to as the Josephson current.
The interplay between SOI and magnetic fields in SNS-junctions is of special interest, for
example in heterostructures consisting of semiconducting nanowires and superconducting
leads, which are promising platforms for realising Majorana modes [15]. The interplay is
also responsible for phenomena in Josephson currents, such as the anomalous Josephson
effect, where a finite current can persist even at zero phase difference, I(φ = 0) 6= 0,
where φ is the phase difference between the two superconductors [37, 38].

SNS-junctions with strong SOI have been proposed as a way to study topological
phase transitions [27, 39] and to quantify the strength of the SOI for different materials
[38, 40]. Josephson currents can therefore provide insight to the physics of the junction
via, for example, investigation of the critical current. As an example, a rectangular
junction with uniform current density results in a critical current resembling that of a
single-slit Fraunhofer pattern from optics [41]. Current deviations from this pattern may
contain information about the system and its properties [42, 43]. Recent experimental
advances on 2D epitaxial Al/InAs-heterostructures have attained NS-interfaces with high
electron mobility and Andreev reflection probability very close to unity [44, 45]. A recent
article by Suominen et. al. [46] on an InAs/InGaAs heterostructure with an epitaxial Al
layer, has studied the critical current as a function of magnetic fields both perpendicular
and in-plane of the junction. When both a perpendicular magnetic field and an in-plane
magnetic field were included, Suominen et. al. discovered asymmetries with respect to
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the magnetic field. They found first a gradual transformation from a Fraunhofer pattern
in the critical current to a pattern of a superconducting quantum interference device. It
was argued that this was due to expulsion of magnetic flux form the superconducting
Al-leads by the Meissner effect, which lead to an effective out-of-plane flux dipole. This
dephases contributions in the central region and forces coherent transport to the edges. In
contrast, the in-plane field induced striking asymmetries in the interference pattern upon
inversion of the perpendicular field, as shown in Figure 1.2. The asymmetries depend
on both magnitude and direction of the in-plane field, as well as varying between lobes
and samples. This second result conceals information about the interplay of SOI and the
Zeeman effect, effectively concealing system properties.

Figure 1.2: Differential resistance as a function of current I and perpendicular magnetic
field Bz through the SNS-junction. Disregard the white numbers. a) is for an in-plane
magnetic field in the ±y-direction of two different magnitudes, b) is the same, only for
the ±x-direction. Adapted from [46].

A more detailed investigation of several samples pointed to an interplay of several
device-dependent factors, such as SOI, disorder, interface coupling and the microscopic
size of the samples. The authors argue that disorder plays a crucial role in the mechanisms
responsible for the asymmetries. It was therefore unclear whether measurements of the
asymmetries can be used to disentangle SOI and the Zeeman effect. Rasmussen et. al.
[47] did an analysis of symmetries of the Hamiltonian for a 2D SNS-junction, relating
them to the interference pattern of the critical current. They took into account both
Rashba and Dresselhaus SOI, magnetic field, disorder and structural asymmetries. Their
analysis supports the view that disorder, band bending and NS-interface barriers are
influential ingredients contributing to the asymmetries in the interference patterns.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

The results of the experiments from [46] and the analysis of [47] serve as the motivation
for this thesis. A more thorough understanding of SOI’s effects and disorder on SNS-
junctions might shed light on how to interpret the asymmetries arising in the interference
patterns. If the effects of SOI, magnetic fields and disorder where to be disentangled, their
individual effects on the asymmetry of the critical could current become apparent. This
would clarify how to interpret the asymmetry of the measurements, and thus elucidate
if the asymmetries can be used to arrive at quantitative conclusions about the SOI of
the system, its strength, the effective SO-field and the interplay between SOI and the
Zeeman effect.

A proper understanding of SOI and its effects is a prerequisite in the search and
understanding of MF-hosting effective topological superconductors. The creation and
employment of such devices for fault-tolerant quantum computing would bring us one
step closer to the realisation of quantum computers.

1.2 Outline of thesis

The outline of the thesis is as follows: Chapter 2 will give the necessary background theory,
where we start by introducing superconductivity, its characteristics and two theoretical
models. We will so derive the BdG-equation before we introduce Andreev scattering and
SNS-junctions. We end the chapter by explaining in detail the spin-orbit interaction.
In Chapter 3, we will start our own work by deriving the Andreev reflection coefficients
and show explicitly how the reflections follow naturally from the Bogoliubov - De Gennes
equation. We will also find the Andreev energy levels and the supercurrent for 1D SNS-
junctions at zero temperature for three cases: for no fields at all, magnetic field and
magnetic field with SOI. The understanding of the Andreev reflection and the Josephson
effect for 1D SNS-junctions will serve as a basis for expanding to a 2D SNS-junction in
Chapter 4. Here we will allow for disorder at the interfaces, by developing a toy model
for two paths across the junction, connected by beamsplitters. By applying a magnetic
field perpendicular to the junction we can investigate the critical current through the
junction as a function of magnetic field. This allows us to look for results which would
indicate that disorder at the interfaces could be a possible reason for the asymmetries in
the critical current discussed above. Chapter 5 will summarise the results in a conclusion,
followed by an outlook and proposals for future work.
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2 — Theory

Section 2.1 is supposed to give an introduction to the phenomenon superconductivity.
We start out with a list of basic experimental facts in 2.1.1, supposed to give an overview
over the nature of a superconductor, its properties and what distinguishes it from reg-
ular conductors. Section 2.1.2 I will go through the early theoretical models describing
superconductivity, London-Pippard electrodynamics and Ginzburg-Landau theory. They
are all essentially phenomenological, although surprisingly accurate. We so move over to
the Bardeen-Cooper-Schrieffer (BCS) theory in Section 2.1.3, the first microscopic theory
of superconductivity, before we in the end derive the Bogoliubov-de Gennes equation in
Section 2.2. These sections will all in large parts draw from [11, 18, 35, 41, 48]. Sections
2.3 and 2.4 will present the Andreev reflection and SNS-junctions in more detail, as well
as the Josephson effect and a derivation for the Fraunhofer pattern described in Chapter
1. Wrapping up the theory chapter will be Section 2.5, which will introduce spin-orbit
interaction for charged particles. Qualitatively spin-orbit interaction mixes spin up and
spin down states and splits the energy spectrum of spin-dependent systems, even without
magnetic fields.

2.1 Superconductivity

2.1.1 Basic phenomena

Superconductivity is a phenomenon that occurs in solids, such as metals, alloys and inter-
metallic compounds below a certain critical temperature TC . The solids undergo a phase
transition from a normal state above the critical temperature to a state characterised by
several fundamental properties. We will list some of these properties here, adopted from
[18] and [48].

• Sudden disappearance of electrical resistance. This is maybe the most striking char-
acteristic of superconductivity, and was first discovered by Dutch physicist Kamer-
lingh Onnes in 1911 in his pursuit towards ultra-low temperatures by exploitation
of the Hampson-Linde cooling cycle [49]. When cooled below TC , a transition from
a state of finite resistivity to one of zero resistivity takes place. This transition
is not associated with any change of structure or property of the lattice and as
such it is interpreted as an electronic transition, where the electrons enter a more
ordered state. This interpretation is supported by the fact that the entropy of
superconductors decreases markedly below TC , indicating a transition to a more
ordered state. The supercurrent carried by a superconductor has an upper limit,
the critical current IC , above which superconductivity becomes suppressed.

7



CHAPTER 2. THEORY

• Exclusion of magnetic flux from the bulk of the material. This fundamental prop-
erty was first discovered by German physicists Walther Meissner and Robert Ochsen-
feld in 1933 [50], in their work on magnetic fields outside superconducting samples.
It was later named the Meissner effect. It should be noted, however, that magnetic
fields do penetrate superconductors. The typical penetration depth is the London
penetration depth, λL, which, albeit oversimplified, gives an inclination to the ac-

tual penetration depth. λL =
√

ε0mc2

nq2 for superconducting particles of charge q

and mass m in concentration n, where c is the speed of light and ε0 is the vacuum
permittivity [18]. λL is usually not greater than that magnetic fields only penetrate
a short distance into the surface (compared to the bulk size). This proves a unique
way to define the superconducting state: The combination of the Meissner effect
and zero resistivity provide a clear distinction between the thermodynamical state
of superconductivity and the so-called ”perfect conductor”. A perfect conductor
has the transport property of zero resistance, same as for superconductors. How-
ever, perfect conductors trap the flux inside them, i.e. the magnetic field in the bulk
must remain at a fixed value [51]. If the initial flux is zero, it will remain zero. This
is not the same as expelling the flux though, as happens in superconductors. Thus,
superconductors are a distinct state and not an example of a perfect conductor.

• Superconductors exhibit a discontinuous increase of specific heat at TC , followed by
an exponential decline when cooling beneath TC . This is a signature sign of second
order phase transitions, adding weight to the argument for a specific thermodynam-
ical phase.

• The Meissner effect occurs only for sufficiently low magnetic fields. The critical
magnetic field HC that separates the superconducting state (SCS) and the normal
state (NS) has roughly a parabolic connection to the temperature, as in Figure 2.1.
When the magnetic field is larger than this critical value, the superconductivity will
become suppressed. Also, superconductors are perfect diamagnets when the field is
below HC .

• It is possible to create persistent currents in superconductors, either by cooling a
current-carrying material below TC or by entrapment of external flux, maintained
by the supercurrents. Lifetimes up to over 105 years have been proposed [52].
Furthermore, the trapped flux is quantised in units of Φ0 = 2π~

q
, where q = −2e.

The fact that the q = −2e, and not just −e, is usually ascribed to the fact that
electrons pair up into so-called Cooper pairs in the SCS.

• All superconductors exhibit an energy gap Eg for single-particle excitations around
the Fermi level, which is of an entirely different origin than those for semiconductors
and insulators. The energy gap is a forbidden region for excitation in the solid. As
we will see in the next sections, the energy gap can originate from an attractive
electron-electron potential, for example mediated by electron-phonon interaction,
which orders the electrons in k-space. This interpretation is supported by the fact
that when T goes to TC continuously, Eg → 0, indicating thermal breaking of some
collective nature of the electrons. In BCS-theory, this is interpreted as thermal
fluctuations becoming too prominent and the electron-electron attraction breaks
down.
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CHAPTER 2. THEORY

Figure 2.1: Illustration of the phase diagram in the H-T plane, distinguishing between
the normal and the superconducting phases. Adapted from [41].

Figure 2.2: Illustration of (a) the conduction band in a normal metal (N) and (b) the
energy gap Eg in superconductors (S). Dark, grey areas are filled electron states with
energies less than the Fermi level µ. Adapted from [18].

2.1.2 Phenomenological theory

We will here present two theories based on phenomenological aspects of superconductivity.
They were both developed before the first microscopic theory of superconductivity was
developed. Adapted from [41, 48]. The first theoretical description of the Meissner effect
was put forward by Fritz and Heinz London in 1935. Their derivation was simple and only
based on classical theory. Assume that the electrons are considered as an incompressible,
nonviscous charged fluid. By starting out from the Drude-Lorentz equation of motion for
electrons in a metal for a perfect conductor and employing Maxwell’s equations, one will
end up at

∇× j = − 1

µ0λ2
L

B (2.1)

and

∇× (∇×B) = −∇2B = µ0∇× j, (2.2)
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where B is the magnetic field, j is the current density and µ0 is the magnetic susceptibility.
λL is still the London penetration depth. Combination of these two equations leads to

∇2B = B/λ2
L. (2.3)

This equation accounts for the Meissner effect, as it doesn’t allow for a solution uniform
in space (unless it is zero), but a field which is exponentially damped over length scales
λL. This screens the superconductor from magnetic fields, but it also implies that the
supercurrents have to flow in a region of depth λL from the surface of the superconductor
to satisfy Maxwell’s fourth equation.

This theory was generalised by Brian Pippard in the 1950’s. His theory is based on
a quantity called the coherence length ξ0 =

~vf
π∆

, where ∆ is the superconducting energy
gap. It can be interpreted as a characteristic length that measures the spatial response
to some external disturbance. In the London picture j = A

µ0λ2
L

, where A is the magnetic

potential. Pippard assumed instead that the current density j(r) at point r should involve
contributions from A at points neighbouring r in a volume of radius ξ0, resulting in a new
expression for j(r) called the Pippard equation. The concept of this coherence length can
be used to define a quantity ξ, which again can be used to part the magnetic response
of superconductors into two regimes. In the limit λL << ξ0, A(r) will drop sharply on
a scale much shorter than ξ0, leading to a weak response in j(r). Assuming it drops
over a distance equal to the effective penetration depth, λ, we can rewrite the Pippard
equation into a ”London-like” form, which decays in the same way by setting λ3 ∝ λ2

Lξ0.
By defining an effective coherence length ξ, differing from ξ0 because of impurities and
such, we have two regimes, designated in Table 2.1.

Type I λ < ξ
Type II λ > ξ

Table 2.1: Regimés defining the Type I and Type II superconductors

Lastly, it should be noted that each of these models considers the charge carries (the
electrons) to be single, i.e. m = me and q = −e. As it will become apparent later, the
superconducting charge carriers are pair of electrons.

Let us take a closer look at the two types of superconductors indicated in Table
2.1. There are no differences in the superconducting mechanisms, both have similar
properties in the transition point at zero magnetic field, but the Meissner effect is, on the
other hand, quite distinct for each type. A good type I superconductor completely expels
fields up until the critical magnetic field HC , after which the magnetic fields penetrate it
completely, suppressing the supercurrent. Typically, a type II superconductor acts like a
type I up until a critical field Hc1, after which it is partially penetrated. This intermediate
state prevails until HC2, where superconductivity breaks down completely. Analysis of
the surface energy of superconductor-normal metal interfaces reveals that the system can
lower its energy by maximising the interfacial area. Type II superconductors can avoid
the transition to the normal state, i.e. still have lower energy than in the normal state, by
allowing the entry of magnetic flux lines into the bulk. The bulk will then be filled with
filaments of normal metal where the flux lines can penetrate, so that the superconducting
regions still obey the Meissner effect. These normal regions increase the interfacial area,
allowing the superconducting state to prevail. We call these normal regions vortices and
the intermediate state the vortex state, or the Abrikosov mixed state. The vortex state
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persists by inclusion of more and more vortices, up until they start to overlap, meaning
there are no more superconducting regions. This happens at HC2. As it can be seen from
Figure 2.3, the Meissner effects are quite different for the two regimes, as already noted.

Figure 2.3: Illustrations of magnetisation vs magnetic field for (a) Type I and (b) Type
II superconductors. Critical fields and intermediate states are indicated. Adapted from
[41].

From here, let us take another approach, based on the fact that the appearance of
superconductivity below TC indicates the transition to a more ordered state. In Ginzburg-
Landau’s theory, this is envisioned as a partial condensation of the electrons into a fric-
tionless superfluid, described by a macroscopic wave function ψ. This was built into
Landau second-order phase transition theory (a theory for transitions involving no latent
heat) by taking ψ as being the order parameter. It is conventional to choose a particular
normalisation for the order parameter, namely |ψ|2 = n. n is the density of supercon-
ducting charge carriers. In Landau second-order phase transition theory, the free energy
can be written as an expansion of the order parameter. So, by limiting the expansion to
the fourth order, we write

F = F(T ) + α|ψ|2 +
1

2
β|ψ|4. (2.4)

Thermodynamical stability requires β > 0. Minimalisation will give that, if α > 0,
|ψ|2 = 0 and if α < 0, |ψ|2 6= 0. The second order phase transition takes place at
T = TC , where the more ordered state is at T < TC . Therefore, we can model it by
setting α(T ) = a(T − TC), a is a constant, and it is sufficient to regard β as a positive
constant.

For a inhomogeneous state we need a more detailed expression for the free energy,
namely
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F = F0 +

∫
d3r

{
α|ψ(r)|2 +

1

2
β|ψ(r)|4 +

~2

2m∗

∣∣∣ [∇− ie∗

~c
A(r)

]
ψ(r)

∣∣∣2 +
1

8π
H2(r)

}
,

(2.5)
where e∗ and m∗ are the charge and the mass, respectively, of the supercunducting charge
carriers. As will become clear in Section 2.1.3, these are e∗ = −2e and m∗ = 2me, where
me is the mass of an electron. F0 is the free energy of the spatially homogenous system.
The third term in the integrand models the increase in energy from the spatial distortion
of the order parameter in a magnetic field, and the last term is the contribution to the
energy density from the magnetic field. F is a functional, so we can perform a variational
minimalisation with respect to ψ∗(r), which yields

− ~2

2m∗

[
∇− ie∗

~c
A(r)

]2

ψ(r) + αψ(r) + β|ψ(r)|2ψ(r) = 0, (2.6)

called the first G-L equation. Minimalisation with respect to A yields Ampère’s law, as
long as we identify the current density as

j(r) =
−ie∗~
2m∗

[ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)]− (e∗)2

m∗c
|ψ(r)|2A(r), (2.7)

called the second G-L equation. An important result of Ginzburg-Landau theory is that
the symmetry-breaking in superconductors is the gauge symmetry (or phase symmetry),
similar to the broken rotational symmetry in ferromagnets when crossing the Curie point.
This means that superconductors with different phases, when written as ψ(r) = aeiΦ(r),
are in a physical sense distinct, although only phase differences ∆Φ are measurable. This
randomness of the phase is analogous to the fact that the magnetisation of a ferromag-
netic, isotropic liquid may point in any direction.

These equations can be used to find a few useful relations. Let us examine a simple
case of an inhomogeneous order parameter that disappears at the interface between a
superconductor occupying the region x > 0 and a normal material at x < 0 in the
absence of a magnetic field. The one-dimensional (1D) version of (2.6) is, for A = 0,

− ~2

2m∗
d2ψ

dx2
+ αψ + βψ3 = 0. (2.8)

Defining the G-L coherence length as ξ2 = ~2

2m∗|α| , one can solve this by setting β
|α|ψ

2 =

f(x)2, so that (2.8) becomes

− ξ2f ′′(x)− f(x) + f 3(x) = 0. (2.9)

Solving this with the correct boundary conditions would yield an expression which justifies
our earlier characterisation of the coherence length ξ as the distance over which the order
parameter responds to external perturbations (the interface being the disturbance). Also,
since α = a(T − TC), we have

ξ(T ) =

(
~2

2m∗aTC

)1/2(
1− T

TC

)−1/2

. (2.10)

The second G-L equation, in a limit where the first two terms can be negated, reproduces
the London equation, where |ψ|2 = n. This supports the normalisation choice done earlier,
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allowing us to identify ψ as a condensate wave function belonging to the superconducting
electrons. It follows immediately that the London penetration depth is

λL =

(
m∗c2β

4π(e∗)2aTC

)1/2(
1− T

TC

)−1/2

. (2.11)

Comparison between (2.10) and (2.11) gives a very useful parameter, κ = λL
ξ

. More

detailed analysis reveals that one can distinguish between type I and type II at κ = 1/
√

2,
where we have a Type I superconductor for κ < 1/

√
2.

2.1.3 BCS theory

Here, we present the first microscopic theory for superconductivity, developed in the
1950’s by John Bardeen, Leon Cooper and Robert Schrieffer, adapted from [11, 41].

In 1956, Leon Cooper made an important calculation, where he showed that in the
presence of an (arbitrary weak) attractive potential, electrons will start forming bound
states of pairs, nowadays called Cooper pairs. Based on this intuition, one can calculate
the mean square radius of the pair, which turns out to be of the same order as Pippard’s
coherence length ξ0, spawning another interpretation of ξ0 as the size of a Cooper pair.
If one is to compute the binding energy, one would find that the lowest energy comes
with pairs that have equal but opposite momentum and spin. Robert Schrieffer expanded
Cooper’s idea, thinking that if all electrons form pairs, then one needs to describe the
behaviour of all pairs at the same time, not just focusing on one pair at the time. They
published their work together with John Bardeen in 1957 [53], a theory later known as
the BCS-theory.

One can understand the basics of BCS-theory by working with an ansatz wavefunction,

|ΨBCS〉 =
∏
k

(
uk + vkĉ

†
k,↑ĉ

†
−k,↓

)
|φ0〉 , (2.12)

which creates electrons only in Cooper pairs with opposite momentum and spin. Here, ĉ†

is the usual second quantisation creation operator, |φ0〉 is the vacuum state and uk and vk
are (in general complex) adjustable parameters used to minimise the energy. The modulo
squares |uk|2 and |vk|2 describe the probability to find zero particles or one Cooper pair
in the levels with k, ↑, −k, ↓, respectively. Thus, they have the relationship

|uk|2 + |vk|2 = 1. (2.13)

This wavefunction is ”weird”, in the sense that it does not describe a state with a fixed
number of electrons. A more correct, many-body wavefunction which defines a state with
an well-defined number of electrons can, of course, be found. However, if one were to
evaluate the variance of the number of electrons N , one would find that it is proportional
to 1/

√
N ∼ 10−11. Thus, the error of not fixing N is very small. Since (2.13) is much

easier to work with than the more correct wavefunction, this is what we will use.
The ground state energy is found by operating with the Hamiltonian Ĥ on the (trans-

lationally invariant) system of electrons,

Ĥ =
∑
k,σ

~2k2

2m
ĉ†k,σ ĉk,σ +

1

2V
∑

k,k′,q;σ,σ′

Vk,k′,q;σ,σ′ ĉ
†
k+q,σ ĉ

†
k′−q,σ′ ĉk′,σ′ ĉk,σ, (2.14)
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where the first term is the kinetic energy and the second is the electron-electron interac-
tion, which accounts for momentum conservation and transfer by q. V is the volume of
the system. Since our system does not fix the number of electrons, we have a constraint on
our system , namely the fact that the average number of particles is N = 〈ΨBCS| N̂ |ΨBCS〉,
where N̂ =

∑
k,σ ĉ

†
k,σ ĉk,σ. This is realised through introducing a Lagrange multiplier µ,

Ĥ ′ = Ĥ − µN̂

=
∑
k,σ

ξkĉ
†
k,σ ĉk,σ +

1

2V
∑

k,k′,q;σ,σ′

Vk,k′,q;σ,σ′ ĉ
†
k+q,σ ĉ

†
k′−q,σ′ ĉk′,σ′ ĉk,σ = Ĥ ′0 + ĤI ,

(2.15)

where ξk = ~2k2

2m
− µ and µ is the chemical potential. To be able to proceed we have to

make several assumptions. First, that the Landau-Fermi liquid picture is valid. In this
case, the majority of all normal-state electron-electron interaction can be incorporated
through the many-body corrected effective mass (which should not be confused with the
effective mass in semiconductors arising from the band structure). There is also a con-
tribution to the effective mass from the electron-phonon interaction, as long as we are
limiting the energy to ξ . ~ωD, where ~ωD is the Debye energy. Above this the effect
is suppressed thanks to the lattice’s inability to follow the electron’s motion. Under
these assumptions, we thus interpret the operators in (2.15) as creating and annihilating
quasiparticles instead of regular particles, where quasiparticles are interpreted as elec-
trons moving together with polarisation-correlation ”clouds”, which is the motion of the
remaining particles getting out of the way. ξ is therefore the quasiparticle energy. This
allows us to consider the electron-electron scattering as an effectively ”weak” potential,
since it now only contains components that not can be absorbed into the effective mass
and therefore fewer interaction effects. Therefore, the residual electron-electron interac-
tion is all what is left. When the indirect electron-phonon-electron interaction is added,
the overall electron-electron interaction can become attractive for low energies.

Now, we focus only on the part of the interaction which are important for super-
conductivity. We keep only the attractive part leading to formation of Cooper pairs,
i.e. replace k′ → −k and k + q → k′ for opposite momenta, resulting in a ”reduced”
Hamiltonian:

Ĥ ′R =
∑
k,σ

ξkĉ
†
k,σ ĉk,σ +

1

2V
∑
k,k′

Vk,k′ ĉ
†
k′,↑ĉ

†
−k′,↓ĉ−k,↓ĉk,↑ = Ĥ ′0 + ĤIR. (2.16)

The ground-state energy is

E ′ = 〈ΨBCS| Ĥ ′R |ΨBCS〉 , (2.17)

which can be calculated by employing paring operators, defined as

b̂†k = ĉ†k,↑ĉ
†
−k,↓, (2.18)

b̂k = ĉ−k,↓ĉk,↑. (2.19)

The rewritten Hamiltonian comes out

Ĥ ′R = 2
∑
k

ξkb̂
†
kb̂k −

1

V
∑
k,k′

Vk,k′ b̂
†
kb̂k′ , (2.20)
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and the BCS ground state as

|ΨBCS〉 =
∏
k

(
uk + vkb̂

†
k

)
|φ0〉 . (2.21)

The expectation value for the interaction has terms on the form

〈φ0|
[
...
(
u∗ki + v∗ki b̂ki

)
...
(
u∗kj + v∗kj b̂kj

)
...
]
Vq,q′ b̂

†
qb̂q′

[(
uk′i + vk′i b̂

†
k′i

)
...
(
uk′j + vk′j b̂

†
k′j

)
...
]
|φ0〉 ,

(2.22)
and the kinetic term is the same, just with the replacement 2ξkδk,k′ for Vk,k′ . Only terms

with an even number of operators contribute and all b̂ |φ0〉 = 0. We are left with a term
which corresponds to the Hartree-Fock energy, that may be disregarded since ξk is the
quasiparticle energy and is supposed to already include electron-electron interactions,
and a term corresponding to the pairing energy,

〈ΨBCS| Ĥ ′IR |ΨBCS〉 =
1

V
∑
k,k′

Vk,k′u
∗
kvkuk′v

∗
k′ . (2.23)

The kinetic term becomes

〈ΨBCS| Ĥ ′0 |ΨBCS〉 = 2
∑
k

|vk|2ξk. (2.24)

We need to minimise the ground-state energy, with respect to the normalisation condition
(2.13) for it to be valid. A convenient choice of coefficients is

|uk| = cos θk, |vk| = sin θk, (2.25)

where we choose the phases to be real, resulting in

E ′ = E − µN = 2
∑
k

ξk sin2 θk +
1

4V
∑
k,k′

Vk,k′ sin 2θk sin 2θk′ . (2.26)

Minimisation with respect to θk leaves

ξk tan 2θk = ∆k,

or

sin 2θk = 2ukvk =
∆k

εk
, (2.27)

where we have defined

∆k = − 1

V
∑
k′

Vk,k′uk′vk′ = − 1

2V
∑
k′

Vk,k′ sin 2θk′ , (2.28)

which is called the ”gap function” and

εk =
√
ξ2
k + ∆2

k. (2.29)

Now, adding a single electron in state k to the superconducting ground state will not put
it in the superposition of zero and two particles from (2.12), and thus it does not take
part in the superconductivity. Rather, it exists on the background of the superconducting
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ground state and we therefore call it an excitation. It turns out that the energy of such
excitations in state k is (2.29). The energy spectrum for excitations has a gap ∆k, as
illustrated in Figure 2.5, related to the energy gap discussed in 2.1.1, meaning that one
cannot create excitations of arbitrary small energies and that the minimum energy of an
excitation is ∆k.

Let us have a closer look at the coefficients uk and vk. Squaring (2.27) and inserting
the normalisation condition will give

u2
k, v

2
k =

1

2

(
1± ξk

εk

)
. (2.30)

Using the fact that for a non-superconducting, non-interacting Fermi gas material (∆k =
0) we must have v2 = 1 and u2 = 0 for ξk < 0 and v2 = 0 and u2 = 1 for ξk > 0. This
fixes v2 for the minus sign, so we have

u2
k =

1

2

(
1 +

ξk
εk

)
, v2

k =
1

2

(
1− ξk

εk

)
. (2.31)

Figure 2.4: Illustration of the coherence factor v2
k and the condensation amplitude ukvk

in the BCS ground state. Adapted from [41].

Note here that the condensation amplitude ukvk and the coherence factor v2
k, as shown

in Figure (2.4), are smeared out in the vicinity of the Fermi wavelength, showing how
uk and vk are not step functions as in the case of a regular Fermi vacuum. This is a
consequence of the pairing correlation, of width ∼ ξ−1

0 , where ξ0 is the Cooper-Pippard
coherence length and is interpreted as the size of the Cooper pair, as mentioned earlier.

We can derive a more illuminating result for the gap function and other quantities if
we employ the Cooper potential,

Vk,k′ =

{
−V |ξk|, |ξk′ | ≤ ~ωD,
0 |ξk|, |ξk′ | > ~ωD.

(2.32)

where V > 0 is the strength of the attractive, point-potential. The gap function then
becomes, if the sum only contains terms of k′ that satisfy |ξk′| ≤ ~ωD,
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∆k =∆ = − 1

2V
∑
k′

(−V ) sin 2θk′ =
V

2V
∑
k′

∆√
ξ2
k′

+ ∆2

=
V

2

∫
d3k

(2π)3

∆√
ξ2
k′

+ ∆2
= VN (0)∆

∫ ~ωD

−~ωD

dξ

2
√
ξ2 + ∆2

≈ VN (0)∆ ln

(
2~ωD
|∆|

)
,

(2.33)

where we, for simplicity, have set ∆ to be real. Here, we have used the sum-to-integral
conversion 1

V
∑

k →
∫

d3k
(2π)3 and changed the integration variables d3k

(2π)3 → N (ξ)dξ,

where N (ξ) is the density of states at energy ξ. We expect the main contribution to
come from energies close to the Fermi energy, so we approximate N(ξ) ≈ N(0). Since
~ωD/kB ∼ 300K and |∆|/kB ∼ 10K, the integral can be evaluated to the leading loga-
rithmic approximation. All together leads to the approximation in (2.33), which we write
as

|∆| = 2~ωDe−1/N (0)V . (2.34)

It should be noted that, in general, ∆ can be a complex number and have any phase.
Insertion of the coherence factors into (2.26), converting the sums and calculating the

resulting integrals with approximations of the form from earlier will give

E − µN = E0 −
1

2
N (0)|∆|2, (2.35)

where E0 = 2
∫ 0

−µN (ξ)ξdξ, corresponding to the total ground-state energy. From this we
find the total condensation energy in the BCS-model;

(E − µN)− (E − µN)∆=0 = −1

2
N (0)|∆|2. (2.36)

To find the critical field HC , we consider a superconducting slab of material brought
reversibly from a position at infinity with zero applied magnetic field and to a position r
in an applied magnetic field B, at constant temperature. The work done per unit volume
of specimen is [18]

W = −
∫ B

0

M · dB (2.37)

=⇒ dFS = −M · dB =
1

4π
BdB, (2.38)

where M is the magnetisation in the superconductor and FS is the free energy of the
superconductor. We have assumed perfect diamagnetism, i.e. Type I, which justifies
neglecting the small susceptibility of a solid in the the normal state. Thus, the energy of
the normal solid is independent of magnetic fields and we must have FN(BC) = FN(0). At
the critical field, the normal state and the superconducting state coexist in equilibrium,
i.e. FN(BC) = FS(BC). Integrating (2.38), we have

FS(B)− FS(0) =
B2

8π
(2.39)

=⇒ FS(0)− FS(BC) = FS(0)− FN(BC) = FS(0)− FN(0) = −B
2
C

8π
, (2.40)
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i.e. in Type I superconductors the critical field is a quantitative measure of the free
energy difference between the superconducting state and the normal state at constant
temperature. In CGS-units, we have BC = HC , so that by combining (2.36) and (2.40)
we get

H2
C

8π
(T = 0) =

1

2
N (0)|∆|2. (2.41)

2.2 Bogoliubov-de Gennes equation

This section will go through the derivation of the Bogoliubov - deGennes (BdG) equation,
a generalised mean field theory for solving problems in the BCS-theroy. Adapted from
[41].

Let us start by looking at the electronic excitations of a superconductor. We call these
excitations for quasiparticles (to distinguish between ”real” particles and excitations),
existing on the background of the superconducting ground state, as mentioned earlier.
The energy of one quasiparticle is described in (2.29) and reads

εk =
√
ξ2
k + |∆|2. (2.42)

This energy is the same if we want to add an electron of state |k ↑〉 or remove an electron
in state |−k ↓〉.

Figure 2.5: Quasiparticle spectrum in a superconductor. The dotted lines are |ξk| as it
would appear in a non-interacting Fermi gas. Adapted from [11].

The exact nature of these quasiparticles is however not completely obvious at first
sight. If one would try to explain them with regular creation and annihilation operators
for electrons, one would run into trouble. For example, applying the annihilation operator
ĉk to the ground state would not remove a quasiparticle and yield zero. Rather, it would
”create” another quasiparticle by breaking up a Cooper pair. It actually turns out that
the right operators for quasiparticles are linear combinations of single particle creation
and annihilation operators,

γ̂−k↓ = vkĉ
†
k↑ + ukĉ−k↓, (2.43)

γ̂†−k↓ = v∗kĉk↑ + u∗kĉ
†
−k↓, (2.44)

γ̂†k↑ = u∗kĉ
†
k↑ − v

∗
kĉ−k↓, (2.45)

γ̂k↑ = ukĉk↑ − vkĉ†−k↓, (2.46)
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so that, for example, γ̂†k↑ |ΨBCS〉 creates a quasiparticle and γ̂k↑ |ΨBCS〉 = 0 (since the
ground state contains no quasiparticles). These operators are called Bogoliubov oper-
ators, resulting from a canonical unitary transformation, and they satisfy the regular
anticommutation relations. It should also be noted that in the absence of pairing corre-
lations, i.e. |∆| = 0, we have

γ̂†k↑ =

{
ĉ†k↑ k > kF ,

−ĉ−k↓ k < kF ,
γ̂†−k↓ =

{
ĉ†−k↓ k > kF ,

ĉk↑ k < kF .
(2.47)

The interpretation for γ̂†k↑ is as follows: To create an electron excitation |k ↑〉 for k > kF ,
we just add an electron of the same quantum numbers. However, for creating an excitation
for k < kF , we need to destroy an existing electron state. Removing an electron in
the state |−k ↓〉 corresponds to creating a hole-like excitation with momentum k and
spin ↑. The sign difference between the ĉ’s in (2.47) reflects both an arbitrary phase
convention and the fact that we have restricted the pairing to singlet states. The second
γ is interpreted the same way.

Digression: Holes

Here, we do a quick digression to discuss the concept of holes in electronic structures.
A hole can be interpreted as a vacancy of an orbital in an otherwise filled band [18].

In semiconductor physics they are often thought of as the absence of an electron. It is a
mathematical trick, introduced because it is often more convenient to count ”absence of
electron” than the rest of a typically almost filled valence band. They do, however, have
physical properties, like

kh = −ke. (2.48)

This fact is explained as follows: the total wavevector in filled bands has to be zero,∑
k k = 0, where we sum over all states in the first Brillouin zone. An electron with

ke excited to the conduction band thus leaves behind a wavevector in the valence band,
−ke, which we then ascribe to the hole. Of course, total momentum for the entire system
is unchanged, the electron wavevector still exists in the conduction band. By the same
logic, the charge left behind after an electron is excited away from the valence band is
+e, and therefore we ascribe a charge qh = e to holes.

Back to Bogoliubov operators

For |∆| 6= 0, the operators ĉ†k↑ (electron-like) and ĉ−k↓ (hole-like) become mixed, we have a
superposition of electron- and hole-states. This is a reflection of how we have correlations
from the pairing interaction. Note that all the above was done for the ground state, i.e.
T = 0. Temperature dependence is easily incorporated into the Bogoliubov operators,
by noting that in our mean-field theory the fermion-quasiparticles do not interact, so
〈γ̂†kσγ̂kσ〉 = fkσ and 〈γ̂kσγ̂†kσ〉 = 1−fkσ, where fkσ is the normal ideal Fermi-gas occupation
factor, fkσ = 1/(eεk/kBT + 1).

Nonuniform systems, e.g. with boundaries or scattering centres, require a generali-
sation of the microscopic pairing theory. The most accurate approach to this would be
a many-body Green’s function method. However, we will follow a different approach,
namely Bogoliubov’s self-consistent field method, which is accurate enough for many
situations. We write the Hamiltonian of the system as
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Ĥ =

∫
d3rψ̂†α(r)

[
− ~2

2m

(
∇− ie

~c
A

)2

δαβ + U
(1)
αβ (r)

]
ψ̂β(r) (2.49)

+
1

2

∫
d3r

∫
d3r′ψ̂†δ(r)ψ̂†γ(r

′)U
(2)
δγ;αβ(r, r′)ψ̂α(r′)ψ̂β(r)− µN̂, (2.50)

where Greek letters denote spin indices and summation convention is implied. N̂ =∫
d3rψ̂†α(r)ψ̂α(r) is the number operator and ψ̂α(r) and ψ̂†α(r) are the usual field operators,

which annihilate and create, respectively, a particle of spin α at point r.
The term involving A accounts for the magnetic action on the orbital motion. Ig-

noring magnetic coupling to the spin (and various relativistic effects), we write the

one-electron potential as U
(1)
αβ = U (1)δαβ. Assuming no spin-dependence in the two-

particle interaction, we have U
(2)
δγ;αβ = U (2)δαγδδβ. We further assume contact potential,

U (2)(r, r′) = −V δ(3)(r, r′). To get approximate solutions to this many-body problem, one
defines an effective, mean-field Hamiltonian which minimises the total free energy, and
reads

Ĥeff =

∫
d3rψ̂†α(r)H0ψ̂α(r) + ψ̂†α(r)U(r)ψ̂α(r) (2.51)

+∆(r)ψ̂†↑(r)ψ̂†↓(r) + ∆∗(r)ψ̂↓(r)ψ̂↑(r), (2.52)

where H0 = − ~2

2m

(
∇− ie

~cA
)2 − µ. U is now the (real) mean, one-particle potential

and ∆ is often referred to as the (complex) coupling potential. For a nonsuperconducting
material the field operators could be expanded in terms of a complete set of eigenfunctions,
such as the eigenfunctions of H0φn = ξnφn, so that

ψ̂α(r) =
∑
n

φn(r)ĉnα. (2.53)

For a uniform superconductor, it would be enough to find an expression for ĉ with (2.46)
and insert it into (2.53) for the two spin states. For a nonuniform superconductor,
however, we need two sets of eigenfunctions un(r) and vn(r), so we write the generalised
Bogoliubov transformations as

ψ̂↑(r) =
∑
n

[
un(r)γ̂n↑ − v∗n(r)γ̂†n↓

]
, ψ̂↓(r) =

∑
n

[
un(r)γ̂n↓ + v∗n(r)γ̂†n↑

]
. (2.54)

These operators can in some cases actually result in a lower free energy (and thus a more
accurate solution). We therefore develop a set of equations for the new functions un and
vn. Thus, we demand that the effective Hamiltonian is diagonalisable in γ̂, i.e.

Eeff = EgS +
∑
n,α

εnγ̂
†
nαγ̂nα, (2.55)

where EgS is the superconducting ground-state energy and εn is the energy of the exci-
tation in state n. This is satisfied if the commutators between the Hamiltonian and the
operators are sensible. First,
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[
Ĥeff, ψ̂↑(r)

]
= − [H0 + U(r)] ψ̂↑(r)−∆(r)ψ̂†↓(r), (2.56)[

Ĥeff, ψ̂↓(r)
]

= − [H0 + U(r)] ψ̂↓(r) + ∆(r)ψ̂†↑(r), (2.57)

Inserting (2.54) leaves one set of commutation relations. Another set could be found by

directly introducing (2.54) and then evaluate the resulting operators with
[
Ĥeff, γ̂nα

]
=

−εnγ̂nα and
[
Ĥeff, γ̂nα

]†
= εnγ̂

†
nα. Comparing the terms of γ̂ and γ̂† in the two sets of

equations yields a provision for (2.55), which in matrix form reads(
[H0 + U(r)] ∆(r)

∆∗(r) − [H∗0 + U(r)]

)(
un(r)
vn(r)

)
= εn

(
un(r)
vn(r)

)
. (2.58)

Here un(r) and vn(r) are eigenfunctions of electron and hole excitations, respectively, often

presented in a spinor representation ψ =

(
u(r)
v(r)

)
, and εn is the eigenenergy. The effective

mean field potentials are found by choosing them such that the effective Hamiltonian is
as close to the true Hamiltonian as possible. This means that the statistical averaged
energy 〈Ĥeff〉 has the same minimum as 〈Ĥ〉 for the same wavefunction. With the Cooper
potential we have

U(r) =− V 〈ψ̂†↑(r)ψ̂↑(r)〉 = −V 〈ψ̂†↓(r)ψ̂↓(r)〉 = −V
∑
n

[
|un(r)|2fn + |vn(r)|2(1− fn)

]
,

(2.59)

∆(r) =− V 〈ψ̂↓(r)ψ̂↑(r)〉 = V 〈ψ̂↑(r)ψ̂↑(r)〉 = V
∑
n

(1− 2fn)un(r)v∗n(r). (2.60)

Equation (2.60) (when T = 0) is the gap function as found in Section 2.1.3.
When including spin in the potentials, the most important realisation is that we will

end up with four equations, for u1, u2, v1 and v2, where 1, 2 =↑, ↓. The pair potential is
now of the form

∆(r) =
V

2
ραβ〈ψ̂α(r)ψ̂β(r)〉, (2.61)

where we have the operator ρ̂ = iσy, σy being the second Pauli matrix. We won’t go
through the derivation of the spin-dependent equations, it follows more or less the same
procedure outlined above, just with n→ N = (n, ν), ν = 1, 2 for spin up and down. The
spin-generalised form of (2.58) is

εuα(r) =

[
~2

2m

(
∇− ie

~c
A

)2

− µ

]
uα(r) + Uαβ(r)uβ(r) + ∆(r)ραβvβ(r) (2.62)

−εvβ(r) =

[
~2

2m

(
∇+

ie

~c
A

)2

− µ

]
vα(r) + U∗αβ(r)vβ(r) + ∆∗(r)ραβuβ(r) (2.63)

Here one can clearly see how the pairing potential couples electrons with spin up (down)
to holes with spin down (up). In the end, we have the total Bogoliubov-de Gennes (BdG)
Hamiltonian [54]
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H =

(
Ĥ − µ ∆̂

∆̂† −(Ĥ∗ − µ)

)
, (2.64)

where Ĥ is the regular Hamiltonian describing the system and ∆̂ = ∆ρ̂. Thus, the
Bogoliubov - de Gennes equation reads

HΨ = EΨ , (2.65)

where Ψ is a spinor representation of the wavevectors. If H has the form of (2.64),
Ψ = (u↑, u↓, v↑, v↓)

T will be our spinor.

There is another way to write this equation, so that ∆̂ becomes diagonal. This is
achieved with a reorientation of the basis, so that we have(

Ĥ − µ ∆̂

∆̂
∗ −(T ĤT † − µ)

)
Ψ′ = EΨ′, (2.66)

where Ψ′ = (u↑, u↓, v↓,−v↑)T . ∆̂ now becomes ∆̂ = 1̂∆(r), where 1̂ is the identity
matrix. T is the time-reversal operator and reads T = −iσyK, where K is the complex
conjugate operator, i.e. Kf = f ∗. This operator flips momentum and spin, for example
T p̂T † = −p̂ and T σT † = −σ.

2.3 Andreev Scattering

As mentioned in Chapter 1, the behaviour around normal material-superconductor (NS)
interfaces allows for more exotic reflections than normal interfaces. As described, an
electron incident from the normal (N) region can cause the injection of a Cooper pair
into the superconductor (S) and the reflection of a hole back into the N-region. Or an
incident hole can ”annihilate” a Cooper pair at the interface, causing the reflection of an
electron back into the N-region. This type of scattering is called Andreev scattering, or
Andreev reflection [33] and is the origin of the proximity effect. This section, adapted
from [35], will give a more thorough qualitative explanation for Andreev reflection before
a quantitative derivation will be given in Section 3.2.

Imagine a piece of normal material brought into contact with a superconductor. Quasi-
particles in the superconductor can only exist at an energy higher than the superconduct-
ing gap |∆| when measured from the Fermi level. An electron from the N-region with
energy E > |∆| can enter the superconductor, where it is converted into a quasiparticle.
However, if the electron has lower energy than |∆|, ”normal” transfer of charge cannot
occur. If a hole is reflected back, a charge deficit of 2e arises, which implies that an object
of charge 2e has been added to the superconductor. The same is of course true for the
opposite situation, hole to electron. This object is of course a Cooper pair, and charge
transfer can occur over the NS-interface even for electrons with E < |∆|, see Figure 2.6.
This means that normal current from the N-region can be converted to supercurrent in
the superconductor. This process conserves energy (as it has to) and the momentum of
the hole is ~kh = ~ke − 2E/vF . If E << µ, ke, kh and kF are all more or less the same,
yet vh = ~−1∂E/∂kh, which is opposite from that of the incoming electron. This means
that holes with kh > 0 actually move in the opposite direction of electrons with ke > 0.
This point will become important in the details of the derivation of the Andreev reflection
coefficient.
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Andreev reflected electrons and holes will acquire a phase shift which depends on the
superconducting energy gap |∆|. If we write the pairing potential as∆ = |∆|eiφ, where
|∆| is the energy gap, we can anticipate a result which will be derived in Section 3.2, and
the phase shift will look like

rA = e−i arccos( E
|∆|)e±iφ. (2.67)

The minus (plus) sign refers to electron to hole (hole to electron) reflection. We call rA
the Andreev reflection coefficient to distinguish it from the normal reflection which can
occur at any interface. However, the Andreev reflection can dominate for energies much
smaller than µ, which will become apparent in Section 3.2.

Figure 2.6: Schematic illustration of the Andreev reflection. Electron with momentum
~ke reflected back as a hole with momentum ~kh. Figure adapted from [35]

Lastly, it is worth noting that Andreev reflection is special in the following sense:
When particles are specularly (normally) reflected from a planar NN-interface, only the
velocity component normal to the interface changes sign, the in-plane component stays
the same, see Figure 2.7(a). When incident on a NS-interface, all velocity components
change sign, i.e. the direction is completely reversed, see Figure 2.7(b).

Figure 2.7: Illustration of (a) specular (normal) reflection and (b) Andreev reflection.
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2.4 SNS-junction

This section will cover the essentials for a superconductor-normal material-superconductor
(SNS) junction. Section 2.4.1 will cover the setup of such a junction and the Andreev
bound states which mediate the supercurrent through the junction. Section 2.4.2 will
describe the Josephson effect, the sin-relation for the supercurrent and the extended
SNS-junction, which exhibits a Fraunhofer pattern in the critical current.

2.4.1 SNS-junction

SNS-junctions, also known as Josephson junctions, are two superconductors coupled by
a normal material, where the critical supercurrent in the junction is much smaller than
in the bulk superconductor [41]. This normal material can be an insulating barrier, a
normal metal, a semiconductor, a nanostructure or a physical constriction that weakens
the superconductivity at the point of contact. We call it a normal material, in the sense
that it is a material that is usually non-superconducting, i.e. normally conducting. In
general the superconductors can be different, as is indicated in Figure 2.8 through the
difference in the superconducting pairing potential for the left (L) and the right (R)
superconductor, relative to the normal region. The phase difference is of the utmost
importance for understanding the effects of current through such junctions.

Figure 2.8: Illustration of a SNS-junction, indicating the two superconductors, L and R,
with their respective pairing potentials. Transmission of a Cooper pair from the left SC
to the right SC is indicated.

Such junctions have been around for a long time. The effect where a supercurrent flows
through the junction, also known as the Josephson effect, was first predicted theoretically
in 1962 by B.D. Josephson [36].

Andreev Bound States

Consider a SNS-junction with two identical superconductors except for the phase of ∆,
which differ by ∆φ = φ = φL−φR. An electron with energy less than |∆| will experience
Andreev reflection trying to get into either of the superconductors. The reflected hole
experiences the same, it is converted back as an electron. Thus, in the semiclassical
picture, the electron/hole performs a confined motion by bouncing back and forth in a
localised area, coherently coupling electrons and holes, which corresponds to the existence
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of a bound state. For low energies will this bound state have discrete energy levels around
the Fermi level within the superconducting energy gap. These bound states are also
known as Andreev bound states [35], or Andreev levels. The Andreev levels can mediate
the supercurrent in the junction. The supercurrent is in general derived from [46]

IS(φ) = (2e/~)∂F/∂φ. (2.68)

The general supercurrent of the Josephson effect, when calculated from the free energy
found in [55], is made up of three parts [56]

I = IS(φ) = I1 + I2 + I3,

I1 = −2e

~
∑
n

tanh

(
En

2kBT

)
dEn
dφ

, (2.69)

I2 = −2e

~
2kBT

∫ ∞
|∆|

dE ln

(
2 cosh

(
E

2kBT

))
∂ρ

∂φ
, (2.70)

I3 =
2e

~
d

dφ

∫
dr|∆|2/|g|. (2.71)

Here En is the quasiparticle spectrum, ρ is the density of states and g is the interaction
constant of the BSC-theory. I1 is a sum over the discrete energy spectrum, i.e. En ∈
(0, |∆|), corresponding to the Andreev bound states discussed above. I2 is an integral over
the continuous spectrum, i.e. En ∈ (|∆|,∞) and I3 vanishes for a φ-independent |∆|. We
want to focus on the discrete spectrum, which has the strongest dependence on φ, and for
the case where |∆| is independent of φ, meaning we disregard (2.70) and (2.71) and only
keep (2.69). If |En|/kBT >> 1, i.e. very low temperatures, will tanh(En/kBT ) → ±1,
depending on the sign of En. Thus, the supercurrent IS reduces to

IS(φ) =
e

~
∑
n

′ dEn
dφ

, (2.72)

where the ′ is to remind us that the sum is taken over all negative Andreev levels, En < 0
[57]. The critical current is simply IC = maxφIS(φ). Notice how there is a factor 2
difference between (2.69) and (2.72). This is because I1, I2 and I3 is based on a spinless
basis, while (2.72) is what one should use if spin is included in the basis.

2.4.2 Ginzburg-Landau approach to the Josephson Effect

Here we want to derive the Josephson effect by employing Ginzburg-Landau theory, as
presented in 2.1.2. We do this even though we have already presented the Josephson effect
in the previous section. However, we now want to illustrate Ginzburg-Landau theory in
practice and thereby develop a more thorough understanding of the Josephson effect.
Adapted from [58].

Recall Equation (2.9),

ξ2f ′′(x) + f(x)− f 3(x) = 0, (2.73)

where f(x) =
√

β
|α|ψ. We consider the same setup as above, where we have set two bulk

superconductors to fill x < 0 and x > L. If we assume the superconductors to be uniform
and identical in every aspect except for a relative phase difference ∆φ, we can write
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f(x) =

{
1 x < 0,

ei∆φ x > L.
(2.74)

For the normal material, we have to solve (2.73) for the boundary conditions f(0) = 1
and f(L) = ei∆φ. If we assume that the length of the junction is much smaller than the
coherence length for the electrons, i.e. L << ξ, will the first term in (2.73) dominate,
unless ∆φ = 0 and we have a trivial solution, so that it is sufficient to solve f ′′(x) = 0.
This has the solution

f(x) =
ei∆φ

L
x+

L− x
L

. (2.75)

One could think of this as ”leakage” of wavefunctions into the normal material. Setting
A = 0, the second GL-equation reads

j(x) = −i e
∗~

2m∗
(ψ∗(x)ψ′(x)− φ(x)(ψ′(x))∗) . (2.76)

Insertion of (2.75) into (2.76) gives the current density

jS = j(x) =
e∗~|α|
m∗Lβ

sin(∆φ) = jc sin(∆φ). (2.77)

The current is just the integration of jS over the cross-sectional area of the normal
material. Since jS is independent of position this is just

IS = IC sin(∆φ), (2.78)

where IC = e∗~|α|A
m∗Lβ

is the critical current supported by the junction, and A the cross-
sectional area. We see that IS depends on the phase difference between the two su-
perconductors with a sin-behaviour. We have here assumed no electrical fields in the
junction, resulting in a time-independent current density through the junction, only sus-
tained by the phase difference. This is called the DC Josephson effect. If a DC voltage
V is applied across the junction, the phase φ is modified to φ→ φ(t) = φ0− e∗

~ V t, where
φ0 is the original phase difference. This is called for the AC Jospehson effect.

The extended SNS-junction

Just as the phase in the AC Josephson effect is affected by the electric potential, so
can the magnetic potential A affect the phase. For a pure gauge field, where only A is
affecting the electrons, the phase change is shifted to include a position-dependent part.
The gauge-invariant phase difference is given by

φ→ φ(r) = φ0 +
2π

Φ0

∫ 2

1

A · dl, (2.79)

where Φ0 = hc/2e is the (superconducting) flux quantum and 1 and 2 refers to the
two superconductors. For a single planar Josephson junction, as shown in Figure 2.9,
penetrated by a magnetic field in the y-direction,

A =


−Hxe−(z−a/2)/λL a/2 < z,

−Hx −a/2 < z < a/2,

−Hxe(z+a/2)/λL z < −a/2,
(2.80)
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a characteristic pattern for the critical current as a function of the magnetic flux Φ
appears, as mentioned in Chapter 1. Let us show this.

Figure 2.9: Illustration of an extended SNS-junction with the magnetic field H in the y-
direction. The extension of the junction in the z-direction, a and the London penetration
length λL are also indicated. Adopted from [41]

The phase difference acquired when crossing the junction, starting at z = −∞ and
going to z =∞ is

∆φ(x) = φ0 +
2π

Φ0

∫ ∞
−∞

Adz, (2.81)

where

∫ ∞
−∞

Adz =−Hx

(∫ −a/2
−∞

e(z+a/2)/λLdz +

∫ a/2

−a/2
dz +

∫ ∞
a/2

e−(z−a/2)/λLdz

)
=−Hx

((a
2
−
(
−a

2

))
+ ea/2λLλL

(
e−a/2λL − e−∞ −

(
e−∞ − e−a/2λL

)))
=−Hx (a+ 2λL) .

(2.82)

We can find the current though a rectangular junction with sides Lx and Ly by integrating
(2.77) with (2.81) for the phase difference over the rectangular area. We do this by setting

α = 2πH(a+2λL)
Φ0

for convenience and preforming the integral in two dimensions.
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I =

∫ Ly/2

−Ly/2

∫ Lx/2

−Lx/2
jx dxdy = jCLy

∫ Lx/2

−Lx/2
sin(∆φ(x))dx

=jCLy

∫ Lx/2

−Lx/2
sin(−αx+ φ0) = jCLy

Lx
Lx

(
2

α
sin

(
αLx

2

)
sin(φ0)

)

=IC0

sin
(
π Φ

Φ0

)
π Φ

Φ0

sin(φ0),

(2.83)

where IC0 = jCLxLy and Φ = H(a+2λL)Lx is the magnetic flux penetrating the junction
(and the tiny area into the superconductors, thereby 2λL). The critical current now has
the form

IC = IC0| sin(πΦ/Φ0)/πΦ/Φ0|, (2.84)

which demonstrates the Fraunhofer pattern (sin(x)/x), earlier described, in the critical
current for rectangular junctions, see Figure 2.10.

Figure 2.10: Illustration of the normalised Fraunhofer pattern in the critical current
plotted as a function of the magnetic flux Φ.

2.5 Spin-Orbit-Interaction

This section will introduce the effect called Spin-Orbit Interaction (SOI), or spin-orbit
coupling, and will mainly be adopted from [59].

SOI is an interaction between the spin and the orbital angular momentum of a parti-
cle. It is a relativistic effect usually conceptualised in two ways: symmetry-independent
SOI, which exists in all crystals and stems from SOI in atomic orbitals, and symmetry-
dependent SOI, which exists only in crystals without inversion symmetry. The symmetry-
independent SOI is comparably much smaller than the symmetry-dependent one, and can
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therefore be neglected for many systems. Asymmetry features prominently in semicon-
ductor heterostructures, therefore justifying a short overview of this type of SOI in this
section. The effect arises from an expansion of the Dirac equation to second order in
1
c
. This second order expansion is the most important correction to the non-relativistic

Schrodinger-Pauli equation (which includes the Zeeman interaction). The full expansion,
with B 6= 0, reads

{ p̂2

2m
+V+

e~
2m

σ·B− e~
4m2c2

σ·(p̂×E)− e~2

8m2c2
∇·E− p̂4

8m3c2
− e~p̂2

4m3c2
σ·B−e

2~2B2

8m3c2

}
ψ = Eψ.

(2.85)
We have, from the left, the non-relativistic kinetic energy, the potential term, the Zeeman
term, SOI, the Darwin term (introduces a small energy shift) and higher order corrections
to both the kinetic energy and the Zeeman term. Here m is the free electron mass, ~ is
Planck’s constant, c is the speed of light, σ is the Pauli spin vector, p̂ is the momentum
operator, e is the elementary charge, E is the electric field and B is the magnetic field.
The Hamiltonian for SOI, with the electric field E = 1

e
∇V and spin S = ~

2
σ, then reads

ĤSO = − e~
4m2c2

σ · (p̂× E) = − 1

2m2c2
S · (p̂×∇V ). (2.86)

For an atom with spherically symmetric V (r), we can use that the orbital angular mo-
mentum is L̂ = r× p̂ to get

HSO = − 1

2m2c2
S · (p̂× dV

dr
r̂) =

1

2m2c2

1

r

dV

dr
S · L̂ = λSOS · L̂. (2.87)

This explains the terminology ”spin-orbit”, even though the concept is more general,
whenever a charged particle moves in an electric field there will be interaction between
the spin and the momentum.

A different way to interpret this is to consider the electron in its rest frame. By doing
a Lorentz transformation from the reference frame of the electron moving with v to the
electron rest frame, as described in Figure 2.11, the electric field spawns an effective
magnetic field,

Beff = −1

2
v × ε

c2
, (2.88)

where the fraction 1/2 is from the Thomas precession. Precession here means a change
in the orientation of the rotation axis for a rotating object [60].

In this frame, this effective field couples to the spin through the Zeeman effect, yielding

HSO =
1

2
gµBBeff(k) · σ, (2.89)

where g is the gyromagnetic factor and µB is the Bohr magneton. In the absence of an
external magnetic field, time reversal symmetry requires Beff(−k) = −Beff(k), which one
can see from the fact that the time reversal symmetry operator T flips the wave vector
k → −k, time t → −t and the spin σ → −σ. Inversion symmetry in space requires
Beff(−k) = Beff(k). These in combination would imply Beff(k) = 0. Thus, for a three-
dimensional system, Beff(k) would only be present with a broken inversion symmetry.
Examples are inversion asymmetry in, for example, 3D-crystals or asymmetry in the
confinement potential for a 2D-systems. These different sources of asymmetry are called
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Figure 2.11: Illustration of electron in movement and in rest frame in the presence of an
electric field E.

bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA), respectively.
Unlike, for example, diamond structures like Si and Ge, zinc-blende structures, like GaAs
and InAs, have BIA, leading to the so-called Dresselhaus SOI. To the lowest order in k,
the SOI in the bulk is described by

HD = γ(σxkx(k
2
y − k2

z) + σyky(k
2
z − k2

x) + σzkz(k
2
x − k2

y)), (2.90)

where σi and ki are components of the Pauli spin vector and wavevector, respectively. γ
is a material constant with values γ ≈ 27 eVÅ3 for both GaAs and InAs [61]. For the
case of a quasi-2D electron gas hosted by such a semiconductor, we can integrate out the
z-dependence of (2.90) by replacing kz and k2

z with their expectation values.
〈
kz
〉

will
have to be zero, since the electrons are confined in the xy-plane and do not have average
movement in the z-direction.

〈
k2
z

〉
, on the other hand, has a non-zero value. One can

see this by realising
〈
k2
z

〉
will be part of the energy expectation value, which is non-zero

from the uncertainty principle. We then get

HD = β(σyky − σxkx) + γkxky(σxky − σykx), (2.91)

where β = γ
〈
k2
z

〉
, which roughly equals γπ2

d2 [61], where d is the width of the confinement.
For strong confinement, i.e. close to a real 2D-systems, the BIA can be accounted for by
only using the first term, linear in k.

If the confinement potential in the growth direction of the heterostructure is not
symmetric, i.e. there is SIA, we have another coupling term. This is the so-called Rashba
term, which to the lowest order in k and E is written as

HR = Λσ · k× E = −Λ|E|σ · ẑ × k = α(σxky − σykx), (2.92)

with E = (0, 0, |E|) and where Λ is a material-specific constant. The parameters α
and β describe the strength of the Rashba and Dresselhaus SOI, respectively. β is a
comparatively easy-to-find material constant, while α has attracted a lot of research
interest, being much more difficult to predict.

As an ending remark, we note on how SOI can have a spin splitting effect on the
energy bands, even for zero magnetic field. This can be because of both BIA and SIA,
as well as contributions from the atomic core to the SOI.
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3 — Andreev Reflection and 1D SNS-
junctions

This chapter will focus on understanding and using the Andreev reflection, as well as
introducing the concept of a ballistic 1D nanowire (NW). Section 3.1 will present our
assumptions and describe the system we are investigating, which is a 1D NW sandwiched
between two superconductors, i.e. a SNS-junction. Section 3.2 will employ wavefunctions
and the BdG-formalism to derive the Andreev reflection coefficients at the NS-interfaces.
We will additionally show how to employ these results to derive the supercurrent through
the junction and discover the sinus-form of the supercurrent. Section 3.3 will repeat the
same calculations, but now including electron spin and a finite Zeeman effect in each part
of the junction. It will also illustrate how electrons with spin up couples to holes with
spin down and vice versa, and how this follows naturally from the BdG-equation. The
SOI will be introduced in Section 3.4 and a method of combining it with the magnetic
field is developed, resulting in an equation for the energy levels. At the end, Section 3.4.3
will present the result of this equation and a way to probe for effects from magnetic fields
and SOI. The understanding of NW’s and Andreev reflection will serve as a basis for an
expansion into a 2D-system, which will be the theme of the next chapter.

3.1 Assumptions and system description

The system that will be considered in this chapter is a SNS-junction at zero temperature.
Typical normal materials for use in experiments are insulators or semiconductors. Here,
we will treat the NW as a purely 1D object, which supports a single transport mode. In
experiments, however, they are usually realised as quasi-1D objects. [62]. We will further
assume complete ballistic behaviour, i.e. impurity-free wires. This means that the size
of the normal region (N-region) L, as shown in Figure 3.1, is smaller than the electronic
mean free path, le, L � le. The ballistic behaviour, together with the 1D NW’s, imply
that we can safely disregard angle-dependence in the trajectories of the electrons and
only focus on one direction, which we choose to be the x-direction. Thus, electrons will
follow well-defined trajectories.

We will have to make a few assumptions about the superconductors. The first assump-
tion is that the superconducting (SC) components (SL and SR) are identical, meaning
the gap function ∆ and critical temperature TC are equal, |∆L| = |∆R| and TCL = TCR.
Here L and R refers to the left superconductor and the right superconductor, respectively,
with respect to the N-region. However, we keep a phase difference between the two gap
functions. If we also, for simplicity, assume that ∆ changes abruptly at the interfaces,
we can write it as a function of position,
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∆(x) =


|∆|eiφL x < 0,

0 0 < x < L,

|∆|eiφR x > L,

(3.1)

where φL and φR indicates the phase of the left and right superconductors, respectively.

Figure 3.1: Illustration of a SNS-junction, indicating the two superconductors, L and R,
with their respective pairing potentials. Transmission of a Cooper pair from the left SC
to the right SC is indicated.

Throughout this thesis, we will focus on bound states in the subgap regimé, E < |∆|,
where we further assume that the Fermi energy (or chemical potential, µ) is by far
the largest energy value in the system (i.e. µ >> E, |∆|). This is the semiclassical
approximation, where the Fermi wavelength λF of the electrons is the smallest length
scale in the problem. States with these energies cannot propagate in the superconductor,
so excitations travelling in the N-region towards a NS-interface are therefore Andreev-
reflected back. These excitations are then localised in the N-region and form Andreev
bound states, with discrete energy levels En mediated by the Andreev reflections. We
could, of course, also calculate for E > |∆|, i.e. the unbound solutions. However, states
with these energies do not have as strong dependence on the phase difference between
the superconductors as the bound states, and will thus not contribute as strongly to the
Josephson current. In fact, in the short-junction limit, the continuous spectrum from the
unbound solutions will not contribute to the supercurrent at all [56].

If the N-region were to be filled with a semiconductor, an useful modelling of the
band structure would be to simplify the band structures by modelling the behaviour
of a free particle, but with an effective mass m∗. This effective mass represents the
interaction between the particle and the crystal potential, in such a way that we can
interpret the particle as moving freely, but with an enhanced or diminished mass. We
will use throughout the rest of this thesis m for the mass. However, because of what
we just noted above, our result is also valid for solids with band structure, if we were to
change m to m∗.

3.2 No fields

This section will focus on the SNS-junction with no external fields. We will start off
by considering the general solutions of the BdG-Hamiltonian (2.65) in the normal and
the superconducting regions separately in Section 3.2.1. In Section 3.2.2 we will match
the wavefunctions and their derivatives across the NS-interfaces to derive the Andreev
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reflection coefficients, which represent the phase acquired by an electron reflected into a
hole and vice versa. In Section 3.2.3, these coefficients will be used to find the energy
levels of the SNS-junction and the resulting supercurrent.

3.2.1 Solutions to the BdG-equation

The Hamiltonian for this system is that of a free particle, Ĥ = p̂2

2m
= − ~2

2m
∂2

∂x2 , everywhere.
The BdG-equation (2.65) then becomes(

− ~2

2m
∂2

∂x2 − µ ∆

∆∗ ~2

2m
∂2

∂x2 + µ,

)
Ψ = EΨ. (3.2)

Let us start with a wavefunction ”deep” in the N-region. It has to be a superposition
of electron and hole excitation types, travelling in one direction. So, given an excitation
travelling to the right, we have [63]

Ψ(x) = Aeikex
(

1
0

)
+Be−ikhx

(
0
1

)
, (3.3)

written in a spinor representation

(
u
v

)
, where u and v corresponds to particles and holes,

respectively. We have suppressed spin components, since when there are no fields, spin
up and down will act in the same way. Notice how the hole state has a negative sign
with the wavenumber even though it travels in the positive direction. This is because
wavevectors for holes have opposite sign compared to electrons, which count in the posi-
tive direction, as explained in Section 2.2. Inserting our expression for Ψ into (3.2) will
give us the wavenumber ke and kh for the electron and hole in the N-region, respectively.
Remembering that ∆(x) = 0 in the N-region yields

k2
e =

2m

~2
(µ+ E), k2

h =
2m

~2
(µ− E). (3.4)

We stress again, for electrons we define the positive solution as travelling from left to
right and negative solution as right to left. The opposite is true for holes, as already
noted. Now, the wavefunctions in the superconducting region (SC-region) can be written
in a general form

Ψ(x) =
∑
n

eiλnx
(
un
vn

)
. (3.5)

Insertion into (3.2) leaves(
~2λ2

n

2m
− µ− E ∆

∆∗ −~2λ2
n

2m
+ µ− E

)(
un
vn

)
= M̂

(
un
vn

)
= 0, (3.6)

for a specific n. Non-trivial solutions for a matrix system like (3.6) are guaranteed if
the determinant of the system matrix (e.g. M) is zero. Thus, we can require that

det
(
M̂
)

= 0, which gives us

λ2
n =

2m

~2
(µ± i

√
|∆|2 − E2). (3.7)
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Figure 3.2: Illustration of the wavefunctions in a SNS-junction, with the evanescent
wavefunctions in the superconductors indicated.

Now, we need the waves in the SC-region to attenuate exponentially, since we do not
allow for solutions in the superconductors, as illustrated in Figure 3.2.
From (3.7), we observe the following behaviour for ΨSC :

+λ+ decays for x > 0,

−λ− decays for x > 0,

−λ+ decays for x < 0,

+λ− decays for x < 0.

(3.8)

Here, n has become ± and ±λ refers to the positive or negative solutions. Thus, we
have two wavevectors for each superconductor that will make the waves evanescent, and
therefore specific wavefunctions for each superconductor, ΨSCL(x) for x < 0 and ΨSCR(x)
for x > 0.

3.2.2 Andreev reflection coefficients

We now want to investigate and derive the Andreev reflection coefficient for electrons
to holes, rhe. Starting out with an electron incident on the left NS-interface from the
N-region, as in Figure 3.3, we write the wavefunction to the right of the interface as a
superposition of incident and reflected parts,

ΨN(x) = e−ikex
(

1
0

)
+

(
reee

ikex

rhee
−ikhx

)
, (3.9)

where the first and second part is the incident and reflected part, respectively. ree and
rhe is the reflection coefficient for normal reflection (electron to electron) and Andreev
reflection (electron to hole), respectively.
The wavefuction to the left of the interface will be of the form

ΨSCL(x) = e−iλ+x

(
u+

v+

)
+ eiλ−x

(
u−
v−

)
. (3.10)

The relations between the coefficients u± and v± can be found by insertion of (3.10) into
(3.6), and reads

v± =
|∆|e−iφL

E ± i
√
|∆|2 − E2

u±. (3.11)

For convenience, we define γ = |∆|
E+i
√
|∆|2−E2

, so that we can write
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S N

incident

normal reflection

Andreev reflection

x = 0

Figure 3.3: Illustration of an electron incident on the left NS-interface (x = 0). Normal
reflection with probability |ree|2 and Andreev reflection with probability |rhe|2.

ΨSCL(x) = u+e
−iφLe−iλ+x

(
eiφL

γ

)
+ u−e

−iφLeiλ−x
(
eiφL

γ∗

)
= Ae−iλ+x

(
eiφL

γ

)
+Beiλ−x

(
eiφL

γ∗

)
,

(3.12)

where we have defined A = u+e
−iφL and B = u−e

−iφL . Employing the continuity condi-
tions for wavefunctions at the interfaces, for ΨN and ΨSC1, we end up with a system of
equations [64], (

AeiφL +BeiφL

Aγ +Bγ∗

)
=

(
1 + ree
rhe

)
. (3.13)

It is worth noting that, since ∆(x) changes abruptly at the interfaces, we should not
directly match derivatives at the interfaces, but rather use [64]

lim
ε→0

∫ ε+

ε−
(H − E)ψ(x)dx = 0. (3.14)

In this case, (3.14) reduces to just matching derivatives, however, it is worth to keep in
mind as a general note. We thus get(

−λ+Ae
iφL + λ−Be

iφL

−λ+Aγ + λ−Bγ
∗

)
=

(
−ke + keree
−khrhe

)
. (3.15)
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Therefore, we have four equations, (3.13) and (3.15), and four unknown coefficients,
A,B, ree, rhe. Solving the equations and expanding the coefficients in series of 1

µ
, allows

us to neglect all higher orders than the first one and we end up with

A =
1

4

(4i
√
|∆|2 − E2µ+ 4Eµ+ |∆|2)e−iφL + 4µ(E + i

√
|∆|2 − E2)O

(
1
µ2

)
(E + i

√
|∆|2 − E2)µ

, (3.16)

B =
1

4

−i
√
|∆|2 − E2e−iφL + Ee−iφL + 4µO

(
1
µ2

)
µ

, (3.17)

ree =
1

2

2µ(E + i
√
|∆|2 − E2)O

(
1
µ2

)
+ |∆|2

(E + i
√
|∆|2 − E2)µ

, (3.18)

and

rhe =
1

2

|∆|(E + 2µ)(E + i
√
|∆|2 − E2)e−iφL + 4µ

(
iE
√
|∆|2 − E2 + E2 − |∆|

2|
2

)
O
(

1
µ2

)
(E + i

√
|∆|2 − E2)2µ

.

(3.19)
This was possible because µ� E, |∆| (”the semiclassical approximation”). However, we
can find even simpler forms for ree and rhe. This means that if the chemical potential is
by far the largest energy scale in the system, we have

ree = 0, rhe = γe−iφL , (3.20)

i.e. the normal reflection is completely absent and all we are left with is the Andreev
reflection. Thence, the electron is transformed completely into a Cooper pair at the
interface and reflects a hole. Here it is appropriate to find a more suitable form of γ.
First, we note that

e±i arccos(x) = x± i
√

1− x2.

Then, we rewrite γ so that we have

γ−1 =
E + i

√
|∆|2 − E2

|∆|
=

E

|∆|
+ i

√
1− E2

|∆|2
= ei arccos( E

|∆|), (3.21)

and we get

γ = e−i arccos( E
|∆|) (3.22)

Thus, the Andreev reflection coefficient on the left interface becomes

rhe = e−i arccos( E
|∆|)e−iφL (3.23)

We can do the same for the right interface. The set-up will be exactly the same, just
with different signs for the wavevectors, since the electrons and holes are travelling in the
opposite directions, and ΨSC2 as the wavefunction for the superconductor. The result is
exactly the same, just with L→ R. It is here worth to note that we have a free choice of
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coordinate system. This means that, when calculating for the right interface, we can also
place this interface at x = 0. It is only after we define two interfaces relative to each other
that we need two fixed coordinates. For incoming holes, the set-up is again the same,
just with the first equation of (3.6) to find an expression for u± expressed via v±, and we
end up with reh = γe+iφL/R , i.e. hole to electron. The Andreev reflection coefficients for
the four different situations, incoming electron/hole and L/R interface, are subsequently

rhe = e−i arccos( E
|∆|)e−iφL/R , reh = e−i arccos( E

|∆|)e+iφL/R . (3.24)

This result is extremely important for our calculations of the currents in SNS-junctions,
so we again stress the notation; rhe is the reflection from electrons to holes, reh is the
reflection from holes to electrons.

3.2.3 Energy levels and supercurrent

Now that we have found the Andreev reflection coefficients we can start to construct a
localised state in the SNS-junction. Assuming that E < |∆|, a particle moving to the left
through the N-region will be Andreev reflected back from the NS-interface at x = 0 as a
hole. This reflection will be total as long as we keep our assumption of large µ. The hole
will then move back through the N-region to the right NS-interface at x = L, where it
will be Andreev reflected back as an electron. This will then move back again to the left
and so on. The situation is shown in Figure 3.4. It will thus be a bound state localised
in the N-region, which we refer to as an Andreev bound state.

S S
N

e

h

Figure 3.4: Conceptual illustration of the electron path considered. An electron travels
to the left, is Andreev reflected back as a hole, travels back again and is Andreev reflected
back again as an electron.

The wavefunction in the N-region now has to read

ΨN(x) = C

(
e−ikex

rhee
−ikhx

)
=

(
fe(x)
fh(x)

)
, (3.25)

due to the Andreev reflection at the left interface, where C is a normalisation constant.
At x = L, the two amplitudes in the wavefunction are related as

reh =
fe(L)

fh(L)
, (3.26)

due to Andreev reflection at the right NS-interface. We so get
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e−2i arccos( E
|∆|)eiφRe−iφL = e−i(ke−kh)L ⇒ e−2i arccos( E

|∆|)e−iφei(ke−kh)L = 1 = e2πin,
(3.27)

where n ∈ Z. φ ≡ ∆φ = φL − φR is the phase-difference between the two superconduc-
tors. This is an example of the Bohr-Sommerfeld quantisation condition, namely that
if the bound state corresponds to a closed quasiparticle trajectory, then the total phase
accumulated during one cycle must be a multiple of 2π. In order to evaluate ke − kh,

we again linearise assuming large µ, leaving ke − kh =
√

2m
~2µ
E = 2E

~vF
, where vF =

√
2µ
m

,

which is the Fermi velocity in the N-region. For electrons travelling from the left to the
right, we have the same equations, just with L→ R for reh and R → L for reh meaning
φ→ −φ. Thus, the resulting bound state energies become

E±n =
~vF
L

[
(πn+ arccos

(
E

|∆|

)
∓ φ

2
)

]
, (3.28)

where the upper sign corresponds to electrons moving from the left to the right and the
lower sign to excitations from the right to the left. If we now concentrate on the short-
junction limit, we can assume 2E

~vF
L → 0. The energy can then be written out explicitly

as

E = ±|∆| cos

(
φ

2

)
. (3.29)

In addition, equation (2.72) will give us the supercurrent through the 1D NW, i.e.

IS(φ) =
e

~
∑
n

′ dEn
dφ

, (3.30)

where the apostrophe is to remind us that the sum is taken over all negative Andreev
levels, En < 0.

The energy levels, or the Andreev levels, constitute the Andreev spectrum and is
presented in Figure 3.5 a). The supercurrent is presented in Figure 3.5 b). This is in
agreement with the zero temperature cases from the litterature [65].

We end this section by noting that our system possesses spin degeneracy. Thus, the
supercurrent we calculated here is actually only half of what it should be.

3.3 Magnetic field

This section will focus on the SNS-junction with a magnetic field B, where we choose
the z-direction along this magnetic field. We will start off with a short discussion on the
effects of B. The BdG-Hamiltonian will so be written out in detail. In Section 3.3.2, we
will derive the Andreev reflection coefficients, and explicitly show how spin up and spin
down down are connected, before we use these coefficients in Section 3.3.3 to find the
energy levels of the SNS-junction and the supercurrent that can be maintained.

3.3.1 BdG-equation

With the introduction of a magnetic field, B, there will be some new changes in our
description of the system. For example, in general, a magnetic field will introduce a shift
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Figure 3.5: Analytical solution for a) the Andreev spectrum in a 1D NW as a function
of φ and b) the resulting supercurrent for an intervall [−2π, 2π] with no fields.

in the momentum operator p̂, from p̂ = ~
i
∇ to p̂ = ~

i
∇− qA, where A is the magnetic

potential. However, to simplify, we will neglect this magnetic potential shift. This means
that we do not care about the magnetic action on the particle trajectory, which is justified
for a 1D NW. Up until now spin has been disregarded since it had no effect on the
result, apart from a factor of 2 in the supercurrent. This fact will change due to the
introduction of B, as particles with different spin will behave differently according to
their spin orientation. We choose a basis such that our spinor becomes four-dimensional,
spin up and down for electrons and spin down and up for holes, {Ψ†↑,Ψ

†
↓,Ψ↓,−Ψ↑}. The

spinor thus reads ψ =
(
u↑, u↓, v↓,−v↑

)T
. u↑ (u↓) and v↑ (v↓) corresponds to electrons

with spin up (down) and holes with spin up (down), respectively. The spin quantisation
axis is chosen along the magnetic field, i.e. the z-direction.

The spin effect is felt by the particles through a pure quantum mechanic phenomenon
called the Zeeman effect, with Hamiltonian

ĤZ =
1

2
gµBB · σ. (3.31)

Here, g is the gyromagnetic factor, or just g-factor, µB = e~
2m

is the Bohr magneton, e is
the elementary charge, B is the external magnetic field and σ = (σx, σy, σz) is the Pauli
spin vector. The g-factor is, in general, material dependent, so we choose g to be position
dependent, i.e.

g(x) =

{
gN for 0 < x < L,

gS otherwise.

It is worth noting that the normal materials often are made of materials with large
g-factor. In this way they have a strong Zeeman effect while preserving the superconduc-
tivity, i.e. the magnetic field does not surpass the critical magnetic field. We have the
following position dependent expression for the Zeeman part of the Hamiltonian,

HZ = EZ(x)σz, (3.32)

where EZ(x) = |B|µB
2
g(x).
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With our choice of basis, our BdG-equation will be (2.66), as described in Section 2.2.
The time-reversal operator changes the expression for HZ , by setting σ → −σ, so that
we have

H =

(
H0 +HZ − µ ∆

∆∗ −(H0 −HZ − µ)

)

=


p̂2
x

2m
+ EZ(x)− µ 0 ∆(x) 0

0 p̂2
x

2m
− EZ(x)− µ 0 ∆(x)

∆∗(x) 0 − p̂2
x

2m
+ EZ(x) + µ 0

0 ∆∗(x) 0 − p̂2
x

2m
− EZ(x) + µ

 .

(3.33)

∆ is the same as before. This Hamiltonian will decouple in our basis, as it can be seen
if we set (H−E)ψ = 0 with ψ written in our spinor representation from earlier. We will
then have two decoupled systems of equations,(

p̂2
x

2m
+ EZ(x)− µ− E ∆(x)

∆∗(x) − p̂2
x

2m
+ EZ(x) + µ− E

)(
u↑
v↓

)
= 0, (3.34)

and (
p̂2
x

2m
− EZ(x)− µ− E ∆(x)

∆∗(x) − p̂2
x

2m
− EZ(x) + µ− E

)(
u↓
−v↑

)
= 0. (3.35)

These systems couple an electron with spin up to a hole with spin down (equation (3.34))
and an electron with spin down to a hole with spin up (equation (3.35)). We see that
the Andreev reflection follows naturally from the BdG-equation, both in the case without
spin (just electron to hole) and with spin (e.g. electron with spin up to hole with spin
down).

3.3.2 Andreev reflection coefficients

Let us start out by investigating the reflection from the left NS-interface for a left-moving
electron. As illustrated in Figure 3.6, we see that it can either be normally reflected or
Andreev reflected into a hole with opposite spin.

As before, write the wavefunction ”deep” in the N-region as

ΨN(x) = Ae−ike↑x
(

1
0

)
+Beikh↓x

(
0
1

)
, (3.36)

expressed in a spinor representation

(
u↑
v↓

)
. The insertion of (3.36) into the corresponding

decoupled BdG-equation, (3.34), gives us

k2
e↑ =

2m

~2
[µ+ (E − EZ,N)] , k2

h↓ =
2m

~2
[µ− (E − EZ,N)] , (3.37)

where EZ,N = gNµBB
2

and B = |B|. Let us write the wavefunction in the SC’s as we did
before, namely Ψ =

∑
n e

iλnψn. Insertion into (3.34) and the condition for a non-trivial
solution for the matrix-equation will give
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S N

Figure 3.6: Illustration of an electron with spin up incident on the left NS-interface
(x = 0). Normal reflection with probability |r↑↑ee |2 and Andreev reflection into a hole with
opposite spin with probability |r↓↑he|2.

λ2
n,1 =

2m

~2

[
µ± i

√
|∆|2 − (E − EZ,S)2

]
, (3.38)

where n = ± and EZ,S = gSµBB
2

. We label this with 1 for the first of the two decoupled
BdG-equations. Equation (3.35) gives us

λ2
n,2 =

2m

~2

[
µ± i

√
|∆|2 − (E + EZ,S)2

]
. (3.39)

If we assume that |∆| > E ± EZ,S, the wavefunctions in the SC’s will have the same
evanescent behaviour as before. Thus, if we focus on the electron spin up and hole spin
down, we write the wavefunction in the left SC as

ΨSCL = e−iλ+,1x

(
u+,↑
v+,↓

)
+ eiλ−,1x

(
u−,↑
v−,↓

)
. (3.40)

Proceeding as in Section 3.2.2, we insert (3.40) into (3.34) to find a correlation between
the coefficients. We end up with

ΨSCL = Ae−iλ+,1x

(
eiφL

α

)
+Beiλ−,1x

(
eiφL

α∗

)
, (3.41)

where α = |∆|
(E−EZ,S)+i

√
|∆|2−(E−EZ,S)2

. The wavefunction to the right of the left interface

is

ΨN = e−ike↑x
(

1
0

)
+

(
r↑↑eee

ike↑x

r↓↑hee
−kh↓x

)
, (3.42)
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Again, we proceed as in Section 3.2.2. Connecting the wavefunctions at the interface
with continuity conditions, solving the subsequent equations and expanding in series of
1
µ

will, in the end, give us

A =
1

4

1

µ(E − EZ,S + i
√
|∆|2 − (E − EZ,S)2)

(
(
i(4µ− EZ,N + EZ,S)e−iφL + 4iµO

(
1

µ2

))√
|∆|2 − (E − EZ,S)2

+ (−E2
Z,S + (E − 4µ+ EZ,N)EZ,S + 4Eµ− EEZ,N + |∆|2)e−iφL + 4µ(E − EZ,S)O

(
1

µ2

))
,

(3.43)

B =
1

4

1

µ(E − EZ,S + i
√
|∆|2 − (E − EZ,S)2)

(
(
i(EZ,N − EZ,S)e−iφL + 4iµO

(
1

µ2

))√
|∆|2 − (E − EZ,S)2

+ (−E2
Z,S + (E + EZ,N)EZ,S − EEZ,N + |∆|2)e−iφL + 4µ(E − EZ,S)O

(
1

µ2

))
,

(3.44)

r↑↑ee =
1

2

1

µ(E − EZ,S + i
√
|∆|2 − (E − EZ,S)2)

(
2

(
i
√
|∆|2 − (E − EZ,S)2 + E − EZ,S

)
µO
(

1

µ2

)
− E2

Z,S + (E + EZ,N)EZ,S − EEZ,N + |∆|2
)
,

(3.45)

and

r↓↑he =
1

2

1

µ
(
E − EZ,S + i

√
|∆|2 − (E − EZ,S)2

)2

(
(
i|∆|(E + 2µ− EZ,N)e−iφL + 4iµ(E − EZ,S)O

(
1

µ2

))√
|∆|2 − (E − EZ,S)2

+ |∆|(E − EZ,S)(E + 2µ− EZ,N)e−iφL + 4µ

(
−|∆|

2

2
+ (E − EZ,S)2

)
O
(

1

µ2

))
.

(3.46)

We see that the reflection coefficients reduce to

r↑↑ee = 0, r↓↑he = αe−iφL = e
−i arccos

(
E−EZ,S
|∆|

)
e−iφL , (3.47)

i.e. we have complete Andreev reflection if µ is the by far the largest energy value, as we
had before.

Let us also quickly investigate an incident electron with spin down on the left interface.
Again, write the wavefunction ”deep” in the N-region as
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Ψ(x) = Ae−ike↓x
(

1
0

)
+Beikh↑x

(
0
1

)
, (3.48)

expressed in a spinor representation

(
u↓
−v↑

)
. This gives

k2
e↓ =

2m

~2
[µ+ (E + EZ,N)] , k2

h↑ =
2m

~2
[µ− (E + EZ,N)] . (3.49)

The wavefunction in the SC-region is

ΨSCL = Ae−iλ+,2x

(
−eiφL
β

)
+Beiλ−,2x

(
−eiφL
β∗

)
, (3.50)

where β = |∆|
(E+EZ,S)+i

√
|∆|2−(E+EZ,S)2

. Solving as before leaves

r↓↓ee = 0, r↑↓he = βe−iφL = e
−i arccos

(
E+EZ,S
|∆|

)
e−iφL . (3.51)

We can do the same calculations for incident holes, following the derivation outlined
above, and in total we have

r↓↑he = e
−i arccos

(
E−EZ,S
|∆|

)
e−iφL/R , r↑↓he = e

−i arccos
(
E+EZ,S
|∆|

)
e−iφL/R , (3.52)

and

r↑↓eh = e
−i arccos

(
E−EZ,S
|∆|

)
eiφL/R , r↓↑eh = e

−i arccos
(
E+EZ,S
|∆|

)
eiφL/R . (3.53)

If we would assume bulk superconducting contacts instead of one-dimensional wires, one
expects them to expel all magnetic fields in principle. In this case, we could consider the
situation where the Zeeman splitting inside the SC’s vanishes, EZ,S = 0, and we retrieve
(3.24).

3.3.3 Energy levels and supercurrent

To find the bound state energies, we follow the same procedure as before. For an electron
with spin up, we have

f ↑e (L)

f ↓h(L)
= r↑↓eh ⇒ 2πn = 2

E − EZ,N
~vF

L− 2 arccos

(
E − EZ,S
|∆|

)
∓ φ, (3.54)

where n ∈ Z. For an electron with spin down, we have a similar expression,

f ↓e (L)

f ↑h(L)
= r↓↑eh ⇒ 2πn = 2

E + EZ,N
~vF

L− 2 arccos

(
E + EZ,S
|∆|

)
∓ φ, (3.55)

where −φ and +φ refers to left- and right-moving, respectively. We assume bulk super-
conductors, in which we have EZ,S = 0, so that the energy can be written as

πn =
E{±}EZ

~vF
L− arccos

(
E

|∆|

)
∓ φ/2, (3.56)

where the energy split from the Zeeman effect is expressed through EZ = EZ,N . The
curly parentheses is supposed to indicate that the ∓EZ belongs to both signs for φ. If
we further assume the short junction limit, so that EL

~vF
→ 0, we are left with
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E = ±|∆| cos (φ{±}εZ) , (3.57)

where εZ = EZL
~vF

is a magnetic field parameter. The Zeeman term is allowed to remain,
because EZL can be large due to a potentially very large g-factor.

Figure 3.7: a) Analytical solution for the Andreev spectrum in a 1D NW as a function of
φ. The magnetic field parameter εZ is indicated. Solid line is the positive cosine-solution,
broken is the negative solution. b) Supercurrent through the junction for different εZ .

Figure 3.7 a) shows the Andreev spectrum for six different values of εZ . When εZ = 0
we recover the result of Section 3.2. However, when εZ 6= 0, we observe the Zeeman effect,
where the energy bands are split according to spin orientation. Notice how an oppositely
oriented magnetic field changes which spin that increases or decreases in value. Increasing
the magnetic field results in oscillations of the bands. Figure 3.7 b) shows the resulting
supercurrent, or Josephson current, through the junction. At zero magnetic field, we
recover the current from Section 3.2, yet the absolute value of the current here is not the
same as in Section 3.2. This is a consequence of accounting for spin and spin degeneracy
in this section. The energy levels are double degenerated when no fields are applied, so,
when disregarding spin, we end up with half of the actual value for the current. Finally,
when the magnetic field is applied over the junction, we observe two kinks (or abrupt
changes) in the supercurrent, instead of only one like in Section 3.2.3, both symmetric
around φ = π, which is a consequence of lifting the spin degeneracy.

3.4 Magnetic field and Spin-Orbit Interaction

This section will focus on the SNS-junction with a magnetic field B and spin orbit in-
teraction (SOI), as introduced in 2.5. We will start off by describing the elements of
the BdG-Hamiltonian, before we simplify the BdG-equation for our situation, in Section
3.4.1. In Section 3.4.2, we will derive transmission coefficients for transmission across the
junction, where the spins are mixed as a consequence of the effective magnetic-SO field.
Further, we will solve for the energy of the Andreev bound state in the junction. Section
3.4.3 will present the energy levels and the supercurrent, displayed in a convenient way
so that we can entangle the combined effects of the SOI and the magnetic field. We base
our approach on [57].
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3.4.1 BdG-Hamiltonian

In this section, we want to investigate the Hamiltonain for a 1D NW when we have
both magnetic field and SOI, which we let be present only in the N-region. We will also
continue to neglect the vector potential shift in the momentum operator. The SOI-terms
will be simplified to the lowest order in k and can be written in a general form as

ĤSOI = kxα · σ, (3.58)

where α is the SO-field and, since we only have movement in the x-direction, we focus only
on the kx = p̂x

~ -term. We are interested in the combined effects of spin-orbit and magnetic
field, so we introduce a general magnetic field B, with the same Zeeman Hamiltonian as
introduced in Section 3.3. Choosing the same basis as in Section 3.3, we have(

Ĥ ∆

∆∗ −T ĤT †

)
, (3.59)

where

Ĥ = Ĥ0 + ĤZ + ĤSOI =

(
p̂x

2

2m
− µ

)
1̂ +

(
1

2
gµBB +

p̂x
~
α

)
· σ. (3.60)

Here, we assume that B and α equal zero outside of the N-region. Following the procedure
outlined in [66, 67], in which we are interested in the energy spectrum in a range of
energies of order |∆| around the Fermi level µ, we can simplify this Hamiltonian. We set
Ψ = e±ikF x(ψ±e , ψ

±
h )T , where ψ±e and ψ±h are envelope functions. The positive (negative)

sign refers to excitation movement in the right-going (left-going) direction for electrons
and the left-going (right-going) direction for holes. kF is the Fermi wavenumber. Since
we are interested in the spectrum around µ, we can safely assume that the envelope
functions ψ

(±)
e(h) vary over length scales much larger than k−1

F . Inserting Ψ into HΨ = EΨ

and expanding in powers of k−1
F allows us to neglect all terms except for the first order.

This last step is equivalent to neglecting quickly oscillating terms proportional to e±ikF x.
With this, Ĥ becomes

Ĥ = ∓i~vF
∂

∂x
1̂ +

(
1

2
gµBB± kFα

)
· σ. (3.61)

Keeping in mind that the time-reversal operation flips the momentum and spin operators,
we have to write

− T ĤT † = ±i~vF
∂

∂x
1̂ +

(
1

2
gµBB∓ kFα

)
· σ. (3.62)

Now, we can define effective fields, containing the magnetic field and the SO-field, in such
a way that

B±e =
1

2
gµBB± kFα, B±h =

1

2
gµBB∓ kFα. (3.63)

In total, we have

H =

(
∓i~vF ∂

∂x
+ B±e · σ ∆

∆∗ ±i~vF ∂
∂x

+ B±h · σ

)
, (3.64)

45



CHAPTER 3. ANDREEV REFLECTION AND 1D SNS-JUNCTIONS

Figure 3.8: Illustration of the magnetic field B, the SO-field α and the resulting effective
fields. θ and γ are the angles between the effective fields and B and α, respectively.

Note how B+
e = B−h and B−e = B+

h .
There are two angles defining our system, as shown in Figure 3.8. γ is the angle

between the magnetic field and the SO-field, and can be changed to investigate different
orientations of B, and θ is the angle between the effective fields. We can find an expression
for θ by preforming a dot product between B+

e and B−e , i.e.

cos(θ) =
B+
e ·B−e
|B+

e ||B−e |
=

b2
B − b2

SOI√
(b2
B + b2

SOI)
2 − 4b2

Bb
2
SOI cos2(γ)

, (3.65)

where we have defined

bB =
gµB|B|L

2~vF
, bSOI =

kF |α|L
~vF

. (3.66)

These are dimensionless parameters allowing us to easily distinguish between the effects
of the SOI and the magnetic field. They describe the number of precessions the spin
experiences while travelling across the junction, caused by SOI (bSOI) and magnetic field
(bB). Thus, we have three parameters (bB, bSOI, γ) which we can use to probe the NW
for the effects of magnetic field and SOI.

3.4.2 Andreev bound state

In this section, we want to find an expression for the energies of the Andreev bound
state. We will do so by finding transmission matrices for the N-region in the junction,
where the elements are the phases acquired by the electrons and holes when traversing
the junction. Combining this with matrices representing the Andreev reflection at the
two interfaces allows us to set up a system of equations for a bound state like the one
described in Section 3.2.3. The Hamiltonian in the N-region looks like

HN =

(
∓i~vF ∂

∂x
+ Be

(±) · σ 0

0 ±i~vF ∂
∂x

+ Bh
(±) · σ

)
. (3.67)

To find the elements of the transmission matrices, we will follow the procedure presented
in [57]. We will show it consistently for a right-moving electron and extrapolate the other
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results from that.
The BdG-equation in the N-region readsHNΨ = EΨ, where Ψ = (ψe,↑, ψe,↓, ψh,↓,−ψh,↑)T .

The transmission matrix for right-moving (R←L) electron part has to connect the wave-
functions at x = 0 and x = L,(

ψ
(+)
e,↑ (L)

ψ
(+)
e,↓ (L)

)
= teRL

(
ψ

(+)
e,↑ (0)

ψ
(+)
e,↓ (0)

)
. (3.68)

The wavefunction ψ
(+)
e (x) =

(
ψ

(+)
e,↑ (x)

ψ
(+)
e,↓ (x)

)
satisfies

∂xψ
(+)
e = i

E −B+
e · σ

~vF
ψ(+)
e ≡ f̂ψ(+)

e . (3.69)

f̂ is a 2×2-matrix in spin-space. We write it in a different form with a unitary operation
Ŝ, Ŝ†f̂ Ŝ = diag(λ+, λ−), where λ+ and λ− are the eigenvectors for spin up and down,

respectively. If we define u
(+)
e = Ŝ†ψ

(+)
e , will (3.69) become

∂xu
(+)
e = Ŝ†f̂ Ŝ(Ŝ†ψ(+)

e ) =

(
λ+ 0
0 λ−

)
u(+)
e . (3.70)

This equation can be solved for the two spin-components of u
(+)
e , giving u

(+)
e,↑ (x) = Ceλ+x,

u
(+)
e,↓ (x) = Deλ−x, where C,D = u

(+)
e,↑ (0), u

(+)
e,↓ (0). We get

(
ψ

(+)
e,↑ (x)

ψ
(+)
e,↓ (x)

)
= Ŝ

(
eλ+x 0

0 eλ−x

)(
u

(+)
e,↑ (0)

u
(+)
e,↓ (0)

)
= Ŝ

(
eλ+x 0

0 eλ−x

)
Ŝ†

(
ψ

(+)
e,↑ (0)

ψ
(+)
e,↓ (0)

)

= ef̂x

(
ψ

(+)
e,↑ (0)

ψ
(+)
e,↓ (0)

)
.

(3.71)

Comparison between (3.71) at x = L and (3.68) gives

t̂eRL = e
i
E−B+

e ·σ
~vF

L
. (3.72)

This derivation can be done for all the transmission matrices. Remember that ψ(0) =
t̂LRψ(L) and that the signs for holes refer to the opposite situations than for electrons.
All this leaves us with

t̂eLR = e
i
E−B−e ·σ

~vF
L
, (3.73)

for the left-moving electron part and

t̂hRL = e
i
E−B

(−)
h
·σ

~vF
L
, (3.74)

t̂hLR = e
i
E−B

(+)
h
·σ

~vF
L
, (3.75)

for the hole parts.
As we are free to define our quantisation axis for the spin, we make a choice and define

it along the effective field B+
e . Since we are also free to define our coordinate system, we
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can align the quantisation axis with the z-direction, i.e. B+
e · σ = |B+

e |σz. Furthermore,
we are free to define the xz-plane such that B+

e and B−e lie in the same plane. This means
we can write

B−e = |B−e |(sin(θ)x̂+ cos(θ)ẑ), (3.76)

where |B±e | =
√

B±e ·B±e . We simplify the exponentials in the t̂’s by defining θ
(±)
e/h =∣∣B(±)

e/h

∣∣L
~vF

. With our earlier observation about the effective fields, we have θ+
e = θ−h = θ+

and θ−e = θ+
h = θ−, where

θ± =
√
b2
B ± 2bBbSOI cos(γ) + b2

SOI. (3.77)

In total

t̂eRL = t̂hRL = eiεe−iθ+σz , t̂eLR = t̂hLR = eiεe−iθ−·σ, (3.78)

where ε = EL/~vF . Matrix exponentials for Pauli matrices can be expressed in a conve-
nient way, namely

eia(n·σ) = 1̂ cos(a) + i(n · σ) sin(a), (3.79)

which means that we can write all the t̂’s as 2× 2-matrices., i.e.

t̂e,hLR = eiε
(

cos(θ−)− i sin(θ−) cos(θ) −i sin(θ−) sin(θ)
−i sin(θ−) sin(θ) cos(θ−) + i sin(θ−) cos(θ)

)
, (3.80)

and

t̂e,hRL = eiε
(
e−iθ+ 0

0 eiθ+

)
. (3.81)

We can combine this into transmission matrices for the right-moving situation (RL) and
the left-moving situation (LR),

T̂RL =

(
t̂eRL 0
0 t̂hRL

)
, T̂LR =

(
t̂eLR 0
0 t̂hLR

)
. (3.82)

These transmission matrices represent the phase accumulated by a particle moving ballis-
ticly across a junction of length L. t̂e,hLR mixes the spins, since it is not diagonal. The spin
mixing is present due to not all of the effective fields aligning with the spin quantisation
axis. In contrast, the Andreev reflection matrix connects the spin up electron to spin
down hole and vice versa. The matrix reads

ÂR/L = e−i arccos( E
|∆|)


0 0 eiφR/L 0
0 0 0 eiφR/L

e−iφR/L 0 0 0
0 e−iφR/L 0 0

 , (3.83)

where L/R refers to the the left/right NS-interface.
The bound state for a given situation exists if a state returns to its initial state after

one round in the SNS-junction. We represent both of the situations described in Section
3.2.3 with
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Ψ = ÂLT̂LRÂRT̂RLΨ, (3.84)

which yields the quantisation condition

det
(

1− ÂLT̂LRÂRT̂RL
)

= 0. (3.85)

This equation is equivalent to the BdG-equation and decouples into the right-moving
electron and left-moving electron situation. This reduces to

(i sin(θ−) cos(θ)− cos(θ−)) e−iθ+ei(κ±φ) + (−i sin(θ−) cos(θ)− cos(θ−)) eiθ+ei(κ±φ)

+ e2i(κ±φ) + 1 = 0
(3.86)

where κ = 2
(
EL
~vF
− arccos

(
E
|∆|

))
. Solving (3.86) results in

EL

~vF
− arccos

(
E

|∆|

)
= πn{±}1

2
arccos(λ)∓ φ

2
, (3.87)

where

λ = cos(θ+) cos(θ−)− cos(θ) sin(θ+) sin(θ−), (3.88)

and n ∈ Z and {±} means that the ± in front of the arccos belongs to each of the signs
in front of φ. The upper sign of φ refers to the rightmoving situation and the lower sign
to the leftmoving situation. We also see that the effects of the magnetic field and SOI
are combined by the single parameter λ. In the short-junction limit, we get

E = ±|∆| cos

(
φ

2
{±}1

2
arccos(λ)

)
. (3.89)

3.4.3 Energy levels and supercurrent

In this section, we want to investigate the effects of SOI and magnetic fields in combination
on the NW. We focus on the short short-junction limit, so that we may present the
analytical solutions of (3.89).

To check our approach to the combination of magnetic field and SOI, we set bSOI to
zero. Plotting for several magnetic field strengths, we reproduce the result from Section
3.3, as seen in Figure 3.9.

Let us so turn to the combination of magnetic fields and SOI. Figure 3.10 presents
the supercurrent as a function of φ for different magnetic field strengths, with several
values of the SO-field strength and the orientation of the magnetic field, γ. We present
here three different cases for the SO-field strength, bSOI = 1 (weak SOI-regimé), bSOI = 4
(intermediate SOI-regimé) and bSOI = 9 (strong SOI-regimé). For each regimé, we have
three values of γ to exemplify the effects of the interplay between magnetic fields and
SOI.

Investigation of Figure 3.10 reveals that we will retrieve the no-fields case from Section
3.2 for all values of bSOI when B = 0. This fact is at first confusing, since SOI is supposed
to have the effect of spin splitting the energy bands, even in the absence of magnetic
fields. However, this is not the case for the Andreev bound states of SNS-junctions in the
short-junction limit [68]. Simply stated, during one ”cycle” in the SNS-junction, which
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Figure 3.9: Analytical solution of a) the Andreev spectrum in a 1D NW and b) the
supercurrent for different magnetic field strengths bB, with bSOI = 0 and γ = 0.4π.

constitutes a bound state, two electrons will be transported from one side of the junction
to the other, i.e. a Cooper pair will have been transferred from one superconductor to
the other. The electrons will have opposite k and spin (since one of them is a hole).
This means that they feel the same SOI-induced energy shift and thus no relative phase
difference develops between the two. We can conclude from this that the effect of SOI is
first important when in combination with a magnetic field.

For simplicity, let us call the different supercurrents for different bB for lines. We
observe an oscillatory behaviour in the lines for changing γ. When γ goes from 0 to π/2,
the lines will become more and more centred around φ = π. The effect is not so clear in
Figure 3.10 a)-c), but becomes clearer for stronger SO-fields, as seen in d)-i). Very large
bSOI will centre all the lines on the no-fields case. From γ = π/2 to π, the lines will relax
back out to the original position for γ = 0. In the same intervals, we observe an increase
and then a decrease, respectively, in the maximum (and minimum) values of the lines,
as the kinks in the lines move towards φ = π. This means that the slope of the lines
between the two kinks becomes less steep around γ = π/2 than for lower or higher γ. We
observe the same type of oscillatory behaviour for γ ∈ [π, 2π].

We can explain the tendency of the lines to drift towards the no-fields case at γ = π/2
by considering how this angle changes the effective fields. At γ equal to π/2, we have
B⊥α, so that the effective fields are closely mirrored around B. If bSOI is close in value
to bB, θ+ and θ− will vary enough for the lines not become very similar, as seen in Figure
3.10 a)-c). However, when bSOI becomes larger compared to bB, θ+ and θ− will become
more and more close in value, i.e. the phase acquired from the different effective fields
will start to cancel each other out. In the strong SOI-regimé, the effective fields will
almost completely cancel the effect of each other (at γ = π/2), and we are back to the
no-fields case.

For the case when γ is small, we see that we have a supercurrent strongly resembling
that of Figure 3.9, with no SOI. This is because when the SO-field and the magnetic field
almost align, the spin quantisation direction will be more or less in the same direction as
the magnetic field, and we have in effect just the Zeeman effect from earlier.

We end this chapter with a short discussion on the anomalous Josephson current.
As introduced in Chapter 1, the interplay between SOI and magnetic fields can cause
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Figure 3.10: Analytical solution the supercurrent in 1D NW with magnetic field and SO-
field for different magnetic field strengths bB. The variables are bSOI = 1 for a) γ = 0.1π,
b) γ = 0.5π and c) γ = 0.7π, bSOI = 4 for d) γ = 0.1π, e) γ = 0.5π and f) γ = 0.7π and
bSOI = 9 for g) γ = 0.1π, h) γ = 0.5π and i) γ = 0.7π.

a supercurrent to exist at zero phase difference, IS(φ = 0) 6= 0, called the anomalous
Josephson effect. Our model fails to produce such currents, as was expected. [57] did
not find an anomalous supercurrent, which the authors attributed to the fact that SOI
is caused by spin-dependent channel mixing. However, let us do a quick overview for
possible reasons for the absence of the anomalous supercurrent, as there can be several.
First, the semiclassical approximation and the absence of certain symmetries can be a
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cause for not obtaining the anomalous supercurrent [38, 40]. Furthermore, the current
was predicted when the length of the junction was larger or comparable to the coherence
length in the system. For example, a anomalous supercurrent has been derived for long
junction with a single conductance channel [69]. However, as shown in [67, 70], the
anomalous supercurrent can also be obtained in short-junction limit NW’s with SOI and
magnetic fields. This was the case with more than one conduction channel for the single
scatterer model, but also for a single conductance channel with more than one scatterer.
Thus, we attribute the absence of an anomalous Josephson current in our NW to the fact
that we considered a single conduction channel in a ballistic NW.
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4 — Toy model for a disordered 2D
SNS-junction

This chapter will develop a simple toy model to study a two-dimensional disordered
SNS-junction. As discussed in Chapter 1, such SNS-junctions can exhibit asymmetries
in the critical current as a function of the perpendicular magnetic field. The spatial
asymmetries introduced in the system by disorder is believed to play an important role
for this asymmetrical critical current [47]. For example, a strong disorder can lead to
many preferred paths across the N-region, which all come with different dynamical phase,
different phase acquired from the magnetic potential, SOI-induced spin rotation, etc. We
want to create the simplest situation to mimic this effect of disorder. This will be done
by allowing for two possible paths across the N-region, where the paths are split by
a beamsplitter. We locate the beamsplitters at the NS-interfaces to simulate disorder,
as shown in Figure 4.1. For this reason, we have enclosed magnetic flux in the area
encompassed by the two paths and thus an Aharonov-Bohm (AB) effect. The formalism
for beamsplitters, scattering matrix theory, and the formalism for transfer matrices are
introduced in Section 4.1, and are adopted from [61]. We will employ this formalism to
find the general transmission and reflection coefficients for the N-region with two paths
in Section 4.2. We will look at both symmetric (probability) injection and asymmetric
injection into the two paths. In Section 4.3, we will find expressions for these coefficients
for a few specific cases. Andreev reflection will be introduced in Section 4.4 in a procedure
to find the Andreev levels, the supercurrent IS and the critical current IC .

Figure 4.1: Illustration of two paths across the N-region. Rectangular boxes represent
the ballistic NW’s in the N-region and the triangles represent the beamsplitters located
at the NS-interfaces.
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4.1 Scattering matrix formalism

This section will cover the formalism and method of scattering matrix theory for beam-
splitters and the formalism for transfer matrices. The scattering matrix is used to relate
the outgoing and incoming waves on a beamsplitter. Our approach to the scattering ma-
trix was first introduced by Shapiro [71] in relation to Cayley trees and further developed
by Büttiker et. al. [72] in their work on quantum rings. The Büttiker formalism is able to
represent leads coupled to the ring (shown by filled triangles in Figure 4.2), varying from
complete coupling (completely transparent beamsplitter) to no coupling at all (decoupled
ring from leads).

Figure 4.2: Illustration of leads coupled to a quantum ring (at beamsplitters J). Primed
(unprimed) greek letters represent wave amplitudes of outgoing (incoming) waves. Φ is
the enclosed flux. Adapted from [61].

We want to have a relation between the outgoing amplitudes of the wavefunctions (repre-
sented by primed greek letters in Figure 4.2) and incoming amplitudes (unprimed). This
is done by relating them via a scattering matrix Ŝ,

α′ = Ŝα. (4.1)

Here α = (α, β, γ). In Figure 4.2, we have three outgoing (α′, β′, γ′) wave amplitudes
and three incoming (α, β, γ) amplitudes, making Ŝ a 3 × 3-matrix. The β’s and γ’s are
for the two paths, or arms, in the N-region, while the α’s are for the leads coupling
the two arms to the NS-interfaces. Current conservation and time-reversal symmetry
imply that Ŝ is unitary and that Ŝ−1 = Ŝ∗, respectively, so that Ŝ in general depends
on only five independent parameters [72]. Here, it is worth noting that we assume time-
reversal symmetry even in the presence of a magnetic field penetrating the junction.
We justify this by continuation of our assumption of completely 1D NW’s, meaning the
magnetic potential can be neglected in the arms. We also neglect magnetic effects in the
beamsplitters.

4.1.1 Symmetric injection

We focus first on the case where Ŝ is symmetric with respect to the two arms, i.e. the
transmission probability from the lead into each of the two arms is considered equal.
With this assumption, we reduce the number of independent parameters to three. By
further assuming that S is real, we can write Ŝ as
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Ŝ =

−(a+ b)
√
ε
√
ε√

ε a b√
ε b a

 . (4.2)

The diagonal elements represent the reflection coefficients from one arm or lead to itself.
The off-diagonal elements represent transmission from one arm or lead into another.
Unitarity of Ŝ leads to the following relations:

(−(a+ b))2 +
√
ε

2
+
√
ε

2
= 1,

√
ε

2
+ a2 + b2 = 1, 2ab+ ε = 0. (4.3)

This simplifies to

(a+ b)2 + 2ε = 1, a2 + b2 + ε = 1, 2ab+ ε = 0, (4.4)

which have four solutions,

(a1)± = ±1

2

(√
1− 2ε− 1

)
, (b1)± = ±1

2

(√
1− 2ε+ 1

)
, (4.5)

and

(a2)± = ±1

2

(√
1− 2ε+ 1

)
, (b2)± = ±1

2

(√
1− 2ε− 1

)
. (4.6)

ε represents here the coupling parameter between the lead and the arms, describing the
(equal) probability for transmission into the arms. A completely transparent beamsplitter
gives ε = 1/2 and the lead is strongly coupled to the arms. On the other hand, if
ε = 0, all electrons from the lead are completely reflected and we have no coupling
at all. Consider a wave incoming on the beamsplitter. It will be reflected back with
probability |a+ b|2 = 1−2ε and is transmitted into each of the two arms with probability
ε. If ε = 0, all electrons are reflected back, the ring is decoupled from the lead and
the transmission probability from one arm to the other is |b|2 = 1. If ε = 0.5 we have
a complete coupling between the lead and the ring and all electrons incoming on the
beamsplitter are transmitted through.

We choose to continue working with the first set of solutions, meaning we set a1 = a
and b1 = b. With this choice we have

b− a = ±1, b+ a = ±
√

1− 2ε, b2 − a2 =
√

1− 2ε. (4.7)

If we further choose the positive solutions, we write Ŝ as−√1− 2ε
√
ε

√
ε√

ε 1
2

(√
1− 2ε− 1

)
1
2

(√
1− 2ε+ 1

)
√
ε 1

2

(√
1− 2ε+ 1

)
1
2

(√
1− 2ε− 1

)
 . (4.8)

Thus, Ŝ depends on a single independent parameter, 0 < ε < 1/2.

4.1.2 Asymmetric injection

Here, we want to focus on asymmetric probability injection into the two arms. We will
model this by allowing for a favouring of one of the arms over the other by a parameter
β. As before, we require Ŝ to be unitary and Ŝ∗ = Ŝ−1, making it symmetric, and we
continue to assume it real for simplicity. We write
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Ŝ =

a b c
b d e
c e f

 . (4.9)

Note that the a in this matrix is not the same as the one in Section 4.1.1. a here plays
the role of the coupling parameter, as ε did before. Unitarity of Ŝ leads to the following
relations:

a2 + b2 + c2 = 1, (4.10)

b2 + d2 + e2 = 1, (4.11)

c2 + e2 + f 2 = 1, (4.12)

and

ab+ bd+ ce = 0, (4.13)

ac+ be+ cf = 0, (4.14)

bc+ de+ ef = 0. (4.15)

We introduce the asymmetry between the two arms by setting b = βc. β is thus the
asymmetric probability injection parameter, i.e. β decides the ratio of probability for
e.g. transmission into one arm from the lead compared to the other arm. β = 1 means
equivalent transmission probability, as in Section 4.1.1. β > 1 means that the upper arm
is preferred. Now, we want to express b, d, e and f as functions of β and a. From (4.10),
(4.13) and (4.14) we have

b = ±β
√

1− a2

µ
, (4.16)

e = −β(a+ d), (4.17)

f = a(β2 − 1) + β2d, (4.18)

respectively, where µ =
√
β2 + 1. Insertion of (4.16) and (4.17) into (4.11) give us

d =
±1− β2a

µ2
, (4.19)

which gives (4.17) and (4.18) as functions of β and a. In total we have

b = βν±, c = ν±, d = η± − a, e = −βη±, f = ξ±, (4.20)

where

η± =
a± 1

µ2
, ν± = ±

√
1− a2

µ
, ξ± =

±β2 − a
µ2

. (4.21)

Note how the signs for ν± are independent from those of η± and ξ± (which are the same).
This means that we have four different valid versions of Ŝ, as we did for the symmetric
injection-case. However, since we made a choice for which parameters to be used in the
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symmetric injection-case, we do the same here. Therefore, for this Ŝ to coincide with the
symmetric injection-case when we let β = 1, as in (4.8), we choose the parameters ν+,
η− and ξ−. Thus, our Ŝ will be the same as for the positive solutions of a1 and b1 from
4.1.1. Suppressing the subscripts we write

Ŝ =

 a βν ν
βν η − a −βη
ν −βη ξ

 . (4.22)

We see that a2 = 1 − 2ε, which shows us the relationship between a and the coupling
parameter ε. a = 0 corresponds to perfect coupling between lead and ring, while a = −1
corresponds to no coupling at all, since then a = −

√
1− 2ε. If we set β = 1 and we insert

this a into (4.22), we end up back to the symmetric case of (4.8).

As an ending note, notice how the asymmetry in (4.22) implies that the probability
for transmission from one lead into the arms is fixed by |βν|2 for the upper arm, both
when incoming from the left and when incoming from the right, as shown in Figure 4.3.

Figure 4.3: Illustration of the upper and lower arm and the probability injection ratio β
between them, which is the same for the right and the left beamsplitters. λ indicates the
asymmetry in the arm lengths. λ < 1 means the upper arm is longer than the lower arm.

4.1.3 Transfer matrix

The transfer matrix method is a mathematical method for the analysis of wave propaga-
tion in 1D systems, for quantum particles, such as electrons and holes and electromag-
netic, acoustic and elastic waves. In order to represent scattering on a potential, one
can connect the incoming wave amplitudes to the outgoing amplitudes with a scattering
matrix like Ŝ [73], (

βout
β̃out

)
= ŝ

(
βin
β̃in

)
. (4.23)

However, another way to connect the amplitudes is by relating the ones at the right to
the ones at the left,

t̂

(
βin
βout

)
=

(
β̃out
β̃in

)
, (4.24)

where

t̂ =

(
1
t∗
− r∗

t∗

− r
t

1
t

)
. (4.25)
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Figure 4.4: Illustration of wave amplitudes on the left side and on the right side (marked
by tilde) of a potential barrier (could also be a well). Illustration adapted from [61].

t and r are the transmission and reflection coefficients, respectively, for the potential.
The matrix t̂ is called the transfer matrix. If relating the left amplitudes to the right
amplitudes, we use t̂′ in such a way that(

βout
βin

)
= t̂′

(
β̃in
β̃out

)
. (4.26)

The elements of t̂ are

t =
√
Tse

iχ, r = e−i
π
2

√
Rse

iχeiχa , (4.27)

where Ts and Rs are the transmission and reflection probability for the particle, χ is the
phase change in the transmitted wave and χa is a possible additional phase difference
between the transmitted and reflected amplitudes. In the case of a symmetric potential,
the length the reflected particle traverses inside the potential (twice the penetration
depth) will be equal to the length the transmitted particle travels to traverse the potential,
and thus no additional phase difference is acquired between the reflected and transmitted
parts of the wavefunction, i.e. χa = 0. Lastly, it should be noted that in the case of
current-conservation, time-reversal symmetry and a symmetric potential (χa = 0), we
will have t̂ = t̂′.

Transfer matrix approach to the no fields-case

Let us here try to use this formalism to reproduce the result from Section 3.2. We have a
ballistic wire, so we can set the part of the wavefunction travelling to the right in Figure
4.4 as the electron part and the part travelling left as the hole part. Thus, we have the
total transmission matrix from right-to-left (LR) and left-to-right (RL) as

t̂LR = t̂RL =

(
eikeL 0

0 e−ikhL

)
. (4.28)

Here, ke =
√

2m
~2 (µ+ E) and kh =

√
2m
~2 (µ− E). For the Andreev reflection we have

ÂR/L = e−i arccos( E
|∆|)
(

0 eiφR/L

e−iφR/L 0

)
. (4.29)

The localisation condition, from the description given in Section 3.2.3, will be
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det
(

1̂− ÂRt̂RLÂLt̂LR
)

= 0. (4.30)

Solving this equation gives

2 arccos

(
E

|∆|

)
− (ke − kh)L = (φL − φR) + 2πn, (4.31)

which is the same result as we achieved in Chapter 3.

4.2 Transmission and reflection coefficients

This Section will derive the transmission and reflection coefficients through the N-region
when we have two possible paths, or arms, both for the symmetric (probability) injection
and for the asymmetric injection. The N-region is illustrated in Figure 4.5. We will
base our approach on the method of [61] and allow for a perpendicular magnetic field
enclosed by the two arms. The arms will be modelled as 1D NW’s, which we investigated
in Chapter 3. A significant difference from the 1D case, however, is that we now have the
possibility of quantum interference effects, like constructive and destructive interference
and the AB-effect, where the magnetic flux enclosed in the ring will induce phase shifts
in the two arms.

Possible effects like local scattering, Zeeman effect, SOI, etc. would all have to be
considered only in the two arms and not in the beamsplitters 1. Thus, the induced phase
shifts will, in general, depend on the length of the two arms, so that we denote them by 1
for the upper arm and 2 for the lower one, e.g. θ1 and θ2 are the AB-phases, for the upper
and lower arm, respectively. The AB phase shifts will always satisfy θ1 + θ2 = 2πΦ/Φ0,
where Φ is the enclosed magnetic flux and Φ0 = h/e is the flux quantum. It should be
mentioned that the final result should depend on Φ, not θ1 or θ2 alone, as Φ has physical
meaning while the individual phases do not.

Note that, even though the beamsplitters are completely transparent, we can still have
reflection on the ”ring”. This is because the waves have the possibility of travelling all
the way around the ring and then exiting the same way as they entered, thus effectively
be reflected even though direct reflection on the beamsplitter is not present.

4.2.1 Symmetric injection

In this section, we will find expressions for the transmission and reflection coefficients for
the N-region. The derivation will, for completeness, be done for both solutions of a and
b (±), even though we will choose the positive solution in the end.

We start out by finding relations for the two symmetric beamsplitters, or junctions.
For the right junction we have

α′2 =− (a+ b)α2 +
√
εβ2 +

√
εγ2, (4.32)

β′2 =
√
εα2 + aβ2 + bγ2, (4.33)

γ′2 =
√
εα2 + bβ2 + aγ2. (4.34)

1This thesis will not consider these spin-dependent effects.
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Solving this for γ′2 and γ2 expressed with β′2 and β2 gives(
γ′2
γ2

)
= t̂j

(
β2

β′2

)
+ t̂αα2. (4.35)

Here,

t̂j =
1

b

(
b2 − a2 a
−a 1

)
=

1

b

(√
1− 2ε a
−a 1

)
=

1

b
l̂j, (4.36)

where l̂j will be useful later, and

t̂α =

√
ε

b

(
b− a
−1

)
=

√
ε

b

(
±1
−1

)
. (4.37)

We emphasize that t̂j is a 2× 2-matrix, while t̂α is a 2× 1-vector. The left junction gives

α′1 =− (a+ b)α1 +
√
εβ1 +

√
εγ1, (4.38)

β′1 =
√
εα1 + aβ1 + bγ1, (4.39)

γ′1 =
√
εα1 + bβ1 + aγ1, (4.40)

which again gives (
β′1
β1

)
= t̂j

(
γ1

γ′1

)
+ t̂αα1. (4.41)

These equations symbolise the amplitudes that are transmitted from one arm into the
other, taking into account that they can also be supplied by the leads.

If we were to introduce spin and assume no spin-mixing or spin effects in the beamsplit-
ters, all elements of the scattering matrices become diagonal two-dimensional matrices

(with the old element now on the diagonal), a→
(
a 0
0 a

)
[74].

Figure 4.5: Illustration of two paths across the N-region, enclosing a magnetic flux Φ.
Incoming (unprimed) and outgoing (primed) waves indicated.

With (4.32), (4.33) and (4.38), (4.39), we can find expressions for α′1 as a function of
α1, β1, β

′
1 and α′2 as functions of and α2, β2, β

′
2, respectively. However, we want to express

α′1 and α′2 as functions of α1 and α2 only. The next step is therefore to connect the two
sides of the N-region and use this to connect the waves all the way through the two arms
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in a concise way. With these comments in mind, we set up relations for the amplitudes
as seen in Figure 4.5 in the upper and lower arms. For the upper arm, we have(

β2

β′2

)
= e−iθ1 t̂1

(
β′1
β1

)
, (4.42)

going from left to right in a clockwise sense. In the lower arm we have(
γ1

γ′1

)
= e−iθ2 t̂′2

(
γ′2
γ2

)
, (4.43)

going from right to left in a clockwise sense. Note that the AB-phases are both taken in
a positive counterclockwise sense and that t̂1 and t̂′2 are numbered differently (1,2) The
transfer matrices are in general different, depending on which potentials are present in
which arm and the lengths of the two arms.

Starting out with

(
β′1
β1

)
, we can for example write(

β′1
β1

)
= t̂j

(
γ1

γ′1

)
+ t̂αα1 = t̂j

(
e−iθ2 t̂′2

(
γ′2
γ2

))
+ t̂αα1. (4.44)

Here, we have first employed (4.41) and so (4.43). Following this procedure around the

ring back to

(
β′1
β1

)
, employing (4.35) and (4.42) at the necessary steps, we will in effect

have followed the N-region in a clockwise sense. We end up with

Π̂∗
(
β′1
β1

)
= −t̂αα1 − Π̂αα2, (4.45)

where

Π̂∗ = e−i(θ1+θ2)t̂j t̂
′
2t̂j t̂1 − 1̂ (4.46)

and

Π̂α = e−iθ2 t̂j t̂
′
2t̂α. (4.47)

∗ is used as a denotation, not as the complex conjugate operator. To find α′2, use (4.32)
and (4.33) to get an expression with (β2, β

′
2)T ,

α′2 = −
(
a+ b+

ε

b

)
α2 +

√
ε

b
(±1, 1)

(
β2

β′2

)
. (4.48)

Insert (4.42) and 1̂ = Π̂∗−1Π̂∗ to get

α′2 = −
(
a+ b+

ε

b

)
α2 +

√
ε

b
(±1, 1)

(
e−iθ1 t̂1Π̂∗−1Π̂∗

(
β′1
β1

))
. (4.49)

Lastly, to have α′2 as a function of only α1 and α2, insert (4.45) and (4.7) to get

α′2 = − ε

b2
e−iθ1h∗1α1 −

(
a+ b+

ε

b
+

ε

b2
e−i(θ1+θ2)h∗2

)
α2, (4.50)

where

h∗1 = (±1, 1)t̂1Π̂∗−1

(
±1
−1

)
(4.51)
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and

h∗2 = (±1, 1)t̂1Π̂∗−1t̂j t̂
′
2

(
±1
−1

)
. (4.52)

If we take α1 = 1 and α2 = 0, will α′2 be the same expression as in [61].
The same can be done for α′1 and we end up with

α′1 = −
(
a+ b+

ε

b
+

ε

b2
m∗1

)
α1 −

ε

b2
e−iθ2m∗2α2 (4.53)

where

m∗1 = (1,±1)Π̂∗−1

(
±1
−1

)
(4.54)

and

m∗2 = (1,±1)Π̂∗−1t̂j t̂
′
2

(
±1
−1

)
. (4.55)

The forms of these coefficients are all correct, but they are not in the most convenient
form. To simplify the expressions, we see first that a + b + ε/b = z, where we defined
z = ±1, and we write θ1 + θ2 ≡ θB = 2πΦ/Φ0. Furthermore, we note that Π̂∗ is a 2× 2-
matrix, as a consequence of only one conduction channel and the one-dimensionality of
our nanowire, so that we can write Π̂∗−1 in a much more preferred way. We have

Π̂∗ = e−iθB
1

b2
l̂j t̂
′
2l̂j t̂1 − 1̂ =

1

b2

(
e−iθB l̂j t̂

′
2l̂j t̂1 − b21̂

)
=

1

b2
Π̂, (4.56)

so that we have

Π̂∗−1 =
b2

det
(

Π̂
)M̂, where M̂ =

(
Π22 −Π12

−Π21 Π11

)
, (4.57)

where Πij, i, j = 1, 2, are the elements Π̂. We rewrite the amplitudes coming out on the
left, α′1, and on the right, α′2, with new coefficients

α′1 = m1α1 +m2α2, α′2 = h1α1 + h2α2. (4.58)

These coefficients are expressed in a more convenient way for further use, so we list them
here.

m1 = −z − ε

det
(

Π̂
) (1 z

)
M̂

(
z
−1

)
, (4.59)

m2 = − εe−i(θ2)

det
(

Π̂
)
b

(
1 z

)
M̂ l̂j t̂

′
2

(
z
−1

)
, (4.60)

h1 = − εe−i(θ1)

det
(

Π̂
) (z 1

)
t̂1M̂

(
z
−1

)
, (4.61)

and

h2 = −z − εe−iθB

det
(

Π̂
)
b

(
z 1

)
t̂1M̂ l̂j t̂

′
2

(
z
−1

)
. (4.62)
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Now, we want to have the transmission and reflection coefficients both when incoming
from the left and when incoming from the right. We sum this up with the following,

rLL =α′1(α1 = 1, α2 = 0), tRL = α′2(α1 = 1, α2 = 0),

rRR =α′2(α1 = 0, α2 = 1), tLR = α′1(α1 = 0, α2 = 1),
(4.63)

where rLL and rRR are the reflection coefficients for the ring at the left (L) and right(R)
side, respectively, and tRL and tLR are the transmission coefficients for the ring from left
to right (LR) and right to left (LR), respectively. If we return to our choice of sign as
defined in (4.8), we sum all of this up with(

α′1
α′2

)
= ŝ

(
α1

α2

)
, (4.64)

where

ŝ =

(
m1 m2

h1 h2

)
=

(
rLL tLR
tRL rRR

)

=

−1− ε

det(Π̂)

(
1 1

)
M̂

(
1
−1

)
− εe−i(θ2)

det(Π̂)b

(
1 1

)
M̂ l̂j t̂

′
2

(
1
−1

)
− εe−i(θ1)

det(Π̂)

(
1 1

)
t̂1M̂

(
1
−1

)
−1− εe−iθB

det(Π̂)b

(
1 1

)
t̂1M̂ l̂j t̂

′
2

(
1
−1

)
 (4.65)

As a final note, all of these coefficients are general for symmetric injection and our
choice of Ŝ. Possible effects like local scattering, Zeeman effect, SOI, etc. will all have to
be considered only in the two arms, i.e. the effects are incorporated by the matrices t̂1
and t̂′2. Thus, specifying t̂1 and t̂′2 corresponds to defining the ingredients of our junction.

4.2.2 Asymmetric injection

This section will present the result of the asymmetric injection case. The derivation
follows the same procedure as in Section 4.2.1. We start out by finding relations for the
junctions, with the elements of (4.9). For the right junction, we have(

γ′2
γ2

)
= t̂αRα2 + t̂jR

(
β2

β′2

)
, (4.66)

where

t̂αR =
1

e

(
ce− bf
−b

)
and t̂jR =

1

e

(
e2 − df f
−d 1

)
. (4.67)

For the left junction, we have (
β′1
β1

)
= t̂αLα1 + t̂jL

(
γ1

γ′1

)
, (4.68)

where

t̂αL =
1

e

(
be− cd
−c

)
and t̂jL =

1

e

(
e2 − df d
−f 1

)
. (4.69)
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The rest of the derivation is completely equivalent with the one above, where we find ex-
pressions for α′1 and α′2 as functions of α1 and α2. The difference between the asymmetric
case and the symmetric case appears when finding these expressions for α′1 and α′2, and
in the expressions for the junctions (4.66) and (4.68), since we use (4.9) instead of (4.2).
The rest of the work consists of connecting the waves in a concise way with t̂1 and t̂′2, all
the way around the ring. Replacing the elements of (4.9) with (4.22) and collecting all
the terms of α1 and α2 give us

α′1 = k1α1 + k2α2, α′2 = z1α1 + z2α2. (4.70)

As done in (4.63), we can also here find the different coefficients. We have

rLL = k1 = −1− ν2

det
(

Π̂
) (1 1

)
M̂

(
1
−1

)
, (4.71)

tLR = k2 =
ν2e−i(θ2)

η det
(

Π̂
) (1 1

)
M̂ l̂jLt̂

′
2

(
1
−1

)
, (4.72)

tRL = z1 = −ν
2e−i(θ1)

det
(

Π̂
) (1 1

)
t̂1M̂

(
1
−1

)
, (4.73)

and

rRR = z2 = −1 +
ν2e−i(θ1+θ2)

η det
(

Π̂
) (

1 1
)
t̂1M̂ l̂jLt̂

′
2

(
1
−1

)
. (4.74)

The matrices are given by

Π̂ = e−i(θ1+θ2)l̂jLt̂
′
2l̂jRt̂1 − β2η21̂ =

(
Π11 Π12

Π21 Π22

)
=⇒ M̂ =

(
Π22 −Π12

−Π21 Π11

)
, (4.75)

and

l̂jL =

(
−a η − a
−ξ 1

)
, l̂jR =

(
−a ξ
a− η 1

)
. (4.76)

Remember from the discussion on sign in Section 4.1.2 that a = −
√

1− 2ε. We can sum
this up in a matrix form,

ŝa =

(
rLL tLR
tRL rRR

)

=

−1− ν2

det(Π̂)

(
1 1

)
M̂

(
1
−1

)
ν2e−i(θ2)

η det(Π̂)

(
1 1

)
M̂ l̂jLt̂

′
2

(
1
−1

)
−ν2e−i(θ1)

det(Π̂)

(
1 1

)
t̂1M̂

(
1
−1

)
−1 + ν2e−i(θ1+θ2)

η det(Π̂)

(
1 1

)
t̂1M̂ l̂jLt̂

′
2

(
1
−1

)
 (4.77)

This reduces to (4.65) for β = 1, since

lim
β→1

ν2

η
= −1(1−

√
1− 2ε) = −ε

b
,
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and

lim
β→1

ν2 = ε.

4.3 Specific case for transmission and reflection

This section will present explicit expressions for the transmission and reflection coeffi-
cients for one specific case of NW’s and for two values of the coupling parameter ε. We
will consider ballistic NW’s in the presence of a magnetic field perpendicular to the SNS-
junction, where we do not allow the magnetic field to be present in the NW’s. This means
that we only have to contend with two kinds of phase shifts in the wavefunctions. First,
the dynamical phase shift χ for upper and lower arm, due to the energy, and second, the
AB-phase shifts, as discussed above. The AB-effect is, of course, present even though we
exclude magnetic fields from the actual NW’s. Thus, χ1, θ1 and χ2, θ2 are the phases for
the upper and lower arm, respectively. Notice how the AB-effect is already accounted for
in our model, e.g. in (4.42). A possible asymmetry in the arm lengths will be described
by a parameter λ, see Figure 4.3. We set the length of the upper arm to be L1 = L and
the length of the lower arm to be L2 = λL. λ > 1 means the lower arm is longer than
the upper arm, whereas λ < 1 means the upper arm is longer than the lower and λ = 1
means the arms are of equal length.

Since the absence of magnetic fields in the NW’s implies that time-reversal symmetry
is protected, we have t̂ = t̂′. Ballistic NW’s mean that Ts = 1, where Ts is the transmission
probability in the NW, which implies Rs = 1−Ts = 0 and therefore r1 = r2 = r′1 = r′2 = 0
in the arms. We are left with t = eiχ. The transfer matrix (4.25) is therefore, from (4.25),
expressed as [72]

t̂k =

(
eiχk 0
0 e−iχk

)
, (4.78)

where k = 1, 2 for upper (1) and lower (2) arm. χ1 represents the dynamical phase
acquired in the upper arm of length L1 and χ2 represents the dynamical phase acquired
in the lower arm of length L2.

Before we present the coefficients, it is worth discussing how electrons and holes ac-
quire different phases. We start by discussing the dynamical phase. An electron travelling
from the left to the right (from x = 0 to x = L, in the positive direction) will acquire the
phase shift (+ke)(+L). When it travels from the right to the left (x = L to x = 0, in the
negative direction), it will acquire (−ke)(−L) = +keL. This is a general property of the
dynamical phase shift: when an electron takes a time-reversed path, it acquires the same
dynamical phase as before [35]. The effect of this realisation is that the transmission
elements will be the same in the scattering matrix, but opposite in the transfer matrix,
as we see in (4.78). The same is true for holes, however, the wave number for holes
has the opposite sign from that of electrons and holes will therefore acquire the opposite
phase shifts compared to electrons. Let us call the acquired dynamical phase shift for
electrons for χe = keL. We remember that µ is much larger than the electron energy

E and write ke =
√

2m
h2 (µ+ E) ≈ kF , where kF =

√
2µm
h2 . This approximation makes

finding the Andreev levels much more feasible. For holes we have χh = −khL, where we

again approximate to kh =
√

2m
h2 (µ− E) ≈ kF . With all of this in mind, we conclude

that χe = χ and χh = −χ, where χ = kFL. Lastly, the AB-phase is exp(−iqΦ/~) [64].
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For electrons, this will be 2πΦ/Φ0. However, a hole has opposite charge compared to
an electron, and the phase acquired by holes is therefore opposite from that acquired by
electrons. Thus, we have θe = θ and θh = −θ. All of this is really only a consequence of
the relation between the scattering matrices for electrons and holes [67],

Ŝe(E) = ĝ†Ŝ∗h(−E)ĝ,

where ĝ = −iσy. Since we have assumed no energy dependence and no fields, and thereby

do not care about spin, this equation will reduce to Ŝe = Ŝ∗h, i.e. the coefficients for the
holes are the complex conjugate of the coefficients for electrons.

4.3.1 Ballistic nanowires, ε = 1
2

Complete transmission in the beamsplitters corresponds to ε = 1
2
. The coefficients will,

in general, depend on χ, λ, β and θB, where θB = θ1 + θ2 = 2πΦ/Φ0. For electrons, we
have transmission from left to right,

tRL =
2ieiθ2(β2 + 1)

Λ1/2

(
sin(χ) + e−iθBβ2 sin(λχ)

)
, (4.79)

transmission from the right to the left,

tLR =
2ieiθ1(β2 + 1)

Λ1/2

(
e−iθB sin(χ) + β2 sin(λχ)

)
, (4.80)

and reflection

rLL = rRR =
−4β2

Λ1/2

sin

(
χ(λ− 1)

2
− θB

2

)
sin

(
χ(λ− 1)

2
+
θB
2

)
. (4.81)

The denominator is

Λ1/2 = β4eiχ(λ−1) + e−iχ(λ−1) − (β2 + 1)2e−iχ(λ+1) + 2β2 cos(θB). (4.82)

The coefficients for holes are, if tRL = teRL etc.,

thRL = t∗eRL thLR = t∗eLR,

rhLL = r∗eLL, rhRR = r∗eRR.
(4.83)

In Figure 4.6 and 4.7, we have plotted the transmission probability T (equal in both
directions) and the reflection probability R, respectively, in the N-region for χ = 100.
We observe that T + R = 1, as it should. It should be noted that we have only plotted
for χ = 100. However, both T and R have very strong χ-dependencies.

A closer look at Figure 4.6 reveals that for very low β, the transmission probability
will be close to 1 for all lengths of the arms. This is due to the fact that when beta is
low, the system will work as if it had mainly one arm and we have minimum reflection
from a complete turn around the ring. Also, since ε = 1/2, no direct reflection at
the beamsplitters is possible. This behaviour is the same for very large β. There are,
however, still interference effects, but they are very small. When β → 1, we observe
that λ = 1 has overall the strongest interference effects. When both arms are equally
preferable, arms of the same length will experience the most complete interference effects.
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Figure 4.6: Transmission probability for ε = 1/2 for a) β = 0.3, b) β = 1 and c) β = 1.6
for χ = 100. Solid line is λ = 0.1, dashed is λ = 0.7, dashed-dotted is λ = 1 and dotted
is λ = 1.6.

For example, the arms can now experience complete destructive interference, making
the junction thoroughly opaque. For β close to one, large variations with strong χ-
dependencies are observed, greatly influencing which arm lengths experience the most
complete interference effects. Observe also how T always is 2π-periodic in θB.

We end this section by discussing the different effects of interference. As we can
see from Figure 4.6, constructive and destructive interference seems to appear around
θB = [0,±π] (and the same behaviour for θB = [±π,±2π]). At θB = 0, the only effect
will be dynamical interference, which will depend strongly on χ. Incomplete interference
effects will therefore induce dips in T , complete constructive interference will have no dip,
and thus the junction is completely transparent, and complete destructive interference
will make the junction completely opaque. At θ = ±π, the AB-interference is at its,
in general, strongest and can therefore induce the same type of effects for different λ’s,
β’s and χ’s. The interplay between the dynamical interference and the AB-interference
modulates this two extremes, which compete for prominence. This means that depending
on their respective interference strengths, they can both partially or completely negate
the effects of each other. Because of time limitations, we will not investigate this further.

4.3.2 Ballistic nanowires, ε = 1
3

Partial transmission and reflection on the beamsplitters is exemplified with ε = 1
3
. For

electrons, we have transmission from left to right,

tRL =
4ieiθ2(β2 + 1)

Λ1/3

(
sin(χ) + e−iθBβ2 sin(λχ)

)
, (4.84)

transmission from the right to the left,

tLR =
4ieiθ1(β2 + 1)

Λ1/3

(
e−iθB sin(χ) + β2 sin(λχ)

)
, (4.85)

and reflection
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Figure 4.7: Reflection probability for ε = 1/2 for a) β = 0.3, b) β = 1 and c) β = 1.6 for
χ = 100. Solid line is λ = 0.1, dashed is λ = 0.7, dashed-dotted is λ = 1 and dotted is
λ = 1.6.

rLL = rRR =
−2

Λ1/3

(
(
√

3β4 − 4β2 +
√

3) cos(χ(λ− 1))

−
√

3(β2 + 1)2 cos(χ(λ+ 1)) + 2β2(2 +
√

3) cos(θB)
)
.

(4.86)

The denominator is

Λ1/3 = (
√

3β2 − 1)2eiχ(λ−1) + (β2 −
√

3)2e−iχ(λ−1) + 4β2(2 +
√

3) cos(θB)

− (β2 + 1)2eiχ(λ+1) − 3(β2 + 1)2e−iχ(λ+1).
(4.87)

In Figure 4.8 and 4.9 we have plotted the transmission probability T (equal in both
directions) and the reflection probability R, respectively, in the N-region for χ = 100. We
observe that T+R = 1, as it should. As before, both T and R have strong χ-dependencies.

Figure 4.8 seems to indicate that the partial reflection and transmission at the beam-
splitters have drastically changed the transmission probability compared to complete
transmission at the beamsplitters. For example, when β is very small (or very large),
we no longer have T ∼ 1, since direct reflection at the beamsplitters contribute to the
total reflection in the junction. However, interference effects are not as prominent and
complete for β << 1 as for β closer to one, since we still mainly only have one arm. In
general, there seems to be a trend that the reflection from the beamsplitters make the
areas of most interference to be smaller (e.g. steeper dips) or larger (e.g. destructive in-
terference over a larger interval of θB). Also, as for ε = 1/2, there is a strong dependence
on χ and we observe the 2π-periodicity in θB.

4.4 Andreev levels, supercurrents and critical cur-

rents

Now that we have deduced the transmission and reflection coefficient, we can start to find
the Andreev levels En(φ) and from there, the supercurrent IS(φ). From the supercurrent,
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Figure 4.8: Transmission probability for ε = 1/3 for a) β = 0.3, b) β = 1 and c) β = 1.6
for χ = 100. Solid line is λ = 0.1, dashed is λ = 0.7, dashed-dotted is λ = 1 and dotted
is λ = 1.6.

Figure 4.9: Reflection probability for ε = 1/3 for a) β = 0.3, b) β = 1 and c) β = 1.6 for
χ = 100. Solid line is λ = 0.1, dashed is λ = 0.7, dashed-dotted is λ = 1 and dotted is
λ = 1.6.

we find the critical current as a function of the magnetic flux, IC(θB). If we recall Chapter
1, the supercurrent experienced asymmetries upon inversion of the perpendicular field,
i.e. the flux. We will investigate the critical current with our model to discover whether
the ingredients presented so far are enough to reproduce these asymmetries.

Section 4.4.1 will present the setup of the problem and a solution method to find an
equation for the Andreev levels. Note that, since we have suppressed the spin indices, all
energy levels will have a two-fold degeneracy, as we experienced in Section 3.2. Section
4.4.2 will present the results for the Andreev levels and the resulting supercurrent for
several different magnetic fluxes, as well as the critical current as a function of the flux.
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4.4.1 Solution for Andreev levels

We can express the wavefunction inside the junction for four different situations: incoming
(I) or outgoing (U) from the ring, on either the left or the right side of the ring in the
N-region. If we write α = (αe, αh)

T as the wavevector with electron and hole components,
we can correspondingly write αUR, αUL, αIR and αIL for waves outgoing on the right
side, outgoing on the left side, incoming on the right side and incoming on the left side,
respectively, as shown in Figure 4.10. With this, we write the wavevectors in the N-region
as

Figure 4.10: Conceptual illustration of SNS-junction with wavevectors on the right and
left sides. Scale of arms outside the ring (represented by a square in the middle) is heavily
oversized. Solid lines are electrons, dashed lines are holes.

αUR = t̂RLαIL + r̂RRαIR, (4.88)

and

αUL = t̂LRαIR + r̂LLαIL, (4.89)

where

t̂RL =

(
teRL 0

0 thRL

)
, t̂LR =

(
teLR 0

0 thLR

)
, r̂RR =

(
reRR 0

0 rhRR

)
, r̂LL =

(
reLL 0

0 rhLL

)
.

(4.90)
teLR etc. are the transmission and reflection coefficients calculated earlier. If we assume
that the beamsplitters are placed directly at the NS-interfaces, i.e. the two paths across
the junction spans the entire N-region, the Andreev reflection can be written as

αIL = ÂLαUL, αIR = ÂRαUR, . (4.91)

Here

ÂL = e−i arccos( E
|∆|)
(

0 eiφL

e−iφL 0

)
, ÂR = e−i arccos( E

|∆|)
(

0 eiφR

e−iφR 0

)
. (4.92)

We can absorb the left- and right-components of α into a common wavevector, by writing
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αU =


αeUR
αhUR
αeUL
αhUL

 = N̂


αeIR
αhIR
αeIL
αhIL

 = N̂αI , (4.93)

for the N-region and

αI = ÂαR, (4.94)

for the Andreev reflection. The matrices are

N̂ =

(
r̂RR t̂RL
t̂LR r̂LL

)
, and Â =

(
ÂR 0

0 ÂL

)
. (4.95)

The effect of the N-region is illustrated in Figure 4.11 and the Andreev reflection is
illustrated in Figure 4.12.

Figure 4.11: Illustration of the effect of the N-region, or how the incoming waves are
related to the outgoing waves. (a) is the incoming situation, (b) is the outgoing situation.

Figure 4.12: Illustration of the effect of the Andreev reflection at the NS-interfaces, or
how the incoming waves are related to the outgoing waves. (a) is the incoming situation,
(b) is the outgoing situation.

By insertion of (4.94) into (4.93), we get

αU = N̂αI = N̂
(
ÂαU

)
=⇒

(
1̂− N̂Â

)
αU = 0, (4.96)

so that the localisation condition for the Andreev bound state becomes
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det
(

1̂− N̂Â
)

= 0. (4.97)

(4.97) gives us

− u1e
−iφα2 − u2e

iφα2 − u3α
2 + u4α

4 = −1 (4.98)

where

u1 = teLRthRL, (4.99)

u2 = teRLthLR, (4.100)

u3 = reLLrhLL + reRRrhRR, (4.101)

u4 = (reLLreRR − teLRteRL)(rhLLrhRR − thLRthRL). (4.102)

By closer investigating, we see that u4 is actually only the product of the determinants of
the scattering matrix for electrons Ŝ and the scattering matrix for holes Ŝh. Since scat-
tering matrices are unitary, their determinant will just equal a phase term eiξ. However,
as we have already discussed, Ŝh = S∗e (in the absence of energy and spin dependence),
and thus

u4 = (reLLreRR − teLRteRL)(rhLLrhRR − thLRthRL) = det
(
Ŝe

)
det
(
Ŝh

)
= det

(
Ŝe

)
det
(
Ŝ∗e

)
= eiξe−iξ = 1.

(4.103)

Solving (4.98) with this in mind produces

E = ±|∆| cos

(
1

2
arccos

(u
2

))
, (4.104)

where

u = u1e
−iφ + u2e

iφ + u3. (4.105)

Keep in mind that we here have spin degeneracy, thus actually four solutions.

4.4.2 Results and discussion

This section will present the the solutions of (4.104), as well as the supercurrent and the
critical current, for different values of the magnetic flux. For each case (ε = 1/2 and
ε = 1/3), we discuss the Andreev levels E, the resulting supercurrent IS and the critical
current IC . The critical current is presented as a function of the magnetic flux, plotted
for the two possible directions of the (perpendicular) magnetic field through the ring.
IC+ is the critical current in the positive direction while IC− is the critical current in the
negative direction.

Before we proceed, we set θ1 = θ2. This is justified since it doesn’t matter where we
assume the phase shift to happen. The gauge-invariant, and thus observable, quantity of
importance is the magnetic phase accumulated along the closed path, i.e. θB = θ1 + θ2 =
2πΦ/Φ0. Generally speaking, any periodic dependence on this quantity is called the
Aharanov-Bohm effect.
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Results for ε = 1
2

Figure 4.13 and Figure 4.14 present the Andreev levels and the supercurrent for λ = 1
and λ = 1.7, respectively, for complete transmission at the beamsplitters. We plotted for
three values of magnetic field and three values of β.

Figure 4.13: The figure shows the Andreev spectrum for a) β = 0.3, b) β = 1 and c)
β = 1.7, and the supercurrent IS for d) β = 0.3, e) β = 1 and f) β = 1.7 as a function of
the phase difference φ. Plotted for θB = 0 (red), θB = 1 (blue) and θB = 2 (green) with
χ = 100, λ = 1 and ε = 1/2.

For λ = 1, in Figure 4.13, we see that when θB = 0, IS has a form equal that of the no
fields-case for 1D NW’s (1D-behaviour) in Chapter 3. This is explained by that we can
interpret our system to be, in effect, as a 1D NW with a scatterer. Take β = 1 as an
example: when there is no enclosed flux, the combined interference effects of electrons
and holes cancel each other out out and we have a ballistic NW, exactly the same as
we investigated in Section 3.2. Increasing θB will, in effect, decrease the transmission
probability, as we now have an effective scatterer, and the supercurrent is reduced, as
we see in Figure 4.13 e). The same is true for other β’s, however, here the effects are
not as clear because of the interplay between the dynamical interference and the AB-
interference, as one of the arm is preferred over the over.

When λ = 1.7, we no longer have complete the 1D-behaviour, as the asymmetry in
the arm lengths allows for incomplete interference effects, even for β = 1. Small β is close
to the λ = 1-case as we still mainly have one arm. Dynamical interference effects will
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Figure 4.14: The figure shows the Andreev levels E for a) β = 0.3, b) β = 1 and c)
β = 1.7, and the supercurrent IS for d) β = 0.3, e) β = 1 and f) β = 1.7 as a function of
the phase difference φ. Plotted for θB = 0 (red), θB = 1 (blue) and θB = 2 (green) with
χ = 100, λ = 1.7 and ε = 1/2.

now become more prominent, so we have a stronger χ-dependence here than for λ = 1.
Again, time limitations limit our discussion on the χ-θB-interplay.

Figure 4.15 shows the critical current as a function of θB for different arm lengths and
different probability injections. We see that, for symmetric arms, IC will be a smooth
curve, with destructive interference around θB = ±π. As expected, this is caused by
the AB-effect. At symmetric injection, IC ∼ cos2(θB/2), which again is as expected.
Changing β results in incomplete destructive interference. As we still have a strong
dependence on χ, other values of β, λ and χ will induce sharper dips around θB = ±π
and θB = 0, larger oscillations in value for IC , different shapes, sometimes more or less
complete interference effects, but they all have some things in common. λ = 1 preserves
the smooth curve, they all have a 2π-periodic behaviour and IC(θB) = IC(−θB), i.e. the
critical current is symmetric with respect to inversion of the perpendicular magnetic field.

Results for ε = 1
3

Figure 4.16 and Figure 4.17 present the Andreev levels and the supercurrent for λ = 1
and λ = 1.7, respectively, for partial transmission and reflection at the beamsplitters.
We plotted for three values of magnetic field and three values of β.
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Figure 4.15: The figure shows the critical current for λ = 0.3 with a) β = 0.4, b) β = 1,
c) β = 1.6, λ = 1 with d) β = 0.4, e) β = 1, f) β = 1.6 and λ = 1.6 with g) β = 0.4, h)
β = 1, i) β = 1.6. Plotted with χ = 100 and ε = 1/2.

With partial transmission and reflection at the beamsplitters, we will never observe the
ballistic behaviour from ε = 1/2, even when λ = 1, β = 1. This mimics the description
of our system as a NW with a scatterer. Now, we can never have zero reflection, and
therefore we will never have a completely ballistic NW. The χ-dependence is even more
prevalent now than for ε = 1/2, and even more so for λ = 1.7.

For ε = 1/3, IC has changed shapes, e.g. λ = 1 are no longer are smooth, but allows
for destructive interference at θB = 0. We observe larger areas of complete destructive
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Figure 4.16: The figure shows the Andreev spectrum for a) β = 0.3, b) β = 1 and c)
β = 1.7, and the supercurrent IS for d) β = 0.3, e) β = 1 and f) β = 1.7 as a function of
the phase difference φ. Plotted for θB = 0 (red), θB = 1 (blue) and θB = 2 (green) with
χ = 100, λ = 1 and ε = 1/3.

interference and thus, overall weaker supercurrents. However, as for ε = 1/2, they all
have a strong dependence on χ, 2π-periodic behaviour and IC(θB) = IC(−θB), i.e. the
critical current is symmetric with respect to inversion of the perpendicular magnetic field.

General trends

In general, we observe a few points worth summing up at the end. First, IC is weaker for
ε = 0.3 than for ε = 0.5, owing to larger areas of destructive interference and less coupling
between the nanowires and the interfaces. Second, ε = 1/3 does not have as prominent
1D-behaviour (as seen in Section 3.2.3) as ε = 1/2, due to the fact that the ballistic NW-
case can never be achieved when direct reflection at the beamsplitters is possible. Third,
IC is symmetric for all θB’s with respect to inversion of the perpendicular magnetic field.
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Figure 4.17: The figure shows the Andreev spectrum for a) β = 0.3, b) β = 1 and c)
β = 1.7, and the supercurrent IS for d) β = 0.3, e) β = 1 and f) β = 1.7 as a function of
the phase difference φ. Plotted for θB = 0 (red), θB = 1 (blue) and θB = 2 (green) with
χ = 100, λ = 1.7 and ε = 1/3.
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Figure 4.18: The figure shows the critical current for λ = 0.3 with a) β = 0.4, b) β = 1,
c) β = 1.6, λ = 1 with d) β = 0.4, e) β = 1, f) β = 1.6 and λ = 1.6 with g) β = 0.4, h)
β = 1, i) β = 1.6. Plotted with χ = 100 and ε = 1/3.
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5 — Conclusion

The purpose for this research was to explain the asymmetries in the Fraunhofer-like
patterns of the critical current as a function of applied magnetic field. A proposed
possibility for these asymmetries is, apart from SOI and Zeeman interactions, system
disorder. We have investigated the possibility of this phenomenon with a toy model to
simulate disorder, modelling two possible paths across the junction by ballistic nanowires,
split at the NS-interfaces by beamsplitters.

To better understand SNS-junctions and the supercurrents that flow through them,
we started out by investigating the Andreev reflection at the NS-interfaces. We showed
how the conversion of an electron to a hole, (and vice versa) follows naturally from the
BdG-equation for superconductors and subsequently how the electrons and holes with
certain spin orientation are converted into their corresponding counterparts with opposite
spin. From this, we were able to calculate the energy levels in one-dimensional nanowires
sandwiched between two superconductors, which had analytical expressions in the short-
junction limit, and hence, the DC supercurrent. Correspondingly, we developed a model
which included a magnetic field and a general SO-field, with contributions only from
the lowest order in k, into effective fields for electrons and holes. In finding a matrix
expression equivalent to the BdG-equation, we found the energy levels of this system
expressed with a single parameter combining the effects of magnetic field and SOI. An
oscillatory behaviour in the supercurrent as a function of the angle between the magnetic
field and the SO-field was observed, where the effect of both of these nearly cancelled
when they were perpendicular and the SOI was in the intermediate or strong regimé.
Also, we found no anomalous Jospehson current, which we attributed to the fact that we
were considering a single conduction channel in a ballistic NW.

From this understanding of nanowires and Andreev reflection, we built a toy model for
a two-dimensional SNS-junction at zero temperature. The model consisted of two possible
paths across the normal material, connected by beamsplitters at the NS-interfaces. The
paths were modelled as one-dimensional, ballistic nanowires. By developing a method for
concisely connecting wavefunctions in the normal material, we found expressions for the
outgoing waves (from the normal region) related to the incoming waves. The method in-
volved scattering matrices for the beamsplitters and transfer matrices for the nanowires,
in such a way that we could adjust the asymmetry between the length of, and the prob-
ability injection relation between, the nanowires. The scattering matrix approach to the
beamsplitters also allowed us to decide on the coupling between the nanowires and the
NS-interface. A magnetic field perpendicular to the junction was allowed to penetrate
the region enclosed by the two nanowires, but not the nanowires themselves, so that the
Aharanov-Bohm effect was present in our system. Thereafter, we found the transmission
and reflection coefficients for the junction in both directions, which we combined with
the Andreev reflection to find the Andreev energy levels of this system and thus, the
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supercurrent.
However, we found that, in the absence of SOI and Zeeman interaction in the NW’s,

the critical current was symmetric with respect to the inversion of the perpendicular
magnetic field. This was irrespective of combinations of the asymmetry of the injection
probability, different path lengths, modifications of the chemical potential or NS-interface
coupling strength. Thus, we conclude that either our toy model was not sufficiently
complex, e.g. more than two interfering trajectories across the junction is necessary to
explain the asymmetries, or that disorder at the NS-interfaces alone is not enough to
explain these asymmetries. Further research is required in order to determine which
conclusion is correct.

The obvious next step is to try to find these asymmetries by including magnetic
fields in the nanowires, both perpendicular and parallel. Spin effects would then have to
be taken into account because of the Zeeman effect, possibly also the magnetic shift in
the momentum operators. This would mean that the time-reversal symmetry would no
longer be valid in nanowires, and thus t̂ 6= t̂′. Other possible ideas could be to include
scatterers and spin-orbit interaction in the nanowires. We emphasise here that all of
these ingredients are easily incorporated into our model, as they would all be included
in the transfer matrices t̂. In addition, in Section 3.4, we derived the transfer matrices
for ballistic NW’s when including both SOI and the Zeeman effect. Thus, most of this
work is already done, and the main piece of further work would be to expand the basis
by a factor of 2 to include spin. Other possibilities for improving our model is to include
more than two paths across the junction, disorder in the normal region as well as on
the interfaces, spatial extension of the nanowires to include more than one conduction
channel or nonzero temperatures.
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