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Abstract 

Within the broader context of energy security and critical infrastructure protection, the 

comprehensive assessment of accidents and their related consequences are of high 

priority for many stakeholders. The risk of accidents is commonly assessed by risk 

indicators, since they can provide a direct comparison between energy chains and 

country groups. In this study, Value-at-Risk (VaR), Expected Shortfall (ES) and the 

Spectral Risk Measures (SRM) are applied within an energy security perspective. In 

particular, fatality risk indicators are calculated for different characteristics of fossil 

data sets extracted from the Energy-related Severe Accident Database (ENSAD). The aim 

is to understand the applicability of such risk measures in a different context and field of 

application than the financial realm for which they were originally developed. The use of 

these risk measures could help to facilitate a better understanding of energy accident 

risks to insurers and other industry stakeholders that normally focus on financial and 

less infrastructure-related aspects. Furthermore, the pros and cons of these risk 

measures, and their implications for decision-making strategies are discussed. The 

results clearly demonstrate the usefulness of VaR, ES and SRM compared to the often 

used maximum consequence indicator in the evaluation of accident risks in the energy 

sector.   

 

Keywords: Risk Assessment; Value-at-Risk; Expected Shortfall; Spectral Risk Measures; 

ENSAD; Energy Security. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Highlights 

 VaR, ES and SRM applicability to accident risk assessment in the energy sector 

has been validated.   

 VaR tends to underestimate the energy accident risk with respect to ES (and 

SRM). 

 VaR, ES and SRM could facilitate a better understanding of energy accident risks 

to the industry. 

 VaR, ES and SRM could improve the information on risk that an energy-related 
business can get.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 
In today’s modern society, energy is one of the key prerequisites for goods and services 

production. In the past decades a number of catastrophic events (e.g., Deepwater 

Horizon oil spill in 2010 or Fukushima nuclear accident in 2011) have influenced the 

entire energy-related business due to their consequences connected to societal 

vulnerabilities affecting human health, the environment, and the supply of economic 

goods and services. Consequently, the assessment of accident risks in the energy sector 

has become a high priority for many stakeholders within the context of  a safe and 

secure provision of energy. 

Comparative risk assessment has been introduced in the 1980s and, since then, it 

became a central aspect in the comprehensive evaluation of the performance of energy 

technologies [1-4]. It aims to compare different energy technologies among individual 

countries or country groups [2, 5, 6]. The two standard methods commonly used are 

frequency-consequence (F-N) curves and aggregated risk indicators [7]. The former is a 

common way to express collective and societal risk in a quantitative assessment, since 

the F-N curves provide the probability of accidents with varying degrees of severity of 

consequences, including chain-specific maximum damages. On the other hand, risk 

indicators allow a straightforward comparison between energy chains and country 

groups, based on aggregated and normalized risk values. However, it is important to 

consider a variety of risk factors (e.g. average vs. extreme risk) and types of 

consequences (e.g. fatalities, injuries, etc.) because no single aspect or indicator can 

provide the full picture [8]. 

Fatality rates and maximum consequences are often used as risk indicators, since it has 

been shown to be a good combination in order to assess the risk of accidents in the 

energy sector [2]. The fatality rate provides a measure of expected fatalities per unit of 

energy produced, whereas the maximum credible consequences of a single accident can 

be seen as a measure of risk aversion. The latter plays an important role in risk 

management for different stakeholders., According to Thomas it is “a measure of the 

feeling guiding the person who faces a decision with uncertain outcomes” [9]. 

Although the maximum credible consequence event in a data set of historical accidents 

is straightforward to determine, one of its major drawbacks is that it is disregarding the 
specific distribution properties of the accident data [10], limiting the worst-case risk to 

an unique value. This is particularly relevant for companies in the energy business to 

better understand the risk associated with high consequences events in the low-

frequency domain, also known as extreme events. Furthermore, the non-financial nature 

of the aforementioned risk indicators could be another obstacle for the industry in order 

to better understand risks posed by energy accidents, since they normally focus on 

financial rather than infrastructure-related aspects. 

In order to overcome the aforementioned issues, a set of possible risk indicators from 

the financial realm can be considered. On the one hand they are commonly used by 

energy companies and, on the other hand, they address the risk at high consequence 

levels. In particular, the Value-at-Risk (VaR), the Expected Shortfall (ES) and the Spectral 

Risk Measure (SRM) are considered. While VaR is commonly used by different 

stakeholders dealing with financial risk [8, 10], ES and SRM have attracted considerable 

attention in the financial literature in the last two decades [11-18].  

VaR is defined as the loss level that will not be exceeded with a certain confidence level 

during a certain period of time. Therefore, it is based on three components: a time 



period, a confidence interval and a loss amount. Furthermore, VaR can also be seen as a 

measure of risk aversion than the maximum credibility interval because it denotes an 

aversion threshold, which is however only a minimal part of the risk aversion utility 

function [9]. However, in the last decade, it has been shown that the risk described by 

VaR, in particular situations, is not the best choice [19], since it is limiting the risk to an 

unique value without any consideration on what the risk could be beyond it. Therefore, 

the risk aversion related to VaR displays the attitude of an incoherent investor who is 

only concerned about the threshold level and neglects all the losses themselves [20].    

In this context, since the early 2000s, ES[18] and SRM [14, 20] have been introduced in 

order to include the risk aversion utility function in the estimation of the risk as well as 

to be able to consider risk beyond a certain threshold. The SRM is a risk measure given 

as a weighted average of outcomes, where bad outcomes are, typically, included with 

larger weights. The ES on the other hand, is a particular case of the SRM, where the risk 

aversion function is a constant for all the quantiles, meaning that the bad outcomes 

include the same weights as the good ones. However, among the aforementioned 

conditions used to introduce ES and SRM, the most important one is related to the 

definition of a coherent risk measure [19]. A risk measure is considered coherent if the 

criteria of monotonicity, translation invariance, homogeneity and sub-additivity are 

fulfilled. The first three conditions give the description of the requirements to make the 

risk acceptable. For example, in the context of accidents in the energy sector, it refers to 

increasing safety aspects in order to reduce the risk. On the other hand, the 

subadditivity states that the diversification helps to reduce the risk. When two risks are 

aggregated, the combined risk should either decrease or stay the same. For accidents in 

the energy sector, the latter property is quite important, since in general risk indicators 

are aggregated measures of accidents triggered by different sources (e.g., man-made, 

natural events, terrorism) or for different energy chain stages (e.g., transportation, 

storage, exploration, etc.). Finally, the coherency of a risk measure intrinsically 

considers the risk aversion. In fact, a coherent risk measure is like that if it assumes 

larger weights to worst cases [14]. While both ES and SRM have been shown to be 

coherent risk measures [14, 21], VaR is not since it does not fulfill the subadditivity 

property[21].  

In this paper, we compare the more recent “coherent” risk metrics such as ES and SRM, 

with a more “conventional” risk measure, which is VaR. They are purposely used outside 

the financial realm, i.e., to describe accident risks in the energy sector which is outside 

their original field of application. On the one hand, ES and SRM include information on 

the risk beyond a certain threshold (e.g., VaR), and on the other hand, they intrinsically 

account for the risk aversion utility function, which is of great interest for industry and 

insurers. Furthermore, since risk indicators in the energy sector are commonly based on 

the direct use of historical observations [2, 6, 10, 22], in this study, the aforementioned 

risk measures are calculated directly from historical observations without the use of 

parametric or semi-parametric modelling [12, 23, 24]. The analysis conducted in this 

study is based upon data of the Paul Scherrer Institute’s (PSI) Energy-related Severe 

Accident Database (ENSAD) database, which contains information on accidents and 

related consequences (e.g., fatalities, substance released in metric tons, economic losses) 

classified into energy chains and activities within them [25].  

The current paper is subdivided in the following sections. In Section 2 we provide a 

detailed description of the data collected for the three fossil energy chains that were 

analyzed. Section 3 explains the methodology behind the VaR, ES and SMR risk 



measures. In Section 4 comparative results for the considered risk measures estimated 

from the historical observations (Section 2) are presented and discussed, including 

possible implications on the decision-making process. Finally, in Section 5, the 

conclusions of the study are summarized.  

2 Data 
ENSAD is a comprehensive collection of accidents related to the energy sector. It was 

developed at the PSI in the 1990s [25], and since then it has been updated continuously 

with new information from different sources, such as, specialized databases, technical 

reports, journal papers, books, etc. In contrast to databases that rely on a single or few 

information sources, the multitude of sources considered by ENSAD is thoroughly 

verified, harmonized, and merged to ensure consistent and high quality data. The aim of 

ENSAD, since its start, is to comprehensively collect information about accidents in all 

energy chains that are attributable to fossil, nuclear, hydropower and, more recently, 

new renewables technologies [10]. In ENSAD, data about accidents and related 

consequences (e.g., human health effects, impacts on environment or economy) are 

collected and classified into energy chains and activities within those chains, since 

accidents are not only occurring at the actual power generation step [2].  

In the literature no common definition of severe accident exists [2]. ENSAD is primarily 

focusing on severe accidents, since industries, stakeholders, decision-makers, etc., are 

more concerned about them. However, accidents with minor consequences are also 

included in ENSAD for specific energy chains and activities [26]. Naturally, a higher level 

of reporting and completeness of information can be expected for severe than for small 

accidents. The emphasis on severe accidents also allows accounting for reporting 

differences between countries. In ENSAD whenever one or more of seven consequence 

thresholds is met, an accident is considered to be severe:  

 at least 5 fatalities or 

 at least 10 injuries or 

 at least 200 evacuees or 

 an extensive ban on consumption of food 

 a release of hydrocarbons exceeding 10’000 metric tones 

 an enforced cleanup of land and water over an area of at least 25 km2 or 

 an economic loss of at least 5 million USD (2000) 

In this study, selected accidents subsets of ENSAD have been extracted. In particular, 

coal accidents in China, oil accidents in different country groups, and natural gas 

accidents in Germany have been chosen. In this way the major fossil energy chains are 

represented, while at the same time the consideration of different countries and country 

groups allows to take into account different types of distribution behavior. In the 

following sections the characteristics of the three accident subsets are described in 

detail. 

2.1 Oil  
For the oil chain three country groups, namely OECD, EU28 and non-OECD have been 

considered in this study. This distinction is made due to the substantial difference in 

management, regulatory frameworks and safety between different countries. The 

complete oil chain, i.e., from exploration to end use,  and accidents that fall into the 

period 1971 to 2008 and resulted in at least 5 fatalities are considered. The reason for 



this choice is that fatalities generally comprise the most reliable consequence indicator 

with regard to completeness and accuracy of the data [22, 27]. Furthermore, for injured 

or evacuated persons  the severity of an injury or the duration of an evacuation is often 

not reported precisely [27]. 

In Fig. 1 the fatality distributions related to accidents in the oil chain for the three 

considered country groups are shown.  

In addition, the descriptive statistics for these datasets are summarized in Table 1.  

Table 1: Descriptive statistics for severe accidents in the oil chain in the time period 1971-2008 for the 
OECD, non-OECD and EU28 country groups. 

 

In all cases, the data show a right skewed distribution (skewness > 0), implying that 

most of the values are to the left of the mean with extreme values at the right of the 

distribution. The high value for the kurtosis index for all considered country groups 

indicates a leptokurtic (kurtosis > 3) data outlay implying fatter tails, i.e. high incidence 

of events with large consequences. In this context, the non-OECD fatalities distribution 

exhibits skewness and kurtosis one order of magnitude larger than OECD and EU28 

country groups. The difference could be explained by the presence of a large set of 

accidents that produced more than 100 fatalities in non-OECD countries compared to 

OECD (only few events) and EU28 (only the observed maximum). Furthermore, the 

Country Group Accidents Fatalities Skewness Kurtosis Observed Maximum 

OECD 187 3495 4.9 36 252 

non-OECD 358 19516 13 186 4386 

EU28 65 1243 3.8 18.9 167 

Fig. 1: Number of accidents per fatalities in the oil chain in the time period 1971-2008. a) OECD countries; 
b) non-OECD countries; c) EU28 countries. 



presence of two accidents in the non-OECD country group fatality distribution with 

number of casualties one order of magnitude larger than the maximum number of 

fatalities observed in OECD and EU28 could explain this difference. In fact, the two 

largest events in non-OECD countries, caused by a collision of a ferry and a tanker in the 

Philippines in 1987 (4386 fatalities) and a collision of a road tanker with an army 

vehicle in a tunnel and the subsequent explosion in Afghanistan in 1982 (2700 

fatalities), are stretching the fatality distribution towards very large consequence 

events. This is not the case for OECD and EU28 countries, where the observed maxima 

are located at 252 fatalities (explosion due to a mechanical failure of a pipeline in 

Mexico in 1992) and 167 fatalities (explosion due to well blowout on a platform in UK in 

1988), respectively.  

2.2 Coal China 
For Coal China, accidents with at least five fatalities are considered for the time period 

1994-2008 because data prior to 1994 are subject to strong underreporting [22]. The 

dataset was subdivided in two groups from 1994-1999 and 2000-2008 because the 

former period is based on official Chinese data [28], while the second one relies on data 

collected from freely available Chinese information sources. 

In Fig. 2, the fatality distributions for the considered time periods are shown.   

Fig. 2: Number of accidents per fatalities in the Chinese coal chain. a) Time Period 1994-1999; b) Time 
Period 2000-2008. 

Furthermore, in Table 2 the descriptive statistics are given.  

Table 2: Descriptive statistics for severe accidents in the Chinese coal chain for the periods 1994-1999 and 
2000-2008.  

Time Period Accidents Fatalities Skewness Kurtosis Observed Maximum 

Coal 1994-1999 828 11302 3.6 20.1 114 

Coal 2000-2008 1214 15750 6.1 50.7 215 



Similar to oil, the two datasets considered for coal china are both right skewed 

(skewness > 0) with a large kurtosis values (> 3) indicating their leptokurtic nature, and 

more specifically the high incidence of events with large consequences. However, the 

two datasets exhibit different skewness and kurtosis, although of the same magnitude. 

The aforementioned values are larger for the time period 2000-2008 than 1994-1999, 

due to the presence of few accidents with consequences larger than 100 fatalities in this 

period compared to only one accident of more than 100 fatalities for the time period 

1994-1999. The difference in the descriptive statistics could be also explained by the 

difference in the observed maximum, which is larger in the time period 2000-2008 (215 

fatalities) than in 1994-1999 (114 fatalities). In fact, the larger maximum has the effect 

to stretch the distribution, increasing both the lack of symmetry (skewness) and the 

fattened tail (kurtosis).  

2.3 Natural Gas Germany 
The dataset for accidents in the German natural gas chain covers the time period 1981-

2004. However, in contrast to the previously described datasets, the natural gas dataset 

contains both accidents with at least five fatalities and with minor consequences. 

Furthermore, this dataset is unique in the sense that complete accident records are not 

only available for fatalities, but also injured persons and property damages in 2004 

monetary value (Euro). 

In Fig. 3 the fatality, injury and economic losses distributions are shown. 

Fig. 3: Number of accidents for different types of consequences in the German natural gas chain for the time 
period 1981-2004. a) Fatalities; b) Injuries; c) Property Damages (Euro).  

In Table 3 the descriptive statistics for each of the analyzed datasets are collected.  

 



Table 3: Descriptive statistics for severe accidents in the German Natural gas Chain in the time period 
1981-2004 for different types of consequences, i.e. fatalities, injuries and property damages (Euro). 

 

For all three consequence indicators, the distributions are right skewed (skewness > 0) 

with a large kurtosis values (> 3) indicating their leptokurtic nature. Overall, both 

skewness and kurtosis are slightly different between the different datasets, unless for 

the skewness for the fatality and injury distributions. However, for injuries the kurtosis 

is slightly larger than for fatalities. This could be related to the lack of severe accidents 

for fatalities (≥ 5), where only the observed maximum is observed (12 casualties 

occurred in 2000), compared to injuries, where the presence of few severe accidents (4 

in total with ≥ 10 injuries, including the observed maximum with 26 injuries that 

happened in 1990) affected the kurtosis (Fig. 3). Furthermore, for the property 

damages, both skewness and kurtosis are larger than the fatality and injuries 

distributions. The latter is strongly related to the relative large number of events 

recorded for property damages with respect to the other two analyzed datasets and the 

rather large number of events, at least the double, with 1000 euro damages with respect 

to the other damages levels, which strongly increase both the asymmetry and the 

fatness of the distribution.  

3 Method 
In this section an overview of the risk measures is given that were applied to the oil 

(OECD, EU28, non-OECD), coal China and Natural Gas Germany datasets. Value at Risk 

(VaR) is compared with the so-called “coherent” risk measures, which in this case are 

Expected Shortfall (ES) and Spectral Risk Measures (SRM). The concept of coherent was 

first introduced by [19] in order to present and justify a unified framework for the 

analysis and structuring of risk measures. The result of the work by [19] was a set of 

axioms that define the properties, which must be fulfilled by a risk measure to become 

coherent. 

Here the axioms proposed by [19] are briefly summarized since it is not in the aim of 

this paper to describe them in detail. However, it is important to explain and discuss the 

concepts and assumptions based on which [19] develop their arguments. According to 

[19] risk is represented by the change in values between two dates of a financial 

position, which is the amount of owned or owed items of a trader/investor, or as the 

variability of the future value of the position due to changes in the market environment. 

Although these axioms were firstly developed for the financial realm, they could also be 

applied to non-market risk as well [29].  

Consequence 

Type 
Accidents 

Total 

Consequences 
Skewness Kurtosis 

Observed 

Maximum 

Fatalities 52 78 5.3 33.2 12 

Injuries 340 730 5.3 42.8 26 

Property Damages 

(Euro) 
359 5.44E+7 7 62.6 5E+6 



3.1 Overview of coherent risk measures properties 
In order to briefly summarize the 4 axioms described in [19] to define a coherent risk 

measure, let us denote M as the space of random variables representing portfolio losses 

over a fixed time interval and L be the loss value for a given portfolio. Furthermore, M is 

assumed to be a convex cone so that 𝐿1 𝜖 𝑀 and 𝐿2 𝜖 𝑀, then 𝐿1 +  𝐿2 𝜖 𝑀 and 𝜆𝐿1 𝜖 𝑀 

for every constant 𝜆 > 0. A coherent risk measure 𝜌: 𝑀 →  ℝ is defined as a function 

that satisfies the following properties [30]: 

 Axiom 1 (Translation Invariance), for all 𝐿 𝜖 𝑀 and every constant 𝑎 𝜖 ℝ, we 
have that 𝜚(𝐿 + 𝑎) =  𝜚(𝐿) +  𝑎; which means that adding or subtracting a 

riskless amount 𝑎 to the initial amount and investigating it in the reference 

instrument, simply decreases respectively increases the risk metric by 𝑎. 

 

 Axiom 2 (Subadditivity), for all 𝐿1, 𝐿2 𝜖 𝑀, we have 𝜌(𝐿1 + 𝐿2) ≤  𝜌(𝐿1) +  𝜌(𝐿2); 

which means that the total risk associated to two random variables is equal or 

lower than the sum of the individual risk of each of the random variables. If an 

individual participating on an established exchange would wish to take up the 

risk expressed by the sum of the two random variables 𝐿1 +  𝐿2, by employing a 

risk measure that is not coherent with this axiom, he would simply open two 

accounts: one for 𝐿1 and another for 𝐿2 since he would benefit from a smaller 

margin requirement of  𝜌(𝐿1) +  𝜌(𝐿2).   

 
 Axiom 3 (Positive Homogeneity), for all 𝐿 𝜖 𝑀 and every 𝜆 > 0, we have 𝜌(𝜆𝐿) =

 𝜆𝜌(𝐿); which means that the risk of a position is proportional to its size [19, 31]. 

However, by considering Axiom 2, this is somewhat controversial, since it means 

that for two different portfolio losses, the relation is not the same as for two 

equal portfolio losses.  

 
 Axiom 4 (Monoticity), for all 𝐿1, 𝐿2 𝜖 𝑀 such that 𝐿2 ≤  𝐿1, we have 𝜌(𝐿1) ≤

 𝜌(𝐿2); which means that if L1 has better outcomes than L2, than the risk 

associated to L1 should always be less than the risk associated to L2.  

Once the aforementioned axioms are satisfied, a risk measure is defined to be coherent.  

3.2 Value-at-Risk (VaR) 
VaR is the most widespread risk measure employed in financial mathematics and 

financial risk management, as well as within the financial industry [32]. According to 

[33] the VaR of a portfolio at a specific confidence level 𝑎, with 𝑎 𝜖 [0,1], is formally 

defined as the smallest number 𝑥 such that the probability of a random number 𝑋 to 
exceed 𝑥 is not larger than (1 − 𝑎). Therefore, the function that formally defines VaR can 

be described as:  

𝑉𝑎𝑅𝑎(𝑋) = inf{ 𝑥 𝜖 ℝ; 𝑃(𝑋 > 𝑥) ≤ 1 − 𝑎} = inf {𝑥 𝜖 ℝ; 𝐹𝑥(𝑥) ≥ 𝑎}                                      (1) 

One of the main advantages of VaR is its simplicity in estimation and its probabilistic 

behaviour. Furthermore, VaR provides a common measure of risk across different 

exposures and risk factors implying that the risk manager can compare the results of the 

applied VaR metric computed for different portfolios. On the other hand, the main 

drawback is that VaR is not a subadditive measure, therefore, could not be considered a 

coherent risk measure. Furthermore, since VaR is the quantification of a quantile, it does 

not allow to measure the extent of exceptional losses beyond the quantile of interest 



[34]. In other words, in a bad state of the world, e.g., states with extremely low 

probability, the risk manager might face significantly higher losses than those expressed 

by the VaR metric. 

3.3 Spectral Risk Measures (SRMs) 
The SRM was developed in order to fulfill the axioms to be considered a coherent risk 

measure [11, 13]. In this context, the general formalization of SRM for a risk measure 
function 𝑀𝜙 is given as follow: 

𝑀𝜙(𝑋) =  ∫ 𝜙(𝑝)𝑞𝑝𝑑𝑝
1

0

                                                                                                                       (2) 

where 𝑞𝑝 is the 𝑝 loss quantile and 𝜙(𝑝) is the weighting function specified by the risk 

manager and defined over the full range of cumulative probabilities 𝑝 𝜖 [0,1]. This 

function is also known as risk aversion function, where higher weights should be 

assigned to less desirable outcomes in order to reflect the risk aversion of the risk 

manager. Furthermore, the definition of it is a crucial element for SRM, since the 

admissibility of the risk aversion function is strictly linked to the coherency of an SRM 

[20]. Concisely summarize the three main conditions for coherency of the risk aversion 
function 𝜙(𝑝): 

 Non-negative 𝜙(𝑝) ≥ 0, which prohibits the existence of negative risk weights; 

 Normalization ∫ 𝜙(𝑝)𝑑𝑝
1

0
= 1, which means that all risk weights should sum up 

to 1; 

 Increasingness 𝜙′(𝑝) ≥  0, where its spirit is to dictate an increase in the risk 

weight associated with larger, unwanted losses. 

In this study, an exponential risk aversion function is chosen for the calculation of SRM, 

since: 

 it is non negative for any quantile;  

 the weights are increasing as we move towards the higher loss quantiles, thus 

exhibiting the manager’s degree of risk aversion; 

 the area underneath the function is 1 and its derivative is non negative.  

In mathematical terms [12, 24]: 

𝜙(𝑝) =  
𝑘𝑒−𝑘(1−𝑝)

1 − 𝑒−𝑘
                                                                                                                                (3) 

where 𝑝 is the loss quantile and 𝑘 is defined as the Arrow-Pratt coefficient of absolute 
risk aversion (ARA). The most important advantages of SRM are that it is a coherent risk 

measure and enables the risk manager to incorporate his or her risk aversion, resulting 

in metrics based on different risk profiles. On the other hand, the main limitations are 

commonly linked to the fact that they require more computational effort and a clear 

understanding of the mechanics behind the risk measure [13] . In fact, a risk manager 

should be very careful in choosing a weighting that fits his or her risk profile. This is a 

delicate step in a risk analysis since ultimately the results of a risk measurement using 

SRMs depends on the choice of the power weighting function and its parameters.  

3.4 Expected Shortfall 
The Expected Shortfall (ES) is a coherent risk measure, which is a particular case of 

SRM. It is a coherent risk measure like SRM, but it overcomes one of the SRM’s 



disadvantages, which is the definition of a risk aversion function and all its possibly 

related issues. In fact, the ES is estimated as a SRM, but the risk aversion function is 

given by a constant, which has an inverse proportionality with the quantile of interest. 

Furthermore, the ES risk measure is sub-additive and better captures the extent of 

exceptional losses. In fact, ES can be regarded as a better risk measure than VaR as it 

does not ignore the losses beyond the specified confidence interval, but it averages over 

them, while also satisfying the subadditivity criterion that acknowledges the benefits of 

diversification [35]. However, the fact that it assigns equal weights to the loss quantiles 

does not necessarily reflect the risk aversion of the risk manager. Formally, ES is defined 

as the average loss in the 100 ∗ (1 − 𝑎)%, where 𝑎 is the quantile of interest, worst cases 

of our distribution. It averages the events to the right of the specified confidence level 

value and reports it [18]. In mathematical terms, the ES for a given quantile of interest is 

given by:  

𝐸𝑆𝛼 =
1

1 − 𝛼
∫ 𝑞𝑝𝑑𝑝 

1

𝛼

                                                                                                                          (4) 

Therefore, the risk aversion function is defined as: 

𝜙𝐸𝑆𝛼
(𝑝) =

1

1 − 𝛼
1{𝑝≤(1−𝛼)} = {

1

1 − 𝛼
 𝑖𝑓 𝑝 ≤ (1 − 𝛼)

 
0                     𝑒𝑙𝑠𝑒

                                                               (5) 

3.5 Practical Estimation of VaR, ES and SRM 
In this study, the estimation of the different risk measures for the datasets described in 

section 2 are following the so-called historical method, since it is the most common way 

used in the past to assess risk indicators for accidents in the energy sector [2, 6, 10, 22]. 

The estimation of VaR is given by equation (1) for different quantiles of interest. 

However, for ES and SRM, the estimation is not straightforward as pointed out before. 

Intuitively, both ES and SRM are weighted averages of the loss tail VaRs. Therefore, the 

best way to implement these measures is by slicing the tail into n parts and averaging 

over the values estimated for each slice [35]. For example, for a set of n=100, we got 99 

loss quantiles for each of which we calculated the respective VaR and, finally, averaged 

them in order to get the ES value for the tail section. Furthermore, for SRM, we 

multiplied each of the 99 VaR values with their respective risk weight given by the 

exponential risk weighting function 𝜙(𝑝) in order to get the value of the exponential 

SRM for the same tail section. In this context, the number of slices should then be 

defined in order to subdivide the loss tail to estimate the SRM (or ES).  

Intuitively, as the number of slices gets large enough, the computed value will converge 

to the true SRM (or ES) value. In this study, the number of slices (n) has been assessed 

by estimating the so-called most probable break-point, which is the threshold from 

where the value of the risk metric remains constant with increasing number of slices. In 

fact, the distribution of the number of slices with respect to the average risk metric 

shows two distinct patterns:  

 at the low resolution case (i.e., low number of n), the increase of the average risk 

metric is fast with respect to the increase of the number of slices;  

 at the high resolution case (i.e., high number of n), the average risk metric is 
constant with respect to the increase of the number of slices. 



In this study, the break-point is estimated by using an iterative procedure to fit 

segmented relationships in regression models, which use a bootstrap restarting to avoid 

sensitiveness issues to the starting values [36]. Furthermore, the use of a resampling 

method (bootstrap) allowed the estimation of the uncertainty for the number of slices at 

the break-point [37], see Fig. 4.   

This method has been applied to all datasets (section 2) for different quantile levels (0.9, 

0.95, 0.99 and 0.999) and for different risk aversion factors (k-factors) between 1 and 
2000 for both ES (Fig. 4a) and SRM, (Fig. 4b). In both Fig.s the minimum number of 

slices varies case by case. Some cases (e.g., Fig. 4a: Oil OECD and Fig. 4b: Germany 

Natural Gas Property Damages (Euro)) show higher numbers of slices for quantiles or k-

factors not at the end of the tail, resulting in a peak of number of slices. Therefore, a 

conservative value of 30000 slices has been chosen in this study for all the 

aforementioned risk metrics and datasets in order to avoid these peaks.    

Fig. 4: Minimum number of slices needed for the estimation of a stable risk measure. The error bars indicate 

the uncertainty assessed for the estimated stable risk measure using a bootstrapping approach. a) ES for 

different probability levels and different Energy Chains; b) SRM for different risk aversion factors (k-factor) 

and different Energy Chains. 

4 Results & Discussion 
An overview of the various datasets for the three different risk measures in comparison 

with the maximum consequence is given in Fig. 5. In the case of VaR and the ES 

estimates for different quantiles (i.e., 0.9, 0.95, 0.99 and 0.999) were calculated, in order 

to better understand the differences between the two. For the SRM, which considers an 

exponential driven risk aversion function, different k-factors or risk aversion levels 
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were used (i.e., 50, 500 and 1500). This allows comparing different levels of stability 

along the entire risk aversion function.  

In absolute values, by comparing the results for the different probability levels, it is clear 

that the VaR is lower than the ES for p = 0.9, p = 0.95 and p =0.99, and tends to converge 

to the maximum consequence and to the ES values the closer p gets to 1. In fact, the VaR 

is a quantile of the distribution at a given probability level, and ask the question “how 

bad can things get?”, while the ES wants to answer the question “if things do get bad, 
what is the expected loss?”. These are two different ways to approach the risk. In the 

former we get the maximum value at which we could be safe from a risk point of view, 

while in the second we are getting the average, or expected loss, if we are going beyond 

the VaR. This is somehow expected since the ES is calculated as the average value of the 

risk after a certain quantile, while the VaR is roughly calculating the quantile value of the 

distribution. The higher the quantile value of interest becomes (i.e., closer to 1), the 

more the VaR converges to the ES and to the maximum consequence. This is of course of 

great interest for decision-makers and other stakeholders dealing with energy risks 

because the choice of risk measure may influence the decision process. For the most 

extreme risks (p close to 1) VaR and ES are interchangeable, i.e. the results are not 

depending on the risk measure, but still lower than the maximum consequence. 

However, for more probable cases (p between 0.9 and 0.99) the values for ES are clearly 

larger than for VaR suggesting that VaR tends to underestimate the risk with respect to 

ES. This is related to the fact that ES includes information on the expectation of 

consequences in case of an extreme case accident, while VaR is not. Furthermore, ES can 

provide a more conservative estimate to avoid underestimating the risk [15]. 

On the other hand, the SRM values at the considered risk aversion levels correspond to 

the ES results between p=0.95 and p=0.99 for the k-factor = 50, while for the k-factors 

500 and 1500, results are similar to the ES and VaR results at p=0.999 and, thus, closer 

to the maximum consequence. It is interesting to see that the relative difference in all 

cases of the SRM values is significantly larger between k=50 and k=500 than between 

k=500 and k=1500. This indicates that the SRM values are strongly driven by the risk 

aversion function. In fact, by choosing an exponential function as weighting function, 

this tends to give larger differences at the beginning of the distribution, while the values 

are more similar at the tail. Therefore, using k=500 or k=1500 as risk aversion level 

does not change significantly the results. Finally, in all cases, but in particular for Oil 

non-OECD, the SRM constructed with an exponential weighting function is the risk 

measure that signals the highest risk. The choice of k>500 for SRM implies an estimation 

of risk similar to the ES at p=0.999, so it can be employed by stakeholders with a higher 

risk aversion. An advantage of this risk measure is also that it takes into account the 

entire distribution of fatalities and it is flexible enough to adapt to different risk 

aversion levels and stakeholder preferences.  

As described before, the absolute values are different, due to the fact that VaR tends to 
underestimate the risk with respect to ES and SRM. However, from Fig. 5 it is clear that 
the three risk measures show similar results in terms of their relative ranking for all 
energy chain datasets.  In case of fatalities in Chinese coal mines, for low probability 
levels (e.g., p=0.9), VaR and ES for the time period 1994-1999 are higher than for 2000-
2008. However, on the other hand for larger probabilities (e.g., p=0.999), the fatality 
indicators for VaR, ES and SRM are higher in the time period 2000-2008 than for 1994-
1999 in accordance with the maximum consequence. This result indicates that for 
extreme events, the China coal mines safety condition has not been improved, but it 
clearly has for more expected events. This could be explained by the fact that moving the 



production from small private mines to big mines, as was done by the Chinese 
government in the last decade, the number of potential consequences could have been 
reduced, but at the same time the potential consequences in case of an extreme event 
could be more severe due to the larger number of workers present in these mines [27]. 
This is important on an energy-business point of view, since clearly show were the 
threshold for the risk willing to take could be considered, meaning more towards more 
expected accidents than extreme ones.  
 

In the case of the Oil chain, for more expected accidents (e.g., p=0.9), the three risk 

measures show a similar behavior among the analyzed country groups. The non-OECD 

country group results to be of higher risk with respect to OECD and EU28, which are 

comparable. However, it is interesting to see that the relative difference between non-

OECD and EU28 countries with non-OECD is larger in the case of ES (or SRM) with 

respect to VaR. This is possibly related to the fact that, as discussed before, VaR tends to 

underestimate the risk with respect to ES. Furthermore, for more extreme cases 

(p=0.999), while the non-OECD country group show a relative higher risk compared to 

OECD and EU28, the former results to be larger than the latter in accordance with the 

maximum consequence indicator. This result indicates that for the Oil chain, as larger 

the p level for an accident is, the larger is the accident risk for OECD with respect to 

EU28. In other words, while for more expected accidents the risk between OECD and 

EU28 is similar, for extreme cases the OECD countries performs worst due to the 

relative higher OECD maximum consequence with respect to the EU28 one. In fact, the 

former tend to increase the skewness of the distribution more than for the EU28 case 

affecting the considered risk measures. Furthermore, in the non-OECD cases, it is clear 

that, although they always perform worse than OECD and EU28 indicating a need of 

safety regulation improvements, the larger relative difference is shown for extreme case 

scenarios. This result could be of great interest for energy-related business willing to 

understand the acceptable risk for fatalities related accidents in the Oil chain. 

Furthermore, it is clear that an acceptable risk moves toward a more expected accident 

(p=0.9, 0.95) than an extreme one, mostly in the case of non-OECD countries were the 

relative difference between different p-levels is significant.  

Finally, for the Natural Gas case, a direct comparison cannot be made, since the 

indicators are of different scales. Therefore, no conclusions related to the relative 

ranking could be made.   



Fig. 5: Maximum Consequence, Value-at-Risk (VaR) and Expected Shortfall (ES) for different probability levels and Spectral Risk Measures (SRM) for different risk aversion factors 

(k-factor) for the various energy chain datasets analysed in this study.



5 Conclusions 
In this paper we applied and compared coherent (ES, SRM) and non-coherent (VaR) risk 

measures, commonly used in the financial realm, for accident risk in the energy sector. 

For this purpose, the so-called historical method has been used, since it is a common 

practice to estimate risk indicators for accidents in the energy sector based on historical 

observations collected in the PSI’s ENSAD database [2, 6, 10, 22].  

The VaR, ES and SRM risk metrics analyzed in this study indicate stable relative rankings 

in terms of risk measures for a given probability level (or k-factor), validating the 

applicability of these risk measures in accident risk in the energy sector. Although the 

relative ranking results are similar, the absolute values are not. In general, VaR tends to 

underestimate the risk with respect to ES (and SRM), since the latter includes 

information on the expectation of consequences in case of an extreme accident. This is of 

great interest for stakeholders and decision makers in general. In fact, in the energy 

sector and in particular in the context of energy security, underestimating the risk of an 

accidents at a critical infrastructure could lead to large consequences in terms of human 

health, environmental impact and economic losses in case something will happen. In this 

context, these might be mitigated by the use of ES (or SRM), since they will help in the 

improvement, for example, of the safety measures in preparation of a larger event than 

what expected by the VaR, or by the increase of investments at an energy critical 

infrastructure that enhance prevention and response induced by the insurance industry. 

However, while ES can be considered a good alternative with respect to VaR, the SRM is 

strongly affected by the risk aversion, and thus, to the definition of it. This risk measure 

is a tool flexible enough to assess risk and can be adapted to individual preferences and 

risk aversion levels of stakeholders. However, this risk metric implies a higher degree of 

sophistication and poses more challenges for the implementation, which still limits its 

application in practice. 

Finally, with respect to the commonly used maximum credible consequence indicator, 

the risk metrics considered in this study could improve the information that an energy-

related business can get. In fact, VaR, ES and SRM could help to facilitate a better 

understanding of energy accident risks to the industry, due to the fact that they 

normally focus on financial and less infrastructure-related aspects. Furthermore, 

although both the maximum credible consequence and VaR are unique values for the 

risk, they have a different nature. The former is defined by the maximum historical 

observation, thus no complete conclusions could be made from it (e.g., is it an extreme 

event? Could an event overcome it? Can be considered as an acceptable risk threshold?). 

VaR defines a threshold, which does not tell a stakeholder what is the risk beyond it, but 

could help him during decision-making processes by considering a maximum risk that 

he is willing to take. In case of ES and SRM, the discussion is different. In both cases, the 

improvements with respect to the information given by the maximum credible 

consequence are significant. In fact, on the one hand, both measures intrinsically include 

the risk aversion and, on the other hand, while ES measures the risk beyond a certain 

threshold, SRM is able to model the entire spectrum of it, giving the full picture.  
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