
Sensor Fusion with Out-of-Sequence
Measurements
Localization in an Agricultural Robot Using

Visual Odometry

Mathias Hauan Arbo

Master of Science in Cybernetics and Robotics

Supervisor: Jan Tommy Gravdahl, ITK
Co-supervisor: Trygve Utstumo, Adigo AS

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology

 Norges teknisk-naturvitenskaplige Universitet

 IME-fakultetet

 Institutt for Kybernetikk og robotikk

 Master Thesis TTK4900

Student: Mathias Hauan Arbo

Program: M.Sc. Engineering Cybernetics

Title: Sensor fusion with Out-Of-Sequence-Measurements

Localization of an agricultural robot using visual odometry

Adigo is developing an autonomous robot for weed control in row crops, Asterix. A vision system classifies

weeds and crop, and targets each weed leaf with an individual droplet of herbicide. The system requires a

highly accurate position and movement estimate to accurately target individual leaves. The robot is equipped

with an RTK GPS unit, IMU, wheel encoders and a camera system which can be utilized for visual odometry.

The nature of visual odometry (VO) measurements is highly different from measurements from an IMU or

wheel encoder, which are near instantaneous and frequent. The processing time of VO introduces a delay, and

the frequency of measurements are limited both by the imaging system and processing time. These

measurements can be described as out-of-sequence measurements (OOSM).

Sensor fusion with OOSM has been presented in numerous ways in literature, using various assumptions and

approaches. A central topic in this project is to evaluate solution strategies for the delayed sensor fusion

problem.

The main tasks in this projects are:

- Present an overview of existing work on delay fusion for localization.

- Evaluate the Stochastic Cloning strategy in a Bayesian framework.

- Construct a delay fusion strategy for use with an unscented Kalman filter.

Advisor: Jan Tommy Gravdahl

 Professor, Dept. of Engineering Cybernetics

 Edmund Brekke

 Professor, Dept. of Engineering Cybernetics

External advisor: Trygve Utstumo

 Ph.D. candidate, Dept. of Engineering Cybernetics

 MSc. Engineering Cybernetics, Adigo AS

Project assigned: January 2015

To be handed in by: June 12, 2015

Trondheim, Januar 2015

Jan Tommy Gravdahl

Professor, Dept. Engineering Cybernetics

Abstract

Timing is an important aspect when working with vi-
sual odometry (VO). The time of processing and data
transfer of image based measurements are significantly
longer than IMU, wheel encoders, and GPS measure-
ments. This introduces an arrival latency, causing the
VO measurements to require delay fusion, a subcategory
of out-of-sequence measurement (OOSM) fusion. In co-
operation with Adigo AS this thesis has focused on the
Asterix project, where an agricultural robot uses a down-
ward facing camera for visual-inertial odometry to aid
in localization. The main focus in this work is with the
delay fusion problem.

By approaching the OOSM fusion with a Bayesian
framework, the theory chapter presents a method of fus-
ing delayed displacement measurements. This can be
considered a generalization of the stochastic cloning ap-
proach. A byproduct of the investigation is an unscented
multiple-point smoother capable of defining fixed-points
to be smoothed on demand.

Simulations and experiments showed that the OOSM
fusion methods worked, but model inconsistencies and
inaccuracies in the VO measurements negatively affected
the results.

Sammendrag
Timing er et viktig aspekt ved sensorfusjon av visuell odometri
(VO) målinger. Prosessering og dataoverføring av bildebaserte
målinger er betydelig lengre enn IMU, hjulenkodere, og GPS-
målinger. Dette introduserer en forsinkelse som fører til at
VO målingene må håndteres annerledes under fusjon. Denne
typen sensorfusjon er en underkategori av ”out-of-sequence
measurement” (OOSM) fusjon. I samarbeid med Adigo AS har
denne avhandlingen fokusert på Asterix prosjektet der en land-
bruksrobot bruker et nedadvendt kamera for ”visual-inertial”
odometri for lokalisering. Hovedfokuset har vært på det teo-
retiske grunnlaget for forsinket fusjon.
Teorikapittelet introduserer fusjon av forsinkede målinger
i et i et Bayesiansk rammeverk hvor stokastisk kloning er
et spesialtilfelle. Et produkt av denne undersøkelsen er en
”unscented multiple-point smoother”. Det er et ”fixed-point
smoothing” filter hvor de glattede punktene kan bli definert
etter behov mens filteret kjører.
Simuleringer og datasettene viste til at OOSM metodene
fungerte, men at filteret var veldig sensitiv til forskjeller i den
observerte tilstanden og den modellerte tilstanden. Ved for lav
prosesstøy klarer ikke filteret følge raske endringer, men med
for høy prosesstøy gir ikke VO målinger forbedring i tilstand-
sestimatet.

Acknowledgement
After approximately one year and 50 litres of coffee, my mas-
ter thesis has come to an end. I am sincerely grateful for the
discussions and guidance provided by my supervisors: Jan
Tommy Gravdahl, Edmund Brekke and Trygve Utstumo. I am
also grateful to Programvareverkstedet at NTNU, a constant
source of good, fun, infuriating, and intriguing conversations.
Gratitude must also be extended to Adigo AS who formulated
this interesting problem, gave me hands-on experience with
their robots during a summer internship, and provided helpful
cooperation.

Mathias Hauan Arbo
Trondheim
June 12, 2015

Contents
1 Introduction 3

1.1 Precision Agriculture . 3
1.2 Visual Odometry . 3
1.3 The System and Related Work 4
1.4 Contributions . 5
1.5 Report Structure . 6
1.6 Notation . 6

2 Theory 8
2.1 Probabilistic Localization Filter 8

2.1.1 Bayesian Filter . 8
2.1.2 Kalman Filters and Nonlinear Extensions 10
2.1.3 Extended Kalman Filter 11
2.1.4 Unscented Kalman Filter 13
2.1.5 Masking . 17

2.2 Visual Odometry . 19
2.2.1 Motion From Features . 20
2.2.2 Warm-Start of Feature Search 22
2.2.3 Expected Timing . 24

2.3 Out-of-Sequence Measurements 25
2.3.1 Previous Strategies . 26
2.3.2 Optimal Approach . 27
2.3.3 Unscented Fixed-Point Smoother 28
2.3.4 Displacement Measurements 30
2.3.5 Delayed Displacement Measurement 31
2.3.6 Multiple-Point Smoother 33
2.3.7 Stochastic Cloning . 34
2.3.8 Fixed-Lag Smoother . 35

2.4 Rotation . 38
2.4.1 Reference Frames . 38
2.4.2 Ellipsoidal to Cartesian ECEF 39
2.4.3 ECEF to ENU . 39
2.4.4 The Local ENU Frame . 40

2.5 Local Versus Global . 41
2.5.1 Proprioceptive Measurements 41
2.5.2 Extroreceptive Measurements 41
2.5.3 Delay And Smoothing . 41
2.5.4 VO Sensor Model . 42

3 Implementation 44
3.1 Module Testing . 44

3.1.1 Target Tracking . 44
3.2 Asterix Robot . 45

3.2.1 Modeling . 45
3.2.2 Prototype . 47
3.2.3 Measurement model . 48

3.3 Manual Feature Software . 50
3.3.1 OpenCV . 50
3.3.2 Software . 50

3.4 Python Modules . 52
3.4.1 Probabilistic Filter Module 52
3.4.2 Delay Fusion Module . 52
3.4.3 Kinematic Module . 56
3.4.4 Measurement Handler Module 56

4 Results 57
4.1 Module Testing . 57

4.1.1 Target Tracking . 57
4.1.2 Discussion: Basic Tracking 59

4.2 Asterix Simulation . 60
4.2.1 Localization Without GPS 60
4.2.2 Discussion: Localization Without GPS 70
4.2.3 Localization With GPS . 73
4.2.4 Discussion: Localization With GPS 77
4.2.5 Effect of VO Frequency 77
4.2.6 Discussion: Effect of VO Frequency 80

4.3 Experimental Data . 81
4.3.1 Datasets . 81
4.3.2 Localization with Dataset A 87
4.3.3 Discussion: Localization with Dataset A 93
4.3.4 Localization with Dataset B 93
4.3.5 Discussion: Localization with Dataset B 95
4.3.6 Picture Frame Tracking 95

5 Epilogue 98
5.1 Discussion . 98
5.2 Future Work . 100
5.3 Conclusion . 102

A Appendix 106
A.1 Bayes Filter Derivation . 106
A.2 Kalman gain derivation . 108
A.3 Sigma-Point Selection . 110
A.4 Additional Graphs: Effect of VO Frequency 112
A.5 Modules . 122

A.5.1 ProbabilisticFilters . 122
A.5.2 DelayFusion . 129
A.5.3 Kinematic . 132
A.5.4 Geodetic . 134
A.5.5 MeasurementHandler . 137
A.5.6 Horns Method . 143

2

1 Introduction
1.1 Precision Agriculture

The world’s population is increasing, and so does the demand for nutrition.
Projections from 2009 indicate that feeding a population of 9.1 billion people
in 2050 requires raising food production by 70 percent (FAO, 2009). To be
able to sustain the growing world, agriculture has to keep up the development
of efficient and productive techniques.

Typical tasks encountered in the agricultural industry involve identification
and sorting of various produce, picking, harvesting, mowing and crop control.
Many of these tasks are easy for humans to do, but difficult to achieve with
robots as there is great uncertainty in the objects with which to interact and
the environment of the task.

One of the bottlenecks in automated agriculture is weed control. It requires
extensive manual labor and uses pesticides and herbicides that are potentially
harmful to both farmers and the environment. To use robotics in a setting as
complex and varied as a field of carrots, high precision is required to ensure on
demand control, only where necessary.

Generally weed control has been done by uniform application of herbicides
to the entire field of crops. Precision agriculture intends to identify specific
problem areas and only apply herbicide as appropriate. This requires accurate
knowledge of the robot’s configuration with respect to its environment, a task
only possible with computer vision.

1.2 Visual Odometry

Odometry stems from odos meaning route and metros meaning measure. It is
the act of using sensors to measure the configuration of the robot in a prede-
fined map. This term will be used interchangeably with localization. In this
thesis we call configuration the current state of the robot (position, heading
and velocities). Pose is a combination term used for position and heading.

Visual odometry (VO) uses feature points from two or more images to recon-
struct the movement between the two images. It does so by identifying the
motion of the observing camera as a translation and rotation. This is similar
to wheel odometry (WO) which uses the distance traversed by the wheels to
reconstruct the movement of the robot.

VO techniques have different criterions for ensuring optimal results. The sur-
face observed has to contain sufficient features, and as the operations per-
formed are more cumbersome than wheel odometry the estimates are signif-

3

icantly delayed for real-time applications.

The term visual odometry (VO) was first introduced in 1996 by Srinivasan to
define motion orientation in honey bees. However something akin to real-time
stereo VO was first implemented in 1980 by Moraveck for NASA’s Jet Propul-
sion Laboratory. The method of VO is especially important on Mars where
GPS is not available, and other means of reliable navigation are necessary. Be-
tween 1980 and 2000, VO research was dominated by NASA and JPL. In 2004,
the research proved successful when the Mars rovers Spirit and Opportunity
both used VO for navigation on Mars. The term was further popularized in the
academic environment by the publication of “Visual Odometry” (Nister et al.,
2004) which presented a brief overview of the technique.

In recent years VO has seen a resurgence in research as an alternative or com-
plement to simultaneous localization and mapping (SLAM). Whereas VO aims
at recovering the motion of an agent with focus on local consistency, V-SLAM
aims at recovering the map an agent moves in with a focus on global consis-
tency. An example of this is Project Tango, a research project by Google that
has created a development platform, a cellphone with two cameras and IMUs,
for visual odometry and visual navigation. Nasa’s Mars Science Laboratory is,
after their successes with Curiosity and Spirit, continuing their research on VO
and V-SLAM.

For fast localization filters, VO measurements are intermittent and delayed.
The processing time for images is significantly longer than wheel encoders or
similar sensors. This delay means that the VO measurements do not describe
the current configuration of the system, but rather how it was some time ago.
This thesis discusses how to handle these delayed VO measurements with re-
spect to Asterix, an agricultural robot in development at Adigo AS.

1.3 The System and Related Work

Asterix is a research and development project at Adigo AS in cooperation with
Bioforsk. It is led by Trygve Utstumo, an industry PhD candidate at Dept. of
Cybernetics at NTNU. The project entails creating a high-precision crop control
robot. Tasks of the robot are: to follow rows of carrot crops, identify weeds,
and spray herbicide on demand.

To spray the correct weeds in a row of crops, the robot needs to maintain an
estimate of its position relative to a set of identified weeds. This means it hopes
to maintain a locally accurate estimate of its position. To be completely au-
tonomous, the robot must also be able to turn into rows and follow the rows
of the field. This means that one must either maintain a globally accurate po-
sition estimate or have a row following controller based on a forward facing
camera.

Much of the basic framework for the robot has already been investigated.
In 2013, Alexander Tallund Klungerbo did his master thesis on the drop-on-

4

demand system with respect to the requirements of a nozzle system for neces-
sary precision (Klungerbo, 2013). In 2014, Øystein Grændsen did his master
thesis on automatic visual weed recognition using machine vision and artificial
intelligence (Grændsen, 2014). Frode Urdal designed a precision spray ma-
trix with focus on real-time control of the spray nozzles (Urdal, 2013). This
semester Jarle Dørum implemented a row following controller that uses visual
plant recognition and a forward facing camera to follow the rows.

This master thesis is a continuation of a specialization project completed last
semester (Arbo, 2014). In the specialization project the main focus was on a
localization filter for absolute localization. This used RTK-GPS in combination
with IMU and wheel encoders.

In this thesis the VO problem is addressed in a feature-based manner. The the-
sis considers feature matching and estimation of relative motion based on sets
of features extracted from consecutive images. The features were extracted
manually, and automatic extraction of features in the row-of-crops environ-
ment is a subject for future research.

1.4 Contributions

The contributions of this thesis are:

Warm-Start of Feature Search
A method of reducing the search space for matching features in two pic-
tures given an estimate of the pose when the pictures were taken.

Bayesian Generalization of Stochastic Cloning
A Bayesian framework for handling fusion of OOSM in the context of VO.
This framework can be viewed as a generalization of stochastic cloning.

Unscented Multiple-Point Smoother
An unscented fixed-point smoother capable of formulating fixed-points
to smooth on demand.

Covariance Threshold
An alternative to masking for OOSM fusing filters that improves behavior
during turns.

5

1.5 Report Structure

Theory
The theory chapter presents localization filters from the view of proba-
bility theory. This is followed by a brief introduction into how VO mea-
surements are considered in this thesis. With a description of a method
of “warm-starting” the search for matching feature points. The main part
of this chapter is on OOSM fusion. Specifically how to optimally fuse de-
layed measurements in a Bayesian framework and how that compares to
stochastic cloning.

Implementation
The implementation chapter presents systems used for testing the meth-
ods described in this thesis, both real and simulated. First a target track-
ing exercise is described that was used to test the python modules and
the underlying behavior of the fusion methods. This is followed by a de-
scription of the Asterix robot in terms of kinematic model used, param-
eters of the prototype and how the sensors on Asterix correspond to the
kinematic model. The last part of the implementation chapter discusses
the software used for manual feature detection and the python modules
developed in this thesis.

Results
The results chapter presents data from the simulations and experiments
described in the implementation chapter. Each result section is followed
by a brief discussion.

Epilogue
The epilogue chapter contains discussions on the overall project and
methods, important points for the further development of Asterix and
OOSM fusion, and concluding remarks.

1.6 Notation

Throughout the thesis, we deal mainly with discrete dynamical systems and
probability distributions. Vectors will be denoted with bold-face letters e.g.:
xk, where the subscript indicates which time instance, tk, it corresponds to.

For probability distributions, p(x,y|z) is the joint probability of x and y given
z. N (x; x̂, P) is the normal distribution of x described by the expected value
x̂ and the covariance P . E(x) also denotes the expected value of x, Var(x) the
variance, and Cov(x,y) the covariance between x and y.

As the means and covariances are described in terms of available knowledge,
x̂i|j means the expected value of xi given knowledge of observations up to
time j. Similarly for covariances. Capital letters with slanted, serifed font are
used for sigma-points or images. Xi,k|k+1 denotes ith sigma-point of the set of
sigma-points X , evaluated for the state xk at time tk, given information up to
time tk+1.

6

Matrices are denoted by capital letters, P , S, F . Dot-product is denoted by •
and cross-product by ×. When a variable has a subscript with a colon sign, e.g.
xi:j , it is the sequence of variables xi, xi+1, ..., xj−1, xj .

7

2 Theory
2.1 Probabilistic Localization Filter

The Kalman filter has long been used in robot localization tasks. The basic
idea of which is that the robot’s configuration is probabilistic. The position of
the robot on a coordinate frame is a probability distribution, the certainty of
which increases during periods of accurate measurements. And decreases dur-
ing periods of pure propagation, or when affected by unmodeled factors. This
is the basic premise of probabilistic localization.

Robots come equipped with proprioceptive and extroreceptive sensors. Pro-
prioceptive sensors are wheel encoders, IMU and other devices that record the
motion with respect to the robot’s previous configurations. They maintain rel-
ative localization. For example through integration of wheel encoders. As such
they are prone to drift, modeling errors, slip, etc. Extroreceptive sensors mea-
sure the robots configuration with respect to some outside reference. For ex-
ample GPS, sonar, laser-range finders, visually tracking landmarks, etc. They
maintain absolute localization as the outside references define the coordinate
frame itself. More of this is presented in section 2.5.

The probabilistic approach to robotics is based on the Bayes filter (Thrun,
2002, p.26).

2.1.1 Bayesian Filter

xk-1

zk-1

xk xk+1

zk zk+1

... ...

Figure 1: Hidden Markov model of a simple robot system. The colors of the lines
correspond to transition model and the sensor model.

Suppose the robots configuration in its environment is described by the state
vector xk. The robot is observed by sensors giving measurements zk. Localiza-
tion means to find the distribution p(xk|z0, ..,zk) (Thrun, 2002). This is the
probability that you are in a certain configuration at time tk. For this to be pos-
sible, we assume that the system is governed by stationary processes and that
the Markov assumption holds. The Markov assumption says that the current
state only depends on a finite fixed number of previous states.

In this thesis the hidden Markov Model (HMM) is used as a method for rep-

8

resenting a statistical Markov model in which the system being modeled is as-
sumed to be a Markov process with a set of states not directly observed. It is
used for graphical representation of independence and conditional indepen-
dence for random variables. An example of such a graphical representation is
in Fig.1.

By the first-order Markov assumption, the current configuration will only de-
pend on the previous configuration:

p(xk|x0, ...,xk−1) = p(xk|xk−1) (2.1)

Note that one can make an nth-order Markov assumption into a first-order by
extending the state vector to include the necessary prior states.

Similarly, in a standard HMM, the observation model only relates to the cur-
rent configuration of the system:

p(zk|x0, ...,xk, z0, ...,zk) = p(zk|xk) (2.2)

Using these assumptions, by basic probability theory, the joint pdf of a set of
configurations and observations is given by:

p(x0, ...,xk, z1, ...,zk) = p(x0)

k∏
i=1

p(xi|xi−1)p(zi|xi) (2.3)

The optimal method of estimating the belief distribution is the recursive Bayes
filter. The derivation is given in the appendix A.1. The Bayes filter consists of
two major steps: prediction and update.

Predict

p(xk|z0:k−1) =

∫
xk−1

p(xk|xk−1)p(xk−1|z0:k−1)dxk−1 (2.4)

Update

p(xk|z0:k) = µp(zk|xk)p(xk|z0:k−1) (2.5)

In the predict step, the p(xk|xk−1) distribution is formed by forming a joint
distribution of the current and the next configuration using the transition model
and the previous configuration distribution. Then marginalizing the previous,
now unnecessary, previous distribution. The update step utilizes the knowl-
edge of our sensor model p(zk|xk) and the a priori distribution to construct
the a posteriori distribution p(xk|z0:k) using Bayes theorem. The terms a priori
and a posteriori are with regard to the distribution before and after measure-
ment fusion. If needed, the normalizing constant µ can be determined by the

9

knowledge that the integral over the domain xk must be equal to 1. The color
of the equations signify the appropriate edges of the HMM in Fig.1.

These two equations form the basis of the Bayesian filter, which is computa-
tionally complicated and often practically impossible for continuous state vec-
tors. The Bayesian filter has many approximations, such as the particle filter
or the Kalman filter. The Kalman filter, and its nonlinear extensions, assumes
a Gaussian distribution of the localization. Particle filters, Monte-Carlo filters,
etc, are nonparametric filters that use sampling techniques to propagate the
probability distributions.

2.1.2 Kalman Filters and Nonlinear Extensions

Kalman filters approximate the probability distributions of the Bayes filter with
Gaussian distributions.

Consider the system:

xk+1 = f(xk) +wk

zk = h(xk) + vk

p(wk) = N (wk; 0, Qk)

p(vk) = N (vk; 0, Rk)

(2.6)

where xk ∈ RL are internal states, zk ∈ Rm are measurements, wk is process
noise, vk is measurement noise. The mappings f and h are state transition and
observation mappings respectively.

When the probability distributions are approximated by Gaussians, what we
are actually looking at is maintaining good estimates of the mean and the co-
variance during the update and prediction steps of the filter.

Predict

x̂k+1|k = E(xk+1|z1, ...,zk) (2.7)

Pk+1|k = E
(

(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T
∣∣∣ z1, ...,zk)

(2.8)

Update

x̂k+1|k+1 = E(xk+1|z1, ...,zk+1) (2.9)

Pk+1|k+1 = E
(

(xk+1 − x̂k+1|k+1)(xk+1 − x̂k+1|k+1)T
∣∣∣ z1, ...,zk+1

)
(2.10)

For linear f and h, the optimal estimates are given by a classical Kalman filter
(Kalman, 1960). A brief derivation of the Kalman gain, showing that it is used

10

for giving a minimum mean-square error evaluation of the next state of the
system is given in the appendix A.1.

There are many types of nonlinear variations upon the Kalman filter. The main
characteristics they share is that they assume the state, measurement, and er-
ror distributions can be described by Gaussian distributions (Tuan Pham et al.,
1998) and that the evolution of these can be described in a recursive manner.
In (2.7)-(2.10) the expectation and variance are formulated generally so that
the two steps are descriptive of all Kalman-like filters.

The most common nonlinear version of the Kalman filter is the extended Kalman
filter (EKF) (Brown and Hwang, 2012; Fossen, 2011). It uses analytic Jaco-
bians to linearize the nonlinear functions. It is widely used in a variety of state
and parameter estimation tasks, anything from traffic flow (van Lint, 2008) to
oceanography (Tuan Pham et al., 1998), but it is not without flaws. The EKF
can diverge if the system is not close to linear within the time scale of the up-
date interval (Perea et al., 2007) and it requires the evaluation of Jacobians
that can be computationally costly.

Unscented Kalman filters (UKF)(Merwe and Wan, 2004) use the unscented
transformation to perform state estimations. The unscented transformation
propagates a set of deterministically chosen points through the nonlinear func-
tions to evaluate the resulting distribution characteristics. It has been shown to
give second-order accuracy of the mean and covariance of a gaussian random
variable undergoing a nonlinear transformation (Haykin, 2001, pp.269-273).
The UKF was described by Merwe and Wan (2004) as a member of a set of
filters termed sigma-point Kalman filters (SPKF). SPKFs do not require an ana-
lytic description of the Jacobian: they are “derivative-free” filters.

One of the benefits of using a Kalman-like filter is that marginalization is a
simple process of choosing the subset of the elements in the expectation vector
and covariance matrix corresponding to the states we want to keep. All other
elements can be simply discarded.

2.1.3 Extended Kalman Filter

The EKF approximates (2.6) by linearization. Describing the system as:

xk+1 = Fkxk +wk

zk = Hkxk + vk
(2.11)

where Fk is the analytic jacobian of f and Hk is the analytic jacobian of h, at
time tk. It is easy to evaluate the predict step as the mean and variance for
linear combinations of gaussian variables is well established.

The update step can be derived using least-squares arguments (see Appendix
A.2) or by using the fundamental product identity for conditional Gaussian

11

Predict

x̂k+1|k = f(x̂k|k) (2.12)

Pk+1|k = FkPk|kF
T
k +Qk (2.13)

distributions (Mahler 2007, Salmond 1989). The product identity can be sum-
marized as the following:

N (z;Hx, Rk)N (x; x̄, P̄) = N (z; ẑ, S)N (x; x̂, P̂) (2.14)

with
ẑ = Hx̂, S = R+HPHT

K = P̄HTS−1

x̂ = x̄+K(z − ẑ)

P̂ = (I −KH)P̄

(2.15)

where x̄ and P̄ are our a priori mean and covariance estimates, and x̂ and P̂
are our a posteriori estimates.

An interesting byproduct of this derivation is that the previous constant fac-
tor, µ, from the bayes filter is incorporated into the product identity. The pdf
N (z; ẑ, S) describes the pdf of the measurement z given the current state es-
timate. This means that the pdf can be used for evaluating the likelihood of
a measurement occuring, something which is important in solving the data
association problem often encountered with target tracking using radar. The
update step for an EKF is thusly:

Update

Kk+1 = Pk+1|kHk+1(Hk+1Pk+1|kH
T
k+1 +Rk+1)−1 (2.16)

x̂k+1|k+1 = x̂k+1|k +Kk+1(zk+1 −Hk+1x̂k+1|k) (2.17)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (2.18)

According to Thrun (2002, p.61), each iteration of the EKF has a computa-
tional complexity of O(m2.4 + L2) where L is the dimension of the state vector
and m is the dimension of the measurement vector. This is the same as a linear
Kalman filter, given that we have analytic descriptions of the Jacobians.

12

2.1.4 Unscented Kalman Filter

Consider:
y = f(x) (2.19)

where x ∈ RL is a random variable with pdf p(x) and f is an arbitrary non-
linear function. The basic premise of the unscented transformation is to ap-
proximate a probability distribution rather than a nonlinear function (Julier
and Uhlmann, 2002). As stated by Julier and Uhlmann, a set of 2L + 1 sigma-
points, X , and weights, w, are deterministically chosen with a condition:

g(X , w, p(x)) = 0

where p(x) is the pdf of the state undergoing the transform. This condition
function g is used to determine what information should be captured about x
(Julier, 1998; Julier and Uhlmann, 2002). This does not necessarily result in
unambiguous sigma-points, if necessary a penalty function c can be applied.
The condition for choosing the sigma-points then becomes:

min
X ,w

c(X , w, p(x)) subject to g(X , w, p(x)) = 0

For the UKF in this thesis one of the assumptions is that the distribution of the
robot configuration is Gaussian. The necessary condition g has to ensure that
the mean and variation are clearly defined. This means that g then becomes
(Julier, 1998):

g(X , w, p(x)) =

∑2L+1
i=0 wi∑2L+1
i=0 wiXi∑2L+1

i=0 wi(Xi − E(x))(Xi − E(x))

−
 1

E(x)
Var(x)

 (2.20)

By generating the sigma-points and weights according to the rules of (2.21),
the condition (2.20) will hold (Merwe, 2004, p.52). This has been shown ex-
plicitly in Appendix A.3.

X0 = E(x)

Xj = E(x) +
√

(L+ λ)Var(x)i

Xk = E(x)−
√

(L+ λ)Var(x)i
w0 = λ/(L+ λ)

wi = 1/2(L+ λ)

(2.21)

for j = 1, ..., L, k = L + 1, ..., 2L + 1 and i = 1, ..., L. The subscript indices
on the covariance matrices corresponds with columns of the matrix. With the
transformed sigma points being:

Yi = f(Xi)

13

the mean and covariance of y can be found by:

E(y) =

2L+1∑
i=0

wiYi

Var(y) =

2L+1∑
i=0

wi(Yi − E(y))(Yi − E(y))T

(2.22)

The cross-covariance between y and x is (Merwe, 2004, p.53):

cov(x,y) =

2n+1∑
i=0

wi(Xi − E(x))(Yi − E(y))T (2.23)

This is intuitive considering that if f(x) = Ax then the cross-covariance is:

cov(x, Ax) = Var(x)AT

As shown in the derivation of the Kalman gain in the Appendix A.2, other than
the initial mean and covariance, the prediction-observation covariance Nk, and
observation residual covariance (innovation covariance) Sk are also needed
to ensure minimum-mean-square error (see Appendix for definitions). With
a sensor model h, these can be easily computed according to the guidelines
above.

The UKF algorithm with tuning parameters is given in Alg. 1. The param-
eters are added to minimize the chance of the sigma-points sampling non-
local effects (Merwe, 2004, p.54). Parameter κ is chosen to guarantee positive
semi-definiteness of the covariance matrix, usually set to 0. The spread of the
sigma-points is determined by α, and should be small to avoid sampling non-
local effects. Knowledge of higher-order moments of the initial distribution
affects the choice of β, which in our gaussian case is set to 2.

An example of the unscented transformation performing better than the lin-
earization can be seen in Fig.2. In that figure, a Monte-Carlo simulation of the
nonlinear transformation of a gaussian variable is compared to the mean and
covariance produced by an unscented transformation and that of a lineariza-
tion. The initial distribution was:

p

([
x1
x2

])
= N

([
x1
x2

]
;

[
5
0

]
,

[
2 −2
−2 3

])
and the nonlinear transformation was:[

y1
y2

]
=

[
0.1x1

√
x21 + x22 + x2
−x1

]

The key difference in the EKF and the UKF is the underlying assumption of
what to approximate. EKF assumes the nonlinear function is linear in a time

14

interval, the UKF assumes the resulting distribution is gaussian. The two as-
sumptions may appear equivalent as the linear combination of a set of Gaus-
sian distributions is Gaussian. But by only passing a single point through the
nonlinear function, less of the information of the curvature is passed and the
EKF might fail to take this information into account when producing its state
estimate.

According to Thrun (2002, p.69), the computational complexity of the UKF al-
gorithm is the same as the EKF, although in practice the EKF is slightly faster.
However, the UKF has shown consistently improved performance both in con-
vergence rate and long term state estimation error (Kandepu et al., 2008).

15

Algorithm 1: Unscented Kalman Filter
Set tunable parameters:
0 ≤ α ≤ 1, β ≥ 0 and κ ≥ 0

Initialize filter and weights:
L = length(x)

λ = α2(L+ κ)− L

wm0 =
λ

L+ λ

wc0 = wm0 + (1− α2 + β)

for i ∈ 1 . . . 2L : wci = wmi =
1

2(L+ λ)

x̂0|0 = E(x0|0)

P0|0 � 0

Generate sigma-points:
X 0,k−1|k−1 = x̂k−1|k−1

X i,k−1|k−1 = x̂k−1|k−1 +

(√
(L+ λ)Pk−1|k−1

)
i

, for i = 1, ..., L

X i,k−1|k−1 = x̂k−1|k−1 −
(√

(L+ λ)Pk−1|k−1

)
i

, for i = L+ 1, ..., 2L

Predict
X k|k−1 = f

(
X k−1|k−1

)
x̂k|k−1 =

2L∑
i=0

wmi X i,k|k−1

Pk|k−1 =

2L∑
i=0

wci
(
X i,k|k−1 − x̂k|k−1

) (
X i,k|k−1 − x̂k|k−1

)T
+Qk−1

Zk|k−1 = h
(
X k|k−1

)
ẑk|k−1 =

2L∑
i=0

wmi Zi,k|k−1

Update

Sk =

2L∑
i=0

wci
(
Zi,k|k−1 − ẑk|k−1

) (
Zi,k|k−1 − ẑk|k−1

)T
+Rk

Nk =

2L∑
i=0

wci
(
X i,k|k−1 − x̂k|k−1

) (
Zi,k|k−1 − ẑk|k−1

)T
Kk = NkS

−1
k

x̂k|k = x̂k|k−1 +K
(
zk − ẑk|k−1

)
Pk|k = Pk|k−1 −KSkKT

16

2.1.5 Masking

There are cases where it might not be advantageous to update all the states in
a filter. The states may be very “weakly” observable, thus rendering their state
estimates unreliable, or they may have a known probability distribution which
is constant with time. Deliberately preventing the filter from updating such
states is known as masking (Merwe, 2004, p.204). A masked filter takes into
account that these states have probability distributions without changing its
estimate of that distribution (Brown and Hwang, 2012, p.188).

The use of masking is relevant for OOSM fusion and there are two different
mentalities. In Roumeliotis and Burdick (2002), a cloned state is maintained
with the same initial estimate as when it was cloned in hopes of reducing its
exposure to modeling errors. In (Merwe, 2004, p.204) it is discussed that not
using a mask, and allowing the cloned state to be “smoothed” is beneficial for
OOSM fusion.

When handling EKF or KF, knowledge of the masking can reduce the computa-
tional savings, and the procedure for this is the Schmidt-Kalman filter (Brown
and Hwang, 2012, p.188). The Schmidt-Kalman filter formulates a recursive
description of the evolution of the cross-covariances between the masked and
the unmasked states. It uses this to reduce the computational load of the fil-
ter and keep the elements of the state covariance matrix associated with the
masked states constant. This requires dedicated Schmidt versions of the filters
and was not used in this thesis. Instead masking has been done by retaining
the previous state and state covariance estimates during the update procedure,
and then resetting the masked subsets to their values prior to being updated.

17

−
4

−
2

0
2

4
6

8
1

0
1

2
1

4
−

4

−
3

−
2

−
1 0 1 2 3 4

In
p

u
t

−
2

0
2

4
6

8
1

0
1

2
1

4
−

1
4

−
1

2

−
1

0

−
8

−
6

−
4

−
2 0 2 4

O
u

tp
u

t

M
o

n
te

 C
a

rlo

U
n

s
c
e

n
te

d
 T

ra
n

s
fo

rm
a

tio
n

L
in

e
a

riz
a

tio
n

T
ra

n
s
fo

rm
a

tio
n

Figu
re

2:
The

unscented
transform

ation
gives

a
better

estim
ate

ofthe
m

ean
and

covariance
ofgaussian

random
variables

undergoing
a

nonlinear
transform

ation.
N

ote
that

the
U

T
m

ean
is

closer
to

the
m

ean
ofthe

M
onte

C
arlo

sim
ulation

than
the

linearized
m

ean.
This

is
because

the
m

ean
is

the
average

ofthe
transform

ed
w

eighted
sigm

a
points,not

just
the

transform
ation

ofthe
prior

m
ean.

18

2.2 Visual Odometry

Figure 3: The relative motion of feature points is in the opposite direction of the
movement of the robot. The robot is heading down the page. The left image is the
first, and the right is the second.

Visual odometry (VO) is a method of determining the displacement of a cam-
era with respect to time. It is an attempt at estimating the displacement of the
camera over time expressed in either 3 degrees of freedom, x, y and heading
ψ, or in 6 degrees of freedom, x, y, z, roll ϕ, pitch θ and yaw ψ.

There are two major classes of methods to recover camera displacement from
sequential sets of images (Forster et al., 2014):

Direct Methods
Given two intensity maps of sequential images with timing. Calculating
the intensity gradient with respect to magnitude and direction gives an
estimate of the motion of the camera (Forster et al., 2014).

Feature-Based Methods
Given two sequential images with timing, the motion of the camera can
be inferred by identifying feature points common for the two images
and estimating the motion necessary for that transformation. This has
been used extensively on NASA’s Mars exploration rovers (Maimone and
Matthies, 2005).

The direct methods hope to use as much as possible of the available informa-
tion in a picture to estimate the camera motion (Newcombe et al., 2011). To
that effect most algorithms are computationally costly and require a high level
of parallelization. The feature-based methods attempt to identify key features
that match across sequential images according to a feature identification al-
gorithm. The relative displacement of these features in the image frame are
used to describe the motion of the camera. They rely on the assumption that
features can be consistently detected and tracked over different pictures.

In Mammarella et al. (2012) both direct methods and feature-based methods
were compared for a optical flow task and it was found that feature-based

19

methods were better at handling large and small displacements that may be
present in complex 3D motion. Mammarella et al. uses the displacement to es-
timate the velocities that the camera is experiencing and this is often described
as optical flow. Asterix takes sequential pictures of high quality at a low frame
rate, the low framerate means that the average velocities calculated from the
displacement measurements is not an accurate representation of the velocities
the robot has experienced. Instead, the VO displacement is considered to be a
measure between two configuration estimates tracked by the filter.

In this project the long time between sequential images and less than 75%
overlap between images suggest that the direct methods are unlikely to work
as desired. Instead the feature-based methods will be used as they handle
large displacements better, and are more common. The visual odometry is
based on images which are also used for the crop identification algorithm(Grændsen,
2014).

In SLAM, features can be maintained over a long time horizon, enabling very
good estimates of absolute position through loop-closing when features are
revisited (Thrun, 2002). For our downward facing camera, we will only be
able to identify the displacement that the robot has moved between the two
pictures. The images only overlap for 2-3 frames at a time.

2.2.1 Motion From Features

x

y

A

B

Figure 4: The motion of a set of features (Black dots) undergoing a translation
and a rotation. The green arrow is translation. The stippled green arc indicates
angular change. The red and blue crosses are the mean positions of the two sets of
features.

A variety of methods exist to infer motion from two sets of features. In this
case, the features are assumed to be in the plane, and as such, the most straight-
forward method is the one suggested by Horn (1987). In Fig.4, two pictures
have been laid on top of each other so that they share coordinate frames, and

20

a set of features have been found that are present for both. The set A corre-
sponds to the oldest picture, and the set B corresponds to the newest picture.
The position of each feature is described by a set of coordinates:

A =

{[
xi
yi

]}
B =

{[
xi
yi

]}

The number of features L is shared for both feature sets. We assume that the
two sets are ordered so that the same feature has the same index. We then
have: [

x̄A
ȳA

]
=

1

L

L∑
i=1

[
xi
yi

]
[
x̄B
ȳB

]
1

L

L∑
i=1

[
xi
yi

]

Robot motion is inferred from looking at the motion from the oldest set of fea-
tures, A, to the newest set of features, B. The linear motion of the features is
described by:

[
∆x
∆y

]
=

[
x̄B
ȳB

]
−
[
x̄A
ȳA

]
Note that these displacements are considered from the perspective of the old-
est picture. The rotation between the features can be calculated by defining:

C =

L∑
i=1

xB,iyB,i
0

−
x̄BȳB

0

 •
xA,iyA,i

0

−
x̄AȳA

0

S =
[
0 0 1

] L∑
i=1

xB,iyB,i
0

−
x̄BȳB

0

×
xA,iyA,i

0

−
x̄AȳA

0

Giving the rotation ∆ψ in yaw as:

∆ψ = −atan2(S,C)

Expressed as a rotation around the up direction from the oldest picture to the
newest.

21

2.2.2 Warm-Start of Feature Search

P
k+1 P

k

S
N

EENU

Figure 5: Picture Pk and picture Pk+1 overlap forming the region S. The pic-
tures have their own coordinate systems, and they are located in the global ENU
frame.

One of the main challenges facing visual odometry is the necessity to search
the whole picture for feature points. Any localization filter that attempts to
fuse a delayed displacement measurement must be able to describe the trans-
formation between how the robot is localized now and how it was when the
previous picture took place. This means that we are maintaining an estimate
of the robot’s state from when it took picture Pk up to the point it takes pic-
ture Pk+1. This can be used to reduce the search space for matching features
drastically.

Suppose at the time when picture Pk is taken, the robot is located at xk, yk
with heading ψk in the ENU frame. And at the time when picture Pk+1 is taken,
the robot is located at xm, ym with heading ψm. The indices differ for Pk+1

and the pose at tm as the pictures arrives in a different sequence than the
states. The pictures may arrive every 2 s while the states are estimated every
0.05 s.

We have a point xf1, yf1 in the coordinate frame of picture Pk. This point can
be expressed as xf2, yf2 in the coordinate frame of picture Pk+1 by the trans-
formation:

[
xf2
yf2

]
= R(ψm − ψk)

[
xf1
xf1

]
+R(ψm)

[
xk − xm
yk − ym

]
(2.24)

with R(θ) being the 2D rotation matrix in SO(2):

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(2.25)

This means that if we find a feature in picture Pk+1, we can define a region we

22

expect it to be in by the transformation (2.24). The same transformation can
also be used to reduce the initial search space of picture Pk. As the height of
the camera above ground is fixed, the dimensions of the visible area is known
and constant. It can be expressed as 4 coordinates in the Pk+1 frame. These
coordinates can be expressed in Pk by the inverse of the transformation (2.24).
As shown in the extended project they can be used to create a searchable re-
gion defined by a set of inequalities (Arbo, 2014). This is visualized in Fig.6 as
the green area S.

Also note that if the displacement with visual odometry, ∆xV O,∆yV O, is rep-
resented in the coordinate frame of picture Pk, it will be represented in the
ENU frame as:

[
∆x
∆y

]
= R(ψk)

[
∆xV O
∆yV O

]
(2.26)

As the filter will be smoothing the old state estimate, the oldest picture coordi-
nate frame has been chosen. Angles can only take values between −π and π,
this means that one must calculate addition and subtraction differently. Wrap-
ping the values on the interval and calculating differences in the circle rather
the line. In practice, if the angle differences are sufficiently small, this can be
disregarded.

P
k+1 P

k

S

Figure 6: Feature points found in the search space S for picture Pk can be
searched for in small rectangles (the purple rectangles) around the correspond-
ing points in the new picture region Pk+1.

In Fig.6 we see search regions for a set of features in Pk+1, corresponding to
a set of features found in Pk. Using the estimated distributions of the states to
define the search regions is known as validation gating (Bar-Shalom and Li,
1996; Brekke and Chitre, 2014) and allows us to define more complex search
regions. From a practical perspective the search regions are easiest to imple-
ment as squares of set height and width, the predefined areas ensure a deter-
ministic search time per feature.

23

2.2.3 Expected Timing

In Utstumo (2011), the timing of a feature detection algorithm that uses binoc-
ular vision was presented. The system was a BlackBox IMU VO system de-
scribed in Goldberg and Matthies (2011). This system had an expected de-
lay of 58 ms from when the two pictures are taken until the motion estimate
became available. The delay is visualized in Fig.7, describing roughly which
parts took what amount of time.

This was for a dedicated VO processing setup. For the Asterix system, the de-
lay is expected to be longer. In this thesis, the delay is considered to be 500 ms
from when the second image arrives and when the VO measurement becomes
available. It is a rough estimate chosen to be significantly larger than the ex-
pectations to ensure that the system will still function. But this delay is not
necessarily the same each time. If the robot moves over a segment where the
plants have grown tall enough to obfuscate the view, the system will struggle
to find an acceptable VO measurement. The previous section described warm-
start allowing for a deterministic search time per feature, but the number of
features is not deterministic when the plants have to be taken into consider-
ation as the features are not necessarily consistently recognizable. A feature
can be clear of any plants in one image and hidden in the next. This suggests
that for the initial image, the feature identification algorithm should find more
features than necessary such that the feature matching algorithm will have full
opportunity to find a sufficient number of matching features.

File transfer

t0t0-50 t [ms]t0+11 t0+16 t0+58

frame kframe k-1

t0+50

frame k+1

Stereo Visual odometry [k-1 , k]

Figure 7: Timing diagram for a binocular IMU VO system used for motion estima-
tion (Trygve Utstumo).

24

2.3 Out-of-Sequence Measurements

xk xk+1

zk zk+1

... ... xn-1

zn-1

xn xn+1

zn zn+1

...

dn

Figure 8: Visualization of the hidden markov model where a measurement dn is
of the state of the system at time tk, but arrives at time tn.

Conventional hidden Markov models of filters, visualized as in Fig.1, describe
a world where observations occur instantaneously and neither observation nor
filter iteration has any processing time. The real world is not so accommodat-
ing. Observations often require processing time, or are samples of continuous
processes not necessarily synchronized with the filter. Out-of-sequence mea-
surements (OOSMs) describe the scenario where measurements do not arrive
in order of the states they correspond to.

If measurements can only arrive after the state they correspond to, by applying
a causality assumption, there are three major parts to OOSMs. One concerns
the fusion of measurements that have occured between two time instances of
the filter (see Fig.9), the second concerns measurements that are delayed an
arbitrary number of iterations (see Fig.8). The third discusses cases where a
delayed measurement arrives, without us knowing what time instance it re-
lates to.

For the first topic, a Bayesian formulation was proposed by Challa et al. (2003),
which involves augmenting the state vector to include the previous state, and
then using knowledge of the timestamp and the transition model to fuse the
old measurement. A Gaussian formulation was proposed by Bar-Shalom (2002),
where the inverse of the transition matrix and the measurement timestamp
was used to “retrodict” the state estimate such that it accounts for the delay.

For Asterix the feature detection and processing algorithms require a lot of
time, the measurements may become available after many filter cycles have
already transpired. But the measurements are taken onboard the Asterix, and
the timestamp of when a picture is taken is available to the filter as it is taken.
Hence the second topic is of interest for this project and will be addressed in
this chapter.

The two first topics are not mutually exclusive, and in fact, the reality is a
combination. But if the timestep of the filter is small enough, then the times-
tamp of the OOSM can be approximated as coinciding with the next times-
tamp of the filter with negligible error.

25

System timet k-1 t d t k t k-1

zk-1 zk zk+1

zd

Filter timet k-1 t k t k-1

Figure 9: The measurement zd is fused at time tk but is a measurement of the
system at time td.

2.3.1 Previous Strategies

Since the invention of the Kalman filter, a variety of strategies have been dis-
cussed to fuse OOSMs.

Slow down
Wait for the slowest measurement. Or ignore the fact that it is delayed
(Gavrilets, 2003).

Replay
Advance the filter as normal, but store all the measurements that have
occured between when the delayed measurement should have arrived
and now. When the delayed measurement becomes available, replay the
filter from when the measurement should have arrived.

Delay Augmentation
If the delay is of a known length, the state vector can be augmented with
a set of delayed states. The transition function then also becomes mod-
ified with a delay and the delayed measurement will be of a state in the
localization filter (Challa et al., 2002). This can be considered a fixed-lag
smoother approach.

Larsen’s method
Calculate the Kalman gain as though the measurement was available,
then propagate the gain with the transition matrix until it is available.
This is used to formulate a correction term that is added when the mea-
surement becomes available (Larsen and Poulsen, 1998).

Stochastic Cloning
Maintain a lagged state at the point when the lagged measurement should
have been fused. During the fast measurements, evaluate the covariance
and cross-covariance of the current and the lagged state. When the mea-
surement becomes available, evaluate the current state using the covari-
ance to send the estimate forward in time (Merwe, 2004; Roumeliotis
and Burdick, 2002). This can be considered a fixed-point smoother ap-
proach.

The strategy of slowing down is not practical for most dynamical systems. It
ignores the problem of the Markov assumption not holding for the delayed

26

measurement. A high-speed drone for example, might need state estimates
faster than the onboard GPS is capable of refreshing, and ignoring the prob-
lem may give erroneous state estimates Merwe and Wan (2004). Replaying the
measurements from the time the delayed measurement was to have arrived is
computationally costly, and is not practical for an arbitrary delay length. Sim-
ilarly, delay augmentation only works when the delay length is known before-
hand, and for long delay periods, can be resource intensive. Larsen’s method
acknowledges that there will be an accumulated error of the filter as a result
of the lagged measurement and estimates this when it has arrived. This accu-
mulation based on the transition matrix seems likely to accumulate modeling
errors when handling a nonlinear system.

2.3.2 Optimal Approach

This derivation is similar to that of Challa et al. (2002), but it considers a fixed-
point smoother instead of a fixed-lag smoother as the underlying method. We
wish to find an expression for p(xn|zk:n,dn) (see Fig.8). Available to the sys-
tem are measurements zk that arrive at each iteration, and measurements dn
that arrive intermittently and delayed from the state they describe, xk.

We have the following knowledge of the system:

• p(xk|zk) (Known initial configuration estimate).

• p(xi+1|xi) for any i > k (transition model, first-order Markov assump-
tion).

• p(zi|xi) for any i (sensor model).

• p(dj |xi) for any j > i (sensor model for the delayed measurement).

Given a joint distribution p(xi,xj |zi:j) with indices j > i, and a sequence of
measurements zj+1:n, we can find the distribution p(xi,xn|zi:n). This is done
by repeating the following steps as necessary:

1. Extend the joint distribution:

p(xi,xj ,xj+1|zi:j) = p(xj+1|xj)p(xi,xj |zi:j) (2.27)

2. Fuse the latest measurement with Bayes theorem:

p(xi,xj ,xj+1|zi:j+1) =
p(zj+1|xj+1)p(xi,xj ,xj+1|zi:j)

p(zj+1|zi:j)
(2.28)

3. Marginalize the unnecessary state:

p(xi,xj+1|zi:j+1) =

∫
xj

p(xi,xj ,xj+1|zi:j+1)dxj (2.29)

27

As the desired distribution from these steps is p(xi,xn|zi:n), the intermittent
states between xi and xn are deemed unnecessary and marginalized.

Thus, if we have an initial distribution p(xk|zk), we can formulate the joint
prior distribution by:

p(xk,xk+1|zk) = p(xk+1|xk)p(xk|zk) (2.30)

and fuse the latest measurement by Bayes theorem:

p(xk,xk+1|zk:k+1) =
p(zk+1|xk+1)p(xk,xk+1|zk)

p(zk+1|zk)
(2.31)

Then we repeat the steps (2.27) - (2.29) until we arrive at the distribution
p(xk,xn|zk:n). This distribution contains all the states necessary to fuse the
delayed measurement dn. We can arrive at the desired posterior distribution
by fusing:

p(xk,xn|zk:n,dn) =
p(dn|xk)p(xk,xn|zk:n)

p(dn|zk:n)
(2.32)

And finally marginalizing the unnecessary state xk:

p(xn|zk:n,dn) =

∫
xk

p(xk,xn|zk:n,dn)dxk (2.33)

This leaves us with the desired posterior distribution, purely in accordance
with the Bayes filter.

2.3.3 Unscented Fixed-Point Smoother

In practical terms, this procedure can be done by applying an unscented fixed-
point smoother. A key point is that this fixed-point smoother is capable of for-
mulating the joint distribution on demand. Fixed-point smoothing considers
the system where:

xk+1 = f(xk) +wk

zk = h(xk) + vk

p(wk) = N (wk; 0, Qk)

p(vk) = N (vk; 0, Rk)

with xk ∈ Rn, zk ∈ Rm. We desire to maintain the joint distribution p(xi,xj |zi:j),
where j > i and the smoothed state is xi. The steps (2.27) - (2.29) of the pre-
vious section describes how to optimally fuse a measurement for a joint dis-
tribution in Bayesian terms and can be used directly in fixed-point smoothing.
The first step is constructing the joint distribution p(xk,xk+1|zk). If this is a
gaussian distribution, we have:

28

p(xk,xk+1|zk) = N
([

xk
xk+1

]
;

[
E(xk|zk)

E(xk+1|zk)

]
,

[
Var(xk|zk) Cov(xk,xk+1|zk)

Cov(xk+1,xk|zk) Var(xk+1|zk)

])

From (2.22) and (2.23) we know:

E(xk|zk) =

2n+1∑
i=0

wiXi,k|k

E(xk+1|zk) =

2n+1∑
i=0

wif(Xi,k|k)

Var(xk|zk) =

2n+1∑
i=0

wi(Xi,k|k − E(xk|zk))(Xi,k|k − E(xk|zk))T

Var(xk+1|zk) =
2n+1∑
i=0

wi(Xi,k+1|k − E(xk+1|zk))(Xi,k+1|k − E(xk+1|zk))T +Qk

Cov(xk,xk+1) =

2n+1∑
i=0

wi(Xi,k|k − E(xk|zk))(Xi,k+1|k − E(xk+1|zk))T

(2.34)

and Cov(xk+1,xk|zk) = Cov(xk,xk+1|zk)T . These quantities are (in the Gaus-
sian case) sufficient statistics for the joint prior distribution in (2.30).

For our fixed-point smoothing UKF with the joint prior distribution, the steps
(2.27) - (2.29) are equivalent to running the filter with the augmented state
transition and measurement functions of (2.35) and (2.36). These are aug-
mented to accomodate the extended state vector from the joint prior distribu-
tion, and to maintain the state xk.

[
xk
xk+n

]
= fa(xk,xk+n−1) =

[
xk

f(xk+n−1)

]
(2.35)

zn = ha(xk,xk+n) = h(xk+n) (2.36)

When the delayed measurement becomes available, the measurement function
is augmented to include the delayed measurement and it is fused using the
typical UKF method. The unscented fixed-point smoother maintains the cross-
covariance between the current state and a chosen previous state.

A requirement for this method is that there is non-zero process-noise. This is
easy to see from the linear case, xk+1 = Axk where:[

Var(xk|zk) Cov(xk,xk+1|zk)
Cov(xk+1,xk|zk) Var(xk+1|zk)

]
=

[
Var(xk|zk) Var(xk|zk)AT

AVar(xk|zk) AVar(xk|zk)AT

]
(2.37)

Which, by Schur’s complement, is not positive definite. This is important for
the Cholesky factorization in the generation of sigma-points. Intuitively we are

29

saying that since the new state is given uniquely by the previous state, the co-
variance matrix will not contain enough information for the augmented state
vector to be described by a Gaussian distribution.

2.3.4 Displacement Measurements

xk xk+1

zk zk+1

... ... xn-1

zn-1

xn xn+1

zn zn+1

...

dn

Figure 10: Hidden markov model of a displacement measurement depending on
two state instances xk and xn.

As discussed in the visual odometry chapter, VO measurements come from two
sets of features, identified to be common for two sequential pictures. The un-
derlying sensor model is affected by: lens distortion, camera resolution and
camera noise, and stochastic traits of the underlying feature identification and
matching algorithms. Evaluating the true sensor model requires difficult anal-
ysis of the underlying mechanisms and significant experimentation. When the
view is obfuscated by plants, it is questionable whether a reliable VO sensor
model can be constructed at all. An alternative is simplifying the sensor model
as a displacement between two state estimates, see Fig.10. This is similar to
what was done by Mourikis and Roumeliotis (2007). The measurement noise
is modeled as additive Gaussian on top of this displacement measurement.
This means that we have a description of a displacement measurement dn, de-
pendent on the configurations xn and xk, as:

dn =

[
Rko(−ψk) 0

0 1

]xn − xkyn − yk
ψn − ψk

+ vV On

p(vV On) = N (0, RV On)

Rko(−ψk) =

[
cos(−ψk) − sin(−ψk)
sin(−ψk) cos(−ψk)

]

Rko(−ψk) is the rotation from the origin of the localization frame to the head-
ing at time k, and should not be confused with the VO measurement noise co-
variance matrix RV On . The way we apply Horn’s method means that transla-
tions seen of the features will be represented in terms of the reference frame
of the oldest picture. The rotation occuring between the two images intro-
duces a nonlinearity to the sensor model. This means we have the nonlinear

30

sensor model:

p(dn|xk,xn) = N
(
dn;

[
Rko(−ψk) 0

0 1

]
(xn − xk), RV On)

)
(2.38)

Thus, the Bayesian measurement update (2.32) is carried out by means of
(2.38). A model which is dependent on the two states we are already main-
taining with the joint distribution. This is if the displacement measurement is
available at the exact time the second picture is taken.

2.3.5 Delayed Displacement Measurement

xk xk+1

zk zk+1

... xm-1

zm-1

xm xm+1

zm zm+1

... xn-1

zn-1

xn

zn

dn

Figure 11: Hidden Markov model for the delayed displacement measurement.

In reality, we often have the situation depicted in Fig.11. Here a displace-
ment measurement, dependent on the states xk and xm at times tk and tm
becomes available at time tn. From the previous reasonings it is apparent that
this means that we need to maintain three states in our joint distribution. In-
stead of a fixed-point smoother, we are constructing a nonstandard smoother,
which we term a “multiple-point” smoother. This is simply a generalization of
the procedure from (2.27) - (2.29) smoothing two states instead.

To fuse the delayed displacement measurement, we must formulate the joint
probability distribution p(xk,xm,xn|zk:n).

Given a joint distribution p(xh,xi,xj |zh:j) with indices j > i > h, and a se-
quence of measurements zh:j , we can find the distribution p(xh,xi,xm|zh:m)
for any m > j. This is done by repeating the following steps as necessary:

1. Extend the joint distribution:

p(xh,xi,xj ,xj+1|zh:j) = p(xj+1|xj)p(xh,xi,xj |zh:j) (2.39)

2. Fuse the latest measurement with Bayes theorem:

p(xh,xi,xj ,xj+1|zh:j+1) =
p(zj+1|xj+1)p(xh,xi,xj ,xj+1|zh:j)

p(zj+1|zh:j)
(2.40)

31

3. Marginalize the unnecessary state:

p(xh,xi,xj+1|zh:j+1) =

∫
xj+1

p(xh,xi,xj ,xj+1|zh:j+1)dxj (2.41)

This is the trivial generalization of the measurement fusion procedure given an
initial joint prior distribution maintaining three states instead of two.

Just as in the fixed-point case, from a joint distribution of p(xk,xm|zk:m), we
can construct the initial joint prior distribution for our multiple-point smoother.
First extending the state vector to include the next state:

p(xk,xm,xm+1|zk:m) = p(xm+1|xm)p(xk,xm|zk:m) (2.42)

And then fusing the latest measurement using Bayes theorem:

p(xk,xm,xm+1|zk:m+1) =
p(xm+1|xm)p(xk,xm,xm+1|zk:m)

p(zm+1|zk:m)
(2.43)

This means that given an initial distribution p(xk|zk): we apply (2.30)-(2.31),
then repeat steps (2.27)-(2.29) until we have the distribution p(xk,xm|zk:m).
Thereafter we apply (2.42)-(2.43), repeat steps (2.39)-(2.41) until we have
the distribution p(xk,xm,xn|zk:n).

And then the delayed displacement measurement can be fused using Bayes
theorem:

p(xk,xm,xn|zk:n,dn) =
p(dn|xk,xm)p(xk,xm,xn|zk:n)

p(dn|zk:n)
(2.44)

Finally, the desired posterior belief of the latest state is found by marginaliza-
tion:

p(xn|zk:n,dn) =

∫
xm

∫
xk

p(xk,xm,xn|zk:n,dn)dxkdxm (2.45)

The keys to this procedure is the initialization of the joint prior distribution
(2.30) and (2.42), and the fusion of the delayed displacement measurement
(2.44).

This procedure leaves us with the desired belief given that we have maintained
accurate estimates of xk, xm and xn. Constructing the fixed-point smoothing
has already been described. The next is to be able to extend the fixed-point
smoother to maintain more states on demand.

32

2.3.6 Multiple-Point Smoother

Suppose we are running a fixed-point smoother as previously described. It is
iterating according to the system:

xam+1 = fa(xam) +wa
m[

xk
xm+1

]
=

[
xk

f(xm)

]
+

[
0
wm

]
p(wm) = N (wm; 0, Qm)

(2.46)

This is an augmented representation of the underlying system, augmented so
that it maintains a smoothed version of xk. We would like to extend the num-
ber of states by performing the step (2.42), so that we can smooth both xk and
xm while maintaining the current configuration. To do so, one has to find the
distribution:

N

 xk
xm
xm+1

 ;

 E(xk)
E(xm)

E(xm+1)

 ,
 Var(xk) Cov(xk,xm) Cov(xk,xm+1)

Cov(xm,xk) Var(xm) Cov(xm,xm+1)
Cov(xm+1,xk) Cov(xm+1,xm) Var(xm+1)

(2.47)

At time tm the fixed-point smoother has all the information except for E(xm+1|zk:m),
Cov(xk,xm+1|zk:m), Cov(xm,xm+1|zk:m) and Var(xm+1|zk:m). Given the cur-
rent knowledge of the system, and the current state estimates, we desire to
estimate the unknown values.

From the definition of covariance:

Cov(xam, f
a(xam)) = Cov

([
xk
xm

]
,

[
xk
xm+1

])
=

[
Var(xk) Cov(xk,xm+1)

Cov(xm,xk) Cov(xm,xm+1)

] (2.48)

This means that accessing submatrices of an evaluation of the state to pre-
dicted state covariance will give us the necessary quantities. This cross-covariance
can be evaluated both for a UKF and for an EKF. For the EKF, this is simply:

Cov(xam|zk:m) = P am|m

[
I 0
0 FTm

]
(2.49)

FTm is the Jacobian matrix of the function f evaluated for states xm at timestep
tm.

And for the UKF:

Cov(xam|zk:m) =

2L+1∑
i=0

wi

(
X ai,m|m − x̂m

)(
X ai,m+1|m − x̂m+1

)T
(2.50)

The needed cross-covariances can be found by accessing the upper right and
lower right submatrices. The matrix Var(xm+1|zk:m) can be found by the lower

33

right submatrix of the next prediction. Which is, for the EKF:

Var(xm+1|zm) =

[
0 0
0 I

]([
I 0
0 Fm

]
P am|m

[
I 0
0 FTm

]
+

[
0 0
0 Qm

])
(2.51)

and for the UKF:

Var(xm+1|zm) =

[
0 0
0 I

](2L+1∑
i=0

wi

(
X ai,m+1|m − x̂m+1|m

)(
X ai,m+1|m − x̂m+1|m

)T
+

[
0 0
0 Qm

])
(2.52)

Our multiple-point smoother will at time tm+1 create this joint prior instead
of performing a normal prediction step, and augment the transition function,
measurement function and transition covariance accordingly. This procedure
will be referred to as extend in the implementation as it extends the state vec-
tor into the next time instance. Just as for the fixed-point smoother, the multiple-
point extend also requires that there is non-zero process noise. In the rest of
this thesis the method of creating the joint prior distributions on demand with
extend will be called the “joint” method.

2.3.7 Stochastic Cloning

Stochastic cloning is outlined in Roumeliotis and Burdick (2002) and used in
Merwe and Wan (2004) under the term “latency compensation”. It is simi-
lar to the machinery described in the previous section. However, stochastic
cloning is, in the mentioned references, developed without any formal con-
struction of the joint distribution. Instead the lagged state is simply “cloned” in
order to create an augmented state vector. The cloning procedure is described
as: Given the pair of the state estimate x̂k|k and of the state covariance esti-
mate Pk|k, augment them such that:

x̂ak|k =

[
x̂k|k
x̂k|k

]
P ak|k =

[
Pk|k Pk|k
Pk|k Pk|k

] (2.53)

The transition function, measurement function and transition noise covari-
ance matrix are also augmented to accomodate the smoothed fixed state. This
state covariance matrix P ak|k is singular and the corresponding distribution is
therefore not a well-defined Gaussian distribution. However, discarding the
Bayesian paradigm and working solely in terms of the EKF, this singularity
does not pose any difficulties if process noise is present. With an EKF, during

34

the next predict step, we will get:

x̂ak+1|k =

[
I 0
0 Fk

] [
x̂k|k
x̂k|k

]
=

[
x̂k|k
x̂k+1|k

]
P ak+1|k =

[
I 0
0 Fk

] [
Pk|k Pk|k
Pk|k Pk|k

] [
I 0
0 FTk

]
+

[
0 0
0 Qk

]
=

[
Pk|k Pk|kF

T
k

FkPk|k FkPk|kF
T
k +Qk

]
(2.54)

which is exactly the same as the outcome from the optimal approach pre-
sented in the previous sections. For the unscented transformation to work, a
Cholesky factorization is required. Therefore, positive definiteness of the state
covariance must be ensured. This can be done by the following approximation,
where ε is a very small number:

p(xk,xk|zk) = p(xk|xk)p(xk|zk)

p(xk,xk|zk) = N (xk; x̂k, Pk|k + εI)N (xk; x̂k, Pk|k)
(2.55)

This means that we approximate the cloning procedure by adding a negligible
noise to the cloned state, a regularization constant. In other words, for the
UKF, the cloning procedure gives the augmented pair of expected value and
state covariance:

x̂ak|k =

[
x̂k|k
x̂k|k

]
P ak|k =

[
Pk|k Pk|k
Pk|k Pk|k + εI

] (2.56)

where ε is chosen to be sufficiently small to not adversely effect the filter while
still ensuring positive definiteness for the Cholesky decomposition. The ε also
allows us to use stochastic cloning when a system has no process noise. But
one can always choose a process noise sufficiently small for the two methods
to be practically equivalent.

2.3.8 Fixed-Lag Smoother

Another way one could maintain all the information necessary for fusion of de-
layed displacement measurements is to use a fixed-lag smoother. This is based
on a method described in Challa et al. (2002). The fixed-lag smoother follows
the system:

xan+1 =

xk
...
xm

...
xn+1

 =

xk+1

...
xm+1

...
f(xn)

+

0
...
0
...
wn

 (2.57)

35

Recall that the displacement measurement is from xk to xm and the current
state of the system is xn. Let us say that the fixed-lag smoother has arrived at
time tn, and is about to fuse a delayed displacement measurement. For sim-
plicity, let us consider an EKF fixed-lag smoother. If we are only fusing the de-
layed displacement measurement, the sensor model becomes:

dn =
[
Hk
n 0 . . . 0 Hm

n 0 . . . 0
]
xan (2.58)

With Hk
n being the measurement jacobian related to state xk, and similar for

Hm
n . The filter has state estimate and corresponding covariance:

x̂an =

x̂k|n
...

x̂m|n
...

x̂n|n

P an|n =

Pk|n . . . Ck,mn . . . Ck,nn
...

...
...

Cm,kn . . . Pm|n . . . Cm,nn
...

...
...

Cn,kn . . . Cn,mn . . . Pn|n

(2.59)

Where Cm,kn means the covariance between state xk and xm given information
up to time tn.

With these equations, looking at the Kalman gain equation for EKF (2.16), we
have that:

Kk
n

...
Km
n
...
Kn
n

 =

Pk|nH
k
n + Ck,mn Hm

n
...

Cm,kn Hk
n + Pm|nH

m
n

...
Cn,kn Hk

n + Cn,mn Hm
n

[
Hk
nPk|nH

kT
n +Hk

nC
k,m
n HmT

n +Hm
n C

m,k
n HkT

n +Hm
n Pm|nH

mT
n

]−1

(2.60)

where Kk
n means the Kalman gain for time tn with respect to state k.

As our sensor model Jacobians consists of Hm
n , Hk

n and zero matrices, the
Kalman gain is mainly constructed from Pk|n and Pm|n. The rest are the cross-
covariances associated with these states. This means that the essential infor-
mation for fusing the delayed displacement measurement is the state covari-
ance associated with Pk|n and Pm|n, and the cross-covariances. The cross-
covariances associated with other states are not necessary for formulating the

36

Kalman gain, and hence the fusion of the measurement into the current state
estimate x̂n.

Our multiple-point smoother contains the same information. The difference is
that the the fixed-lag smoother maintains significantly more unnecessary state
estimates and state covariance estimates. If there are s states in the fixed-lag
smoother, we are maintaining s−3 more states and s2−9 more covariance ma-
trices than we need. These unnecessary states lead to the fixed-lag smoother
being too computationally costly. For a 2D robot taking pictures every 2 s, a
filter updating at 0.05 s and no processing time for the pictures, the fixed-lag
smoother will have to maintain 40 state vectors containing 5 elements, and
1600 covariance matrices containing 25 elements.

37

2.4 Rotation

The robot is considered to be moving in 2D, but some of the sensors available
give measurements in the plane, others give them with respect to some ref-
erence frame. As such it is important to present some common definitions of
reference frames that will be used in this thesis. The definitions are taken from
Vik (2014) with the addition of an ENU frame and modification of the BODY
frame.

2.4.1 Reference Frames

ECI
The Earth Centered Inertial (ECI) frame’s origin is coincident with the
center of the Earth. It is defined with the x-axis pointing towards the
vernal equinox, and the z-axis pointing along the Earth’s rotation axis
at some initial time. The y-axis completes the right handed orthogonal
coordinate system. This frame can be considered an inertial frame for
terrestrial navigation purposes. That is, Newton’s laws of motion apply
for this frame. All inertial sensor measurements are relative to this frame
and resolved in the platform frame.

ECEF
The Earth Centered Earth Fixed (ECEF) frame also has it’s origin in the
in the center of the Earth. It is defined with the x-axis pointing towards
the intersection of 0◦ longitude (Greenwich meridian) and 0◦ latitude
(Equator). The z-axis points along the Earth’s rotation axis, and the y-
axis complete the right handed orthogonal coordinate system. The ECEF
frame rotates relative to the ECI frame with the Earth rotation rate ωe,
and is not an inertial coordinate frame. Both Cartesian and ellipsoidal
coordinates are used to represent position in the ECEF frame.

NED
The North East Down (NED) frame is defined relative to the Earth’s ref-
erence ellipsoid. The z-axis points downward perpendiculary to the tan-
gent plane of the ellipsoid, and the x-axis points towards true north. The
y-axis points towards east to complete the orthogonal coordinate system.
The ellipsoid currently used for GPS is the WGS-84 ellipsoid.

ENU
The East North Up (ENU) frame is also defined relative to the Earth’s
reference ellipsoid. The z-axis points upward perpendicularly to the tan-
gent plane of the ellipsoid, and the y-axis points towards true north. The
x-axis points towards east to complete the orthogonal coordinate system.
This is the reference frame most commonly used in the Robotic Operat-
ing System (ROS), which is the programming platform used in the devel-
opment of Asterix.

BODY

38

The classic BODY frame is moving and rotating with the vehicle. The ori-
gin coincides with the origin of the NED frame, and the x-axis points in
the forward direction, the y-axis to the right side, and the z-axis down-
ward. The BODY frame is related to the NED frame through the Euler
angles roll, pitch and yaw. This is the convention normally used.

ROS-BODY
The robot model that was chosen has positive rotation around the up
direction, and we will therefore refer to a ROS-BODY frame with x-axis
pointing forwards, y-axis to the left, and z-axis upwards. This ROS-BODY
frame is related to the ENU frame by the Euler Angles. This is the BODY
frame convention most commonly used in ROS.

I
I is the reference frame of strapdown instruments attached to the robot.
The gyro and accelerometer instruments are, in the case of strapdown
systems, nominally aligned with the platform and the ROS-BODY frame.
But due to misalignments the strapdown instrument frame should not be
considered perfectly orthogonal or coincident with the ROS-BODY frame.

2.4.2 Ellipsoidal to Cartesian ECEF

A GPS unit reports position in terms of the ellipsoidal ECEF coordinates lon-
gitude, l, latitude, µ, and altitude, h. The transformation from ellipsoidal to
Cartesian is given in Vik (2014) as:

xy
z

 =

 (N + h) cosµ cos l
(N + h) cosµ sin l

(N(1− ε2) + h) sinµ

 (2.61)

Where:

N =
re√

1− ε2 sinµ2
(2.62)

And the parameters of the WGS-84 ellipsoid are given in Tab.1.

Symbol Description Value
re Equatorial radius of ellipsoid (Major axis) 6378137 m
rp Polar axis radius of ellipsoid (Minor axis) 6356752 m
ωe Angular velocity of Earth 7292115 · 10−11 rad/s
µg Gravitational constant of Earth 3986005 · 108m3/s2

ε Eccentricity of ellipsoid 0.0818

Table 1: WGS-84 Parameters from Vik (2014)

39

2.4.3 ECEF to ENU

Cartesian ECEF coordinates can be converted to ENU coordinates by applying
a rotation based on the longitude and latitude of the origin of the ENU frame.
This derivation is similar to what is done in (Vik, 2014, p.11). First we con-
struct the rotation necessary to make the x-axis of the ECEF frame align with
the east axis of the local ENU frame.

RzECEF
(−l − π/2) =

 sin l cos l 0
− cos l sin l 0

0 0 1

 (2.63)

Then we construct the rotation necessary to make the z-axis of the current
frame align with the up axis of the local ENU frame.

Rx(µ− π/2) =

1 0 0
0 sinµ cosµ
0 − cosµ sinµ

 (2.64)

Giving the final transformation from ECEF to ENU as their product:

RENUECEF (l, µ) =

 − sin l cos l 0
− cos l sinµ − sin l sinµ cosµ
cos l cosµ sin l cosµ sinµ

 (2.65)

2.4.4 The Local ENU Frame

We are interested in maintaining a local map of the movement of the robot. To
do this we construct a local ENU frame from which the position is described.
When the first GPS measurements arrive, we define that to be the elliptic co-
ordinates ,[l0, µ0, h0], of the origin of the local ENU frame. The origin has the
Cartesian ECEF coordinates [x0, y0, z0]T . When a new GPS measurement ar-
rives, to give the local ENU coordinates, the procedure is as follows:

1. Convert the measurement into ECEF coordinates [x, y, z]T

2. Compute the local ENU coordinates with:xEyN
zU

 = RENUECEF (l0, µ0)

x− x0y − y0
z − z0

 (2.66)

If the localization filters have been running for a while before the first GPS
measurement arrives, there will be an offset between the location of the filters
current origin and the local ENU frame. In practice the first GPS measurement
arrives early in the datasets, and the localization filters are therefore reset to
the ENU origin at that point.

40

2.5 Local Versus Global

Localization is done in a map. These maps are either defined by means of pro-
prioceptive sensors or extroreceptive sensors. These terms are adopted from
Mourikis and Roumeliotis (2006). An extroreceptive sensor, such as GPS, pro-
vides estimates of the robots position with respect to some known locations
in the world. A proprioceptive sensor, such as wheel encoders, provides esti-
mates of the robots position with respect to its previous position. This section
presents some concepts for probabilistic localization in terms of proprioceptive
and extroreceptive measurements.

2.5.1 Proprioceptive Measurements

Proprioceptive measurements give us an estimate of the motion of the robot
relative to an initial position. We essentially integrate the measurements to
arrive at the estimated position. These local measurements cannot improve the
state covariance beyond what was set initially.

2.5.2 Extroreceptive Measurements

Extroreceptive measurements give us an estimate of the robot’s states with
respect to some known objects. For example distance to known landmarks
or distance to satellites in orbit. The precision with which we know the ini-
tial location of these objects is what we use to refine our own estimates. This
means that with a perfect laser range finder, we would not be able to estimate
our distance from an object better than the object’s known initial position. For
GPS, the orbit trajectories of positioning satellites are monitored closely and
are highly stable. They transmit a signal describing the time of transmission
with a known pseudorandom sequence. By aligning the sequence on the re-
ceiver side and compensating for known clock errors, the time of arrival can be
computed and the distance to the satellite evaluated.

2.5.3 Delay And Smoothing

A lagged state will be smoothed by extroreceptive measurements and proprio-
ceptive measurements. But given only proprioceptive sensors, there is a limit
to how much smoothing can contribute. This is visualized in Fig.12 and it was
observed in simulations. Extroreceptive measurements should, in theory, be
able to improve our estimate of the smoothed state significantly better than
the proprioceptive measurements. In experiments with the datasets, this was
observed where the heading of a lagged state was gradually shifted according
to new GPS measurements.

The smoothing cannot go beyond the knowledge of the underlying system
model. If the system model describes a system that is assumed to have a con-

41

−8 −6 −4 −2 0 2 4 6 8

x

p
(x
)

x x
k k+1

Figure 12: Perfectly knowing the transition from a state to another will only
maintain the initial state probability estimate.

stant velocity, but our observations are of a system performing rapidly varying
movement, the filter will consider the motion highly unlikely and disregard the
observations. This is an argument for masking the localization filter. We might
rely too heavily on the smoothed estimate of the lagged state when fusing it.
Discrepancy between modeling assumptions and the actual system behavior
can lead to the smoothed state having a lower state covariance than is correct.
As the extroreceptive measurements are direct measurements of the system
states, they will have a greater effect on the smoothed state. When smoothing
extroreceptive measurements, care should be taken to ensure that potential
modeling errors do not lead to loss in performance. This model inconsistency
was observed in simulations of the system where our modelling choice meant
that the filter was not able to accurately track the robot during a sharp turn.

2.5.4 VO Sensor Model

The VO sensor model (2.38) measures the displacement between two states
with respect to our smoothed heading estimate. As with most rotated trans-
formations, this is not accurately described by a Gaussian. In Fig.13, the sen-
sor model has been described by a Monte-Carlo simulation of the model with
Gaussian uncertainty in the VO measurements and yaw. We can see that, sim-
ilar to all cases of rotated transformations, the distribution is easily affected
by our estimate of the heading. When the robot is moving with only propri-
oceptive measurements, we will accumulate uncertainty during any periods
the displacement measurements are unavailable, diminishing the gain in accu-
racy we have by using VO. These measurements describe motion relative to the
robot and are therefore proprioceptive measurements.

42

0
0

.5
1

1
.5

0
.4

0
.6

0
.81

1
.2

1
.4

1
.6

In
p

u
t

d
x
 [

m
]

dy [m]

0
0

.5
1

1
.5

0

0
.51

1
.5

O
u

tp
u

t

d
x
 [

m
]

dy [m]

M
o

n
te

 C
a

rl
o

U
n

s
c
e

n
te

d
 T

ra
n

s
fo

rm
a

ti
o

n

L
in

e
a

ri
z
a

ti
o

n

Fi
gu

re
13

:
M

on
te

C
ar

lo
si

m
ul

at
io

n
of

th
e

VO
se

ns
or

m
od

el
w

it
h
p
(∆
x
V
O

)
=

N
(∆
x
V
O

;1
,0
.0

0
1
),
p
(∆
y
V
O

)
=

N
(∆
y
V
O

;1
,0
.0

0
1
)

an
d
p
(ψ

k
)

=
N

(0
,0
.0

5
).

Th
e

an
gl

e
ψ

k
gr

ea
tl

y
af

fe
ct

s
th

e
re

su
lt

in
g

di
st

ri
bu

ti
on

.

43

3 Implementation
3.1 Module Testing

To assess how the implementations of the filters and delay fusion methods
work, a simple example based on target tracking was studied. This was instru-
mental for learning what to expect from the methods and whether the filter
implementations worked correctly.

3.1.1 Target Tracking

In Challa et al. (2003), the system used to test the methods was a classical
white-noise acceleration model. This has been modified to test our delayed
measurement scenario and our unscented fixed-point smoother:

xk+1 =

[
1 T
0 1

]
xk +wk

zk =
[
1 0

]
xk + vk

zdk =
[
1 0

]
xk−N + vdk

p(wk) = N (wk; 0, Q)

p(vk) = N (vk; 0, R)

p(vdk) = N (vdk; 0, Rd)

α =
Rd

R

(3.1)

where T is the sampling interval, wk is the process noise with covariance:

Q =

[
T 3/3 T 2/2
T 2/2 T

]
q (3.2)

zdk is a measurement delayed N iterations. Measurement zk arrives at each
time instance, but zdk arrives at every M time instance. The scaling factor α is
used to describe the comparative accuracy of the delayed measurement. The
parameter q is used the process noise. A low value corresponds to a target fol-
lowing close to linear path, and a high q indicates highly randomized move-
ment.

The results and the discussion regarding this system are given in section 4.1 of
the Results chapter.

44

3.2 Asterix Robot

3.2.1 Modeling

Asterix is modeled as a unicycle-like robot with no-slip conditions. The kine-
matic model for the system is based on the model presented in De La Cruz and
Carelli (2006) with the only change that the castor wheel is opposite the direc-
tion of travel.

The full kinematic model used for simulations is described by:

ẋ =

ẋ
ẏ

ψ̇
u̇
ω̇

 =

u cosψ − aω sinψ
u sinψ + aω cosψ

ω
θ3
θ1
ω2 − θ4

θ1
u

− θ5θ2uω −
θ6
θ2
ω

+

0 0
0 0
0 0
1
θ1

0

0 1
θ2

[
uref
ωref

]
+

δx
δy
δψ
δu
δω

 (3.3)

The parameter a determines the placement of the rotational center with re-
spect to the wheelbase. In simulink this is 0.2, for the real data it was assumed
0.

The control parameters θ1, ..., θ6 are determined by an adaptive controller. To
simplify the localization filter equations, and make it independent of the adap-
tive controller, we disregard the velocity references. This means that we as-
sume the change in linear and angular velocity is zero.

The kinematic model used by the filters is therefore:

ẋ =

ẋ
ẏ

ψ̇
u̇
ω̇

 =

u cosψ − aω sinψ
u sinψ + aω cosψ

ω
0
0

+

wx
wy
wψ
wu
wω

 (3.4)

with Jacobian matrix:

dẋ

dx
=

0 0 −uk sinψk − aωk cosψk cosψk a sinψk
0 0 uk cosψk − aωk sinψk sinψk a cosψk
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 (3.5)

This is a noise driven model where we are assuming that a robot rolling will
keep rolling from the perspective of the filter. The only thing that changes this
view is the measured velocity.

The δ vector is a vector of dynamic and parametric uncertainties pertaining
to slip and modeling errors(De La Cruz and Carelli, 2006). This is modeled as
Gaussian noise for the comparatively heavy, slow moving Asterix. The vector

45

w is process noise that is also modeled as Gaussian. With the differential equa-
tion described by (3.4) and Jacobian (3.5), the kinematic model used by the
filters is readily discretized using the forward Euler method:

ẋ = fc(x) + δ

xk+1 = f(xk) +wk = xk + fc(x)(tk+1 − tk) +wk

Fk = I +
dfc(xk)

dxk
(tk+1 − tk)

(3.6)

Where Fk is the transition Jacobian, fc is the continuous differential equation
and f is the discrete transition function. The forward Euler method was cho-
sen as it is easy to compute the Jacobian, allowing us to compare the behav-
ior of the EKF with the UKF. The simulink model and controller was based on
Martins (2015).

For the simulations, the sensors considered were: an IMU (yaw and yaw rate),
a GPS (X, Y coordinates), wheel encoders (linear and angular velocities) and
a VO displacement measurement (difference of displacement forward, left and
heading with respect to the robots pose in two time instances).

The decision to use a noise driven model gives us an intuitive remark on the
tuning. The model used describes linear and angular acceleration as Gaussian
noise. If the elements of the diagonal process noise covariance matrix Q are
large, the corresponding state responds quickly to changes. If it is smaller, the
state is less noisy. This is because we are changing how we weight a measure-
ment, large process noise covariance means we are accepting sudden changes
more.

The simulink model used is given in Fig.14 and Fig.15.

46

Figure 14: Simulink diagram of the Asterix robot system with trajectory controller
with simulink blocks from Martins (2015). Measurement noise was added with a
script to the simulated data so that it could be made consistent for all the filters
simulated.

Figure 15: Simulink diagram of Asterix subsystem in Fig.14 with simulink blocks
from Martins (2015).

3.2.2 Prototype

Adigo has developed a prototype of Asterix that was used to gather datasets.
These include pictures and ROS bag files. ROS is a framework for robot soft-
ware development with conventions on data representation and coordinate
frames. The ROS bag files contain “message” data from the sensors in a stan-
dardized notation. ROS has an API for use with Python.

The practical specifications of the prototype are given in Tab.2. The prototype
is equipped with an IMU sensor (CHR-UM6) capable of sensing orientation at
a rate between 20 Hz and 300 Hz. It contains a magnetometer, MEMS gyro
and accelerometer and uses these in conjunction with an internal EKF to pro-
duce orientation and angular velocities. There are two motorized wheels in
the front equipped with wheel encoders that give the rotational speed of the
wheels. The prototype also has an RTK-GPS (Septentrio Polarx 2e) which pro-

47

Figure 16: Asterix prototype gathering data from a carrot field (Rygge 2014).

vides position estimates at rates between 1 Hz and 20Hz. The camera (IDS
USB 2.0 uEye LE) is a 5MPix color camera capable of transmitting at most 6.3
fps.

Description Symbol Value
Wheel base b 1.7[m]

Wheel diameter D 0.533[m]
Drive belt ratio rg 1/4.4

Solenoid gear ratio rc 1/20
Encoder speed to tangential wheel speed re πDrgrc

Table 2: Specifications of the prototype

3.2.3 Measurement model

The wheel encoders provide measurements of the rotational velocity of the
wheels. By wheel odometry (WO) equations and using the state notation in
(3.4), the measurement mapping between states and rotational velocity of the
wheels is: [

ωright
ωleft

]
=

[
(u+ 1

2bω) 1
re

(u− 1
2bω) 1

re

]
(3.7)

where b = 1.7m is the wheel spacing, re = 0.00308 is the encoder to tangential
speed ratio. This was calculated as in Tab.2 but tuned based on the compari-
son between wheel odometry and visual odometry for dataset B where a tape
measure was visible for a portion of the dataset.

The IMU provides measurements of the Euler angles, roll, pitch, and yaw. The
CHR-UM6 provides these in the conventional BODY frame, which are con-
verted internally by the ROS interface to ROS-BODY. The angular rates pro-
vided by the IMU are of the I frame with respect to the ECI frame expressed in

48

I (ωI,ECII). If the I frame is aligned with the ROS-BODY frame, the mapping
between IMU measurements and states is:

[
ψIMU

ωIMU

]
=

[
ψ
ω

]
(3.8)

As stated in (2.26), visual odometry, calculated as a displacement between
observed features has the following measurement mapping:∆xV O

∆yV O
∆ψV O

 =

[
R(−ψk) 0

0 1

]xm − xkym − yk
ψm − ψk

 (3.9)

Where tk is when the oldest picture was taken, and tm is the newest picture.
In the datasets, the pictures arrived approximately every 2.5 s. The processing
delay has been added by making the VO measurement available some time
after the latest picture has been taken.

Simulations of the Asterix robot and test on the available datasets are given in
the Results chapter.

49

3.3 Manual Feature Software

Feature detection is a large research field outside the scope of this thesis. De-
signing an algorithm capable of finding acceptable features is a major under-
taking worthy of its own thesis. Instead, for this project, the features were cho-
sen manually from picture subsets of the two datasets.

3.3.1 OpenCV

OpenCV was used to process the images from the datasets. OpenCV is an open
source computer vision platform with interfaces for C, C++, Python and Java.
When using Python, images are stored as NumPy arrays. With NumPy, pixels
are accessed in terms of row and column indices of the image with the ori-
gin set in the upper left corner. However, points are represented in OpenCV in
terms of X and Y coordinates corresponding to column and row. These are the
coordinate conventions used when drawing shapes. This is something to be
mindful of when working on the actual data in the image arrays.

3.3.2 Software

In Fig.17 a set of features have been chosen, and their positions estimated by
using the wheel odometry measurements between the two picture times. In
Fig.18 the features’ coordinates have been corrected by brute-force search.

Figure 17: Example use of the feature software on real images from a dataset
before brute-force search correction. Left image is the newest, right image is the
oldest. The wheel odometry has underestimated the distance traversed.

The brute-force search takes the color values of a 60x60 pxs feature in the cur-
rent image and compares it to all 60x60 pxs segments in the vicinity of where
it is expected to be. The location which minimizes the L2 norm of the differ-
ence between the matrices is the corrected location. It was observed that using
the full RGB pictures did not always yield the desired results. If a feature is too

50

Figure 18: Example use of the feature software on real images from a dataset.
Left image is the newest, right image is the oldest. The brute-force search has cor-
rected the underestimated translations.

dark, there might not be enough information to differentiate from any other
dark segment. The software was therefore expanded to include the ability to
search in the intensity values only.

Applying two different gaussian blurs to a picture and subtracting is a method
often used in image processing for edge detection. There was only one case
found where this performed better than the grayscale intensity map. This was
when a tape measure had been placed on the ground and the edges of the
sharp, clean numbers were in the pictures.

It was also observed that the height difference in features can yield different
displacement estimates. An example of a potentially problematic feature is the
topmost feature of Fig.18. It is located on top of a rock of unknown height,
that appears to be higher up than the other features. When choosing features,
this was minimized by attempting to only choose features in approximately the
same plane.

The brute-force search has a glaring flaw in the fact that it cannot test differ-
ent rotations of the 60x60 pxs feature blocks. The datasets are of the robot
moving down a row of crops and this was not a major issue. When rotation
was apparent, the features were chosen to minimize the false positives. This
was done by choosing features that were equivalent before and after rotation
(e.g. small circular pebbles or holes).

51

3.4 Python Modules

The project was done using Python, running simulink models using the Mat-
lab API, reading ROS bag files using the ROS API, and handling images using
OpenCV. As this is a research project on fusing OOSM, Python was chosen as
the main programming language. Python has pseudo-code like syntax, is ob-
ject oriented, uses duck typing extensively, and can be debugged with an in-
teractive shell. This means that one can quickly prototype and combine things
when necessary, with little interfacing between modules and objects.

NumPy is a well established numerical library for Python that was used exten-
sively in this project. It is optimized for array and matrix operations and has
comparable efficiency to MATLAB. This is partially because both environments
use LAPACK and BLAS for linear algebra computations.

For the ease of testing various systems and scenarios, a set of modules were
created. A probabilisticFilter module was created with KF, EKF, UKF, and a
particle filter based on Thrun (2002). The particle filter goes beyond the scope
of this thesis and was not used during simulations. The modules were not de-
signed with optimal resource usage in mind, but rather modularity and de-
scriptiveness. The code used is given in appendix A.5. For completeness, an
implementation of Horn’s method and a module for conversion from elliptical
coordinates to local cartesian ENU coordinates are also in the appendix.

3.4.1 Probabilistic Filter Module

The probabilisticFilter module contains classes BaseFilter, KalmanFilter, Ex-
tendedKalmanFilter, UnscentedKalmanFilter and ParticleFilter. In Fig.19 the
class diagram is shown, any parameter whose datatype is not specified is a
NumPy matrix. All filters are based on the recursive bayesian filter and have
a predict and an update function. Iterate is a shorthand that calls predict and
then update. This module was created to be conceptually correct, with verbose
naming and inheritance based on underlying assumptions rather than direct
necessity. E.g. both EKF and UKF inherit from the KF class as the underlying
assumptions are the same. For conceptual clarity it could have been better to
create abstract “KalmanLike” and “ParticleLike” classes.

CreateMasked creates a filter class with a “wrapper” on the update function.
This takes a predetermined mask_size which defines the section of state esti-
mates that are to remain constant. This wrapper is general enough to handle
any Kalman-like filter classes.

3.4.2 Delay Fusion Module

The main functionality of the delayFusion module is the patchFilter function.
The patchFilter function takes a filter object and augments the object with

52

three new functions: clone, extend and marginalize. Stochastic cloning requires
the use of clone and marginalize. The joint method uses extend and marginal-
ize. As outlined in the theory chapter, the extend function is different for EKF
which uses the equations (2.49) and (2.51), and UKF which uses (2.50) and
(2.52). Clone and marginalize are the same for both EKF and UKF if the tran-
sition function, transition Jacobian function and measurement function is de-
signed to take an arbitrarily large augmented state vector xa and only evaluat-
ing the transformation for the latest state. E.g:

1 def transition_function(states):
2 states[:- STATE_SIZE] = A*states[:- STATE_SIZE]
3 return states

In the theory chapter it was shown that the cloning procedure for an EKF will
not require the use of the approximation noise associated with the regulariza-
tion constant ε. In this module however, the clone function for an EKF has ε.
This is to better understand how the ε in the SC method affects the results.

In Fig.20, a basic flowchart is given for both stochastic cloning and the joint
method describing typical usage. When a picture is taken, stochastic cloning
performs a clone step while the joint method waits until the next predict step
and substitutes it with an extend step. When a VO measurement has arrived,
the oldest cloned state is marginalized.

53

B
aseFilter

+states
+state_size: int

K
alm

anFilter

+state_covariance: num
py.m

atrix

+setInitialD
istribution(states, state_covariance)

+setTransitionM
odel(transition_m

atrix, input_m
atrix, transition_covariance)

+setM
easurem

entM
odel(m

easurem
ent_m

atrix, m
easurem

ent_covariance)
+predict()
+update(m

easurem
ent)

+iterate(m
easurem

ent)

ExtendedK
alm

anFilter

+setTransitionM
odel(transition_function : function, transition_jacobian : function, transition_covariance)

+setM
easurem

entM
odel(m

easurem
ent_function : function, m

easurem
ent_jacobian : function, m

easurem
ent_covariance)

+predict()
+update(m

easurem
ent)

U
nscentedK

alm
anFilter

+alpha: float = 0.001
+kappa: float = 0
+beta: float = 2
+m

ean_w
eights

+covariance_w
eights

+sigm
aPoints(m

ean, covariance_m
atrix): num

py.m
atrix

+unscentedTransform
(transition_function : function, sigm

a_points, m
ean_w

eights, covariance_w
eights, additive_covariance)

+setParam
eters()

+setTransitionM
odel(transition_function: function, transition_covariance)

+setM
easurem

entM
odel(m

easurem
ent_function: function, m

easurem
ent_covariance)

+predict()
+update(m

easurem
ent)

ParticleFilter

+num
ber_of_particles

+sam
ples

+w
eights: list

+getStates()
+generateW

eights(m
easurem

ent)
+resam

ple()
+setInitialD

istribution(intialization_function: function)
+setTransitionM

odel(transition_function: function)
+setM

easurem
entM

odel(m
easurem

ent_function: function)
+predict()
+update(m

easurem
ent)

+iterate(m
easurem

ent)

Figu
re

19:
C

lass
diagram

for
the

probabilisticFilter
m

odule.
Ifnot

specified,functions
return

void
and

param
eters

are
N

um
Py

m
atrices.

54

iterate

update

extend

marginalize

setMeasurementModel

picture taken last time

VO in measurement

setMeasurementModel

iterate

VO in measurement

Joint method Stochastic Cloning

marginalize

clone

picture taken

Figure 20: Typical usage of a filter augmented for delay fusion.

55

3.4.3 Kinematic Module

The kinematic module was created to simplify the initialization of filter ob-
jects. The main function in this module is patchFilter. It takes a filter object
as instantiated from the probabilisticFilter module and patches the filter with
the transition and transition Jacobian functions necessary for the filter to fol-
low the modified model of De La Cruz. The base differential function is as de-
scribed by (3.4). The Jacobian was found analytically and verified with SymPy.
The discrete filter transition function and transition Jacobian is evaluated by
using forward euler on the underlying differential equation with a timestep
specified in the filter. This method of implementing a transition function is
conceptually clearer and allows one to change the underlying model if the
chosen one does not fit, but has an unnecessary amount of function calls and
memory allocation. The actual system should be implemented with only the
required functions specified from the beginning.

3.4.4 Measurement Handler Module

When accessing topics of ROS bag files in Python, the built-in method of the
ROS API returns a generator object that can give an iterator for a sequence of
messages between two rostime instances. To keep the modularity chosen for
the research of this project, there is no reason for the filter module to know
of ROS bags or other ROS types. The measurementHandler module was de-
signed to simplify the construction of the measurement function, measurement
Jacobian function, and measurement vector. The measurementHandler is an
interface to the real datasets.

Everything in Python is an object in the pythonic sense, the only difference be-
tween an object and a function is that it has an internal __call__ function. This
means that one can construct a class whose instances are callable: a function
generating class. This simplifies the process of making measurement functions
on demand that only handle the sensors that have currently arrived. The func-
tion behavior can be instantiated with different functonality as needed. The
internal variables of our function generating objects can be thought of as static
variables in a C function.

The measurementHandler module uses many tricks that are relatively unique
to Python, e.g. accessing local variables with strings to dynamically create
the measurement function. This is the least descriptive module used in this
project, but it was very important in designing proper control flows for the
system and filters without getting lost in the measurements arrival order and
availability.

56

4 Results
The object-oriented implementations allow us to create a variety of filters. The
prefixes describing the functionality of a specific filter is given in Tab.3, e.g.
MSCEKF denotes a masked EKF that uses stochastic cloning for delay fusion.

Prefix Description
SC* Indicates the filter fuses VO with stochastic cloning
J* Indicates the filter fuses VO with the joint method
M* Indicates the lagged states are not smoothed

Table 3: Filter abbreviations used in the simulations. If no fusion method is speci-
fied, VO measurements are ignored.

4.1 Module Testing

This section shows simulations of the target tracking system (3.1). The inten-
tion of these simulations was to test the probabilisticFilters and delayFusion
modules. Description of the parameters of the system are recreated from the
implementation description, and given in Tab.4.

Symbol Description
Rk Measurement noise covariance
T Sampling interval or timestep
q Process noise
M Frequency of measurement zdk (in iterations)
N Delay of measurement zdk (in iterations)
α Comparative accuracy of delayed measurements (lower is better)

Table 4: Parameters for the delay testing based on (3.1).

4.1.1 Target Tracking

The simulation parameters are given in Tab.5. It was observed that the EKF
implementations were less numerically stable than the UKF implementations.
The state covariance matrix did not remain symmetric. Matlab performs a ro-
bust matrix “division” based on tests of positive-definiteness and other char-
acteristics. If all of these tests fail, and the matrix is square, Matlab uses the
LU solver from LAPACK. Numpy does not perform these tests and uses the
LU solver directly. This leads to numerical errors in the off-diagonal elements
in Python implementations of the filters. To compensate the numerical trick
P = 0.5(P + PT) was added at the end when updating state covariance for all
filters in the probabilisticFilters module.

57

Fig.21 shows the filter tracking the target. BASEKF is a Kalman filter where
the delayed measurement zdk arrives as though there was no delay. KF is a
Kalman filter that ignores the delayed measurement. The difference in behav-
ior of the delay fusion strategies are indiscernible in their graphs. The masked
versions are not depicted to reduce clutter in the graph. In Tab.6 a description
of the filters is given with the root-mean-square (RMS) error of the position es-
timate. For these simulations ε was set to 10−10. Lower values did not ensure
positive-definiteness consistently for all system scenarios tested.

0 10 20 30 40 50
t [s]

0

10

20

30

40

50

60

Po
si
ti
o
n
 [
m
]

BASEKF
JEKF
JUKF
KF
SCEKF
SCUKF
TARGET

Figure 21: Basic target tracking according to the system (3.1), with parameters
in Tab.5. The filters are described in Tab.6. The zoomed inset shows BASEKF fus-
ing zdk (Blue line), then 5 iterations later the other filters fuse the measurement
(“Brown” line). KF does not fuse zdk (Cyan line). The masked versions of the filters
are not shown to reduce the clutter in the graph.

Parameter Value
Rk 1
T 0.1
q 0.5
M 10
N 5
α 0.001

Table 5: Parameters used for the basic tracking simulation.

58

Name RMS
BASEKF 0.25784926
SCUKF 0.37536253
JUKF 0.37536699

SCEKF 0.37536253
JEKF 0.37536699

MSCUKF 0.43339973
MJUKF 0.43340372

MSCEKF 0.43340173
MJEKF 0.43340572

KF 0.45773917

Table 6: RMS of position estimate. BASEKF is a Kalman filter where zdk arrives
without delay. KF is a Kalman filter that ignores zdk .

4.1.2 Discussion: Basic Tracking

The RMS values in Tab.6 show that the smoothing filters have better estimates
than the masked filters. Furthermore, the masked filters have better estimates
than the KF. The EKF and UKF performs similarly, which is not surprising as
we are handling a linear system.

The RMS values in Tab.6 suggest that the SC method was better than the joint
method. This was not a consistent result. With the same system and tuning pa-
rameters, but different random seeds for the noise, this changed. Increasing
the simulation time made the difference decrease. With a simulation time of
500 iterations the difference was, on average, in the order of 10−6. With a sim-
ulation time of 20000 iterations the difference was, on average, in the order of
10−8. For long enough simulations, SCUKF was consistently better than JUKF,
and JEKF was consistently better than SCEKF. This suggests that the numeri-
cal issues of performing the higher number of Cholesky factorizations needed
for JUKF induced larger errors than the regularization constant ε induced in
SCUKF.

With large enough delay or process noise, there were cases observed where
ignoring the lagged measurements was better than fusing them incorrectly.

59

4.2 Asterix Simulation

This section shows simulations of the Asterix system in Fig.14 with the inten-
tion of investigating the SC method and the joint method for robot localiza-
tion. The parameters of the filters and the system are given in Tab.7. The tra-
jectory planner from Martins (2015) has 4 reference trajectories: straight line,
circle, figure eight, and moving to a fixed point. The simulations used wheel
odometry (WO), linear and angular velocity, instead of direct wheel speeds,
left wheel speed and right wheel speed, as these were readily available from
the simulation.

For each of the simulations we have the opportunity to run with any permuta-
tion of the sensors: WO, IMU, GPS and VO. The sensors are assumed to be af-
fected by additive gaussian noise. The noise covariance matrices are described
in Tab.7.

Symbol Description
Q Process noise (from perspective of the filters)

RGPS Noise covariance of GPS measurements
RV O Noise covariance of VO measurements
RWO Noise covariance of WO measurements
RIMU Noise covariance of IMU measurements
T Sampling interval or Timestep
P0 Initial state covariance
x0 Initial states
M Frequency of VO measurements (iterations)
N Delay of VO measurements (iterations)

Table 7: Parameters for the Asterix simulink model.

Parameter Value
T 0.05 s
Q diag([10−9, 10−9, 10−9, 5 · 10−7, 5 · 10−7])

RWO diag([10−2, 10−2])
RIMU diag([5 · 10−2, 5 · 10−2

RGPS diag([5 · 10−1, 5 · 10−1])
RV O diag([10−6, 10−6, 10−5])

Table 8: Tuned parameters used with filters.

4.2.1 Localization Without GPS

This section shows simulations of the filters following the robot with VO fre-
quency M = 60 and VO delay N = 20. Equivalent to 0.33 fps and 1 second
processing time. Significantly slower than what is expected of the real system.
With this timing and tuning, the delay fusing EKFs became unstable and are
not shown in these figures. The two UKFS using stochastic cloning and the
joint method are practically indistinguishable in the figures.

60

In Fig.22 the robot turns into a straight path. The pose with respect to time is
given in Fig.23. The velocities are given in Fig.24.

In Fig.25 the robot takes the first picture when it has arrived on the straight
path. The pose with respect to time is given in Fig.26. The velocities are given
in Fig.27.

In Fig.28 the robot moves in a figure eight. The pose with respect to time is
given in Fig.29. The velocities are given in Fig.30. The RMS errors are shown
in Tab.10.

In Fig.31 the robot moves in a circle. The trajectory controller used requires
the robot to move in a straight line out to the perimeter of its circle before
moving in the circle. It causes small spikes in the angular rate when it passes
the point the robot started moving in a circle. To compensate for the sharp
turn when moving to the perimeter, the first image was taken after the robot
arrived on the circle. For this simulation the process noise corresponding with
the linear velocity and angular velocity was increased by a factor of 10. This
was done to ensure that the estimation does not drift during the sharp turn
caused by the trajectory controller. This drift would result in our estimates
drawing a circle a distance away from the actual. The pose with respect to
time is given in Fig.32. The velocities are given in Fig.33. The RMS errors are
shown in Tab.11.

61

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x [m]

0

20

40

60

80

100

y
 [
m
]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 22: Simulation of Asterix performing a sharp turn into a straight path. In
xy-coordinates. Note that the x-axis is of a significantly smaller scale than the y-
axis to emphasize the error induced by the sharp turn.

62

t [s]
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

x
 [

m
]

t [s]
−20

0
20
40
60
80

100

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

0.0

0.5

1.0

1.5

2.0

2.5

y
a
w

 [
ra

d
]

Figure 23: Simulation of Asterix performing a sharp turn into a straight path.
Pose with respect to time.

t [s]
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

u
 [

m
/s

]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

0 50 100 150 200 250 300 350 400
t [s]

−1.5

−1.0

−0.5

0.0

0.5

w
 [

ra
d
/s

]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 24: Simulation of Asterix performing a sharp turn into a straight path.
Velocities with respect to time.

63

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
x [m]

−20

0

20

40

60

80

100

120

y
 [

m
]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 25: Simulation of Asterix turning to move into a straight path where the
pictures for VO measurements first arrive after the sharp turn. In xy-coordinates.

64

t [s]
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

x
 [

m
]

t [s]
−20

0
20
40
60
80

100
120

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

y
a
w

 [
ra

d
]

Figure 26: Simulation of Asterix turning to move into a straight path where the
pictures for VO measurements first arrive after the sharp turn. Pose with respect to
time.

x y ψ u ω
UKF 0.36700297 0.09870972 0.02209709 0.00592651 0.0035072

SCUKF 0.3351425 0.48283523 0.00730707 0.00188329 0.00174407
JUKF 0.33514391 0.48283339 0.00730673 0.00188331 0.00174407

MSCUKF 0.36055355 0.27727286 0.02043303 0.00474811 0.00312327
MJUKF 0.36055471 0.27727006 0.020433 0.00474807 0.00312326

Table 9: RMS errors from Asterix moving into a straight path and VO taken after
arriving on the straight line. Based on state estimates after arriving on the straight
path.

x y ψ u ω
UKF 1.61529791 0.7773032 0.08627775 0.09775693 0.05800764

SCUKF 1.12839804 0.73753893 0.07100451 0.06256853 0.05423402
JUKF 1.12846113 0.73756414 0.07100509 0.06256849 0.05423403

MSCUKF 1.34300359 0.6057546 0.0653399 0.09725445 0.05541977
MJUKF 1.34300564 0.60575607 0.06533995 0.09725453 0.05541978

Table 10: RMS errors from Asterix moving a figure eight.

65

t [s]
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

u
 [

m
/s

]
UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

0 50 100 150 200 250 300 350 400
t [s]

−1.5

−1.0

−0.5

0.0

0.5

w
 [

ra
d
/s

]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 27: Simulation of Asterix turning to move into a straight path where the
pictures for VO measurements first arrive after the sharp turn. Velocities with re-
spect to time.

−15 −10 −5 0 5 10 15
x [m]

−25

−20

−15

−10

−5

0

5

y
 [

m
]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 28: Simulation of Asterix moving in a figure eight. In xy-coordinates.

66

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 29: Simulation of Asterix moving in a figure eight. Pose with respect to
time.

t [s]
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u
 [

m
/s

]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

0 50 100 150 200 250 300 350 400
t [s]

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

w
 [

ra
d
/s

]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 30: Simulation of Asterix moving in a figure eight. Velocities with respect
to time.

67

−15 −10 −5 0 5 10
x [m]

−10

−5

0

5

10

15

y
 [

m
]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 31: Simulation of Asterix moving in a circle. In xy-coordinates.

t [s]
−15

−10

−5

0

5

10

x
 [

m
]

t [s]
−10

−5

0

5

10

15

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−2
0
2
4
6
8

10
12
14

y
a
w

 [
ra

d
]

Figure 32: Simulation of Asterix moving in a circle. Pose with respect to time.

68

t [s]
−0.2

0.0

0.2

0.4

0.6

0.8

u
 [

m
/s

]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

0 50 100 150 200 250 300 350 400
t [s]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

w
 [

ra
d
/s

]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 33: Simulation of Asterix moving in a circle. Velocities with respect to
time.

x y ψ u ω
UKF 0.58564466 0.50873096 0.04312988 0.03452777 0.06666587

SCUKF 0.38142596 0.82124117 0.03975624 0.03396135 0.06651956
JUKF 0.38142293 0.82123973 0.03975627 0.03396135 0.06651956

MSCUKF 0.49389481 0.5538976 0.04152201 0.03434701 0.06665945
MJUKF 0.49389486 0.55389762 0.04152201 0.03434701 0.06665945

Table 11: RMS errors from Asterix moving in a circle. First measurement taken
after arriving on the circle.

69

4.2.2 Discussion: Localization Without GPS

Stochastic cloning and the joint method are practically equal in performance
when moving in a straight path. When turning, the masked versions outper-
form the smoothing filters. During straight motion, however, the heading es-
tiamtes are significantly better for the smoothing filters than for the others. In
general the heading and velocities were better estimated when using VO than
without, for all trajectories available. This is indicative of improved local accu-
racy.

In Fig.34, the first smoothed states of JUKF are shown for a simulation where
Asterix turns into the straight path with pictures taken from the start. We see
that neither x, y, nor ψ is correctly smoothed during the entirety of the turn.
Investigating the state covariance corresponding to the smoothed states x, y,
and ψ revealed that the masked filters had approximately the same covariance
associated with x and y as the smoothing filters. The covariance associated
with heading ψ in the smoothing filters was less than half of the covariance in
the masking filters. This suggests that the smoothing filter has assumed it is
more certain of the previous heading than it should have for optimal perfor-
mance. This has resulted in the filter falsely fusing the VO measurement from
the fast turn.

If the state covariance has converged too far and we have very low process
noise, the filter will see a rapid change in states as highly unlikely and almost
disregard the measurement. This sort of behavior can be seen affecting the
linear velocity estimations of JUKF and SCUKF in Fig.30, making the WO mea-
surements practically discarded while the velocity is only updated by the VO
measurement.

This suggests a potential trick for improving the following during turns. By
setting a lower threshold on the pose covariances, the VO measurements will
not reduce the current state covariance to the same degree. This is a practical
trick used to combat model inconsistencies which is present in many localiza-
tion tasks. Others have approached these model inconsistencies via nonlinear
optimization (Brekke and Chitre, 2014), or by reducing the number of model
approximations used as they may cause a false information gain (Huang et al.,
2010). In the investigations, the main culprit in turning issues was the state
covariance associated with yaw, therefore placing a lower threshold on the
smoothed yaw produced better results. This is slightly different from increas-
ing additive measurement covariance of VO.

In Fig.35, a simulation of Asterix performing a figure eight with covariance
threshold is given. It can be seen that after converging, the JUKF and SCUKF
with covariance threshold have significantly less drift than the masked filters
or the non-VO UKF. We see this from the path of UKF, MJUKF and MSCUKF
diverging from its previous estimate.

The same can be seen when moving in a circle, Fig.36. Without the VO the fil-
ter has diverged more than with the VO. There is also a marginal improvement
in the smoothing filters with covariance threshold over the masked filters.

70

t [s]

0.2
0.4
0.6
0.8
1.0
1.2

x
 [

m
]

t [s]

−1
0
1
2
3
4
5

y
 [

m
]

2 4 6 8 10 12 14
t [s]

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

y
a
w

 [
ra

d
]

Figure 34: Simulation of Asterix moving into a straight path, with focus on the
initial turn. The thick dark lines are estimates of the first smoothed state of JUKF.

−15 −10 −5 0 5 10 15
x [m]

−25

−20

−15

−10

−5

0

5

y
 [

m
]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 35: Simulation of Asterix moving in a figure eight with covariance thresh-
old. In xy-coordinates.

71

−10 −5 0 5 10
x [m]

−10

−5

0

5

10

y
 [

m
]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 36: Simulation of Asterix moving in a circle with covariance threshold. In
xy-coordinates.

72

4.2.3 Localization With GPS

With the GPS, the pose and velocities match quite accurately for all the filters.
Therefore, we only look at the RMS errors, and not the pose and velocity val-
ues themselves.

In Fig.37 Asterix turns into a straight path. RMS errors are given in Tab.12.

In Fig.38 the robot moves in a figure eight. RMS errors are given in Tab.13.

In Fig.39 the robot moves in a circle. RMS errors are given in Tab.14.

73

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x [m]

−20

0

20

40

60

80

100

y
 [

m
]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 37: Simulation of Asterix moving into a straight line with GPS enabled. In
xy-coordinates.

74

−15 −10 −5 0 5 10 15
x [m]

−25

−20

−15

−10

−5

0

5

y
 [

m
]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 38: Simulation of Asterix moving in a figure eight with GPS enabled. In
xy-coordinates.

x y ψ u ω
UKF 0.05791371 0.05651774 0.05615649 0.01280591 0.06193944

SCUKF 0.0533361 0.02332885 0.05156995 0.01198779 0.0618413
JUKF 0.05333616 0.02332892 0.05156996 0.01198779 0.0618413

MSCUKF 0.05575388 0.04412132 0.05417581 0.0124805 0.06190236
MJUKF 0.05575388 0.04412123 0.05417581 0.0124805 0.06190236

Table 12: RMS errors from Asterix moving into a straight path with GPS. First VO
measurement taken after arriving on the straight path.

x y ψ u ω
UKF 0.26660216 0.2407436 0.09886145 0.10119604 0.05892125

SCUKF 0.14126572 0.22154109 0.07746124 0.06177537 0.05518257
JUKF 0.14126897 0.22154985 0.07746164 0.06177533 0.05518258

MSCUKF 0.31016586 0.2533244 0.08682799 0.09597943 0.05706502
MJUKF 0.31016636 0.25332488 0.08682808 0.09597952 0.05706503

Table 13: RMS errors from Asterix moving in a figure eight with GPS.

75

−15 −10 −5 0 5 10
x [m]

−15

−10

−5

0

5

10

15

y
 [

m
]

UKF
SCUKF
MJUKF
ASTERIX
MSCUKF
JUKF

Figure 39: Simulation of Asterix moving in a circle with GPS enabled. In xy-
coordinates.

x y ψ u ω
UKF 0.08100364 0.16768807 0.07793271 0.04701396 0.07449521

SCUKF 0.53171966 0.4838474 0.16914433 0.04668859 0.07667171
JUKF 0.53173145 0.48386166 0.16914696 0.04668868 0.07667173

MSCUKF 0.08743931 0.14491779 0.07391027 0.0460379 0.07468705
MJUKF 0.08743941 0.14491795 0.07391034 0.04603792 0.07468706

Table 14: RMS errors from Asterix moving in a circle with GPS. First VO measure-
ment taken after arriving on the circle.

x y ψ u ω
UKF 0.0491472 0.0695823 0.04458652 0.03388542 0.06559486

SCUKF 0.0344218 0.06573378 0.03964613 0.03336424 0.06541137
JUKF 0.0344218 0.06573377 0.03964614 0.03336424 0.06541137

MSCUKF 0.04890236 0.06984123 0.04208915 0.0337513 0.06555642
MJUKF 0.04890236 0.06984123 0.04208915 0.0337513 0.06555642

Table 15: RMS errors from Asterix moving in a circle with GPS and yaw covari-
ance threshold. Threshold trick was only used on JUKF and SCUKF, masked filter
remain unchanged. First VO measurement taken after arriving on the circle.

76

4.2.4 Discussion: Localization With GPS

Under unmodeled motion, the masking filters perform better than the smooth-
ing filters. This can be seen in the simulations with the circle trajectory. With
the straight line and figure eight trajectories the smoothing filters perform bet-
ter than the masked filters. As seen in Tab.15, a smoothing filter with yaw co-
variance threshold performs better than a masked filter without yaw covari-
ance threshold.

Including the GPS does not manage to remove the error during the fast turn
in the beginning of the circle trajectory and the straight path trajectory. This
is partially a result of the tuning of the process noise. With the low process
noise needed for accurate pose estimate while moving in a straight path, the
filter will not be able to track the states during the fast turn. The VO measure-
ments will show a very different velocity than what the WO measurements
will. However, when using GPS, the filters are able to correct the error over
time.

4.2.5 Effect of VO Frequency

In this section, the delay from VO processing remains a constant 500 ms and
the camera’s fps is changed. The sensors enabled are WO, IMU and VO. The
figure eight trajectory was chosen for this as it varies in both x, y and ψ. The
system was simulated with M ={8,16,32,64,128,256}. This corresponds to a
camera with seconds delay between pictures of {0.4, 0.8, 1.6, 3.2, 6.4, 12.8}.

Note that the filtering strategies are capable of handling a delay greater than
the VO frequency.

In Fig.40 trajectories for the different simulations are given side by side. The
VO fusing UKF filters are stable for all simulations. For VO frequencies M > 64
the filters perform significant jumps resulting from the corrections associated
with the VO measurements.

Note that the noise affecting each simulation is from a different random seed
so behavior is captured, but comparing RMS values is not sufficiently represen-
tative.

77

M = 8 M = 16

M = 32 M = 64

M = 128 M = 256

Figure 40: Simulation of the asterix performing the figure eight movement with
various VO frequencies M . In xy-coordinates.

78

M = 8 M = 16

M = 32 M = 64

M = 128 M = 256

Figure 41: Simulation of Asterix performing the figure eight movement with vari-
ous VO frequencies M and yaw covariance threshold. In xy-coordinates.

79

4.2.6 Discussion: Effect of VO Frequency

We can see that there is a limit to the usefulness of VO measurements. If the
frequency is very low, the filter will not have managed to accurately main-
tain the cross-covariances and state covariances associated with the smoothed
states, this results in the basic UKF performing better than the rest.

We see that the masked filters are better at tackling the lower VO frequencies
than the smoothing filters. Furthermore, the covariance threshold technique
resulted in better performance than the simple masking filters. This can be
observed in Fig.41. This allowed the smoothing filters to be relevant for lower
VO frequencies, but there was a limit to how much this could help. A rough
estimate is to say that for the VO frequencies of M > 64, the corrections in
the smoothing filters caused jumps that could prove problematic if present in
Asterix.

80

4.3 Experimental Data

This section presents experimental data that was collected by Adigo for devel-
opment of the Asterix robot, and tests of the localization filter run on this data.
An artificial 500 ms delay was added to the VO measurements.

4.3.1 Datasets

For this thesis, two datasets were used. They will from here on be referred to
as dataset A and dataset B. Some traits of dataset A are given in Tab.16, and
some traits of dataset B are given in Tab.17.

Dataset A
Duration 30 min 43 s

GPS Frequency 21.0 Hz
IMU Frequency 19.8 Hz

Wheel Encoder Frequency 20.4 Hz
Pictures Processed 67

Table 16: Specifications of dataset A. Pictures processed are the number of pic-
tures for which VO was manually found.

Dataset B
Duration 24 min 9 s

GPS Frequency 18.5 Hz
IMU Frequency Not available

Wheel Encoder Frequency 20.4 Hz
Pictures Processed 89

Table 17: Specifications of dataset B. Pictures processed are the number of pic-
tures for which VO was manually found.

In Fig.43 the GPS East-North data from dataset A is given. We see that Asterix
moves down a row of crops and turns at the end. When Asterix is stopped for
a while, the GPS loses RTK fix and gives erratic measurements. This is shown
in 44. For this test we restrict attention to a subset when the robot is moving
straight down the row.

In Fig.45 the GPS East-North data from dataset B is given. Here Asterix moves
down a row of crops. In the beginning Asterix is standing still for a while, dur-
ing which the GPS again loses RTK fix and gives erratic measurements. This is
shown in Fig.46. For this test we restrict attention to a subset when the robot
is moving straight down the row.

The IMU was available in dataset A, but not available in dataset B. The Eu-
ler angles taken directly from the data are shown in Fig.42. The inital pitch is
180◦ and yaw is between 90◦ and 100◦. In the Fig.43 we see that the robot
is moving down the row at an angle between -90◦ and -100◦. The ROS driver

81

for CHR-UM6 has not converted the angles from NED to ENU. This conver-
sion is equivalent to switching pitch and roll, and inverting yaw. The IMU ap-
peared to have been installed upside down as the accelerometer reports -1 g
in its NED like I frame. This NED like I frame has angular rates in the opppo-
site direction of a ENU like I frame. The transformation between them is a 3D
rotation of 180◦ around Ix.

In Fig.47 an example of the pictures taken during dataset A is shown. The
crops are close to fully grown and often obfuscate the view of the camera.
There are many rocks in the soil that are larger than 3cm x 3cm. The tips of
these rocks and the bottom of the holes between them have shifted differently
than the even soil around them when comparing two pictures. If the features
chosen for the 2D VO displacement estimation are not on the same level, the
measurement will be affected by a 3D environment error. The subset of pic-
tures processed were from when the robot was performing a straight motion
along the row.

In Fig.48 an example of the pictures during dataset B is shown. The crops are
smaller, and placed consistently to the left side of the image. The soil has few
rocks larger than 1.5cm x 1.5cm and appears flat and even. The subset of pic-
tures processed were from when the robot was performing a straight motion
along the row. This suggests that the VO measurements estimated from this
dataset are likely more correct than dataset A. However, the crops take up
most of theleft part of the pictures and throw a shadow on the middle, making
the VO measurements more easily affected by errors caused lens distortions.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−200

−150

−100

−50

0

50

100

150

200

t [s]

A
n

g
le

 [
d

e
g

]

Roll

Pitch

Yaw

Figure 42: Roll, pitch and yaw as reported by the IMU for dataset A.

82

−20 −15 −10 −5 0 5
−120

−100

−80

−60

−40

−20

0

20

East [m]

N
o

rt
h

 [
m

]

Figure 43: GPS from dataset A.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
−5

−4

−3

−2

−1

0

1

East [m]

N
o

rt
h

 [
m

]

Figure 44: GPS losing RTK fix when standing still in dataset A.

83

−10 0 10 20 30 40 50 60
−60

−50

−40

−30

−20

−10

0

10

East [m]

N
o

rt
h

 [
m

]

Figure 45: GPS from dataset B.

−1 −0.5 0 0.5 1 1.5 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

East [m]

N
o

rt
h

 [
m

]

Figure 46: GPS losing RTK fix when standing still in dataset B.

84

Figure 47: Example of the pictures from dataset A.

85

Figure 48: Example of the pictures from dataset B.

86

4.3.2 Localization with Dataset A

In this scenario the EKF and UKF are run without VO measurements and per-
form practically the same. SCEKF, SCUKF, JEKF, and JUKF fuse VO measure-
ments and also behave approximately the same. The robot is moving slowly
and steadily enough for the filters to have almost overlapping estimates. We
first note that if GPS is considered extremely accurate (order of 10−5 in mea-
surement noise covariance), we can observe oscillations in the position esti-
mate (see Fig.49).

In Fig.50 we have ignored the GPS measurements to investigate the effect of
the VO measurements. From inspection VO measurements themselves, it is
apparent that the technique has overestimated sideways motion. In this case
it has been consistently half a centimeter to the right relative the ROS-BODY
frame for quite some time. When there is no GPS measurements, this error
causes a gradual drift in position as the filter has assumed VO measurements
to be highly accurate (RV O in the order of 10−5).

In Fig.52 the localization filter was run up to the same point, but now with
GPS measurements available. The drift from the VO measurements are still
present in the filters, and affects the smoothing filters more than the masked
filters.

87

Figure 49: Oscillations resulting from the GPS measurements. This is only pre-
sented with the smoothing filters and the VO ignoring filters.88

Figure 50: Localization of dataset A without GPS, emphasizing the bias error in
the VO measurements.

89

Figure 51: Localization of dataset A without GPS, zoomed in to show the overlap
of the images.

90

Figure 52: Localization with dataset A with GPS, emphasizing the VO bias having
less of an effect when the GPS is available.

91

Figure 53: Localization with dataset A with GPS enabled, zoomed in to show the
overlap of the images.

92

4.3.3 Discussion: Localization with Dataset A

The oscillations observed in the GPS measurement are in the order of centime-
ters. This could adversely affect the spraying mechanism if not handled ap-
propriately. In this dataset a person was following the prototype, controlling
it manually to follow the row. If the person had to perform continuous correc-
tions in heading, and the GPS was placed offset from the center of rotation,
a lever arm effect may be the culprit. The lever arm effect would have to be
compensated for when gathering the GPS data if subcentimeter precision is de-
sired. If the oscillations are in the actual data, this is neither apparent in the
IMU nor the VO measurements.

To counteract the oscillations, the GPS measurements were considered less
useful than they potentially could be, this was done by increasing the noise
covariance RGPS to an order of 10−2. The oscillations still affect the filter but
increasing the covariance further will result in the filter practically ignoring
the GPS measurements.

The errors observed in the VO measurements are problematic, they indicate
that the manual feature search method did not work as well as expected. Horn’s
method does not account for potential curvature of the lens or height disparity
in the features. The error these introduce can be reduced by increasing the
noise covariance associated with the VO measurements, but doing so would
make the effect of VO measurements on the filters unnoticeable. As this the-
sis attempts to evaluate the methods for future implementations, highlighting
such effects is of the essence.

When comparing Fig.51 and Fig.53 it is apparent that including GPS measure-
ments has not improved our overlap significantly. This can be observed con-
sistently for all places we have images overlapping. As such, it is likely that
our image sizes are slightly off. The error in overlap is equivalent to the er-
ror in our picture sizes being wrong by approximately 0.5 cm in both width
and height. Such a size difference is small enough that the curvature of the
lens in combination with unaccounted for 3D effects may also be the culprit.
We see that the quality of the image closer to the edges is lower than near the
center, implying that the curvature of the lens is affecting the image. Without
further testing of Asterix moving over a known surface with known distances,
the source of the error cannot be exactly determined.

4.3.4 Localization with Dataset B

In Fig.54 the GPS measurement has allowed us to estimate the heading with-
out the need for an IMU. However, without it, the smoothing filter has not
readjusted the position of the previous picture enough to align them accu-
rately. In this dataset as well, the VO measurements are affected by the same
errors.

In Fig.55 the GPS measurements were ignored. The errors caused by the false

93

VO measurements are more prominent in this particular part of the trajectory.
The tracking using only wheel encoders, segments between pictures, appear
better than with the erratic VO measurements. The lack of IMU and GPS has
caused significant drift for all the delay fusing filters.

Figure 54: Localization of dataset B with GPS, emphasizing the convergence in
heading.

94

Figure 55: Localization of dataset B without GPS, emphasizing the error caused
by false VO measurements.

4.3.5 Discussion: Localization with Dataset B

With GPS and VO available, the localization filters were able to reconstruct
the heading even though there were no IMU measurements available. For this
dataset, the VO measurements were also affected by unmodelled effects. The
surface appears flat and even, but the features can only be chosen off-center to
the right. This suggests that the curvature of the lens is the major contributor
to the error.

When simulated without an IMU and ignoring the GPS, the errors from the
VO measurements became cumulative. This means that measurements may
be weighted incorrectly after only a short period of time. And without signifi-
cant devaluing of the VO measurements compared to the previous dataset, the
errors have a greater effect on the localization procedure.

4.3.6 Picture Frame Tracking

The multiple-point smoother framework is capable of tracking a set of picture
centerpoints with respect to the current state of the system. This allows Asterix

95

to maintain an estimate of the position of the pictures relative to its current
position. If the spray nozzle are situated a distance away from camera module,
the oldest states in the filters need only be marginalized after they are further
away than the spray nozzles. From a practical perspective, this requires more
bookkeeping on the control flow as the VO measurement will not be related to
the oldest smoothed state, but to a specific smoothed state.

In Fig.56 we have set the VO delay to be 10 s, this causes us to have 7 tracked
states that are smoothed. We are observing the behavior of the JUKF filter.
This is an example of the picture frame tracking behavior. In the picture we
can see that the smoothing filters have placed the picture frames (POI) away
from the previous state estimate (purple line). It has done this as: the GPS
measurement oscillates slightly, the IMU has reported a straight heading dur-
ing these oscillations, and there is a minor bias in the heading estimate com-
pared to the GPS direction that has not been removed. It is also apparent that
even with a 10 s delay, no instability is introduced to the system from the VO
measurements. They have merely become much lower weighted in the estima-
tion of the current state.

96

Figure 56: Localization in dataset A using GPS and a delay of 10 s. This was to
emphasize the picture frame tracking capabilities of the multiple-point smoother.

97

5 Epilogue

5.1 Discussion

There is a limit to how much a downward facing monocular camera can con-
tribute. Monocular cameras have to rely on many assumptions that are not
necessarily true for real life scenarios. In dataset A, the rocks were large enough
to negatively affect the VO measurements even when chosen manually. With
binocular vision, the robot would be able to know more about the surface
height of the terrain and could, at least theoretically achieve significantly bet-
ter displacement measurements. An alternative is to increase the framerate of
the camera, and track the features movements in the filter. This would allow
one to infer their height by their relative motion to each other, and a higher
precision would be possible.

For a robot moving at a constant velocity down a straight path, any VO mea-
surements is approximately equal to any other. This means that it was difficult
to evaluate whether the artificial delay had any positive or negative effect on
the fusion. There were no observed ill effects for a delay of up to 3 s.

Displacement measurements related to a local previous frame can cause prob-
lems if not properly tuned. In the “Effects of VO Frequency” section it was
found that there is a limit to the how useful a VO measurement is. As the fre-
quency decreased, there came a point where the filter with VO measurement
no longer worked better than the filter only using WO and IMU.

The tuning of delay fusing VO filters is more difficult than normal filters. These
are intermittent measurements that have to have high accuracy to be useful.
With the chosen model the intermittent measurements can adversely affect the
state estimate. This was seen where the linear velocity converged to the point
where the WO measurements were not weighted high enough during the fig-
ure eight movement and only the VO measurements were used for evaluating
the velocity.

The joint method is a more generalized form of the SC method, with a clear
Bayesian basis. This will allow the joint method to be incorporated into more
complex scenarios than the SC method. Regarding this specific scenario, the
joint method implementation performed slightly worse than the SC implemen-
tation. With very low process noise, numerical issues appear in Cholesky fac-
torization and matrix multiplication. As it is implemented in this thesis, the
joint method performs more of these steps than stochastic cloning and will
therefore be more affected by numerical issues. In terms of runtime, the SC
implementation is faster than the joint method. This comes from the joint
method performing more Cholesky factorizations in the extend step than SC
does in the predict step. In the theory section it was shown that the issue with
stochastic cloning that arises when approximating a joint distribution of the
current state and the current state will not become a significant issue. In prac-

98

tice SC is an acceptable method. However, for further theoretical development
of OOSM techniques, the basis that the joint method gives is more useful.

The benefits of smoothing the lagged states depends on how well the model
represents reality. The model used in this thesis required a slow moving system
to smooth the lagged states correctly. For faster moving systems, with discrep-
ancies betwe estimation and reality, masking appears to increase robustness.
Masking will, however, adversely affect the estimation when the model in the
filter accurately represents the system. As was seen for the straight line motion
where the pictures were taken after the turn.

Angular differences can become an issue with 2D localization filters. Angles
close to ±π can cause difficulties unless properly accounted for. It can be re-
solved by comparing the values on the interval 0 to 2π and changing the direc-
tion depending on whether the subtrahend is greater than or lesser than the
minuend.

A possible objection to using VO measurements as they are described in this
thesis is because they cause small discrete jumps in position and heading.
These discrete jumps are an issue in applications where local accuracy is of the
essence, and is an argument for ignoring GPS measurements that will cause
distinct jumps in position. A GPS will cause the position estimate to jump a
distance from its current location. This happens for all measurements directly
observing position. In the case of Asterix, if the camera is located the same
distance above ground as in this case, for at least 50% overlap the robot will
have moved 10 cm between each image. At such distances, without GPS mea-
surements, a 5◦ estimation error will result in 1 cm offset in the position es-
timate between one image and the next. With more reliable feature identifi-
cation techniques, the VO measurement will be able to counteract such an er-
ror. And if the spray nozzles are located further back than the latest picture, a
smoothing filter will be able to track multiple pictures back in time and adjust
the pictures according to the most recent measurements.

99

5.2 Future Work

For the construction of Asterix, further development of the feature identifica-
tion methods are necessary. OpenCV provides tools such as SURF, ORB and
other feature identification methods that may prove useful in this. With the
techniques described in this thesis, the feature identification should focus on
accuracy more than efficiency. In the manual feature identification the single-
channel grayscale images proved most useful.

Adopting the delay fusion methods to error-state Kalman filter (ESKF) may
give better results. One of the issues encountered was in the underlying model.
Error-state Kalman filters are practical in localization tasks as they are gener-
ally less sensitive to the knowledge of the underlying robot motion(Groves,
2013, pp.661-663). Following the Bayesian derivation of OOSM techniques in
this thesis with an ESKF as the underlying approach should be possible. Such
a localization filter would be general enough to be applied on a variety of plat-
forms with similar sensors available (Roumeliotis et al., 1999). Development
in that area can greatly benefit Adigo in the long run.

One of the ideas that had to be discontinued due to lack of time was to eval-
uate the methods on particle filters. As the methods were derived from prob-
ability distributions, they should prove useful in OOSM fusion with particle
filters. In this area it is likely that stochastic cloning performs worse than the
joint method as stochastic cloning is an approximation technique useful for
filters described in terms of means and covariances. A major difficulty for par-
ticle filters lies in marginalization. This is a costly process, and investigation
into how to do this in an efficient, optimal manner may yield interesting re-
sults.

It was observed that delayed measurements were not always useful. Further
analysis of the limitations of the delay fusion techniques will be necessary to
create a more rigorous understanding of them. The probabilisticFilters and
delayFusion modules created for this thesis can provide a basis for this investi-
gation. However, the results from the fast turn into the straight path revealed
that model inconsistency is an issue. It is therefore important to test with dif-
ferent underlying models. As the modules created in this thesis considered
undriven system models, patching of the modules to include an input u must
be done if they are to be used in that regard.

High-precision agriculture requires high-precision evaluation of the filter. In
order to properly evaluate the localization filter on the actual robot platform,
one needs more testing in a controlled environment. One way of doing this is
to print out a centimeter grid over which the robot moves and takes pictures.
If placed on a flat parking lot the images will give the accurate VO measure-
ments necessary to evaluate how artificial delay affects the localization. Dis-
crepancies caused by errors in the cross-covariance and smoothed state will be
easily identifiable in the grid between two pictures not aligning properly. The
centimeter grid may also reveal whether it is lens distortion, errors in the im-
age size, or height disparity of the features that was the cause of the problems

100

with the VO measurements.

Robust methods of handling erratic sensor readings is also necessary if the GPS
and IMU used on the prototype is to be used further down the line. The RTK
fix appeared to be dependent on whether the robot was in motion or not. This
suggests a simple method of handling the RTK fix problem: if the estimated
velocity is below a certain threshold, the GPS measurements can be discarded.

The picture frame tracking described in the Results chapter suggests a method
by which one can fuse VO measurements even when the VO measurements
do not arrive in a first-in-first-out queue as was the case for our system. This
requires keeping track of which lagged states are associated with which VO
measurements, and whether there still are VO measurements to be processed
that are dependent on the tracked states. This is a scenario where the mea-
surements are truly out of sequence. Theoretically, the framework described in
this thesis, with the bookkeeping suggested in this paragraph, should solve this
problem, but further testing is necessary for experimental validation.

By approaching the situation with a SLAM mentality, the 3D effects negatively
affecting the VO measurements can be counteracted. If the image rate is in-
creased, a filter may be designed that tracks individual features. The rela-
tive motion of these features can be used to recreate the motion of the robot
in 6DOF, allowing us to account for the scaling effect that height differences
cause, and arrive at more accurate VO measurements. The surfaces observed
in the datasets have sufficient features to be tracked, the issue lies in correctly
identifying them in a 3D environment, and removing potential lens distor-
tions.

101

5.3 Conclusion

Fusion of OOSMs were approached from a Bayesian point of view. This pro-
vided an improved understanding of stochastic cloning as a method, and led
to the joint method described in this thesis. A byproduct of this investigation
was the unscented multiple-point smoother. This filtering technique may prove
useful in other tasks where smoothing has to be performed on-demand.

VO for the Asterix robot was discussed with measurements from a monocular
downward facing camera. Warm-start of the feature search proved helpful in
the manual feature search and will undoubtedly prove useful in the final im-
plementation. The underlying delay fusing filter methods provide estimates of
the lagged state which can be used to reduce the search space drastically per
feature.

The implementations proved useful in investigating how to tune the filters. An
unorthodox trick was applied that can help future uses of the techniques inves-
tigated in this thesis. The trick of placing a lower threshold on the smoothed
state covariance was proposed as an alternative to masking the smoothed
states. This helped combating filter inconsistency during turns.

The localization filters with delayed VO measurements worked on the datasets
given. The precision was not as high as desired as the VO measurements were
dissatisfactory. The delay fusion techniques outlined in this thesis, will be able
to help against skidding in the wheels, maintaining accurate position estimates
when standing still, and keeping an estimate of where the previous picture
was taken compared to the current state of the robot. For the experimental
data, it was possible to localize Asterix at an accuracy of approximately 3 cm
when disregarding the erratic VO measurements. For the purpose of weed con-
trol, higher precision is needed than can be provided with the available IMU,
wheel encoder and GPS unit. Without 6DOF pose estimation or 3D feature
tracking, it is questionable whether sufficient accuracy is possible.

102

5 References
Arbo, M. H. (2014). Sensor Fusion with Out-of-Sequence Measurements: Lo-

calization in an Agricultural Robot. Final Project.

Bar-Shalom, Y. (2002). Update with out-of-sequence measurements in track-
ing: Exact solution. IEEE Transactions on Aerospace and Electronic Systems,
38.

Bar-Shalom, Y. and Li, X.-R. (1996). Multitarget-multisensor tracking: Princi-
ples and techniques. Yaakov Bar-Shalom, 1st edition.

Brekke, E. and Chitre, M. (2014). A multi-hypothesis solution to data associa-
tion for the two-frame SLAM problem. The International Journal of Robotics
Research, 34.

Brown, R. G. and Hwang, P. Y. (2012). Introduction to Random Signals and
Applied Kalman Filtering. John Wiley & Sons, Inc., 4th edition.

Challa, S., Evans, R. J., and Wang, X. (2003). A Bayesian solution and its ap-
proximations to out-of-sequence measurement problems. Information Fu-
sion, 4.

Challa, S., Evans, R. J., Wang, X., and Legg, J. (2002). A fixed-lag smoothing
solution to out-of-sequence information fusion problems. Communications in
Information and Systems, 2.

De La Cruz, C. and Carelli, R. (2006). Dynamic Modeling and Centralized For-
mation Control of Mobile Robots. In IECON 2006 - 32nd Annual Conference
on IEEE Industrial Electronics, pages 3880–3885.

FAO (2009). Global agriculture towards 2050 The challenge. Technical report,
Food and Agriculture Organization of the United Nations.

Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). SVO: Fast semi-direct
monocular visual odometry. In Proceedings of the 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 15–22.

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion
Control. John Wiley and Sons.

Gavrilets, V. (2003). Autonomous Aerobatic Maneuvering of Miniature Heli-
copters. PhD thesis, Massachusetts Institute of Technology.

Goldberg, S. B. and Matthies, L. (2011). Stereo and IMU assisted visual odom-
etry on an OMAP3530 for small robots. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops.

Grændsen, Ø. W. (2014). Automatic Visual Weed Recognition. Master thesis,
Norwegian University of Science and Technology.

Groves, P. D. (2013). Principles of GNSS, inertial, and multisensor integrated
navigation systems. Artech House, Inc., Boston, 2nd edition.

103

Haykin, S. S. (2001). Kalman filtering and neural networks, volume 5. John
Wiley & Sons, Inc., New York.

Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America, 4.

Huang, G. P., Mourikis, A. I., and Roumeliotis, S. I. (2010). Observability-
based rules for designing consistent EKF SLAM estimators. The international
Journal of Robotics Research, 29.

Julier, S. J. (1998). A Skewed Approach to Filtering. In SPIE Proceedings Signal
and Data Processing of Small Targets, volume 3373.

Julier, S. J. and Uhlmann, J. K. (2002). Reduced Sigma Point Filters for the
Propagation of Means and Covariances Through Nonlinear Transformations.
In Proceedings of the 2002 American Control Conference.

Kalman, R. (1960). A new approach to linear filtering and prediction prob-
lems. Journal of Basic Engineering.

Kandepu, R., Foss, B., and Imsland, L. (2008). Applying the unscented Kalman
filter for nonlinear state estimation. Journal of Process Control, 18.

Klungerbo, A. T. (2013). Drop-on-Demand i Presisjonsjordbruk. Master thesis,
Norwegian University of Science and Technology.

Larsen, T. D. and Poulsen, N. K. (1998). Incorporation of Time Delayed Mea-
surements in a Discrete-Time Kalman Filter. In Proceedings of the 37th IEEE
Conference on Decision and Control, number 4.

Mahler, R. P. S. (2007). Statistical Multisource-Multitarget Information Fusion.
Artech House, Inc., Norwood, MA, USA.

Maimone, M. and Matthies, L. (2005). Visual Odometry on the Mars Explo-
ration Rovers. 2005 IEEE International Conference on Systems, Man and Cy-
bernetics, 1.

Mammarella, M., Campa, G., Fravolini, M. L., and Napolitano, M. R. (2012).
Comparing Optical Flow Algorithms Using 6-DOF Motion of Real-World
Rigid Objects. IEEE Transactions on Systems, Man, and Cybernetics, 42.

Martins, F. (2015). Velocity-based dynamic model and
adaptive controller for diffential steered mobile robot.
http://www.mathworks.com/matlabcentral/fileexchange/44850-velocity-
based-dynamic-model-and-adaptive-controller-for-differential-steered-
mobile-robot.

Merwe, R. V. D. (2004). Sigma-point Kalman filters for probabilistic inference in
dynamic state-space models. PhD thesis, OGI School of Science and Engineer-
ing.

Merwe, R. V. D. and Wan, E. (2004). Sigma-point Kalman filters for integrated
navigation. In Proceedings of the 60th Annual Meeting of The Institute of Nav-
igation.

104

Mourikis, A. I. and Roumeliotis, S. I. (2007). SC-KF mobile robot localiza-
tion: a stochastic cloning Kalman filter for processing relative-state measure-
ments. IEEE Transactions on Robotics, 23.

Mourikis, A. L. and Roumeliotis, S. (2006). On the treatment of relative-pose
measurements for mobile robot localization. In Proceedings of the 2006 IEEE
International Conference on Robotics and Automation, pages 2277–2284.

Newcombe, R. a., Lovegrove, S. J., and Davison, A. J. (2011). DTAM: Dense
tracking and mapping in real-time. In 2011 International Conference on Com-
puter Vision, pages 2320–2327.

Nister, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry. Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 1.

Perea, L., How, J., Breger, L., and Elosegui, P. (2007). Nonlinearity in sensor
fusion: Divergence issues in EKF, modified truncated SOF, and UKF. In Pro-
ceedings of AIAA Guidance, Navigation and Control Conference.

Roumeliotis, S. and Burdick, J. (2002). Stochastic cloning: a generalized
framework for processing relative state measurements. In Proceedings of the
2002 IEEE International Conference on Robotics and Automation, volume 2,
pages 1788–1795.

Roumeliotis, S., Sukhatme, G., and Bekey, G. (1999). Circumventing dynamic
modeling: evaluation of the error-state Kalman filter applied to mobile robot
localization. In Proceedings of the 1999 IEEE International Conference on
Robotics and Automation, volume 2, pages 10–15.

Salmond, D. J. (1989). Tracking in Uncertain Environments. Technical report,
Royal Aerospace Establishment, Farnborough.

Thrun, S. (2002). Probabilistic robotics. The MIT Press.

Tuan Pham, D., Verron, J., and Roubaud, M. C. (1998). A singular evolutive
extended Kalman filter for data assimilation in oceanography. Journal of
Marine Systems, 16.

Urdal, F. (2013). Design of a Precision Spray Matrix. Master thesis, Norwegian
University of Science and Technology.

Utstumo, T. (2011). Attitude Estimation in Agricultural Robotics: Design and
Implementation. Master’s thesis.

van Lint, H. (2008). Dual EKF State and Parameter Estimation in Multi-Class
First-Order Traffic Flow Models. In Proceedings of the 17th World Congress of
the International Federation of Automatic Control, pages 14078–14083.

Vik, B. (2014). Integrated Satellite and Inertial Navigation Systems. Department
of Engineering Cybernetics, Norwegian University of Science and Technol-
ogy.

105

A Appendix
A.1 Bayes Filter Derivation

Consider the hidden Markov model of Fig.1, with first order Markov assump-
tion, the sensor Markov assumption and stationary processes. As shown in the
theory chapter, the joint probability distribution for a sequence of configura-
tions x is given by (2.3), let us look at one step in this sequence.

p(x0,x1, z1) = p(x0)p(z1|x1)p(x1|x0)

by the marginal probability property:

p(x1, z1) =

∫
x0

p(x0)p(z1|x1)p(x1|x0)dx0 (A.1)

Bayes theorem states that our desired probability distribution p(x1|z1) is given
by:

p(x1|z1) =
p(x1, z1)

p(z1)

Then the equation (A.1) can be used to form:

p(x1|z1) =

p(z1|x1)

∫
x0

p(x0)p(x1|x0)dx0

p(z1)

And that leaves us with the desired probability distribution. We see that given
any initial distribution p(x0|z0), we can arrive at any p(xk|z0:k), given the se-
quence of observations z0:k, transition model p(xk+1|xk), and sensor model
p(zk|xk). In the Bayes filter formulation, this process has been split into two
steps: predict and update.

The prediction step estimates the next probability distribution with observa-
tions up to and including the previous step. This is referred to as an a priori
probability distribution. The predict step is given by:

p(xk+1|z0:k) = p(xk+1|xk)p(xk|z0:k) (A.2)

The update step adjusts the estimate of the probability distribution by using
the latest measurement zk+1 and the sensor model. This is referred to as an a
posteriori probability distribution. The update step is given by:

106

p(xk+1|z0:k+1) =
p(zk+1|xk+1)p(xk+1|z0:k)

p(zk+1|z0:k)
(A.3)

The Bayes filter equations are the essential tools for probabilistic sensor fu-
sion.

107

A.2 Kalman gain derivation

The following is a brief derivation of the kalman filter gain. We have a system:

xk+1 = f(xk,wk)

zk = h(xk,vk)
(A.4)

where wk is process noise and vk is measurement noise, f is the transition
function, and h is the measurement function.

We will approach this with the assumption that the best estimate of a state
given a measurement is the prediction plus a linear combination of the mea-
surement residual. See Kalman (1960). Meaning that we are seeking the best
linear unbiased estimator (BLUE). This is described by some Kk according to:

x̂k|k = x̂k|k−1 +Kk(zk − ẑk) (A.5)

with
x̂k|k−1 = E (f(xk−1,wk)) ẑk = E (h(x̂k−1,vk)) (A.6)

If one defines the measurement residual as

z̃k = zk − ẑk (A.7)

The state estimation error is the difference in reality and our estimation, given
as:

x̃k = xk − x̂k|k (A.8)

x̃k = xk − x̂k|k−1 −Kkz̃k (A.9)

For easier notation, we also define the prediction error:

s̃k = x̂k − x̂k|k−1 (A.10)

Then define the matrix Pk|k to be the covariance of the state error (also re-
ferred to as state covariance):

Pk|k , E
(

(x̃k − E(x̃k))(x̃k − E(x̃k))T
)

(A.11)

by inserting our assumption (A.5) and our definition of prediction error (A.10)
into our state covariance, we get:

Pk|k = E
(

(s̃k −Kkz̃k − E(s̃k −Kkz̃k))(s̃k −Kkz̃k − E(s̃k −Kkz̃k))T
)

Pk|k = E
(

(s̃k − E(s̃k))(s̃k − E(s̃k))T
)
− E

(
(s̃k − E(s̃k))(z̃k − E(z̃k))T

)
KT
k

−KkE
(

(z̃k − E(z̃k))(s̃k − E(s̃k))T
)

+KkE
(

(z̃k − E(z̃k))(z̃k − E(z̃k))T
)
KT
k

108

To reduce clutter, we define the prediction error covariance Pk|k−1, the prediction-
observation covariance Nk and observation residual covariance (often called
innovation residual) Sk:

Pk|k−1 = E
(

(s̃k − E(s̃k))(s̃k − E(s̃k))T
)

Nk = E
(

(s̃k − E(s̃k))(z̃k − E(z̃k))T
)

Sk = E
(

(z̃k − E(z̃k))(z̃k − E(z̃k))T
) (A.12)

This gives us a shorter expression for the covariance of the state error (A.11):

Pk = Pk|k−1 −NkKT
k −KkN

T
k +KkSkK

T
k

The optimal Kalman gain Kk attempts to minimize the mean square error
of the state estimate. Given that we have formed unbiased estimates of the
predicted state, a method of doing so would be to minimize the trace of Pk
with respect to Kk. As Pk is the outer product of the state estimation error,
the trace is representative of the inner product of the state estimation error.
Minimizing the inner product of the state estimation error is to minimize the
Euclidean distance of the state estimation error vector.

∂trace(Pk)

∂Kk
= −2Nk + 2KkSK = 0

The optimal Kalman gain is then:

Kk = NkS
−1
k (A.13)

The key here is noting that the optimal Kalman gain is defined separately from
how the expectations (A.6) and covariances (A.12) are evaluated. This means
that they can be evaluated by linearized versions of the transition function and
measurement function, by unscented transformations, or other means. It also
shows that the process and measurement noise does not have to be additive
Gaussian for the Kalman gain to work.

109

A.3 Sigma-Point Selection

Sigma-points have to be selected according to a condition g to ensure that the
desired information is captured (Julier, 1998). In this thesis, we described the
same condition as Julier and Uhlmann (2002):

g(X , w, p(x)) =

∑2L+1
i=0 wi∑2L+1
i=0 wiXi∑2L+1

i=0 wi(Xi − E(x))(Xi − E(x))T

−
 1

E(x)
Var(x)

 = 0 (A.14)

With sigma-points chosen according to:

X0 = E(x)

Xj = E(x) +
√

(L+ λ)Var(x)i

Xk = E(x)−
√

(L+ λ)Var(x)i
w0 = λ/(L+ λ)

wi = 1/2(L+ λ)

(A.15)

Where L is the dimension of the state vector x. We first look at the weights:

2L+1∑
i=0

wi =
λ

(L+ λ)
+

L

L+ λ
= 1 (A.16)

This means that the first part of the condition holds.

For the second part of the condition, evaluating expectation, we insert sigma-
points according to the selection scheme (A.15):

2L+1∑
i=0

wiXi = w0E(x) +

L∑
i=1

wi

(
E(x) +

√
(L+ λ)Var(x)i

)
+

2L+1∑
j=L+1

wj

(
E(x)−

√
(L+ λ)Var(x)j−L

)

= E(x)

2L+1∑
i=0

wi = E(x)

(A.17)

This means that the second part of the condition holds given that the first con-
dition holds.

For the third part, evaluating variance, we insert sigma-points and the weights

110

according to the selection scheme (A.15):

2L+1∑
i=0

wi(Xi − E(x))(Xi − E(x)) =

L∑
i=1

1

2(L+ λ)
(
√

(L+ λ)Var(x)i)(
√

(L+ λ)Var(x)i)
T

+

2L+1∑
j=L+1

1

2(L+ λ)
(
√

(L+ λ)Var(x)j)(
√

(L+ λ)Var(x)j)
T

=
1

2
Var(x) +

1

2
Var(x) = Var(x)

(A.18)

This means that the third part of the condition holds.

Hence for the sigma-point selection scheme (A.15), the condition g holds. This
means that if the condition g is sufficient to capture the expectation and vari-
ance of the random variable in terms of sigma-points (which it is according to
Julier and Uhlmann 2002) , the sigma-point selection scheme (A.15) is a valid
selection scheme for that condition.

111

A.4 Additional Graphs: Effect of VO Frequency

This section contains the pose with respect to time of the simulations inves-
tigating the effect of VO frequency, both with and without yaw covariance
threshold.

t [s]
−10

−5

0

5

10

15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 57: Simulation of Asterix performing the figure eight movement with VO
frequency M = 8 and VO delay N = 10. Pose with respect to time.

112

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 58: Simulation of Asterix performing the figure eight movement with VO
frequency M = 16 and VO delay N = 10. Pose with respect to time.

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 59: Simulation of Asterix performing the figure eight movement with VO
frequency M = 32 and VO delay N = 10. Pose with respect to time.

113

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 60: Simulation of Asterix performing the figure eight movement with VO
frequency M = 64 and VO delay N = 10. Pose with respect to time.

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 61: Simulation of Asterix performing the figure eight movement with VO
frequency M = 128 and VO delay N = 10. Pose with respect to time.

114

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 62: Simulation of Asterix performing the figure eight movement with VO
frequency M = 256 and VO delay N = 10. Pose with respect to time.

115

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 63: Simulation of Asterix performing the figure eight movement with VO
frequency M = 8, VO delay N = 10, and yaw covariance threshold. Pose with
respect to time.

116

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 64: Simulation of Asterix performing the figure eight movement with VO
frequency M = 16, VO delay N = 10, and yaw covariance threshold. Pose with
respect to time.

117

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 65: Simulation of Asterix performing the figure eight movement with VO
frequency M = 32, VO delay N = 10, and yaw covariance threshold. Pose with
respect to time.

118

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 66: Simulation of Asterix performing the figure eight movement with VO
frequency M = 64, VO delay N = 10, and yaw covariance threshold. Pose with
respect to time.

119

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 67: Simulation of Asterix performing the figure eight movement with VO
frequency M = 128, VO delay N = 10, and yaw covariance threshold. Pose with
respect to time.

120

t [s]
−15
−10

−5
0
5

10
15

x
 [

m
]

t [s]
−25
−20
−15
−10

−5
0
5

y
 [

m
]

0 50 100 150 200 250 300 350 400
t [s]

−3
−2
−1

0
1
2
3

y
a
w

 [
ra

d
]

Figure 68: Simulation of Asterix performing the figure eight movement with VO
frequency M = 256, VO delay N = 10, and yaw covariance threshold. Pose with
respect to time.

121

A.5 Modules

A.5.1 ProbabilisticFilters

1 import types
2 import numpy as np
3 import numpy.linalg as linalg
4 import random
5 import scipy.sparse
6
7 class Filter(object):
8 ’’’Generalized Filter class.’’’
9

10 def __init__(self , state_size = 2):
11 self.states = np.asmatrix(np.zeros((state_size , 1)

↪→))
12 self.I = np.asmatrix(np.identity(state_size))
13 self.state_size = state_size
14 def __print__(self):
15 return str(self.states)
16
17
18 class KalmanFilter(Filter):
19 ’’’Kalman filter. Todo: fix input.’’’
20 def setInitialDistribution(self , states ,

↪→ state_covariance):
21 self.states = states
22 self.state_covariance = state_covariance
23
24 def setTransitionModel(self , transition_matrix ,

↪→ input_matrix , transition_covariance):
25 self.transition_matrix = transition_matrix
26 self.input_matrix = input_matrix
27 self.input_size = input_matrix.shape [1]
28 self.transition_covariance = transition_covariance
29
30 def setMeasurementModel(self , measurement_matrix ,

↪→ measurement_covariance):
31 self.measurement_matrix = measurement_matrix
32 self.measurement_covariance =

↪→ measurement_covariance
33 self.measurement_size = measurement_matrix.shape [0]
34
35 def predict(self , transition_covariance=None):
36 if transition_covariance is None:
37 transition_covariance = self.

↪→ transition_covariance
38 self.states = self.transition_matrix*self.states
39 self.state_covariance = self.transition_matrix*self

↪→ .state_covariance*self.transition_matrix.T +
↪→ transition_covariance

40

122

41 def update(self , measurement , measurement_covariance=
↪→ None):

42 if measurement_covariance is None:
43 measurement_covariance = self.

↪→ measurement_covariance
44 residual = measurement - self.measurement_matrix*

↪→ self.states
45 residual_covariance = self.measurement_matrix*self.

↪→ state_covariance*self.measurement_matrix.T +
↪→ measurement_covariance

46 if not scipy.sparse.issparse(residual_covariance):
47 kalman_gain = (self.state_covariance*self.

↪→ measurement_matrix.T)*linalg.inv(
↪→ residual_covariance)

48 else:
49 kalman_gain = (self.state_covariance*self.

↪→ measurement_matrix.T)*scipy.sparse.
↪→ linalg.inv(residual_covariance)

50 self.states = self.states + kalman_gain*residual
51 KP = (np.identity(self.states.size) - kalman_gain*

↪→ self.measurement_matrix)
52 self.state_covariance = KP*self.state_covariance*KP

↪→ .T + kalman_gain*measurement_covariance*
↪→ kalman_gain.T

53 #Numerical stability hack
54 self.state_covariance = 0.5*(self.state_covariance.

↪→ T + self.state_covariance)
55
56 def iterate(self , measurement , transition_covariance=

↪→ None , measurement_covariance=None):
57 self.predict(transition_covariance)
58 self.update(measurement , measurement_covariance)
59
60
61 class ExtendedKalmanFilter(KalmanFilter):
62 ’’’Extended kalman filter. No support for input.’’’
63 def setTransitionModel(self , transition_function ,

↪→ transition_jacobian , transition_covariance):
64 self.transitionFunction = transition_function
65 self.transitionJacobian = transition_jacobian
66 self.transition_covariance = transition_covariance
67
68 def setMeasurementModel(self , measurement_function ,

↪→ measurement_jacobian , measurement_covariance):
69 self.measurementFunction = measurement_function
70 self.measurementJacobian = measurement_jacobian
71 self.measurement_covariance =

↪→ measurement_covariance
72
73 def predict(self , transition_covariance = None):
74 if transition_covariance is None:
75 transition_covariance = self.

↪→ transition_covariance
76 F = self.transitionJacobian(self.states)

123

77 self.states = self.transitionFunction(self.states)
78 self.state_covariance = F*self.state_covariance*F.T

↪→ + transition_covariance
79
80 def update(self ,measurement , measurement_covariance=

↪→ None):
81 if measurement_covariance is None:
82 measurement_covariance = self.

↪→ measurement_covariance
83 residual = measurement - self.measurementFunction(

↪→ self.states)
84 H = self.measurementJacobian(self.states)
85 residual_covariance = H*self.state_covariance*H.T +

↪→ measurement_covariance
86 if not scipy.sparse.issparse(residual_covariance):
87 kalman_gain = (self.state_covariance*H.T)*

↪→ linalg.inv(residual_covariance)
88 else:
89 kalman_gain = (self.state_covariance*H.T)*scipy

↪→ .sparse.linalg.inv(residual_covariance)
90 self.states = self.states + kalman_gain*residual
91 KP = (np.identity(self.states.size) - kalman_gain*

↪→ H)
92 self.state_covariance = KP*self.state_covariance*KP

↪→ .T + kalman_gain*measurement_covariance*
↪→ kalman_gain.T

93 #Numerical stability hack
94 self.state_covariance = 0.5*(self.state_covariance

↪→ + self.state_covariance.T)
95
96
97 class UnscentedKalmanFilter(KalmanFilter):
98 ’’’Unscented kalman filter. No support for input.’’’
99 def __init__(self , state_size = 2, alpha = 1e-3, kappa

↪→ = 0, beta = 2):
100 super(UnscentedKalmanFilter , self).__init__(

↪→ state_size)
101 self.alpha = alpha
102 self.kappa = kappa
103 self.beta = beta
104
105 def sigmaPoints(self , mean=None , covariance_matrix=None

↪→ , scaling_factor=None):
106 if mean is None:
107 mean = self.states
108 if covariance_matrix is None:
109 covariance_matrix = self.state_covariance
110 if scaling_factor is None:
111 scaling_factor = self.scaling_factor
112 root_matrix = np.sqrt(scaling_factor)*linalg.

↪→ cholesky(covariance_matrix)
113 repeated_mean = np.repeat(mean , mean.size , axis =

↪→ 1)

124

114 sigma_points = np.concatenate((mean , repeated_mean
↪→ + root_matrix , repeated_mean - root_matrix)
↪→ , axis = 1)

115 return sigma_points
116
117 def unscentedTransform(self , transition_function=None ,

↪→ sigma_points=None , mean_weights=None ,
↪→ covariance_weights=None , additive_covariance=
↪→ None):

118 if transition_function is None:
119 transition_function = self.transitionFunction
120 if sigma_points is None:
121 sigma_points = self.sigmaPoints ()
122 if mean_weights is None:
123 mean_weights = self.mean_weights
124 if covariance_weights is None:
125 covariance_weights = self.covariance_weights
126 if additive_covariance is None:
127 additive_covariance = self.

↪→ transition_covariance
128 transformed_size = additive_covariance.shape [0]
129 sigma_size = sigma_points.shape [1]
130 sigma_points_t = np.asmatrix(np.zeros((

↪→ transformed_size , sigma_size)))
131 for i in xrange(sigma_size):
132 sigma_points_t [:,i] = transition_function(

↪→ sigma_points [:,i])
133 if mean_weights.shape [0] < mean_weights.shape [1]:
134 mean_t = sigma_points_t * mean_weights.T
135 else:
136 mean_t = sigma_points_t * mean_weights
137 transformed_deviation = sigma_points_t - np.repeat(

↪→ mean_t , sigma_size , axis = 1)
138 covariance_t = transformed_deviation*

↪→ covariance_weights*transformed_deviation.T +
↪→ additive_covariance

139 return (mean_t , covariance_t , sigma_points_t ,
↪→ transformed_deviation)

140
141 def setParameters(self , alpha = None , kappa = None ,

↪→ beta = None):
142 ’’’Set parameters of the unscented transformation.

↪→ Default values are for true distribution
↪→ being gaussian.’’’

143 if alpha is None:
144 alpha = self.alpha
145 if kappa is None:
146 kappa = self.kappa
147 if beta is None:
148 beta = self.beta
149 lam = alpha **2 * (self.states.size + kappa) - self.

↪→ states.size
150 self.scaling_factor = self.states.size + lam
151 mean_weight0 = [lam/self.scaling_factor]

125

152 mean_weightsi = [1/(2* self.scaling_factor) for i in
↪→ range (2* self.states.size)]

153 covariance_weight0 = [lam/self.scaling_factor + (1
↪→ - alpha **2 + beta)]

154 covariance_weightsi = [1/(2* self.scaling_factor)
↪→ for i in range (2* self.states.size)]

155 self.mean_weights = np.asmatrix(mean_weight0 +
↪→ mean_weightsi)

156 self.covariance_weights = np.asmatrix(np.diagflat(
↪→ covariance_weight0 + covariance_weightsi))

157
158 def setTransitionModel(self , transition_function ,

↪→ transition_covariance):
159 ’’’Transition function x_{k+1} = f(x_k) + w_k , w_k

↪→ ~ N(0, transition_covariance).’’’
160 self.transitionFunction = transition_function
161 self.transition_covariance = transition_covariance
162
163 def setMeasurementModel(self , measurement_function ,

↪→ measurement_covariance):
164 ’’’Measurement function z_k = h(x_k) + v_k , v_k ~ N

↪→ (0, measurement_covariance).’’’
165 self.measurementFunction = measurement_function
166 self.measurement_covariance =

↪→ measurement_covariance
167 self.measurement_size = measurement_covariance.

↪→ shape [0]
168
169 def predict(self ,transition_covariance=None):
170 if transition_covariance is None:
171 transition_covariance = self.

↪→ transition_covariance
172 if self.states.size is not int((self.mean_weights.

↪→ size -1)/2):
173 self.setParameters () #Someone changed state

↪→ size without updating parameters
174 utres = self.unscentedTransform(additive_covariance

↪→ = transition_covariance)
175 self.states = utres [0]
176 self.state_covariance = utres [1]
177
178 def update(self , measurement , measurement_covariance=

↪→ None):
179 if measurement_covariance is None:
180 measurement_covariance = self.

↪→ measurement_covariance
181 utres = self.unscentedTransform(transition_function

↪→ =self.measurementFunction ,
↪→ additive_covariance = measurement_covariance
↪→)

182 expected_measurement = utres [0]
183 measurement_sigma = utres [2]
184 measurement_deviation = utres [3]
185 residual = measurement - expected_measurement

126

186 residual_covariance = measurement_deviation*self.
↪→ covariance_weights*measurement_deviation.T +
↪→ measurement_covariance

187 state_deviation = self.sigmaPoints () - np.repeat(
↪→ self.states , measurement_sigma.shape [1],
↪→ axis = 1)

188 state_to_measurement_covariance = state_deviation*
↪→ self.covariance_weights*
↪→ measurement_deviation.T

189 if not scipy.sparse.issparse(residual_covariance):
190 kalman_gain = state_to_measurement_covariance*

↪→ linalg.inv(residual_covariance)
191 else:
192 kalman_gain = state_to_measurement_covariance*

↪→ scipy.sparse.linalg.inv(
↪→ residual_covariance)

193 self.states = self.states + kalman_gain*residual
194 self.state_covariance = self.state_covariance -

↪→ kalman_gain*residual_covariance*kalman_gain.
↪→ T

195 #Numerical stability hack
196 self.state_covariance = (self.state_covariance.T +

↪→ self.state_covariance)*0.5
197
198
199 class ParticleFilter(Filter):
200 ’’’Particle filter based on Thrun. Not at all efficient

↪→ , or useable for large scale systems.’’’
201 def __init__(self , state_size = 2, number_of_particles

↪→ =50):
202 super(ParticleFilter , self).__init__(state_size)
203 self.number_of_particles = number_of_particles
204 self.samples = np.asmatrix(np.zeros((state_size ,

↪→ number_of_particles)))
205 self.weights = [1/ number_of_particles]*

↪→ number_of_particles
206 self.getStates ()
207
208 def getStates(self):
209 self.states = np.mean(self.samples , axis = 1)
210
211 def generateWeights(self , measurement):
212 self.weights = [1/ self.number_of_particles] * self.

↪→ number_of_particles
213 for i in xrange(self.number_of_particles):
214 self.weights[i] = self.measurementFunction(self

↪→ .samples[:,i], measurement)
215
216 def resample(self , number_of_samples = None):
217 ’’’Sample particles based on the weights. Algorithm

↪→ taken from Thrun.’’’
218 if number_of_samples == None:
219 number_of_samples = self.number_of_particles
220 index = int(random.random () * number_of_samples)

127

221 max_weight = max(self.weights)
222 beta = 0.0
223 resampled_indices = []
224 for i in xrange(number_of_samples):
225 beta += random.random ()*2* max_weight
226 while beta > self.weights[index]:
227 beta -= self.weights[index]
228 index = (index + 1) % self.

↪→ number_of_particles
229 resampled_indices.append(index)
230 new_samples = np.asmatrix(np.zeros((self.

↪→ state_size , number_of_samples)))
231 for i, prev_index in enumerate(resampled_indices):
232 new_samples [:,i] = self.samples[:, prev_index]
233 self.samples = new_samples
234
235 def setInitialDistribution(self ,

↪→ initialization_function):
236 ’’’Initial sample distribution based on p(x_0)’’’
237 self.initializationFunction =

↪→ initialization_function
238 for i in xrange(self.number_of_particles):
239 self.samples[:,i] = self.initializationFunction

↪→ ()
240 self.getStates ()
241
242 def setTransitionModel(self , transition_function):
243 ’’’transition function based on p(x_{k+1} | x_k).

↪→ ’’’
244 self.transitionFunction = transition_function
245
246 def setMeasurementModel(self , measurement_function):
247 ’’’ measurement function based on p(z_k | x_k).’’’
248 self.measurementFunction = measurement_function
249
250 def predict(self):
251 for i in xrange(self.number_of_particles):
252 self.samples[:,i] = self.transitionFunction(

↪→ self.samples[:,i])
253
254 def update(self , measurement):
255 self.generateWeights(measurement)
256 self.resample ()
257
258 def iterate(self , measurement):
259 self.predict ()
260 self.update(measurement)
261 self.getStates ()
262
263 def maskedUpdate(self , measurement , measurement_covariance

↪→ = None):
264 ’’’Masked update equation , based on previous update.

↪→ Lower performance than the actual as of yet.’’’
265 old_states = self.states

128

266 old_state_covariance = self.state_covariance
267 self.update_pure(measurement , measurement_covariance)
268 self.states [:self.mask_size] = old_states [:self.

↪→ mask_size]
269 self.state_covariance [:self.mask_size , :self.mask_size]

↪→ = old_state_covariance [:self.mask_size , :self.
↪→ mask_size]

270
271 def CreateMasked(FilterClass , state_size = 2, mask_size =

↪→ 0):
272 ’’’Creates a masked version of a given filter. States [:

↪→ mask_size] remains the same.State covariance [:
↪→ mask_size] also remain the same.’’’

273 supported_filters = ["KalmanFilter","
↪→ ExtendedKalmanFilter", "UnscentedKalmanFilter"]

274 if FilterClass.__name__ not in supported_filters:
275 raise TypeError("Chosen filter not supported for

↪→ masking.")
276 masked_filter = FilterClass(state_size)
277 masked_filter.mask_size = mask_size
278 masked_filter.update_pure = masked_filter.update
279 masked_filter.update = types.MethodType(maskedUpdate ,

↪→ masked_filter)
280 return masked_filter

A.5.2 DelayFusion

1 import types
2 import numpy as np
3 from probabilistic_filters import *
4
5 def patchFilter(dfilter):
6 ’’’Patch the given filter with functions necessary for

↪→ OOSM fusion. Gives both SC and J methods.’’’
7 kalman_types = ["ExtendedKalmanFilter", "

↪→ UnscentedKalmanFilter", "KalmanFilter"]
8 supported_filters = kalman_types
9 filter_patch = { "KalmanFilter" : KFPatch ,

10 "ExtendedKalmanFilter" : EKFPatch ,
11 "UnscentedKalmanFilter" : UKFPatch}
12 filtername = dfilter.__class__.__name__
13
14 if filtername not in filter_patch.keys():
15 raise TypeError("Chosen filtertype is not supported

↪→ for delay_fusion. Supported filter classes
↪→ are:\n{}".format(supported_filters))

16
17 #patch appropriate filter with appropriate functions
18 filter_patch[filtername](dfilter)
19 return True
20
21 def KFPatch(kfilter):
22 kfilter.epsilon = 1e-10

129

23 kfilter.cloned_states = 0
24 kfilter.extend = types.MethodType(_extendKF , kfilter)
25 kfilter.clone = types.MethodType(_cloneKF , kfilter)
26 kfilter.marginalize = types.MethodType(_marginalizeKF ,

↪→ kfilter)
27
28 def EKFPatch(ekfilter):
29 ekfilter.epsilon = 1e-10
30 ekfilter.cloned_states = 0
31 ekfilter.extend = types.MethodType(_extendEKF , ekfilter

↪→)
32 ekfilter.clone = types.MethodType(_clone , ekfilter)
33 ekfilter.marginalize = types.MethodType(_marginalize ,

↪→ ekfilter)
34
35 def UKFPatch(ukfilter):
36 ukfilter.epsilon =1e-10
37 ukfilter.cloned_states = 0
38 ukfilter.extend = types.MethodType(_extendUKF , ukfilter

↪→)
39 ukfilter.clone = types.MethodType(_clone , ukfilter)
40 ukfilter.marginalize = types.MethodType(_marginalize ,

↪→ ukfilter)
41
42 def _clone(self):
43 state_size = self.state_size
44 cloned_states = self.cloned_states
45 self.states = np.vstack ((self.states , self.states[-

↪→ state_size :]))
46 state_cov_side = self.state_covariance [:,-state_size :]
47 self.transition_covariance = np.bmat ([[np.zeros((

↪→ state_size , state_size)), np.zeros((state_size
↪→ , state_size *(1 + cloned_states)))], [np.zeros(
↪→ (state_size *(1 + cloned_states), state_size))
↪→ , self.transition_covariance]])

48 self.state_covariance = np.bmat ([[self.state_covariance
↪→ , state_cov_side], [state_cov_side.T, self.
↪→ state_covariance[-state_size:,-state_size :] +
↪→ self.epsilon*self.I]]) #+ self.epsilon*np.
↪→ identity(state_size *(1+ cloned_states))

49 self.cloned_states += 1
50
51 def _marginalize(self):
52 state_size = self.state_size
53 if self.cloned_states > 0:
54 self.states = self.states[state_size :]
55 self.transition_covariance = self.

↪→ transition_covariance[state_size:,
↪→ state_size :]

56 self.state_covariance = self.state_covariance[
↪→ state_size:, state_size :]

57 self.cloned_states -= 1
58
59 def _extendKF(self):

130

60 state_size = self.state_size
61 cloned_states = self.cloned_states
62 self.states = np.vstack ((self.states , self.

↪→ transition_matrix*self.states[-state_size :]))
63 self.transition_covariance = np.bmat ([[np.zeros((

↪→ state_size , state_size)), np.zeros((state_size
↪→ , state_size *(1 + cloned_states)))], [np.zeros(
↪→ (state_size *(1 + cloned_states), state_size))
↪→ , self.transition_covariance]])

64
65 self.transition_matrix = np.bmat ([[self.I, np.zeros((

↪→ state_size , state_size *(1+ cloned_states)))], [
↪→ np.zeros((state_size *(1+ cloned_states),
↪→ state_size)), self.transition_matrix]])

66 state_cov_side = self.state_covariance [:, -state_size :]
67 self.state_covariance = np.bmat ([[self.

↪→ state_covariance , state_cov_side], [
↪→ state_cov_side.T, self.state_covariance[-
↪→ state_size:, -state_size :]]])

68 self.state_covariance = self.transition_matrix* self.
↪→ state_covariance * self.transition_matrix.T +
↪→ self.transition_covariance

69 self.cloned_states += 1
70
71 def _extendEKF(self):
72 self.epsilon = 0
73 self.clone()
74 self.predict ()
75
76 def _extendUKF(self):
77 self.setParameters ()
78 state_size = self.state_size
79 cloned_states = self.cloned_states
80 sigma_points = self.sigmaPoints ()
81 sigma_size = sigma_points.shape [1]
82 states = sigma_points*self.mean_weights.T
83 unscented_res = self.unscentedTransform ()
84 deviations = (sigma_points - np.repeat(states ,

↪→ sigma_size , axis = 1))
85 deviations_t = unscented_res [3]
86 temporary_covariance = deviations*self.

↪→ covariance_weights*deviations_t.T
87 state_cov_side = temporary_covariance [:,-state_size :]
88 covariance_t = unscented_res [1]
89 states_t = unscented_res [0]
90
91 self.state_covariance = np.bmat ([[self.state_covariance

↪→ , state_cov_side],
92 [state_cov_side.T,

↪→ covariance_t[-
↪→ state_size:,-
↪→ state_size :]]])

93 self.transition_covariance = self.transition_covariance
↪→ = np.bmat ([[np.zeros((state_size , state_size)

131

↪→), np.zeros((state_size , state_size *(1 +
↪→ cloned_states)))], [np.zeros((state_size *(1 +
↪→ cloned_states), state_size)), self.
↪→ transition_covariance]])

94 self.states = np.vstack((self.states , states_t[-
↪→ state_size :]))

95 #Numerical compensation:
96 self.state_covariance = 0.5*(self.state_covariance +

↪→ self.state_covariance.T)
97 self.cloned_states += 1
98 self.setParameters ()
99

100 def _cloneKF(self):
101 state_size = self.state_size
102 cloned_states = self.cloned_states
103 self.state = np.vstack ((self.states , self.states[-

↪→ state_size :]))
104 state_cov_side = self.state_covariance [:,-state_size :]
105 self.transition_covariance = np.bmat ([[np.zeros((

↪→ state_size , state_size)), np.zeros((state_size
↪→ , state_size *(1 + cloned_states)))], [np.zeros(
↪→ (state_size *(1 + cloned_states), state_size))
↪→ , self.transition_covariance]])

106 self.state_covariance = np.bmat ([[self.state_covariance
↪→ + self.epsilon*self.I, state_cov_side], [
↪→ state_cov_side.T, self.state_covariance + self.
↪→ epsilon*self.I]])

107 self.transition_matrix = np.bmat ([[self.I, np.zeros((
↪→ state_size , state_size *(cloned_states + 1)))],

108 [np.zeros((
↪→ state_size ,
↪→ state_size *(
↪→ cloned_states
↪→ + 1))), self.
↪→ transition_matrix
↪→]])

109 self.measurement_matrix = np.bmat ([[np.zeros(self.
↪→ measurement_matrix.shape), self.
↪→ measurement_matrix]])

110 self.cloned_states += 1
111
112 def _marginalizeKF(self):
113 state_size = self.state_size
114 self.states = self.states[state_size :]
115 self.transition_covariance = self.transition_covariance

↪→ [state_size:, state_size :]
116 self.state_covariance = self.state_covariance[

↪→ state_size:, state_size :]
117 self.measurement_matrix = self.measurement_matrix
118 self.cloned_states -= 1

A.5.3 Kinematic

132

1 from probabilistic_filters import *
2 import types
3 import numpy as np
4
5 #Global state indices
6 X_IND = 0
7 Y_IND = 1
8 YAW_IND = 2
9 X_VEL_IND = 3

10 YAW_RATE_IND = 4
11
12 #Robot model from De La Cruz:
13 def _differentialFunction(self ,states):
14 ’’’dx/dt = f(x)’’’
15 fx = states[X_VEL_IND]*np.cos(states[YAW_IND]) - self.a

↪→ *states[YAW_RATE_IND]*np.sin(states[YAW_IND])
16 fy = states[X_VEL_IND]*np.sin(states[YAW_IND]) + self.a

↪→ *states[YAW_RATE_IND]*np.cos(states[YAW_IND])
17 fpsi = states[YAW_RATE_IND]
18 states = np.vstack((fx, fy , fpsi , 0, 0))
19 return states
20
21 def _differentialJacobian(self ,states):
22 ’’’df(x)/dx ’’’
23 state_size = states.size
24 jacobian = np.asmatrix(np.zeros((state_size ,

↪→ state_size)))
25 jacobian[X_IND , YAW_IND] = -states[X_VEL_IND]*np.sin(

↪→ states[YAW_IND]) - self.a*states[YAW_RATE_IND]*
↪→ np.cos(states[YAW_IND])

26 jacobian[X_IND , X_VEL_IND] = np.cos(states[YAW_IND])
27 jacobian[X_IND , YAW_RATE_IND] = -self.a*np.sin(states[

↪→ YAW_IND])
28 jacobian[Y_IND , YAW_IND] = states[X_VEL_IND]*np.cos(

↪→ states[YAW_IND]) - self.a*states[YAW_RATE_IND]*
↪→ np.sin(states[YAW_IND])

29 jacobian[Y_IND , X_VEL_IND] = np.sin(states[YAW_IND])
30 jacobian[Y_IND , YAW_RATE_IND] = self.a*np.cos(states[

↪→ YAW_IND])
31 jacobian[YAW_IND , YAW_RATE_IND] = 1
32 return jacobian
33
34 def _transitionFunction(self , states , timestep = None):
35 ’’’Eulers method. With cloned states.’’’
36 if timestep is None:
37 timestep = self.timestep
38 states[-self.state_size :] = states[-self.state_size :] +

↪→ timestep*self.differentialFunction(states[-self
↪→ .state_size :])

39 return states
40
41 def _transitionJacobian(self , states , timestep = None):
42 ’’’Transition jacobian using Eulers method. With cloned

↪→ states.’’’

133

43 if timestep is None:
44 timestep = self.timestep
45 if self.cloned_states is 0:
46 return self.I + timestep*self.differentialJacobian(

↪→ states)
47 else:
48 differential_jacobian = np.identity(self.state_size

↪→ *(1+ self.cloned_states))
49 differential_jacobian[-self.state_size:, -self.

↪→ state_size :] += self.differentialJacobian(
↪→ states[-self.state_size :])*timestep

50 return differential_jacobian
51
52 def patchFilter(tfilter):
53 ’’’Patch the given filter with functions necessary for

↪→ 2D asterix localization.’’’
54 kalman_classes = ["ExtendedKalmanFilter", "

↪→ UnscentedKalmanFilter"]
55 supported_classes = kalman_classes
56 filter_name = tfilter.__class__.__name__
57 filter_patch = {"ExtendedKalmanFilter": EKFPatch ,
58 "UnscentedKalmanFilter": UKFPatch}
59 if filter_name not in filter_patch.keys():
60 raise TypeError("Chosen filter class is not

↪→ supported. Supported types are: {}".format(
↪→ supported_filters))

61
62 filter_patch[filter_name](tfilter)
63 return True
64
65 def EKFPatch(tfilter):
66 tfilter.transitionFunction = types.MethodType(

↪→ _transitionFunction , tfilter)
67 tfilter.transitionJacobian = types.MethodType(

↪→ _transitionJacobian , tfilter)
68 tfilter.differentialFunction = types.MethodType(

↪→ _differentialFunction , tfilter)
69 tfilter.differentialJacobian = types.MethodType(

↪→ _differentialJacobian ,tfilter)
70 tfilter.cloned_states = 0
71 tfilter.a = 0.2
72
73 def UKFPatch(tfilter):
74 tfilter.transitionFunction = types.MethodType(

↪→ _transitionFunction , tfilter)
75 tfilter.differentialFunction = types.MethodType(

↪→ _differentialFunction , tfilter)
76 tfilter.cloned_states = 0
77 tfilter.a = 0.2

A.5.4 Geodetic

A module for conversion from elliptical to ENU.

134

1 ’’’Contains functions necessary for converting geodetic
↪→ coordinates.

2 By Mathias Hauan Arbo , 24.04.2015
3 Based on Wikipedia and matlabs geodetic package.’’’
4 import math
5
6 def referenceEllipsoid(ellipse_type):
7 ’’’Takes an ellipse type and returns the ellipsoid

↪→ parameters.’’’
8 if (ellipse_type ==’CLK66 ’ or ellipse_type ==’NAD27’):
9 major_axis =6378206.4;

10 finv =294.9786982;
11 elif ellipse_type ==’GRS67 ’:
12 major_axis =6378160.0;
13 finv =298.247167427;
14 elif (ellipse_type ==’GRS80 ’ or ellipse_type ==’NAD83’):
15 major_axis =6378137.0;
16 finv =298.257222101;
17 elif (ellipse_type ==’WGS72 ’):
18 major_axis =6378135.0;
19 finv =298.26;
20 elif (ellipse_type ==’WGS84 ’):
21 major_axis =6378137.0;
22 finv =298.257223563;
23 elif ellipse_type ==’ATS77 ’:
24 major_axis =6378135.0;
25 finv =298.257;
26 elif ellipse_type ==’KRASS ’:
27 major_axis =6378245.0;
28 finv =298.3;
29 elif ellipse_type ==’INTER ’:
30 major_axis =6378388.0;
31 finv =297.0;
32 elif ellipse_type ==’MAIRY ’:
33 major_axis =6377340.189;
34 finv =299.3249646;
35 elif ellipse_type ==’TOPEX ’:
36 major_axis =6378136.3;
37 finv =298.257;
38 flattening =1/ finv;
39 minor_axis = major_axis *(1- flattening);
40 eccentricity_squared = 1-(1- flattening)**2;
41 return major_axis , minor_axis , eccentricity_squared ,

↪→ flattening
42
43 def geodetic2ecef(latitude , longitude , altitude ,

↪→ ellipse_type = "WGS84"):
44 ’’’Converts geodetic coordinates (latitude , longitude ,

↪→ altitude) to ECEF coordinates (x,y,z).’’’
45 major_axis , minor_axis , eccentricity_squared ,

↪→ flattening = referenceEllipsoid(ellipse_type)
46 #normal = major_axis / (math.sqrt(1 -

↪→ eccentricity_squared *math.sin(latitude)**2))

135

47 normal = (major_axis **2)/math.sqrt((math.cos(latitude)
↪→ **2)*(major_axis **2) + (minor_axis **2)*math.sin(
↪→ latitude)**2)

48 x_ecef = (normal+altitude)*math.cos(latitude)*math.cos(
↪→ longitude)

49 y_ecef = (normal+altitude)*math.cos(latitude)*math.sin(
↪→ longitude)

50 z_ecef = (normal *(1 - eccentricity_squared) + altitude)
↪→ *math.sin(latitude)

51 return x_ecef , y_ecef , z_ecef
52
53 def ecef2enu(x,y,z, latitude0 , longitude0 , altitude0 ,

↪→ ellipse_type = "WGS84"):
54 x0 , y0 , z0 = geodetic2ecef(latitude0 , longitude0 ,

↪→ altitude0 , ellipse_type)
55 x_enu = -math.sin(longitude0)*(x-x0) + math.cos(

↪→ longitude0)*(y-y0)
56 y_enu = -math.sin(latitude0)*math.cos(longitude0)*(x-x0

↪→) - math.sin(latitude0)*math.sin(longitude0)*(y-
↪→ y0) + math.cos(latitude0)*(z-z0)

57 z_enu = math.cos(latitude0)*math.cos(longitude0)*(x-x0)
↪→ + math.cos(latitude0)*math.sin(longitude0)*(y-
↪→ y0) + math.sin(latitude0)*(z-z0)

58 return x_enu , y_enu , z_enu
59
60 def geodetic2enu(latitude , longitude , altitude , latitude0 ,

↪→ longitude0 , altitude0 , ellipse_type = "WGS84"):
61 x, y, z = geodetic2ecef(latitude , longitude , altitude ,

↪→ ellipse_type)
62 x, y, z = ecef2enu(x, y, z, latitude0 , longitude0 ,

↪→ altitude0 , ellipse_type)
63 return x, y, z
64
65 def ecef2ned(x,y,z, latitude0 , longitude0 , altitude0 ,

↪→ ellipse_type = "WGS84"):
66 x0 , y0 , z0 = geodetic2ecef(latitude0 , longitude0 ,

↪→ altitude0 , ellipse_type)
67 x_ned = -math.cos(longitude0)*math.sin(latitude0)*(x-x0

↪→) - math.sin(longitude0)*(y-y0) -math.cos(
↪→ longitude0)*math.cos(latitude0)*(z-z0)

68 y_ned = -math.sin(longitude0)*math.sin(latitude0)*(x-x0
↪→) + math.cos(longitude0)*(y-y0) -math.sin(
↪→ longitude0)*math.cos(latitude0)*(z-z0)

69 z_ned = math.cos(latitude0)*(x-x0) - math.sin(latitude0
↪→)

70 return x_ned , y_ned , z_ned
71
72 def geodetic2ned(latitude , longitude , altitude , latitude0 ,

↪→ longitude0 , altitude0 , ellipse_type = "WGS84"):
73 x, y, z = geodetic2ecef(latitude ,longitude , altitude ,

↪→ ellipse_type)
74 x, y, z = ecef2ned(x,y,z, latitude0 , longitude0 ,

↪→ altitude0 , ellipse_type)
75 return x, y, z

136

A.5.5 MeasurementHandler

1 import numpy as np
2 import bisect
3
4 import geodetic
5 #System parameters
6 VO_DELAY = 1#s
7
8 #Filter parameters
9 STATE_SIZE = 5

10 X_IND = 0
11 Y_IND = 1
12 YAW_IND = 2
13 X_VEL_IND = 3
14 YAW_RATE_IND = 4
15
16 #Wheel speed parameters
17 WHEEL_SPACING = 1.7#m
18 ENCODER_SPEED_RATIO = 0.00308
19
20 #Sensors and sizes
21 IMU_SIZE = 2
22 VO_SIZE = 3
23 GPS_SIZE = 2
24 WHEEL_SPEEDS_SIZE = 2
25 SENSOR_SIZES = [IMU_SIZE , VO_SIZE , GPS_SIZE ,

↪→ WHEEL_SPEEDS_SIZE]
26 KNOWN_SENSORS = ["imu", "vo", "gps", "wheel_speeds"]
27
28 #Diagonal of measurement noise covarianc
29 R_IMU = [1e-1 1e-1]
30 R_VO= [1e-7, 1e-7, 1e-5]
31 R_GPS = [1e-2, 1e-2]
32 R_WHEEL_SPEEDS = [1e-3, 1e-3]
33
34 def IndexSmallerThan(search_list , value):
35 ’’’Find index of first value in search_list less than

↪→ or equal to value.
36 Assumes sorted search_list. Returns False if none found

↪→ . Used for vo_dict.’’’
37 i = bisect.bisect_right(search_list , value)
38 if i > 0:
39 return i-1
40 else:
41 return False
42
43 class MeasurementHandler(object):
44 ’’’The main measurement handler. Generates z vectors ,

↪→ functions , jacobians and covariances. Contains
↪→ messages such as picture taken , gps requested
↪→ frame reset , and what measurements are available
↪→ in the z vector.’’’

45 def __init__(self , rbag , vo_dict , enabled_sensors):

137

46 self.bag = rbag
47 vo_dict["avail_time"] = [t + VO_DELAY for t in

↪→ vo_dict["time"]]
48 self.vo_dict = vo_dict
49 self.enabled_sensors = enabled_sensors
50 self.geodetic_origin = None
51 self.picture_taken = False
52 self.gps_reset = False
53
54 def getMeasurement(self , t_last , t_now):
55 ’’’Returns the measurement vector. Sets

↪→ measurements_available.’’’
56 measurements_available = []
57 self.vo_nan = False
58 if "wheel_speeds" in self.enabled_sensors:
59 left_msgs = self.bag.readTopic(’/left/feedback ’

↪→ , t_last , t_now)
60 right_msgs = self.bag.readTopic(’/right/

↪→ feedback ’, t_last , t_now)
61 if not (left_msgs == [] or right_msgs == []):
62 left_speed = left_msgs [-1].

↪→ measured_velocity
63 right_speed = -right_msgs [-1].

↪→ measured_velocity
64 z_wheel_speeds = np.asmatrix ([[right_speed

↪→],[left_speed]])
65 measurements_available.append("wheel_speeds

↪→ ")
66
67 if "imu" in self.enabled_sensors:
68 imurpy_msgs = self.bag.readTopic(’/imu/rpy’,

↪→ t_last , t_now)
69 imudata_msgs = self.bag.readTopic(’/imu/data’,

↪→ t_last , t_now)
70 if not (imurpy_msgs == [] or imudata_msgs ==

↪→ []):
71 imu_yaw = imurpy_msgs [-1]. vector.z
72 imu_yaw_rate = -imudata_msgs [-1].

↪→ angular_velocity.z
73 z_imu = np.asmatrix ([[imu_yaw],[

↪→ imu_yaw_rate]])
74 measurements_available.append("imu")
75
76 if "gps" in self.enabled_sensors:
77 gpsfix_msgs = self.bag.readTopic(’/fix’, t_last

↪→ , t_now)
78 if not gpsfix_msgs == []:
79 latitude = np.pi*gpsfix_msgs [-1]. latitude

↪→ /180.0
80 longitude = np.pi*gpsfix_msgs [-1]. longitude

↪→ /180.0
81 altitude = gpsfix_msgs [-1]. altitude
82 if not np.any(np.isnan ([latitude , longitude

↪→ , altitude])):

138

83 if self.geodetic_origin == None:
84 ’’’This can be problematic. Either

↪→ the filters have to
85 reset their origin to this ENU

↪→ frame. Or one has to
↪→ backtrack.’’’

86 measurements_available.append("gps"
↪→)

87 self.gps_reset = True
88 self.geodetic_origin = [latitude ,

↪→ longitude , altitude]
89 z_gps = np.asmatrix ([[0] ,[0]])
90 else:
91 self.gps_reset = False
92 geo0 = self.geodetic_origin
93 x_gps , y_gps , h_gps = geodetic.

↪→ geodetic2enu(latitude ,
↪→ longitude , altitude , geo0
↪→ [0], geo0[1], geo0 [2])

94 z_gps = np.asmatrix ([[x_gps],[y_gps
↪→]])

95 measurements_available.append("gps"
↪→)

96
97 if "vo" in self.enabled_sensors:
98 vo_ind = IndexSmallerThan(self.vo_dict["time"],

↪→ t_now)
99 if self.vo_dict["time"][vo_ind] > t_last and

↪→ self.vo_dict["time"][vo_ind] <= t_now:
100 self.picture_taken = True
101 self.current_picture = self.vo_dict["name"

↪→][vo_ind]
102 else:
103 self.picture_taken = False
104 vo_ind = IndexSmallerThan(self.vo_dict["

↪→ avail_time"], t_now)
105 if self.vo_dict["avail_time"][vo_ind] > t_last

↪→ and self.vo_dict["avail_time"][vo_ind]
↪→ <= t_now:

106 if not np.any(np.isnan ([self.vo_dict["dx"][
↪→ vo_ind], self.vo_dict["dy"][vo_ind],
↪→ self.vo_dict["dyaw"][vo_ind]])):

107 z_vo = np.asmatrix ([[self.vo_dict["dx"
↪→][vo_ind]],

108 [self.vo_dict[
↪→ "dy"][
↪→ vo_ind
↪→]],

109 [self.vo_dict[
↪→ "dyaw"
↪→][
↪→ vo_ind
↪→]]])

110 measurements_available.append("vo")

139

111 else:
112 self.vo_nan = True
113
114 #Allocate measurement vector
115 sensor_indices = [KNOWN_SENSORS.index(sname) for

↪→ sname in measurements_available]
116 measurement_size = sum([SENSOR_SIZES[i] for i in

↪→ sensor_indices])
117 measurement = np.asmatrix(np.zeros((

↪→ measurement_size , 1)))
118 measurement_index = 0
119 for sensor_name in measurements_available:
120 sensor_index = KNOWN_SENSORS.index(sensor_name)
121 min_ind = measurement_index
122 max_ind = measurement_index + SENSOR_SIZES[

↪→ sensor_index]
123 measurement[min_ind : max_ind , :] = locals ()["

↪→ z_"+sensor_name]
124 measurement_index = max_ind
125 #Store information
126 self.measurements_available =

↪→ measurements_available
127 self.measurement_size = measurement_size
128 self.measurement = measurement
129 return measurement
130
131 def getFunction(self , measurements_available = None):
132 ’’’Returns an function instance of the measurement

↪→ function.’’’
133 if measurements_available == None:
134 measurements_available = self.

↪→ measurements_available
135 return MeasurementFunctionGenerator(

↪→ measurements_available)
136
137 def getJacobian(self , measurements_available = None):
138 ’’’Returns a function instance of the measurement

↪→ jacobian.’’’
139 if measurements_available == None:
140 measurements_available = self.

↪→ measurements_available
141 return MeasurementJacobianGenerator(

↪→ measurements_available)
142
143 def getCovariance(self , measurements_available = None):
144 ’’’Returns a numpy matrix of the measurement

↪→ covariance.’’’
145 if measurements_available == None:
146 measurements_available = self.

↪→ measurements_available
147 return measurementCovariance(measurements_available

↪→)
148
149 class MeasurementFunctionGenerator(object):

140

150 ’’’Generates a function z=h(x) that is the measurement
↪→ function.’’’

151 def __init__(self , ordering):
152 self.ordering = ordering
153 self.measurement_size = 0
154 for sensor_name in ordering:
155 if sensor_name in KNOWN_SENSORS:
156 sensor_ind = KNOWN_SENSORS.index(

↪→ sensor_name)
157 self.measurement_size += SENSOR_SIZES[

↪→ sensor_ind]
158
159 def __call__(self , states):
160 ’’’Call the appropriate function according to

↪→ ordering.’’’
161 z_est = np.asmatrix(np.zeros((self.

↪→ measurement_size , 1)))
162 measurement_index = 0
163 for sensor_name in self.ordering:
164 sensor_index = KNOWN_SENSORS.index(sensor_name)
165 min_ind = measurement_index
166 max_ind = measurement_index + SENSOR_SIZES[

↪→ sensor_index]
167 z_est[min_ind:max_ind ,:] = getattr(self ,

↪→ sensor_name)(states)
168 measurement_index = max_ind
169 return z_est
170
171 def imu(self , states):
172 return np.vstack((states[-(STATE_SIZE -YAW_IND) ,:],

↪→ states[-(STATE_SIZE -YAW_RATE_IND) ,:]))
173
174 def gps(self , states):
175 ’’’Assumed arrives as ENU.’’’
176 return np.vstack((states[-(STATE_SIZE -X_IND) ,:],

↪→ states[-(STATE_SIZE -Y_IND) ,:]))
177
178 def vo(self , states):
179 cold = np.cos(-states[YAW_IND ,:])
180 sold = np.sin(-states[YAW_IND ,:])
181 dx = states[STATE_SIZE+X_IND ,:] - states[X_IND ,:]
182 dy = states[STATE_SIZE+Y_IND ,:] - states[Y_IND ,:]
183 return np.vstack((cold*dx - sold*dy, sold*dx +

↪→ cold*dy, states[STATE_SIZE+YAW_IND ,:] -
↪→ states[YAW_IND ,:]))

184
185 def wheel_speeds(self , states):
186 right_speed = (states[-(STATE_SIZE -X_VEL_IND) ,:] +

↪→ 0.5* WHEEL_SPACING*states[-(STATE_SIZE -
↪→ YAW_RATE_IND) ,:])/ENCODER_SPEED_RATIO

187 left_speed = (states[-(STATE_SIZE -X_VEL_IND) ,:] -
↪→ 0.5* WHEEL_SPACING*states[-(STATE_SIZE -
↪→ YAW_RATE_IND) ,:])/ENCODER_SPEED_RATIO

188 return np.vstack((right_speed , left_speed))

141

189
190 class MeasurementJacobianGenerator(object):
191 ’’’Generates a function J=H(x) that is the analytic

↪→ jacobian of the measurement function.’’’
192 def __init__(self , ordering):
193 self.ordering = ordering
194 self.measurement_size = 0
195 for sensor_name in ordering:
196 if sensor_name in KNOWN_SENSORS:
197 sensor_index = KNOWN_SENSORS.index(

↪→ sensor_name)
198 self.measurement_size += SENSOR_SIZES[

↪→ sensor_index]
199
200 def __call__(self , states):
201 measurement_size = self.measurement_size
202 J = np.asmatrix(np.zeros((measurement_size , states

↪→ .size)))
203 measurement_index = 0
204 for sensor_name in self.ordering:
205 if sensor_name in KNOWN_SENSORS:
206 sensor_index = KNOWN_SENSORS.index(

↪→ sensor_name)
207 min_ind = measurement_index
208 max_ind = measurement_index + SENSOR_SIZES[

↪→ sensor_index]
209 J[min_ind:max_ind , :] = getattr(self ,

↪→ sensor_name)(states)
210 measurement_index = max_ind
211 return J
212
213 def imu(self ,states):
214 J_imu = np.asmatrix(np.zeros((IMU_SIZE , states.

↪→ size)))
215 J_imu[0, -(STATE_SIZE - YAW_IND)] = 1
216 J_imu[1, -(STATE_SIZE - YAW_RATE_IND)] = 1
217 return J_imu
218
219 def gps(self , states):
220 J_gps = np.asmatrix(np.zeros((GPS_SIZE , states.

↪→ size)))
221 J_gps[0, -(STATE_SIZE - X_IND)] = 1
222 J_gps[1, -(STATE_SIZE - Y_IND)] = 1
223 return J_gps
224
225 def vo(self , states):
226 J_vo = np.asmatrix(np.zeros((VO_SIZE , states.size)

↪→))
227 cold = np.cos(states[YAW_IND])
228 sold = np.sin(states[YAW_IND])
229 dx = states[STATE_SIZE+X_IND] - states[X_IND]
230 dy = states[STATE_SIZE+Y_IND] - states[Y_IND]
231
232 J_vo[0, X_IND] = -cold

142

233 J_vo[0, Y_IND] = -sold
234 J_vo[0, YAW_IND] = -sold*dx +cold*dy
235 J_vo[0, STATE_SIZE+X_IND] = cold
236 J_vo[0, STATE_SIZE+Y_IND] = sold
237 J_vo[1, X_IND] = sold
238 J_vo[1, Y_IND] = -cold
239 J_vo[1, YAW_IND] = -cold*dx - sold*dy
240 J_vo[1, STATE_SIZE+X_IND] = -sold
241 J_vo[1, STATE_SIZE+Y_IND] = cold
242 J_vo[2, YAW_IND] = -1
243 J_vo[2, STATE_SIZE+YAW_IND] = 1
244 return J_vo
245
246 def wheel_speeds(self , states):
247 J_wheel_speeds = np.asmatrix(np.zeros((

↪→ WHEEL_SPEEDS_SIZE , states.size)))
248 J_wheel_speeds [0, -(STATE_SIZE -X_VEL_IND)] = 1/

↪→ ENCODER_SPEED_RATIO
249 J_wheel_speeds [0, -(STATE_SIZE -YAW_RATE_IND)] =

↪→ 0.5* WHEEL_SPACING/ENCODER_SPEED_RATIO
250 J_wheel_speeds [1, -(STATE_SIZE -X_VEL_IND)] = 1/

↪→ ENCODER_SPEED_RATIO
251 J_wheel_speeds [1, -(STATE_SIZE -YAW_RATE_IND)] =

↪→ -0.5* WHEEL_SPACING/ENCODER_SPEED_RATIO
252 return J_wheel_speeds
253
254 def measurementCovariance(ordering):
255 ’’’Generates the measurement noise covariance matrix Q.

↪→ ’’’
256 r_diag = []
257 for sensor_name in ordering:
258 if sensor_name in KNOWN_SENSORS:
259 r_diag += globals ()["R_"+sensor_name.upper()]
260 return np.diagflat(r_diag)

A.5.6 Horns Method

1 def hornsMethod(feature_list1 , feature_list2):
2 ’’’Takes two lists of features and calculates the pixel

↪→ movement between the two sets.
3 Output: shiftEst , numpy matrix of dc dr, rotEst ,

↪→ estimate of angular rotation.
4 ’’’
5 if feature_list1 == [] or feature_list2 == []:
6 return (float(’NaN’), float(’NaN’)), float(’NaN’)
7 if not isinstance(feature_list1 , np.matrix):
8 feature_list1 = np.asmatrix(feature_list1).T
9 if not isinstance(feature_list2 , np.matrix):

10 feature_list2 = np.asmatrix(feature_list2).T
11
12 mean1 = np.mean(feature_list1 , axis = 1)
13 mean2 = np.mean(feature_list2 , axis = 1)
14

143

15 difference1 = np.asmatrix(np.zeros((feature_list1.
↪→ shape [0]+1, feature_list1.shape [1])))

16 difference2 = np.asmatrix(np.zeros((feature_list2.
↪→ shape [0]+1, feature_list2.shape [1])))

17 difference1 [0:2 ,:] = feature_list1 - mean1
18 difference2 [0:2 ,:] = feature_list2 - mean2
19
20 C = np.sum(np.diag(difference1*difference2.T))
21 S = np.matrix ([[0, 0, 1]])*np.asmatrix(np.sum(np.cross

↪→ (difference1 , difference2 , axisa = 0, axisb = 0)
↪→ , axis = 0)).T

22
23 shiftEst = np.asmatrix(np.zeros((feature_list1.shape

↪→ [0] + 1 ,1)))
24 shiftEst [0:2 ,:] = mean1 - mean2
25 rotEst = - np.arctan2(S,C)
26 return shiftEst , rotEst

144

