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Summary

Digital assistants that communicate through speech are one of the new technologies that
have emerged this decade. Progress in the field of speaker recognition have opened up
possibilities for having digital assistants for groups of people, where the assistant can offer
personalized assistance and receive commands from multiple people. This master’s thesis
investigates techniques for speaker identification in a group meeting scenario, where the
availability of speech data for system training often can be low. Speaker identification and
verification experiments on the RSR2015 database have been conducted with different
GMM-UBM- and i-vector-based systems. It has been found that the tz-normalized GMM-
UBM system gave best the performance, with a recognition rate of 81.3% and an EER of
7.8%. The GMM-UBM system has overall performed better that the i-vector system.

Recent research proposes the usage of deep learning techniques for speaker identifica-
tion, and a framework for bottleneck feature extraction have been included in thesis, with
experiments on bottleneck features left for future work. In addition to experiments, the
thesis also contains a short guide to setting up a speaker identification system in SIDEKIT,
which has been the main toolkit used in this task. The full implementation of the scripts
used in experiments can be found in the Appendix.

Sammendrag

Digitale assistenter som kommuniserer gjennom tale er en av nye teknologier av dette
tiåret. Fremgang i forskning på taleridentifikasjon åpner opp muligheter for felles digitale
assistenter for flere brukere, der assistenten tilbyr personlig assistanse og mottar komman-
doer fra flere personer. Denne masteroppgaven undersøker teknikker for taleridentifikasjon
i et møtescenario, der tilgjengeligheten på taledata for trening av et system ofte er lav.
Taleridentifikasjons- og talerverifikasjonseksperimenter på RSR2015-databasen har blitt
utført med forskjellige GMM-UBM- og i-vektor-baserte systemer. Det tz-normaliserte
GMM-UBM-systemet har gitt best resultater, med gjenkjenningsrate på 81.3% og EER
lik 7.8%. De GMM-UBM-baserte systemene har jevnt over gitt bedre resultater enn de
i-vektor-baserte systemene.

Nylig forskning foreslår bruk av teknikker basert på dyp læring. Denne oppgaven
inkluderer derfor et rammeverk for bottleneck feature extraction, der ekspermenter over-
lates til fremtidig arbeid. I tillegg til eksperimenter inkluderer også oppgaven en guide til
oppsett av et taleridentifikasjonssystem i SIDEKIT, som har vært hovedverktøyet brukt i
oppgaven. En full implementasjon av alle skript finnes i Appendix.
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Chapter 1
Introduction

From the digital revolution that started around the beginning of this millennium, new tech-
nologies have transformed from digital tools into companions. The user interface has gone
from being buttons and knobs that require the study of thick manuals before use, to intu-
itive symbols and touch-sensitive pads that even a 3-year can master effortlessly. And as
the world has opened its eyes for artificial intelligence and its wide possibilities, the new
interface will be interaction with devices through other ways than just touch is possible.
Today most smartphone and tablet operating systems comes with digital assistants that
communicate through speech commands.

Another natural step in the humanization of user interfaces is the usage of voice bio-
metrics for e.g. granting system access. The idea of using biometrics for identification
consists of measuring some physiological trait that is assumed to be unique for each in-
dividual, and associate the data with the individual involved. Examples of biometrics in
application are fingerprints, retina scanning, voice recognition, face recognition and DNA
analysis. Many of the latest smartphones include identification by fingerprint, face recog-
nition and retina scanning, and it might seem as there is a race now in the relatively young
market of smart speakers, where functions of the house can be controlled by voice com-
mands, that now also allows for personal assistance by recognizing the speaker.

On behalf of Cisco Systems Norway AS, this thesis has been written as an investi-
gation in preparement for a speaker identification system for use in a video conference
scenario, where the system, from commands to the systems personal assistant, should
identify the speaker giving the command at any time. More specifically, the thesis will
give an overview the current state-of-the-art speaker identification systems and the theory
behind, including recent promising approaches based on deep learning.

The structure of this report is as follows: Chapter 2 presents background theory rel-
evant the work done in this thesis. Chapter 3 gives an overview of how to set up a
speaker identification experiment in Sidekit. Chapter 4 explains the experimental protocol,
presents and discusses results. Chapter 5 concludes the thesis with a closing discussion
and propositions for future work.

[27] [2]
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Chapter 2
Theory

Throughout the history of the field of speaker identification, the research community has
moved through several paradigms defined by the changing state-of-the-art models for
speaker recognition, influenced by research within the field and from other fields like
speech recognition, in addition to technological advancements and the growth of available
resources and demand. Early approaches to speaker recognition involved human inspec-
tion of the speech spectrum (see Section 2.6). Today, the automatic approach, i.e. speaker
recognition with computers, have been shown to outbeat humans [28]. The error rates of
the automatic approach continues to decrease, but there are still many challenges when the
available data is sparse, or the quality of the data is low - requiring further innovation.

This chapter will define automatic speaker recognition and its sub-categories, and
present theory relevant to today’s speaker identification systems, as well as the systems
themselves.

2.1 Speaker recognition
Automatic speaker recognition can be defined as the task of inferring a persons identity
based on analysis of recorded speech, in which the analysis is done by a computer. The
field relies on the fact that a speech signal contains a wide range of information besides just
words, such as information about speaker identity, gender, age group, mood, social setting
of the recording (e.g. formal speech vs. casual conversation) and recording environment.
As will be presented further on in this chapter, filtering out the unimportant information
in a speech signal is a crucial part of the speaker identification task.

Speaker recognition is an umbrella term that is mainly divided into the fields of speaker
verification and speaker identification (although there are several sub-fields such as speaker
classification and speaker diarization). Speaker verification, or speaker authentication, in-
volves only one speaker, and consists of accepting/rejecting an utterance after some means
of comparison with a model of the claimed identity of the speaker. Speaker identification,
on the other hand, involves a group of speakers, where the task is to decide from which of
the speakers a given utterance comes from.
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Chapter 2. Theory

Further, the recognition task can be both text-dependent and text-independent, the first
in which the system requires a specific word or phrase to do the identification task, while
the second is modeled to work regardless of the phonetic content of the utterance. Because
of the phonetic constraints, the text-dependent systems generally gives higher recognition
rates, and requires less training data to model the acoustic space. This comes at the cost
of restricted speech content, which might not be suitable for applications that does not
involve controlled situations with text prompts. Probably for the sake of generalizability,
the majority of research within speaker recognition focuses on text-independent systems.

Finally, a speaker identification task can be either closed set or open set. In the closed
set scenario, it is guaranteed that the utterance in question comes from one of the speakers
known to the speaker system. In the case of an open set, the utterance might also come
from a speaker unknown to the system, requiring some method of rejection so as not to
erroneously classify the utterance to come from one of the known speakers.

2.2 An automatic speaker identification framework
Before going into technical details, we will look at a general speaker identification system
and introduce some terminology. As mentioned in the previous section, speaker identifi-
cation distinguishes itself from speaker verification by involving sets of speakers instead
of just one speaker. This increases the difficulty as the task goes from simply accepting or
rejecting an utterance to comparing scores from all speakers in a set, identifying the orig-
inal speaker, or in the case of open set identification, determining whether the utterance
originates from a known speaker at all.

Figure 2.1 illustrates the toolchain of an open set speaker identification task in a video
conference meeting scenario. An utterance from a known or unknown speaker is recorded
by a microphone, then sampled and preprocessed before task-relevant features are ex-
tracted. The extracted features are then modified, enabling comparison techniques or scor-
ing with existing speaker models. Scores from all speaker models are then compared by
a decision function, determining 1) whether the utterance comes from one of the known
speakers or not, and 2) if it does, which of the speakers it belongs to. As will be shown,
tasks 1) and 2) can be solved simultaneously by adding a complementary model that rep-
resents all speakers outside the set of known speakers.

To build individual speaker models, one needs speech data from each speaker that is
to be known by the system. The set of known speakers are in speaker recognition known
as the enrollment speakers, and a speaker is enrolled into the system when enrollment
data from the speaker is processed to build its model. After the enrollment process, the
performance of the speaker recognition system can be evaluated using test data, which,
in an open set scenario will consist of data from speakers in and outside the enrollment
set. The set of all speakers involved in testing the system will be referred to as the test
speakers.

Training independent models is in the state-of-the-art speaker recognition systems
acheived through initially training a general speech model known as the universal back-
ground model (UBM), then using speaker adaptation techniques to train the enrollment
speaker models. In speaker recognition, training data refers to the data used to train the
general UBM. Model training and adaptation will be further explained in Section 2.8.
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2.3 Statistical background

Figure 2.1: The toolchain of open set speaker identification. Preprocessing, feature extraction and
training of world model omitted from figure.

2.3 Statistical background
This section provides a statistical background for the later material in this chapter.

2.3.1 Gaussian mixture model
The Gaussian or normal distribution is a probability distribution function of a random
variable X following Equation 2.1, where µ and σ2 is the mean and variance of the distri-
bution.

P (X = x) = N (µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.1)

If X is an array of length N , X is modeled by the multivariate Gaussian distribution,
that has the form as in Equation 2.2, where µ and Σ is the mean vector and covariance
matrix of the distribution, respectively.

p(x|µ,Σ) =MN (µ,Σ) =
1

(2π)
1
2 |Σ|2

e−
1
2 (x−µ)

TΣ−1(x−µ) (2.2)

An array x of length N can be modeled as a weighted sum of M N -dimensional
Gaussian distributions, as shown in Equation 2.3. This known as a Gaussian mixture model
(GMM). The GMM can model N -dimensional data of various character by changing its
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Chapter 2. Theory

mean, covariances and weights a = [a1, a2, . . . , aM ]. The weights are constrained by∑
i ai = 1. The model of x is denoted as λ = (a, µ,Σ), µ and Σ being the mean vector

and the covariance matrix, respectively. The GMM can then be written as

p(x|λ) =

M∑
i=1

aip(x|λi), (2.3)

λi indicating the mixture parameters for mixture i.
Our goal is to infer a λ that maximizes the likelihood of a given feature vector x, that

is,
argmax

λ
p(λ|x), (2.4)

which is equal to

argmax
λ

p(x|λ)p(λ)

p(x)
= argmax

λ
p(x|λ)p(λ), (2.5)

applying Bayes’ theorem. Further applying the logarithm to Equation 2.5, this gives
us the maximized log-likelihood, and reduces to

argmax
λ

log p(λ|x) (2.6)

.
Now, Equation 2.6 can be numerically solved using the expectation-maximization

(EM) algorithm [11], which until convergence iterates between calculating the log-likelihood
of Equation 2.3, i.e. log p(x|λ) (E-step), and then, given new values of x, maximizing the
log-likelihood of λ through Equation 2.6 (M-step).

2.3.2 Neural networks
The artifical neuron, or perceptron, is a simplified model of the neurons in the human
brain. In the traditional model, shown in Figure 2.2, it is evoked to produce an output y
if the sum of its weighted inputs x ·w exceeds a certain threshold. However, for mathe-
matical convenience, in current models the binary activation function is replaced with an
approximating smooth function.

Perceptrons can be organized in layers to make multilayer perceptrons, or simply, neu-
ral networks. Neural networks are defined as deep if they have more than two hidden
layers. That is, the input layer, three or more hidden layers followed by an output layer.
The network can be trained for different tasks using labeled training data of any form,
as long as the training data can be represented as an array of values to go into the input
layer, and labeled with appropriate labeling values on the output layer. The network is
then trained by maximizing the probability of the desired output of each layer with respect
to the preceding weights. This process starts at the output layer, and is then repeated for
the preceding layer with its desired output.

The number of layers and the number of neurons in each layer can be adjusted accord-
ing to the application of the network. If the number of neurons and layers is too small, it
might not be able to generalize to the content of the training data. If the number is too big
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x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.2: An artificial model of a neuron. Modified from http://tex.stackexchange.
com/questions/132444/diagram-of-an-artificial-neural-network/
132471

there is a risk of overfitting to the training data, making the network too dependent on the
specific character of the input data, not recognizing test input with the same label, but of a
varying character.

2.4 Sources of variability in speech

No matter how sophisticated techniques for signal acquisition or speaker modeling can
be, we cannot avoid the fact that we are dealing with random signals from the real world,
which comes with noise and acoustical environments of numerous characteristics. Al-
though the speaker recognition system should be designed for ideal performance, the
quality and variability of the speech data will unavoidably affect how well the system
performs. Thus, a robust system for speaker recognition must take all of these variabilities
into account.

Hansen [17] divides sources of speaker variability in speaker recognition into three
categories related to the physical characteristics of the speaker, the recording environment
and equipment (i.e. variability related to technology), and to the conversation setting.
Physical characteristics is related with the shape of the mouth, nasal region and the vo-
cal tract, which will vary from speaker to speaker, depending on age, gender and health
condition. Examples of technology-based factors are choice of microphone, background
and channel noise during recording, bit-depth and sampling frequency. Finally, a speaker
will behave differently in different conversational settings, and this also affects how the
recorded speech sounds. Examples of different settings are one-to-one vs. group conver-
sations, degree of familiarity between speakers and read text vs. speech without a script.
All of these sources of variability will affect the design of the speaker recognition system.
This includes the choice of speech features and the design of speaker models, which must
be done in such a way that the erroneous performance of the system is minimized.
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Chapter 2. Theory

2.5 Sampling and preprocessing speech
This section explains the commons steps from recording speech, applying preprocessing
techniques, to finally having a digital speech signal ready for feature extraction.

2.5.1 Sampling
As is commonly known, speech is recorded using microphones, devices that convert changes
in air pressure to a continuous electric signal x(t), which is then sampled at an interval T ,
known as the sample rate, producing a time-discrete signal x̃[n] = x(nT ). The inversion
of T , f = 1/T , is called sampling frequency, and must be chosen sufficiently high as
to capture the desired level of accuracy, given the bandwidth of x(t), as well as compu-
tational and storage restrictions. A higher value of f gives more speaker discriminative
information, but speaker recognition based on fundamental frequency only is also possi-
ble [13], and the current standard large datasets used in speaker recognition research are
band-limited to 8 kHz bandwidth [16].

The time-discrete samples x̃[n] are further quantized through some quantization func-
tion q that maps x̃ to discrete amplitude values. The process is summarized in Figure 2.3.
We end up with a signal x[n] that is discrete in time and amplitude, which is passed on to
the preprocessing stages presented in the following subsections.

Figure 2.3: Recording and digitalizing a sine signal x(t).

2.5.2 Pre-emphasis filtering
To normalize the spectral distribution of energy in speech, it is common to apply pre-
emphasis filtering before further analysis. This emphasizes the high-frequency content of
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2.6 Feature extraction

the speech, which may conceal valuable speaker-discriminative information. Equation 2.7
gives a commonly used pre-emphasis filter of a signal x[n], with common values for α
being 0.95 and 0.97.

x̃[n] = x[n]− αx[n− 1] (2.7)

2.5.3 Framing and windowing
Speech recordings in their unprocessed form are nonstationary processes that varies in both
phonetic content and length, which makes the task of acoustic modeling and comparison
a challenging task. To allow for analysis and modeling it is in speech processing common
to view the sampled speech in short frames in time, making us able to assume stationarity.
The length of these frames is usually in the range of 20 to 30 ms, and they are usually
shifted 10 ms in time to take account for phone of short duration and uneven segmentations
over transitions between phones. Each frame is then multiplied with a window function,
which smoothens the overlap between neighbouring frames. Commonly used window
functions include Hamming, Hanning, Blackman, triangular window, Bartlett, Welch and
Gauss [2, p. 162]. Figure 2.4 illustrates the process of framing and windowing of a speech
signal.

2.5.4 Voice-activity detection
Voice-activity detection (VAD) is a common step in the speaker recognition framework,
as it removes unwanted parts of recorded speech, reducing the overall computational cost
of the system, as well as eliminating irrelevant data. [2, p. 562] estimates as much as 30
% of speech in a “normal” speech recording to consist of silence. It however important
to note that the silent parts of a speech recording do contain information about channel,
that can be utilized for normalization purposes, not to mention the pattern of concurring
silence and speech activity varies between speakers, and thus may be utilized for speaker
recognition purposes.

A simple and effective VAD approach called energy-based VAD involves thresholding
the energy of the speech content, discarding the speech frames energy lower than the set
threshold as silence. A similar approach is the signal-to-noise rate (SNR)-based VAD,
where frames with an SNR lower than a certain level is discarded. An alternative way,
common in other fields of speech processing, is to model silence as a phone and detect
it by using speech recognition techniques. Other rather recently proposed approaches to
VAD include SVM- and neural network-based techniques [46].

2.6 Feature extraction
A robust speaker identification system requires an appropriate representation of the speech
data, which ideally should be as unique for each respective speaker as possible. A fit-
ting analogy from another subfield of biometrics would be the fingerprint, and indeed,
the voiceprint1, the spectogram of a speech segment, was in the early years of speaker

1’The term is indeed constructed from the words voice and fingerprint [33]’
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Figure 2.4: Framing and windowing of a speech signal. a) 25 ms frame of signal, b) The Hamming
function, c) Signal in a) after windowing.

recognition seen as a promising feature, as experiments involving human inspection of
the voiceprint gave good results [20]. The voiceprint has however proved to give poor
results in changing acoustical environments (sessions) [27, p. 1465], thus some alternative
enhancement of the speech is necessary to extract the speaker discriminative information.
The following subsections present the most common and some recently probosed methods
of feature extraction.

2.6.1 Mel-frequency cepstral coefficients

Originally developed for speech recognition, mel-cepstral frequency coefficients (MFCC)
[8, 30] are the most widely used features in speaker recognition today. Computing MFCCs
begins with obtaining the spectrum Xs of a speech segment x through the discrete Fourier
transform (DFT),

X(f) =

N−1∑
n=0

xne
−2πkn/N , (2.8)
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and from this obtaining the power spectral density,

Xs(f) = |X(f)|2, (2.9)

then filteringXs through a filterbank ofM filters with center frequencies corresponding to
the mel-scale, a non-linear frequency scale based on subjective experiments to model the
human perception of pitch [40]. Taking the logarithm of the output value Xk at the center
frequencies of each filter gives us the cepstrum, and finally a discrete cosine transform
(DCT) as shown in Equation 2.10 computes the MFCCs,

MFCCi =

M∑
k=1

Xkcos

[
i

(
k − 1

2

)
π

M

]
, (2.10)

where Xk is the output of the kth mel-filter (of total M filters), and i = 1, 2, . . . ,N where
N is the total number of MFCC coefficients. The whole process is summarized in Figure
2.5.

Figure 2.5: MFCC derivation from a 25 ms frame of a speech signal. From the top, the operations
in the left row are performed first, followed by the operations in the right row.

As the energy of different speech data can vary, is common to apply cepstral mean
normalization (CMN)2, or cepstral mean and variance normalization (CMVN). CMN es-
timates the cepstral mean of a speech segment and then subtracts it from the MFCCs,
CMVN does the same, but normalizes the cestral variance as well.

2Also known as cepstral mean subtraction (CMS), although CMN might be seen as a more generalized term.
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Another effective normalization technique is by appying relative spectral (RASTA) fil-
tering [18], that is designed to suppress spectral components of a speech recording that has
different temporal characteristics than speech, such as very slow or very high variations.

2.6.2 Mel-filterbank coefficients

Although not commonly used directly as features for speaker identification, the direct out-
puts of the mel filterbank are often used as features for training phonetically aware neural
networks (described in Section 2.7.2). Despite the linear relationship between MFCCs
and mel-filterbank coefficients, the latter can be shown to be highly correlated, which have
motivated the appliance of the DCT in generating the MFCC. However, this correlation
turns out to be useful in the mentioned application.

2.6.3 Delta-features

As in other fields of speech processing, it is common to add spectral differences to the
original feature vector, called delta features. Further, the differences of the delta features
are also commonly added, and these are named delta-delta features. The calculation of
delta, ∆ and delta-delta ∆∆, is summarized in Equation 2.11, MFCCi denoting the i-th
mel-cepstral coefficient.

∆i = MFCCi+1 −MFCCi, ∆∆i = ∆i+1 −∆i, (2.11)

2.6.4 Deep features

In [15] it is argued that spectral-based features such as MFCCs and perceptual linear pre-
dictive (PLP) coefficients mainly are made with speech recognition in mind and questions
their ability to optimal discrimination of speaker information. DNN-based features are
among the proposed alternative approaches to spectral features, motivated by the successes
of DNNs in speech and image recognition. Recent research have shown promising results
for DNN-based features also in speaker recognition [29, 26, 38, 32].

The term “deep” in deep features comes from the fact that the features are extracted
from one of the deep layers of a neural network. This network has been initially trained
for some classification task, and among phone, language and speaker classification, phone
classification have by far given the best results [32]. New input data is then applied to
the bottom layer of the network, and the deep features can be extracted from the outputs
of one of the hidden layers. The input is subject to abstraction as it propagates through
the network, and will ideally only contain a low-noise representation of the input data that
maximizes speaker discrimination3. Further, if this hidden layer is set to have a much lower
dimension than the other layers, i.e. a bottleneck layer producing bottleneck features, it
can be seen as a compressed representation of the input. Thus, deep features allow for a
compressed, speaker discriminative representation of the speech data. The extracted deep

3The choice of which layer to extract deep features from is also important. In [26], layers close to the input
layer gave the best results.
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features can be regarded as any other speaker discriminative feature, and used to train the
models presented in Section 2.8.

Deep features can be combined (or stacked) with its original spectral features to cre-
ate tandem features, combining the abstracted information of the deep features with the
original spectral information, as some of the latter might have been lost in the deep feature
extraction. This has shown to give the best results in recent comparisons between different
deep feature approaches [26, 32].

2.7 Speech modeling
Speech can be viewed from several perspectives; as realizations of vectors from a general
acoustic space, a sequence of utterances, a sequence of words, a sequence of phones or
a sequence of sub-phonetic components. A model of speech will depend on the chosen
level of abstraction. As will be presented in Section 2.8, state-of-the-art speaker text-
independent recognition systems do not include word- or phone-based modeling, but are
trained fully unsupervised on unlabeled speech data. For text-dependent approaches how-
ever, various techniques can be applied to take advantage of the lexical and phonetic con-
straints, borrowed or inspired by the field of speech recognition. This section briefly men-
tions two of these techniques.

2.7.1 Hidden Markov models
The hidden Markov model (HMM) is a Bayesian network consisting of a set of hidden
state variables and a set of observable evidence variables, designed to model a temporally
changing observation sequence such that one is able to infer the underlying state sequence.
In speech applications, the observable variables can be speech features or some speech
model parameters, and the hidden variables can be words or phones, an example with the
latter shown in Figure 2.6.

Figure 2.6: An example of a triphone-based HMM, modeling the word “new”. Each circle represent
states, and the arrows transitions between the states.

2.7.2 Phonetically aware neural networks
A central part of state-of-the-art speech recognition systems is the phonetically aware neu-
ral network, which is a DNN trained for recognizing phones, or more commonly, tri-
phones. Given a set of speech data, each frame of the data are associated with a triphone
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model. Obtaining these pairs of data and models is called phonetic alignment. Follow-
ing training procedures described in Section 2.3.2, features from one frame, along with a
number of preceding and succeeding frames (known as context frames) are used as input
to the network, and the frame’s aligned triphone is the output. The total number of output
classes will thus be equal to the number triphones associated with the training data set. A
properly trained network will now recognize the phone contained in new input, making
it suitable for speech recognition. [14] argues that the advantage of replacing a GMM-
UBM-based approach with an approach based on a phonetically aware neural networks, is
having supervised training, thus outputs of the model that has a phonetic label, as opposed
to the unsupervised approach of the GMM-UBM.

2.8 Speaker modeling
This section gives an overview over the most important and state-of-the-art speaker models
over the past 20 years.

2.8.1 GMM-UBM with maximum a-posteriori adaptation
GMM-UBM was proposed as an approach for speaker recognition in 1995 [37], being the
state of the art approach until the mid-2000s, and still central components in both joint-
factor analysis (Section 2.8.3) and i-vector systems (Section 2.8.4). GMM-UBM stands as
a robust and simple model.

A UBM is a world model which purpose is to model a general acoustic space. A
GMM-UBM is a UBM consisting of a number of Gaussian distributions. The GMM-
UBM is trained unsupervised through the EM algorithm (Section 2.3.1), using training
data that ideally provides a rich amount of examples of phonetic realizations.

From a trained GMM-UBM, speaker models can be adapted using the speakers’ en-
rollment data and maximum a-posteriori (MAP) adaptation. The MAP-adaptation adapts
the mixture weights, mean and variances of the UBM. A description of the adaptation
procedure can be found in [17, p. 87–88].

The combination of GMM-UBM and MAP highly reduces the amount of required
enrollment data from each speaker, making it more applicable to a variety of applications
where recording large sets of enrollment data is infeasible.

A set of T feature vectors X = {xn, n = 1, 2, .., T} can be compared to the UBM
model λU and the individual speaker models λk, k denoting the speaker, by the computing

P(X belongs to speaker k)

P(X does not belong to speaker k)
=

P(λk|X)

P(λU |X)
, (2.12)

where, since feature vectors usually are assumed statistically independent,

P(λ|X) =

T∏
n

P(λ|xn). (2.13)

Computing the logarithm of Equation 2.12 gives us the log-likelihood ratio (LLR),

LLR(X, k) = log(P(λk|X))− log(P(λU |X)), (2.14)
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which in speaker recognition terms can be regarded as the score of X against the speaker
model λk.

Among normalization techniques for GMM-UBM scores, zero-normalization (z-norm-
alization) and time-normalization (t-normalization) are simple, but effective approaches.
The two methods both involves estimating the mean µnorm and variance σnorm of a sepa-
rate set of scores to compute the normalized scores LLRnorm(X, k) as shown in Equation
2.15.

LLRnorm(X, k) =
LLR(X, k)− µnorm

σnorm
(2.15)

Z-normalization compensates for inter-speaker variability [44]. The normalization pa-
rameters for speaker k are estimated from a set of scores from speakers other than k against
λk. On the other hand, t-normalization compensates for inter-session variability [44], and
its normalization parameters are estimated from scores of a feature vectorXk from speaker
k against other speaker models λl, l 6=k. Finally, z- and t-normalization can be applied in
cascade to produce zt-normalized scores (z-normalization followed by t-normalization)
and tz-normalized scores (vice versa). Varying speaker and session variability properties
will affect what normalization method that is the most appropriate.

2.8.2 Support vector machine - universal background model
The support vector machine (SVM) is a binary classifier that has proved to be quite ap-
plicable on the problem of classifying the GMM-UBM supervectors. The supervector
is obtained by stacking the mean vectors of the MAP-adapted speaker model into one
high-dimensional vector m, and the SVM classifier separates the supervectors with a hy-
perplane, trained from labeled examples. This approach is known as the SVM-UBM, and
its details can be found in [5].

As the SVM is essentially a binary classifier, the SVM-UBM is mostly utilized for
speaker verification. However, several multi-class SVMs have been proposed, and the
SVM-UBM-approach have been shown to be performing comparably to the GMM-UBM-
approach for speaker identification [1].

2.8.3 Joint factor analysis
Proposed in 2004, joint factor analysis (JFA) [19] attempts to account for weaknesses in
earlier systems when the test data is characterized by high speaker and/or session varibility.
JFA does this by factorizing the GMM supervector ms,h from speaker s and session h,
representing it as a sum of four components:

ms,h = m0 + Uxh + Vys + Dzs,h. (2.16)

In Equation 2.16, m0 is the GMM supervector, U is a matrix that spans the session sub-
space, and V and D are matrices that spans the speaker subspace. xh, ys and zs,h are
normally distributed random vectors.

As a side note, there exist various other suggested models that models the GMM super-
vector of the target speaker, one example being inter-session variability (ISV) modelling
[43], which, as opposed to JFA, only models the session variability.
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2.8.4 Identity vectors

Identity vectors, or just i-vectors, were proposed in 2009 [10]. I-vectors succeeded JFA,
and is today regarded as the state-of-the-art speaker recognition approach.

I-vectors model ms,h to consist of m0 and what is called the total variability (TV)
space, spanned by a matrix T. T represents what was in JFA divided into speaker and
session variability subspaces. The motivation of jointly modeling the separate subspaces
come from findings in [9], where the channel subspace modeling was found to also contain
speaker information. Thus, the expression for ms,h becomes

ms,h = m0 + Tws,h. (2.17)

As in Equation 2.16, w contains normally distributed variables called the total factors.
The i-vector ŵ is estimated from w using Baum–Welch statistics extracted using the UBM
[10].

After extraction of the i-vectors, classification is straightforward using support vector
machines (SVM) or, as proposed in [10], cosine-distance scoring.

Another way of classification is through probabilistic linear discriminant analysis
(PLDA), also a method of factor analysis that is similar to the JFA model, but with differ-
ent subspace matrices dimensions. Details on PLDA can be found in [35]. In the recent
years, PLDA has proved to give very good results, and is a part of today’s state-of-the art
i-vector-based speaker recognition framework [17].

2.9 System evaluation
Standalone scores themselves provide little information about the overall system perfor-
mance before they are compared to one another. This section introduces error measures in
evaluations of speaker recognition systems.

2.9.1 Acceptance and rejection

In speaker verification systems, the trial speaker provides a test utterance along with a
claimed identity, and after processing and feature extraction, the system provides a score
of the utterance against the speaker model of the claimed identity. After possible score
normalization, the score s can be compared to a set threshold θ, and is then accepted as
originating from the claimed speaker if s ≥ θ, or rejected otherwise. This decision is
summarized in Equation 2.18.

Decision{s} =

{
accept s if s ≥ θ
reject s if s < θ

(2.18)

Depending on the values of s and θ, the decision function in Equation 2.18 can decide
correctly, that is, accepting an utterance if it indeed comes from the claimed speaker,
or rejecting an utterance if it does not. Further, an incorrect decision will occur if the
function falsely accepts an utterance that is not from the claimed speaker, or if it falsely
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rejects an utterance that actually is. Thus if we look at all scores, we can define the false-
acceptance rate (FAR) as the relative number of falsely accepted utterances, and the false-
rejection rate (FRR) as the relative number of falsely accepted utterances, as summarized
in Equation 2.19.4

FAR =
number of falsely accepted utterances

total number ofspeaker trials of incorrect speakers

FRR =
number of falsely rejected utterances

total number of trials of correct speakers

(2.19)

To be able to evaluate the system independently of the decision threshold, one can calculate
the FAR and FRR for a range of values of θ. This results in some commonly used error
measures introduced in the following subsections.

2.9.2 Common error measures for speaker verification

Because of their dependency of θ, the FAR and FRR do not provide sufficient evaluation
of the system unless evaluated for a range of values of θ. One such value of θ will give
the equal error rate (EER), that occurs when FAR = FRR. The EER can summarize the
general performance of a system, and is a popular error measure used in most speaker
verification research.

The EER does not, however, consider cases where having a low FAR is more impor-
tant than keeping the FRR down, such as in verification systems with high security (and
the other way around). This has motivated the introduction of another commonly used
measure, namely the detection cost function (DCF), defined as

DCF(θ) = P(FR)C(FR)P(target) + P(FA)C(FA)(1− P(target)),

where C is a cost function which values are manually set weight the FA and FR errors
depending on the application of the verification system, P(target) the prior probability of
the target speaker, and P(FA) and P(FR) the posterior probabilities of FA and FR given θ,
nontarget and target speaker, respectively. By changing θ one finds the lowest value of the
DCF, known at the minimum DCF (minDCF).

By plotting the FAR against the FRR, we obtain the detection error tradeoff-curve
(DET) [31], which is the current standard way of plotting the system performance of
speaker recognition systems. As a supplement to the DET-curve, it is common to add the
EER and minDCF points, providing a compact representation of the system performance
that also eases comparison between different systems.

Figure 2.7 shows an example of a DET curve for a single speaker verification system,
with EER and minDCF points.

4False acceptances (FA) and false rejections (FR) are also called false positives and false negatives, respec-
tively
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Figure 2.7: An example of a DET-curve. EER and minDCF point marked as green and red, respec-
tively.

2.9.3 Error measures for speaker identification

The error measures mentioned so far have all concerned speaker verification systems.
Speaker identification is generally given less attention within speaker recognition, and es-
tablished measures exclusively for speaker identification system evaluation does not exist
to the author’s knowledge.

A speaker identification trial involves scoring the utterance in question against all mod-
els of the enrollment speakers in the set. A naive approach to classify the utterance would
be to assign it to the highest scoring model, which might be considered good enough in
a closed set setting [13]. In the case of a closed set, or in the need of a more strict clas-
sification, a global decision threshold θ can be introduced, where, as in Equation 2.18,
the utterance is rejected for all models to which it scores lower than θ. In addition, the
difference between the best scores must be taken into account, as an utterance might for
some models give scores that are very close to one another. Thus for two scores s1 and s2
in a set of scores, where s1 > s2 and s1 > θ, the decision function Decision{s} can be
defined as in Equation 2.20.

Decision{s} =

{
accept s1 if |s1 − s2| ≥ δ
reject s1 if |s1 − s2| < δ

(2.20)

Further this classification procedure gives us three distinguishable errors:
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• False acceptance (open set scenario), when an utterance from an unknown speaker
is accepted to one of the enrolled models.

• False rejection (both open and closed sets), when an utterance belongs to an enrolled
speaker, but is rejected.

• Erroneous acceptance 5 (both open and closed sets), when an utterance belongs to an
enrolled speaker, but is erroneously classified as to belong to another of the enrolled
speakers

One way of measuring the system performance of a speaker identification system is to
use the relative recognition rate,

recognition rate =
number of correctly classified utterances

total number of trials
,

and another be to plot the error rates for changing values of θ. A third would be to re-
gard all trials as speaker verification trials, using the measures introduced in the previous
section, as this would give indications of the robustness of the system also as a speaker
identification system.

2.10 Databases for speaker recognition

Speaker recognition system evaluation requires designated datasets to make results com-
parable with the results of other researchers. This section presents some of the commonly
used datasets used in today’s speaker recognition research.

Many of these datasets are managed by the Linguistic Data Consortium (LDC), an
organization that since 1992 have created and managed speech datasets for various pur-
poses. Datasets are organized in catalogue numbers that indicate year of publication and
type of data (e.g. speech, transcription). One is able to obtain datasets through individual
purchases or memberships of the LDC, giving free access to datasets published after the
date of registration [7].

2.10.1 Early speech corpora

Recording of speech corpora devoted for speech recognition research began in the 1980s,
with TIMIT as one of the most popular, still in use in many evaluations today. TIMIT,
collected by Texas Instruments (TI) and Massachusetts Institute of Technlogy (MIT), is a
collection of phonetically rich English sentences read by American speakers with different
dialects. Early databases recorded exclusively for speaker recognition include the KING
database, focusing on telephone channel variation, and the YOHO database, consisting of
digit passcodes. [27, p. 1442–1555].

5As proposed by the author, might be addressed differently in other literature.
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2.10.2 Fisher, Mixer and Switchboard
The Switchboard corpus is a series of corpora recorded in the 1990s and early 2000s
by Texas Instruments. Its catalogues consists of 8 kHz sampled recordings of English
telephone conversations in the US, where participants were automatically matched with
one another to have a conversation on a randomly selected topic [27, p. 1442–1555].

Similar to the Switchboard series, the Fisher and Mixer corpora, recorded by the LDC,
mainly consists of 8 kHz telephone conversations on prompted topics. Mixer also contains
some read speech and some speech in other languages than English.

2.10.3 NIST datasets
Since 1996, the National Institute of Standards in Technology (NIST) have held annual or
biannual competitions on text-independent speaker recognition, the latest held fall 2016
under the name NIST 2016 Speaker Recognition Evaluation (SRE16) [34]. The evalua-
tions of NIST have been a driving force for the speaker speaker recognition community,
contributing with setting standard system evaluation metrics such as the DCF, and with
each evaluation increasing levels of difficulty as system performances increase, focusing
on specific areas for each evaluation.

The data used in the NIST SRE evaluations have resulted in datasets of training and
test data named after each evaluation, of which a subset is part of the standard evaluation
protocols in speaker recognition research of today. Most of this data is recorded over noisy
telephone channels and sampled at 8 kHz.

2.10.4 The PRISM evaluation set
A standardized compilation of essential datasets was in 2011 published as the PRISM
Evaluation Set [12]. This is a large-sized publicly available dataset consisting of NIST
SRE 2004–2010 evaluations, Mixer, Fisher and Switchboard datasets, for the purpose of
evaluating systems under varying conditions such as language, channel and speaker.

2.10.5 RSR2015
The RSR2015 database [24] was collected with the purpose of providing a complete cor-
pus for text-dependent speaker recognition system evaluation, and contains speech from
300 speakers (143 female, 157 male) recorded on mobile devices, sampled at 16 kHz.
It differs from other datasets not only by being text-dependent and recorded on modern
mobile devices, but also by including utterances of different durations; short commands,
phonetically rich TIMIT sentences and digits. The corpus is in English, with speakers of
three Singaporean ethnicities. Each speaker have recorded 30 sentences, 30 commands
and 13 digit strings, all in a total of 9 different sessions on 3 different devices.

2.10.6 RedDots
In addition to the RSR2015 database, the RedDots corpus [25] is another recent effort
of creating a database with more control of sessions. Similar to RSR2015, RedDots is
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recorded using mobile devices, but focuses on not just session, but also speaker variability,
capturing different modes (e.g. healthy, stressed, ill) of a speaker through having one
session per week in one year, 52 in total. It thus differs from RSR2015 by having a large
number of sessions, with only 24 utterances of short duration per session. As of November
2016, RedDots consists 89 speakers of English speech (72 male, 17 female) from native
and non-native speakers from 21 countries [36].

2.11 Toolkits for speaker recognition
The process of setting up a framework for speech processing from scratch requires a sub-
stantial amount of work. Fortunately, various programming toolkits have been developed,
so researchers need only speech data and a parameter scheme to perform experiments.
This section mentions the existing toolkits for speaker recognition.

SPEAR [21], ALIZE [3] and SIDEKIT [23] are high-level integrated toolkits that is
made with simplicity in mind, and include example setups6. They all have non-restrictive
licenses that opens up for commercial applications.

Kaldi is a popular open-source toolkit developed for speech recognition, with has a
large community of users and contributors. It contains modules for speaker recognition
applications, and is a powerful tool very supportive of DNN approaches, however requiring
some experience before setting up own experiments. It is fully developed in C++ under a
non-restrictive license.

Finally there the MSR Identity Toolbox [39] of MATLAB, that provides a high-level
interface for speaker recogntion experiments, with the wide and powerful functionality of
MATLAB easily available. One might also mention the Hidden Markov Model Toolkit
(HTK) [45], another high-level toolkit that includes some speaker verification functional-
ity. A drawback with these two are the highly restrictive licences, making them unsuitable
for commercial usage.

6Although integrated, they all rely on som external packages and tools, most notably ALIZE, that for instance
uses SPRO and HTK for feature extraction. SIDEKIT is the most integrated solutions of these three [23].
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Chapter 3
Speaker recognition in SIDEKIT

SIDEKIT (Speaker IDEntification ToolKIT) [23] is an open-source toolkit built exclu-
sively for speaker and language recognition. With readability and comprehensiveness in
mind, it is build for easy implementation of experiments for education and research. In
[23], authors argue the need for such a toolkit by pointing out the fact that existing toolkits
are 1): written partly or fully in languages that reduces readability and makes it harder to
use for beginners in the field, and 2): dependent on other programs for certain stages of the
toolchain, such as feature extraction. Sidekit contains functionality for the full toolchain
from preprocessing of data and feature extraction to classification and system evaluation.
All its code is written in Python, with the current version (SIDEKIT 1.2.1) only tested with
Python versions 3.5 and above.

This chapter gives a short introduction to the classes and functionality of SIDEKIT,
with examples of system implementation. Note, however, that the online SIDEKIT doc-
umentation [22] contains a complete API description and tutorials for baseline speaker
recognition experiments. The summary in this chapter therefore be more of a guide to an
actual implementation, focus on a given task through all steps of the toolchain. It is as-
sumed that the reader has fundamental knowledge of Python and commonly used Python
libraries (os, random).

3.1 Classes and data organization
A speaker recognition experiment in SIDEKIT involves five classes:

• FeaturesExtractor, for feature preprocessing and extraction.

• FeaturesServer, for feature processing and “feeding” lists of training segments to
other modules.

• Mixture, for training and managing Gaussian mixture models.

• FactorAnalyser, for methods based on factor analysis (JFA, i-vectors, PLDA).
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• StatServer, for storage and processing of first and second order statistics.

In addition, SIDEKIT includes classes for managing datasets. These are adopted from
the MATLAB-based Bosaris framework [4], to be consistent with standards in speaker
recognition research. The classes are:

• IdMap, for mapping segments to speakers, used in the enrollment phase.

• Key, for storing trial information. Maps which segments that are to be scored against
which models.

• Ndx, stores information about which trials that are target trials and which that are
nontarget trials.

Finally, SIDEKIT provides the class Scores to store trials scores.
Apart from audio input formats, which are wave, sph and raw-PCM, SIDEKIT stores

and loads all its data using the HDF5-format [41], allowing for compact, binary storage of
big amounts of data. For managing HDF5-encoded files, SIDEKIT uses the h5py library
[6]. Other libraries of importance are the Theano library [42], used mainly for neural
network training, and Multiprocessing, which allows for parallel computation, often useful
for feature extraction and training procedures.

3.2 Demonstration code
It is chosen to include example code that can act as a supplementary example in addition
to the existing tutorials provided in the SIDEKIT documentation.

3.2.1 Managing datasets
As mentioned in the pervious section, datasets are managed using IdMap, Key and Ndx.
There are many ways of making lists of dataset, often defined by the structure of the
chosen dataset. For simplicity, let us assume that all the data is pre-organized in desig-
nated folders for UBM training data, enrollment data, test data, and normalization data,
respectively1. We further assume that each audio file has the following name structure.
“<gender><speaker> <session> <sentence>.ext”, where,

• gender is a letter indicating the gender of the speaker, f if the speaker is female, m
if male.

• speaker is a ID-number of the speaker.

• session is the ID-number of the session.

• sentence is the ID-number of the sentence.

• ext is the file extension.
1Directory structures tend to vary between datasets. In this case, it might be wiser to read pre-defined lists

of files (if provided), or use traversing functions like os.path.walk(), and follow the dataset protocol for defining
sets.
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With these assumptions, Listing 3.1 makes a list of audio files for UBM training, and an
IdMap object from the data in the training data directory.

1 import sidekit
2 import os
3

4 # Make ubm file list
5 ubm_data_dir = "./data/audio/ubm_data" # UBM data directory
6 ubm_list = os.listdir(ubm_data_dir) # list files in directory
7 ubm_list = ["ubm_data/"+files.split(’.’)[0] for files in ubm_list] #

remove extension and add path prefix
8

9 # Make enrollment (IdMap) file list
10 enroll_data_dir = "./data/audio/enroll_data" # enrollment data directory
11 enroll_list = os.listdir(enroll_data_dir)
12 enroll_models = [files.split(’_’)[0] for files in enroll_list] # list of

model IDs
13 enroll_segments = ["enroll_data/"+files.split(’.’)[0] for files in

enroll_list]
14

15 # Generate IdMap
16 enroll_idmap = sidekit.IdMap()
17 enroll_idmap.leftids = np.asarray(enroll_models)
18 enroll_idmap.rightids = np.asarray(enroll_segments)
19 enroll_idmap.start = np.empty(enroll_idmap.rightids.shape, ’|O’)
20 enroll_idmap.stop = np.empty(enroll_idmap.rightids.shape, ’|O’)

Listing 3.1: Preparing UBM training and enrollment data

As we shall see, adding path prefixes “ubm data” and “enroll data” allows us to use the
same FeatureExtractor object for all audio files. So before feature extraction enrollment,
let us in Listing 3.2 define the trials by defining the Key and Ndx-objects. To keep the
example simple, we assume there are at least one utterance from each of the enrollment
speakers, and that there are no utterances from speakers outside the enrollment set. With
num models enrollment speakers and test size test utterances, there can be maximum
num models · test size trials 2. The Key and Ndx objects require two aligned arrays, one
containing test segments, the other one containing the model that the corresponding test
segment in the first.

21 # Make list of test segments
22 test_data_dir = "./data/audio/test_data" # test data directory
23 test_list = os.listdir(test_data_dir)
24 test_list = ["test_data/"+files.split(’.’)[0] for files in test_list]
25

26 # Make lists for trial definition, and write to file
27 test_models = []
28 test_segments = []
29 test_labels = []
30

31 for models in enroll_models:
32 for segments in test_list:
33 test_models.append(models)
34 test_segments.append(segments)

2This is usually a relatively large number. Performing all possible trials should not be necessary for a thorough
system evaluation.
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35 # Compare gender and speaker ID for each test file
36 if files.split(’_’)[0] == models:
37 test_label.append(’target’)
38 else:
39 test_label.append(’nontarget’)
40

41 with open("./task/trial_definition.txt","w") as fh:
42 for i in range(len(test_models)):
43 fh.write(test_models[i]+’ ’+test_segments[i]+’ ’+test_labels[i]+’\

n’)
44

45 # Define Key and Ndx from text file
46 key = Key("./task/trial_definition.txt")
47 ndx = key.to_ndx()

Listing 3.2: Trial definition with Key and Ndx

Now that all audio file list are ready, this is an appropriate stage to define the Feature-
Extractor and FeaturesServer objects as exemplified in Listing 3.3. Note that the Feature-
Extractor does not extract and save features before a function for saving, such as Feature-
Extractor.save(), is explicitly called. In this example, features are extracted “on the fly”
after being passed to the FeaturesServer and then to functions for UBM training.

In Listing 3.3, the FeaturesExtractor fe is being defined for audio of with a sam-
pling frequency at 16 KHz, which, in 25 ms sized pre-emphasised windows with 10 ms
frameshift, is filtered through a 300–3400 Hz band-pass limited filterbank of size 24, and
processed into 19 MFCCs. In addition, energy-based VAD is applied, and VAD, log-
energy and MFCCs are to be passed on to the next stage. The FeaturesServer fs is then
initialized to read the parameters of fe, performing CMVN and calculating delta and delta-
delta parameters. By including “vad” in dataset list, only frames containing speech will
be passed on to the next stages.

48 # Initialize FeaturesExtractor
49 fe = sidekit.FeaturesExtractor(audio_filename_structure="./data/{}.wav",
50 feature_filename_structure=None,
51 sampling_frequency=16000,
52 lower_frequency=300,
53 higher_frequency=3400,
54 filter_bank="log",
55 filter_bank_size=24,
56 window_size=0.025,
57 shift=0.01,
58 ceps_number=19,
59 vad="energy",
60 pre_emphasis=0.97,
61 save_param=["vad","energy","cep"],
62 keep_all_features=False)
63

64

65 # Initialize FeaturesServer
66 fs = sidekit.FeaturesServer(features_extractor=fe,
67 feature_filename_structure=None,
68 sources=None,
69 dataset_list=["vad","energy","cep"],
70 mask=None,
71 feat_norm="cmvn",
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72 global_cmvn=None,
73 dct_pca=False,
74 dct_pca_config=None,
75 sdc=False,
76 sdc_config=None,
77 delta=True,
78 double_delta=True,
79 delta_filter=None,
80 context=None,
81 traps_dct_nb=None,
82 rasta=False,
83 keep_all_features=False)

Listing 3.3: Initialization of the FeatureExtractor and FeaturesServer objects

3.2.2 Model training and adaptation
With the groundwork done, the next step is to use our UBM data list and IdMap for UBM-
training and speaker enrollment. SIDEKIT allows more than one implementation of the
EM algorithm; this example uses the EM split() algorithm. The EM split() algorithm ap-
plies the expectation and maximization steps starting with one mixture component, then
two, then four, until the specified number of distribution, distrib nb, is reached. The num-
ber of EM iterations for each doubling is set by the parameter iterations (omitted in this
example). EM split() also allows for parallell computation, the number of processes set
by num thread. Listing 3.4 gives an example where a 512-mixture GMM using 8 parallel
processes, producing the output llk, a list of log-likelihood values after each EM iteration.

84 # Initialize and train 512 mixture GMM
85 ubm = sidekit.Mixture()
86 llk = ubm.EM_split(features_server=fs,
87 feature_list=ubm_list,
88 distrib_nb=512,
89 num_thread=8,
90 save_partial=False)
91 ubm.write(’ubm.h5’) # save the UBM

Listing 3.4: UBM training

With the UBM is is now possible to adapt speaker models with the enrollment data
defined in enroll idmap. Computation of sufficient statistics and MAP adaptation is shown
in Listing 3.5.

92 # Create StatServer for the enrollment data
93 enroll_stat = sidekit.StatServer(statserver_file_name=enroll_idmap,
94 distrib_nb=512,
95 feature_size=60)
96 # Compute the sufficient statistics
97 enroll_stat.accumulate_stat(ubm=ubm,
98 feature_server=fs,
99 seg_indices=range(enroll_stat.segset.shape[0]),

100 num_thread=8)
101 enroll_stat.write(’data/enroll_stat.h5’)
102

103 # MAP adaptation of enrollment speaker models
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104 regulation_factor = 3 # MAP regulation factor
105 enroll_sv = enroll_stat.adapt_mean_map_multisession(ubm=ubm,
106 r=regulation_factor)

Listing 3.5: MAP adaptation

3.2.3 Scoring and evaluation
For a GMM-UBM framework, we now have all necessary components to score the test
segments against enrolled models. Listing shows how SIDEKIT allows for simple scoring.
The function gmm scoring() returns a Scores object.

107 # Compute scores
108 scores_gmm_ubm = sidekit.gmm_scoring(ubm=ubm,
109 enroll=enroll_sv,
110 ndx=test_ndx,
111 feature_server=features_server,
112 num_thread=nbThread)
113 scores_gmm_ubm.write(’gmm_ubm_scores.h5’)

Listing 3.6: Scoring of test segment against enrolled models

Raw scores provides little insight, but SIDEKIT provides functionality for computing
EER and minDCF, as well as DET-curve plotting, which is based on the Matplotlib library.
The example in Listing 3.7 shows an example on how this could be done, inspired by the
online SIDEKIT tutorial examples. The resulting figure will be similar to the DET-plot
presented in Figure 2.7.

114 # Make DET plot
115 prior = sidekit.logit_effective_prior(0.01, 10, 1)
116 dp = sidekit.DetPlot(window_style=’sre10’, plot_title=’Scores GMM-UBM’)
117 dp.create_figure()
118 dp.set_system_from_scores(scores_gmm_ubm, key, sys_name=’GMM-UBM’)
119 dp.plot_rocch_det()
120 dp.plot_DR30_both(idx=0)
121 dp.plot_mindcf_point(prior, idx=0)
122

123 dp.show() # Display figure
124 dp.__figure__.savefig(’DET_GMM_UBM.png’) # Save figure

Listing 3.7: Plotting the DET curve with EER and minDCF points

3.2.4 I-vector system
With version 1.2, released early 2017, SIDEKIT included the FactorAnalyser()-class, sim-
plifying implementation of the i-vector toolchain. By keeping the variables from the previ-
ous section, and assuming that we already have prepared IdMaps tv idmap and plda idmap
for TV- and PLDA-matrix training, respectively, Listing 3.8 prepares the i-vector experi-
ments by training a TV matrix of dimension 400 with 10 iterations.

125 # Create a joint StatServer for TV and PLDA training data
126 back_idmap = plda_idmap.merge(tv_idmap)
127 back_stat = sidekit.StatServer(statserver_file_name=back_idmap,
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128 distrib_nb=512,
129 feature_size=60)
130

131 # Jointly compute the sufficient statistics of TV and PLDA data
132 # and write to ’data’ directory
133 back_stat.accumulate_stat(ubm=ubm,
134 feature_server=fs,
135 seg_indices=range(back_stat.segset.shape[0]),
136 num_thread=8)
137 back_stat.write(’data/stat_back.h5’)
138

139 # Load the sufficient statistics from TV training data
140 tv_stat = sidekit.StatServer.read_subset(’data/stat_back.h5’, tv_idmap)
141 tv_stat.write(’data/tv_stat.h5’)
142

143 # Train TV matrix using FactorAnalyser
144 fa = sidekit.FactorAnalyser()
145 fa.total_variability(’data/tv_stat.h5’,
146 ubm=ubm,
147 tv_rank=400,
148 nb_iter=10,
149 output_file_name=’data/TV_matrix’,
150 num_thread=8)
151 tv = fa.F # TV matrix
152 tv_mean = fa.mean # Mean vector
153 tv_sigma = fa.Sigma # Residual covariance matrix

Listing 3.8: Compute sufficient statistics and train a 400-dimensional TV matrix training

With the TV-matrix and IdMaps, the next step is to extract the i-vectors from en-
rollment, test and PLDA data. Listing 3.9 shows the example code. It is assumed that
the sufficient statistics of the test data have been computed in advance and written to
‘data/test stat.h5’, as in Listing 3.5.

154 # Extract i-vectors from enrollment data
155 enroll_iv = fa.extract_ivectors(ubm=ubm,
156 ’data/enroll_stat.h5’,
157 num_thread=8)
158

159 # Extract i-vectors from test data
160 test_iv = fa.extract_ivectors(ubm=ubm,
161 ’data/test_stat.h5’,
162 num_thread=8)
163

164 # Load sufficient statistics and extract i-vectors from PLDA training data
165 plda_stat = sidekit.StatServer.read_subset(’data/back_stat.h5’,
166 plda_idmap)
167 plda_stat.write(’data/plda_stat.h5’)
168 plda_iv = fa.extract_ivectors(ubm=ubm,
169 ’data/plda_stat.h5’,
170 num_thread=8)

Listing 3.9: Extraction of i-vectors from enrollment, test and PLDA training data

Now, cosine distance scoring is straightforward. An example implementation is shown
in Listing 3.10.

171 # Do cosine distance scoring and write results
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172 scores_ivector_cos = sidekit.iv_scoring.cosine_scoring(enroll_iv,
173 test_iv,
174 ndx,
175 wccn=None)
176

177 # Write scores
178 scores_cos.write(’scores/scores_ivector_cos.h5’)

Listing 3.10: Cosine distance scoring of extracted i-vectors from enrollment and training data.

Finally, Listing 3.11 shows the training of a 400-dimensional PLDA matrix, followed
by PLDA scoring.

179 # Train PLDA matrix
180 fa_plda = sidekit.FactorAnalyser()
181 fa_plda.plda(stat_server=plda_iv,
182 rank_f=400,
183 nb_iter=10,
184 scaling_factor=1,
185 output_file_name=PLDA_matrix,
186 save_partial=False)
187

188 # Perform PLDA scoring
189 scores_plda = sidekit.iv_scoring.fast_PLDA_scoring(enroll=enroll_iv,
190 test=test_iv,
191 ndx=ndx,
192 mu=fa_plda.mean,
193 F=fa_plda.F,
194 Sigma=fa_plda.Sigma)
195

196 # Write scores
197 scores_plda.write(’scores/scores_ivector_plda.h5’)

Listing 3.11: PLDA matrix training and PLDA scoring.

After scoring the extracted i-vectors, the scores can be evaluated the same way as
shown in Listing 3.7.
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Chapter 4
Experiments

This section presents the experiments conducted on GMM-UBM and i-vector systems.
A setup for bottleneck feature extraction is included, although no experiments have been
conducted on this system. The task scenario and global conditions are described first, fol-
lowed by model-specific parameters, then finally the experimental results with discussion.

4.1 Task scenario
The training and test protocols are defined with a video conference scenario in mind. The
system in use will be similar to the one presented in Figure 2.3, a group of people in a
meeting room engaged in a video conference. The conference system has a digital as-
sistant that remains inactive until evoked by a short predefined wake word. The assistant
is to recognize and execute the command that shortly follows after the wake word. The
action of the assistant may vary depending on the speaker, as if for instance the question
“<Wake word>, how does my schedule look tomorrow” was to be asked. The assistant
must therefore be able to distinguish between speakers; investigating techniques for such
a feature has been the purpose of the experiments presented in this section.

It is assumed that the underlying system provides functionality for recording, speech
recognition, transcription and wake word detection. Further, the available enrollment data
limited to a few sentences, as the enrollment of new speakers must be easily done. There
is apart from these constraints, unlimited computational resources to allow instant scoring
of incoming utterances, as well as unlimited speech data from other meetings and speakers
for background model training.

4.2 Global conditions
The protocol in the experiments has been inspired by the GMM-UBM and i-vector tutorials
of the SIDEKIT documentation [22], as well as the papers [24] and [29]. All training and
experiments have been conducted using the SIDEKIT toolkit, exept phonetic alignment
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that was done in Kaldi, in addition to contributions by the author where needed. Essential
parts of the code is found in the Appendix.

4.2.1 Enrollment and test data
For enrollment and test data, data from the RSR2015 database [24] were used. The
speaker, session and utterance structure of RSR2015 is as described in the implementa-
tion example in Section 3.2.1. Of the 143 female and 157 male speakers, speakers with
speaker ID 1–50 were used as evaluation speakers, speakers with ID 51–100 were used
for estimation of normalization parameters for z-, t-, zt- and tz-normalization, while the
remaining speakers were used for training a complementary model.

To be consistent with the mentioned task scenario, the enrollment data has been re-
stricted, but varied between three, six and nine sentences with sentence IDs 1–3, 1–6 and
1–9, respectively. For each enrollment speakers these have been randomly picked from
three RSR2015 sessions, session IDs {1,4,7}, that have been recorded with the same de-
vice for each session.

For system evaluation, the test data have been constructed by choosing utterance ID
32 as a global wake word1, and concatenating it with randomly selected I) commands with
ID 33–60, and II) sentences with ID 10–30. Test sets I) and II) of two different sizes
were chosen to investigate the effects of increased amounts of test data on the different
systems. To maximize the session mismatch between enrollment and test data, the test
data was chosen from different sessions than the enrollment data, that is, from session IDs
{2,3,5,6,8,9}.

Average durations of all sentences and commands used 3.20 s and 1.99 s, respectively
[24].

4.2.2 Feature extraction parameters
All data used for model training, normalization and testing was subject to feature ex-
traction with the same parameters. The data was segmented in window sizes of 20 ms,
and frame shifts of 10 ms, then a pre-emphasis filtered as described in Equation 2.7 with
α = 0.97, followed by SNR-based VAD, then band-pass filtered with lower and upper
frequencies 300 and 3400 Hz, respectively. From a filterbank of 24 filters, 19 MFCCs
were extracted and normalized with CMVN and RASTA filtering. Delta and delta-delta
parameters were estimated, resulting in a feature vector of size 57.

4.2.3 System evaluation
The systems have been evaluated both as speaker identification systems and verification
systems. The identification task was done as an open set task, where 100 groups of 10
speakers were randomly drawn from the set of the 50 male and 50 female enrollment
speakers. Then, for each set, 8 of the speakers were enrolled to the system and labeled as
known speakers, and the remaining 2 speakers were labeled unknown. An utterance from
each speaker in the set was then scored against all enrolled models and the complementary

1“Watch cartoon”
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model, and after normalization techniques subject to decision with thresholding and score
difference criterions described in Section 2.9.3.

Speaker verification results were obtained by simply using the “raw” and normalized
scores from the speaker identification experiments, but regarding each trial as an inde-
pendent speaker verification trial. Only scores from enrollment speakers and models, in
addition to scores against the complementary model, were included in the evaluations.
That is, no results involving the normalization speakers and models were included in the
speaker verification evaluation, only normalized scores.

4.3 Modeling
This section presents the individual parameters of the GMM-UBM-, i-vector- and bottleneck-
feature-based systems.

4.3.1 GMM-UBM system
A 1024 mixture UBM was trained on a 1000 segments of duration 5 minutes, randomly
selected from the datasets Switchboard Cellular 1 and 2, NIST SRE 2004, 2005, 2006
(training set only) and 2008. Test-data for estimation of z-normalization parameters were
of the same amount as test set sizes I) and II), but was randomly drawn from all 9 sessions.
Models for t-normalization was enrolled the same way as the enrollment speakers. All
normalization was gender-dependent. The evaluated sets of scores include “raw” scores
(abbreviated to ‘raw’), z-normalized (‘z-norm’), t-normalized (‘t-norm’), zt-normalized
(‘zt-norm’) and tz-normalized (‘tz-norm’) scores.

4.3.2 I-vector-based system
The same UBM as in the GMM-UBM system was used A TV-matrix of dimension 400
was trained on the complete datasets Switchboard Cellular 1 and 2, NIST SRE 2004, 2005,
2006 (training set only) and 2008. Scoring was done with cosine distance and PLDA,
for which a PLDA matrix of dimension 400 was been trained on the same data as the
TV-matrix, but not including Switchboard Cellular 1 and 2. Further, scores after cosine-
distance scoring were normalized with WCCN and LDA, and the two combined. The LDA
normalization reduced the 400-dimensional i-vectors to 150-dimensions.

Summarized, the evaluated sets of scores include cosine distance scores (abbreviated to
‘cos’), cosine distance with WCCN (‘cos+wccn’), cosine distance with LDA (‘cos+lda’),
cosine distance with WCCN and LDA combined (‘cos+lda+wccn’), and finally, PLDA-
scoring (‘plda’).

4.3.3 Bottleneck features
A phonetically aligned neural network was configured to train on the Fisher English part
1 dataset. The phonetical alignment was done using the Fisher English tutorial example of
Kaldi2.

2In the latest version of Kaldi, this is located in Kaldi/egs/fisher english.
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4.4 Results and discussion
This section presents and discusses the results from the GMM-UBM and i-vector system
experiments.

4.4.1 Speaker identification results
Figure 4.1 shows the maximal recognition rates of all systems for the different amounts of
enrollment data and test sets I) and II). It shows that the GMM-UBM system gives the best
performance when for all sets of scores, most notably with the tz-normalized scores, that
has a maximum of 81.3 % for 6 enrollment sentences and test set II), significantly better
than all other score sets. The other GMM-UBM-based scores behave more synchronously,
suggesting that the other normalization techniques fail to do fulfill their purposes. Adding
more test data increases the gap between the tz-normalized scores and the other sets, a
sign that the enrolled models lack robustness when facing increased phonetic and session
variability, but that tz-normalization does a good job to alleviate the problem.

Figure 4.1: Recognition rates for GMM-UBM and i-vector systems versus enrollment and test data.
Upper left: GMM-UBM recognition rates for test set I). Upper right: GMM-UBM recognition rates
for test set II). Bottom left: I-vector recognition rates for test set I). Bottom right: I-vector recognition
rates for test set II).

The i-vector-based scores seems less affected by the increased test data, except for a
slight increase in the PLDA-set recognition rates. However, contrary to what might be
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expected, the GMM-UBM-based system clearly performs better than the i-vector-based
system. This motivates a control of the system parameters.

One reason for the difference in results might be the mismatch between enrollment/test
and training data. Recall from Section 2.10 that the UBM, TV and PLDA training data
only consist of 8kHz, noisy telephone data with conversational American English speech,
while the enrollment and test data is trained on RSR2015, 16 kHz, cleaner, text-dependent
Singaporean English. Despite preprosessing and normalization techniques, this mismatch
might play a role in the explanation of the result mismatch. As the TV and PLDA matrices
require significantly more training data than the UBM, the i-vector-based system is more
affected by this mismatch, strengthening this theory.

Figure 4.2: Maximum relative recognition rates of the GMM-UBM and i-vector systems, using 3
enrollment sentences. Upper left: GMM-UBM relative recognition rates for test set I). Upper right:
GMM-UBM relative recognition rates for test set II). Bottom left: I-vector relative recognition rates
for test set I). Bottom right: I-vector relative recognition rates for test set II).

As explained in Section 2.9.3, the recognition rate is a sum of the correctly recognized
target trials and correctly rejected nontarget trials. To provide insight on which of these
two categories that contribute to the recognition rates, the relative recognition rates with
respect to known/unknown speaker trials are presented in Figure 4.3, for 3 enrollment
sentencs and test data sets I) and II). The blue bars are the number of correctly accepted
known (enrolled) speaker trials, divided by the total amount of known speaker trials, while
the green bars are the number of correctly rejected unknown speaker trials, divided by the
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total amount for known speaker trials. In numbers, the total amount of known speaker
trials are 8 known speakers · 100 sets = 800 trials, and the number of unknown speaker
trials are 2 unknown speakers · 100 sets = 200 trials.

An initial observation is how the GMM-UBM-based system not only performs bet-
ter, but also have higher levels of security than the i-vector-based system by successfully
rejecting significantly more utterances from unknown speakers. Next, note how the GMM-
UBM-based system is more affected by the increased test data. For all normalization meth-
ods, only the tz-normalized score set seems to fully benefit from increasing to test set II),
its known speaker recognition rate staying constant while its unknown speaker recognition
rate increases.

Now, one might expect both the unknown and known recognition rates to increase
with more enrollment and test data – why is not this the case? After all, more data equals
more evidence that the system could use to make more correct decisions. The i-vector-
based system seems unaffected by this increase in data, suggesting that the system has al-
ready reached its full potential in terms of speaker modeling. And while the tz-normalized
GMM-UBM-based score set benefits from the inceased data, the rest of the sets do not,
meaning that we might draw the same conclusion for the GMM-UBM-based system, and
that the tz-normalization indeed does a good job, albeit failing to reject as many unknown
speakers as the other GMM-UBM normalization methods. In the following section, the
system scores are evaluated from a speaker verification, confirming the speaker identifica-
tion results.

4.4.2 Speaker verification results

Speaker verification tests using 3 enrollment sentences and test set I) are summarized in
Figure 4.3 3, with DET-curves, EER and minDCF values. Reflecting what was found in
the identification tests, the GMM-UBM system clearly performs better than the i-vector
system, again with the tz-normalized score set far better than the other sets, with an EER
of 7.8 %.

Not to repeat the discussion of the speaker identification results, let us briefly move
our attention to the minDCF values. The i-vector system minDCF values are much higher,
reflecting the poor rejection performances shown in Figure 4.2. For the GMM-UBM-
scores, the minDCF values are lower for raw scores and z-, t- and zt-normalized scores,
again reflecting the rejection performances in Figure 4.2.

4.4.3 Discussion

As the previous sections have shown, there is little doubt that the GMM-UBM system
performs better that the i-vector based system for all normalization and scoring meth-
ods, contrary to what would be expected, as the i-vector is considered the state-of-the-art
speaker recognition model.

As a comparison with another study, see Figure 7 b) in [24], where an i-vector system
comparable to the one used in this task has been tested on short commands from RSR2015,

3DET curves for increased amounts of enrollment and test data are omitted due to similarity.
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Figure 4.3: DET-curves of all GMM-UBM and i-vector score sets, using 3 enrollment sentences
and test set I).

giving an EER of 11.26 % and a minDCF of 46.93. This is better than the i-vector system
results in this task, although not better than the best GMM-UBM-based system. However,
Figure 7 a) in the same study shows an improvement when the i-vector-based system is
tested on the RSR2015 sentences, with an EER of 4.03 % and minDCF of 21.39. As
our i-vector system shows no improvement on similar conditions, i.e. on test set II), this
suggests that our i-vector system should be subject to further investigation, for instance by
using UBM and/or TV-matrix training data of another character. Not forgetting the lack of
improvement despite increased enrollment data, the UBM-GMM-system should possibly
be evaluated on a different UBM – this to confirm/reject the results, due to their character.

In addition, an evaluation would not be complete without a study of how well recently
successful approaches, such as bottleneck features, would apply to the same experimental
setup.
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Chapter 5
Conclusion

In recent years, smart, speech-driven applications have grown in number and with increas-
ing performance. However, despite their recent introduction to smart speakers, speaker
identification techniques have yet to enter the market with a strong presence.

This thesis has investigated speaker identification of utterances of the form wake word
+ command in a video conference scenario. A task description and assumptions have been
made, and relevant theory and possible approaches have been summarized. Implemen-
tations of GMM-UBM-, i-vector- and bottleneck feature-based systems have been done
using the SIDEKIT toolkit for speaker identification, for which an introductory guide has
been included in the thesis. Speaker identification and verification experiments have been
run on the GMM-UBM- and i-vector-based systems with varying amounts of enrollment
and test data. With different normalization and scoring techniques, a total of 10 different
approaches have been evaluated.

The GMM-UBM-system have given the best results, with the tz-normalized score set
giving a recognition rate of 81.3 % and an EER of 7.8 %. The systems have displayed
little improvements for increased enrollment and test data, and mismatch between training
and enrollment/test data might be a possible explanation for this. However, it is suggested
that these results are reconfirmed with more carefully selected and processed UBM and
TV-matrix training data.

For future work, it is encouraged to include the implementation of bottleneck features-
based systems, also extending with tandem features (as described in Section 2.6.4), as they
have shown to be the most promising among the newly proposed deep-features. Finally, for
optimization, it is possible to use the wake word to view the task as semi-text-dependent,
thus including a temporal aspect in the modeling, as presented in [24]. Hopefully, this
thesis has laid the groundwork for further development within the task scenario.
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doctorat en génie. École de technologie supérieure, 2009.

[10] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, , and P. Ouellet. Front-end fac-
tor analysis for speaker verification. IEEE Trans. Audio, Speech, Lang. Process.,
19(4):788–798, 2011.

41

https://sites.google.com/site/bosaristoolkit/home
https://sites.google.com/site/bosaristoolkit/home
http://h5py.alfven.org
https://www.ldc.upenn.edu/language-resources/data/obtaining
https://www.ldc.upenn.edu/language-resources/data/obtaining


[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society Series B, 39(1):1–
38, 1977.

[12] L. Ferrer, H. Bratt, L. Burget, H. Cernocky, O. Glembek, M. Graciarena, A. Lawson,
Y. Lei, P. Matejka, O. Plchot, et al. Promoting robustness for speaker modeling in
the community: the prism evaluation set. In Proceedings of NIST 2011 workshop.
Citeseer, 2011.

[13] S. Furui. An overview of speaker recognition technology. In Automatic speech and
speaker recognition, pages 31–56. Springer, 1996.

[14] D. Garcia-Romero and A. McCree. Insights into deep neural networks for speaker
recognition. In Sixteenth Annual Conference of the International Speech Communi-
cation Association, 2015.

[15] S. Ghalehjegh and R. C. Rose. Deep Bottleneck features for i-vector based text-
independent speaker verification. IEEE Workshop on ASRU ’15, 2015.

[16] C. Greenberg, A. Martin, D. Graff, L. Brandschain, and K. Walker. 2010 NIST
Speaker Recognition Evaluation Test Set, LDC2017S06. Hard Drive, 2017.

[17] J. H. Hansen and T. Hasan. Speaker recognition by machines and humans, a tutorial
review. IEEE Signal Processing Magazine, pages 74–99, 2015.

[18] H. Hermansky and N. Morgan. Rasta processing of speech. IEEE transactions on
speech and audio processing, 2(4):578–589, 1994.

[19] P. Kenny. Joint factor analysis of speaker and session variability: Theory and algo-
rithms. Technical report, CRIM, 2005.

[20] L. G. Kersta. Voiceprint identification. The Journal of the Acoustical Society of
America, 34(5):725–725, 1962.

[21] E. Khoury, L. E. Shafey, and S. Marcel. Spear: An open source toolbox for speaker
recognition based on Bob. In IEEE Intl. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), 2014.

[22] A. Larcher, K. Aik Lee, and S. Meignier. SIDEKIT Documentation - home. http:
//lium.univ-lemans.fr/sidekit/. Accessed: 2017-06-03.

[23] A. Larcher, K. Aik Lee, and S. Meignier. An extensible speaker identification sidekit
in Python. ICASSP ’16, pages 5095–5099, 2016.

[24] A. Larcher, K. A. Lee, B. Ma, and H. Li. Text-dependent speaker verification: Clas-
sifiers, databases and rsr2015. Speech Communication, 60:56–77, 2014.

[25] K.-A. Lee, A. Larcher, G. Wang, P. Kenny, N. Brümmer, D. A. van Leeuwen,
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nockỳ. Analysis of dnn approaches to speaker identification. In Acoustics, Speech
and Signal Processing (ICASSP), 2016 IEEE International Conference on, pages
5100–5104. IEEE, 2016.

[33] Merriam-Webster.com. Voiceprint. https://www.merriam-webster.com/
dictionary/voiceprint, 2017. Accessed: 2017-05-23.

[34] N. I. of Standards and Technology. The NIST 2016 speaker recognition evaluation
plan. https://www.nist.gov/sites/default/files/documents/
2016/10/07/sre16_eval_plan_v1.3.pdf. Accessed: 2017-06-05.

[35] Prince, Simon JD and Elder, James H. Probabilistic linear discriminant analysis for
inferences about identity. In 2007 IEEE 11th International Conference on Computer
Vision, pages 1–8. IEEE, 2007.

[36] T. R. Project. Weekly update, week 90. https://sites.google.com/site/
thereddotsproject/data-collection-weekly-update, 2017. Ac-
cessed: 2017-06-05.

[37] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted
gaussian mixture models. Digital signal processing, 10(1-3):19–41, 2000.

[38] F. Richardson, D. Reynolds, and N. Dehak. Deep neural network approaches to
speaker and language recognition. IEEE Signal Processing Letters, 22(10):1671–
1675, 2015.

43

https://www.merriam-webster.com/dictionary/voiceprint
https://www.merriam-webster.com/dictionary/voiceprint
https://www.nist.gov/sites/default/files/documents/2016/10/07/sre16_eval_plan_v1.3.pdf
https://www.nist.gov/sites/default/files/documents/2016/10/07/sre16_eval_plan_v1.3.pdf
https://sites.google.com/site/thereddotsproject/data-collection-weekly-update
https://sites.google.com/site/thereddotsproject/data-collection-weekly-update


[39] S. O. Sadjadi, M. Slaney, and L. Heck. MSR Identity Toolbox v1.0: A MATLAB
Toolbox for Speaker Recognition Research. Technical Report MSR-TR-2013-133,
Microsoft Research Technical Report, September 2013.

[40] S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement of the
psychological magnitude pitch. The Journal of the Acoustical Society of America,
8(3):185–190, 1937.

[41] The HDF Group. Hierarchical Data Format, version 5, 1997-2017. http://www.
hdfgroup.org/HDF5/.

[42] Theano Development Team. Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[43] R. Vogt and S. Sridharan. Explicit modelling of session variability for speaker veri-
fication. Computer Speech & Language, 22(1):17–38, 2008.

[44] S.-C. Yin, R. Rose, and P. Kenny. Adaptive score normalization for progressive
model adaptation in text independent speaker verification. In Acoustics, Speech and
Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages
4857–4860. IEEE, 2008.

[45] S. Young and S. Young. The HTK Hidden Markov Model Toolkit: Design and
Philosophy. Entropic Cambridge Research Laboratory, Ltd, 2:2–44, 1994.

[46] X.-L. Zhang and J. Wu. Denoising deep neural networks based voice activity detec-
tion. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 853–857. IEEE, 2013.

44

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/

	English summary
	Norwegian summary
	Table of Contents
	List of Figures
	Abbreviations
	Introduction
	Theory
	Speaker recognition
	An automatic speaker identification framework
	Statistical background
	Gaussian mixture model
	Neural networks

	Sources of variability in speech
	Sampling and preprocessing speech
	Sampling
	Pre-emphasis filtering
	Framing and windowing
	Voice-activity detection

	Feature extraction
	Mel-frequency cepstral coefficients
	Mel-filterbank coefficients
	Delta-features
	Deep features

	Speech modeling
	Hidden Markov models
	Phonetically aware neural networks

	Speaker modeling
	GMM-UBM with maximum a-posteriori adaptation
	Support vector machine - universal background model
	Joint factor analysis
	Identity vectors

	System evaluation
	Acceptance and rejection
	Common error measures for speaker verification
	Error measures for speaker identification

	Databases for speaker recognition
	Early speech corpora
	Fisher, Mixer and Switchboard
	NIST datasets
	The PRISM evaluation set
	RSR2015
	RedDots

	Toolkits for speaker recognition

	Speaker recognition in SIDEKIT
	Classes and data organization
	Demonstration code
	Managing datasets
	Model training and adaptation
	Scoring and evaluation
	I-vector system


	Experiments
	Task scenario
	Global conditions
	Enrollment and test data
	Feature extraction parameters
	System evaluation

	Modeling
	GMM-UBM system
	I-vector-based system
	Bottleneck features

	Results and discussion
	Speaker identification results
	Speaker verification results
	Discussion


	Conclusion
	Bibliography

