
Camera-assisted Dynamic Positioning of
ROVs

Andreas Viggen Henriksen

Marine Technology

Supervisor: Roger Skjetne, IMT

Department of Marine Technology

Submission date: June 2016

Norwegian University of Science and Technology

NTNU Trondheim
Norwegian University of Science and TechnologyDepartment of Marine Technology

MSC THESIS DESCRIPTION SHEET
Name of the candidate: Andreas Viggen Henriksen
Field of study: Marine control engineering
Thesis title (Norwegian): Kamera-assistert dynamisk posisjonering av ROV
Thesis title (English): Camera-assisted dynamic positioning of ROVs
BackgroundThere has been an increased interest in research and development of technical solutions for underwater
vehicles. We now possess the necessary knowledge and technology to perform complex underwater
operations with high precision, such as seabed mapping, online underwater monitoring, subsea
installations, and maintenance on pipes. There are many types of Unmanned Underwater Vehicles
(UUVs) on the commercial market. Remotely Operated Vehicles (ROVs) and Autonomous Underwater
Vehicles (AUVs) are most common. In most cases, underwater vehicles are expensive and not
affordable to private consumers. Lately, a focus has been to develop low-cost solutions. In a student
project by the candidate, he and Stian Skaalvik Sandøy assembled a fully actuated mini-ROV, named
ROV uDrone, based on a “BlueROV Kit” from BlueRobotics. This kit came with a body frame, an
electronics tube, and 6 thrusters. Other necessary electronics in the tube, power supply equipment, and
relevant sensors for motion control were identified and acquired. The control system hardware and
software were then designed based on the Robot Operating System (ROS), implemented, and
successfully tested in MC-Lab. The ROV uDrone will be used for further development of camera-
assisted dynamic positioning (CADP) control system algorithms in this master thesis.
Work description1. Perform a background and literature review to provide information and relevant references on:

Low-cost, consumer-grade, inspection ROVs entering the market.
Use of computer vision, machine vision, etc. for positioning control of robots and vehicles.
Available and relevant open source graphical software packages.
Image processing techniques such as thresholding, object detection, feature detection and
tracking, etc.

Write a list with abbreviations and definitions of terms, explaining relevant concepts related to the
literature study and project assignment.

2. Present the power system single line diagram, control system hardware layout, control system
software topology, payload system, and signal communication topology for ROV uDrone.

3. Develop and implement an AutoHeading control function for the ROV uDrone, that based on a yaw
measurement signal ensures tracking of a desired heading from a reference filter.

4. Explain in particular the onboard camera, the feed of camera images through the system (the RPi2
CSI) to the user, and how the camera images are available to the control system. Make a
quantitative estimate of the lag in image data flow – from image acquisition to HMI, and from
acquisition to the control loop. Discuss the effect of the respective lag in the control loop and the
influence on the user perception.

5. Consider feature detection and tracking of simple geometries, and how to generate control error
signals from movement of the feature in the camera images. Determine how this can be used to
control the position and pose of the ROV, such as the longitudinal distance (object grows or
shrinks), transversal (and vertical) motion (object translates), and yawing to keep the feature in
view.

NTNU Faculty of Engineering Science and Technology
Norwegian University of Science and Technology Department of Marine Technology

2

6. Develop CADP control algorithm(s) to control the ROV to a steady position and attitude using the
feedback signals from the feature detection image processing algorithms and gyrocompass.

Test and present the efficiency of the CADP algorithm in a deterministic case.
Implement the CADP algorithm for the uDrone and test in MC-Lab.
Discuss pros and cons with the algorithm.

7. Consider a setup with at least 2 or more parallel laser lights on an underwater feature. Given any
two laser reflection points and assuming the underwater feature is flat and normal to the laser
beams:

Calculate the distance to the feature given the configuration of the laser lights and lens
geometries.
Develop a “constant distance” automatic positioning mode for the ROV.
Implement and test in MC-Lab.

8. With more than two parallel laser lights, is it possible to control more degrees of? If so, develop
algorithm, implement, and test in MC-Lab.

GuidelinesThe scope of work may prove to be larger than initially anticipated. By the approval from the supervisor,
described topics may be deleted or reduced in extent without consequences with regard to grading.
The candidate shall present personal contribution to the resolution of problems within the scope of work.
Theories and conclusions should be based on mathematical derivations and logic reasoning identifying the
various steps in the deduction.
The report shall be organized in a logical structure to give a clear exposition of background, results,
assessments, and conclusions. The text should be brief and to the point, with a clear language. The report
shall be written in English (preferably US) and contain the following elements: Title page, abstract,
acknowledgements, thesis specification, list of symbols and acronyms, table of contents, introduction and
background, problem formulations, scope, and delimitations, main body with derivations/developments and
results, conclusions with recommendations for further work, references, and optional appendices. All
figures, tables, and equations shall be numerated. The original contribution of the candidate and material
taken from other sources shall be clearly identified. Work from other sources shall be properly
acknowledged using quotations and a Harvard citation style (e.g. natbib Latex package). The work is
expected to be conducted in an honest and ethical manner, without any sort of plagiarism and misconduct.
Such practice is taken very seriously by the university and will have consequences. NTNU can use the
results freely in research and teaching by proper referencing, unless otherwise agreed upon.
The thesis shall be submitted with a printed and electronic copy to the main supervisor, each copy signed by
the candidate. The final revised version of this thesis description must be included. The report must be
submitted according to NTNU procedures. Computer code, pictures, videos, data series, and a PDF version
of the report shall be included electronically with all submitted versions.
Start date: 15 January, 2016 Due date: As specified by the administration.
Supervisor: Roger Skjetne
Co-advisor(s): Mauro Candeloro

Trondheim, 31.05.2016

Roger SkjetneSupervisor

i

Preface

This document is concluding my master thesis within Marine Cybernetics as part of the study

program Marine Technology at NTNU. The work in this theses has been carried out from Jan-

uary to June 2016. The project has been both challenging and exciting with many new concepts

to get familiar with. It has been great to have such a practical project in order to really under-

stand how the system behaves in reality, with all the different parts of a control system in an ROV.

Trondheim, 10. juni 2016

Andreas Viggen Henriksen

ii

Abstract

When ROVs are operated with manual joysticks, the user will experience a lack of control be-

cause of currents and drag forces from the umbilical. This will induce undesirable oscillations

and motions that are hard to compensate for manually. With the use of computer vision, it is

possible to enhance control performance in unknown waters. This can be done by finding an

object that stands still on the bottom, and have the ROV track a feature on that object. The ROV

should then be able to lock visually on to this "target". Now the proposed Feature Tracking al-

gorithm is telling the system where the object is along with its size. The algorithm can be used

with different combinations of manual input, depending on what degrees of freedom the user

wants to control himself.

The thesis also proposes a module called Range Finder, that finds the distance to the object

or wall in front of the ROV. The distance estimate is obtained based on two parallel lasers that

project two laser dots on the wall. The distance between these dots is then measured with use

if computer vision, that counts the amount of pixels between them. This number will change

depending on the distance from the wall to the ROV. A mapping is, therefore, found to give dis-

tance directly in meters instead of pixels. This module is also combined with different control

modes that allow features such as automatic distance control in Wall Inspection Mode.

Both modules are tested extensively with pleasing results in Marine Cybernetics Laboratory

at NTNU. The test platform is a low-cost ROV called uDrone which is one of the vehicles in MC-

lab. The system is running Robotic Operating System (ROS) on a Ubuntu operating system, and

OpenCV as a library for computer vision.

iii

Sammendrag

Når fjernstyrte undervanns farkoster (ROV) styres med manuelle styrespaker, vil brukeren op-

pleve en mangel på kontroll grunnet strømninger og dragkrefter fra styringskabelen. Dette vil

fremkalle uønskede svingninger og bevegelser som er vanskelig å kompensere for manuelt. Ved

bruk av maskinsyn er det nå mulig å forbedre kjøreopplevelsen i ukjente farvann. Dette kan

gjøres ved å finne et objekt som står stille på bunnen, og la ROVen spore en særegenhet på ob-

jektet. ROVen kan da bruke dette objektet som et visuelt anker. I denne oppgaven foreslås en

Feature Tracking algoritme, som forteller systemet hvor objektet er i bildet sammen med objek-

tets størrelse. Algoritmen kan brukes med ulike kombinasjoner av manuell styring, avhengig av

hvilke frihetsgrader brukeren ønsker å kontrollere seg selv.

Avhandlingen foreslår også en modul med navn, Range Finder, som finner avstanden til ob-

jektet eller en vegg foran ROVen. Estimert avstand blir funnet basert på to parallelle lasere som

projiserer to laserpunkter på veggen. Avstanden mellom disse punktene er så målt ved bruk av

maskinsyn, som teller antall piksler mellom disse punktene i kamerabildet. Dette tallet vil endre

seg avhengig av avstanden fra veggen til ROVen. Denne sammenhengen er derfor funnet for å gi

avstandsestimatet direkte i meter i stedet for i piksler. Denne modulen er også kombinert med

forskjellige kontrollmodi som muliggjør funksjoner som automatisk avstandsregulering i Wall

Inspection Mode.

Begge modulene er testet grundig med tiltalende resultater i Marine Cybernetics Labora-

tory ved NTNU. Testplattformen er en lav-kost ROV kalt uDrone som er en av farkostene i MC-

lab. Systemet kjører Robotic Operating System (ROS) på et Ubuntu operativsystem, og bruker

OpenCV som bibliotek for maskinsyn.

iv

Acknowledgment

I would like to thank the following people who have supported me throughout the work of my

master thesis. First, I want to thank my main supervisor Roger Skjetne, and co-supervisor Mauro

Candeloro for good discussions and guidance throughout the whole semester. I wish to thank

Dr. Adrian Rosebrock whom I have followed and learned a lot from through his computer vision

blog, Pyimageshearch.com. His literature has been a great resource for the development of this

project. I would also like to thank Rune Hansen from BluEye Robotics for designing and 3D-

printing a camera/laser bracket. At last, I would like to thank my fellow students in the MC-lab.

We have learned a lot from each other when encountering software and hardware problems.

A.V.H.

Contents

Preface . i

Abstract . ii

Norwegian Summary . iii

Acknowledgment . iv

1 Introduction 1

1.1 Low-cost ROVs Entering the Market . 2

1.2 Use of Computer Vision for Positioning Control of Robots 5

1.2.1 Open Source Graphical Software Libraries . 7

1.2.2 Image Processing Techniques . 8

1.3 What Remains to be Done? . 10

1.4 Objectives . 10

1.5 Limitations . 11

1.6 Abbreviations and Definitions . 11

1.7 Approach . 12

1.8 Structure of the Thesis . 13

2 Experimental Platform 15

2.1 General Specifications for ROV uDrone . 16

2.2 Hardware Topology . 16

2.3 Power Flow in ROV uDrone . 17

2.4 Payload Systems . 18

2.4.1 Fisheye Camera . 18

2.4.2 Raspberry Pi Camera . 18

v

vi CONTENTS

2.4.3 Camera Mounting Bracket with Lasers . 20

2.5 Software Topology . 21

2.6 Control Modes Available . 24

3 ROV Model and Thrust Allocation 27

3.1 Thruster Force Testing . 28

3.2 Thrust Allocation . 30

4 Computer Vision 33

4.1 Choosing a Software Library for Computer Vision . 34

4.2 Detecting Objects Under Water . 35

4.3 Color Systems . 35

5 Camera-assisted Positioning Based on Feature Tracking 39

5.1 Problem Formulation . 40

5.2 Feature Tracking Coordinate System . 40

5.3 Feature Tracking Control Modes . 40

5.3.1 Heading Mode . 41

5.3.2 Distance Mode . 41

5.3.3 Orbit Mode . 42

5.3.4 Full DP Mode . 42

5.4 Control Design . 43

5.4.1 Control Objective . 43

5.4.2 PID Controllers . 44

5.4.3 Filtering and Signal Processing . 44

5.5 Implementation . 45

5.5.1 Detecting Features in Video Stream . 45

5.5.2 The Feature Tracking Algorithm . 45

5.5.3 The Controllers Based on Computer Vision . 48

5.6 Delay in the Control Loop . 48

5.7 Graphical User Interface . 49

5.8 Testing of CAPC Based on Feature Tracking . 50

CONTENTS vii

5.8.1 Test 1: Steady-State Positioning . 51

5.8.2 Auto-heading Controller . 51

5.8.3 Auto-distance Controller . 54

5.8.4 Auto-depth Controller . 55

5.8.5 Object Positioning in Camera . 58

5.8.6 Test 2: Orbit Mode . 59

5.9 Discussion . 63

6 Camera-assisted Distance Control Based on Laser Lights 65

6.1 Problem Formulation . 65

6.2 Control Modes for Range Finder . 66

6.2.1 Measure Distance Mode . 67

6.2.2 Auto Distance Mode . 67

6.3 Geometry of the Lasers . 67

6.4 Control Design and Signal Processing . 69

6.5 Implementation and Laser Detection . 71

6.6 Delay in the Control Loop . 72

6.7 Graphical User Interface . 73

6.8 Testing of CADC Based on Laser Lights . 73

6.8.1 Test 1: Wall Inspection Mode . 74

6.8.2 Test 2: Wall Inspection Mode with Manual Input 79

6.9 Discussion . 81

7 Conclusion with Recommendations for Further Work 83

7.1 Conclusion . 83

7.2 Recommendations for Further Work . 85

7.2.1 ROV uDrone . 85

7.2.2 Feature Tracking module . 86

7.2.3 Range Finder module . 87

A ROS Node Communication 89

viii CONTENTS

Bibliography 91

List of Figures

1.1 DeepFar MAX ROV. 3

1.2 Deep Trekker DTG2. 3

1.3 OpenROV Trident. 4

1.4 FiFish Atlantis. 4

1.5 Flow chart for attention based tracking. 6

1.6 Robotic fish tracking each other. 6

1.7 Results of indoor navigation based on computer vision. 7

1.8 Pose estimation with calib3d() function in OpenCV. 9

2.1 BlueROV kit from Blue Robotics Inc. 15

2.2 Hardware and communication configuration for the ROV uDrone. 17

2.3 Power flow in the ROV uDrone. 18

2.4 Fish-eye camera inside ROV uDrone. 19

2.5 Raspberry Pi Camera inside ROV uDrone. 20

2.6 The camera bracket in the tube (a), and (b) shows the cameras mounted. 20

2.7 Software topology in ROV uDrone. 23

2.8 Control modes in (a), manual control in (b). 25

3.1 NED and Body frames with orientations and directions. 27

3.2 Testing configurations. 29

3.3 Testing Thrusters in MC-lab . 29

3.4 Mapping between PWM signal and thrust force. 30

3.5 Thruster configuration for ROV uDrone. 30

ix

x LIST OF FIGURES

4.1 Pixels in a video frame, with RGB to describe color. 34

4.2 Two different color systems to represent colors in computers. 36

4.3 Difference in HSV and RGB. HSV makes more sense for humans. 37

5.1 uDrone in MC-Lab tracking an object. 39

5.2 Coordinate frame for the Feature Tracking algorithm. 41

5.3 Illustration of the different control modes using Feature Tracking. 43

5.4 Tracked feature in MC-lab. 45

5.5 Flow chart of the Feature Tracking algorithm in OpenCV. 46

5.6 Tracked feature at right, filtered binary image at left. 47

5.7 The effect of blur, erode, and dilate. 47

5.8 Delay from ROV to the topside PC. 49

5.9 Sliders for tuning PID controllers and signal monitoring. 49

5.10 Position measurement of the ROV from Qualisys positioning system in MC-lab. . . 51

5.11 Position of the ROV seen from above in basin frame. 52

5.12 Error in the horizontal position of the object in the camera. 53

5.13 Error in the area of feature and control force in surge. 53

5.14 Constant distance between ROV and object at top, with error in distance below. . . 54

5.15 Auto-reference is pushing the ROV down to about 82 cm below the surface. 55

5.16 Vertical error in feature position in camera frame goes to zero. 56

5.17 Comparison of errors in depth. 56

5.18 Thrust commands from the thrustallocation. 57

5.19 The object converges to the center of the camera, while keeping the area constant. 58

5.20 The movement of the feature in the camera frame during the time series. 59

5.21 Position measurement of the ROV from Qualisys positioning system in MC-lab. . . 60

5.22 2D position of the ROV in Orbit Mode from a bird perspective. 60

5.23 Position and area of the feature seen in the camera. 61

5.24 Sway thrust commands are dominating in Orbit mode. 62

5.25 Movement of the feature inside the camera in Orbit Mode. 62

6.1 Range Finder in MC-lab. 65

LIST OF FIGURES xi

6.2 Control modes for the Range Finder module. 66

6.3 Laser geometry for Range Finder with two parallel lasers. 68

6.4 Proposed setup with four parallel lasers. 68

6.5 Detecting the ROVs heading relative to a wall. 69

6.6 Mapping between laser dot distance in pixels and distance in cm. 70

6.7 Delay in Range Finder with RPi Camera. 72

6.8 User interface when operating Range Finer. 73

6.9 Qualisys positioning system in MC-lab. 74

6.10 Position measurement of the ROV from Qualisys positioning system in MC-lab. . . 75

6.11 Position of the ROV in the basin seen from above. 75

6.12 Distance to the wall with reference steps. 76

6.13 Comparison for the errors in distance to the wall. 77

6.14 Zoomed in to see the steady state oscillations. 77

6.15 Control Forces for Automatic controller in Wall Inspection Mode. 78

6.16 Commanded thrust signals, showing only 50 seconds. 78

6.17 Wall Inspection Mode, showing how the ROV can hold distance while moving side-

ways. 79

6.18 Manual input in sway while other thrusters are controlled automatically. 80

A.1 Auto-generated map of communication between ROS nodes. 90

xii LIST OF FIGURES

List of Tables

2.1 Specifications for the BlueROV kit. 16

2.2 Specifications for the fish-eye video camera. 19

2.3 Specifications for the RPi Camera. 19

2.4 OS and framework on the hardware components. 24

2.5 Control Modes in ROV uDrone. 24

3.1 Distance from each thruster to vehicle origin. 31

5.1 Test scheme for Feature Tracking controllers. 50

xiii

xiv LIST OF TABLES

Acronyms and Symbols

AUV Autonomous Underwater Vehicle

CAD Computer Aided Design

CADC Camera-assisted Distance Control

CADP Camera Assisted Dynamic Positioning

CMYK Cyan Magenta Yellow Black

CSI Camera Serial Interface

CV Computer Vision

CPU Central Processing Unit

DIY Do It Yourself

DOF Degree Of Freedom

DP Dynamic Positioning

GPU Graphics Processing Unit

HSV Hue Saturation Value

I2C Inter-Integrated Circuit

IMU Internal Measurement Unit

MC-lab Marine Cybernetics Laboratory at NTNU

NED North-East-Down

OpenCV Open Source Computer Vision

PID Proportional Integral Derivative

PWM Pulse-Width Modulation

LIST OF TABLES xv

RGB Red Green Blue

RPi2 Raspberry Pi 2 single board computer

ROV Remotely Operated Vehicle

ROS Robotic Operating System

SIFT Scale Invariant Feature Transform

SURF Speeded-Up Robust Features

USB Universal Serial Bus

η Position of ROV relative to the basin col(x,y,z,ψ)

ν Velocities of ROV relative to the basin col(u,v,w,r)

ψ Heading of ROV relative to the basin

τ Control force vector

Chapter 1

Introduction

"The future of drones is not only about flying high, but also going deep" - (Forbes 2016). As we

know, there has been a big boom of aerial vehicles that has gotten cheaper, and we see more and

more of them around us every day. Lately, many companies have started to develop underwater

drones for the consumer market. This is now attractive because of the established market of

drone buyers, who now wants to explore new waters.

“The ocean is the lifeblood of Earth, covering more than 70 percent of the planet’s surface,

driving weather, regulating temperature, and ultimately supporting all living organisms.”

- (NOAA 2014)

Yet, less than 5 % of the oceans are discovered up to this date. This means there is a lot more

to be seen, even in the shallow waters (0-100m). Underwater experiences have required hours of

diving training and do require a lot of planning for each dive. Now with underwater drones, the

ocean space will be more accessible for everyone! This will hopefully increase people’s aware-

ness, love, and care for the ocean.

Development of low-cost underwater drones is now possible due to new, better, and cheaper

hardware such as Raspberry Pi single-board computers, and Arduino microcontrollers. Also

compact, powerful, thrusters from Blue Robotics Inc. has made it possible to create powerful

mini-ROVs powered on a high-performance battery. Open Source software such as Robotic Op-

erating System (ROS) and OpenCV, has enabled fast implementation and testing of new control

1

2 CHAPTER 1. INTRODUCTION

systems. The recent research and progress of computer vision have also made it possible to im-

plement new control functionality based on input from the ROV’s video camera. Utilization of

computer vision to enhance user experience in mini-ROVs will, therefore, be the main scope of

this master thesis.

Background and Problem Formulation

To enable the growth of mini ROVs in the private market, a reduced complexity in controlling

the vehicle will be necessary. State of the art requires some training and skills to move around

freely on the bottom as the user wants to. Is it possible to set lock-in on an object of interest,

say an anchor, while moving sideways around it, to ease inspection and video recording? Will it

be possible to enhance the user experience by utilizing computer vision to assist the user with

automatic control systems? How can this be combined with user input? This functionality will

become vital for amateur operators, who wants eased control of the ROV while recording good

quality video.

1.1 Low-cost ROVs Entering the Market

Several companies have decided to develop their own underwater robot for recreational use.

The most promising ones will now be presented:

DeepFar MAX

DeepFar is an underwater drone developed in China; that was launched this year. It comes in

two different models, one for consumers, and one for more professional use. The models are

called White Shark MINI and White Shark MAX. The ROV can go down to 100 meters depth and

has a battery capacity of 2 hrs. All thrusters combined provides 600 Watts of power. The vehicle

is tethered and streams 2 MP video to the user in the MINI model, while it has full HD for the

MAX model. The total weight is 12 kilos. (Forbes 2016, DeepFar 2016)

1.1. LOW-COST ROVS ENTERING THE MARKET 3

Figure 1.1: DeepFar MAX ROV (Source: deepinfar.com).

Deep Trekker

Next up is the DTG2 from Deep Trekker. This is a low-cost ROV that is aiming more for the small

business market. The ROV is well suited for inspection of tanks and fish farms. The vehicle only

has two thrusters, because it has an internal weight shifting system that allows the thrusters to

be pointed in any pitch direction in the vertical plane. The starting kit can go down to 50 meters

with optical fiber for video transmission. The weight is 8.5 kilos with a total battery capacity of

4-8 hours, depending on usage. Max speed is 1.25 m/s (DeepTrekker 2016).

Figure 1.2: Deep Trekker DTG2 (Source: deeptrekker.com).

4 CHAPTER 1. INTRODUCTION

OpenROV Trident

OpenROV is about to launch their newest ROV called Trident. With its 2.9 kilos, it is one of the

lightest ROVs out there. However, it only has three times 12 W of thrust, but the combination is

still powerful enough to lift the vehicle out of the water as shown in figure 1.3. The ROV is rated

for 100 m depth, but the start-kit comes with 25 meters of cable (not fiber). Trident has a battery

life of 3 hours, with promised maximum speed to 2.2 m/s. Shipping is starting in November

2016 (OpenROV 2016).

Figure 1.3: OpenROV Trident (Source: OpenROV.com).

FiFish

Figure 1.4: FiFish Atlantis (Source: prnewswire.com).

The FiFish was presented for the first time on a show in Las Vegas January 2016. They claim

to be the first Smart ROV in the world for the mass consumer market. The ROV has a battery life

1.2. USE OF COMPUTER VISION FOR POSITIONING CONTROL OF ROBOTS 5

of 2 hours, and can dive down to 100 meters. Their main goal is to get everybody to rediscover

the ocean! The ROV with a carbon hull is shown in figure 1.4 (FiFish 2016). Both FiFish and

DeepFar are developed by Chinese companies which can be taken as evidence for a globally

growing low-cost ROV market.

1.2 Use of Computer Vision for Positioning Control of Robots

Karras & Kyriakopoulos (2008) and Karras et al. (2006) describes a position-based visual servo

control scheme for an ROV based on what they call a Laser Vision System (LVS). The LVS is used

to regulate the angle between the ROV and the wall. The LVS is also used for collision avoidance

when there is a target on a wall that the ROV is set to approach. The target on the wall is tracked

with computer vision algorithms using a method called "Snakes". A path planning strategy is

based on Artificial Potential Field (APF) method; that is responsible for controlling the ROV to

the desired position. The total system was extensively tested on a VideoRay mini ROV. The dis-

tance measurements vary with about 6 % from the actual distance.

In Karras et al. (2010), a semi-automatic control system is proposed to guide the human

operator in holding the object of interest inside the cameras field of view. Estimation of the ve-

hicle’s states are achieved by an Unscented Kalman Filter on the LSV together with an Inertial

Measurement Unit. The system is tested on an underacted 3 DOF ROV in a test tank. The au-

tomatic controller for depth is implemented as a PD controller, while the remaining two DOFs,

surge, and yaw, are regulated by a backstepping controller with stability guarantees. The pa-

per concludes that the under-actuated dynamics are input to state stable, hence robust and

bounded by the user input. The object was also successfully held in the camera’s field of view,

while the ROV was maneuvering in a test pattern.

Heshmati-Alamdari et al. (2014) presents a novel Vision-based Nonlinear Model Predictive

Control (NMPC) for underactuated ROVs. The self-triggered NMPC, rather than periodically

triggered NMPC, shall reduce the required amount of data from the computer vision to reduce

the required computational power and energy consumption. Also in this paper, the objective

is to keep a target inside the vision system’s field of view with use of feature tracking and pose

estimation by the geometry of the tracked object.

6 CHAPTER 1. INTRODUCTION

Figure 1.5: Flow chart for attention based tracking (Shi et al. 2010).

Figure 1.6: Robotic fish tracking each other (Hu et al. 2009).

Shi et al. (2010) presents a method that simulates humans vision attention when detecting

objects. An efficient algorithm is proposed to crop areas of interest before running the filtering

and detection functions at a higher resolution. The proposed method used 70 ms, versus 96 ms

without the algorithm. The signal flow of the algorithm is presented in figure 1.5.

In (Narimani et al. 2009), computer vision is used to estimate the angle between the AUV and

a pipeline on the seabed. This is used for autonomous following and inspection of the pipeline.

Edge detection is used to find the angle of the pipeline. An adaptive sliding mode controller is

used to regulate the heading to keep the pipe in the center of the image in vertical position. The

system is simulated with recorded video from an ROV as input.

Computer vision is also used for an autonomous fish that follows another manually con-

trolled robotic fish. Hu et al. (2009) are using an adaptive mean shift (Camshift) algorithm to

lock on to the fish it is trying to follow. A fuzzy controller was designed for motion regulation of

the fins. The fish following was successfully tested with experiments. The fish tracking is shown

in figure 1.6

(Raabe et al. 2014) propose an indoor positioning system based on a Playstation 3 Eye cam-

1.2. USE OF COMPUTER VISION FOR POSITIONING CONTROL OF ROBOTS 7

Figure 1.7: Results of indoor navigation based on computer vision (Raabe et al. 2014).

era mounted on a hexacopter. This is done without use of any external positioning systems such

as GPS. It is only using three tracked targets on the floor, together with the internal IMU. The al-

gorithm does not have to see all targets at the same time, because it remembers where the target

was observed last time. This is done by using PTAM, which is a type of Simultaneous localization

and mapping (SLAM) algorithm. The camera image is also divided into a grid to smaller areas

with an independent threshold for filtering. This is to make tracking more robust and stable in

environments with large color contrasts. The results are presented in figure 1.7, with "MoCap"

position measurements in blue, and computer vision estimates in green.

1.2.1 Open Source Graphical Software Libraries

Many different software libraries are presented in Rosebrock (2014). The book has chosen Python

as the primary programming language because it is open source and an easy language to get

started with. To perform computer vision with Python, we need a good matrix library that han-

dles heavy matrix calculations efficiently. This task is solved by the NumPy library for Python.

Matplotlib is another library that is suitable for plotting signals in Python (similar to plotting in

MatLab).

Then we have SimpleCV, which is computer vision made easy. Their goal is to create a li-

brary that enables the programmer to get started quickly with a lean introduction to the basic

concepts of computer vision. It gets you started quickly, but at the cost of the raw, powerful

techniques that sometimes are needed. Rosebrock also presents the less known library called

Mahotas, which provides much of the same functionality as SimpleCV and OpenCV. OpenCV is

8 CHAPTER 1. INTRODUCTION

by far the most used computer vision library with great speed and functionality. With its huge

user community, it is definitely the best way to go if we want to be able to get help from others

on the Internet. OpenCV was first presented in 1999, and first compatible with Python in 2009.

The library itself is written in C++, but now Python bindings in the installation allow Python to

work just as fast. So as long as we do not write heavy for-loops in Python, we will have the same

speed potential in Python as in C++. OpenCV does have a steeper learning curve, but provides

faster processing, more embedded functions, and has a great documentation page.

1.2.2 Image Processing Techniques

Thresholding

A basic tool in computer vision is to filter out pixels based on their color value. If we then set a

certain limit, we can then set everything above that limit to 255 (white), and everything below

to 0 (black). We can now make a masked image that only displays the pixels above the limit as

a white figure. Thresholding is often used to separate out important areas of an image, like an

object from its background (OpenCV 2013c).

Object detection

If the computer vision system is searching for an object that is known prior to the test, it is possi-

ble to compare key-points to find a matching object. There are multiple techniques for this task.

Scale Invariant Feature Transform (SIFT) is one method of extracting key points and computing

descriptors (Lowe 2004). Speeded-Up Robust Features (SURF) is a more intelligent key-point

detector that also allows us to compare key-points in two different images. This method is used

for camera calibration of stereo vision and object recognition (Bay et al. 2006).

Feature Detection and Tracking

A feature is simply information in the picture that is possible to extract via computer vision.

A feature can be an edge, a color, shape, or a specific pattern, that is unique for an object of

interest. It is like playing puzzles, where we have to determine the location of each piece by its

color and unique feature relative to the pieces around it. Once the desired feature is filtered out

1.2. USE OF COMPUTER VISION FOR POSITIONING CONTROL OF ROBOTS 9

Figure 1.8: Pose estimation with calib3d() function in OpenCV (Source: Opencv.org).

of the image with thresholding, it is possible to track the features with Meanshift and Camshift.

Harris Corner Detector and Shi-Tomasi Corner Detector are other methods for finding corners in

images. Corners are often good features to track in air. In water, it will be more difficult since

corners and contrasts usually are not as sharp due to growth and particles in the water. (OpenCV

2013a). A feature can also be tracked if the center point of each contour is stored from one image

to the next. This also allows us to find the derivatives in the images to see how fast the feature

is moving. Background subtraction can also be used to detect changes in a camera, that stands

still, with a moving object in front. The algorithm simply subtracts one image from the previous

one, which leaves the background with no change as 0, and random numbers on the pixels that

have changed. These numbers can then be set to 255 by thresholding, and later tracked from

image to image.

A technique for detecting the pose of the ROV relative to a known object is found in OpenCV

(2013b). The tutorial proposes a method for finding the pose of a checkerboard in front of a

calibrated camera. This method could be used for the ROV to estimate its pose relative to a

known square. However, most of the time we do not have a perfect square at the sea bottom,

so it will be difficult to use this method in the ocean. The method is illustrated in figure 1.8 and

might be harder to implement under water. It is also unknown if this function will be able to run

real-time to control the ROV.

10 CHAPTER 1. INTRODUCTION

1.3 What Remains to be Done?

The use of computer vision has been tested and verified for an ROV in Karras & Kyriakopoulos

(2008), Karras et al. (2006), and Karras et al. (2010). However, it is not addressed how this can

be used together with manual control for specific tasks. The proposed modules will also be

implemented and tested on a low-cost ROV that has a shorter way to realization in the consumer

market. The proposed Feature Tracking algorithm should able to track any object without any

information about the object prior to the dive.

1.4 Objectives

The main objectives of this Master’s project are

1. Develop camera based positioning control modes for mini-ROV uDrone.

2. Install laser lights and cameras needed for feature-tracking and laser-tracking.

3. Develop distance estimate based on two parallel lasers that are tracked in the video stream.

4. Implement an algorithm to filter video stream for feature tracking.

5. Perform thruster tests to enhance the performance of the thrustallocation.

6. Develop and implement an Auto-heading controller that ensures tracking of a reference.

7. Develop and implement Auto-depth controller with a suitable guidance system.

8. Test implemented control modes in Marine Cybernetics Laboratory (MC-lab) with Qual-

isys positioning system.

1.5. LIMITATIONS 11

1.5 Limitations

In this thesis the ROV, hardware, and the cameras were chosen before the feature algorithm

was developed; therefore, some computational limitations was experienced during develop-

ment. The light conditions in MC-lab were limiting the range of colors that was feasible for

feature tracking. The positioning system in MC-lab called Qualisys did also have its limitations

on where it was possible to operate in the pool. On the other hand, the software framework

called ROS has enabled fast development and rapid testing with great flexibility and robustness.

1.6 Abbreviations and Definitions

• BGR short for Blue Green Red, used in OpenCV instead of RGB (different order only).

• Contour is defined as a connected shape of white pixels in a binary image.

• Drone a term borrowed from the areal drone market. This report will use ROV, which is

more precise.

• Feature is property of the object. Its color, surface pattern, shape, key point, etc.

• Feature Tracking is the proposed module to track a feature (color) on the object.

• HSV short for Hue Saturation Value, utilized for tuning of feature color filtering.

• Object is the tracked target of interest in the basin. Could be an anchor in the ocean.

• Range Finder is the proposed module for distance estimation based on lasers.

• ROV short for Remotely Operated Vehicle

• Thresholding is filtering all image matrix values within a certain range.

12 CHAPTER 1. INTRODUCTION

1.7 Approach

In order to find what control modes that are possible to use, a study on computer vision libraries

will be performed to see what kind of information that is available from the filtering functions.

To install the laser lights in a proper way, a mounting bracket for lasers and cameras shall be

designed in CAD and 3D-printed to customize the perfect fit for the components. Being able

to track the laser in the video stream requires a robust methodology to filter out only the lasers,

with tunable parameters that can be tuned on-line in case of changing light conditions, or re-

flection of the material the laser hits. When lasers are properly tracked, it will be desirable to

find the relationship between the number of pixels between the two laser dots and the distance

from the ROV to the wall in front of it.

There are many ways to filter out objects in a video. To find the most feasible method, it

will be necessary to find a method that easily can be applied to new features, with live-tuning

of parameters. To start with, bright colors with large contrast to the rest of the environment are

chosen for the features, even though this might not always be the case in the ocean. The feature

is also going to be set up, so it is floating in the middle of the depth of the pool. This is, so it does

not interfere with the reflection from the surface, and at the same time stay in place.

To enhance the control and performance of the control system, the ROV shall be mounted

to the towing carriage with sensors to measure forces and torque at the RPM range of interest.

From these data, it will be possible to make a proper mapping between PWM signals and forces.

These sensors are not waterproof so a special ROV rig must be assembled and mounted prop-

erly to the ROV and towing carriage. The auto-heading, -depth, and -distance controllers must

be able to run simultaneously with live tunable parameters. Simple PID controllers will be used

to solve the different control tasks and tested in HIL mode on the system. All software will be

written in C++ or Python to keep required computational power at a minimum. These program-

ming languages do neither have a strict license policy; that can be of importance in the further

development of this system.

Due to easy access to MC-lab; testing of subsystems will be performed as soon as they are

implemented. This will give a better understanding of the possibilities that evolves during de-

velopment. When all control modes are implemented and ready for final testing, a test scheme

1.8. STRUCTURE OF THE THESIS 13

will be executed in the MC-lab with Qualisys to measure the actual movement as a performance

indicator.

1.8 Structure of the Thesis

The rest of the report is organized as follows. Chapter 2 gives an introduction to the experimen-

tal platform used for testing the proposed control modes. Chapter 3 pretenses the thrustallo-

cation force mapping for ROV uDrone. In Chapter 4 an introduction to computer vision will be

presented followed by techniques that are used to solve the problem. Chapter 5 will present The

camera-assisted positioning based on feature tracking with available control modes and how

the problem was solved. Chapter 6 addresses how lasers can be used for distance estimation

for an Auto-distance controller. Results from experiments in MC-Lab will be presented and dis-

cussed at the end of both chapter 5 and 6. At last, a summary and recommendations further

work will be given in Chapter 7.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Experimental Platform

Figure 2.1: BlueROV kit from Blue Robotics Inc. (Source: BlueRobotics.com).

The experimental platform used for testing the proposed Feature Tracking and Range Finder

modules is an ROV that was built by Stian Skaalvik Sandøy and myself during a previous student

project. The name ROV uDrone was then given to the vehicle. Main relevant specifications will

now be presented, while the full description is available in Henriksen & Sandøy (2015).

15

16 CHAPTER 2. EXPERIMENTAL PLATFORM

2.1 General Specifications for ROV uDrone

The ROV uDrone is based on a DIY kit from Blue Robotics called BlueROV shown in figure 2.1.

This kit came with six thrusters, a watertight tube, and a body frame that holds everything. The

necessary electronics inside the tube was identified and ordered before everything was assem-

bled. The software system was chosen to be Robotic Operating System (ROS), and basic control

functionality was implemented. The ROV was then tested extensively in MC-lab. The main

specifications for the ROV are presented in table 2.1.

Table 2.1: Specifications for the BlueROV kit (Henriksen & Sandøy 2015).

Physical dimensions

Length 483 mm
Width 330 mm
Weight (no electronics) 3.73 kg
Watertight Enclosure inner diameter 102 mm
Watertight Enclosure inner length 298 mm

Performance

Total Forward Thrust 100 N
Total Vertical Thrust 150 N
Total Side Thrust 50 N
Maximum Depth Rating (tested) 100 m

Electrical

Operating Voltage 12-16 volts

2.2 Hardware Topology

The electronics inside ROV uDrone consists mainly of a Raspberry Pi 2 (RPi2) and an Arduino

Mega. RPi2 is a mini-computer running Ubuntu 14.04 with ROS Indigo installed. Arduino is a

microcontroller that handles all input/output communication with the connected sensors and

actuators. The thrusters are controlled by motor controllers that receive PWM signals from the

Arduino. For depth measurements, a pressure sensor, MS5837, is integrated with the IMU de-

vice, and connected with I2C to the Arduino Mega. The cameras are connected with USB and

2.3. POWER FLOW IN ROV UDRONE 17

CSI directly to the RPi2. Communications between the ROV and the topside computer is done

via Ethernet cable to a local network. Qualisys positioning system and tablets are also connected

to the same network. Any computer running ROS in the network can now subscribe and/or ad-

vertise to any message to or from the ROV. This setup gives a lot of flexibility and possibilities

when developing. The hardware communication flow is illustrated in figure 2.2.

Raspberry Pi 2

I2C

Actuators

Sensors

ROV

Camera (180)

RPi Camera
USB (TR RX)

USB

CSI

PWM

Ethernet

Ethernet

U
m

b
il
ic

a
l

Ethernet

Arduino Mega

Wifi router

Motorcontroller 1

Motorcontroller 2

Motorcontroller 3

Motorcontroller 4

Motorcontroller 5

Motorcontroller 6

Thruster 1

Thruster 2

Thruster 3

Thruster 4

Thruster 5

Thruster 6

Wi-Fi

iPhone /
tablets

Joystick
(Xbox)

Topside PC

PC

Pressure-
sensor

IMU

U
m

b
il
ic

a
l

Ethernet

PC

(Positioningsystem)

Figure 2.2: Hardware and communication configuration for the ROV uDrone (Source: Henriksen
& Sandøy (2015)).

2.3 Power Flow in ROV uDrone

ROV uDrone is powered from in-house batteries with a total capacity of 10 000 mAh. This is

enough for testing up to 4 hours, at low speeds. The battery is connected to a distribution board

that distributes 14.8 V to the six thrusters, and 5 V to the remaining electronics. The IMU is

powered from a 3.3 V port on the Arduino, while the cameras are powered directly from the

RPi2. The power flow inside ROV uDrone is presented in figure 2.3.

18 CHAPTER 2. EXPERIMENTAL PLATFORM

Raspberry Pi 2

Actuators

Sensors

Battery 14.8 V
10 000 mAh

5 V

3.3 V

USB 5 V

C
S

I

5 V

Distribution board

14.8 V

14.8 V

14.8 V

14.8 V

14.8 V

14.8 V

14.8 V

Arduino Mega

Motorcontroller 1

Motorcontroller 2

Motorcontroller 3

Motorcontroller 4

Motorcontroller 5

Motorcontroller 6

Thruster 1

Thruster 2

Thruster 3

Thruster 4

Thruster 5

Thruster 6

Camera (180)

RPi Camera

Pressure-
sensor

IMU

Figure 2.3: Power flow in the ROV uDrone (Source: Henriksen & Sandøy (2015)).

2.4 Payload Systems

Many auxiliary systems can be connected to the ROV and easily integrated to ROS, where most

hardware drivers are already written. However, for this project, only two cameras and four lasers

are implemented. The cameras, lasers, and assembly, will now be presented.

2.4.1 Fisheye Camera

For the video stream, an 180-degree fisheye lens web-camera was chosen due to its small size

and high-quality video. The camera is connected and powered directly from the RPi2 via USB.

Camera specifications are presented in table 2.2, and shown in figure 2.4. This camera is the one

that is going to be used for the feature tracking module.

2.4.2 Raspberry Pi Camera

A second camera is also mounted inside the ROV uDrone. This camera has a narrower field of

view and is directly connected to the onboard GPU on RPi2 through what is called Camera Serial

Interface (CSI) by the Raspberry Pi Foundation. This connection allows faster video processing

without draining all the capacity of the RPi2 CPU. However, at some point, the video stream has

2.4. PAYLOAD SYSTEMS 19

Figure 2.4: Fish-eye camera inside ROV uDrone (Source: Henriksen & Sandøy (2015)).

Table 2.2: Specifications for the fish-eye video camera.

Specifications for USBFHDO1M

- Connector: USB 2.0 web camera
- Field of view: 180 degrees
- Resulution: 2592x1944
- FPS: 60 in 1280x720 resolution
- FPS: 30 in 1920x1080 resolution
- Sensor: CMOS 1080P

to be converted to a matrix that is readable for OpenCV. This process is computationally heavy

for the CPU even though the streaming from the camera is done by the GPU. So the gain of using

CSI might be gone when the video is imported to OpenCV. The RPi2 Camera will be used mainly

for the Range Finder module that will be introduced later. The camera is shown in figure 2.5,

and the specifications are given in table 2.3.

Table 2.3: Specifications for the RPi Camera (Source: Raspberrypi.org).

Specifications for Raspberry Pi Camera

- Connector: CSI
- Field of view: 54 degrees
- Resolution: 2592x1944
- FPS: 42 in 1296x972 resolution
- FPS: 30 in 1920x1080 resolution
- Sensor: 5-mega-pixel OmniVision OV5647

20 CHAPTER 2. EXPERIMENTAL PLATFORM

Figure 2.5: Raspberry Pi Camera inside ROV uDrone (Source: sparkfun.com).

2.4.3 Camera Mounting Bracket with Lasers

Since two different cameras were inserted at the same time, it was necessary to mount them

properly. Four lasers were also needed to test the Range Finder and had to be installed parallel

at a fixed angle and distance. It was critical to have fixed relationship between the camera and

the lasers before performing the distance calibration. The solution was to create a 3D-model

and print a bracket that everything could be mounted to. Once the cameras were mounted and

tested, the lasers were glued at the correct angle by aiming at a target on the wall. The mounted

bracket, cameras, and lasers, are shown in figure 2.6.

(a) (b)

Figure 2.6: The camera bracket in the tube (a), and (b) shows the cameras mounted.

2.5. SOFTWARE TOPOLOGY 21

2.5 Software Topology

The hardware is mainly divided into three layers. The first layer is the topside computer with

user interface and monitoring. This layer is running on a stationary computer with Linux Ubuntu

14.04 LTS, ROS Indigo, and OpenCV 3.0 installed. The next layer is the single-board computer

inside the ROV. In this layer, a RPi2 is running with same Ubuntu version, ROS, and OpenCV 2.4

installed. The lowest level is running Arduino programming language; that is very close to C++.

This is where all the drivers for connected hardware are written. Most of these scripts are often

given from the hardware vendor. The software is summarized in table 2.4.

Figure 2.7 presents the signal communication within the ROS system. The flow starts in the

Joystick block where the user selects control mode. The yellow lines then take care of switching

between the three control nodes, Feature Tracking, Range Finder, and Direct Motion. Usually, all

control nodes are compiled on the RPi2 in the ROV. However, since the Feature Tracking node

requires more computational power, it had to be moved to the topside computer. The Feature

Tracking node can also run on the RPi2, but then at a much lower resolution. Once control

mode is selected, only one of the control nodes will be active, and will start to publish force

commands. This command is then converted to a thrust command by the Thrust Allocation

node. ROS serial includes the Arduino to the ROS system so signals can be exchanged across the

platforms. The thrust command is then converted to a PWM signal, which is the reference to

the motor controller, that ensures the desired thrust from the thruster.

The video cameras are available to the system in separate ways. The fisheye camera is con-

nected via USB and is read by the Web Video Server node. The raw video stream is then converted

to an MJPEG stream that is published to port 8080 on the RPi2 (ROS 2015). The camera stream

can then be accessed from any web browser on the same network with the following URL:

http://192.168.0.107:8080/stream?topic=/usb_cam/image_raw

where 192.168.0.107 is the IP of the RPi2. In OpenCV the camera stream can be read by:

22 CHAPTER 2. EXPERIMENTAL PLATFORM

image_matrix = cv2.VideoCapture("http://192.168.0.107:8080/...

...stream?topic=/usb_cam/image_raw&quality=20?x.mjpeg")

and displayed with the imshow() function:

cv2.imshow("Tracking", frame)

cv2.imshow("Binary", mask)

where Tracking is the image from camera, and Binary is the thresholded image. frame and

mask are the corresponding image matrices

The RPi Camera is connected via RPi CSI and is available to OpenCV with a Python library

called PiCamera. The code for accessing one image frame from this stream is slightly more

complex. The code snippet to grab a frame is shown below:

camera = PiCamera ()

camera . resolution = (320 , 240)

camera . framerate = 30

camera . crop = (0 . 1 5 , 0 .15 , 0.85 , 0 .85)

raw = PiRGBArray (camera , s i z e =(320 ,240))

for frame in camera . capture_continuous (raw , format="bgr " , use_video_port=True) :

. . . #end

PiCamera library is first selected, before resolution and frame rate. A new matrix is then pre-

allocated in RBG format with the same dimensions as the incoming camera feed. At last a for

loop is then filling in the raw matrix with the current image. The remaining image processing is

then performed inside this for loop. The frame matrix is now available for use in the OpenCV

environment, in the same format (BGR) as in the previous example.

Once the video streams are imported to OpenCV in Feature Tracking or Range Finder, a new

control force is computed and sent to the thrust allocation again. Range Finder is also using

heading measurements from Qualisys to regulate on, shown in the top right corner. An auto-

generated map for the communication in ROS is found in appendix A.

2.5. SOFTWARE TOPOLOGY 23

Devices

I/O

circuit board

Onboard computer

Top side computer

User InterfaceInput Devices

Storage

ROS Core

ROS Remote Core

Joystick Node

changCtrlAlg

statusCtrlAlg

Signal Processing

Web Video Server

raw sensor data

V
id

e
o

st
re

a
m

V
id

e
o

st
re

a
m

Procecced sensor data

RQT GUI

Monitoring

ROS Bag

Logger

Qualisys Node

ROS Serial

ROS Brigde

Switch Interface

Camera (180) RPi Camera

Sensor and thruster drivers

System Manager

ThrustersIMU & Depth Sensor

 thrustCommand

 forceCommand

Thrust Allocation

Range Finder

Navigation

Guidance

Control

Feature Tracking

Navigation

Guidance

Control

Direct Motion

Navigation

Guidance

Control

requestChangeCtrlAlg

(MJPEG)

(PiCamera)

requestChangeCtrlAlg

Manual Control

Force

Auto-heading

Joystick Tablet

Fault Handler

con!rmChangCtrlAlg

Qualisys

Positioning

System

Figure 2.7: Software topology in ROV uDrone (Modified from: Henriksen & Sandøy (2015)).

24 CHAPTER 2. EXPERIMENTAL PLATFORM

Table 2.4: OS and framework on the hardware components.

Topside computer

OS Ubuntu 14.04 LTS
Framework ROS
Program Language C++/Python
Computer Vision Library Python in OpenCV

Raspberry Pi 2 on ROV

OS Ubuntu 14.04 LTS
Framework ROS
Program Language C++/Python
Computer Vision Library Python in OpenCV

Arduino on ROV

OS Arduino
Program Language C/C++

2.6 Control Modes Available

Several control modes are already implemented in ROV uDrone. These will be used in combi-

nation with the proposed modules Range Finder and Feature Tracking. The available control

modes in ROV uDrone is presented in table 2.5. The proposed control modes, Feature Track-

ing and Range Finder, are accessible from the x-box controller as shown in figure 2.8. Manual

control of each DOF is also presented in the same figure.

Table 2.5: Control Modes in ROV uDrone.

Control Mode Description

Direct Thruster Control The user is controlling each actuator manually

Direct Motion Control The user is commanding a motion relative to the vehicle,
i.e, surge, sway, heave, yaw motions.

Auto Depth Control The user defines a desired depth, and can move in x-y-
plane

Auto Heading Control The user defines a desired heading relative to basin-frame

Full DP The user commands a desired position in basin-frame co-
ordinates and a desired depth. The controller takes input
from Qualisys positioning system.

2.6. CONTROL MODES AVAILABLE 25

(a) (b)

Figure 2.8: Control modes in (a), manual control in (b).

26 CHAPTER 2. EXPERIMENTAL PLATFORM

Chapter 3

ROV Model and Thrust Allocation

The reference frame for the ROV uDrone is chosen to follow the convention form of Fossen

(2011), consisting of Basin frame and body reference frame, defined as shown in figure 3.1.

Figure 3.1: NED and Body frames with orientations and directions.

Even though the uDrone has the ability to control all 6 DOF’s, the position vector has been

simplified to 4 DOFs. This is because the roll- and pitch motions are assumed to be passively

stable. The basin frame state vector then becomes: η = col(x, y, z,ψ), with the corresponding

body-fixed velocity vector ν= col(u, v, w,r). The ROV kinematic model is then

η̇= J (ψ)ν. (3.1)

27

28 CHAPTER 3. ROV MODEL AND THRUST ALLOCATION

The kinetic control model is given as

Mν̇+C(ν)ν+D(ν)ν+g(η) = τ+ J(ψ)−1b(t), (3.2)

where, in particular, M = Mr b +Ma is the system inertia matrix, g(η) is the restoring vector, and

b(t) is an external slowly varying bias vector. Equation 3.1 and 3.2 are complete processes mod-

els. However, in this project a focus has been to decouple motions as much as possible, allowing

to control different DOFs based on different sensor input for each DOF. If we isolate each DOF

independently, a state-space model for each DOF can be made. In equation 3.3 a model for the

heave dynamics are presented.

 ż

ẇ

=
0 1

0 − d
m

︸ ︷︷ ︸

A

 z

w

+
 0

1
m

︸ ︷︷ ︸

B

τz

y =
[

1 0
]

︸ ︷︷ ︸
C

 z

w

 (3.3)

We see that z position is measured from the depth sensor, and the control force, τz , will

manipulate the motion. The bias is neglected and compensated for later by the integrator in the

controller. The same procedure can be done for surge, sway, and yaw, assuming the heading is

close to zero.

3.1 Thruster Force Testing

When isolating each DOF as shown in equation 3.3, it is critical to have a good thrust alloca-

tion, so the controllers are not working against each other. To enhance the performance of the

thrustallocation, some thruster tests were executed by mounting the ROV to the towing car-

riage. The ROV was mounted in two different configurations to measure force and torque in

each DOF. The configurations are shown in figure 3.2a, assembled in figure 3.2b, and mounted

in figure 3.3a. The two force sensors can be seen between the plates on figure 3.3b.

3.1. THRUSTER FORCE TESTING 29

(a) Mounting configurations for thruster testing. (b) Assembled test rig.

Figure 3.2: Testing configurations.

(a) ROV mounted under water. (b) Rigg mounted when pool was empty.

Figure 3.3: Testing Thrusters in MC-lab

A test script was made to run stepwise throughout the relevant PWM range. The result was a

regression line that gives the relationship between PWM and Force for each thruster. The fitted

curve for the surge thruster can be seen in figure 3.4. The full range of the PWM signal is from

1100 to 1900, where 1100 is full reverse, 1500 is zero, and 1900 is full forward. So the range of

interest is set to +- 150 µs around 1500, which corresponds to 1350 - 1650 µs. In other words,

150/400 = 37.5% of full PWM signal, and 12/50 = 24% of full force [N]. From previous testing, it

30 CHAPTER 3. ROV MODEL AND THRUST ALLOCATION

was discovered that 10 [N] is more than enough force for dynamic positioning in a pool.

-150 -100 -50 0 50 100 150

PWM Signal

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

T
h
ru
st

-
[N

]
Fit Negative Thrust,K−

L
=4.69e-02, K−

NL
=2.67e-04

Fit Positive Thrust, K+
L
=6.07e-02, K+

NL
=2.84e-04

Measurements
Dead Zone

Figure 3.4: Mapping between PWM signal and thrust force.

3.2 Thrust Allocation

x x

y

z

T1T2

T3

T4 T5

T6

CG/VO

Figure 3.5: Thruster configuration for ROV uDrone.

The thrust allocation takes a 6 DOF force vector as input and commands a PWM signal to

each of the six thrusters. A good thrust allocation makes it a lot easier when it comes to tuning of

3.2. THRUST ALLOCATION 31

multiple controllers simultaneously. In (Henriksen & Sandøy (2015)) a thrust allocation function

was implemented for the ROV uDrone with the thruster configuration as shown in table 3.1 and

figure 3.5.

Ti lxi [mm] lyi [mm] lzi [mm] Orientation

T1 152 110 -19 Heave
T2 152 -110 -19 Heave
T3 -200 0 73 Heave
T4 -20 110 -19 Surge
T5 -20 -110 -19 Surge
T6 13 0 85 Sway

Table 3.1: Distance from each thruster to vehicle origin.

The thrust signal for each thruster is calculated by formula 3.4, where τ is the controller

force, and f is the desired force from each thruster.

τ=

0 0 0 1 1 0

0 0 0 0 0 1

1 1 1 0 0 0

ly1 ly2 ly3 0 0 −lz6

−lx1 −lx2 −lx3 lz4 lz5 0

0 0 0 −ly4 −ly5 lx6

︸ ︷︷ ︸

B

f1

f2

f3

f4

f5

f6

︸ ︷︷ ︸

f

(3.4)

The force for each thruster is then found by f = B−1τ. Finally, the mapping from [N] to [PWM]

is done according to the test results shown in figure 3.4.

32 CHAPTER 3. ROV MODEL AND THRUST ALLOCATION

Chapter 4

Computer Vision

Good vision is vital for us humans to observe the world, as well as to orient ourselves about

where we are relative to things around us. A focus lately has been to implement this ability into

our robots, so they also can start to operate in new, unknown, environments and take decisions

based on visual input. However, this requires some sophisticated skills, to be able to separate

objects from each other, recognize and analyze the data autonomously. Researchers state that

the human brain processes visual information in the semantic space mainly, which means we

organize data based on meaningful data, such as shape, lines, and boundaries. (Zhang (2010)).

This way of feature recognition is more difficult for machines, so other techniques have been

dominating in computer vision in the past few years. Based on robust, but less informative

features such as color and texture, machines can extract information from a scene that becomes

available to the system. One example can be the location of the object in the video frame, or how

an object is moving compared to a static background. Other examples are, machines ability to

read license plates, Facebook’s automatic face-recognition, or drones flying around a building

to make a 3D model. So different methodology is used for different purposes, and there is no

true answer to which method that is the best for your specific task.

Computer vision is simply manipulation and analysis of video images. Each image is a ma-

trix where each cell represents a pixel. In each cell, three numbers describe the color for that

pixel. So for an image with resolution 640 by 480 px we get 640 x 480 x 3 = 921 600 numbers.

Computational time is therefore strongly affected by the resolution of the image stream. You

can imagine doing CV on 4K resolution with 4096 x 2160 px, which gives a total of 26 542 080

33

34 CHAPTER 4. COMPUTER VISION

numbers, 30 times per second. That will require an enormous amount of computational power.

Optimized algorithms are therefore critical, and the images are usually cropped or downsized

before the algorithms are applied. These numbers can then be processed and manipulated to

perform specific tasks, such as masking out a feature, changing the contrast, or just blur the im-

age. Masking is usually done by thresholding a color channel, while blurring is done by replacing

each pixel with the average of the pixels around them. The matrix for an image is illustrated in

figure 4.1

Figure 4.1: Pixels in a video frame, with RGB to describe color.

4.1 Choosing a Software Library for Computer Vision

In chapter one, multiple open source computer vision libraries were found. The most promising

were "SimpleCV" and "OpenCV". "SimpleCV" provides a lean introduction to computer vision.

The library is so simple that it is not very efficient and neither give access to more advanced raw

image processing. However, it is a great tool to learn the concepts of computer vision, which

then makes it easier to understand OpenCV and its possibilities. OpenCV, on the other hand,

4.2. DETECTING OBJECTS UNDER WATER 35

is a high-performance computer vision library that has been around since year 2000. OpenCV

provides efficient, advanced, algorithms that are required in order to process video real-time.

The library is also open-source, which means anyone can contribute to the library. Most likely,

many people on the Internet are facing the same problems as you, which eases the debugging

and development process.

4.2 Detecting Objects Under Water

Different strategies are available for tracking objects. Some utilize features such as textures

along with sharp edges and corners, while others track the motion of each pixel from image

to image (Optical Flow). The problem with these methods is that on the sea bottom we always

have particles in the water, and the brightness varies a lot throughout the image. This makes

common methods such as Optical Flow and Canny Edge Detection less feasible. Filtering by the

objects color was therefore chosen to increase robustness in different environments. This can

be done with existing functions in OpenCV based on RGB or HSV color system. Next, we will

have a closer look at the different color systems and determine the most practical system for

color extraction.

4.3 Color Systems

There are many ways of describing colors. RGB and HSV are made for computer- and TV-

displays, while CMYK is made for printing posters and accurate real world representation of

colors. The CMYK color system is defined as four numbers that represent how many percents of

the colors cyan, magenta, yellow, and black should be used in the printer. The RGB color system

consists of three colors red, green, and blue, is the most common color system for computers.

By combining these colors, a huge variety of colors can be reproduced on a computer monitor.

RGB is an additive model that adds green, red, and blue together. A number from 0 to 255 sets

the amount of each color. The two color spaces are shown in figure 4.2.

Let us say you want to find the color values for a color on an object you are holding in front

of you; then it is quite hard to tell how much we need of each color (RGB) to get that color. Then

36 CHAPTER 4. COMPUTER VISION

(a) RBG color system. (b) HSV color system.

Figure 4.2: Two different color systems to represent colors in computers (Image source:
kirupa.com).

there is the more intuitive color system called Hue Saturation Value (HSV), which is closer to

how an artist mixes colors. Hue determines the main color; Saturation is the intensity of the

color, and Value is the brightness of the color. Now find the right main color (hue), then find

the correct saturation, and at last, brightness. This makes it much easier to determine the color

values for the object manually.

An example is illustrated in figure 4.3 where the difference in the HSV color system is only the

brightness value. This means its the same color, but with different light conditions. Doing the

same task to find RGB values is almost impossible because RGB does not have the same intuitive

meaning to us humans. For filtering of objects in an image, an upper and lower boundary for the

desired color must be found. As seen in figure 4.3, this is much easier in the HSV color system.

If we are tracking objects with a uniform color, it will appear with a different brightness of that

color. Depending on the light setting we will always get some darker areas and some brighter

ones on the tracked object. These thresholds are also changing from object to object and from

environment to environment. It was, therefore, important to find a good method to set upper

and lower thresholds to filter out any color of interest. This effort was significantly reduced

when boundaries were set in HSV format rather than RGB, with live tunable parameters. The

implementation will be presented in chapter 5.

4.3. COLOR SYSTEMS 37

Figure 4.3: Difference in HSV and RGB. HSV makes more sense for humans.

38 CHAPTER 4. COMPUTER VISION

Chapter 5

Camera-assisted Positioning Control Based

on Feature Tracking (CAPC)

Figure 5.1: uDrone in MC-Lab tracking an object.

39

40 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

5.1 Problem Formulation

When the ROV is operated in direct motion mode, the user experiences a lack of control because

of currents and drag forces from the umbilical. These forces change continuously depending on

the environment. It also induces undesirable oscillations and motions that are hard to compen-

sate for manually. So our goal is to enhance control performance in unknown waters while doing

inspections. The idea is to find an object that stands still on the bottom and let the ROV track

a feature on that object. In this case, the feature we are tracking is the color. The ROV should

then be able to lock visually on to this "target". Now the algorithm shall tell the system where

the object is along with its size. With feedback control on this information, is it then possible to

ease the control effort for the user? The Feature-Tracking control modes should be compatible

with a manual control input, depending on what degrees of freedom the user wants to move in.

These modes are explained in section 5.3

5.2 Feature Tracking Coordinate System

The coordinate system inside the video frame is shown in figure 5.2. The origin is at the top-

left corner, with positive x-direction towards the right, and positive y-direction downwards. For

simplicity, the local coordinate frame is shifted to the center of the image before the signals get

exported. Center point X (cX) and Y (cY) have units pixels, and the area has pixels squared.

5.3 Feature Tracking Control Modes

Some general sub-control modes have been developed for the Feature-Tracking algorithm and

presented in figure 5.3. By decoupling the 4 DOFs, we can introduce automatic control in some

directions while keeping others in manual control. Traditional automatic controllers as Auto-

depth and Auto-heading can also be combined with the Computer Vision modes. This combi-

nation then gives benefits as full dynamic positioning without any external positioning system.

5.3. FEATURE TRACKING CONTROL MODES 41

Figure 5.2: Coordinate frame for the Feature Tracking algorithm.

5.3.1 Heading Mode

The basic functionality of the Feature-Tracking algorithm is to keep the object in the camera

by controlling the yaw motion. That is, if the object starts to drift out to the left, then the ROV

should turn to the left to keep the object in the center of the video frame. The horizontal position

of the object (cX) is the only signal used in this mode. The other DOFs, surge, sway, and heave,

are controlled by the joystick. This mode provides good flexibility in maneuvering in front and

around the object.

5.3.2 Distance Mode

Distance Mode also provide heading control like the mode above, but now we take the area of

the feature into the controller, enabling us to control the surge motion. Hence, we can hold

a certain distance to the object while we keep the object in the center horizontally. It is still

possible to control the vehicle manually in heave and sway with the joystick.

42 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

5.3.3 Orbit Mode

Now we introduce the Auto-depth controller that takes pressure as input. The set-point is ini-

tially set to the depth where the controller was turned on. With integral action in the vertical

position of the object (cY), we can sum up the error in vertical offset and add this to the desired

depth for the auto-depth controller. This way we can combine the vertical offset given in pixels

with the depth given in meters. Anti-windup is of course of interest, especially if the ROV hits the

bottom, and still wants to continue downwards. The alternative would be to have direct feed-

back on the vertical position of the object (cY) in the video frame, but then we are very sensitive

to pitch motions, which can induce big variations in vertical position, and again large control

forces. On the other hand, the integralaction is averaging these variations and slowly changes

the set-point for the desired depth.

This mode is called the Orbit Mode because it allows the user to move in a circle around the

object to view it from different angles. Sway motion is the only input from the joystick, which

is controlling the direction of the orbit. If we let go of the joystick, and current is present, the

ROV will naturally drift down to the heading where it has the least resistance, hence facing the

current. This is usually the heading with greatest stationkeeping capabilities for most ROVs.

This mode is also feasible for ROVs that does not have actuators for sway motion.

5.3.4 Full DP Mode

In this mode, the heading is measured by the compass, IMU, or Qualisys. This allows the hor-

izontal position (cX) of the object to control the sway motion, instead of yaw motion as in the

previous modes. We now have full DP, and no input from the joystick is possible. This mode

requires good heading and depth measurements, while using a traditional heading- and depth-

controller. At the same time, we are using computer vision to control sway, distance, and auto-

guidance for the desired depth. Now there is no DOF controllable from the joystick, and the ROV

is keeping its position automatically.

5.4. CONTROL DESIGN 43

ROV

cX

ROV

cX,

Area

ROV

cX,

cY,

Area

d

Heading Mode Distance Mode Orbit Mode Full DP Mode

sway

yaw yaw

Input:

Center Point X

y

z

x

Automatic Controllers:

A
u

to
m

a
ti

c

C
o

n
tr

o
ll

e
rs

Jo
ys

ti
ck

In
p

u
t

C
o

m
p

u
te

r
V

is
io

n

C
o

n
tr

o
ll

e
rs

Auto-heading

from Qualisys

or compass

sway

sway

(none)

(none)(none)

d

heave

sway

heavesurge

ROV

cX,

cY,

Area

y

Automatic Controllers:

d

Auto-depth from

pressure-sensor

distance

in surge

distance

in surge

distance

in surge

Input:

Center Point X

Input:

Feature Area

yaw

yaw

Input:

Center Point X

Input:

Integral action on Center Point Y (cY)

Input:

Feature Area

Input:

Center Point X

Input:

Feature Area

Automatic guidance for

depth setpoint

Auto-depth from

pressure-sensor

heave

Auto

Guidance

Auto

Guidance

Input:

Integral action on Center Point Y (cY)

Automatic guidance for

depth setpoint

z z

z heavez

Figure 5.3: Illustration of the different control modes using Feature Tracking.

5.4 Control Design

5.4.1 Control Objective

The objective for the Camera Assisted Positioning Controllers is to get the object to the center

of the video frame, while maintaining a constant area of the object. The area is decreasing if

the ROV moves away from the feature, and increasing if it gets closer to the feature. Hence, it

is now possible to maintain a distance without knowing the actual distance to the object. The

distances and the coordinate system is illustrated in figure 5.2. Once we have the object in the

44 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

center of the video camera, it is easier to get good video footage while easing the control effort

at the same time.

5.4.2 PID Controllers

The control objective can be solved by regulating yaw-, heave-, and surge-motion of the ROV.

The errors for cX, cY, and cntArea can be defined as:

e(t) = xd (t)−x(t) (5.1)

where the desired position (C xd) is set to 0 in order to keep the feature in the center. A PID

controller is chosen, and defined as:

uψ(t) = KP e(t)+Kd ė(t)+Ki

∫ t

0
e d t (5.2)

for Auto-heading, and similar for the other controllers.

5.4.3 Filtering and Signal Processing

The object position values cX and cY were filtered through a low-pass filter to ease out noise

before the controller. The filter induced a small delay of about 20 ms, but was not considered as a

problem since it is less than 10 percent of the delay we already have in the video streaming from

ROV to the topside computer. The low-pass filter is presented below with x as the measured

input and y as the filtered output.

y(n) = (1−a)x(n)+ax(n −1) (5.3)

a = Ts

T f +Ts
(5.4)

The filtering ratio a was tuned to 0.125, with sampling frequency Ts = 0.1, and filter gain T f =
0.7. This means we trust the new measurement with 87.5% and the previous measurement with

12.5%.

5.5. IMPLEMENTATION 45

5.5 Implementation

5.5.1 Detecting Features in Video Stream

Figure 5.4: Tracked feature in MC-lab. The White dot and the green area are used as control
inputs.

There are multiple approaches to find objects in the video frame. Background subtraction

was considered not to be practical because the ROV will be moving most of the time, and the

feature of interest is most likely standing still relative to the background. Optical flow was also

considered, but due to particles in the water, this also gets tough. So a filtering strategy based

on unique colors was then chosen in order to find a simple and robust feature. Finding the right

limits for the color if interest can, however, be difficult sometimes. Especially at first when this

was done in the RGB color system, then it was necessary to take a test image into photo editing

program to extract the correct RGB values for upper and lower boundary color on the object of

interest. This made it very difficult to change color to be tracked. In section 4.3 we talked about

different color spaces, and came up with a solution of using HSV color system to filter the image

instead. The Process of tracking the object will now be presented step by step. A flow chart of

the algorithm is presented in 5.5.

5.5.2 The Feature Tracking Algorithm

With live tunable HSV parameters, these boundaries could be set very quickly. This was essential

when testing in MC-lab since the light conditions were very different over and under the water.

46 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

Get image From Video Feed

Feature Tracking Algorithm

Filter color

Create Filtered Binary Image

Erode Binary Image

Find Contours in Binary Image

Draw Rectangle Around Contours on Initial Image

Find Center Point and Area

Filter Signals

Publish Signals To a ROS Message

Dilate Binary Image

Figure 5.5: Flow chart of the Feature Tracking algorithm in OpenCV.

Also, when testing different objects, it was convenient to have good technique to filter them out

quickly. This is off-course also of great importance if the system were to be implemented in a

consumer product, where the objects if interest is not known prior to the dive.

When the right color limits are set, we make a binary image that is an image with only solid

black and pure white colors. The feature is now shown as white, and the rest is filtered out as

black. The filtered image can be seen to the left in figure 5.6. To make sure the white contour

is treated as one body, we use a Gaussian Blur blur function to filter out noise grains. OpenCV’s

erode function is then used to smooth out the edges followed by the dilate function. One ex-

ample is presented in figure 5.7. Dilate adds add a white border around the edge to fill in any

small remaining holes. This was necessary in order to avoid our mask being separated into two

5.5. IMPLEMENTATION 47

Figure 5.6: Tracked feature at right, filtered binary image at left.

Figure 5.7: The effect of blur, erode, and dilate (Source: opticalenquiry.com).

contours, due to the ropes that were holding the object in place. In Figure 5.6 we can see how

the masked contour has a small trace of the shadow behind, but the contour is trying to fill inn

this area. The Find Contours function

cnts = cv2.findContours(mask.copy(),cv2.CHAIN_APPROX_SIMPLE)

in OpenCV provides a list of all contours in the image, sorted by its size. The second argument:

"CV_CHAIN_APPROX_SIMPLE" means we want to store each contour as simple as possible, which

is a rotatable rectangle, storing only the location of each corner. We pick the largest contour, and

apply a drawing function, cv2.boxPoints(), that fills in the lines between each corner point.

Now the rectangle is drawn on top of the unfiltered image. The center point of the rectangle is

calculated by averaging the x and y values for the four points, while the area is found from the

48 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

cv2.contourArea(cnt) function. The signals are now filtered by the low-pass filter presented

in equation 5.3, before they get published to the ROS system.

The feature tracking algorithm was implemented with Python as a new control node in ROS,

which made the computer vision signals available for all the other nodes in the ROV.

5.5.3 The Controllers Based on Computer Vision

The Computer Vision based Controllers were implemented in a separate node, and made avail-

able to the user through a button on the x-box controller. This node was written in C++ and

was only using input from the feature tracking node, and the depth sensor depending on the

operation mode, as shown above in figure 5.3.

The PID-controllers shown in equation 5.2 were then implemented discretely with constant

loop frequency on 10 Hz. Manual control forces were also added into the control force vector if

the mode was allowing it before the desired control force was published to the thrust allocation.

Live tunable sliders for tuning of the different PID-controllers were also implemented and can

be seen in figure 5.9

5.6 Delay in the Control Loop

The feature tracking algorithm was tested both on the topside computer and on the RPi2 inside

the ROV. Both options had pros and cons. Running topside gives a lot more computing power,

but a small delay of 324 ms was then introduced due to live streaming over the local network,

from ROV to web-browser on the topside PC. However, since the computing power is so much

greater topside, it was beneficial to stream video up, do computer vision and then return the

control force signals. The Feature Tracking algorithm in OpenCV had a delay of 26ms. Running

topside also allows a higher resolution on the video which gives smoother input to the PID-

controllers. The total delay from a visual change in the pool to the force command is given is

then: 350ms. These values will vary a little depending on how much RPi2 is loaded. The delay

test is shown in figure 5.8. On the other side, running locally on the RPi2 should give advantages

such as low latency, but at the cost of lower resolution. This option was therefore chosen for the

distance algorithm because this camera was directly interfaced with the RPi2 through CSI port,

5.7. GRAPHICAL USER INTERFACE 49

via the PiCamera library for Raspberry Pi and RPi Camera in Python.

Figure 5.8: Delay from ROV to the topside PC, OpenCV at left, URL stream at right, actual time
at the bottom, for the fisheye camera.

5.7 Graphical User Interface

Figure 5.9: Sliders for tuning PID controllers and signal monitoring.

Both Range Finder and Feature Tracking do have live tuning of the filtering parameters. This

is crucial until some automatic algorithm can filter out features for you. One way this could be

done is, by dragging a square with the mouse on the video, or by the touch of your fingertip on

50 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

an iPad. However, for the purpose of this project, that was not considered of great importance.

Sliding bars were therefore implemented to be able to turn video preview on/off, and tuning of

video and signal filtering as shown in figure 5.9.

5.8 Testing of CAPC Based on Feature Tracking

A great deal of testing was performed in MC-lab throughout the development phase of this

project. One controller was tuned at the time before all were combined in the end. The Auto-

heading controller based on the horizontal center point position (cX), was first tested and tuned

to make sure the object would not leave the camera’s field of view. Next, the Auto-distance based

on feature area was turned on and tuned to keep a constant distance. Now it started to be inter-

esting to see how the controllers were behaving together with manual input. At last, Auto-depth

and Auto-reference for depth were tuned.

The results from two tests will now be presented. In the first test, we will have a look at

the controllers performance at low velocities, and how the object converges to the center of the

camera. Then in the second test we are looking into the Orbit Mode, where we allow manual

input in sway direction to go around the object. The object used for these tests was a piece of

wood that was painted blue. This object was chosen because it had a color that could easily be

detected. The fact that the wood floats made it easy to get it standing upraised anywhere in the

pool with a weight at the bottom.

Table 5.1: Test scheme for Feature Tracking controllers.

DOF: Steady-State Positioning Orbit Mode Test

Controllers: Input Signals: Controllers: Input Signals:
Surge Auto-distance Feature Area Auto-distance Feature Area
Sway 0 _ Manual Control Joy-stick

Heave Auto-depth Pressure Sensor Auto-depth Pressure Sensor
Heave-ref Auto-reference Center Point Y (cY) Auto-reference Center Point Y (cY)

Yaw Auto-heading Center Point X (cX) Auto-heading Center Point X (cX)

5.8. TESTING OF CAPC BASED ON FEATURE TRACKING 51

5.8.1 Test 1: Steady-State Positioning

The ROV is starting close to the surface with the object standing in the middle of the water col-

umn, in front of the ROV. When the controllers are activated, the ROV will start to regulate the

ROV, so the object converges to the center of the video frame. As seen in Table 5.1, we have now

activated Auto-heading, Auto-distance, Auto-depth and Auto-reference for depth. The Con-

trollers are turned on, and we will now see what happens.

0 20 40 60 80 100 120 140 160

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
os

iti
on

 (
m

)

Qualisys Position Measurements

X
Y

(a) X and Y position measurement.

0 20 40 60 80 100 120 140 160

Time (s)

0

0.2

0.4

0.6

P
os

 (
m

)

Qualisys Position Measurements

Qualisys Z

0 20 40 60 80 100 120 140 160

Time (s)

-2.6

-2.4

-2.2

H
ea

di
ng

 (
ψ

)

Qualisys Position Measurements

Qualisys ψ

(b) Z and ψ position measurement.

Figure 5.10: Position measurement of the ROV from Qualisys positioning system in MC-lab.

In figure 5.10 we see that the ROV is slowly moving in x- and y-direction, while starting to

descend at the same time. Figure 5.11 shows a 2D representation of the same data. Here also

the object we are tracking is plotted with its pose in the top left corner. The ROV is plotted in

blue and moves in positive x- and y-direction as it lowers down into the basin. We can also see

that the heading of the ROV is always pointing towards the center of the object. We will now

have a closer look at how this is possible.

5.8.2 Auto-heading Controller

The Automatic Heading controller is regulating the horizontal center point of the feature into

the center of the camera’s field of view. The control function provides a control torque in yaw

that is assumed not to influence any of the other degrees of freedom. However, when testing

only the heading controller, it was clear that it started to drift closer and closer to the object.

This indicates that a control torque in yaw also gives a small contribution in surge motion. In

52 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

0 0.5 1 1.5 2

X Position of Tank (m)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Y
 P

os
iti

on
 o

f T
an

k
(m

)

2D Position of ROV

Start →

← End

Position Trace
Center Point
ROV

Figure 5.11: Position of the ROV seen from above in basin frame.

figure 5.12 the error for the object’s horizontal position is presented. The steady-state error in cX

is within +/- 20 pixels from the center, which is almost unnoticeable (5 %). We can also see how

the control torque is oscillating back and forth. This is most likely due to the delay in the camera

feed; that is causing too much force in one direction before the ROV starts to go the other way

already. The peaks get lower if the proportional gain is reduced, but then the controller gets

to slow when other controllers, manual control or environmental loads are added. The control

torque is within +/- 0.1 Nm and is relatively low. The mean is very close to 0, which indicates

that there are not much slowly varying biases. Only in certain situations we can get quite a lot of

torque from the umbilical, but for the most part, this has been neglectable. It is also clear to see

how the control torque increase as the ROV starts to move in depth and position after about 40

seconds.

5.8. TESTING OF CAPC BASED ON FEATURE TRACKING 53

0 20 40 60 80 100 120 140 160

Time (s)

-20

0

20

40

P
ix

el
s

F
ro

m
 C

en
te

r

Feature Position in Camera Frame

Center Point (cX)
Reference

0 20 40 60 80 100 120 140 160

Time (s)

-0.2

0

0.2

C
on

tr
ol

 T
or

qu
e

(N
m

) Control Force from Auto Heading (cX)

Control Torque Sway
Mean Control Torque

-0.0099

Figure 5.12: Error in the horizontal position of the object in the camera.

0 20 40 60 80 100 120 140 160

Time (s)

-500

0

500

A
re

a
of

 F
ea

tu
re

 (
px

2
)

Error for Auto Distance Based on Area

Feature Area Error
Zero

0 20 40 60 80 100 120 140 160

Time (s)

-0.2

-0.1

0

0.1

0.2

C
on

tr
ol

 F
or

ce
 (

N
)

Control Force from Auto Distance (FeatureArea)

Mean: -0.0064

Control Force Surge
Mean Control Force

Figure 5.13: Error in the area of feature and control force in surge.

54 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

5.8.3 Auto-distance Controller

To make sure we stay at a constant distance away from the feature the Auto-distance controller

was implemented. This control function is taking the area of the feature as input and returns a

control force in surge. Since the area of the feature is typically 5000 pixels to 6000 pixels, we see

that the error presented in figure 5.13 is quite large. However, compared to the input value we

get;

400px2/6000px2 = 0.067 ≈ 7% (5.5)

which is quite acceptable. In the same figure, we can also see that the control force is within +/-

0.1 N.

0 20 40 60 80 100 120 140 160

Time (s)

-0.5

0

0.5

1

1.5

D
is

ta
nc

e
(m

)

Distance Between Object and ROV

dX
dY
dZ

sqrt(dX2+dY2+dZ2)

0 20 40 60 80 100 120 140 160

Time (s)

-0.05

-0.03

-0.01

0.01

0.03

0.05

D
is

ta
nc

e
(m

)

Error in Distance
Error in Distance
Reference

Figure 5.14: Constant distance between ROV and object at top, with error in distance below.

Now, how steady can the controller keep the actual distance to the object? With exact posi-

tion measurements from the underwater positioning system, Qualisys, it is possible to calculate

the "true" distance between the object and the ROV. Qualisys should provide measurements

with +/- 1 mm accuracy. The distance in X, Y, and Z direction (dX, dY, and dZ) is found and

5.8. TESTING OF CAPC BASED ON FEATURE TRACKING 55

combined by:

d =
√

d X 2 +dY 2 +d Z 2 (5.6)

where d is the total distance between the objects. The values from this test is presented in figure

5.14. Due to the motion in heave, we see that it actually has a constant distance for the whole

time series, even though it seems like its varying quite a bit in figure 5.11. The deviation in the

distance error is also surprisingly low with +/- 3 cm on a total distance of 125 cm (2.4 %).

5.8.4 Auto-depth Controller

0 20 40 60 80 100 120 140 160

Time (s)

45

50

55

60

65

70

75

80

85

90

D
ep

th
 (

cm
)

Depth Position

Measured Depth
Qualisys

z

Desired Depth (cY)

Figure 5.15: Auto-reference is pushing the ROV down to about 82 cm below the surface.

The heave motion is controlled by an Auto-depth control function. The function is taking

water pressure converted to depth (cm) as input and returns a control force in heave. In addi-

tion, we have the auto-reference function that integrates the error of the objects vertical position

(cY), and adds this to the desired set-point for the Auto-depth controller. As seen in figure 5.15,

the reference is growing very fast in the first 40 seconds, before it grows slower and converges

to about 82 cm below the surface. In figure 5.16 we see how the error in cY decreases and con-

verges to 0 at around 100 seconds. The mean heave control force has a value of 0.75 N which

56 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

corresponds to about 75 grams of buoyancy, that it has to compensate for.

0 20 40 60 80 100 120 140 160

Time (s)

-50

0

50

100

150
P

ix
el

s
F

ro
m

 C
en

te
r

Error of Feature Y Position in Camera Frame
Center Point (cY)
Reference

0 20 40 60 80 100 120 140 160

Time (s)

0

1

2

C
on

tr
ol

 F
or

ce
 (

N
)

Control Force from Auto Depth (cY)

Mean: 0.75

Control Force Heave
Mean Control Force

Figure 5.16: Vertical error in feature position in camera frame goes to zero.

0 20 40 60 80 100 120 140 160

Time (s)

-5

0

5

D
is

ta
nc

e
(c

m
) Error in Heave position Error (Qualisys

z
 - Measured Depth)

0 20 40 60 80 100 120 140 160

Time (s)

-10

0

10

D
is

ta
nc

e
(c

m
)

Error (Measured Depth - Reference)

0 20 40 60 80 100 120 140 160

Time (s)

-5

0

5

D
is

ta
nc

e
(c

m
) Error (Qualisys

z
 - Reference)

Figure 5.17: Comparison of errors in depth.

5.8. TESTING OF CAPC BASED ON FEATURE TRACKING 57

In figure 5.17 the difference between measured position from Qualisys, measured depth

(pressure sensor), and reference. It is clear to see that the pressure sensor is the noisiest mea-

surement, but it is still following the Qualisys quite nicely within +/- 5 cm. The controller is also

following quite well in the 2nd-row plot. The last row shows the total difference between desired

depth and "true" position from Qualisys. Note how the error is smaller the first 100 seconds. This

is because this is where the ROV is moving downwards, but as soon as it finds the correct depth,

it starts to oscillate. This is most probably because it is hard to provide small enough thrust from

the thrusters. Still within +/- 4 cm from the reference (4.8 %).

0 20 40 60 80 100 120 140 160

Time (s)

1460

1480

1500

1520

1540

P
W

M
 S

ig
na

l

Thrust Commands

Surge Thruster Starbord
Surge Thruster Port
Sway Thruster

0 20 40 60 80 100 120 140 160

Time (s)

1460

1470

1480

1490

1500

P
W

M
 S

ig
na

l

Thrust Commands

Heave Thruster Aft
Heave Thruster Front Starbord
Heave Thruster Front Port

Figure 5.18: Thrust commands from the thrustallocation.

The output of the thrust allocation is plotted as thrust commands in figure 5.18. The white

gap between 20 and 40 seconds, indicates that the ROV is driving forward. The PWM signal

value gives zero thrust at 1500 and has a dead zone from 1475 to 1525. To get thrust at low

control force values, we have to add 25 instantly to the signal. This shows up as spikes for low

torque and oscillates back and forth when the control force is working around zero. For the

heave thrusters in the next row, it is clear that the aft thruster is on continuously, below 1470.

The other two thrusters have the exact same values as long as there are no control forces in sway.

They are therefore plotted on top of each other in red and orange.

58 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

5.8.5 Object Positioning in Camera

0 20 40 60 80 100 120 140 160

Time (s)

-50

0

50

100

150
P

ix
el

s
F

ro
m

 C
en

te
r

Feature Position in Camera Frame

Center Point (cX)
Center Point (cY)

0 20 40 60 80 100 120 140 160

Time (s)

4500

5000

5500

6000

A
re

a
(p

x2
)

Area of Feature Seen in the Camera

Area of Feature Tracked
Mean

5124

Figure 5.19: The object converges to the center of the camera, while keeping the area constant.

Looking back on the control objective, we now see in figure 5.19 that both center point X and

Y converges to zero, and the area stays constant at the value it was when the control function was

activated. Figure 5.20 shows how the feature is moving in the camera frame. It starts towards the

bottom of the camera frame and ends up in the center. The squares are plotted based on how

the area signal was changing throughout the time sequence. The length of the square sides is

found by taking the square root of the area signal. The blue line shows the continuous trace of

the objects movement in the camera, while the frames are taken at equal time intervals.

5.8. TESTING OF CAPC BASED ON FEATURE TRACKING 59

-300 -200 -100 0 100 200 300

Pixels cX

-200

-150

-100

-50

0

50

100

150

200

P
ix

el
s

cY

Center Point of Object in Camera (640x480)

Trace of Object Center Point
Center Point

End →

Start →

Figure 5.20: The movement of the feature in the camera frame during the time series.

5.8.6 Test 2: Orbit Mode

We are now going to induce manual control force in sway to test the controllers at larger distur-

bances. The manual control force is limited to 10 N. That is about 10 times more than what the

controllers has performed so far. We start out by presenting the position and movement in the

basin, shown in figure 5.21. X and Y position seem to vary smoothly, but the depth is changing

significantly. However, it converges quite fast down to the desired depth as soon as the manual

control force is eased. In figure 5.22 we can see how the ROV is moving in an orbit around the

feature. The maximum velocity is at about 17 seconds, right before the sway thruster is turned

off. Towards the end of the time series, we see that the ROV approaches the feature. This is

because the area of the feature decrease as the viewing angle gets closer to the side of the fea-

ture. Also, notice how the heading is always pointing towards the feature. This feels like a vast

improvement for the user in controlling the vehicle, and it is also nice to have when recording

video.

In figure 5.23, it is clear that we have the object moving more around in the camera frame in

60 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

0 5 10 15 20 25 30

Time (s)

-0.5

0

0.5

1

1.5

2

P
os

iti
on

 (
m

)

Qualisys Position Measurements

X
Y

(a) X and Y position measurement.

0 5 10 15 20 25 30

Time (s)

0.3

0.4

0.5

0.6

0.7

P
os

 (
m

)

Qualisys Position Measurements

Qualisys Z

0 5 10 15 20 25 30

Time (s)

-4

-2

0

2

4

H
ea

di
ng

 (
ψ

)

Qualisys Position Measurements

Qualisys ψ

(b) Z and ψ position measurement.

Figure 5.21: Position measurement of the ROV from Qualisys positioning system in MC-lab.

0 0.5 1 1.5 2 2.5 3

X Position of Tank (m)

-0.5

0

0.5

1

1.5

Y
 P

os
iti

on
 o

f T
an

k
(m

)

2D Position of ROV

Start →

End →

Position Trace
Center Point
ROV

Figure 5.22: 2D position of the ROV in Orbit Mode from a bird perspective.

this mode. However, there is still a long way before we lose the feature out of the field of view.

The resolution is set to 640 x 480 pixels which means we have about 2/3 (100 px/320 px) left of

the screen on both sides before the object is out of sight. From 25 to 30 seconds we see that the

signals are jumping a bit, this is because the feature contour gets split into 2 areas. Since we are

always tracking the largest one, it starts to jump between tracking the whole and only the half

5.8. TESTING OF CAPC BASED ON FEATURE TRACKING 61

contour. This is visible in the graphs where the area suddenly drops to a lower value, while the

center points jump at the same time.

0 5 10 15 20 25 30

Time (s)

-200

-100

0

100

200
P

ix
el

s
F

ro
m

 C
en

te
r

Feature Position in Camera Frame
Center Point (cX)
Center Point (cY)

0 5 10 15 20 25 30

Time (s)

0

5000

10000

A
re

a
(p

x2
)

Area of Feature Seen in the Camera

Area of Feature Tracked
Mean

Figure 5.23: Position and area of the feature seen in the camera.

Figure 5.24 shows the thrust commands from the thrust allocation. We now see that the

sway thruster is much higher than the others. Due to the thruster configuration, we have to

compensate for the roll motion due to the sway thruster. This is why the front heave thrusters

also have significant inputs in opposite direction. The heading controller also provides a quite

large yaw torque with the surge thrusters in opposite direction to maintain the desired heading.

Figure 5.25 we see how the object is moving throughout the time series. It is moving signif-

icantly more than in the previous test, but it is still within the center area of the camera frame.

62 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

0 5 10 15 20 25 30

Time (s)

1400

1500

1600

1700

P
W

M
 S

ig
na

l

Thrust Commands

Surge Thruster Starbord
Surge Thruster Port
Sway Thruster

0 5 10 15 20 25 30

Time (s)

1400

1450

1500

1550

1600

P
W

M
 S

ig
na

l

Thrust Commands

Heave Thruster Aft
Heave Thruster Front Starbord
Heave Thruster Front Port

Figure 5.24: Sway thrust commands are dominating in Orbit mode.

-300 -200 -100 0 100 200 300

Pixels cX

-200

-150

-100

-50

0

50

100

150

200

P
ix

el
s

cY

Center Point of Object in Camera (640x480)

Trace of Object Center Point
Center Point

Figure 5.25: Movement of the feature inside the camera in Orbit Mode.

5.9. DISCUSSION 63

5.9 Discussion

The objective for the Camera-Assisted Positioning System was to control the ROV with auto-

matic controllers, based on computer vision together with manual joystick control. The testing

in MC-lab showed that the control problem was solved with high reliability. All controllers were

easily tuned to give satisfactory results. These gains could, of course, be optimized to enhance

response time and performance even further. However, the aim of this project was to develop a

proof of concept on how computer vision can be integrated into low-cost ROVs.

Latency in the video transmission was not as big of a problem as first expected, but it could

have probably removed the small oscillations in the Auto-heading control function if the latency

was reduced. For that to be possible, a greater CPU should be considered for the ROV. That

allows all computer vision to be running locally on the ROV. However, it was very convenient

to have the image processing running topside for testing and debugging. As explained earlier,

running image processing topside also allowed greater resolution on the image matrices, hence

smoother output signals from the control function. If we were to run Feature Tracking on the

RPi2, it could be significant to run at 320 x 240 pixels; this will reduce the CPU intensity, and

maybe still have enough points for a smooth output. The steady state error would then work on

10 steps instead of 20 (ref. figure 5.19). The question is still, will it actually be faster than running

on the topside computer?

The depth position in Orbit Mode got pushed far off set-point when the sway thruster was

turned on. This could be solved by tuning the controller more aggressive, or decrease the al-

lowed sway force in this mode. The thrust allocation can also be tuned for better precision for

low velocities. Other factors are that when the camera is tilted in roll the center position Y of the

feature will not be correct. This means that the auto-reference for depth will start to grow, and

is responsible for the peak from 17 to 30 sec in heave position, seen in figure 5.21. The roll angle

should, therefore, be considered before outputting the cY signal to the Auto-reference function.

An alternative is to set cY to 0 when sway control force is larger than 5 N. That way the depth

adjustments will only happen when the ROV is hovering on the spot.

A weakness of the Feature Tracking algorithm is that it is only tracking features based on its

color. This means it will easily get distracted if the same color shows up on a different object (i.e.

64 CHAPTER 5. CAMERA-ASSISTED POSITIONING BASED ON FEATURE TRACKING

blue light from Qualisys cameras). This problem could be reduced by filtering out the contours

that have a sudden jump in position and area from the previous one. Also features as shape

could also be stored with more points than a rectangle; then it would be possible to compare

the new contour with a desired shape. Shapes as squares and circles would be easy to find, but

usually, there is not that kind of shapes in the ocean, at least not naturally. A more user-friendly

way of selecting new features on the sea bottom is advised to be developed before this module

can be implemented in a consumer product.

Overall, the performance of the feature tracking algorithm has been very satisfactory. The

ROV uDrone has been functioning very well as a robust testing platform together with Qualisys

positioning system in MC-lab. The splitting of DOFs was also successfully working with partial

manual and partly automatic control.

Chapter 6

Camera-assisted Distance Control Based on

Laser Lights

(a) Test setup for Range Finder
with Qualisys.

(b) Development of Range
Finder.

(c) Testing in low light condi-
tions.

Figure 6.1: Range Finder in MC-lab.

6.1 Problem Formulation

Two parallel lasers pointing straight forward from the camera hits a wall in front of the ROV. The

apparent distance between the reflected laser dots will then change when the ROV gets closer

to the wall in front of it. This distance can be measured by computer vision and translated to a

distance in cm from the ROV to the wall. The control objective is to maintain a constant distance

to the wall while being able to control sway motions manually. The ROV should also be able to

keep a desired depth and heading, depending on the operating mode. Hereafter we will call this

65

66 CHAPTER 6. CAMERA-ASSISTED DISTANCE CONTROL BASED ON LASER LIGHTS

laser module for "Range Finder". Four laser lights are mounted inside the ROV and create laser

dots as shown in figure 6.1. The lasers can also be switched off at any time through the software.

6.2 Control Modes for Range Finder

Range Finder can also be utilized in different combinations with manual control as shown in

figure 6.2

ROV

d

d

Measure Distance Mode Auto Distance Mode Wall Inspection Mode

sway

Input:

Laser dots distance (d)

y

z

x

A
u

to
m

a
ti

c

C
o

n
tr

o
ll

e
rs

Jo
ys

ti
ck

In
p

u
t

C
o

m
p

u
te

r
V

is
io

n

C
o

n
tr

o
ll

e
rs

sway

(none)

heave

Distance measurement

yaw

surge

swayyaw

Auto-distance

in surge

Input:

Laser dots distance (d)

Auto-distance

in surge

Input:

Laser dots distance (d)

Auto-heading

from Qualisys

or compass

yaw

Auto-depth from

pressure-sensor

heave

z
z

z

Auto-depth from

pressure-sensor

heavez

Wall

ROV

d

Wall

ROV

Wall

Figure 6.2: Control modes for the Range Finder module.

6.3. GEOMETRY OF THE LASERS 67

6.2.1 Measure Distance Mode

The first mode is just providing the distance as information to the user with no automatic con-

trol. This information is often very useful underwater, especially in new waters. Sometimes it

can be very hard to get an impression of how big the objects in the camera really are.

6.2.2 Auto Distance Mode

Automatic Distance Mode keeps a constant distance to the object in front of the ROV. However,

this mode is vulnerable if the ROV starts to yaw because then the distance to the wall will rapidly

increase. But as long as the ROV does not continue to rotate in yaw, it will stabilize at the correct

distance, even though it is not perpendicular to the wall. This mode gives the user a little more

room to navigate while still have some guidance on controlling the ROV. This module could also

be mounted as Auto-altitude if the lasers and a camera were pointed downwards. This could be

implemented as an auto-reference function for depth as described earlier in chapter 5.

We have now added the Auto-depth controller, leaving yaw and sway motions controllable

from the joystick.

6.3 Geometry of the Lasers

The distance to the wall in front of the ROV can be estimated by use of two parallel lasers. If

the wall is far away, the distance between the laser dots will decrease. If the ROV gets closer to

the wall, the distance between the dots will increase. As long as the lasers and the camera are

fixed, it will be possible to find a mapping from the distance between the laser dots (pixels) and

the distance from the ROV to the wall (cm). With only two parallel lasers it is not possible to

know the angle of the wall relative to the ROV. This is because when the angle is changing, both

laser dots will move to the same side, maintaining the same distance between the dots. The

phenomenon is illustrated in figure 6.3. Angles up to 80 degrees was tested and verified in MC-

lab. Angles above that was difficult to test because laser dot furthest away got hard to detect.

However, this means that the Range Finder function will work on any surface, at any angle, as

long as the material is reflecting the laser lights.

68 CHAPTER 6. CAMERA-ASSISTED DISTANCE CONTROL BASED ON LASER LIGHTS

2
0

0
 c

m

{
d

25 px {

25 px

Laser B
eam

Camera

Field of View on the Wall

Wall at an Angle

Figure 6.3: Laser geometry for Range Finder with two parallel lasers.

dY R2dY R1dY L2dY L1

dX 1 Top

dX 2 Top

dX 1 Bottom

dX 2 Bottom

θ

W
a

ll
 a

t
a

n
 A

n
lg

e

Lase
r B

eam
s

Figure 6.4: Proposed setup with four parallel lasers.

A method to detect the angle between the wall and ROV will now be proposed. If four parallel

lasers are used instead of two, we get more distances to track, see figure 6.4. All the distances

between the points can be compared to see how they are changing relative to each other. When

6.4. CONTROL DESIGN AND SIGNAL PROCESSING 69

distance dY L and dY R is found, it is possible to find the corresponding distance from the ROV

to the right and the left side of the projected square. The angle θ can then be determined by the

function:

f (dY L,dY R) = arctan(
dL−dR

Par al lel Di st ance
) = θ (6.1)

where θ is the angle between the ROV and the wall, dL and dR are the distances from the ROV

to the wall, and Parallel Distance is the distance between the laser beams. For ROV uDrone this

distance is 5.5 cm.

dR

dL

ROV

Wall

θ

θ

(dL-dR)

Laser Distance

Figure 6.5: Detecting the ROVs heading relative to a wall.

6.4 Control Design and Signal Processing

The Auto-distance controller is implemented as regular PID controller with distance to the wall

as input and control force in surge as output. Low-pass filtering is applied in the Range Finder

function as described in section 5.4.2. When the Range Finder has found how many pixels we

have between the two dots, the number is mapped into a distance from the ROV to the wall. This

relationship was done by plotting the pixels for every 10 cm between 10 and 180 cm. The fitted

curve was then implemented in the Range Finder function to give the distance in cm right away.

The conversion from pixels to distance is found in figure 6.6.

70 CHAPTER 6. CAMERA-ASSISTED DISTANCE CONTROL BASED ON LASER LIGHTS

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

10

15

20

25

30

35

40

45

50

D
is

ta
nc

e
B

et
w

ee
n

La
se

rs
 [p

ix
el

s]

Distance Between Laser

Distance Between Laser

(a) Distance between laser dots.

0 20 40 60 80 100 120

Distance between laser points [Pixels]

0

50

100

150

200

250

300

350

400

D
is

ta
nc

e
in

 [c
m

]

Mapping from Pixels To Distance

Measurements
Regression Line

 a(x) = a*exp(b*x) + c*exp(d*x)

 a = 816.7
 b = -0.1715
 c = 96.67
 d = -0.02044

(b) Mapping from pixels to distance in cm.

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

20

40

60

80

100

120

140

160

180

D
is

ta
nc

e
[c

m
]

Distance To a Wall

Distance from Laser

(c) Distance from ROV to object in front.

Figure 6.6: Mapping between laser dot distance in pixels and distance in cm.

6.5. IMPLEMENTATION AND LASER DETECTION 71

6.5 Implementation and Laser Detection

Detecting lasers can be both easy and hard, depending on how powerful the lasers are. There

are different approaches to get the reflected dots filtered out from the video frame. But after

testing different algorithms, it was found that using the algorithm for Feature Tracking gave the

best results. This algorithm was also much faster to implement since it was already done for the

Feature Tracking. However, there was quite a bit of tweaking to get the software (OpenCV 2.4 vs

3.0) running on the Raspberry Pi 2. So the only difference in the algorithm is that we are now

tracking the red color of the laser, filtered by a size constraint. The size of the dot will change

some depending on the distance, but it is still within a range of 3−40px2. So if there is a larger

red object, it will not disturb the algorithm. As Range Finder module is implemented locally on

the Raspberry Pi 2, it allows connecting directly to the RPi2 camera, which gave some latency

benefits. This camera is used only for laser detection, so the brightness is turned down to filter

out some of the surroundings. The RPi2 camera also has a much narrower field of view, which

gives more pixels in the area where the laser dots gets reflected. As discussed earlier, we have

a problem with high resolution on the RPi2 because the matrices get to large and things slow

down. To improve the resolution in the are of interest, the camera was therefore set to crop the

image before sending it to the Range Finder function. This is done by a function in the PiCamera

library for Python and OpenCV, shown in equation 6.2 and 6.3.

camera.crop = (0.15, 0.15, 0.85, 0.85) (6.2)

The vector in the crop function tells how many percents of the image that should be cropped

out in the format (start point x, start point y, end point x, end point y). This cropping leaves a

padding of 15 % cropped out before the image is grabbed from the camera.

raw = PiRGBArray(camera, size=(320,240)) (6.3)

Equation 6.3 grabs an image from the camera stream with resolution 320 by 240 pixels. This

gives us a small matrix with adequate steps for the laser dots variation.

72 CHAPTER 6. CAMERA-ASSISTED DISTANCE CONTROL BASED ON LASER LIGHTS

6.6 Delay in the Control Loop

A simple test to check the response time was done by switching on the lasers, and measure how

long it takes before the Range Finder gives a distance measurement, and then how long it takes

for the Auto-distance controller to give a force command. The switch for the lasers are running

at 100 Hz and is publishing directly to the Arduino. The corresponding delay for switching is

therefore neglected. While logging all signals on the same clock, we can then see how much

time each step of the sequence takes. The result is shown in figure 6.7. It takes 440 ms to get a

distance measurement, and 500 ms to get the control force. The Range Finder node in ROS runs

at about 7 to 10 Hz, which is more than fast enough for dynamics in this system at low velocities.

However, the delay could be reduced for better control performance.

14.9 15 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16

Time (s)

0

0.5

1

1.5

2

2.5
RPi Camera Delay

Laser on/off
ControlForce Surge
Laser Distance

15.05

dt Laser Measurement: 0.44 s dt Control Force: 0.50 s

15.49

15.55

Figure 6.7: Delay in Range Finder with RPi Camera.

6.7. GRAPHICAL USER INTERFACE 73

6.7 Graphical User Interface

The graphical user interface is based on the same as the Feature Tracking module, but since it

is running on RPi2 we have to connect via SSH with the -X flag to be able the see the graphical

interface. Displaying graphic and especially video over SSH is not the fastest, but it enables

the user to tune in the right color limits before the video displays are turned off. When color

limits are set, the Range Finder only publishes the distance, without displaying any video to

save computational power. The interface is shown in figure 6.8.

Figure 6.8: User interface when operating Range Finer.

6.8 Testing of CADC Based on Laser Lights

From the Range Finder algorithm, two test cases are chosen for a closer presentation. The first

one is used to measure the "true" distance accurately from Qualisys versus estimated distance

from the Range Finder function. While the second test is testing the Auto-distance controller

together with a manual control input to see how they can be combined in inspection missions.

Both tests are done in what we previously defined as the "Wall Inspection Mode" in figure 6.2.

74 CHAPTER 6. CAMERA-ASSISTED DISTANCE CONTROL BASED ON LASER LIGHTS

This is because it was challenging to control the heading and depth manually, to keep the lasers

on the small testing wall in the basin.

(a) Qualisys 3D view. (b) Reflection balls for positioning lit up.

Figure 6.9: Qualisys positioning system in MC-lab. (a) shows the ROV in blue and the wall in
green.

6.8.1 Test 1: Wall Inspection Mode

The Auto-distance control function will now be tested together with Auto-depth (pressure sen-

sor) and Auto-heading (Qualisys). To get accurate measurements on the distance variation, a

wall with positioning balls were lowered into the basin at MC-lab. With this setup, it is possi-

ble to get position measurements on both the ROV and the wall at the same time, in the same

reference system. The bodies can be seen in figure 6.9.

The ROV is set to approach the wall at certain increments to test the accuracy the hole map-

ping range. The depth position is varying at steps as well. This was done manually to make sure

the lasers would stay on the wall. Every time the Auto-distance button is hit on the x-box joy-

stick, the desired depth is set to the current depth. The Auto-heading controller is regulating the

heading to zero with input from the Qualisys system. All position measurements for the ROV

can be seen in figure 6.10.

In figure 6.11 the motion of the ROV is presented together with estimates of the distance

from the Range Finder function (shown as red stars). We see that it is "guessing" within +/- 10

cm of the actual distance, and for the most part, even better. In green, we see the trace of the

6.8. TESTING OF CADC BASED ON LASER LIGHTS 75

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

P
os

iti
on

 (
m

)

Qualisys Position Measurements

X
Y

(a) X and Y position measurement.

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

0.4

0.5

0.6

0.7

0.8

P
os

 (
m

)

Qualisys Position Measurements

Qualisys Z

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

-0.2

-0.1

0

0.1

0.2

H
ea

di
ng

 (
ψ

)

Qualisys Position Measurements

Qualisys ψ

(b) Z and ψ position measurement.

Figure 6.10: Position measurement of the ROV from Qualisys positioning system in MC-lab.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

X Position of Tank (m)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Y
 P

os
iti

on
 o

f T
an

k
(m

)

2D Position of ROV

← StartEnd →

Position Trace
Center Point
ROV

Figure 6.11: Position of the ROV in the basin seen from above.

ROV CG, and the blue ROV gives an impression on how long it has spent at each location. The

ROV is plotted with constant time intervals throughout the time series.

The reference for the distance is plotted together with the measured position from Qualisys

76 CHAPTER 6. CAMERA-ASSISTED DISTANCE CONTROL BASED ON LASER LIGHTS

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

20

40

60

80

100

120

140

160

180
D

is
ta

nc
e

(c
m

)

Distance To a Wall

Distance from Laser
Reference
Qualisys Distance in X

Figure 6.12: Distance to the wall with reference steps.

and estimated distance from the Range Finder in figure 6.12. We see that the Auto-distance

controller is following nicely, but the distance estimate is off by about 15 cm in the time interval

from 0 to 170 seconds. The errors between the signals are plotted in figure 6.13. Again, we

see that the error is greatest in the same interval. From 300 seconds and out, the error goes to

zero. This means the Range Finder is most accurate for shorter distances. Since the difference

between estimated distance and the reference is zero-mean, we know that main contribution

for the error must be the mapping from pixels to cm. It is also interesting to see how the noise

gets lower and lower as the distance decrease. Two things cause this, for longer distances, the

error will also be greater in magnitude, but for shorter distances, the number of pixels will also

increase. Hence, we get a higher resolution on the shorter distances. If we recall figure 6.6, we

can see that the measured amount of pixels starts at 13 pixels and ends up at 45 pixels during this

time sires. This means that a jump from one integer to next is a relatively smaller step, hence a

smoother measurement signal for closer distances. The resolution of the camera can, therefore,

be increased for smoother performance.

6.8. TESTING OF CADC BASED ON LASER LIGHTS 77

0 50 100 150 200 250 300 350 400 450 500 550
-20

0

20
Distance Error

Error (Q
x
 - Estimated Distance)

0 50 100 150 200 250 300 350 400 450 500 550
-20

0

20
D

is
ta

nc
e

(c
m

) Error (Ref - Estimated Distance)

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

-20

0

20 Error (Q
x
 - Ref)

Figure 6.13: Comparison for the errors in distance to the wall.

400 405 410 415 420 425 430 435 440 445 450
-4

-2

0

2

4
Distance Error

Error (Q
x
 - Estimated Distance)

400 405 410 415 420 425 430 435 440 445 450
-4

-2

0

2

4 Error (Ref - Estimated Distance)

400 405 410 415 420 425 430 435 440 445 450

Time (s)

-4

-2

0

2

4

D
is

ta
nc

e
(c

m
)

Error (Q
x
 - Ref)

Figure 6.14: Zoomed in to see the steady state oscillations.

A close up view of 50 seconds in the steady-state interval is presented in figure 6.14. All the

three errors are staying well within +/- 3 cm. We can also see that the position measured from

Qualisys is less noisy than the estimated distance from the Range Finder, even though the main

oscillations are captured well.

The control forces from 100 - 150 seconds are shown in figure 6.15. We see Auto-distance

and Auto-heading have mean control force close to zero with low peaks, while Auto-depth has

78 CHAPTER 6. CAMERA-ASSISTED DISTANCE CONTROL BASED ON LASER LIGHTS

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

-1

0

1
Control Force Auto-distance

Auto-distance

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

-0.5
0

0.5
1

1.5

C
on

tr
ol

 F
or

ce
 (

N
)

Control Force Auto-depth
Auto-depth

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

-0.05

0

0.05

C
on

tr
ol

 T
or

qu
e

(N
m

)

Control Force Auto-heading (Q
ψ
)

Auto-heading (Q
ψ
)

0.0116

0.4628

-0.0089

Figure 6.15: Control Forces for Automatic controller in Wall Inspection Mode.

100 105 110 115 120 125 130 135 140 145 150

Time (s)

1480

1500

1520

P
W

M
 S

ig
na

l

Thrust Commands

Surge Thruster Starbord
Surge Thruster Port
Sway Thruster

100 105 110 115 120 125 130 135 140 145 150

Time (s)

1470

1480

1490

1500

P
W

M
 S

ig
na

l

Thrust Commands

Heave Thruster Aft
Heave Thruster Front Starbord
Heave Thruster Front Port

Figure 6.16: Commanded thrust signals, showing only 50 seconds.

a mean close to 0.5 N. Since the peaks for Auto-heading are much smaller, the mean value of

0.0116 will contribute to a summed clockwise rotation of the vehicle. This is most likely a steady-

state bias from the umbilical that is compensated for by the controller. This is very visible in

6.8. TESTING OF CADC BASED ON LASER LIGHTS 79

the thrust commands from the thrust allocation in figure 6.16, where the port thruster moves

forward, and the starboard thruster moves backward. The thrusters are working on really low

RPM, which makes them turn and stop all the time. The heave thrusters in the next row are

running more steady to compensate for the buoyancy of the vehicle and provide that 0.5 N from

the Auto-depth controller. Also, this time, it is possible to see that the aft thruster is working

more than the front ones. In some areas, like around 115 seconds, we see that both thrusters are

backing up, due to the Auto-distance controller. As mentioned earlier, since the thrusters have a

dead-zone of 25 µs, the thrust allocation has to add this dead-zone gap imminently to turn the

thruster at low control forces.

6.8.2 Test 2: Wall Inspection Mode with Manual Input

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

X Position of Tank (m)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Y
 P

os
iti

on
 o

f T
an

k
(m

)

2D Position of ROV

Start →

End →

Position Trace
Center Point
ROV

Tank Wall

Figure 6.17: Wall Inspection Mode, showing how the ROV can hold distance while moving side-
ways.

80 CHAPTER 6. CAMERA-ASSISTED DISTANCE CONTROL BASED ON LASER LIGHTS

After the Auto-distance controller had been verified, it was time to test the Range Finder with

manual input as well. The ROV was also set to be working further away from the wall to see how

good it could cope with longer distances while the lasers get significantly harder to detect in

the video image. The basin in MC-lab is 6 meters wide, which means there are approximately 3

meters to the side wall. This test will not be as accurate as the previous test, but still of interest.

The ROV starts at about 1.5 meters from the wall and begins to move backward incrementally

with the Auto-distance controller. Once its 2.5 meters from the wall, a manual sway force of 10

N is applied to the right. In figure 6.17 we can see that the ROV maintains the distance of 2.5

meters while Auto-heading is holding the heading towards the wall. In the end, we continue

backward to see how far the lasers reach, and we end up at about 3.5 meters. This distance is

actually outside the measured range done to create the mapping shown in figure 6.6, but is still

giving good measurements, with 20 cm off on 3.5 meters (corresponds to 6 % error).

20 25 30 35 40 45 50

Time (s)

1380

1420

1460

1500

1540

1580
1610

P
W

M
 S

ig
na

l

Thrust Commands
Surge Thruster Starbord
Surge Thruster Port
Sway Thruster

20 25 30 35 40 45 50

Time (s)

1420

1440

1460

1480

1500

1520

1540

1560

P
W

M
 S

ig
na

l

Thrust Commands Heave Thruster Aft
Heave Thruster Front Starbord
Heave Thruster Front Port

Figure 6.18: Manual input in sway while other thrusters are controlled automatically.

In figure 6.18 it is clear that the sway force is much higher than the automatic control forces.

Mark how the front heave thrusters are compensating for the roll motion induced by the sway

thruster.

6.9. DISCUSSION 81

6.9 Discussion

The Range Finder function was performing very well and was very reliable, the filtering of the

lasers was done easily with the HSV filtering interface through "SSH -X" for different light con-

ditions. Installation of the lasers was more difficult, especially alignment to get the perfectly

parallel. The plan was to align all four lasers, but the intensity was so different on the lasers,

so it was hard to detect all of them at once. Better lasers should, therefore, be considered for

further development. This will also increase the range of the Range Finder. Also, the accuracy

of the pixel measurement was not able to detect the small differences that would be on the left

and right side to compute the angle to the wall. The method proposed for estimating the angle

to the wall should be fully executable, but it will require much higher image resolution in the

operating area of the laser beams. It would be ideal to increase the distance between the lasers

as well. This will then require external lights mounted on the outside of the body frame, which

will require some more effort. The accuracy was also a bit too low for optimal control perfor-

mance. The control problem was solved, but it should be possible to control the ROV with even

smaller oscillations and errors if the resolution of the camera were to be increased and the delay

was reduced. Maybe it is worth running Range Finder topside instead, to increase the resolu-

tion for the images in OpenCV. When comparing the delay tests for Range Finder and Feature

Tracking, we see that it is actually faster to send the video to the topside computer, which also

enables higher resolution. However, if the ROV is going to towards AUV mode it will be recom-

mended with a more powerful on-board computer. The mapping from pixels to cm could also

have been done over, based on the measured data shown in figure 6.12, that is more accurate

than the initial manual measurements.

Overall, the Range Finder was functioning over all expectations and did also handle sharp

angles to the wall better than expected. I, personally, think Range Finder and Auto-distance

control has a great potential in the consumer market for ROVs.

82 CHAPTER 6. CAMERA-ASSISTED DISTANCE CONTROL BASED ON LASER LIGHTS

Chapter 7

Conclusion with Recommendations for

Further Work

7.1 Conclusion

Camera based control modes for the ROV uDrone were successfully developed and tested exten-

sively in MC-lab. An object was tracked by a proposed Feature Tracking module that reduced

the control effort for the user. The feature (color) was tracked successfully and never left the

cameras field of view, even with high manual control input. All PID-controllers, Auto-heading,

Auto-distance, Auto-depth, and Auto-heading based on Qualisys, were implemented and tuned

with satisfactory results. An Auto-reference function for the depth controller was also working

surprisingly well, keeping the object in the center of the camera frame vertically. All controllers

were tuned to give smooth motions to reduce the risk of motion sickness when watching the

video stream. However, further work on reduction of the camera delay and tuning of controller

gains may improve the performance of transients even further.

When the delay for the two cameras was tested, it was shown that it was faster to stream

the video to the topside computer before doing the image manipulations. Delay for the fish-eye

camera was measured to 324 ms, while the delay for the RPi Camera reached 440 ms (at half

the resolution). A stronger CPU should, therefore, be considered in the ROV uDrone for further

development of computer vision and autonomous functionalities.

Two cameras and four laser lights were mounted on a customized 3D-printed bracket to keep

83

84 CHAPTER 7. CONCLUSION WITH RECOMMENDATIONS FOR FURTHER WORK

the number of uncertainties to a minimum. The bracket was very helpful when opening the

ROV (for changing batteries etc.), to make sure the camera and laser angles did not change from

test to test. The laser lights were working quite ok, even though they could have been brighter

and more equal in brightness. The pixel to distance mapping should also be re-calibrated to

get more accurate estimates. However, the Range Finder with the Auto-distance controller did

solve the control problem with satisfactory coherence with the Qualisys positioning system in

MC-lab. The distance estimates were off by 6 % at 3.5 meters. This precision is considered to be

acceptable for recreational underwater drones.

A set of thruster tests were executed to increase control performance. The results seemed to

be good enough for low velocities. However, for higher speeds it is recommended to tune the

thrustallocation even further.

Overall, computer vision is a low-cost solution for recreational ROVs to aid the user in ma-

neuvering the ROV. The Feature Tracking module also reduces the motions in the camera when

recording video. Range Finder provides valuable information for the distance, which is nice to

have when entering new environments. Computer vision does definitely provide new and useful

functionality for underwater drones, and it was successfully applied in this thesis. I also believe

that many more tasks also can be solved with computer vision in the future development of low-

cost ROVs.

A summarized video from testing in MC-lab is uploaded to YouTube and is available on:

https://youtu.be/xKo3VHelcIk

https://youtu.be/xKo3VHelcIk

7.2. RECOMMENDATIONS FOR FURTHER WORK 85

7.2 Recommendations for Further Work

Hopefully will the contribution of this work be valuable in further development of computer

vision in low-cost ROVs. In this section, recommendations for further work and ideas will be

discussed.

7.2.1 ROV uDrone

• As discussed earlier, there is a demand for reducing the delay of the camera stream to

OpenCV. The best way of reducing this is most likely to find a new on-bard computer

with greater computing power; that is compatible with Ubuntu. However, it is still rec-

ommended to develop on the topside computer, before implementing complete modules

on the ROV. This is because you much easier access to files and motoring.

• Today the electronic tube must be opened to unplug the batteries, because there is no

main switch. A magnetic power switch is, therefore, advised for safety and less wear and

tear on the o-rings.

• Further tuning on the thrust allocation is recommended in order to get better control per-

formance.

• Install a proper IMU to get reliable pose estimates. This will be important for further de-

velopment of sensor fusion etc.

• Install new lasers that are more powerful and easier to adjust to the correct angle. If possi-

ble mount the lasers further apart to increase the amount of pixels between the laser dots.

This will increase the resolution of the distance measurement.

86 CHAPTER 7. CONCLUSION WITH RECOMMENDATIONS FOR FURTHER WORK

7.2.2 Feature Tracking module

• The Feature Tracking module should be more robust towards objects that look similar to

the one that is being tracked. The contours should therefore be more detailed than just a

rectangle approximation in order to validate the interference of a new object.

• A better solution for selecting a new object to track is of interest before the module is ready

for the consumer market. This could be done with an algorithm that automatically finds

possible features in the scene. The possible features could then appear as buttons on a

touchscreen, and give you the options of the different control modes.

• Tracking of multiple objects at the same time could give good estimates for positions rela-

tive to the features. Hence, also give good velocity estimates. This information could also

be merged with IMU for dead reckoning.

• Find a good way to map area in px2 to m2, hence the distance to the object in meters. This

should be possible based on the good measurements from Auto-distance mode with area

as input. Maybe the Range finder can be used to do find the ratio. This can be done by

storing the area of the feature when the ROV is 1 meter away. Then it should be possible

to know how small it should be 5 meters away, which is out of Range Finders range. That

way we have extended the range for distance estimates.

• Camera calibration of the fisheye camera if distortion is a problem when converting to

meters. This will be more important when objects are tracked away from the center of the

camera, which will be important when tracking multiple objects at the same time.

• Object recognition could be interesting if we have data from known objects that we can

recognize in the basin. In the long term a database for fish can be developed so the ROV

can recognize a fish, a star fish or a crab?

• Utilization of GPU in OpenCV. OpenCV has support for GPU programming which can in-

crease performance dramatically on the RPi2. This could be interesting to look further

into as well.

7.2. RECOMMENDATIONS FOR FURTHER WORK 87

7.2.3 Range Finder module

• Stronger lasers will increase the range and detectability in daylight.

• Increase the distance between the lasers to get higher accuracy. Might have to be mounted

on the outside of the ROV.

• Consider a different color for the lasers, red is used today, and is a color that easily get

absorbed in water.

• Is it possible to use lasers that are invisible to the human eye, with a hyper spectral camera

that is able to detect them. This way the video will not be polluted by the laser beams.

• Is it possible to use a grid of laser lights for estimation of planes? This can be used for

seabed mapping or SLAM.

• A laser line can be used to map the sea bead if it has an angle to the camera.

The opportunities are endless, just think how much a diver can do based on his vision under

water. He remembers where he has been, and has learned since he was a child how to differen-

tiate plants, fish, and spices from each other based on their unique features.

88 CHAPTER 7. CONCLUSION WITH RECOMMENDATIONS FOR FURTHER WORK

Appendix A

ROS Node Communication

89

90 APPENDIX A. ROS NODE COMMUNICATION

Figure A.1: Auto-generated map of communication between ROS nodes.

Bibliography

Bay, H., Tuytelaars, T. & Van Gool, L. (2006), Surf: Speeded up robust features, in ‘9th European

Conference on Computer Vision’.

DeepFar (2016), ‘White Shark MAX’, http://www.deepinfar.com/col.jsp?id=146. [Online;

accessed July-2016].

DeepTrekker (2016), ‘Deep Trekker DTG2 Specifications’, https://deeptrekker.com/

wp-content/uploads/2015/04/Deep-Trekker-DTG2-Specifications.pdf. [Online; ac-

cessed July-2016].

FiFish (2016), ‘FiFish Atlantis Specifications’, www.prnewswire.com/news-releases/

rediscover-the-sea-meet-fifish-the-first-ever-consumer-market-oriented-smart-rov-by-taihuoniao-d3in-labs-300200370.

html. [Online; accessed July-2016].

Forbes (2016), ‘Business news and financial news’, http://www.forbes.com/sites/cfeng/

2016/03/30/the-underwater-drone-manufacturer-that-wants-to-be-chinas-second-dji/

#5564030476fc. [Online; accessed July-2016].

Fossen, T. I. (2011), Handbook of Marine Craft Hydrodynamics and Motion Control, Wiley.

Henriksen, A. V. & Sandøy, S. (2015), Hardware and Software Design of uDrone, NTNU, Trond-

heim.

Heshmati-Alamdari, S., Eqtami, A., Karras, G. C., Dimarogonas, D. V. & Kyriakopoulos, K. J.

(2014), A self-triggered visual servoing model predictive control scheme for under-actuated

underwater robotic vehicles, in ‘Robotics and Automation (ICRA), 2014 IEEE International

Conference on’, IEEE, pp. 3826–3831.

91

http://www.deepinfar.com/col.jsp?id=146
https://deeptrekker.com/wp-content/uploads/2015/04/Deep-Trekker-DTG2-Specifications.pdf
https://deeptrekker.com/wp-content/uploads/2015/04/Deep-Trekker-DTG2-Specifications.pdf
www.prnewswire.com/news-releases/rediscover-the-sea-meet-fifish-the-first-ever-consumer-market-oriented-smart-rov-by-taihuoniao-d3in-labs-300200370.html
www.prnewswire.com/news-releases/rediscover-the-sea-meet-fifish-the-first-ever-consumer-market-oriented-smart-rov-by-taihuoniao-d3in-labs-300200370.html
www.prnewswire.com/news-releases/rediscover-the-sea-meet-fifish-the-first-ever-consumer-market-oriented-smart-rov-by-taihuoniao-d3in-labs-300200370.html
http://www.forbes.com/sites/cfeng/2016/03/30/the-underwater-drone-manufacturer-that-wants-to-be-chinas-second-dji/#5564030476fc
http://www.forbes.com/sites/cfeng/2016/03/30/the-underwater-drone-manufacturer-that-wants-to-be-chinas-second-dji/#5564030476fc
http://www.forbes.com/sites/cfeng/2016/03/30/the-underwater-drone-manufacturer-that-wants-to-be-chinas-second-dji/#5564030476fc

92 BIBLIOGRAPHY

Hu, Y., Zhao, W., Wang, L. & Jia, Y. (2009), Underwater target following with a vision-based au-

tonomous robotic fish, in ‘2009 American Control Conference’, pp. 5265–5270.

Karras, G. C. & Kyriakopoulos, K. J. (2008), Visual servo control of an underwater vehicle using

a laser vision system, in ‘2008 IEEE/RSJ International Conference on Intelligent Robots and

Systems’, pp. 4116–4122.

Karras, G. C., Loizou, S. G. & Kyriakopoulos, K. J. (2010), A visual-servoing scheme for semi-

autonomous operation of an underwater robotic vehicle using an imu and a laser vision sys-

tem, in ‘Robotics and Automation (ICRA), 2010 IEEE International Conference on’, pp. 5262–

5267.

Karras, G. C., Panagou, D. J. & Kyriakopoulos, K. J. (2006), Target-referenced localization of an

underwater vehicle using a laser-based vision system, in ‘OCEANS 2006’, pp. 1–6.

Lowe, D. G. (2004), Distinctive image features from scale-invariant keypoints, in ‘International

Journal of Computer Vision’, pp. 91–110.

Narimani, M., Nazem, S. & Loueipour, M. (2009), Robotics vision-based system for an underwa-

ter pipeline and cable tracker, in ‘OCEANS 2009 - EUROPE’, pp. 1–6.

NOAA (2014), ‘How much of the ocean have we explored?’, http://oceanservice.noaa.gov/

facts/exploration.html. [Online; accessed July-2016].

OpenCV (2013a), ‘Feature Detection and Description’, http://opencv-python-tutroals.

readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_

feature2d/py_table_of_contents_feature2d.html. [Online; accessed July-2016].

OpenCV (2013b), ‘Pose Estimation’, http://docs.opencv.org/3.0-beta/doc/py_

tutorials/py_calib3d/py_pose/py_pose.html. [Online; accessed July-2016].

OpenCV (2013c), ‘Thresholding in OpenCV’, http://docs.opencv.org/2.4/doc/tutorials/

imgproc/threshold/threshold.html. [Online; accessed July-2016].

OpenROV (2016), ‘OpenROV Trident Specifications’, http://www.openrov.com/products/

1-trident.html. [Online; accessed July-2016].

http://oceanservice.noaa.gov/facts/exploration.html
http://oceanservice.noaa.gov/facts/exploration.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_table_of_contents_feature2d.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_table_of_contents_feature2d.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_table_of_contents_feature2d.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_calib3d/py_pose/py_pose.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_calib3d/py_pose/py_pose.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/threshold/threshold.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/threshold/threshold.html
http://www.openrov.com/products/1-trident.html
http://www.openrov.com/products/1-trident.html

BIBLIOGRAPHY 93

Raabe, C., Henell, D., Saad, E. & Vian, J. (2014), Aggressive navigation using high-speed natural

feature point tracking, in ‘2014 IEEE Aerospace Conference’, pp. 1–13.

ROS (2015), ‘Web Video Server’, http://wiki.ros.org/web_video_server. [Online; accessed

July-2016].

Rosebrock, A. (2014), Image Search Engine Resource Guide, PyimageSearch.

Shi, J. F., Hua, C. J. & Li, G. H. (2010), A simplifying method of vision attention simulating human

vision in machine vision system, in ‘2010 International Conference on Machine Learning and

Cybernetics’, Vol. 6, pp. 3097–3100.

Zhang, B. (2010), Computer vision vs. human vision, in ‘Cognitive Informatics (ICCI), 2010 9th

IEEE International Conference on’.

http://wiki.ros.org/web_video_server

	Preface
	Abstract
	Norwegian Summary
	Acknowledgment
	Introduction
	Low-cost ROVs Entering the Market
	Use of Computer Vision for Positioning Control of Robots
	Open Source Graphical Software Libraries
	Image Processing Techniques

	What Remains to be Done?
	Objectives
	Limitations
	Abbreviations and Definitions
	Approach
	Structure of the Thesis

	Experimental Platform
	General Specifications for ROV uDrone
	Hardware Topology
	Power Flow in ROV uDrone
	Payload Systems
	Fisheye Camera
	Raspberry Pi Camera
	Camera Mounting Bracket with Lasers

	Software Topology
	Control Modes Available

	ROV Model and Thrust Allocation
	Thruster Force Testing
	Thrust Allocation

	Computer Vision
	Choosing a Software Library for Computer Vision
	Detecting Objects Under Water
	Color Systems

	Camera-assisted Positioning Based on Feature Tracking
	Problem Formulation
	Feature Tracking Coordinate System
	Feature Tracking Control Modes
	Heading Mode
	Distance Mode
	Orbit Mode
	Full DP Mode

	Control Design
	Control Objective
	PID Controllers
	Filtering and Signal Processing

	Implementation
	Detecting Features in Video Stream
	The Feature Tracking Algorithm
	The Controllers Based on Computer Vision

	Delay in the Control Loop
	Graphical User Interface
	Testing of CAPC Based on Feature Tracking
	Test 1: Steady-State Positioning
	Auto-heading Controller
	Auto-distance Controller
	Auto-depth Controller
	Object Positioning in Camera
	Test 2: Orbit Mode

	Discussion

	Camera-assisted Distance Control Based on Laser Lights
	Problem Formulation
	Control Modes for Range Finder
	Measure Distance Mode
	Auto Distance Mode

	Geometry of the Lasers
	Control Design and Signal Processing
	Implementation and Laser Detection
	Delay in the Control Loop
	Graphical User Interface
	Testing of CADC Based on Laser Lights
	Test 1: Wall Inspection Mode
	Test 2: Wall Inspection Mode with Manual Input

	Discussion

	Conclusion with Recommendations for Further Work
	Conclusion
	Recommendations for Further Work
	ROV uDrone
	Feature Tracking module
	Range Finder module

	ROS Node Communication
	Bibliography

