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Abstract

The non-detection of an electromagnetic cascade in the electron-positron plasma
beams from blazars has led many physicists to invoke an intergalactic magnetic
field that deflects charged particles away from our field of view. In this thesis we
look at a different explanation. Namely that the beams loose their energy through
plasma instabilities rather than the inverse Compton scattering which would create
the cascade. We use a covariant formalism to calculate the linear response tensor
of the plasma. Using this tensor we find the absorption coefficient for particles
distributed according to the Jüttner distribution and for a different distribution
based on simulations. The absorption coefficient is found to diverge for specific
values of the phase velocity when the electric field of the mode vanishes. This is
unphysical, which means there is some issue with the calculations. The issue is
identified as the assumption that the imaginary part of the frequency, known as the
absorption coefficient, is small. This assumption contradicts the results making the
calculations invalid. To solve this problem one would have to redo the calculations
avoiding this assumption.
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Sammendrag

Mangelen p̊a en elektromagnetisk kaskade i elektron-positron plasma str̊aler fra
blasarer har f̊att mange fysikere til å foresl̊a at de ladede partiklene blir ledet vekk
fra v̊art synsfelt av et intergalaktisk magnetisk felt. I denne oppgaven ser vi p̊a
en annen forklaring. Vi ser p̊a muligheten for at str̊alene taper energien deres p̊a
grunn av ustabilitet i plasma isteden for den inverse Compton spredningen som ville
produsert kaskaden. Vi bruker en kovariant formalisme til å regne ut den lineære
respons tensoren til plasmaet. Ved å bruke denne tensoren s̊a finner vi absorpsjon-
skoeffisienten for partikler fordelt i henhold til Jüttner fordelingen og for en annen
fordeling basert p̊a simuleringer. Vi finner ut at absorpsjonskoeffisienten divergerer
for visse verdier av fase hastigheten som koresponderer til at det electriske feltet
i moden blir null. Detter er ikke fysisk, noe som betyr at det er et problem med
utregningene. Vi identifiserer at problemet kommer fra en antagelse om at den
imaginære delen av frekvensen, kjent som absorpsjonskoeffisienten, er liten. Dette
motsier resultatet som viser at den er uendelig. For å løse dette problemet må man
gjøre utregningene p̊a nytt uten å gjøre antagelsen.
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1 — Introduction

This thesis will look at the growth rate of plasma instabilities in electron-positron
pair beams in relativistic energy jets from blazars. A covariant description of plasma
theory will be introduced and used to calculate the response tensor of the plasma,
from which we can find the growth rate for a specific particle distribution function.
Two distribution functions will be looked at: First the Jüttner distribution and
then a more complicated distribution function based on a simulation of the beam.
The goal of the thesis is to confirm or disagree with, dependent on the results, the
conclusions drawn by Supsar in his dissertation and in the articles of Schlickeiser
et. al. that the energy jets dissipate their energy into the cosmic voids before
they can create an electromagnetic cascade via inverse Compton scattering [1, 2, 3].
Thereby making an intergalactic magnetic field (IGMF) unnecessary to explain the
non-detection of the aforementioned cascade by gamma-ray telescopes.

Magnetic fields are found everywhere in the universe where we have the means
of detecting them, and are thought to be created by the amplification of existing
magnetic fields by dynamo and compression mechanisms. These mechanisms re-
quires a non-zero magnetic field to be present and act as a seed-field to be amplified
[4]. This seed-field has to be generated independently by a mechanism that stems
from the time before or at the time of structure formation [4]. The origin of this
seed-field and its strength is one of the important, unsolved, problems of cosmology.
Its detection and measurement is easiest in galaxies and other areas that contain
radiating objects, but the magnetic fields measured from these structures are dis-
torted by plasma effects and magnetohydrodynamics [4]. As we do not know exactly
how the magnetic field is affected by these complicated effects, we cannot use these
measurements to predict the strength of the original seed-fields [4]. These seed-fields
can only be found, in the their original form, in the intergalactic medium (IGM) in
cosmic voids where there should be no plasma or other effects to disturb it. Here
they are, however, difficult to observe, though one way of detecting them could be
to look at how energy jets from quasars are affected by their passage through it.

Quasars are a subgroup of active galactic nuclei defined by their high luminosity
and a small size of less than ∼ 7′′ [5]. These energetic objects are found in the
center of galaxies and are most likely powered by supermassive black holes, with a
masses of about 108 M�, accreting several M� of mass a year. The mass falling into
the black hole forms a mostly two dimensional accretion disk and gives the quasar
a luminosity equalling 1012 suns. Figure 1.1 shows the quasar M87 in the near-
infrared spectrum taken with HST’s Wide Field and Planetary Camera. Quasars
can be divided into two subgroups, namely radio-loud and radio-quiet, depending
on their emission of radio waves.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: The quasar M87 with its accompanying jet extending more than 5000
light years. Taken from hubblesite.org (2017).

Radio-loud quasars emit an energy jet of high energy light rays perpendicular to
their accretion disk. If this jet happens to be pointing at the earth the quasar is
called a blazar. The γ-ray Cherenkov Telescopes H.E.S.S., Magic and Veritas and
the Fermi LAT have discovered about 50 blazars emitting jets with energies in the
TeV range [2]. Gamma rays of these energies cannot propagate over cosmological
distances as they will interact with the photons of the extragalactic background light
(EBL) and create electron-positron pairs through pair creation [6] γ+ γ′ → e−+ e+

as seen in 1.2. This process is possible if EγEγ′(1− cos θ) > 2m2
ec

4. This expression
is found from conservation of four-momentum

(pγ + pγ′)
2 = (pe1 + pe2)

2

p2γ + p2γ′ + 2pγ · pγ′ = p2e1 + p2e2 + 2pe1 · pe2
2(EγEγ′ − pγ · pγ′) = 2m2

ec
4 + 2(Ee1Ee2 − pe1 · pe2).

(1.1)

In the center of mass frame of the electrons the momenta are pe1 = (E1,p) and
pe2 = (E2,−p). Since the photons are massless their energy is related to momentum
by E = p. With this (1.1) becomes

2(EγEγ′ − EγEγ′ cos θ) = 2m2
ec

4 + 2m2
ec

4 + 2|p|2 + 2|p|2

EγEγ′(1− cos θ) > 4m2
ec

4.
(1.2)

With a maximum energy of the extragalactic background light of 13.6 eV the mini-
mum energy for the reaction is about 7 ·1010 eV. These electron-positron pairs prop-
agate in the intergalactic medium in the cosmic voids where it has been thought that
the electrons and positrons inverse Compton scatter off the EBL, e− + γ → e− + γ′

as seen in Figure 1.2, to create photons [7] with energies of 100 GeV [2] that can
again pair produce e+e− pairs. This will happen multiple times causing an electro-
magnetic inverse Compton cascade (ICC) relaxing the TeV jet to the GeV range;
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γ′

γ e+

e− γ γ′

e− e−

Figure 1.2: The Feynmann diagrams for the two processes pair creation (left) and
Compton scattering (right).

however, this cascade has not been detected.
The lack of observations of an electromagnetic cascade suggest some process is hin-
dering it or its detection and has been used as evidence of an IGMF [8, 9, 10, 11,
12]. A strong IGMF, with B > 10−16 Gauss , could deflect the charged electrons
and positrons away from the line of sight of the observer [8]. This would explain the
non-detection of the ICC.
A different process explaining the non-observation of the ICC was proposed by
Chang et. al., based on the fact that the charged particles in the jet is a plasma and
is therefore inclined towards instabilities [13]. This was also discussed by Schlick-
eiser, Supsar et al. [3]. Later Supsar concluded in his dissertation that two-stream
instabilities, mainly the oblique electrostatic instability, would cause the free energy
in the plasma to dissipate into the IGM disallowing the ICC from occurring in the
first place. He did this using the kinetic theory of plasma instabilities for relativistic
speeds.

In this thesis we will calculate instabilities for the longitudinal mode. We will use
a covariant plasma theory, following Donald Melrose [14], to find a linear response
tensor (LRT) for a plasma with a certain distribution function. With this LRT we
can find an absorption coefficient whose sign determines the stability of the plasma.
This thesis is divided into 8 chapters including the introduction. The second chap-
ters introduces the physics behind AGN’s and their classifications. The third chapter
presents and defines the fundamentals of classical plasma theory and instabilities.
In chapter four we define a covariant plasma theory and derive expressions for its
fundamentals such as the wave equation and more importantly the absorption co-
efficient following Ref [14]. Chapter five calculates the LRT for a Jüttner particle
distribution also following Ref [14]. In chapter 6 we calculate an original expression
for the absorption coefficient based on the LRT from chapter 5. Another LRT from
Ref [15] is also calculated in this chapter. Using a new particle distribution function
based on simulations, an original LRT and absorption coefficient, based on the LRT
in Ref [15], is calculated in chapter 7. Finally, chapter 8 summarizes and concludes
the results. The thesis ends with two appendices A and B discussing Bessel functions
and cataloging derivatives too unhandy to include in the main text, respectively.





2 — Active Galactic Nuclei and
Quasars

The core of some galaxies is so luminous that it outshines the rest of the galaxy.
These galaxies are called active galaxies and their centers are called active galactic
nuclei (AGN). There are many subgroups of active galactic nuclei, the two largest
being Seyfert galaxies and quasars. The difference between these two subgroups
are somewhat arbitrary, with Seyfert galaxies emitting energy comparable to all the
stars in the galaxy (∼ 1011 L�) and quasars emitting up to 100 times as much.
A blazar is again a subgroup of radio-loud quasars with an energetic jet pointing
towards the observer. In this section all calculation will be in cgs units.

2.1 Structure of an AGN

An AGN consists of a supermassive black hole at the center of a galaxy. The black
hole is accreting mass. The mass falling into the black hole forms a mostly two-
dimensional disk known as an accretion disk. The accretion disk contains mostly
ionized material and a lot of energy is created by its absorption into the black hole
giving the AGN its large luminosity. The accretion disk extends for several hundred
Schwarzschild radii forming the central region of the AGN. This central region of
the AGN is surrounded by a torus of matter with an inner diameter of ∼ 1.5 pc and
an outer diameter of ∼ 30 pc. AGN’s can be radio-loud or radio-quiet depending on
the amount of radiation they emit in the radio-spectrum. Radio-loud quasars also
emit jets. Jets are linear structures of plasma moving from the center of the quasar,
normal to the plane of the accretion disk, at relativistic speeds. Figure 2.1 shows
the general structure of an AGN [16]. By simple calculations one can estimate the
mass and fueling of a quasar. This will be done here following Ref [5]. The mass of
the center of a quasar can be approximated by noting that the outward radiation
pressure must be balanced by an inward gravitational force. Otherwise the quasar
would disintegrate. Let us do the calculation for a completely ionized hydrogen gas.
Assuming Euclidean geometry the energy flux of the quasar is

F =
L

4πr2
, (2.1)

where L is the luminosity (energy per time). In the same way that the momentum
carried by a photon is E/c the momentum flux is Prad = F

c
= L

4πr2c
. The outward

radiation force of a single electron is obtained by multiplying the momentum flux
with the cross section for an interaction with a photon

Frad = σe
L

4πr2c
r̂, (2.2)

5



6 CHAPTER 2. ACTIVE GALACTIC NUCLEI AND QUASARS

Figure 2.1: The unified AGN model. A black hole surrounded by an accretion disk
and a torus of matter. An energy jet extends from the central source. The different
types of AGN measured based on our position in regards to the AGN is indicated
with arrows. Taken from Ref [16], but originally in Ref [17].

where σe = 6.65 · 10−25cm2 is the Thomson scattering cross section [18]. Thomson
scattering is the low energy scattering of electromagnetic radiation by a charged
particle. The gravitational force on an electron-proton pair is

Fgrav = −GM(mp +me)r̂

r2
≈ −GMmpr̂

r2
. (2.3)

Now, in order for the core of the quasar to stay intact, the gravitational force must
be stronger or equal to that of the radiation force. That is

|Frad| ≤ |Fgrav|
σeL

4πcr2
≤ GMmp

r2

L ≤ 4πGcmp

σe
M ≈ 1.26 · 1038(M/M�) erg/s.

(2.4)

This equation is known as the Eddington limit and L is the Eddington luminocity
LE. The equation can be used to estimate the mass of the quasar. The Eddington
mass is

ME =
LE

1.26 · 1038 erg/s
M� ≈ 108M� g (2.5)

for a regular quasar of luminocity L ≈ 1046 erg/s.
The energy of the nucleus of a quasar is supplied by the conversion of mass to
energy. This conversion is done with some efficiency η. The total energy available
is E = ηMc2. Energy is emitted at a rate L = dE/dt from the nucleus giving

L = ηṀc2, (2.6)
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where Ṁ = dM/dt is the rate of mass accretion. The Eddington mass accretion is

ṀE =
LE
ηc2

=
0.2

η
M� yr−1. (2.7)

The efficiency and therefore the viability of mass accretion as a fueling mechanism for
quasars is dependent on the value of η. We can do an estimate of this value by looking
at the potential energy of a particle falling into a non-rotating black hole. The
gravitational potential of a mass m a distance r from a source is U = −GMm/r. The
Schwarzschild radius, RS, is the event horizon of a black hole which is presumably
at the center of a quasar. Based on our estimates for the the black hole mass the
Schwarzschild radius is

RS =
2GM

c2
= 3 · 1013 M

M�
cm. (2.8)

The potential energy of a particle falling to say 5RS, ignoring relativistic effects, is

GMm

5RS

=
GMn

10GM/c2
= 0.1mc2 (2.9)

suggesting that η ≈ 0.1. With this efficiency the Eddington mass accretion becomes

ṀE = 2 ·M� yr−1. (2.10)

This calculation shows that a black hole would not have to absorb more than a
couple of solar masses a year in order to fuel the quasar.

2.2 The unified AGN model

There are as mentioned many different types of AGN’s such as quasars, Syfert
galaxies, blazars and so on. The main AGN types are listed in t Table 2.1. They
are classified as either radio-loud or radio-quiet. A quasar is radio-loud if the radio
flux is 10 times larger than the optical B band flux. This definition makes about
10%−15% of all AGN’s radio-loud. They are also classified by their line properties,
that is their emission of broad and narrow emission lines in the optical spectrum.
The broad lines comes from the accretion disk while the narrow lines originates in
the outlying torus. These regions emit different lines because of the different speeds
of the matter in the region. Type 1 AGN’s have a broad emission line, Type 2 a
narrow, and emission lines are weak or absent in Type 0. It is believed that the line
properties of the optical emission is directly related to the angle between the AGN
jet and the observer. Type 2 have the largest angle and Type 0 the smallest. It is
unknown why some AGN’s are radio-loud and some radio-quiet. Some theories are
that it is caused by the type of galaxy (eliptical or spiral) or that it has to do with
the spin of the black hole [16]. A unified model assumes that all AGN’s have the
same structure described in the previous section and the difference in measurements
of different AGN’s comes from our spacial orientation with regards to the jet. The
”standard model” of AGN’s can be seen in Figure 2.1. The observations for radio-
loud AGN’s are explained in this model as follows: If our field of view is aligned
with the jet we observe a blazar (containing both BL Lacs and FSRQs) where the
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Radio-loudness Optical emission line properties
Type 2 Type 1 Type 0

(narrow lines) (broad lines) (weak/absent)

Radio-quiet
Seyfert 2 Seyfert 1

QSO

Radio-loud
NLGR BLGR Blazars

(FR I, FR II) SSRQ, FSRQ (BL Lac, FSRQ)
Decreasing jet angle to line of sight →

Table 2.1: A table of the different types of AGN’s sorted by their optical emission
line properties and their radio-loudness. NLRG and BLRG are narrow and broad
line radio galaxies, SSRQ and FSRQ are steep and flat spectrum radio quasars, QSO
are quasi-stellar object and FR I and FR II are Fanaroff-Riley Type 1 and 2 radio
galaxies. Taken from Ref [17].

jet masks the lines. At larger angles of ∼ 30◦ one observes a steep-spectrum-radio
quasar which is at an angle such that the emission from the accretion disk is observed.
A regular radio galaxy (FRI and FRII) is observed at approximately 90◦’s to the jet
where the torus hides the accretion disk and only narrow lines are observed in the
optical spectrum. The same goes for radio-quiet objects all shown in Figure 2.1.



3 — Plasmas and Instabilities

This chapter introduces the basic theory of a plasma. We start with its definition and
then look at different ways of describing it, namely, the single particle description
and a description through its collective behavior using the Vlasov equation. We then
introduce the concept of instabilities and look at how this functions in a plasma.

3.1 Plasmas

Most matter in the universe is in a state of plasma. This includes stars, the inter-
galactic medium and the outer layers of our atmosphere. Plasmas are the fourth
state of matter, the other three being solids, fluids and gases. The state of a matter
is decided by the strength of the bonds between its particles with the bond being
strong in solids, weak in fluids and mostly absent in gases. The strength of the bond
is determined by the random kinetic energy in the system. If one adds kinetic energy
to the system the bonds will weaken and eventually the state will change from solid
to fluid or fluid to gas. If enough energy is added a gas will eventually be ionized
and possibly become a plasma. A plasma is not equivalent to an ionized gas, but
is a state of matter which satisfies certain additional conditions, which we define
in the following. Before talking about these criteria we need to define a couple of
quantities that describe the plasma.

The plasma has to be macroscopically neutral. The particles constituting the plasma
however are charged and interact through the Coulomb potential

φ =
q

4πε0r
. (3.1)

The collective effects of the medium causes the charges to arrange themselves in
such a way as to cancel out the potential over longer distances. This effects makes
the potential exponentially suppressed after a certain distance

φD =
q

4πε0r
e−r/λD , (3.2)

where the characteristic distance λD is known as the Debye length. It gives the
distance at which the thermal kinetic energy equals the electric potential from a
charge. The thermal kinetic energy disturbs the medium’s electrical neutrality while
the electric potential restores it [19]. At distances larger than the Debye length the
electric force is suppressed and the thermal kinetic energy dominates. The particle
from which the potential originates therefore does not affect particles further away

9



10 CHAPTER 3. PLASMAS AND INSTABILITIES

than the Debye length. An expression for the Debye length can be found by equating
the electric potential and the thermal kinetic energy giving [20]

λD =

(
ε0kBT

nq2

)1/2

. (3.3)

This length parameter can be used to define a sphere known as the Debye sphere. It
has a volume of 4π

3
λ3D. The number of particles inside debye sphere is 4π

3
nλ3D. The

last factors of this expression is known as the plasma parameter [20]

Λ = nλ3D. (3.4)

Another important quantity is the plasma frequency. When particles are subjected
to an external force displacing them from their equilibrium position collective parti-
cle motion arise in the medium trying to restore the medium to its original equilib-
rium. These motions can be described by a characteristic frequency known as the
plasma frequency. An external force will affect the electrons much more than the
ions because the electrons are much lighter. The plasma frequency is therefore the
frequency of their movement. The expression for the plasma frequency is [20]

ωp =

(
nee

2

meε0

)1/2

. (3.5)

Now we can define the condition required for a material to be a plasma. The first
is that λD � L where L is the a characteristic dimension of the plasma. That is,
the Debye length is much smaller than the scale of the plasma. This is required for
the shielding effect (the suppression of electric potential at distances) to be present
making the plasma macroscopically neutral. This shielding effect is a result of the
collective behaviour in the plasma which requires many charges to be present in
a Debye sphere. This leads to the second condition, namely that Λ � 1. The
third condition is ωpτ � 1 where τ is the average time between collisions between
electrons and neutral particles. The inequality represents the requirement that the
frequency of collisions between electrons and neutrals must be much smaller than
the plasma frequency. If the collision with neutrals are of the same order as the
plasma frequency the plasma will not create oscillations in response to an external
force and therefore not act as a plasma.

The simplest way of describing a plasma is through single-particle motion, where
the motion of each individual particle can be treated as independent. This is a
situation where the charged particles does not directly interact with each other and
does not change the external magnetic field in a significant way. Non-relativistic
single particles in an electromagnetic-field satisfies the equation of motion

m
dv

dt
= q(E + v ×B). (3.6)

In the absence of an electric field and with a magnetic field in the z-direction the
equation of motion for the components of the velocity becomes

mv̇x = qBvy

mv̇y = −qBvx
mv̇z = 0.

(3.7)
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The velocity parallel to the magnetic field is constant. Taking the double derivative
results in

v̈x = −ω2
gvx

v̈y = −ω2
gvy,

(3.8)

with the gyrofrequency

ωg =
qB

m
. (3.9)

The charged particles gyrates around a guiding centre with this frequency. If we
look back at the equation of motion (3.6) we can see that the electric field can be
cancelled by giving the whole plasma a drift

vE =
E×B

B2
. (3.10)

This is the drift velocity of the guiding center which the charges gyrates around.
The drift velocity has many components, such as the polarization drift

vP =
1

ωgsB

dE⊥
dt

(3.11)

for a time varying electric field.
Generally, single-particle motion and effects are hidden in a plasma. The true nature
of a plasma is described through its collective behaviour, namely the interaction
between particles and fields. The Maxwell equations

curl E = −∂B

∂t
, div B = 0, (3.12)

curl B = µ0J +
1

c2
∂E

∂t
, div E =

ρ

ε0
. (3.13)

govern this behaviour. The current and charge densities are defined as

ρ =
∑
s

qsnsvs

j =
∑
s

qsns,
(3.14)

where the sum is over all species of particles. The fundamental equation for colli-
sionless plasma dynamics is the Vlasov equation[

∂

∂t
+ v · ∇+

qs
ms

(E + v ×B) · ∂
∂v

]
fs(x,v, t) = 0. (3.15)

which is derived from fluid-dynamics [19]. The function f(x,v, t) is the particle dis-
tribution in phase-space. This equation, in addition to the Maxwell equations with
the definitions of charge and current density, form a self-consistent set of non-linear
equations that is used as the basis for collisionless plasma physics.

Small disturbances can propagate through this system. If the amplitude of these
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disturbances is small, |δA(x, t)| � |A0(x, t)|, they can be represented as waves with
frequency ω(k) and wavenumber k. These waves have the phase and group velocity

vp =
ω(k)

k2
k

vg =
∂ω(k)

∂k
.

(3.16)

The phase velocity gives the direction of propagation and speed of the wave fronts
while the group velocity gives the direction and speed of the energy. The dispersion
relation is a connection between the frequency and the wavenumber. In the linear
approximation the Vlasov-Maxwell equations is a set of linear equations with the
solution

D(ω,k) = 0. (3.17)

This is the dispersion relation of this system. The dispersion relation has the solu-
tions [20]

D(ω,k) = Det

[
k2c2

ω2

(
kk

k2
− 1

)
+ ε(ω,k)

]
= 0. (3.18)

In this equation ε is the dielectric tensor. The frequency as a function of the
wavenumber, ω = ω(k), is found using this equation and has many different so-
lutions, each of which describes a different wave mode. Plasmas contain both trans-
verse electromagnetic waves and longitudinal electrostatic waves. This differentiate
plasmas from the vacuum which only allows transverse waves. There are many more
wave modes in a plasma such as the electrostatic modes which are oscillations of the
electrostatic potential and are confined to the plasma. Some of the electromagnetic
waves can leave the plasma, namely the O-mode and the high-frequency branch of
the X-mode. Other low frequency electromagnetic modes are confined to the plasma.
The same is true for the magnetohydrodynamic modes such as the Alfén-waves, slow
and fast mode [20].
Waves in a plasma can experience reflection and resonance. Reflection of a wave
occurs when the wavenumber becomes zero while the frequency remains finite. This
rotates the wave with an angle of π. Resonance occures when the wavenumber di-
verges to infinity. This causes the frequency to become very large which increases
the interaction with plasma particles. The wave will then either dissipate its energy
to the particles or extract energy to grow. The effects of reflection and resonance is
hidden if one only looks at the real part of the solution of the dispersion relation. If
one instead looks at solutions on the form

ω = ωr(k) + iγ(ω,k) (3.19)

all these plasma effects become apparent. γ(ω,k) is called the growth rate when γ
is negative and the dampening rate when γ is positive. If γ is negative the palsma
is unstable. In this thesis the γ factor will be called the absorption coefficient when
its sign is not specified.

3.2 Plasma Instabilities

In general the stability of a system is determined by how it reacts to a small per-
turbation. A stable system will dampen and return to its equilibrium while in an
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Figure 3.1: An illustration of a stable system (left) and an unstable system (right).

unstable system the perturbation will grow indefinitely. A simple way to visualize
this is to think of a ball on the bottom of a valley compared to one atop of a hill
as in Figure 3.1. If one pushes the ball at the bottom it will move a short distance
up the valley and then fall back and up the other side. After some time the ball
will again come to rest at the bottom because of friction. This system is stable. On
the other hand, if one pushes the ball at the top of the hill it will roll down gaining
more and more speed. The ball will never return to the position at the top of the
hill. This system is unstable.

In a plasma the stability of a wave is determined by its interaction with charged
particles, i.e. whether it gains or looses energy by this interaction. The stability is
represented by the growth rate. The wave amplitude of this interaction is

δA =
∑
k

Akexp(−(ik · x− iωt)). (3.20)

The frequency is ω = ωr + iγ. If γ < 0 the amplitude grows exponentially and the
wave has an unstable growth. Instabilities can be divided into two main categories:
Microscopic and macroscopic instabilities. They are macroscopic if the scales are
comparable to the bulk size of the plasma and microscopic if the scale are comparable
to the gyration radius. Kinetic effects are dominant in microscopic instabilities and
therefore they are often known as kinetic instabilities. Macroscopic instabilities
are usually more related to fluid theory. Examples of microscopic instabilities are
two-steam instability and beam instability. Rayleigh-Taylor and Farley-Buneman
instabilites are examples of macroscopic ones [20].





4 — Covariant Plasma theory

This thesis utilizes a covariant formalism of plasma theory. In this chapter we first
introduce the covariant formalism of special relativity and then use it to find a
covariant wavefunction and eventually an expression for the absorption coefficient.

4.1 Special Relativity and Covariant Formalism

Special relativity, discovered by Einstein in 1905, is a physical theory of the rela-
tionship between time and space. It is based on two postulates. That all physical
laws are invariant in all inertial systems and that the speed of light, c, is the same
in all inertial frames. These two assumptions forces one to abandon the idea of ab-
solute time and Galilean transformations and therefore also Newtonian mechanics.
Because time is relative and differ in two different inertial systems, it becomes a
coordinate. With the space coordinates this describes the four-dimensional space-
time (t, x, y, z). The geometry of spacetime is described by the invariant length
ds2 = (cdt)2− dx2− dy2− dz2. This spacetime is flat and is often called Minkowski
space. The relationship between two reference frames is described by the Lorentz
transformations, and relates the coordinates of two inertial frames S and S ′ moving
with a relative velocity v along the x-axis as

t′ = γ(t− vx/c2),
x′ = γ(x− vt),
y′ = y,

z′ = z,

(4.1)

where γ = (1− v2/c2)−1/2 is known as the Lorentz factor.

Newtonian mechanics has to be changed in order to incorporate these new ideas.
This is done by introducing four-vectors. A four-vector is a line segment in four-
dimensional flat spacetime. Four-vectors follow the same rules for addition and
multiplication by a scalar as three-vectors. A four-vector is called spacelike if its
length in space coordinates are longer than the length in time coordinates and time-
like if the length in the time coordinate is longer than the space coordinates. If it
is the same length in time and space coordinates it is called lightlike and has zero
length. That is, the vector is spacelike if ds2 < 0, timelike if ds2 > 0 and lightlike if
ds2 = 0.
A general four-vector a = (a0, a1, a2, a3) can be written in a basis as a = a0e0 +
a0e1 + a2e2 + a3e0 =

∑3
α=0 a

αeα. Usually the sum is not written explicitly and
aαeα is understood to imply the sum over all indicies. This is known as Einsteins

15
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summation convention. Scalar products of four-vectors obey the rules

a · b = b · a, (4.2)

a · (b+ c) = a · b+ a · c, (4.3)

(αa) · b = α(a · b). (4.4)

where a, b, c are four-vectors and α is a scalar. The scalar product of two four-vectors
can be calculated using their basis

a · b = (aαeα) · (bβeβ) = (eα · eβ)aαbβ. (4.5)

The tensor product defines a rank-2 tensor ηαβ = eα ·eβ known as the metric tensor.
With this the scalar product is

a · b = ηαβa
αbβ, (4.6)

and can be calculated if one knows the metric tensor. In Minkowski space the metric
tensor is

ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (4.7)

which means that the scalar product of two four vectors in Minkowski space is
a · b = a0b0− a1b1− a2b2− a3b3 = a0b0− a · b. If the index on a four-vector is down
it is a covariant vector while it is called a contravariant vector if the index is up.
Covariant and contravariant vectors are connected by the metric tensor xµ = ηµνxν .
The invariant length ds can be written ds2 = dxµdxµ.
With these new vectors one can create relativistic mechanics. This is a covariant
formalism of Newtonian mechanics containing the same equations, but with four-
vectors in Minkowski space as opposed to three-vectors in Euclidean space.

4.2 Covariant Plasma Theory

From here on out we will be using natural units with c = ~ = kB = 1 unless otherwise
stated. The electromagnetic field is described by the electric field strength E and
the magnetic induction B in addition to the charge density ρ and the current density
J. These quantities are related by Maxwell’s equations (3.12) and (3.13) which can
be written in covariant form as

∂µF νρ(x) + ∂ρF µν(x) + ∂νF ρµ(x) = 0, (4.8)

∂µF
µν(x) = µ0J

ν(x), (4.9)

where F µν(x) is the Maxwell tensor

F µν(x) =


0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

 . (4.10)
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We now introduce the vector field Aµ = (φ,A) where φ and A are connected to the
electric field strength and magnetic induction by B = ∇×A and E = −∇φ−∂A/∂t.
In terms of this vector field Aµ(x) the Maxwell tensor can be expressed as

F µν(x) = ∂µAν(x)− ∂νAµ(x). (4.11)

The wave equation is obtained by Fourier transforming equation (4.9)

kµF
µν(k) = µ0J

ν(k)

kµ(kµAν(k)− kνAµ(k)) = µ0J
ν(k)

(k2ηµν − kµkν)Aν(k) = µ0J
ν(k).

(4.12)

The current Jµ(k) can be separated into an induced part that describes the response
of a medium and an extraneous part which is a source term

Jµ(k) = Jµind(k) + Jµext(k). (4.13)

The linear response can be defined by the induced current as

Jµind(k) = Πµ
ν(k)Aν(k). (4.14)

Πµ
ν(k) is the linear response tensor and will be discussed in chapter 5. Using this

the wave equation (4.12) can be rewritten as

(k2ηµν − kµkν + µ0Π
µν(k))Aν(k) = −µ0J

µ
ext(k)

Λµν(k)Aν(k) = −µ0J
µ
ext(k).

(4.15)

with Λµν defined as Λµν ≡ k2ηµν − kµkν + µ0Π
µν(k). We want to solve the wave

equation (4.12). To do this we introduce the photon propagator Dµν(k). The photon
propagator is a Green’s function defined as the solution of

Λµ
ν(k)Dνρ(k) = µ0η

µρ. (4.16)

Using the charge-continuity relation kJ(k) = 0 this equation can be rewritten as

Λµ
ν(k)Dνρ(k) = µ0(η

µρ − kµkρ/k2) (4.17)

which serves as a convenient definition of Dµν(k). A problem in deriving the prop-
agator comes from the fact that the determinant of Λµν is zero. This can be shown
by first noting that the charge-continuity equation implies kµΛµν(k) = 0 (as can be
seen by contracting the wave equation (4.12) with kµ). This implies that kµ is an
eigenvector of Λµν with eigenvalue 0, thusly Λµν has a determinant of 0. This means
that Λµν has no inverse. It also means that its matrix of cofactors λµν is of rank
one. Being a rank one matrix it can be written as the outer product of a vector
with itself. Since kµ is an eigenvector of Λµν it can be used to express

λµν(k) = λ(k)kµkν (4.18)

which is the matrix of cofactors with the invariant λ(k). A solution to equation
(4.17) is found by using the second order matrix of cofactors λµανβ. The second
order matrix of cofactors satisfies

Λµ
ρ(k)λρναβ(k) = λ(k)[ηµαkνkβ − ηµβkνkα]. (4.19)
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In order to find an expression for the photon propagator we contract the equation
with kνkβ

kνkβΛµ
ρ(k)λρναβ(k) = λ(k)

[
kνkβη

µαkνkβ − kνkβηµβkνkα
]

= λ(k)k4
[
ηµν − kµkα

k2

]
,

(4.20)

and rewrite it as

Λµ
ρµ0

λρναβkνkβ
λ(k)k4

= µ0

[
ηµν − kµkα

k2

]
. (4.21)

Now, comparing this with equation (4.17) the photon propagator is

Dµν(k) = µ0
kαkβ
k4

λµανβ(k)

λ(k)
. (4.22)

This is a specific solution to equation (4.17). If we want a general solution we can
modify the photon propagator D

′µν = Dµν + ξµ(k)kν + ζν(k)kµ with the ξ(k) and
ζ(k) are arbitrary.

4.3 Wave Energetics and the Absorption Coeffi-

cient

In order to find an expression for the absorption coefficient we need to find the rate
of momentum transfer from an extraneous current to the wave field and the wave
energy. We will see that mathematically the absorption coefficient is described by
the dissipative, anti-hermitian, part of the LRT.

Firstly, the hermitian and anti-hermitian part of a tensor is defined as

ΠHµν(k) =
1

2
[Πµν(k) + Π∗µν(k)]

ΠAµν(k) =
1

2
[Πµν(k)− Π∗µν(k)].

(4.23)

It should be noted that for a symmetric tensor the hermitian part of the tensor is
equal to its real part and the anti-hermitian part is equal to its imaginary part.

We use a rather unintuitive way of finding the wave energy. First we find the ratio
of electric to total energy and then we find the total energy. The electric energy,
which is the same as the wave energy, is then the ratio of these two factors. From
Ref [14] the ratio of electric to total energy is

RM(k) =
λ0σ0σ(k)

ω∂λ(k)/∂ω

∣∣∣∣
k=kM

, (4.24)

which can be rewritten as

[RM(k)]−1 = −
[

1

ω

∂

∂ω
ΛM(k)

]∣∣∣∣
ω=ωM

, (4.25)
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with ΛM(k) = e∗Mµ(k)eMµ(k)ΛHµν(k). RM is connected to the wave function renor-

malization constant Z as R
1/2
M ∝ Z1/2.

The wave amplitude aM(k) for a mode M is defined by the four-potential

AµM(x) = V

∫
d4k

(2π)4
aM(K)eµM(k)e−ikx2πδ[ω − ωM(k)]. (4.26)

The inclusion of a volume V gives AµM(x) and aM(k) the same dimensions. After a
Fourier transformation, equation (4.26) becomes

AµM(k) = V aM(k)eµM(k)2πδ[ω − ωM(k)]. (4.27)

The electric energy density in waves for an electric field is 1
2
ε0|E|2. The total electric

energy density is obtained by averaging this over all time and space by integrating
and normalizing with a factor 1/TV . In the temporal gauge one has

1

TV

∫
d4x

1

2
ε0|E(x)|2 =

1

TV

∫
d4k

(2π)4
1

2
ε0|ωA(k)|2. (4.28)

For a wave in mode M the average energy is

1

TV

∫
d4k

(2π)4
1

2
ε0|ωAM(k)|2 =

1

TV

∫
d4k

(2π)4
ε0|ωV aM(k)|2|eM(k)|2|2πδ[ω − ωM(k)]|2

= V

∫
d4k

(2π)4
ε0|ωaM(k)|22πδ[ω − ωM(k)] = V ε0

∫
d3k

(2π)3
|ωMaM(k)|2,

(4.29)

where we have rewritten the square of the delta function as [2πδ(ω − ωM(k)]2 =
T2πδ(ω − ωM(k)) and gained a factor 2 by including the contribution of both the
positive and the negative frequency solutions. The last integral is still the average
over the electric energy which makes the integrand, with the factor V ε0, the electric
energy of waves in mode M . Let the total energy of the waves in mode M be denoted
by WM . WM is given by

WM(k) =
ε0V |ωM(k)aM(k)|2

RM(k)
, (4.30)

that is the electric energy divided by the ratio of electric to total energy. One wishes
to normalize to one wave quantum with energy WM(k) = ωM(k). This gives the
normalization condition

aM(k) =

(
RM(k)

V ε0ωM(k)

)1/2

. (4.31)

Next we find the rate Qµ
M of momentum transfer from an extraneous current to

the wave field. The four-momentum is generated by a current Jα(x) at a rate
JαF

αµ. The average rate of momentum transfer by an extraneous current is given
by integrating the rate over spacetime normalized by 1/T . A Fourier transformation
into k-space results in

1

T

∫
d4xJαext(x)F µ

α (x) = − i

T

∫
d4k

(2π)4
kµJαext(k)Aα(k). (4.32)
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The extraneous current is related to the dissipative, anti-hermitian, part of the LRT
as Jα(k) = ΠAαβ(k)Aβ(k). With this relation the equation (4.32) can be rewritten
as follows

− i

T

∫
d4k

(2π)4
kµAα(k)ΠAαβ(k)Aβ(k)

= − i

T
V 2

∫
d4k

(2π)4
kµ|a(k)|2[2πδ(ω − ωM(k))]2e∗Mα(k)ΠAαβeMβ(k)

= iV 2

∫
d4k

(2π)4
kµ
RM(k)

V ε0ωM
2πδ(ω − ωM(k))ΠA(k)

= −2iV

∫
d3k

(2π)3
kµM

RM(k)

ε0ωM
ΠA
M .

(4.33)

In the third equality we have employed the normalization condition (4.31). From
the last equation the rate of momentum transfer is seen to be

Qµ
M(k) = −2i

RM(k)

ε0ωM(k)
kµMΠA

M(kM). (4.34)

Armed with both the rate of momentum transfer and the wave energy we can find
the absorption coefficient. The 0-component of the rate of momentum transfer is
the rate of energy transfer. The rate of energy transfer to the wave field from an
extraneous current is proportional to the wave energy by a factor γM

Q0
M(k) = −γM(k)WM(k). (4.35)

This proportionality factor is the absorption coefficient. The wave energy varies
exponentially with this factor as can be seen by rewriting equation (4.35), using
that the rate of energy transfer is the derivative of the wave energy,

∂WM(k)

∂t
= −γM(k)WM(k). (4.36)

The solution of this differential equation is simply

WM(k) = Ce−γM (k)t. (4.37)

Finally we find the explicit expression for the absorption coefficient, which is

γM(k) = −Q
0
M(k)

WM(k)
= 2i

RM(k)

ε0ωM(k)
ΠA
M(kM). (4.38)



5 — The Linear Response Tensor

The linear response tensor is needed to find the absorption coefficient in this theory.
In this chapter the LRT for a plasma with momentum distribution strictly parallel to
the direction of propagation travelling through a background plasma is calculated.
Firstly the weak-turbulence expansion, the expansion of an induced current in the
amplitude of the electromagnetic (EM) field, is introduced. Then the Lagrangian,
and the subsequent equation of motion (EoM), for a collection of charged particles
in an EM field is derived. With this EoM we use the forward-scattering method to
find the current for a single particle and then the LRT by comparing the current to
the weak-turbulence expansion.

5.1 The Weak-Turbulence Expansion

The wave equation in k-space is

[k2gµν − kµkν ]Aν(k) = −µ0J
µ(k), (5.1)

where the current can be split into and induced and extraneous part

Jµ(k) = Jµind(k) + Jµext(k). (5.2)

The induced current describes the response of the medium and the extraneous part
acts as a source term. If the induced current is assumed to be weak it can be
expanded in terms of the amplitude of the EM field, Aµ(k), which converges rapidly.
This is the weak-turbulence expansion [14],

Jµind(k) = Πµ
ν(k)Aν(k) +

∫
dλ(2)Π(2)µ

νρ(−k, k1, k2)Aν(k1)Aρ(k2)

+

∫
dλ(3)Π(3)µ

νρσ(−k, k1, k2, k3)Aν(k1)Aρ(k2)Aσ(k3) + · · ·

+

∫
dλ(n)Π(n)µ

ν1ν2···νn(−k, k1, k2, · · · , kn)Aν1(k1)A
ν2(k2) · · ·Aνn(kn)

+ · · · ,

(5.3)

where dλ(n) is defined as

dλ(n) =
d4k1
(2π)4

d4k2
(2π)4

· · · d
4kn

(2π)4
(2π)4δ4(k − k1 − k2 − · · · − kn). (5.4)

This expansion defines the LRT, Πµν(k), which describes the medium’s linear re-
sponse.

21
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5.2 Lagrangian Density

The action integral can be used to find the EoM for a system. For a system con-
sisting of free particles and an EM field the action integral can be expressed by the
Lagrangian density, L, as [14]

I =

∫
d4x L(x), L =

∑
LP (x) + LEM(x). (5.5)

The Lagrangian has the term
∑
LP (x) describing the free particles, with the sum

being all species of particles, and LEM(x) describing the free EM field. The non-
covariant Lagrangian for a single particle, with charge q and mass m, is

L(x,v, t) = −m(1− v2)1/2 − qφ(t,x) + qv ·A(t,x), (5.6)

where φ(t,x) and A(t,x) are the scalar and vector potential for the EM field.
Using the proper time, τ , the covariant Lagrangian is defined by writing the action
integral as

I =

∫
dτR(x, u), R(x, u) = −m− quA(x), (5.7)

where τ = dt/γ and R(x, u) = γL(x,v, t).
The EoM can be found by using the action principle, δI = 0. That is

0 = δI =

∫
dτ

[
dδτ

dτ
+ δxµ∂µ + δuµ

∂

∂uµ

]
R(x, u). (5.8)

Rewriting the action integral equation (5.8) leads to a covariant EoM

d

dτ

{[
(gµν − uµuν) ∂

∂uµ
+ uµ

]
R(x, u)

}
− ∂µR(x, u) = 0. (5.9)

A simpler way to find to covariant EoM is to start with a covariant form of Newton’s
equation

dpµ

dτ
= Fµ. (5.10)

When the EM force is the the only one acting on the particle the force is the Lorentz
force F = qF µνuν . After a Fourier transformation to k-space the EoM becomes

duµ(τ)

dτ
=

q

m
F µν
0 uν(τ) +

iq

m

∫
d4k′

(2π)4
e−ik

′x(τ)k′u(τ)Gµν(k′, u(τ))Aν(k
′), (5.11)

Gµν(k, u) = gµν − kµuν

ku
. (5.12)

The EM field F µν(k) consists of a static field F µν
0 (k) and a fluctuating field repre-

sented by Aµ(k). In this thesis the static field is set to zero.

5.3 Forward-Scattering Method

In the the forward-scattering approach all wave are the same before and after scat-
tering. Because of this all the particles in the medium contributes in phase to
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forward scattering and the sum of all these contributions corresponds to the collec-
tive response of the medium [14]. In this section we want to expand the current in
orders of the EM field, A(k), and compare the expression to the weak-turbulence
expansion in order to identify the LRT.

We now look to expand the current due to a single particle in powers of the po-
tential A(k). The motion of the particle is rectilinear in the absence of a static field
and its orbit can be represented by

Xµ(τ) = xµ0 + uµ0τ +
∞∑
n=1

X(n)µ(τ) = Xµ
0 (τ) +

∞∑
n=1

X(n)µ(τ) (5.13)

where x0 and u0 is constants and X(n)(τ) is of nth order in A(k). Similarly the
velocity can be expanded

uµ(τ) = uµ0 +
∞∑
n=1

u(n)µ(τ). (5.14)

The current for a single particle in an orbit Xµ(τ) in k-space is

Jµsp(k) = q

∫
dτuµ(τ)eikX(τ) (5.15)

and can be expanded in orders of A(k) by inserting the expansions of the orbit and
velocity

Jµsp(k) = q

∫
dτ

(
u(0)µ +

∞∑
n=1

u(n)µ(τ)

)
eikX

(0)(τ)e
∑∞
n=1 ikX

(n)(τ). (5.16)

The expansion to second order is

J (0)µ
sp (k) = q

∫
dτu(0)µ(τ)eikX

(0)(τ), (5.17)

J (1)µ
sp (k) = q

∫
dτ
(
u(1)µ(τ) + ikX(1)(τ)u(0)µ(τ)

)
eikX

(0)(τ), (5.18)

J (2)µ
sp (k) = q

∫
dτ

[
u(2)µ(τ) + ikX(1)(τ)u(1)µ(τ)

+

(
− 1

2
(kX(1)(τ))2 + ikX(2)(τ)

)
u(0)µ

]
eikX

(0)

.

(5.19)

The EoM (5.11) can also be expanded in terms of A(x)

duµ(τ)

dτ
=
iq

m

∫
d4k

(2π)4
e−ikX

(0)(τ)e−ikX
(n)(τ)k′

(
u(0)µτ +

∞∑
n=1

u(n)µ(τ)

)

×Gµν

(
k′, u(0)µ +

∞∑
n=1

u(n)µ(τ)

)
Aν(k

′).

(5.20)

The terms to second order are

d

dτ
u(0)µ(τ) = 0, (5.21)
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d

dτ
u(1)µ(τ) =

iq

m

∫
d4k′

(2π)4
e−ik

′X(0)(τ)k′Gµν(k′, u(0))Aν(k
′), (5.22)

d

dτ
u(2)µ(τ) =

iq

m

∫
d4k′

(2π)4
e−ik

′X(0)(τ)

(
− ikX(1)(τ) + u(1)(τ)

∂

∂u(0)

)
× k′u(0)Gµν(k′, u(0))Aν(k).

(5.23)

The expanded EoM can be integrated once and twice to find the nth order velocity
and orbit respectively. The current expansion for a single particle then becomes,
ignoring the 0 superscript in u(0),

J (n)µ
sp =

∫
d4k1
(2π)4

· · ·
∫

d4kn
(2π)4

β(n)µν1···νn(k, k1, · · · , kn, u)

× Aν1(k1) · · ·Aνn(kn)ei(k−k1−···−kn)x02πδ [(k − k1 − · · · − kn)u]

(5.24)

after inserting the velocity and orbit. The first terms of the β(n)µν1···νn are

β(0)µ(k, u) = quµ, (5.25)

β(1)µν(k, k1, u) = −q
2

m
aµν(k, k1, u), (5.26)

β(2)µνρ(k, k1, k2, u) = − q3

2m2

[
aµν(k, k1, u)

(k − k1)αGαρ(k2, u)

k2u

+ aµρ(k, k2, u)
(k − k2)αGαν(k1, u)

k1u
+ aνρ(k1, k2, u)

(k1 + k2)αG
αρ(k, u)

ku

]
,

(5.27)

with

aµν(k, k1, u) = gµν − kνuµ

ku
− kν1
k1u

+
kk1u

µuν

kuk1u
(5.28)

and

Gµν(k, u) = gµν − kµuν

ku
. (5.29)

J
(n)µ
sp is the current for a single particle. In order to get the total current from

all particles the J
(n)µ
sp is operated on with

∫
[d4x0d

4p0/(2π)4]F (p0) [14]. This is a
statistical average over the initial, unperturbed, position and velocity. F (p) is the
covariant particle distribution function. The covariant and the non-covariant particle
distribution functions are related by

d4p

(2π)4
F (p) =

d3p

(2π)3γ
f(p) (5.30)

and defines the number density and proper number density

n(x) =

∫
d4p

(2π)4
γF (x, p), npr(x) =

∫
d4p

(2π)4
F (x, p). (5.31)

The number density is frame dependent while the proper number density is a con-
stant. However, the proper number density does not correspond to the number
density in any frame. The integral over x0 is just a delta function∫

d4x0e
i(k−k1−···−kn)x0 = (2π)4δ4(k − k1 − · · · − kn). (5.32)
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This equation shows that only the forward waves contributes to scattering which
is the forward-scattering condition. It also indicates translational invariance as the
response tensor is independent of the initial position x0. Comparing now the total
current with the weak-turbulence expansion (5.3) the nth order response of the
medium is

Π(n)µν1...νn(−k, k1, . . . , kn) =

∫
d4p

(2π)4
F (p)β(n)µν1...νn(k, k1, . . . , kn, n). (5.33)

The linear response, n = 1, is then

Πµν(k) = −q
2

m

∫
d4p

(2π)4
F (p)aµν(k, u). (5.34)

5.4 Jüttner Distribution

The Jüttner distribution is a relativistic thermal distribution of particles that acts
as the relativistic counterpart to the non-relativistic Maxwellian distribution for
particles with a temperature T and energy ε = γm. The distribution describes an
approximate ideal gas where the particles do not strongly interact. In 6-dimensional
phase space the Jüttner distribution is [14]

f(p) =
2π2nρe−ργ

m3K2(ρ)
, (5.35)

where ρ = m/T and γ = (1−β2)−1/2 is the Lorentz factor for a velocity β. K2(ρ) is
a modified Bessel function of the second kind or as we will call it here a MacDonald
function. They are defined and discussed thoroughly in appendix A. For a plasma
of electrons with m ≈ 0.550 MeV ρ = 1 corresponds to a temperature of T ≈
5 · 109 K. Thus, for ρ = 1 the plasma is borderline relativistic. It follows that the
ultrarelativistic limit is ρ� 1 and the nonrelativistic limit is ρ� 1.
For an 8-dimentional phase space in an arbitrary frame, where ũ is the velocity in
the rest frame, the Jüttner distribution is

F (p) =
(2π)3nρ

m2K2(ρ)
δ(p2 −m2)e−ρ(pũ/m). (5.36)

5.5 The Relativistic Plasma Dispersion Function

In this thesis the relativistic plasma dispersion function (RPDF) is defined to be
[14]

T (z, ρ) =

∫ 1

−1
dβ

e−ργ

β − z
, (5.37)

where z = ω/|k| is the phase velocity. The relativistic plasma dispersion function
can be rewritten as [14]

T (z, ρ) =

{
− 2ρ

1−z2
∫ z
0
dζK1(ρR)

R
+ iπe−ργ0 for z < 1

2ρ
1−z2

∫∞
z
dζK1(ρR)

R
for z > 1

(5.38)
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with R = [(1 − ζ2)/(1 − z2)]1/2 and γ0 = (1 − z2)−1/2. This function and some
of its derivatives will be useful in the following equations. For the expressions of
these derivatives the reader is refered to appendix B. Note that T (z, ρ) only has
an imaginary part for z < 1. This is because −1 < β < 1 and T (z, ρ) only has a
pole for z < 1. The absorption coefficient which is proportional to the imaginary
part is therefore zero for z > 1 (if the phase velocity is larger than the speed of light).

T (z, ρ) can be expanded for ultrarelativistic speeds [14], ρ� 1,

T (z, ρ) = −ln

∣∣∣∣1 + z

1− z

∣∣∣∣+ iπH(1− z)e−ργ0 (5.39)

with the step function H(x). The exponential in the imaginary part should be set
to zero in order to consistently only include the leading term in ρ.

5.6 Instability Due to an Anisotropic Strictly-Parallel

Thermal Distribution

An anisotropic distribution of particles leads to plasma instabilities [14]. This can be
caused by a temperature anisotropy. The thermal distribution is here strictly paral-
lel to a 4-vector, bµ = [0,b] in the rest frame. With this assumption p⊥ can be set to
zero and the particle distribution function can be written as f(p) = (2π)3δ2(p⊥)g(γ),
where g(γ) is decided by the particle distribution function, in this case the Jüttner
distribution. We will now solve the integral in the linear response (5.34) for this
distribution.

The response tensor in the forward-scattering method (5.34) can be rewritten as

Πµν(k) = −q
2

m

∫
d4p

(2π)4
F (p)

[
gµν − kµuν + kνuµ

ku
+
k2uµuν

(ku)2

]
= −q

2

m

[
gµν
∫

d4p

(2π)4
F (p)−

kµkũ
∫

d4p
(2π)4

F (p)u
ν

ku
+ kνkũ

∫
d4p
(2π)4

F (p)u
µ

ku

kũ

+
k2(kũ)2

∫
d4p
(2π)4

F (p) u
µuν

(ku)2

(kũ)2

]
.

(5.40)

Let us now define

fµ1 = kũ

∫
d4p

(2π)4
F (p)

uµ

ku
,

fµν2 = (kũ)2
∫

d4p

(2π)4
F (p)

uµuν

(ku)2
,

(5.41)

and use (5.31) to write (5.40) as

Πµν(k) = −q
2

m

[
nprg

µν − kµf ν1 + kνfµ1
kũ

+
k2fµν2

(kũ)2

]
. (5.42)
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The integrals in fµ1 and fµν2 can be solved by firstly going from a 4-dimensional to
a 3-dimensional integral using (5.30) and then expanding this integral in a parallel
and perpendicular part (to the direction of propagation)

d4p

(2π)4
F (p) =

d3p

(2π)3γ
f(p) =

d|p|d2p⊥
(2π)3γ

f(p). (5.43)

ũ is the velocity in the rest frame of the plasma and is equal to (1,0,0,0). Giving us
kũ = ω. We can also express ku = γ(ω − k · v) = γ|k|(z − β cos θ) with z = ω/|k|,
β = |b|, |p| = mγβ (d|p| = mγ3dβ) and uµ = γ(ũµ + βbµ). Substituting all this
into fµ1 and fµν2 results in

fµ1 = z

∫ ∞
−∞

d|p|d2p⊥
(2π)3γ

(2π)3δ2(p⊥)g(γ)
ũµ + βbµ

z − β cos θ

= z

∫ ∞
−∞

d|p|
γ
g(γ)

ũµ + βbµ

z − β
= −zm

∫ 1

−1
dβγ2g(γ)

ũµ + βbµ

β − z
,

(5.44)

and similarly for fµν2

fµν2 = z2m

∫
dβγ2g(γ)

(ũµ + βbµ)(ũν + βbν)

(β − z)2
. (5.45)

Here the expression for f(p) has been used. The remaining integrals can be solved
using elementary methods for g(γ) = ne−ργ

2mK1(ρ)
as in the Jüttner distribution. Let us

begin with fµ1

fµ1 = − zn

2K1(ρ)

∫ 1

−1
dβγ2e−ργ

ũµ + βbµ

β − z

= − zn

2K1(ρ)

∫ 1

−1
dβγ2e−ργ

[
1

β − z
ũµ +

β − z + z

β − z
bµ
]

= − zn

2K1(ρ)

∫ 1

−1
dβ

[
∂2

∂ρ2
e−ργ

1

β − z
ũµ + γ2e−ργbµ + z

∂2

∂ρ2
e−ργ

1

β − z
bµ
]
.

(5.46)

Using the definition of the MacDonald functions, see Appendix A, with the substi-
tutions γ = coshχ and β = tanhχ the second term can be written as∫ 1

−1
dβγ2e−ργ =

∫ ∞
−∞

dχ
cosh2 χ

cosh2 χ
e−ρ coshχ = 2

∫ ∞
0

dχe−ρ coshχ = 2K0(ρ). (5.47)

Now, remembering the definition of the RPDF (5.37) the final expression for fµ1
becomes

fµ1 = − zn

2K1(ρ)

[
∂2T (z, ρ)

∂ρ2
(ũµ + zbµ) + 2K0(ρ)bµ

]
. (5.48)
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Similarly for fµν2

fµν2 =
z2n

2K1(ρ)

∫ 1

−1
dβγ2e−ργ

ũµũν + β(ũµbν + ũνbµ) + β2bµbν

(β − z)2

=
z2n

2K1(ρ)

∫ 1

−1
dβγ2e−ργ

[
1

(β − z)2
ũµũν

+
β − z + z

(β − z)2
(ũµbν + ũνbµ) +

β2 − 2βz + z2 + 2βz − z2

(β − z)2
bµbν

]
=

z2n

2K1(ρ)

∫ 1

−1
dβ

[
∂2

∂ρ2
∂

∂z
e−ργ

1

β − z
ũµũν +

∂2

∂ρ2

(
1

β − z
+

∂

∂z

z

β − z

)
× (ũµbν + ũνbµ) +

(
γ2e−ργ +

∂2

∂ρ2
2βz

(β − z)2
− ∂2

∂ρ2
∂

∂z

z2

β − z

)
bµbν

]
.

(5.49)

The third to last term is equal to the zeroth order MacDonald function. The second
to last term must be rewritten

2
∂2

∂ρ2

∫ 1

−1
dβ

βz

(β − z)2
bµbν = 2

∂2

∂ρ2

∫ 1

−1
dβ
z(β − z) + z2

(β − z)2
bµbν

= 2
∂2

∂ρ2

∫ 1

−1
dβ

(
z

1

β − z
+ z2

∂

∂z

1

β − z

)
bµbν .

(5.50)

Adding all this together and using the definition of the RPDF (5.37) fµν2 becomes

fµν2 =
nz2

2K1(ρ)

{
∂′T (z, ρ)

∂ρ2
(ũµ + zbµ)(ũnu + zbν)

+
∂2T (z, ρ)

∂ρ2
[(ũµbν + ũνbµ) + 2zbµbν ] + 2K0(ρ)bµbν

}
.

(5.51)

Thus the LRT for a strictly-parallel distribution is

Πµν(k) = −q
2

m

[
nprg

µν − kµf ν1 + kνfµ1
kũ

+
k2fµν2

(kũ)2

]
, (5.52)

where

fµ1 =
−nz

2K1(ρ)

[
∂2T (z, ρ)

∂ρ2
(ũµ + zbµ) + 2K0(ρ)bµ

]
, (5.53)

and

fµν2 =
nz2

2K1(ρ)

{
∂′T (z, ρ)

∂ρ2
(ũµ + zbµ)(ũnu + zbν)

+
∂2T (z, ρ)

∂ρ2
[(ũµbν + ũνbµ) + 2zbµbν ] + 2K0(ρ)

}
.

(5.54)



6 — Absorption Coefficient for the
Jüttner Particle Distribution

With the linear response tensor calculated in the previous chapter we can calculate
the absorption coefficient for the plasma. In this chapter the absorption coefficient
will be calculated for the Jüttner distribution. It will be a function of the phase
velocity z, the relativistic factor ρ and the ratio of the plasma frequency and the
frequency of the longitudinal wave mode x ≡ ωp/ωL. From plots of the absorption
coefficient it will be clear that there are some problems with the results which are
discussed. At the end of the chapter the absorption coefficient will be recalculated
with a different LRT taken from Ref [15].

6.1 Absorption Coefficient for the Jüttner Distri-

bution

The longitudinal part of the response tensor is

ΠL = eµLΠµνe
ν
L =

(
1− ω2

k2

)
Π00 =

(
1− ω2

ω2 − |k|2

)
Π00

=

(
1− 1

1− z−2

)
Π00 =

(
1− z−2 − 1

1− z−2

)
Π00 =

1

1− z2
Π00.

(6.1)

The expression for the longitudinal part is from Ref [21]. We choose the electron-
positron beam and the emitted photon mode to be in the z-direction, that is k =
(ω, 0, 0, k) and b = (0, 0, 0, 1). Also note that ũ = (1, 0, 0, 0) is the velocity in the
rest frame. The 00-component of the LRT (5.52) is

Π00 = −q
2

m

[
nprg

00 − k0f 0
1 + k0f 0

1

kũ
+
k2f 00

2

(kũ)

]
= −q

2

m

[
npr −

ωf 0
1 + ωf 0

1

ω
+

(ω2 − |k|2)f 00
2

ω2

]
= −q

2

m

[
npr − 2f 0

1 +

(
1− |k|

2

ω2

)
f 00
2

]
= −q

2

m

[
npr − 2f 0

1 + (1− z−2)f 00
2

]
.

(6.2)

The zeroth components of fµ1 (5.53) and fµν2 (5.54) are

f 0
1 = − nz

2K1(ρ)

[
(ũ0 + zb0)

∂2T (z, ρ)

∂ρ2
+ b02K0(ρ)

]
= − nω

2K1(ρ)|k|
∂2T (z, ρ)

∂ρ2
, (6.3)

29
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and

f 00
2 =

nz2

2K1(ρ)

[
(ũ0 + zb0)(ũ0 + zb0)

∂2T ′(z, ρ)

∂ρ2
+ (ũ0b0 + ũ0b0 + 2zb0b0)

∂2T (z, ρ)

∂ρ2
+ b0b02K0(ρ)

]
=

nω2

2K1(ρ)|k|2
∂2T ′(z, ρ)

∂ρ2
,

(6.4)

where the prime indicates a derivative with respect to z. With this the 00-component
of the LRT is

Π00 = −q
2

m

[
npr + 2

nz

2K1(ρ)

∂2T (z, ρ)

∂ρ2
+ (1− z−2) nz2

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

]
= −q

2

m

[
npr +

nz

K1(ρ)

∂2T (z, ρ)

∂ρ2
+ (z2 − 1)

n

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

]
.

(6.5)

In order to get a slightly simpler expression we use the relation npr = nK1(ρ)
K2(ρ)

and
rewrite to

Π00 = −q
2n

m

[
K1(ρ)

K2(ρ)
+

z

K1(ρ)

∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

]
. (6.6)

It is useful to split this into a real and imaginary part, namely

ReΠ00 = −q
2n

m

[
K1(ρ)

K2(ρ)
+

z

K1(ρ)
Re
∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)
Re
∂2T ′(z, ρ)

∂ρ2

]
, (6.7)

and

ImΠ00 = − q2n

2mK1(ρ)

[
2zIm

∂2T (z, ρ)

∂ρ2
− (1− z2)Im∂2T ′(z, ρ)

∂ρ2

]
. (6.8)

We will have use for the derivative of the real part with respect to ω. Since it is
easier to work with the derivative with respect to z we rewrite the derivative using
that the two derivatives are connected by ∂

∂ω
= ∂z

∂ω
∂
∂z

= 1
|k|

∂
∂z

. The derivative of the

real part of Π00 with respect to z is

∂

∂z
ReΠ00 =

∂

∂z

(
− q2n

m

)[
K1(ρ)

K2(ρ)
+

z

K1(ρ)
Re
∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)
Re
∂2T ′(z, ρ)

∂ρ2

]
= −q

2n

m

[
1

K1(ρ)
Re
∂2T (z, ρ)

∂ρ2
+

z

K1(ρ)

∂2T ′(z, ρ)

∂ρ2
+

z

K1(ρ)
Re
∂2T ′(z, ρ)

∂ρ2

− 1− z2

2
Re
∂2T ′′(z, ρ)

∂ρ2

]
= − q2n

2mK1(ρ)

[
2Re

∂2T (z, ρ)

∂ρ2
+ 4zRe

∂2T ′(z, ρ)

∂ρ2
− (1− z2)∂

2T ′′(z, ρ)

∂ρ2

]
.

(6.9)

In order to find the growth rate (4.38) one needs a factor RL (4.25) which is

[RL]−1 = −
[

1

ω

∂

∂ω
ΛL

]∣∣∣∣
ω=ωL

, (6.10)
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where ΛL(k) = eL,µΛHµν(k)eL,ν with Λµν(k) = k2gµν−kµkν +µ0Π
µν(k). The Hermi-

tian part of the tensor is equal to real part of the tensor since the tensor is symmetric
(in the same way the anti-Hermitian part is equal to the imaginary part). This gives

∂

∂ω
ΛL =

∂

∂ω

[
k2(eL · eL)− (k · eL)(k · eL) + µ0ReΠL

]
=

∂

∂ω
(−ω2 − |k|2) + µ

∂

∂ω
ReΠL

= −2ω + µ0
∂

∂ω
ReΠL.

(6.11)

The last derivative in this equation is solved by rewriting the derivative to one with
respect to z as before and using the result from equation (6.9)

∂

∂ω
ReΠL =

1

|k|
∂

∂z

[
1

1− z2
ReΠ00

]
=

1

|k|

[
2z

(1− z2)2
ReΠ00 +

1

1− z2
∂

∂z
ReΠ00

]
.

(6.12)

With this ∂
∂ω

ΛL becomes

∂

∂ω
ΛL = −2ω +

µ0

|k|

{
2z

(1− z2)2

(
− q2n

m

)[
K1(ρ)

K2(ρ)
+

z

K1(ρ)
Re
∂2T (z, ρ)

∂ρ2

− 1− z2

2K1(ρ)
Re
∂2T ′(z, ρ)

∂ρ2

]
+

1

z2

(
− q2n

2mK1(ρ)

)[
2Re

∂2T (z, ρ)

∂ρ2

+ 4zRe
∂2T ′(z, ρ)

∂ρ2
− (1− z2)Re

∂2T ′′(z, ρ)

∂ρ2

]}
= −2ω − ε0µ0q

2n

ε0||k|m(1− z2)
Re

[
2z

1− z2

(
K1(ρ)

K2(ρ)
+

z

K1(ρ)

∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

)
+

1

2K1(ρ)

(
2
∂2T (z, ρ)

∂ρ2
+ 4z

∂2T ′(z, ρ)

∂ρ2
− (1− z2)∂

2T ′′z, ρ)

∂ρ2

)]
= −2ω −

ω2
pz

ω(1− z2)
Re

[
2z

1− z2

(
K1(ρ)

K2(ρ)
+

z

K1(ρ)

∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

+
1

2K1(ρ)

(
2
∂2T (z, ρ)

∂ρ2
+ 4z

∂2T ′(z, ρ)

∂ρ2
− (1− z2)∂

2T ′(z, ρ)

∂ρ2

)]
.

(6.13)

Here we have used the relation ε0µ0 = c−2 = 1, which is true when we are working

in natural units, and we have introduced the plasma frequency ωp =
√

q2n
ε0m

. All the

elements of RL are now known and it is expressed as

R−1L = −
[

1

ω

∂

∂ω
ΛL

]∣∣∣∣
ω=ωL

= 2 +
ω2
pz

ω2
L(1− z2)

Re

[
2z

1− z2

(
K1(ρ)

K1(ρ)
+

z

K1(ρ)

∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

)
+

1

2K1(ρ)

(
2
∂2T (z, ρ)

∂ρ2
+ 4z

∂2T ′(z, ρ)

∂ρ2
− (1− z2)∂

2T ′′(z, ρ)

∂ρ2

)]
.

(6.14)
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The last part needed is ΠA
L which is found using the imaginary part of the 00-

component of the response tensor

ΠA
L =

(
1

1− z2

)
ΠA,00 = (1− z2)−1iIm[Π00]

=− iq2n

2K1(ρ)m(1− z2)
Im

[
2z
∂2T (z, ρ)

∂ρ2
− (1− z2)∂

2T ′(z, ρ)

∂ρ2

]
.

(6.15)

Now we have everything we need to calculate the absorption coefficient for the
Jüttner distribution in terms of the derivatives of the relativistic plasma dispersion
function. From the definition in equation (4.38) the absorption coefficient is

γL = 2i
RL

ε0ωL
ΠA
L

= − 2i

ε0ωL

iq2n

2K1(ρ)m(1− z2)
Im

[
2z
∂2T (z, ρ)

∂ρ2
− (1− z2)∂

2T ′(z, ρ)

∂ρ2

]
×
{

2 +
ω2
pz

ω2
L(1− z2)

Re

[
2z

1− z2

(
K1(ρ)

K2(ρ)
+

z

K1(ρ)

∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

)
+

1

2K1(ρ)

(
2
∂2T (z, ρ)

∂ρ2
+ 4z

∂2T ′(z, ρ)

∂ρ2
− (1− z2)∂

2T ′′(z, ρ)

∂ρ2

)]}−1
=

ω2
p

ωLK1(ρ)(1− z2)
Im

[
2z
∂2T (z, ρ)

∂ρ2
− (1− z2)∂

2T ′(z, ρ)

∂ρ2

]
×
{

2 +
ω2
pz

ω2
L(1− z2)

Re

[
2z

1− z2

(
K1(ρ)

K2(ρ)
+

z

K1(ρ)

∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

)
+

1

2K1(ρ)

(
2
∂2T (z, ρ)

∂ρ2
+ 4z

∂2T ′(z, ρ)

∂ρ2
− (1− z2)∂

2T ′′(z, ρ)

∂ρ2

)]}−1
.

(6.16)

There are three variables present in the absorption coefficient (6.16). They are the
phase velocity z, the ratio of the plasma frequency and the frequency of the longitu-
dinal wave mode x and the relativistic factor ρ = m/T . Let us look at the absorption
coefficient in three regions of ρ. Namely ρ = 0.01 in Figure 6.1 ρ = 1 in Figure 6.2
and ρ = 100 in Figure 6.3. This is the ultrarelativistic, relativistic and classical
limit, respectively. They are all plotted with a frequency ratio of x = 4. Note that
for different values of x the absorption coefficients look completely different and the
value 4 holds no special significance and the plots are therefore just examples of the
absorption coefficient.

All of these absorption coefficients are complicated with divergences to both plus
and minus infinity. For other values of x these divergences disappear and the absorp-
tion coefficient becomes positive. The divergences arise from the factor RL which
becomes zero for certain values of z, ρ and x.
It is instructive to split the absorption coefficient into ΠL with prefactors and RL.
This is shown in figure 6.4, where it can be seen that ΠL with prefactors is positive
and the negative values in the absorption coefficient appears when RL turns nega-
tive. This is true for all values of z, ρ and x. To see that ΠL with prefactors are
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Figure 6.1: The figure shows the absorption coefficient as a function of z for ρ = 0.01
and x = 4. It is positive, stable, until z gets close to 1 where it becomes negative,
unstable.

Figure 6.2: The figure shows the absorption coefficient as a function of z for ρ = 1
and x = 4. It is positive, stable, until it diverges and negative, unstable, after.



34
CHAPTER 6. ABSORPTION COEFFICIENT FOR THE JÜTTNER
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Figure 6.3: The figure shows the absorption coefficient as a function of z for ρ = 100
and x = 4. It is positive, stable, for very small values of z then it diverges and
becomes negative, unstable, before it diverges again and becomes positive.

Figure 6.4: The figure shows ΠL with prefactors and RL as a function of z for ρ = 1
and x = 4. One can see that ΠL with prefactors is always positive while RL takes
both positive and negative values.
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positive we look at

2ω2
p

ωLK1(ρ)(1− z2)
Im

[
2z
∂2T (z, ρ)

∂ρ2
− (1− z2)∂

2T ′(z, ρ)

∂ρ2

]
. (6.17)

The factors before the imaginary part are positive, K1(ρ) > 0 is shown in Appendix

A, so the total expression is positive if the imaginary part is positive. ∂2T (z,ρ)
∂ρ2

and
∂2T ′(z,ρ)
∂ρ2

are written explicitly in appendix B and the imaginary part is

Im

[
2z
∂2T (z, ρ)

∂ρ2
− (1− z2)∂

2T ′(z, ρ)

∂ρ2

]
= πγ30zρe

−ργ0 ,

(6.18)

which is positive. The criterion for an instability hence becomes RL ≤ 0, or

−2 ≥
ω2
pz

ω2
L(1− z2)

Re

[
2z

1− z2

(
K1(ρ)

K2(ρ)
+

z

K1(ρ)

∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

)
+

1

2K1(ρ)

(
2
∂2T (z, ρ)

∂ρ2
+ 4z

∂2T ′(z, ρ)

∂ρ2
− (1− z2)∂

2T ′′(z, ρ)

∂ρ2

)]
.

(6.19)

The goal of this thesis has been to find out if the growth rate of the plasma was
such that the time scale of the energy dissipation could compete with that of the
inverse Compton cascade. To do this we would need the maximum value of the
growth rate. Since the absorption coefficient shown here diverges to minus infinity
the maximum value is formally infinite. This is not physical and one must conclude
that the divergences are a result of the way the calculations have been done and
should be corrected. The error most likely occurs when Plemelj’s formula has been
applied in separating the LRT into an imaginary and a real part. This separation
is not made clear in this chapter, but is more easily understood in the next one. In
the relativistic particle dispersion relation (5.37) there is a pole at β = z. Using
Plemelj’s formula this is split into a real principle value integral and an imaginary
part as follows

1

x− a+ 0i
= P

(
1

x− a

)
− iπδ(x− a). (6.20)

This, however, requires the imaginary part of the frequency, known as the absorption
coefficient, to be small. As the imaginary part diverges in the absorption coefficient,
seen in Figures 6.1, 6.2 and 6.3, this assumption is clearly not valid anymore and
the method is not self-consistent.

6.2 Alternative Absorption Coefficient for the Jüttner

Distribtuion

A different expression for the LRT is found in Ref [15]. It is

Πµν(k) = 16πα

∫
d3p

(2π)3
1

2E
f(p)

p · k(pµkν + kµpν)− k2pµpν − (p · k)2gµν

(p · k)2 − (k2)2/4
. (6.21)
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From this expression we can again calculate the response tensor with a Jüttner
particle distribution. Start by using the approximation (k2)2 ≈ 0 following Ref [15]
and let the momentum and wavenumber be parallel in the z-direction, p = (E, 0, 0, p)
and k = (ω, 0, 0, k), resulting in

Π00 = 16πα

∫
d3p

(2π)3
1

2E
f(p)

2ω(ω − βk)− (ω2 − k2)− (ω − βk)2

(ω − βk)2

= 16πα

∫
d3p

(2π)3
1

2E
f(p)

2ω2 − 2ωβk − ω2 + k2 − ω2 + 2ωβk − β2k2

(ω − βk)2

= 16πα

∫
d3p

(2π)3
1

2E
f(p)

k2(1− β2)

(ω − βk)2
.

(6.22)

Inserting the Jüttner distribution

f(p) = (2π)3δ(px)δ(py)
ne−ργ

2mK1(ρ)
, (6.23)

E = mγ, dp = dβmγ3 and α = q2/4π the 00-component response tensor becomes

Π00 =
8παn

2mK1(ρ)

∫
dpz

1

E

k2(1− β2)

(ω − kβ)2
e−ργ

=
4παn

mK1(ρ)

∫
dβmγ3

1

E

1− β2

(β − z)2

=
4παn

mK1(ρ)

∫
dβγ2

1− β2

(β − z)2

=
4παn

mK1(ρ)

[
∂

∂z

∂2

∂ρ2

∫
dβ

1

β − z
e−ργ −

∫
dβγ2

β2

(β − z)2
e−ργ

]
.

As before we employ the integral technique of adding zero, z−z, to the integrand and
recognize the integrals as derivatives of the relativistic particle dispersion relation.
This yields

Π00 =
4παn

mK1(ρ)

[
∂2T ′(z, ρ)

∂ρ2
−
∫
dβγ

β2 − z2 + z2

(β − z)2
e−ργ

]
=

4παn

mK1(ρ)

[
∂2T ′(z, ρ)

∂ρ2
−
∫
dβγ

(β + z)(β − z) + z2

(β − z)2
e−ργ

]
=

4παn

mK1(ρ)

[
∂2T ′(z, ρ)

∂ρ2
−
∫
dβγ2

β + z

β − z
e−ργ −

∫
dβγ2

z2

(β − z)2
e−ργ

]
=

4παn

mK1(ρ)

[
∂2T ′(z, ρ)

∂ρ2
− ∂2

∂ρ2
zT (z, ρ)−

∫
dβγ2

β − z + z

β − z
e−ργ −

∫
dβγ2

z2

(β − z)2
e−ργ

]
=

4παn

mK1(ρ)

[
∂2T ′(z, ρ)

∂ρ2
− 2z

∂2T (z, ρ)

∂ρ2
−
∫
dβγ2e−ργ − z2∂

2T ′(z, ρ)

∂ρ2

]
=

4παn

mK1(ρ)

[
∂2T ′(z, ρ)

∂ρ2
− 2z

∂2T (z, ρ)

∂ρ2
− z2∂

2T ′(z, ρ)

∂ρ2
− 2K0(ρ)

]
= − q2n

mK1(ρ)

[
2z
∂2T (z, ρ)

∂ρ2
− (1− z2)∂

2T ′(z, ρ)

∂ρ2
+ 2K0(ρ)

]
.

(6.24)
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This expression is very similar to (6.6). The only difference is a factor 2 and the term
consisting of MacDonald functions has changed from K1(ρ)/K2(ρ) to K0(ρ)/K1(ρ).
As a result the absorption coefficient is also very similar,

γL = 2i
RL

ε0ωL
ΠA
L

= − 2i

ε0ωL

2iq2n

2K1(ρ)m(1− z2)
Im

[
2z
∂2T (z, ρ)

∂ρ2
− (1− z2)∂

2T ′(z, ρ)

∂ρ2

]
×
{

2 +
2ω2

pz

ω2
L(1− z2)

Re

[
2z

1− z2

(
K0(ρ)

K1(ρ)
+

z

K1(ρ)

∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

)
+

1

2K1(ρ)

(
2
∂2T (z, ρ)

∂ρ2
+ 4z

∂2T ′(z, ρ)

∂ρ2
− (1− z2)∂

2T ′′(z, ρ)

∂ρ2

)]}−1
=

2ω2
p

ωLK1(ρ)(1− z2)
Im

[
2z
∂2T (z, ρ)

∂ρ2
− (1− z2)∂

2T ′(z, ρ)

∂ρ2

]
×
{

2 +
2ω2

pz

ω2
L(1− z2)

Re

[
2z

1− z2

(
K0(ρ)

K1(ρ)
+

z

K1(ρ)

∂2T (z, ρ)

∂ρ2
− 1− z2

2K1(ρ)

∂2T ′(z, ρ)

∂ρ2

)
+

1

2K1(ρ)

(
2
∂2T (z, ρ)

∂ρ2
+ 4z

∂2T ′(z, ρ)

∂ρ2
− (1− z2)∂

2T ′′(z, ρ)

∂ρ2

)]}−1
,

(6.25)

which is the same as (6.16), but with the substitutions mentioned above. The
difference between these is not known. It could come from the approximation (k2)2 ≈
0 or there is a mistake in Refs [14] or [15]. The calculation in the next section is
done using the LRT from this section instead of the one used in the last section
because it is somewhat simpler.





7 — Absorption Coefficient for a
Simulatied Particle Distribu-
tion

In this chapter the absorption coefficient will be recalculated with a distribution
function based on a simulation of the electromagnetic cascade described in the
introduction [22]. This new distribution function will change the absorption co-
efficient. Notably the relativistic particle dispersion relation, T (z, ρ) is no longer
present (although a part of the expression has the same form). This means that
the integrations over the velocity have to be calculated again and new techniques
have to be employed to find the real and imaginary parts of the response tensor. In
addition to this we will use the response tensor from Ref [15] instead of Ref [14] as it
is somewhat simpler. The chapter will start with the calculation of the absorption
coefficient, it will be presented and discussed. Lastly the distribution function and
its numerical calculation will be discussed.

7.1 Absorption Coefficient for Simulated Distri-

bution Function

The 00-component of the linear response tensor from Ref [15], equation (6.22), was
found in the last chapter,

Π00 = 16πα

∫
d3p

(2π)3
1

2E
n(E)

k2(1− β2)

(ω − βk)2
. (7.1)

This equation contains the distribution function n(E) which is

n(E) = n0(2π)3δ(px)δ(py)[δ(pz) +Bf(E)H(β)]. (7.2)

The form of the distribution function will be discussed in the next section. It
contains the function f(E) which is the particle distribution over energy and is
based on a simulation of the electromagnetic cascade the plasma beam experiences
in the intergalactic medium. Now, with this expression for n(E) the 00-component

39
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of the LRT becomes

Π00 = 16παn0

[ ∫
d3p

1

2E
δ(px)δ(py)

1− β2

(z − β)2
[δ(pz) +Bf(E)H(β)]

]
= 16παn0

[
1

2mz2
+B

∫ ∞
−∞

dpz
1

2mγ

(1− β2)f(E)

(z − β)2
H(β)

]
= 16παn0

[
1

2mz2
+B

∫ ∞
−∞

dpz
1

2mγ3
f(E)

(z − β)2
H(β)

]
.

(7.3)

In order to solve the integrals we do a change of integration variable from momentum
to velocity. The variables are connected by pz = mγβ and the derivative is dpz =
mγ3dβ. With this the 00-component of the LRT becomes

Π00 = 16παn0

[
1

2mz2
+B

∫ 1

−1
dβ

mγ3

2mγ3
f(E)

(z − β)2
H(β)

]
= 16παn0

[
1

2mz2
+
B

2

∫ 1

−1
dβ

f(E)

(β − z)2
H(β)

]
= 16παn0

[
1

2mz2
+
B

2

∂

∂z

∫ 1

−1
dβ

f(E)

β − z
H(β)

]
.

(7.4)

The last calculation in the previous equation introduces the deriative with respect
to z in order to remove the double pole at β = z. The reasons for this will become
clear. The difficulty now lies in calculating the last integral. The function f(E)
is only numerical data from a simulation which cannot be integrated analytically.
Therefore the function is approximated by analytically functions. How this is done
will be discussed later in this chapter. The form f(E) is found to be

f(E) = H(E − a)b(E − a)H(c− E) +H(E − c)dH(f − E)

+H(E − f)de−g(E−f)H(h− E)
(7.5)

where a, b, c, d, f, g, h are all variational parameters determined by the simulated
data. The last integral, which will be called I(z), can then be split into three parts

I(z) =

∫ 1

−1
dβH(mγ − a)

b(mγ − a)

β − z
H(c−mγ)H(β)

+

∫ 1

−1
dβH(mγ − c) d

β − z
H(f −mγ)H(β)

+

∫ 1

−1
dβH(mγ − f)d

e−g(mγ−f)

β − z
H(h−mγ)H(β).

(7.6)

All terms has a pole at β = z. This means that the integrals can be split up into a
real and imaginary part. To do this we use Plemelj’s formula

1

x− a+ 0i
= P

(
1

x− a

)
− iπδ(x− a), (7.7)

where P denotes the principal value. Here lies the reason as to why the degree of the
pole was reduced by introducing the derivative with respect to z. Plemelj’s formula
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only works with first order poles. With the pole rewritten with Plemelj’s formula
the integral takes the form of

I(z) = P
∫ 1

−1
dβH(mγ − a)

b(mγ − a)

β − z
H(c−mγ)H(β)

+ P
∫ 1

−1
dβH(mγ − c) d

β − z
H(f −mγ)H(β) +

∫ 1

−1
dβH(mγ − f)d

e−g(mγ−f)

β − z
H(β)

− iπ
[ ∫ 1

−1
dβH(mγ − a)b(mγ − a)H(c−mγ)δ(β − z)H(β)

+

∫ 1

−1
dβH(mγ − c)dH(f −mγ)δ(β − z)H(β)

]
H(1− z)

= P
∫ 1

0

dβH(mγ − a)
b(mγ − a)

β − z
H(c−mγ) + P

∫ 1

0

dβH(mγ − c) d

β − z
H(f −mγ)

+

∫ 1

0

dβH(mγ − f)d
e−g(mγ−f)

β − z
− iπ[H(mγ0 − a)b(mγ0 − a)H(c−mγ0)

H(mγ0 − c)dH(f −mγ0)]H(1− z).

(7.8)

The integral over the exponential function is not written out using Plemelj’s formula
because it is on the same form as the relativistic plasma dispersion function and will
be calculated using the same method. The step function, H(1−z), appears because
−1 < β < 1 and there is only a pole for z < 1.
The two principal value integrals can be calculated explicitly. Beginning with the
first, we use the known integral

∫
dx

(x− a)
√

1− x2
=


−1√
1−a2 ln

[
C1

1−ax+
√

(1−a2)(1−x2)
x−a

]
for a < 1

1√
a2−1 arcsin 1−ax

|x−a| + C2 for a > 1

−
√

1+x
1−x + C3 for a = 1

. (7.9)

WIth this the part of our integral that is linear in E becomes, for z < 1,

P
∫ 1

0

H(mγ − a)
bmγ

β − z
H(mγ − c)

= bm

[ ∫ z−ε

β1

dβ

(β − z)
√

1− β2
+

∫ β2

z+ε

dβ

(β − z)
√

1− β2

]
=
−bm√
1− z2

ln

(
1− zβ2 +

√
(1− z2)(1− β2

2)

1− zβ1 +
√

(1− z2)(1− β2
1)

)
.

(7.10)

β1 and β2 are defined to satisfy the step functions, that is m(1 − β2
1)−1/2 = a and

m(1− β2
2)−1/2 = c. For z > 1 it is∫ 1

0

dβH(mγ − a)
bmγ

β − z
H(mγ − c) =

∫ β2

β1

dβ
bm

(β − z)
√

1− β2

=
bm√
z2 − 1

[
arcsin

(
1− zβ2
z − β2

)
− arcsin

(
1− zβ1
z − β1

)]
.

(7.11)
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The absolute value has been dropped since −1 < β < 1 which makes β − z always
negative when z > 1. The two constant functions are integrated as follows

P
∫ 1

0

dβH(mγ − a)
−ba
β − z

H(c−mγ) =

∫ z−ε

β1

dβ
−ba
β − z

+

∫ β2

z+ε

dβ
−ba
β − z

= −ba ln

∣∣∣∣β2 − zβ1 − z

∣∣∣∣, (7.12)

and similarly for

P
∫ 1

0

dβH(mγ − c) d

β − z
H(f −mγ) = d ln

∣∣∣∣α2 − z
α1 − z

∣∣∣∣, (7.13)

where m(1 − α2
1)
−1/2 = c and m(1 − α2

2)
−1/2 = f . The last integral is on the same

form as the RPDF except for the extra step functions. The step functions make it
so the integrand no longer becomes modified Bessel functions. Instead the integrand
looks like

Qν(x) =
(x/2)νΓ(1

2
)

Γ(ν + 1
2
)

∫ χ2

χ1

dχ sinhχ2νe−x coshχ, (7.14)

which is exactly the same as the integral definition of the MacDonald function,
see appendix A, except for the integration limits. The limits are defined as χ1 =
cosh−1 (f/m) and χ1 = cosh−1 (h/m). In analogue with the RPDF the integral over
the exponential function can be rewritten as∫ 1

0

dβH(mγ − f)C
e−g(mγ−f)

β − z
H(h−mγ)

=

{
−d 2gm

1−z2 e
gf
∫ z
0
dζ Q1(mgR)

R
+ iπe−g(mγ0−f) for z < 1

d 2gm
1−z2 e

gf
∫∞
z
dζ Q1(gmR)

R
for z > 1

.

(7.15)

The combined expression for I(z) is, for z < 1,

I(z) = − bm√
1− z2

ln

(
1− zβ2 +

√
(1− z2)(1− β2

2)

1− zβ1 +
√

(1− z2)(1− β2
1)

)
+ d ln

∣∣∣∣α2 − z
α1 − z

∣∣∣∣− ba ln

∣∣∣∣β2 − zβ1 − z

∣∣∣∣
− d 2gm

1− z2
egf
∫ z

0

dζ
Q1(mgR)

R
− iπ

[
H(mγ0 − a)b(mγ0 − a)H(c−mγ0)

+H(mγ0 − c)dH(f −mγ0)−H(mγ0 − f)de−g(mγ−f)H(h−mγ0)
]
.

(7.16)

For z > 1 it is

I(z) =
bm√
z2 − 1

[
arcsin

(
1− zβ2
z − β2

)
− arcsin

(
1− zβ1
z − β1

)]
+ d ln

∣∣∣∣α2 − z
α1 − z

∣∣∣∣− ba ln

∣∣∣∣β2 − zβ1 − z

∣∣∣∣+ d
2gm

1− z2
egf
∫ ∞
z

dζ
Q1(mgR)

R
.

(7.17)

The total expression for the 00-component of the response tensor is, using α = q2/4π,

Π00 = 4q2n0

[
1

2mz2
+
B

2

∂

∂z
I(z)

]
. (7.18)
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To calculate the absorption coefficient we need the derivative of ReΠ00 with respect
to ω

∂

∂ω
ReΠ00 =

1

|k|
∂

∂z
ReΠ00

=
4q2n0

|k|
∂

∂z

[
1

2mz2
+
B

2

∂

∂z
ReI(z)

]
=

4q2n0

|k|

[
− 1

mz3
+
B

2

∂2

∂z2
ReI(z)

]
.

(7.19)

The next step is to find the normalizing factor RL defined in equation (4.25). We
find the derivative of ΛL, remembering that ΛL = k2(eL ·eL)−(k ·eL)(k ·eL)+µ0ReΠL

and ΠL = (1− z2)−1,

∂

∂ω
ΛL = −2ω + µ0

∂

∂ω
ReΠL

= −2ω + µ0
∂

∂z

[
(1− z2)−14q2n0

(
1

2mz2
+
B

2

∂

∂z
ReI(z)

)]
= −2ω +

4q2µ0n0

|k|

[
2z

(1− z2)2

(
1

2mz2
+
B

2

∂

∂z
ReI(z)

)
+

1

1− z2

(
− 1

mz3
+
B

2

∂2

∂z2
ReI(z)

)]
.

(7.20)

Put into (6.14) R−1L becomes

R−1L = 2− 4q2µ0n0z

ωL

[
2z

(1− z2)2

(
1

2mz2
+
B

2

∂

∂z
ReI(z)

)]
+

1

1− z2

(
− 1

mz3
+
B

2

∂2

∂z2
ReI(z)

)]
= 2− 4q2µ0n0z

ωL(1− z2)

[
2z

1− z2

(
1

2mz2
+
B

2

∂

∂z
ReI(z)

)
+

(
− 1

mz2
+
B

2

∂2

∂z2
ReI(z)

)]
.

(7.21)

We also need the anti-hermitian part of ΠL. It is

ΠA
L = (1− z2)−1iImΠ00 =

4iq2n0B

2(1− z2)
∂

∂z
ImI(z). (7.22)
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With all the components the absorption coefficient is

γL = 2i
RL

ε0ωL
ΠA
L

= −4q2n0B

εωL

∂

∂z
ImI(z)

×
{

2− 4q2µ0n0z

ω2
L(1− z2)

[
2z

1− z2

(
1

2mz2
+
B

2

∂

∂z
ReI(z)

)
− 1

mz3
+
B

2

∂2

∂z2
ReI(z)

]}−1
= −

4mBω2
p,0

ωL(1− z2)
∂

∂z
ImI(z)

×
{

2−
4ω2

p,0z

ω2
L(1− z2)

[
2z

1− z2

(
1

2z2
+
Bm

2

∂

∂z
ReI(z)

)
− 1

z3
+
Bm

2

∂2

∂z2
ReI(z)

]}−1
.

(7.23)

The plasma frequency has again been introduced as ω2
p,0 = q2n0

ε0m
which is the same

as earlier just with n0 instead of n. The derivatives of I(z) is written in Appendix B.

There are also three variables in this new expression; they are the phase veloc-
ity z, the density ratio B ≡ r · nb/n0 and the ratio of the plasma frequency and the
frequency in the wave mode x0 ≡ ωp,0/ωL. The values of nb and n0 is 10−22 m−3

and 10−7 m−3 respectively [1]. r is used as a free variable tuning the density ratio.
This absorption coefficient is inherently ultrarelativistic because of the high energy
of the simulated data. This leads to a problem where the absorption coefficient is
only non-zero when the phase velocity is 99.999999% of the speed of light making it
numerically difficult to consider. In order to make this simpler we increase the mass
until it is very close to the value of a, see equation (7.27), effectively lowering the
energy of the particles in the beam. The absorption coefficient is plotted for three
different values of r. Namely r = 0.01 in Figure 7.1, r = 1 in Figure 7.2 and r = 100
in Figure 7.3 with x0 = 165.
As with the absorption coefficient for the Jüttner distribution the divergence is
caused by RL becoming zero. The absorption coefficient is also only negative when
RL is because ΠL with prefactors is positive. This can be seen from

−
4mBω2

p,0

ωL(1− z2)
∂

∂z
ImI(z). (7.24)

The prefactors are negative and so is ∂
∂z

ImI(z), see appendix B, making the total
expression positive. This is illustrated in figure 7.4 which shows ΠL with prefactors
and RL as a function of z separately for r = 1 and x0 = 165. Here as well one can
set a criteria for an instability. It is again that RL ≤ 0, or

2 ≤
4ω2

p,0z

ω2
L(1− z2)

[
2z

1− z2

(
1

2z2
+
Bm

2

∂

∂z
ReI(z)

)
− 1

z3
+
Bm

2

∂2

∂z2
ReI(z)

]
. (7.25)

The absorption coefficient has the same issues as the one with the Jüttner distribu-
tion. It diverges to plus/minus infinity at certain values of z, B and x. As said in
the previous chapter this is unphysical and there is an inconsistency in the calcu-
lations as before. This makes sense as Plemelj’s formula has been employed in this
calculation as well.
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Figure 7.1: The figure shows the absorption coefficient as a function of z for r = 0.01
and x0 = 165. It is positive, stable, until it diverges and after the divergence it is
negative, unstable.

Figure 7.2: The figure shows the absorption coefficient as a function of z for r = 1
and x0 = 165. It is positive, stable, until it diverges and after the divergence it is
negative, unstable.
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Figure 7.3: The figure shows the absorption coefficient as a function of z for r = 100
and x0 = 165. It is positive, stable, until it diverges and after the divergence it is
negative, unstable.

Figure 7.4: The figure shows ΠL with prefactors (left) and RL (right) as a function
of z for r = 1 and x0 = 165. One can see that ΠL with prefactors is positive while
RL is both positive and negative.
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Figure 7.5: Plots of the data points from the simulations using ELMAG [22]. It
shows the spectrum of the first generation of e+e− pairs in an electromagnetic cas-
cade on the extragalactic background light. The left graph is plotted with logarith-
mic axis and the right graph is plotted with linear axis. Note that some data points
are missing in each graph. The logarithmic graph are missing the data points which
have a zero value on the y-axis. The linear graph is missing some data points at the
high energy.

7.2 The Distribution Function

The distribution function used in the foregoing calculation is

n(E) = n0(2π)3δ(px)δ(py)[δ(pz) +Bf(E)H(β)]. (7.26)

This distribution function defines a beam of particles travelling in the z-direction
in a background of particles. The momentum in x- and y-direction is put to zero
by the delta functions. The background particles are related to the first term. It is
stationary and therefore has a delta function over pz. The last term is related to the
particle beam. The constant B is the ratio of the beam density and the background
density, B = r n

n0
. The step function with the argument β expresses that the particles

in the beam only move in one direction, away from the source. The function f(E) =
dN
dE

is the distribution of particles over energy. The distribution is found using
ELMAG [22]. Here, ELMAG is used to simulate the spectrum of the first generation
of e+e− pairs in the electromagnetic cascade on the extragalactic background light.
The data points are shown in Figure 7.5 both with linear and logarithmic axis. The
energy units are in joule. Preforming an analytical integration over this function is
necessary because the result of the integration has to be differentiated twice which
would lead to unacceptable error. In order to do it analytically we need to fit an
analytic function to the data points. To do this the data points were split into three
regions. The central flat part and two tails. The leftmost tail was approximated by
a linear function y1 = b(E − a) with a gradient b starting at energy a and ending at
c. The central part is approximated by a constant with a value of y2 = d starting
at c and ending at f . d is not a free variable as it is defined by b, a and c with
the requirement that f(E) is continuous. The rightmost tail is approximated by a
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Figure 7.6: The figure shows the simulated data points of the distribution of particles
over energy with the approximation function giving an analytic expression for it.

decaying exponential function y3 = de−g(E−f) starting at f and ending at h. The
values of the constants a, b, c, d, f, g, h are found numerically by minimizing the mean
square error of the distance between the data points and f(E). The values are

a = 0.9566 · 10−9 Joule

b = 7.9038 · 1016 1/Joule

c = 4.5950 · 10−9 Joule

d = 2.8836 · 10−11 1/Joule

f = 1.6587 · 103 Joule

g = 2.7497 · 10−6 1/Joule

h = 2.6500 · 105 Joule.

(7.27)

The function f(E) with these values is plotted with the data points in Figure 7.6.



8 — Summary and Conclusion

The goal of this thesis was to find the growth rate of plasma instabilities in an
electron-positron plasma beam and then compare the time scale of this growth rate
to that of the inverse Compton cascade to see if it could be a competing energy loss
mechanism. If it was, plasma instability could be used to explain the non-detection
of an electromagnetic cascade in beams from blazars avoiding the introduction of
an intergalactic magnetic field. This thesis would then support or contradict the
work done by Supsar [1] and Schlikeiser et. al. [2, 3], which concluded that the
non-detection of the electromagnetic cascade could indeed be explained by plasma
instabilities.

We employed a covariant formalism of plasma theory following Ref [14]. Using this
theory we derived the linear response tensor for a plasma with particles distributed
according to the Jüttner distribution and used this to find an expression for the
absorption coefficient of the plasma. In addition this first part also introduced an
alternative expression for LRT which lead to a similar expression for the absorption
coefficient.
In the next part of the thesis we recalculated the absorption coefficient for a new
distribution of particles. This new distribution was based on a simulation of the
electromagnetic cascade and had to be approximated by an analytic function nu-
merically.
We wanted to find the minimum (most negative) value of these two absorption coef-
ficients and compare their corresponding time scale to that of the inverse Compton
cascade, but this turned out not to be possible. The absorption coefficient diverged
and became formally minus infinity, in both cases, for certain values of the phase
velocity, the relativistic factor m/T and the ratio ωp/ωL, which is not physical, forc-
ing us to conclude that there were problems with some part of the calculation. This
problem most likely occurs when Plemelj’s formula is used to split the LRT into
a real and imaginary part. To do this we assume that the imaginary absorption
coefficient is small, which was found to not be a self-consistent assumption due to
the divergences. Because of this problem with the calculation we could draw no con-
clusions which supported or opposed the work done by Supsar and Schlikeiser et. al.

In order to find the maximum value of the growth rate as was the goal of this
thesis one would have to redo the calculations, this time avoiding the assumption
that the growth rate is small. Another option could be to treat the infinities in such
a way as to deduce the actual maximum values. It could be more sensible to do
this process numerically using for instance the recently developed Arbitrary Linear
Plasma Solver [23].
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A — MacDonald functions

Bessel functions are important mathematical functions which show up in several
different branches of physics. For instance as the solutions of the radial Schrödinger
equation, electromagnetic waves in a cylinder and several problems in signal pro-
cesses. Bessel functions are defined as the solutions of the differential equation [24]

d2

dx2
Kν(x) +

1

x

d

dx
Kν(x) +

(
1− ν2

x2

)
Kν(x) = 0. (A.1)

ν can be any complex number, but integer values and half integer values are most
important cases. This differential equation is of second order and has two linearly
independent solutions. The Bessel functions of the first kind are the solutions which
are finite at the origin, while the Bessel functions of the second kind are infinite at
the origin. Both are shown in Figure A.1.

Figure A.1: The first 4 orders of the Bessel function of the first (right) and second
(left) kind.

Modified Bessel functions are defined similarly to the Bessel functions. They are
defined by the differential equation [24]

d2

dx2
Kν(x) +

1

x

d

dx
Kν(x)−

(
1 +

ν2

x2

)
Kν(x) = 0. (A.2)

The difference to the Bessel functions are the opposite sign on the constant term.
The solutions which are infinite at the origin are the modified Bessel functions of
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the second kind, also known as MacDonald functions, and can be seen in figure A.2.
The MacDonald functions does not oscillate like the Bessel functions, but decay
exponentially. All types of Bessel functions can be written as integrals. The integral

Figure A.2: The first 4 orders of the modified Bessel function of the second kind.

form of the MacDonald functions are [24]

Kν(x) =
(x/2)νΓ(1

2
)

Γ(ν + 1
2
)

∫ ∞
0

dχ sinh2ν(χ)e−x cosh(χ). (A.3)

They also satisfy the recursion relations

Kν−1(x)−Kν+1 = −2
ν

x
Kν(x),

Kν−1(x) +Kν+1(x) = −2
d

dx
Kν(x).

(A.4)

For small x, corresponds to ultrelativistic speeds, the MacDonald functions can be
expanded as

Kν ≈
2ν−1(ν − 1)!

xν
(A.5)

and for large x, corresponding to classical speeds, as

Kν(x) =

(
π

2x

)2

e−x
(

1 +
4ν2 − 1

8x
+

(4ν2 − 1)(4ν2 − 9)

128x2
+ · · ·

)
. (A.6)



B — Derivatives

The derivatives necessary to calculate the absorption coefficient both for the Jüttner
distribution (6.16) and the simulated distribution (7.23) are included in this ap-
pendix.

B.1 Derivatives of the Relativistic Particle Dis-

tribution Function

The derivatives of the RPDF with respect to ρ and z present in 6.16 are calculated
here. They are done using the rule

d

dt

∫ t

0

dxg(x, t) =

∫ t

0

dx
∂g(x, t)

∂t
+ g(t, t). (B.1)

The double derivative with respect to ρ is

∂2T (z, ρ)

∂ρ2
=


− 2

1−z2

[
ρ
∫ z
0
dζRK ′′1 (ρR) + 2

∫ z
0
dζK ′1(ρR)

]
+ iπγ20e

−ργ0 for z < 1

2
1−z2

[
ρ
∫∞
z
dζRK ′′1 (ρR) + 2

∫∞
z
dζK ′1(ρR)

]
for z > 1

(B.2)
An additional derivative with respect to z is, now divided into z < 1

∂2T ′(z, ρ)

∂ρ2
= − 2

1− z2

[
z

1− z2

∫ z

0

dζ(2K ′1(ρR) + 4ρRK ′′1 (ρR) + ρ2R2K
(3)
1 (ρR))

+ 2K ′1(ρ) + ρK ′′1 (ρ)

]
+ iπzγ40(2− ργ0)e−ργ0 ,

(B.3)

and z > 1

∂2T ′(z, ρ)

∂ρ2
=

2

1− z2

[
z

1− z2

∫ ∞
z

dζ(2K ′1(ρR) + 4ρRK ′′1 (ρR) + ρ2R2K
(3)
1 (ρR))

− 2K ′1(ρ)− ρK ′′1 (ρ)

]
.

(B.4)
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Another derivative with respect to z gives

∂T ′′(z, ρ)

∂ρ2
= − 2

1− z2

{
1

1− z2

∫ z

0

dζ

[
2K ′1(ρR) + 4ρRK ′′1 (ρR) + ρ2R2K

(3)
1 (ρR)

+ z2(6K ′1(ρR) + 18ρRK ′′1 (ρR) + 8ρ2R2K
(3)
1 (ρR) + ρ3R3K

(4)
1 (ρR))

]
+ z(6K ′1(ρ) + 6ρK ′′1 (ρ) + ρ2K

(3)
1 (ρ))

}
+ iπz2γ60(2− 4ργ0 + ρ2γ20)e−ργ0 ,

(B.5)

for z < 1 and

∂T ′′(z, ρ)

∂ρ2
=

2

1− z2

{
1

1− z2

∫ ∞
z

dζ

[
2K ′1(ρR) + 4ρRK ′′1 (ρR) + ρ2R2K

(3)
1 (ρR)

+ z2(6K ′1(ρR) + 18ρRK ′′1 (ρR) + 8ρ2R2K
(3)
1 (ρR) + ρ3R3K

(4)
1 (ρR))

]
− z(6K ′1(ρ) + 6ρK ′′1 (ρ) + ρ2K

(3)
1 (ρ))

}
(B.6)

for z > 1. The prime signifies the derivative with respect to z when used with
the RPDF and the derivative with respect to its argument when used with the
MacDonald functions.

B.2 Derivatives of I(z) for z < 1

The first and second derivatives of I(z) is a part of the absorption coefficient (7.23)
for the simulated distribution and are shown here. They are split into this section
for z < 1 and the next section for z > 1 and the different terms are done separately
to make the expression a bit shorter. Some of the calculations are done by hand
and some of them are done using digital tools. All the calculations use only basic
derivative rules.
Let us first look at

ln

∣∣∣∣α2 − z
α1 − z

∣∣∣∣. (B.7)

We split it into to parts to remove the absolute values. First for α1 < z < α2 the
derivative is

∂

∂z
ln

(
α2 − z
z − α1

)
=
z − α1

α2 − z

(
−1

z − α1

− α2 − z
(z − α1)2

)
=
z − α1

α2 − z

(
α1 − z − α2 + z

(z − α1)2

)
=

(z − α1)(α1 − α2)

(α2 − z)(z − α1)2

=
α1 − α2

(α2 − z)(z − α1)
.

(B.8)

For z < α1 ∨ z > α2 it is

∂

∂z
ln

(
α2 − z
α1 − z

)
=

α1 − α2

(α1 − z)(z − α2)
=

α1 − α2

(z − α1)(α2 − z)
. (B.9)
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The results are the same so the result is the same for all values of z. The double
derivative is

∂2

∂z2
ln

∣∣∣∣α2 − z
α1 − z

∣∣∣∣ =
(α1 − α2)(α1 + α2 − 2z)

(z − α1)2(α2 − z)2
. (B.10)

One other term in I(z) is exactly the same, but with β instead of α and its derivative
is ofcourse the same. The other logarithmic term

1√
1− z2

ln

(
1− zβ2 +

√
(1− z2)(1− β2

2)

1− zβ1 +
√

(1− z2)(1− β2
1)

)
(B.11)

is a bit more complicated and its derivatives are calculated by digital tools for
convenience. The first derivative with respect to z is

∂

∂z

1√
1− z2

ln

(
1− zβ2 +

√
(1− z2)(1− β2

2)

1− zβ1 +
√

(1− z2)(1− β2
1)

)

= −
bm ln

(
1−zβ2+

√
(1−z2)(1−β2

2)

1−zβ1+
√

(1−z2)(1−β1)

)
z

(1− z2)3/2

− bm(1− zβ1 +
√

(1− z2)(1− β2
1))

√
1− z2(1− zβ2 +

√
(1− z2)(1− β2

2))

[ −β2 − z(1−β2
2)√

(1−z2)(1−β2
2)

1− zβ1 +
√

(1− z2)(1− β2
1)

−
(1− zβ2 +

√
(1− z2)(1− β2

2))

(
− β1 − z(1−β2

1)√
(1−z2)(1−β1)

)
(1− zβ1 +

√
(1− z2)(1− β2

1))2

]
,

(B.12)
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and the second derivative is

∂2

∂z2
1√

1− z2
ln

(
1− zβ2 +

√
(1− z2)(1− β2

2)

1− zβ1 +
√

(1− z2)(1− β2
1)

)
= − bm√

1− z2

{
3

z2

(1− z2)2
ln

(
1− zβ2 +

√
(1− z2)(1− β2

2)

1− zβ1 +
√

(1− z2)(1− β2
1)

)
+ 2

(1− zβ1 +
√

(1− z2)(1− β2
1))z

(1− z2)(1− zβ2 +
√

(1− z2)(1− β2
2))

×
[

1

1− zβ1 +
√

(1− z2)(1− β2
1)

(
− β2 −

z(1− β2
2)√

(1− z2)(1− β2
2)

)
− 1− zβ2 +

√
(1− z2)(1− β2

2)

(1− zβ1 +
√

(1− z2)(1− β2
1))2

(
− β1 −

z(1− β2
1)√

(1− z2)(1− β2
1)

)]
+

1

1− z2
ln

(
1− zβ2 +

√
(1− z2)(1− β2

2)

1− zβ1 +
√

(1− z2)(1− β2
1)

)
+

(1− zβ1 +
√

(1− z2)(1− β2
1))

(1− zβ2 +
√

(1− z2)(1− β2
2))

[
1

1− zβ1 +
√

(1− z2)(1− β2
1)

×
(
− z2(1− β2

2)2

((1− z2)(1− β2
2))3/2

− 1− β2
2√

(1− z2)(1− β2
2)

)
− 2

1

(1− zβ1 +
√

(1− z2)(1− β2
1))2

(
− β2 −

z(1− β2
2)√

(1− z2)(1− β2
2)

)
×
(
− β1 −

z(1− β2
1)√

(1− z2)(1− β2
1)

)
+ 2

1− zβ2 +
√

(1− z2)(1− β2
2)

(1− zβ1 +
√

(1− z2)(1− β2
1))3

×
(
− β1 −

z(1− β2
1)√

(1− z2)(1− β2
1)

)2

− 1− zβ2 +
√

(1− z2)(1− β2
2)

(1− zβ1 +
√

(1− z2)(1− β2
1))2

×
(
− z2(1− β2

1)2

((1− z2
)

(1− β2
1))3/2

− 1− β2
1√

(1− z2)(1− β2
1)

)]

− (1− zβ1 +
√

(1− z2)(1− β2
1))

(1− zβ2 +
√

(1− z2)(1− β2
2))2

[
1

1− zβ1 +
√

(1− z2)(1− β2
1)

×
(
− β2 −

z(1− β2
2)√

(1− z2)(1− β2
2)

)
− 1− zβ2 +

√
(1− z2)(1− β2

2)

(1− zβ1 +
√

(1− z2)(1− β2
1))2

×
(
− β1 −

z(1− β2
1)√

(1− z2)(1− β2
1)

)](
− β2 −

z(1− β2
2)√

(1− z2)(1− β2
2)

)
+

1

(1− zβ2 +
√

(1− z2)(1− β2
2))

[
1

1− zβ1 +
√

(1− z2)(1− β2
1)

×
(
− β2 −

z(1− β2
2)√

(1− z2)(1− β2
2)

)
− 1− zβ2 +

√
(1− z2)(1− β2

2)

(1− zβ1 +
√

(1− z2)(1− β2
1))2

×
(
− β1 −

z(1− β2
1)√

(1− z2)(1− β2
1)

)](
− β1 −

z(1− β2
1)√

(1− z2)(1− β2
1)

)}
.
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The last term is the derivative of the term similart to the RPDF. Its derivative is
then of course similar. The derivative of the real part is

∂

∂z

[
− 2gm

1− z2
egf
∫ z

0

dζ
Q1(mgR)

R

]
=

2gm

1− z2
egf
[

3z

1− z2

∫ z

0

dζ
mgR

R
− gmz

1− z2

∫ z

0

dζQ′1(mgR)−Q1(mg)

]
,
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and the double derivative is

∂2

∂z2

[
− 2gm

1− z2
egf
∫ z

0

dζ
Q1(mgR)

R

]
=

2gm

(1− z2)2
egf
[

3(2z2 + 1)

1− z2

∫ z

0

dζ
Q1(mgR)

R
− gm

1− z2

∫ z

0

dζQ′1(mgR)

− g2m2z2

1− z2

∫ z

0

RQ′′1(mgR) + zQ1(mg)−mgzQ′1(mg).

(B.15)

For the imaginary part only the first derivative is needed. It is

− iπ ∂
∂z

[H(mγ0 − a)b(mγ0 − a)H(c−mγ0) +H(mγ0 − c)dH(f −mγ0)

−H(mγ0 − f)Ce−g(mγ−f)H(h−mγ0)
]

= −iπmzγ30 [H(mγ0 − a)bH(c−mγ0) +H(mγ0 − f)gCe−g(mγ0−f)H(h−mγ0)].
(B.16)

B.3 Derivatives of I(z) for z > 1

Some of the derivatives of I(z) for z > 1 is the same as for z < 1 these are not
included. The derivative of (7.15) for z > 1 is

∂

∂z

[
− 2gm

1− z2
egf
∫ ∞
z

dζ
Q1(mgR)

R

]
= − 2gm

1− z2
egf
[

3z

1− z2

∫ ∞
z

dζ
Q1(mgR)

R
− mgz

1− z2

∫ ∞
z

dζQ′1(mgR) +Q1(mg)

]
,

(B.17)

and the double derivative is

∂2

∂z2

[
− 2gm

1− z2
egf
∫ ∞
z

dζ
Q1(mgR)

R

]
− 2gm

(1− z2)2
egf
[

3(2z2 + 1)

1− z2

∫ ∞
z

dζ
Q1(mgR)

R
− gm

1− z2

∫ ∞
z

dζQ′1(mgR)

− m2g2z2

1− z2

∫ ∞
z

dζRQ′′1(mgR)− zQ1(mg) +mgzQ′1(mg)

]
.

(B.18)
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I(z) contains one more part, not included in the last section, whose derivative is

∂

∂z

bm√
z2 − 1

[
arcsin

(
1− zβ2
z − β2

)
− arcsin

(
1− zβ1
z − β1

)]
= − bm

(z2 − 1)3/2

{
z

(z2 − 1)

[
arcsin

(
1− zβ2
z − β2

)
− arcsin

(
1− zβ1
z − β1

)]
+

[(
β2

z − β2
+

1− zβ2
(z − β2)2

)
1√

1− (1−zβ2)2
(z−β2)2

−
(

β1
z − β1

+
1− zβ1

(z − β1)2

)
1√

1− (1−zβ1)2
(z−β1)2

]}
,
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and double derivative is

∂2

∂z2
bm√
z2 − 1

[
arcsin

(
1− zβ2
z − β2

)
− arcsin

(
1− zβ1
z − β1

)]
=
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z2

(z2 − 1)2
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(
1− zβ2
z − β2
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− arcsin

(
1− zβ1
z − β1
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+ 2

z

z2 − 1

[(
β2

z − β2
+

1− zβ2
(z − β2)2
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1√

1− (1−zβ2)2
(z−β2)2
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(

β1
z − β1

+
1− zβ1

(z − β1)2

)
1√

1− (1−zβ1)2
(z−β1)2
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− 1
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+
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(z − β2)2
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(
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)−3/2
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(

2
β1
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− 1

2
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β1
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