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Abstract

Motivated by previous work on drag effects in superfluid Bose–Einstein condensates, the
Bose–Hubbard model on the square lattice is considered using mean-field theory, and a
method for computing the superfluid drag density that does not rely on Galilean invariance
is employed to re-derive the drag in the weakly interacting two-component Bose–Einstein
condensate. The same method is then used on the Bose–Hubbard model generalized to
three-components. An exact analytic expression is not possible because of the complexity of
the resulting diagonalization problem. However, Rayleigh–Schrödinger perturbation theory
is used to fourth order, which yields an analytic perturbative expression for the zero tem-
perature drag, in addition to exact numerical diagonalization to find the exact behaviour
at zero and finite temperatures within mean-field theory. It is found that the presence of
a third component can alter the drag in a non-trivial manner: The drag between the two
initial boson components can be completely mediated by the third, and it can be both en-
hanced and diminished depending on the inter-component interaction strengths and signs.
An attempt is also made at finding the drag in a weakly interacting two-component Bose–
Einstein condensate with spin–orbit coupling, but complications arise, which are discussed.
Finally, a phase diagram for the two-component condensate with interactions and spin–orbit
coupling is constructed, describing the spin-imbalance, degeneracy, and distribution of spin
at zero temperature. A qualitative discussion of the finite temperature behaviour suggests
that the inhomogeneous weakly interacting and spin–orbit coupled superfluid Bose–Einstein
condensate may in some regions in parameter space favor spin-imbalance as the temperature
is increased.
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Sammendrag

Motivert av tidligere arbeid på drageffekter i superfluide Bose–Einstein kondensater er Bose–
Hubbard-modellen på et kvadratisk gitter sammen med middelfelt-teori anvendt, og en
metode for å beregne den superfluide drag-tettheten som ikke avhenger av Galileisk invarians
brukt til å utlede et tidligere kjent resultat for draget i et svakt interakterende to-komponent
Bose–Einstein kondensat. Den samme metoden er deretter brukt på Bose–Hubbard-modellen
generalisert til tre komponenter. Et eksakt uttrykk er ikke mulig på grunn av kompleksiteten
til det resulterende diagonaliseringsproblemet. Et analytisk perturbativt uttrykk ved null
temperature fås likevel ved å bruke Rayleigh–Schrödinger perturbasjonsteori til fjerde or-
den, og Hamiltonoperatoren diagonaliseres numerisk for å finne den nøyaktige oppførselen til
draget innen middelfelt-teori. Det er funnet at et tredje komponent endrer draget på en ikke-
triviell måte: Draget mellom de to første komponentene kan bli formidlet fullstendig via det
tredje komponentet, og det kan bli forsterket eller svekket avhengig av strykene og fortegnene
på interaksjonene mellom komponentene. Det er forsøkt å finne draget i et svakt interak-
terende to-komoponent Bose–Einstein kondensat med spinn-bane kopling, men det ble møtt
på komplikasjoner som er diskutert. Til slutt blir fasediagrammet til et to-komponent konden-
sat med svake interaksjoner og spinn-bane kobling konstruert, og beskriver spin-separasjonen,
degenerasjonen, og fordelingen av spinn på gitteret ved null temperatur. Det er gjort en kval-
itativ analyse av oppførselen til diagrammet ved endelig temperaturer som antyder til at det
inhomogene svakt interakterende og spinn-bane koplede superfluide Bose–Einstein konden-
satet kan i noen områder i parameterrommet foretrekke spinn-separasjon når temperaturen
økes.
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1 | Introduction

In 1924 the young physicist Satyendra Nath Bose sent Albert Einstein a letter regarding the
statistical description of light. He found the current derivations of Planck’s radiation law
unsatisfactory and showed that discarding the distinct position and momentum of the light
quanta, using instead the probability of finding particles in states in phase space, produced the
same result [1]. His approach is consistent with what is now known as the indistinguishability
of identical particles and therefore laid the foundation for quantum statistics. Einstein was
intrigued by Bose’s work and extended his idea to ideal atomic gases, predicting a phase
in which a macroscopic number of particles accumulate in the single-particle ground state
[2], which has since been named Bose–Einstein Condensation (BEC) in honor of the two
physicists.

There has been much theoretical work on BECs throughout the 20th century since their
initial description. London proposed in 1938 that BECs were responsible for the superfluidity
of liquid helium [3], which had been discovered by Kapitza, Allen, and Meisener earlier the
same year [4, 5]. In 1947 Bogoliubov developed the first microscopic theory of interacting
Bose gases [6], and in 1961 Pitaevskii and Gross gave a description of fully condensed Bose
systems, the famous Gross-Pitaevskii equation [7, 8]. However, it was not until 70 years after
the work of Bose and Einstein and decades of technological advances in trapping and cooling
techniques that a BEC was first produced in the laboratory in 1995 [9, 10], for which Cornell,
Wiemann, and Ketterle recieved the 2001 Nobel Prize in Physics.

In the years following their first experimental realization the interest in BECs has been
rekindled. This is due to the high amount of control optical and magnetic traps allow
researchers to exert on atomic gases. Being able to precisely manipulate how particles move
and interact with one another opens up the possibility of investigating a wide range of
quantum phenomena and simulating condensed matter systems. In particular, the superfluid
phase of BECs is of much interest, since researchers can formulate condensed matter theories
which can be tested to high precision in experiments with ultra-cold atomic gases. This,
in turn, can help explain phenomena in real systems, such as superconductors, which are
charged superfluids where the particles that condense are electrons forming Cooper pairs,
as explained by the BCS theory [11]. This is in stark contrast to liquid 4He, which was
the only bosonic superfluid available to researcher prior to 1995: The 4He liquid is strongly
interacting, has no spin, and offers almost no way of changing its parameters. But since the
realization of BECs in 1995 many aspects of superfluids have been successfully observed, such
as the transition between the superfluid and Mott-insulating phase [12], properties near the
critical temperature [13, 14], and the spontaneous formation of vortices during condensation
[15].
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2 CHAPTER 1. INTRODUCTION

The first BECs that were studied were single-component systems, meaning only one type
of boson is introduced to the system and forms the condensate. However, systems of several
boson components have been found to show a rich variety of physics, and much of the current
research on BECs is focused on these kinds of systems. Today, researchers can introduce
multiple components in their experiments in two ways: Either by mixing different types of
atoms and/or isotopes of atoms (hetero-nuclear mixtures) [16, 17], or by mixing hyperfine
internal states of a single isotope (homo-nuclear mixtures) [18, 19]. In the latter approach
experimentalists can create synthetic spin-systems and investigate quantum phenomena that
occur due to the presence of different spin states. An important example of this is spin–orbit
coupling, which couples a particle’s spin to its momentum. This is because it has been realized
that spin–orbit coupling can lead to topological insulators, a novel type of material that has
an insulating bulk, but has conducting surface states that are protected by the topology
of the energy spectrum [20]. The special properties of topological insulators, such as their
insensitivity to impurities and imperfections, and the locking of spin relative to momentum
makes them viable for applications in spintronics and quantum computing. The 2016 Nobel
Prize in Physics was awarded to Thouless, Haldane, and Kosterlitz for their pioneering work
on topological phases and phase transitions.

This thesis is motivated by investigations made into the drag effects in two-component su-
perfluid BECs. In 1975 Andreev and Bashkin studied a two-component system of liquid 4He
and Cooper-paired 3He as a three-velocity hydrodynamic system, meaning there are three
velocities; the two superflows for each of the components and that of the shared normal fluid,
each of which has a corresponding density [21]. They found that there is a dissipationless
drag between the superfluids due to interactions between the components, quantified by a
so-called superfluid drag density, also known as the Andreev-Bashkin effect, which has since
been found from microscopic theory in a weakly interacting two-component Bose gas in free
space by Fil and Shevchenko [22], and on the cubic optical lattice by Linder and Sudbø
[23]. The result of Linder and Sudbø has also been generalized to various lattice geometries
[24]. Generally, the drag density has been found to be a strictly positive quantity in the
weak inter-component coupling regime, meaning that a superflow of one component induces
a co-directed superflow in the other. However, in Monte Carlo simulations with very strong
coupling a negative drag has been observed, which results in counter-directed flow [25, 26].

This thesis consists of seven main parts.

1. Chapter 2 discusses the basics of Bose–Einstein condensates, along with related topics,
such as superfluidity and optical lattices. Spin-orbit coupling is also discussed in this
chapter; its physical origin and effect on the energy spectrum of a Bose gas, and how
it can be engineered on optical lattices.

2. In chapter 3 the superfluid drag in two-component BECs is re-derived by the method
described in Ref [27].

3. In chapter 4 the approach of chapter 3 is generalized to three-component BECs and
the effect of a third component on the drag between the two former is investigated at
both zero and finite temperatures.
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4. The initial aim of this thesis was to find the drag in a spin–orbit coupled BEC via the
method in Ref [27] which does not rely on Galilean invariance and should therefore
work for spin–orbit coupling. However, complications arose during this work and are
discussed in chapter 5.

5. Chapter 6 considers the ground state of a spin–orbit coupled and interacting BEC,
producing a zero-temperature phase-diagram that is qualitatively similar to previous
work in the literature [28], and the finite-temperature behaviour of the diagram is
discussed.

6. Finally, in chapter 7 the results of this thesis are summarized, and concluding remarks
made about the challenges encountered and the way forward.





2 | Preliminaries

Abbreviations

BEC Bose–Einstein condensate/Bose–Einstein condensation

SOC Spin–orbit coupling/Spin–orbit coupled

ZM Zero-momentum

PZM Polarized zero-momentum

PW Plane-wave

SW Stripe-wave

Notation and Conventions

The following is a summary of notations and conventions used in this thesis.

• α, β, σ, and ρ label boson components. In the case where there are only two compo-
nents, e.g. spin states ↑ and ↓, or components A and B, a bar sign over the letter is
used to indicate the opposite component: If α =↑ (A), then ᾱ =↓ (B). β, σ, and ρ are
also used for the thermodynamic beta, Pauli matrices, and superfluid densities, but it
should be clear from context what they mean.

• Bold letters indicate vectors, the most used being the position vector r, the momentum
vectors k and p, and the lattice vector δ.

• Field operators are indicated by a hat, Ψ̂ and φ̂, to set them apart from the complex
valued field φ and the column vector Ψ. However, momentum and lattice site creation
and destruction operators do not have hats, e.g. ai, bk, and ck.

• Except for in this preliminary chapter, natural units are used; ~ = kB = c = 1.

• In this thesis the hopping parameter t (related to particle mobility on a lattice, more on
this in section 2.4.2) is generally set to unity in the figures. It is implicitly understood
that all energy parameters, including temperature when kB = 1, are in units of t.
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6 CHAPTER 2. PRELIMINARIES

2.1 Basics of Bose–Einstein Condensates

To become familiar with Bose–Einstein condensates and their properties we review some
basics in the simplest case of an ideal, one-component Bose gas, and then the more realistic
case where weak interactions are included. The most important takeaways from this section
is an understanding of why BECs occurs, the role of dimensionality and temperature in
condensation, and how mean-field theory is used to make the interacting Hamiltonian solvable
and the resulting excitation spectrum.

2.1.1 Ideal Bose Gas

In the grand canonical ensamble the average number of bosons at temperature T is

N =
∑
i

〈
ni
〉

=
∑
i

[
eβ(εi−µ) − 1

]−1
, (2.1)

where β = 1/kBT , and µ is the chemical potential that has the role of control parameter for
the number of particles in the system [29]. The average number of particles

〈
ni
〉
in a state

i must be a non-negative value, which would otherwise be unphysical. This implies that the
chemical potential must satisfy µ < εi for all i, especially µ < ε0, where i = 0 is the ground
state. For the free, ideal gas the dispersion relation is εi = ε(p) = p2/2m, so that the ground
state energy is ε0 = 0. Computing (2.1) is the key to understanding BECs, so let us proceed
to do this.

Using periodic boundary conditions in a 3D box of volume V = L3 quantizes momentum,
p = ~π

L

√
n2
x + n2

y + n2
z, where ni are integers. However, in the thermodynamic limit, where

N , V → ∞ with N/V fixed, the spacing between momenta goes to zero and we may use
the continuum limit

∑
i →

V
~3
∫

d3p
(2π)3

. Substituting p with ε in the integral via the dispersion
relation yields

n =
N

V
=

1

V

1

e−βµ − 1
+ 2π

(
2m

h2

) 3
2
∫ ∞

0

dε
ε
1
2

eβ(ε−µ) − 1
= n0 + nex. (2.2)

The first term is the number density n0 of the single-particle ground state and must be
separated from the sum before the continuum limit because the density of states g(ε) ∝ ε

1
2 is

zero for ε = 0 and therefore does not account for it. The second term is the number density
of excited states, nex, and has a finite maximum value for µ → 0−. In the same limit we
see that the ground state density diverges. This means that at a given temperature there
is a maximum number of particles that can go into excited states, but there is no limit to
the number of particles that fit in the single-particle ground state. A macroscopic number of
particles can therefore occupy the ground state and a BEC emerges.

It is possible to find the critical temperature Tc for a given density n at which BEC
occurs, and find an expression for the fraction of particles that live in the condensate. For
this we need to solve the integral in nex, which can be done by expanding the integrand as a
geometric series;
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nex = 2π

(
2m

h2

) 3
2
∫ ∞

0

dε
∞∑
l=1

[
eβ(µ−ε)]l ε 1

2 =
2√
πΛ3

∞∑
l=1

eβµl
∫ ∞

0

dxe−lxx
1
2 . (2.3)

The thermal wavelength Λ =
√
h2/2πmkBT has been introduced, along with the integration

variable x = βε. Defining the fugacity z = eβµ and integrating term by term yields

nex = Λ−3

∞∑
l=1

zl

l
3
2

= Λ−3g3/2 (z) , (2.4)

where gn(z) =
∑∞

l=1 z
l/ln is a polylogarithmic function of order n. We can now see more

clearly that as µ→ 0−, the number density of excited states nex reaches its maximum since
the fugacity z = eβµ → 1 and hence g3/2 (z)→ g3/2 (1) reach their highest possible values;

nmax
ex = Λ−3g3/2 (1) . (2.5)

Since g3/2 (1) ≈ 2.612, so that Λ3nmax
ex ≈ 2.612, we see that BEC occurs when the thermal

wavelength, i.e. roughly the average de Broglie wavelength, is of the same order as the
interparticle spacing. This is when we would expect the quantum nature of the system to
become prominent because the particles’ wave-functions begin overlapping.

The critical temperature is defined as the temperature where n = nmax
ex , which leads to

Tc =
h2

2πmkB

[
n

g3/2(1)

] 2
3

. (2.6)

For T > Tc we have n < nex and essentially all the particles fit into excited states, but for
T < Tc we have n > nex, and the extra particles must be in the ground state.

Rewriting (2.2) with (2.4), using that µ = 0− for T ≤ Tc, yields the expression for the
fraction of particles in the BEC as a function of temperature;

n0

n
= 1− nex

n
= 1−

(
T

Tc

) 3
2

. (2.7)

The onset of the BEC and how its population grows as the temperature decreases is seen
in Figure 2.1. In this thesis we will assume that T � Tc so that the majority of particles are
in the condensed state. This will be used to our advantage when employing mean-field theory
by neglecting interactions between purely excited states, which simplifies the Hamiltonian.
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Figure 2.1: The blue line shows how the BEC sets in at T = Tc and how its
population grows as the temperature is lowered according to (2.7). The red line
shows how the number of excited states goes to zero as T → 0.

We can also find nex for a dispersion relation ε(p) = Cpν in d dimensions. Carrying out
the calculations above in the more general case yields

nex =
Ωd−1Γ (d/ν)

ν

(
kBT

hν

) d
ν

gd/ν(z), (2.8)

where Ωd is the solid angle in d dimensions, and Γ(x) is the gamma-function. We see from
the polylogarithmic function that this diverges for ν ≤ d, meaning there is no limit to
the number of particles that fit into excited states, i.e. no particles are forced into the
ground state and a BEC cannot form. For the ideal gas in three dimensions considered
above we have ν = 2 < d = 3, thus convergence and a BEC at finite temperature. If we
instead consider the ideal gas in two dimensions we have ν = d = 2, which tells us that in
two dimensions no condensation at finite temperatures is possible. Indeed, condensation in
uniform systems in one and two dimensions are prohibited by the Mermin-Wagner-Hohenberg
theorem [30, 31]. Simply stated, thermal fluctuations of the phase of the condensate wave-
function destroys long-range order1 and therefore the formation of a true BEC. However,
introducing interactions, as is done in the next section, causes the long-range order to decay
sufficiently slowly so that if the system is divided into small blocks there is enough long-
range order within each block to form a true BEC at finite temperatures. The formation of
a so-called quasicondensate therefore occurs, which can be regarded as a condensate with a
fluctuating phase [33].

1For an introduction to the role of long-range order in the formation of BECs the reader is referred to Ref
[32].
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2.1.2 Weakly Interacting Bose Gas

We begin the study of a weakly interacting Bose gas by considering the Hamiltonian

H =

∫
dr Ψ̂†(r)

[
− ~2∇2

2m

]
Ψ̂(r) +

1

2

∫
dr

∫
dr′ Ψ̂†(r)Ψ̂†(r′)U(r, r′)Ψ̂(r′)Ψ̂(r), (2.9)

where the first term is the kinetic and chemical potential, and the second describes inter-
actions with a two-body potential U(r, r′). To find the excitation spectrum of this system
so that we can investigate its properties we will follow Bogoliubov’s procedure [6], which
starts by assuming that the interactions of the gas are sufficiently weak to assume a contact-
potential, U(r, r′) = γδ(r − r′). This effective potential is related to the scattering length
ascatt via γ = 4π~2ascatt/m, which describes the low energy, long wavelength scattering of
a particle against a scattering potential, for example another particle. At low energies the
wavelength of the particle is so long that it cannot resolve the structure of the scatterer,
so that only the long-range behaviour of the potential is important, which is given by the
scattering length [34].

The effective contact-potential is used to integrate out one of the integrals in the in-
teraction term of (2.9) so that r′ → r and U(r, r′) → γ. We Fourier transform the field
operators,

Ψ̂(r) =
1√
V

∑
k

eik·rbk, (2.10)

where V is the volume of the system, so that we are in the momentum basis where b†k and
bk creates and destroys particles with momentum k. We perform the differentiation, the
remaining integral, and use ∫

dr eik·r = δk,0, (2.11)

so that
H =

∑
k

~2k2

2m
b†kbk +

γ

2V

∑
{ki}

b†k1b
†
k2
bk3bk4δk1+k2,k3+k4 . (2.12)

The Hamiltonian cannot be diagonalized to obtain the excitation spectrum in this form
because not all terms are quadratic in the operators. Fortunately, since we are interested in
the condensed phase we can use mean-field theory to reduce the quartic terms to quadratic-
and zeroth-order terms [35]. We assume that the expectation value of the operator for the
state condensation occurs in, i.e. the ground state k = 0, is non-zero,

〈
b0

〉
= ψ0,

〈
b†0
〉

= ψ∗0.
We call the quantity ψ0 the order parameter of the system which is generally a complex
quantity. However, the complex phase will not be physically significant and we are therefore
free to choose ψ to be real valued (this is not true when SOC is included, as we will see in
chapter 6). We also identify |ψ0|2 as the number of particles in the BEC, N0. This can be seen
from the fact that b†0b0 is the number operator of the ground state, so that its expectation
value is equal to N0.

To remove the troublesome quartic terms from the Hamiltonian we replace b0 = b†0 =
√
N0

and neglect terms that are more than quadratic in bk. This may seem like a cheat; we remove



10 CHAPTER 2. PRELIMINARIES

quartic terms by neglecting them. However, this is justified when the condensate dominates
the system, N0 � 1, because the quartic terms represent interactions between excitations.
The contribution of these to the dynamics of the system should be dwarfed by interactions
that include at least one particle in the condensate. The effect of the mean-field approach can
be summarized by listing the possible contributions due to the delta function and neglecting
quartic terms in excitations;

(1) : k1 = k2 = k3 = k4 = 0

(2) : k1 = k3 = 0 6= k2 = k4 = k

(3) : k1 = k3 = k 6= k2 = k4 = 0

(4) : k1 = k4 = 0 6= k2 = k3 = k

(5) : k1 = k4 = k 6= k2 = k3 = 0

(6) : k1 = k2 = 0 6= k3 = −k4 = k

(7) : k1 = −k2 = k 6= k3 = k4 = 0.

(2.13)

This results in the mean-field Hamiltonian

H =
V

2
γn2

0 +
∑
k 6=0

{[
εk + 2U

]
b†kbk +

1

2
U
[
bkb−k + b†kb

†
−k

]}
=
V

2
γn2 +

∑
k 6=0

{[
εk + U

]
b†kbk +

1

2
U
[
bkb−k + b†kb

†
−k

]}
,

(2.14)

where n = N/V , n0 = N0/V , εk = k2/2m, and U = γn0. In the second equality it is used
that

N̂ =
∑
k

b†kbk = b†0b0 +
∑
k

b†kbk = N0 +
∑
k 6=0

b†kbk, (2.15)

and the operator for the total number of particles N̂ is replaced by its expectation value N
to fix the number.

At this point we are ready to diagonalize the Hamiltonian. We introduce a new set of
operators ck which is related to our current operators by the transformation

bk = ukck − vkc†−k, (2.16)

where uk and vk are coefficients to be determined. We assume that they are real valued and
even in k, which will be found to be a self-consistent assumption. The transformation must
preserve boson commutation relations, which gives the condition

u2
k − v2

k = 1. (2.17)

Inserting into the Hamiltonian, rearranging using the commutation relation, and defining
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Ek = εk + U yields

H =
V

2
γn2 +

∑
k 6=0

[
Ekv

2
k − Uukvk

]
+
∑
k 6=0

{[
Ek(uk + vk)− 2Uukvk

]
c†kck

+
[1

2
U(uk + vk)− Ekukvk

]
(ckc−k + c†kc

†
−k)
}
.

(2.18)

The system is diagonal in the new basis if the last line above vanishes, which happens if

1

2
U(uk + vk) = Ekukvk ⇔ 2ukvk

u2
k + v2

k

=
U

Ek
. (2.19)

To solve for uk and vk we use the condition (2.17) to write

u4
k − u2

k −
1

4

U2

E2
k − U2

= 0, (2.20)

which has the solutions

u2
k =

1

2

(
Ek
Ek
− 1

)
, v2

k =
1

2

(
Ek
Ek

+ 1

)
, (2.21)

where we have defined Ek =
√
E2
k − U2, and confirm the assumption that uk and vk are real

valued and even in k. Inserting all of this into the Hamiltonian yields

H =
V

2
γn2 +

1

2

∑
k 6=0

[
Ek − Ek

]
+
∑
k 6=0

Ekc†kck. (2.22)

We finally arrive at a system of non-interacting quasiparticles, meaning modes in the system
that behave as particles, but are actually collective excitations of the true particles2, with the
excitation spectrum Ek =

√
E2
k − U2 =

√
εk(εk + 2γn0). In Figure 2.2 the energy spectrum

of the interacting Bose gas is compared to the ideal Bose gas.
In the limit of large momenta, so that εk � 2γn0 (or vanishing interaction strength) the

energy spectrum approaches that of an ideal gas shifted by γn0. The opposite limit is much
more interesting, as can be seen by expanding Ek in small momentum k;

Ek =
√
εk(εk + 2γn0) =

√
2γn0εk

√
1 +

εk
2γn0

≈
√

2γn0εk =

√
γn0

m
~k. (2.23)

The weak interactions make the energy linear at small k, and the factor in this regime is
called the sound velocity since it takes the same form as phonons in solid state matter. The
long-wavelength excitations of the interacting Bose gas are therefore associated with sound
waves with sound velocity

√
γn0/m.

2The simplest analogy is the emergence of soundwaves, so-called phonons, in lattice systems. The phonons
are treated as particles with energy and momentum, but are collective oscillations of the atoms that make
up the lattice. The terms quasiparticle and quasimomentum are therefore more descriptive. However, in this
thesis we drop the "quasi", which is instead implied by context.
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Figure 2.2: The energy spectrum of an ideal Bose gas (shown in blue) is compared
to the spectrum of a weakly interacting Bose gas (shown in red). It can be seen
that the spectrum of the interacting gas is linear near k = 0, while at large k the
spectrum has the same quadratic behaviour as the ideal gas.

Another interesting effect of interactions is the depletion of the ground state, even at zero
temperatures. We write the operator of the total number of particles in the diagonal basis
with the zero-momentum state replaced by N0,

N̂ =
∑
k

b†kbk = b†0b0 +
∑
k 6=0

b†kbk = N0 +
∑
k 6=0

b†kbk

= N0 +
∑
k 6=0

v2
k +

∑
k 6=0

[ (
u2
k + v2

k

)
c†kck − ukvk

(
ckc−k + c†kc

†
−k

) ]
.

(2.24)

Taking the expectation value in a state with a definite number of particles will make the
ckc−k and c†kc

†
−k terms vanish, so that

N = N0 +
∑
k 6=0

v2
k +

∑
k 6=0

(
u2
k + v2

k

) 〈
c†kck

〉
(2.25)

At zero temperature only N0 and v2
k contribute to the total number, and since the latter is

non-zero the condensate number N0 is not equal to the total number, i.e. not all particles
are in the BEC. This is what is meant by depletion.

2.2 Diagonalization Method

At this point we will review a diagonalization method that extends the Bogoliubov procedure
of the previous section to more general quadratic Hamiltonians called the dynamic matrix
method [36]: Consider a general quadratic bosonic Hamiltonian of the form
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H =
n∑

i,j=1

(
τijb

†
ibj +

1

2
γijb

†
ib
†
j +

1

2
γ∗jibibj

)
, (2.26)

where b†i and bi are creation and annihilation operators that obey the usual boson commuta-
tion relations, and τij and γij are complex coefficients that satisfy τij = τ ∗ji and γij = γji due
to the hermiticity of H.

By defining

Φ =
(
b1, b2, · · · , bn, b†1, b

†
2, · · · , b†n

)T
, (2.27)

the Hamiltonian can be written in matrix form as

H =
1

2
Φ†AΦ− 1

2
Tr τ, (2.28)

where A is the coefficient matrix
A =

[
τ γ
γ† τ ∗

]
, (2.29)

and τ and γ are the matrices with elements τij and γij, respectively. The trace is due to the
commutation relation of the creation and destruction operators.

In this form the Hamiltonian is nearly ready to be diagonalized. However, some care
needs to be taken since we are dealing with a basis Φ that has operators as elements and not
complex variables. We want the diagonalization to preserve the boson commutation relations,
which is an essential physical aspect of the system. Therefore, in addition to finding a matrix
U that diagonalizes A,

U−1AU = D =

[
Ω 0
0 Ω

]
, (2.30)

where Ω = diag (E1, E2, · · · , En) and Ei are eigenvalues, we also need to find U so that

Ψ = U †Φ =
(
c1, c2, · · · , cn, c†1, c

†
2, · · · , c†n

)T
(2.31)

also satisfy the boson commutation relations. This can be stated more precisely by noting
that the commutation relation for Φ is

[
Φ,Φ†

]
= ΦΦ† −

(
Φ†Φ

)T
=

[
In 0
0 −In

]
≡ J , (2.32)

where In is the n × n unit matrix. The condition that U preserves boson commutation
relations thus becomes

U †JU = J , (2.33)

and it follows that the diagonalization requirement becomes finding U so that

U−1AJU = DJ . (2.34)
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The diagonal of DJ , i.e. the eigenvalues, are symmetric about zero, and with the physical
requirement that the energies be positive, we pick the positive eigenvalues as the eigenenergies
[37].

The Hamiltonian can then be written in the new basis as

H =
1

2
Ψ†DΨ− 1

2
Tr τ =

n∑
i=1

Eic†ici +
1

2
(TrΩ− Tr τ) , (2.35)

which is in the desired diagonal form. In this thesis expressions for the eigenvalues are
found by use of the symbolic mathematical program Maple and numerically with the NumPy
package in Python.

2.3 Basics of Superfluidity

The aim of this section is to provide the basic understanding of superfluids relevant for this
thesis.

2.3.1 Landau’s Criterion for Superfluidity

Landau imagined superfluid systems as consisting of two co-existing fluids; one part is a
normal fluid, which behaves as an ordinary fluid that experiences drag from its container,
while the other is the superfluid with zero viscosity and dissipation and may therefore move
independently of the normal fluid and container [38]. Based on this he provided a simple
criterion for when a superfluid can exist. His arguments were as follows [32]: Consider a
fluid moving in a reference frame K with momentum P and total energy E. If we perform a
Galilean boost to a new reference frame, K ′, which has velocity V relative to K, the energy
and momentum in the new frame is related to the old one by

E ′ = E − P · V +
1

2
MV 2,

P ′ = P −MV ,
(2.36)

where M is the total mass of the fluid.
Consider now a uniform fluid moving inside a tube. In the frame K in which the fluid is at

rest there can occur elementary excitations ε(p) away from the ground state, and we assume
that the only dissipative processes are the ones where such an excitation carries energy away
from the fluid and into the surroundings. The total energy of the system in K where an
excitation has occured is E0 + ε(p). Performing a boost to the frame K ′ where the tube is
at rest, which moves with velocity −v relative to the fluid, the energy and momentum in the
new frame is according to (2.36)

E ′ = E0 + ε(p) + p · v +
1

2
Mv2,

P ′ = p+Mv,
(2.37)
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from which it follows that ε(p) + p · v and p is the change in energy and momentum due to
the excitation, respectively, and thus is the energy of the elementary excitation in the frame
K ′. However, for such an excitation to spontaneously occur its contribution to the energy
must be negative, i.e. be energetically profitable for the system,

ε(p) + p · v < 0, (2.38)

which is possible if v > ε(p)/p. The smallest such velocity for which this is satisfied is

vc = min
p

[
ε(p)

p

]
. (2.39)

For velocities above this critical value spontaneous excitations can occur due to the viscous
motion of the fluid and it dissipates energy. However, below vc the system becomes stable
against these excitations because they cost energy to produce, and the moving fluid no longer
experiences loss of energy, i.e. it has frictionless flow, and we have a superfluid. We call

v < vc (2.40)

Landau’s criterion for superfluidity.
At this point it is important to illustrate the distinction between a BEC and a superfluid.

We have seen in section 2.1 that an ideal Bose gas in three dimensions can produce a BEC at a
finite temperature Tc. If we apply Landau’s criterion to the dispersion relation ε(p) = p2/2m,

vc = min
p

[
ε(p)

p

]
= min

p

[ p

2m

]
= 0, (2.41)

we find that there is no superfluidity. Thus condensation does not imply superfluidity. How-
ever, when weak interactions are introduced, as was done in section 2.1.2, the long-wavelength
excitations become linear, ε(p) = cp, and the critical velocity becomes vc = c, the sound ve-
locity, and there is superfluidity.

2.3.2 Superfluid Drag Density

The densities of the super and the normal component of a superfluid can be defined by
considering a fluid inside an infinitely long cylinder, both of which are initially at rest.
Providing the container with a small velocity -vs and changing to the frame in which the
cylinder is at rest (moving with velocity vs relative to the initial frame) when equilibrium is
reached will yield a mass current

js = ρsvs. (2.42)

This is the superfluid density that moves independently of the container and stays at rest
(in the initial reference frame) when the cylinder starts moving. The normal density, which
is once more at rest relative to the cylinder due to friction at the boundaries, is therefore
defined as

ρn = ρ− ρs, (2.43)
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where ρ is the total density of the fluid. The free energy density in the frame moving with the
cylinder is the free energy of the system at rest, F0, plus the kinetic energy of the superfluid
mass current,

F = F0 +
1

2
ρsv

2
s . (2.44)

This provides a way to compute the superfluid mass current,

js =
∂F
∂vs

, (2.45)

and the superfluid density,

ρs =
∂2F
∂v2

s

∣∣∣∣∣
vs→0

. (2.46)

In two-component systems, i.e. two types of bosons, there can be two superfluid densities
and a dissipationless drag between them. The free energy density with very small superfluid
velocities now reads [21]

F = F0 +
1

2

[
(ρnA + ρnB)v2

n + ρsAv
2
sA + ρsBv

2
sB + ρd(vsA − vsB)2

]
, (2.47)

where a finite normal velocity with density ρnA+ρnB is included. The drag effect is quantified
by the superfluid drag density ρd and can be found by

ρd =
∂2F

∂vsA∂vsB

∣∣∣∣∣
vsA,vsB→0

. (2.48)

In the two-component case the superfluid mass current becomes

jsA =
∂F
∂vsA

= (ρsA − ρd)vsA + ρdvsB, (2.49)

which tells us that the superfluid mass current of one component can induce a co-directed
(ρd > 0) or a counter-directed (ρd < 0) superfluid mass current of the other component.

The superfluid velocity is related to the phase of the order parameter, ψ0α(r) =
〈
ψ̂α(r)

〉
=

ψ0α(r)eiΘ0α(r) through vsα = ~∇Θα/mα, and can be introduced by imposing twisted bound-
ary conditions on the system [27]. This is done by adding the factor eik0α·r to the field
operator for component α, so that e−ik0α·rψ̂α(r) obeys the usual periodic boundary condition
in all directions. Given this choice of phase twist the superfluid velocity is vsα = ~k0α/mα,
and the expression for the drag density becomes

ρd =
mAmB

~2

(
∂2F

∂k0A∂k0B

)
k0A,k0B→0

. (2.50)

In systems that are inhomogeneous, such as lattices, the drag density may depend on
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direction, and ρd will instead be a 2-rank tensor [39],

ρδδ
′

d =
mAmB

~2

(
∂2F

∂k0Aδ∂k0Bδ′

)
k0A,k0B→0

, (2.51)

where δ, δ′ are lattice directions, and k0αδ = k0α · δ. On the square lattice ρδδ′d = δδ,δ′ρd, and
the lattice vectors can be aligned along the coordinate axes. The direction δ can therefore be
chosen to be along x-axis and the superfluid drag density on the square lattice is found by

ρd =
mAmB

~2

(
∂2F

∂k0Ax∂k0Bx

)
k0A,k0B→0

. (2.52)

The generalization to three components is straight forward, and the free energy is

F =F0 +
1

2

[
(ρnA + ρnB + ρnC)v2

n + ρsAv
2
sB + ρsBv

2
sB + ρsCv

2
sC

− ρd,AB(vsA − vsB)2 − ρd,AC(vsA − vsC)2 − ρd,BC(vsB − vsC)2
]
.

(2.53)

There are now three superfluid drag densities, each quantifying the drag between each pair
of boson components. The superfluid mass currents, densities, and drags can be found as
before,

jsA =
∂F
∂vsA

= (ρsA − ρd,AB − ρd,AC)vsA + ρd,ABvsB + ρd,ACvsC , (2.54)

ρsA =
∂2F
∂v2

sA

∣∣
vsA→0

, (2.55)

ρd,AB =
∂2F

∂vsA∂vsB

∣∣
vsA,vsB→0

, (2.56)

and similarly for the remaining currents and densities.

2.4 Quantum Mechanics on Lattices

In this section the basics of optical lattices and how quantum mechanics can be formulated
on a "lattice" form is discussed. For a more complete review the reader is referred to Refs
[34, 32, 40], on which the discussion here is based.

2.4.1 Optical Lattices

In condensed matter physics, as any field of science, testing theories is imperative for guiding
research, but real condensed matter systems do not always provide the best opportunities
for measurements and tuneability. The scales are on the order of nanometers and less,
events happen in mere fractions of a second, and defects are commonplace and may disrupt
phenomenon we wish to observe. Fortunately, modern cooling and trapping techniques have
made optical lattices an invaluable tool for studying lattice systems, and the basic idea is
simple: By pointing two laser beams towards each other a standing electric wave is produced,
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E(r, t). A neutral atom subjected to this electric field is induced with a dipole moment d,
which in turn interacts with the electric field via the dipole interaction, Hdipole = −d · E.
The time-averaged potential the atom experiences can be found on the form

Vdipole(r) ∝ −α(ω)〈E2(r, t)〉t, (2.57)

where α(ω) describes how the atom reacts to a laser of frequency ω, and the factor 〈E2(r, t)〉t
describes the potential landscape that the atom "sees".

Take for instance the case of two laser beams of equal frequency travelling in opposite
directions along the x-axis, interfering to produce a standing wave, as shown in Figure 2.3.

Figure 2.3: An illustration of how optical lattices work. The gray boxes at the sides
are laser sources with beams directed towards one another, creating a standing
electric wave that produces a periodic potential. Atoms, shown as spheres, can
be placed onto this potential landscape and will reside in its valleys. These will
move across the lattice by tunneling from site to site, so-called hopping, and can
interact with one another.

The time-averaged amplitude of this electric field will be 〈E2(r, t)〉t = V0 sin2(kLx), where
V0 is the strength of the potential (the amplitude of the lasers) and kL the wave-vector, which
is related to the lattice parameter by a = π/kL, i.e. the periodicity of the lattice. An atom in
such a potential, given that its energy is low enough, will want to reside in the valleys of the
potential, the regions between being classically forbidden. However, quantum tunneling will
occur, the amount of which depends on how "deep" and spatially separated the valleys are.
From this it can be understood that by changing the depth of the potential V0 and spatial
separation a the tunneling of atoms from site to site, i.e. the movement of particles across
the lattice, can be tuned. Interactions can be tuned as well by the use of Feshbach resonance.
This effect appears when the total energy E of interacting particles approaches the energy
Eres of a bound state, which the particles can transition into as an intermediate step during
scattering and will yield a contribution to the scattering length on the form,

ascatt ∼
C

E − Eres
. (2.58)

Since the energy of the states usually depend on external parameters, such as magnetic fields,
the resonance energy can be varied, which tunes the scattering length and in turn tunes the
strength and even signs of interactions.
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2.4.2 The Bose–Hubbard Model

In condensed matter systems where the particles of interest are constrained to a lattice, e.g.
electrons to the atoms in a crystal or an atomic gas constrained to the minima produced by
an optical lattice, it is convenient to formulate quantum mechanics on a "lattice" form.

Consider a Hamiltonian that describes interacting single-component particles in a lattice
potential V (r)

H =

∫
dr

{
Ψ̂†(r)

[
− ∇

2

2m
− µ+ V (r)

]
Ψ̂(r) +

1

2
γΨ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

}
. (2.59)

By assuming that the potential is sufficiently strong to localize the particles to its minima
ri, so that the regions between become classically forbidden, the field operators Ψ̂(r) and
Ψ̂†(r) can be replaced by their discrete counterparts ai and a†i , which destroys and creates a
particle at site i. This gives

H =
∑
i

{
a†i

[
− ∇

2

2m
− µ

]
ai +

1

2
γa†ia

†
iaiai

}
, (2.60)

where the constant term V (ri) has been absorbed into the chemical potential µ and the
integral replaced by a sum. The differentials are discretized as

∇2ai =
∑
δ

∇2
δai =

∑
δ

ai+δ + ai−δ − 2ai
a2

, (2.61)

where i± δ are nearest neighbouring lattice sites and a is the lattice parameter, i.e. ri±δ =
ri ± δ with |δ| = a. By defining the hopping parameter t = 1/2ma2 and absorbing terms
proportional to a†iai into the chemical potential we arrive at a variant of the Bose–Hubbard
model;

H = −t
∑
iδ

[
a†iai+δ + a†iai−δ

]
− µ

∑
i

a†iai +
1

2
γ
∑
i

a†ia
†
iaiai. (2.62)

This is, however, a naive derivation of the model. A more sophisticated approach uses an
orthonormal basis whose states are highly localized around the lattice sites. Such a basis can
be constructed from the Wannier functions, defined by

ω(r) =
1√
Ns

∑
k

e−ik·rψk(r), (2.63)

where ψk(r) = eik·ruk(r) are Bloch waves so that the Wannier functions are their inverse
Fourier transformed3. The function corresponding to a specific lattice site is obtained by
displacing ω(r) by ri, ωi(r) = ω(r − ri), so that it becomes centered around the site. By
again denoting the operator that creates and destroys a particle at lattice site i by a†i and ai,

3There are in general Wannier functions for each Bloch band, but if the band gap is sufficiently large only
the lowest band needs to be considered, and we drop the band index.
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i.e. into the Wannier state ωi, the field operator can be expanded in this basis as,

Ψ̂(r) =
∑
i

ωi(r)ai. (2.64)

Inserting into (2.59) yields

H =
∑
ij

{∫
dr ω∗i (r)

[
−∇

2

2m
− µ+ V (r)

]
ωj(r)

}
a†iaj

+
1

2

∑
ijlm

{
γ

∫
dr ω∗i (r)ω∗j (r)ωl(r)ωm(r)

}
a†ia
†
jalam.

(2.65)

If it is assumed that the lattice potential is sufficiently strong to make the Wannier functions
highly localized around the lattice sites, the overlap of ωi and ωj will become exponentially
small when i 6= j. We therefore only keep nearest-neighbour hopping in the kinetic part of
the Hamiltonian, which is denoted 〈ij〉, and on-site interactions, i = j = l = m. Assuming
translational invariance, defining the hopping parameter t, and a new interaction parameter
and chemical potential,

t = −
∫

dr ω∗i (r)

[
−∇

2

2m
− µ+ V (r)

]
ωj(r), i and j nearest-neighbours,

γ̃ = γ

∫
dr |ω∗i (r)|4,

µ̃ =

∫
dr ω∗i (r)

[
−∇

2

2m
− µ+ V (r)

]
ωi(r)

(2.66)

gives the lattice Hamiltonian as

H = −t
∑
〈ij〉

(a†iaj + a†jai)− µ̃
∑
i

a†iai +
1

2
γ̃
∑
i

a†a†iaiai

= −t
∑
〈ij〉

(a†iaj + a†jai)− µ̃
∑
i

ni +
1

2
γ̃
∑
i

ni(ni − 1),
(2.67)

since the operators follow boson commutation relations, [ai, a
†
i ] = 1, and ni = a†iai. This is

the form of the Bose–Hubbard model that is usually found in the literature and is equivalent
to (2.62) upon the redefinition γ̃ → γ and µ̃ → µ, and writing i ± δ for nearest neighbors.
However, in this thesis (2.62) will be the starting point for exploring lattice systems.

2.5 Basics of Spin–Orbit Coupling

Spin–orbit coupling (SOC) is the facinating phenomenon of a particle’s spin becoming cou-
pled to its momentum in the presence of an electric field. In atomic physics SOC causes
detectable fine-structure splittings in the energy levels of electrons due to their orbital angu-
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lar momentum about the nucleus [41]. In condensed matter physics, in which an immense
number of electrons reside in the landscape produced by the electric fields of atoms, the
effects of SOC is of much interest and has led to intense research in fields such as spintronics,
semiconductors and topological insulators.

In this section we review the physical origin of SOC, how it affects the energy spectrum
of an ideal Bose gas both in free space and on a lattice, and finally look at how SOC can be
engineered for experimental probing on optical lattices.

2.5.1 Physical Origin

To understand the physical origin of SOC we need to take relativity into account. For elec-
trons it emerges as a relativistic correction to the Schrödinger equation when taking the
non-relativistic limit of the Dirac equation. However, a simpler and more intuitive explana-
tion comes from considering a particle moving in an electric field, then performing a boost
to the frame in which the particle is at rest [42].

Consider a particle moving with velocity v in an electric field E. Performing the boost
to the frame in which the particle is at rest results in the following transformation of the
magnetic field;

Beff = −γv ×E
c2

, (2.68)

where c is the speed of light, and γ = [1− (v/c)2]−
1
2 is the Lorentz factor. A particle moving

in an electric field in our "stationary" frame of reference therefore sees an effective magnetic
field in its "moving" frame of reference. Hence, if the particle has spin it will experience
an interaction between its spin and the effective magnetic field. The Hamiltonian of such a
coupling, which is what we call spin–orbit coupling, is [43]

HSOC = −µ ·Beff. (2.69)

The dipole moment µ of the particle is proportional to its spin, µ = µ0S. An electron, for
example, has spin 1/2 and magnetic moment µ0 = −e/m according to Dirac’s relativistic
theory.

If small velocities are assumed so that γ ≈ 1, as is appropriate for ultra-cold systems such
as BECs, the SOC becomes

HSOC =
µ · (v ×E)

c2
=

µ0

mc2
S · (p×E) (2.70)

by combining (2.68) and (2.69) and introducing the momentum p = mv.
Despite being a fascinating and seemingly strange interaction between a particle’s spin

and momentum, the physical origin of SOC is seen to be surprisingly simple; in a system
with what we see as an electric field, the moving particle instead sees a magnetic field with
which its spin will interact. However, its effect on the physics of condensed matter can be
highly non-trivial. Before considering the example case of how SOC changes the excitation
spectrum of an ideal Bose gas, both in free space and on a square lattice, we explore the
different types of SOC and the structure of a general SOC Hamiltonian.
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2.5.2 Structure of an SOC Hamiltonian

Let us write out the vector cross-product and inner-product of (2.70), with spin S =
(σx, σy, σz);

HSOC ∝ σx (pyEz − pzEy) + σy (pzEx − pxEz) + σz (pxEy − pyEx) . (2.71)

By adjusting the electric field the SOC strength can be tuned. For our purposes we are
interested in 2D systems where the x-and y-components of the spin and momentum couples;

HR = ηR(σxpy − σypx), (2.72)

where the coupling strength ηR has been introduced. This is called Rashba SOC, and it turns
out that a higher order form of SOC also exists in certain solid materials, called Dresselhaus
SOC;

HD = ηDp
2
z(σypy − σxpx). (2.73)

By confining the system to the xy-plane and replacing p2
z by its expectation value

〈
p2
z

〉
, which

according to the uncertainly principle and
〈
pz
〉

= 0 should be large,

〈
p2
z

〉
=
〈
p2
z

〉
−
〈
pz
〉2

= (∆pz)
2 ≥ ~2

4(∆z)2
, (2.74)

the Dresselhaus SOC becomes

HD = ηD(σypy − σxpx). (2.75)

We see that in Dresselhaus SOC a particle’s spin is coupled to its momentum in the same
direction, as opposed to Rashba SOC which is composed of cross-products.

A general SOC that is linear in momentum and spin can be written as

HSOC =
∑
lδ

ηlδσlpδ, (2.76)

which becomes Rashba SOC when ηxy = −ηyx = ηR, and Dresselhaus SOC when ηyy =
−ηxx = ηD.

In the quantum mechanical treatment the usual procedure of replacing observables with
operators is performed, where the spin-1/2 operators σl are the Pauli matrices;

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 1

]
. (2.77)

In this thesis the elements of the Pauli matrices are written as σαβl , where α, β = {↑, ↓}
denotes the first (↑) or second (↓) index of row α and column β. Note that the Pauli matrices
has the property (σ↑↓l )∗ = σ↓↑l due to their hermiticity, which is useful during computations.
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2.5.3 Rashba SOC in Free Space

We review the effects of SOC on the excitation spectrum of an ideal Bose gas in two dimen-
sions, starting with the Hamiltonian

H =
∑
α

∫
drΨ̂†α

[
−~2∇2

2mα

− µα
]

Ψ̂α +
∑
αβ

∫
drΨ̂†α

[∑
lδ

ηlδσ
αβ
l (−i~∂δ)

]
Ψ̂β. (2.78)

The first part is the kinetic energy and chemical potential, while the second part is the SOC.
We assume the system is constrained to a plane of volume (or rather, area) V with periodic
boundary conditions and insert the momentum basis by the Fourier transformation

Ψ̂α(r) =
1√
V

∑
k

eik·rbkα. (2.79)

Performing the derivatives and integrating over space, using the relation

1

V

∫
dreik·r = δk,0, (2.80)

where δk,0 is the Dirac delta-function, yields the Hamiltonian in the momentum basis;

H =
∑
k

{∑
α

[
~2k2

2mα

− µα
]
b†kαbkα +

∑
αβ

[∑
lδ

ηlδσ
αβ
l ~kδ

]
b†kαbkβ

}
. (2.81)

To diagonalize this the column vector

Φk = (bk↑, bk↓)
T (2.82)

is introduced, along with the quantities

εkα =
~2k2

2mα

− µα,

sk =
∑
lδ

ηlδσ
↑↓
l ~kδ.

(2.83)

The Hamiltonian now reads

H =
∑
k

Φ†kAkΦk =
∑
k

[
b†k↑ b†k↓

] [εk↑ sk
s∗k εk↓

] [
bk↑
bk↓

]
, (2.84)

which is readily diagonalized;

H =
∑
k

Ψ†kDkΨk =
∑
k

[
c†k+ c†k−

] [Ek+ 0
0 Ek−

] [
ck+

ck−

]
, (2.85)



24 CHAPTER 2. PRELIMINARIES

where the diagonal basis Ψk is called the helicity basis. The eigenenergies of the helicity
states are

Ek± =
1

2
(εk↑ + εk↓)±

1

2

√
(εk↑ − εk↓)2 + 4|sk|2. (2.86)

In the the special case of Rashba SOC and bosons of equal mass, m↑ = m↓ = m, the energies
are

ERk± =
~2k2

2m
+

1

2
(µ↑ + µ↓)±

1

2

√
(µ↑ − µ↓)2 + (2ηR~k)2. (2.87)

Of particular interest are the ground states, since these would make up the BEC, and is
found by minimizing the lower energy band, ERk−, which yields two possible minima;

∂ERk−
∂k

= 0 ⇒

(i) k = 0

(ii) (~k)2 = (mηR)2 −
(

∆µ
2ηR

)2

.
(2.88)

Whether the ground state is at k = 0 or at k 6= 0 depends on the strength of the SOC
parameter ηR relative to the difference in chemical potential ∆µ = µ↑−µ↓, and is determined
by when (ii) in (2.88) has real solutions,

ηR >

√
|∆µ|
2m

. (2.89)

Note that because the energy spectrum has a continuous rotational symmetry, when the
ground state is at k > 0 it is continuously degenerate in a circle on the k-plane. The band
gap at k = 0 also depends on ∆µ as

∆ER = ∆µ. (2.90)

In real systems the difference in chemical potentials can, for example, arise due to an external
perpendicular magnetic field B = Bẑ that couples to the z-component of the spin, resulting
in a Zeeman shift ∆Ez = −µ · B = −µzB that has opposite signs for ↑ and ↓ bosons.
Figure 2.4 illustrates how the ground state energy goes from being continuously degenerate
at k > 0 to being non-degenerate at k = 0, and that the band gap widens as ∆µ increases.
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Figure 2.4: The energy spectrum along an arbitrary direction in k-space of an
ideal Bose gas with Rashba SOC in arbitrary units, the upper band being ERk+

and the lower ERk−, and m = ηR = 1. The full spectrum on the k-plane can
be obtained by a full rotation around k = 0, from which is clear that when the
ground state is at k 6= 0 there will be a massive, continuous degeneracy due to the
rotational symmetry of the excitation spectrum. As ∆µ increases, the band gap
widens and the ground state momenta approach 0 until they finally merge when
∆µ = 2, which lifts the degeneracy, both in accordance to (2.89) and (2.90).

From the discussion in section 2.1 a BEC is not expected to occur for an ideal SOC Bose
gas in two dimensions, and can be seen explicitly by investigating whether the number of
available excited states diverges or not. As before, divergence means any number of particles
can be added to the system and fit into states away from the ground state. Convergence,
on the other hand, means that at a given temperature only a finite number of particles can
occupy excited states and the rest are forced into the ground state, thus forming a BEC.

We begin with weak SOC so that the minimum is at k = 0, which happens when ηR <√
|∆µ|/2m. The lower excitation band is expanded in small momenta p = ~k;

ERp− − ERmin ≈
p2

2m

(
1− η2

Rm

|∆µ|

)
= Cp2, (2.91)

The expression for the number of available excited states (only focusing on the lower
band) as the chemical potential approaches the ground state energy, which maximizes its
value, is asymptotically

Nex ∼
∑
k 6=0

1

eβ(ERk−−E
R
min) − 1

∼ 2πV

h2

∫ ∞
0

dp
p

eβCp2 − 1
, (2.92)

where the sum has been converted into an integral over p. Any divergence of this integral
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happens near p = 0, and expanding the exponential around this point gives

Nex ∼
∫ ∞

0

dp
p

Cp2
= (Cβ)−1

∫ ∞
0

dp p−1, (2.93)

which does indeed diverge. There is thus no BEC at finite temperature for weak SOC in two
dimensions.

At the crossover from when the minimum is at p = 0 to p 6= 0 the energy is found to go
as

ERp− − ERmin ≈
p4

2m

(
2

mηR

)2

, (2.94)

at small momenta by inserting ηR =
√
|∆µ|/2m and expanding, so there is no BEC in this

case either.
When ηR >

√
|∆µ|/2m the minimum is continuously degenerate in p-space in a circle

with radius p2
0 = (mηR)2 − (∆µ/2ηR)2. Once again the dispersion relation is expanded in

small momenta near the minimum and the asymptotic behaviour of the number of excited
states considered. We define p = p0 + q, where q is a small deviation in momentum away
from the minimum p0. Expanding in q to second order yields

ERq− − ERmin ≈
q2

2m

[
1−

(
∆µ

2mη2
R

)]
= Cq2. (2.95)

Inserting this and p = p0 + q into the expression for Nex;

Nex ∼
2πV

h2

∫ ∞
0

dp
p

eβ(ERq−−ERmin) − 1
∼
∫ ∞
−p0

dq
p0 + q

eβCq2 − 1

∼ (Cβ)−1

∫ ∞
−p0

dq(p0q
−2 + q−1)→∞.

(2.96)

Hence, no BEC is possible at finite temperatures in two dimensions for an ideal SOC Bose
gas.

2.5.4 Rashba SOC on a Lattice

We now consider the Bose gas constrained to a square lattice and use the naive discretization
of the Hamiltonian, replacing the field operators Ψ̂α(r) → Ψ̂α(ri) = aiα, and the integral∫

dr →
∑

i, where i are lattice sites. The Hamiltonian (2.78) becomes

H =
∑
α

∑
i

a†αi

[
−~2∇2

2mα

− µα
]
aαi +

∑
αβ

∑
i

a†αi

[∑
lδ

ηlδσ
αβ
l (−i~∂δ)

]
aβi. (2.97)
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The differentials are again discretized;

∇2aαi =
∑
δ

∂2
δaαi =

∑
δ

aαi+δ + aαi−δ − 2aαi
a2

∂δaαi =
aαi+δ − aαi−δ

2a
.

(2.98)

Fourier transforming the discrete Hamiltonian,

aαi =
1√
Ns

∑
k

eik·ribkα, (2.99)

using that ri±δ = ri ± δ, δ being a lattice vector, and performing the sum over lattice sites
i with

1

Ns

∑
i

eik·ri = δk,0 (2.100)

yields
H =

∑
k

{
εk↑b

†
k↑bk↑ + εk↓b

†
k↓bk↓ + skb

†
k↑bk↓ + s∗kb

†
k↓bk↑

}
. (2.101)

This is on the same form as (2.84), but with new coefficients,

εkα = −µα + 4tα
∑
δ

sin2

(
k · δ

2

)
,

sk =
∑
lδ

νlδσ
↑↓
l sin(k · δ),

(2.102)

where tα = ~2/2mαa is the hopping parameter and νlδ = ~ηlδ/a is the SOC parameter.
Following the diagonalization procedure above yields eigenenergies on the same form as (2.86)
with the new coefficients. Specializing once more to equal masses and Rashba SOC gives the
energy spectrum on a square lattice;

ERk± = 4t

[
sin2

(
kxa

2

)
+ sin2

(
kya

2

)]
− 1

2
(µ↑ + µ↓)

± 1

2

√
∆µ2 + 4ν2

R

[
sin2(kxa) + sin2(kya)

]
.

(2.103)

We find in the lattice case that the energy minima are located at

(i) kx = ky = 0

(ii) kxa, kya = ±k0a = ±arcsin

[1−
(
t∆µ

ν2
R

)2
] 1

2
[

1 + 2

(
2t

νR

)2
]− 1

2

 ,
(2.104)

where the condition for having the minima at k 6= 0 is

νR >
√
t|∆µ|. (2.105)
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Placing the system on a lattice has the effect of partially lifting the continuous degeneracy
of the ground state to four distinct points in k-space, as seen in Figure 2.5.

Figure 2.5: The normalized lower energy band, ERk−, of an ideal SOC Bose gas on
a square lattice with t = 1, νR = 6, and ∆µ = 0, 10, 36, 60, in (a), (b), (c), and
(d), respectively. The square lattice replaces the continuous rotational symmetry
about k = 0 with a four-fold symmetry, and the ground state energies are either
at k = 0 or degenerate at four distinct points, according to (2.104) and (2.105).

We check explicitly if the square lattice will allow a BEC to form at finite temperatures
by the same method as before, finding first how the energy behaves near the minima;

ERk− − ERmin =


νR <

√
t|∆µ| → k2a2t

(
1− ν2R

t|∆µ|

)
νR =

√
t|∆µ| → k4t

(
νRa

2

2

)
νR >

√
t|∆µ| → q2A+ qxqyB,

(2.106)

where in the last case we have q = k − k0, and the coefficients

A = a2

[
t cos(k0a) +

4t2 sin2(k0a)− ν2
R(1− 2 sin2(k0a))√
D

]
,

B = a2 8t2 sin2(k0a)√
D

,

D =
∆µ2 + 8ν2

R

1 + 8t2/ν2
R

.

(2.107)
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Note that we have only expanded around one of the degenerate minima, but since the system
has a four-fold rotational symmetry, the contribution from the vicinity of each minima will
be equal.

In the two cases where the minimum is at the origin the energy depends on momentum in
the same way as in section 2.5.3, so a BEC cannot form at finite temperatures by the same
arguments.

In the degenerate case there are two major differences. First, the continuous degeneracy
has been replaced by a four-folded degeneracy. Second, the momentum dependence of the
energy near its minima has been altered. We find that the contribution Ñex to the number
of available excited states from near the minimum is asymptotically

Ñex ∼ β−1

∫ ∞
−∞

∫ ∞
−∞

dqx dqy
1

A(q2
x + q2

y) +Bqxqy
→∞. (2.108)

Thus, an ideal SOC Bose gas on a square lattice still does not allow a BEC at finite temper-
atures.

2.5.5 Pseudo-spin-1/2 and Synthetic SOC

We have discussed bosons as if they were spin-1/2 particles, which is not true. However, in
experiments researchers can make bosonic atoms behave as if they have spin-1/2 by exploiting
internal hyperfine states, creating pseudo-spin-1/2 states. Take 87Rb, a much used isotope in
condensed matter experiments, as an example. It is an alkali atom with an unpaired outer
electron, so that its electronic spin is 1/2 with spin operator I, and it has a nuclear spin
of 3/2, whose spin operator is J . The total spin of the atom is F = I + J which by the
usual rules of spin addition in quantum mechanics has total quantized spin 3/2 ± 1/2 [41].
The components of the spin are also quantized to the values −F,−F + 1, · · · , F − 1, F , and
only one of the them can be simultaneously well-defined with F which is by convention the
z-component with magnetic quantum number mF . The spin state is thus defined by |F,mF 〉.
Due to interactions between the outer electron and the nucleus the spin states F = 1 and
F = 2 will have different energies, and with an external magnetic field the magnetic quantum
numbers mF will have different energy levels as well. It is this splitting of the internal
states that is used when constructing pseudo-spins. Two of the states, |F = 1,mF = 0〉 and
|F = 2,mF = −1〉, are picked out as the only available states, suppressing the population of
the others, and labeled |↑〉 and |↓〉 which are then treated as pseudo-spin states [44].

Experimental setups can be designed to create synthetic SOC on these pseudo-spin states.
This is done by two-photon Raman transitions [42], in which two laser beams pass through
the system, whereupon the bosons will absorb a photon from one of the beams and by
stimulated emission release a new photon into the other. This process will leave the boson
with a change in momentum since photons carry a small amount and conservation of total
momentum must be respected. If the difference in photon energy of the two beams are tuned
to be equal to the energy difference of the two pseudo-spin states, the absorption and re-
emission will also change the pseudo-spin, which provides the spin-flip found in SOC. The
velocity-dependent part of SOC comes from considering the intermediate state the bosons are
in when absorbing a photon. If there is an excited state that is energetically in the vicinity
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of the intermediate state the transition, and thus the coupling strength, is enhanced due to
resonance, similar to what was discussed in section 2.4.1. However, a velocity will lead to
a Doppler shift of the laser frequencies, which changes the energy gained during absorption
and shifts the intermediate state relative to the resonance, which in turn alters the coupling
in a velocity-dependent way, just as is in real SOC.



3 | Superfluid Drag Density in Two-
Component BEC

In this chapter we compute the superfluid drag density by the phase twist method of section
2.3.2 for an interacting two-component BEC on a square lattice, starting with the Bose–
Hubbard Hamiltonian with inter- and intra-component interactions. As in section 2.1.2 mean-
field theory is employed to make the system solvable. We find the Hamiltonian yields large
and unmanageable eigenvalues due to the phase twist in the form of small and troublesome
terms. A detour is therefore made into the path integral formulation of the partition function
to investigate the contribution of these problematic terms and it is found that they are fully
responsible for the superfluid drag density 1. The resulting expression for the superfluid drag
density agrees with the literature, and sets the stage for investigating how a third component
affects the drag in chapter 4 at both zero and finite temperatures.

3.1 Two-Component Hamiltonian

The starting point is the Bose–Hubbard Hamiltonian

H = H1 +H2, (3.1)

where
H1 = −

∑
α

{
tα
∑
iδ

[
a†αiaαi+δ + a†αiaαi−δ

]
+ µα

∑
i

a†αiaαi

}
, (3.2)

H2 =
1

2

∑
αβ

∑
i

γαβa
†
αia
†
βiaβiaαi, (3.3)

which is the generalization of (2.62) to two components and their interactions. The order
parameters of the BEC are defined,〈

aαi
〉

= ψ0αi = ψ0αe
ik0α·ri , (3.4)

where k0α imposes on the system a phase twist which gives rise to a superfluid velocity of
component α. ψ0α is defined up to a constant phase, and |ψ0α|2 is identified as the condensate

1During this work we became aware of an article that used the same method for finding the superfluid
drag density for the same type of system [39]. However, they have instead employed the discrete-time path
integral formulation of the partition function throughout to determine the free energy.

31



32 CHAPTER 3. SUPERFLUID DRAG DENSITY IN TWO-COMPONENT BEC

density n0α.
The field operator

φ̂αi = aαi − ψ0αi (3.5)

is defined, so that
〈
φ̂αi
〉

= 0, and describes excitations from the condensate. Inserting into
H1 yields

H1 = −
∑
α

∑
i

[(
ψ∗0αi + φ̂†αi

)
µα
(
ψ0αi + φ̂αi

)
+ tα

∑
δ

(
ψ∗0αi + φ̂†αi

)(
ψ0αi+δ + φ̂αi+δ + ψ0αi−δ + φ̂αi−δ

)]
= −

∑
α

∑
i

{
|ψ0α|2µα + µαψ

∗
0αiφ̂αi + µαψ0αiφ̂

†
αi + µαφ̂

†
αiφ̂αi

+ tα
∑
δ

[
ψ∗0αi

(
ψ0αi+δ + ψ0αi−δ

)
+ ψ∗0αi

(
φ̂αi+δ + φ̂αi−δ

)
+ φ̂†αi

(
ψ0αi+δ + ψ0αi−δ

)
+ φ̂†αi

(
φ̂αi+δ + φ̂αi−δ

)]}
.

(3.6)

This is Fourier transformed,

φ̂αi =
1√
Ns

∑
k 6=0

ei(k+k0α)·ribkα, (3.7)

where Ns is the number of lattice sites of our system and bkα is the destruction operator of
a particle of type α and momentum k. The sum over k does not include k = 0 since the
Fourier transformed field operators describes excitations. Note that for φ̂αi to satisfy the
twisted boundary conditions k must satisfy the usual periodic boundary conditions.

Using ri+δ = ri + δ, where δ is a lattice vector, and inserting the position dependence of
ψ0αi gives

H1 =−
∑
α

∑
i

{
|ψ0α|2

(
µα + tα

∑
δ

(
eik0α·δ + e−ik0α·δ

))
+

ψ∗0α√
Ns

∑
k 6=0

[(
µα + tα

∑
δ

(
eik0α·δ + e−ik0α·δ

))
eik·ribkα + h.c.

]
+

1

Ns

∑
kk′ 6=0

[(
µα + tα

∑
δ

(
ei(k+k0α)·δ + e−i(k+k0α)·δ

))
ei(k−k

′)·rib†k′αbkα

]}
.

(3.8)

Since
1

Ns

∑
i

eik·ri = δk,0, (3.9)

where δk,0 is the Kronecker delta, and eix + e−ix = 2 cos(x), the sum over i yields
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H1 =−
∑
α

{
Ns|ψ0α|2

[
µα + 2tα

∑
δ

cos
(
k0α · δ

)]
+
∑
k 6=0

[
µα + 2tα

∑
δ

cos
(
(k + k0α) · δ

)]
b†kαbkα

}. (3.10)

The same procedure is performed on H2: Replacing aαi = ψ0αi + φ̂αi and writing out
the products. As an additional step, terms that are more than quadratic in the operators
are excluded, which amounts to neglecting interactions that only include particles in excited
states. We recall from section 2.1.2 that this is a reasonable approximation because we are
assuming that the majority of particles are in the condensed state. The result is

H2 =
1

2

∑
αβ

∑
i

γαβ

{
|ψ0α|2|ψ0β|2 + |ψ0α|2φ̂†βiφ̂βi + |ψ0β|2φ̂†αiφ̂αi

+
[
|ψ0β|2ψ0αiφ̂

†
αi + |ψ0α|2ψ0βiφ̂

†
βi + ψ0αiψ

∗
0βiφ̂

†
αiφ̂βi + ψ0αiψ0βiφ̂

†
αiφ̂
†
βi + h.c.

]}
.

(3.11)

Fourier transforming the field operators as before and summing over i yields

H2 =
1

2

∑
αβ

γαβ

{
Ns|ψ0α|2|ψ0β|2 +

∑
k 6=0

[
2ψ∗0βψ0αb

†
kαbkβ

+ ψ∗0αψ
∗
0βbkαb−kβ + ψ0αψ0βb

†
kαb
†
−kβ + 2|ψ0β|2b†kαbkα

]}
.

(3.12)

We have assumed that γAB = γBA and collected terms that are equal when taking the
sum over α and β, resulting in factors of 2.

The Hamiltonian can now be written according to order in the operators as

H = H̃0 + H̃2, (3.13)

where the zeroth order terms are

H̃0 = Ns

{
−
∑
α

|ψ0α|2
[
µα + 2tα

∑
δ

cos
(
k0α · δ

)]
+

1

2

∑
αβ

γαβ|ψ0α|2|ψ0β|2
}
, (3.14)

and describes the energy contribution solely due to the condensates and their interactions.
We replace the total number of condensed bosons |ψ0α|2 = n0α by the total number of bosons
nα with the relation

n0α = nα −
1

Ns

∑
k 6=0

b†kαbkα. (3.15)

Inserting into (3.14) and neglecting terms that are more than quadratic in boson operators
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gives

H̃0 =Ns

{
−
∑
α

nα

[
µα + 2tα

∑
δ

cos
(
k0α · δ

)]
+

1

2

∑
αβ

γαβnαnβ

}
+
∑
k 6=0

{∑
α

[
µα + 2tα

∑
δ

cos
(
k0α · δ

)]
b†kαbkα

− 1

2

∑
αβ

γαβ

[
nαb

†
kβbkβ + nβb

†
kαbkα

]}
.

(3.16)

The last two lines are quadratic in the boson operators and denoted by δH̃2, removed from
the zeroth order Hamiltonian, and added to H̃2. H̃0 is then recast without any operators.

The quadratic terms of the Hamiltonian, which describes the elementary excitations of
the system, are

H̃2 = δH̃2 +
∑
k 6=0

{
−
∑
α

[
µα + 2tα

∑
δ

cos
(
(k + k0α) · δ

)]
b†kαbkα

+
1

2

∑
αβ

γαβ

[
ψ0αψ0β

(
2b†kβbkα + bkαb−kβ + b†kαb

†
−kβ

)
+ 2ψ2

0αb
†
kβbkβ

]}
,

(3.17)

where the phase of ψ0α is now chosen so that it becomes real. We use the number relation
(3.15) again, with the first order Taylor expansion,

ψ0α =
√
n0α =

√
nα −

1

Ns

∑
k 6=0

b†kαbkα ≈
√
nα −

1

2Ns
√
nα

∑
k 6=0

b†kαbkα, (3.18)

to insert into H̃2, neglecting once more terms more than quadratic in boson operators;

H̃2 = δH̃2 +
∑
k 6=0

{
−
∑
α

[
µα + 2tα

∑
δ

cos
(
(k + k0α) · δ

)]
b†kαbkα

+
1

2

∑
αβ

γαβ

[√
nαnβ

(
2b†kβbkα + bkαb−kβ + b†kαb

†
−kβ

)
+ 2nαb

†
kβbkβ

]}
,

(3.19)

Inserting the explicit expression of δĤ2 and writing out the sums over components yields
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H̃2 =
∑
k 6=0

{(
γAnA − 2tA

∑
δ

[
cos
(
(k + k0A) · δ

)
− cos

(
k0A · δ

)])
b†kAbkA

+
(
γBnB − 2tB

∑
δ

[
cos
(
(k + k0B) · δ

)
− cos

(
k0B · δ

)])
b†kBbkB

+
1

2
γAn0A

(
bkAb−kA + b†kAb

†
−kA

)
+

1

2
γBn0B

(
bkBb−kB + b†kBb

†
−kB

)
+

1

2
γAB
√
n0An0B

(
2b†kAbkB + 2b†kBbkA + bkAb−kB + b†kAb

†
−kB

+ bkBb−kA + b†kBb
†
−kA

)}
.

(3.20)

This expression can be made considerably cleaner by using the identity cos(x + y) =
cos(x) cos(y)− sin(x) sin(y) and defining the quantities

Fα = γαnα,

εkα = 2tα
∑
δ

[1− cos(k · δ)] cos(k0α · δ),

Ekα = εkα + Fα,

fkα = 2tα
∑
δ

sin(k · δ) sin(k0α · δ),

UAB = γAB
√
nAnB.

(3.21)

It is clear from the above that the coefficients are real valued and have the properties
E−kα = Ekα and f−kα = −fkα, and that fkα

∣∣
k0α→0

= 0. Thus we get

H̃2 =
∑
k 6=0

{[
EkA + fkA

]
b†kAbkA +

[
EkB + fkB

]
b†kBbkB

+
1

2
FA

(
bkAb−kA + b†kAb

†
−kA

)
+

1

2
FB

(
bkBb−kB + b†kBb

†
−kB

)
+

1

2
UAB

(
2b†kAbkB + 2b†kBbkA + bkAb−kB + b†kAb

†
−kB + bkBb−kA + b†kBb

†
−kA

)}
.

(3.22)

3.1.1 Attempting to Diagonalize Hamiltonian

To diagonalize the Hamiltonian, namely H̃2, in order to obtain the energy spectrum according
to the method described in section 2.2, we need to write H̃2 on the form

H̃2 = C +
1

4

∑
k 6=0

Φ†kAkΦk, (3.23)
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where Ak is an 8× 8 Hermitian matrix and C is the trace term. The basis Φ†k is chosen as

Φk =
(
bkA, b−kA, bkB, b−kB, b

†
kA, b

†
−kA, b

†
kB, b

†
−kB

)T
. (3.24)

Rewriting H̃2 using commutation relations,

b†kαbk′β =
1

2

(
b†kαbk′β + bk′βb

†
kα

)
− 1

2
δα,βδk,k′ ,

bkαbk′β =
1

2

(
b†kαbk′β + bk′βb

†
kα

)
,

(3.25)

and ∑
k 6=0

Ekαb
†
kαbkα =

∑
k 6=0

Ekαb
†
−kαb−kα etc, (3.26)

gives

Ak =

[
N1k N2k

N2k N1k

]
, (3.27)

where

N1k =


EkA + fkA 0 UAB 0

0 EkA − fkA 0 UAB
UAB 0 EkB + fkB 0

0 UAB 0 EkB − fkB

 , (3.28)

N2k =


0 FA 0 UAB
FA 0 UAB 0
0 UAB 0 FB

UAB 0 FB 0

 , (3.29)

and
C = −1

2

∑
k 6=0

(EkA + EkB) . (3.30)

The next step would be to perform the actual diagonalization. However, the terms fkα
along the diagonal make the eigenvalues large and unwieldy. To tackle this complication the
path integral formulation of the partition function is employed and expanded in orders of
fkα.

3.1.2 Path Integral Formulation of the Partition Function

In the same way as quantum mechanics can be formulated as a path integral of an action
S over space and time, so can the partition function be formulated as a path integral of an
action over space and imaginary time. In the coherent state basis the partition function is
[45]

Z =

∫
D [{φ∗λ(τ), φλ(τ)}] e−

∫ β
0 dτS, (3.31)



CHAPTER 3. SUPERFLUID DRAG DENSITY IN TWO-COMPONENT BEC 37

where
S =

∑
λ

[φ∗λ∂τφλ +H ({φ∗λ, φλ})] . (3.32)

If the Hamiltonian is normal ordered, meaning creation operators are grouped to the left
and destruction operators to the right, the operators are replaced by complex valued fields
by the prescription bλ → φλ and b†λ → φ∗λ. To satisfy the bose statistics the fields are periodic
in imaginary time, φλ(τ) = φλ(τ + β), where β = 1/T . In our system the set of quantum
numbers {λ} are {k, α}.

To compute the path integral we will first need to write it as a product of Gaussian
integrals. The action S is rewritten by only summing over half of k-space so that the−k terms
become explicit in the sum, and use that complex numbers commute. For the differential
terms a partial integration is performed in conjunction with φλ(τ) being periodic in β to
reverse the order of the fields at the expense of a change of sign. Consequently the action
becomes

S = S0 +
∑′

k 6=0

{
φ∗kA∂τφkA + φ∗kB∂τφkB − φ−kA∂τφ∗−kA − φ−kB∂τφ∗−kB

+
(
EkA + fkA

)
φ∗kAφkA +

(
EkB + fkB

)
φ∗kBφkB

+
(
EkA − fkA

)
φ−kAφ

∗
−kA +

(
EkB − fkB

)
φ−kBφ

∗
−kB

+ FA

(
φ−kAφkA + φ∗kAφ

∗
−kA

)
+ FB

(
φ−kBφkB + φ∗kBφ

∗
−kB

)
+ UAB

(
φ∗kAφkB + φ−kAφ

∗
−kB + φ∗kBφkA + φ∗−kBφkA

+ φ−kAφkB + φ∗kAφ
∗
−kB + φ−kBφkA + φ∗kBφ

∗
−kA

)}
,

(3.33)

where S0 contains all the terms of H that are independent of the boson operators and can
be placed outside the path integral. The mark on

∑′

k indicates that the sum is over half of
k-space.

The differentials with respect to τ is removed by Fourier transforming the fields into
frequency space, φkα(τ) = β−

1
2

∑
n φkαne

−iωnτ , where ωn = 2πn/β with n ∈ {0,±1,±2, . . .}
are Matsubara frequencies. This results in the replacement of the integral

∫ β
0

dτ →
∑

n, the
derivatives ∂τ → ±iωn, and the fields φ∗kαφk′β → φ∗kαnφk′βn, φkαφk′β → φkαnφk′β−n, etc. We
make the sum over n ≥ 0 so that the −n terms also become explicit and include a factor
(1− 1

2
δn,0) to avoid counting the n = 0 term twice. By defining

Φkn =
(
φkAn, φkBn, φ

∗
−kAn, φ

∗
−kBn, φkA−n, φkB−n, φ

∗
−kA−n, φ

∗
−kB−n

)T
, (3.34)

we can write
S = S0 +

∑′

k 6=0,n

Φ†knMknΦkn, (3.35)
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where
Mkn = (1− 1

2
δn,0)

[
N+
kn Nkn
Nkn N−kn

]
, (3.36)

N±kn =


EkA ± iωn + fkA UAB 0 0

UAB EkB ± iωn + fkB 0 0
0 0 EkA ± iωn − fkA UAB
0 0 UAB EkB ± iωn − fkB

 , (3.37)

Nkn =


0 0 FA UAB
0 0 UAB FB
FA UAB 0 0
UAB FB 0 0

 . (3.38)

This yields the partition function

Z = e−βS0

∫ ∏′

k 6=0,n

D
[
φ∗±kα±n, φ±kα±n

]
e−Φ†knMknΦkn , (3.39)

which is a product of Gaussian integrals. Performing these give

Z = e−βS0

∏′

k 6=0,n

[
DetMkn

]−1
= e−βS0

∏′

k 6=0,n

e−Tr lnMkn . (3.40)

To investigate the contribution of fkα the matrix is separated as Mkn = Akn + Bk,
where Bk is the diagonal matrix with fkα as elements, and Akn contains the remainder. The
partition function is expanded in powers of Bk,

Tr lnMkn = Tr ln(Akn +Bk) = Tr lnAkn(I + A−1
knBk) = Tr lnAkn + Tr ln(I + A−1

knBk)

≈ Tr lnAkn + TrA−1
knBk −

1

2
Tr(A−1

knBk)2,

(3.41)

where the power series representation of the natural logarithm, ln(1 + x) =
∑∞

n=1(−1)n+1 xn

n
,

has been used to second order. The partition function becomes

Z = e−βS0

∏′

k 6=0,n

e−Tr lnAkn

︸ ︷︷ ︸
(i)

e−TrA−1
knBk+ 1

2
Tr(A−1

knBk)2

︸ ︷︷ ︸
(ii)

= Z1Z2. (3.42)

Part (i), Z1, is the expression for the partition function without fkα and is found by the
usual diagonalization method, while part (ii), Z2, is the correction factor due to fkα. We
expect second-order corrections to yield accurate results because in the final step k0α → 0,
so that k0α can be treated as small.

We get that TrA−1
knBk = 0, while the expression for Tr(A−1

knBk)2 is large. However, by
noting that it only consists of terms that are either proportional to (fkα)2 or fkAfkB, a sim-
plification can be made by realizing the following: Since we are interested in finding the
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superfluid drag coefficient, which is obtained from the free energy F by ∂2F
∂k0Ax∂k0Bx

∣∣
k0A,k0B→0

,
any term that contains a factor of fkα that hasn’t been differentiated will vanish. There-
fore, only the fkAfkB term survives, and we only concern ourselves with it2 when writing
Tr(A−1

knBk)2;

Tr(A−1
knBk)2 = 64fkAfkB

U2
AB(iωn)2εkAεkB[

(iωn)2 − E2
k+

]2[
(iωn)2 − E2

k−
]2 (1− 1

2
δn,0), (3.43)

where

Ek± =
1√
2

{
εkA (εkA + 2FA) + εkB (εkB + 2FB)

±
{[
εkA (εkA + 2FA)− εkB (εkB + 2FB)

]2
+ 16U2

ABεkAεkB

} 1
2
} 1

2
.

(3.44)

The notation Ek± is used since these are the eigenvalues of part (i) of (3.42), i.e. the excitation
spectrum of the system when k0α = 0. In the limit γAB → 0 the spectrum reduces to the
usual Bogoliubov spectrum for the two components.

Performing the Matsubara sum, the details of which can be found in appendix A, and
inserting for Ekα and Fα from (3.21) yields

1

2

′∑
n

Tr(A−1
knBk)2 = −fkAfkB

4βU2
ABεkAεkB

Ek+Ek−(Ek+ + Ek−)3
, (3.45)

so that
lnZ2 = −

∑
k 6=0

fkAfkB
2βU2

ABεkAεkB
Ek+Ek−(Ek+ + Ek−)3

. (3.46)

3.1.3 Completing the Diagonalization of Hamiltonian

The diagonalization of the Hamiltonian is completed by considering part (i) of (3.42), which
is equivalent to diagonalizing (3.23) with fkα = 0;

H̃2 = −1

2

∑
k 6=0

(EkA + EkB) +
1

4

∑
k 6=0

Ψ†kDkΨk, (3.47)

where
Ψk = U †kΦk =

(
ck+, c−k+, ck−, c−k−, c

†
k+, c

†
−k+, c

†
k−, c

†
−k−

)T
, (3.48)

Dk =

[
Ωk 0
0 Ωk

]
, Ωk = diag (Ek+, Ek+, Ek−, Ek−) , (3.49)

and Ek± is given in (3.44).

2More precisely, we neglect to write out the terms proportional to fkAfkA and fkBfkB in Tr(A−1knBk)
2

since they eventually drop out in the final step. So while the expression shown is not complete, it is the only
part of importance for our purposes.
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Writing out the matrix, using that the new operators also follow boson commutation
relations and that the sum is over all k 6= 0, yields

H̃2 =
∑
k 6=0

(
Ek+c

†
k+ck+ + Ek−c†k−ck−

)
+

1

2

∑
k 6=0

(Ek+ + Ek− − EkA − EkB) . (3.50)

We are now in a position to find the free energy and the superfluid drag density.

3.2 Free Energy and Superfluid Drag Density

The free energy density is obtained by the usual relation

F = − 1

V β
lnZ, (3.51)

where V = Ns is the "volume" of the system and Z = Z1Z2 the partition function. Z2 has
already been computed via the path integral formulation, while Z1 is

Z1 = Tr e−βH =
∑
|Nm〉

〈Nm| e−βH |Nm〉 = e−βH̃0

∑
|Nm〉

〈Nm| e−βH̃2 |Nm〉

= e−βH̃0−β2
∑

k 6=0(Ek++Ek−−EkA−EkB)
∑
|Nm〉

〈Nm| e−β
∑

k 6=0(Ek+c†k+ck++Ek−c†k−ck−) |Nm〉

= e−βH̃0

∏
k 6=0

e−
β
2

(Ek++Ek−−EkA−EkB)

∞∑
nk+=0

e−βEk+nk+

∞∑
nk−=0

e−βEk−nk−

= e−βH̃0

∏
k 6=0

e−
β
2

(Ek++Ek−−EkA−EkB)
[
1− e−βEk+

]−1[
1− e−βEk−

]−1
,

(3.52)

where it has been used that c†k±ck± is the number operator, and that the sum is over all
states |Nm〉 in Fock space. The free energy density at T = 0 is therefore

F =
1

Ns

H̃0 +
1

2Ns

∑
k 6=0

(Ek+ + Ek− − EkA − EkB)

+
2U2

AB

Ns

∑
k 6=0

fkAfkB
εkAεkB

Ek+Ek−(Ek+ + Ek−)3
,

(3.53)

and the superfluid drag density is found by (2.52). From (3.14) we see that ∂H̃0

∂k0αx

∣∣
k0A,k0B→0

= 0

and ∂2H̃0

∂k0Ax∂k0Bx

∣∣
k0A,k0B→0

= 0, and likewise for Ekα and εkα from (3.21). Any term that includes
these therefore vanishes, leaving(

∂2fkAfkB
∂k0Ax∂k0Bx

)
k0A,k0B→0

= 4tAtBa
2 sin2(kxa). (3.54)
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The superfluid drag density finally becomes

ρd =
8mAmBnAnBtAtBγ

2
ABa

2

Ns

∑
k 6=0

sin2(kxa)
εkAεkB

Ek+Ek−(Ek+ + Ek−)3
. (3.55)

This result agrees with what has been found by other methods in the literature [23, 39],
and some details are worth mentioning:

• The inter-component interaction strength γAB only appears as γ2
AB, so its sign does not

matter. Both attractive and repulsive interactions between the two boson components
yield the same positive superfluid drag density, meaning that the superflow of one
component induces a co-directed superflow in the other, as seen from (2.54).

• The energy spectrum (3.44) can become imaginary in some parameter regions, which
implies an instability of the system. The requirement that the two boson components
can coexist in the BEC can be shown to be γAγB > γ2

AB by demanding that the energy
spectrum is real when nα 6= 0, or more precisely, when the expression inside the outer
square root of (3.44) is positive. The same criterion is obtained by minimizing H̃0 with
respect to nA and nB and demanding nα > 0.

• The finite temperature result for the superfluid drag density can be computed from
(A.6).

Why both attractive and repulsive inter-component interactions induce co-directed super-
flow can be explained intuitively as two-body collisions. Consider the repulsive case, γAB > 0,
and that boson type A has a superflow. On-site interactions are assumed, so boson A must
make a jump onto a site in which a boson B resides to interact with it. Because the two
components repulse one another, the system will find it energetically favorable to separate
the two. The result is that when A jumps onto the same site as B, B will absorb momentum
from A to jump into the next site, i.e. A pushes B in front of it as it moves across the lattice,
thus inducing a co-directed flow.

In the attractive case, γAB < 0, the system will instead favor having the two boson
components on the same lattice site, so when A moves through a site where a B boson
resides it will be dragged along, once more induced with a co-directed flow. An illustration
of process in the two cases are shown in Figure 3.1.

In Refs [25] and [26], on the other hand, a negative drag is reported for very strong
repulsive interactions at nearly half filling, resulting in a negative drag and therefore induced
counter-flow. This is because with strong interactions near half filling, which in the two-
component case means nearly one boson per lattice site, if a boson moves from one site to
another occupied site, the system will find it very energetically favorable to separate the two
by moving one into an empty site. Such an empty site is most likely the one the first boson
just moved from, causing a back-flow. Such behaviour is not captured in (3.55), which is the
result of a weak-coupling limit.
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Figure 3.1: Illustration of the collision processes that cause the drag. (a)-(c) is
the repulsive case: (a) A type A boson is incident a B boson, (b) they collide
and because they repulse one another the system favors separation of the two so
that (c) the B boson absorbs momentum from A in the interaction. (d)-(f) is the
attractive case: (d) A type A boson is once again incident a B boson, (e) they
collide, but since they attract one another the system will instead favor keeping
the two together, so that (f) B picks up some momentum and is dragged along
with A.

Finally, using the Landau criterion (2.39) for superfluidity on the excitation spectrum
(3.44) gives for the two branches the critical velocities,

vc± = a

√
tAFA + tBFB ±

√
(tAFA − tBFB)2 + 4tAtBU2

AB, (3.56)

similar to what has been found in the continuum case [46], and previously on the optical
lattice [23]. The limit γAB → 0 reduces the two branches to the critical velocities for the
components separately, vcα = a

√
2tαγαnα.



4 | Superfluid Drag Density in
Three-Component BEC

In this chapter the superfluid drag density in a three-component Bose gas at both zero and
finite temperatures is explored by extending the Hamiltonian (3.19) to more components. A
generalization of the procedure for the N -component case is also presented, and describes
systems of N distinct atoms or isotopes, or hyperfine internal states where the effects of spin
are neglected, such as SOC.

4.1 Hamiltonian Generalized to N Components

The quadratic part (3.22) of the Hamiltonian is generalized to N number of boson compo-
nents, and separated into single-component and inter-component terms;

H̃2 =
∑
α

H̃α +
∑
α 6=β

H̃αβ, (4.1)

H̃α =
∑
k 6=0

{
(Ekα + fkα) b†kαbkα +

1

2
Fα

(
bkαb−kα + b†kαb

†
−kα

)}
, (4.2)

H̃αβ =
1

2
Uαβ

∑
k 6=0

{
2b†kαbkβ + bkαb−kβ + b†kαb

†
−kβ

}
, (4.3)

with Uαβ = γαβ
√
nαnβ. H̃0 remains on the same form as (3.16). Diagonalizing this for N

components analytically is very difficult, if not impossible in practice, even for N = 3 which
is the simplest generalization. We therefore proceed with two alternative approaches: In the
first perturbation theory is applied to the inter-component interaction terms to find their
contribution to the free energy, from which an analytic perturbative expression for the drag
density is obtained. In the second approach the Hamiltonian is diagonalized and the free
energy computed numerically, from which the drag density is found by a finite difference
approximation for the differential. This second approach is expected to yield exact results
within mean-field theory and can probe a larger parameter space since perturbation theory
breaks down when the perturbations become too large. Furthermore, in the numerical ap-
proach the excitation spectrum is found and instabilities (i.e. the energy becomes imaginary)
can be detected, which perturbation theory cannot. However, we are motivated to use per-
turbation theory in conjunction with the numerical approach because it provides an analytic

43
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expression that can be examined and provide qualitative insight into the general behaviour
of the drag in the three-component case.

4.2 Drag From Rayleigh–Schrödinger Perturbation The-
ory

The perturbation approach begins by diagonalizing the single component parts H̃α and treat-
ing H̃αβ as the perturbations. Part of the work has already been done in section 2.1.2, where
the weakly interacting Bose gas for a single component system was diagonalized. H̃α is in
almost the same form, so we need only add labels α to the coefficients and operators. The
only real difference is the fkα term, but its contribution is easily computed due to it being
odd in k;∑

k 6=0

fkαb
†
kαbkα =

∑
k 6=0

fkα

(
ukαc

†
kα − vkαc−kα

)(
ukαckα − vkαc†−kα

)
=
∑
k 6=0

fkα

([
u2
kα − v2

kα

]
c†kαckα − ukαvkα

[
c†kαc

†
−kα + c−kαckα

])
=
∑
k 6=0

fkαc
†
kαckα.

(4.4)

The condition (2.17) was used and the last term of the second line is zero, as is seen by
writing the −k terms of the sum explicitly. The partially diagonalized Hamiltonian thus has
eigenenergies

Ẽkα =
√
εkα (εkα + 2Fα) + fkα = Ẽkα + fkα, (4.5)

which is the energy of a weakly interacting single-component Bose gas with the addition of
the phase twist contribution.

Rayleigh–Schrödinger perturbation theory is used on the ground state to approximate the
contribution of the inter-component interactions to the energy and hence the superfluid drag
density, and therefore only describe the zero-temperature limit. The Hamiltonian is assumed
to be separable into an exactly solvable part Hsol and a "troublesome" part that is small in
some parameter λ, which is denoted by Hpert. The total Hamiltonian is H = Hsol + Hpert

and agrees with the structure of the Hamiltonian in consideration; Hsol consists of the single-
component parts Hα, and the perturbation parts are Hαβ, which are small in Uαβ.

Next in this perturbation scheme is to assume that both the eigenenergy and the eigen-
states can be expanded in the smallness parameter λ,

E = E(0) + E(1) + E(2) + . . . , (4.6)

|Ψ〉 = |Ψ(0)〉+ |Ψ(1)〉+ |Ψ(2)〉+ . . . , (4.7)

where the terms E(i) and |Ψ(i)〉 are of order λi. The zeroth-order states and energies are those
of the exactly solvable system, while the higher orders are corrections. To find the expressions
for the corrections the Schrödinger equation is solved recursively using the above expansion,
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the steps to which can be found in most introductory quantum mechanics textbooks, such as
Refs [43, 41]. We are only interested in the corrections to the energy, which to first, second,
third, and fourth order are

E(1) = V00, (4.8)

E(2) =
∑
m 6=0

|V0m|2

E0m

, (4.9)

E(3) =
∑
ml 6=0

V0mVmlVl0
E0mE0l

− V00

∑
m 6=0

|V0m|2

E2
0m

, (4.10)

E(4) =
∑
mlr 6=0

V0mVmlVlrVr0
E0mE0lE0r

−
∑
ml 6=0

|V0m|2

E0m

|V0l|2

E2
0l

− 2V00

∑
ml 6=0

V0mVmlVl0
E0mE2

0l

+ V00

∑
m6=0

|V0m|2

E3
0m

,

(4.11)

using the notation

Vml = 〈Nm|Hpert |Nl〉 ,
Eml = Em − El,

(4.12)

where |Nm〉 and |Nl〉 are states in Fock space with corresponding energies Em and El. The
0 index indicates the unperturbed state |Ψ(0)〉. When this is equal to the ground state |GS〉,
the energy difference E(0) − Em will always be negative, so that the second-order energy
correction to the ground state is always negative as well.

The perturbation Hamiltonian for the interaction between components is

Hpert =
∑
〈αβ〉

[
H̃αβ + H̃βα

]
=
∑
〈αβ〉

∑
k 6=0

Uαβ

[
b†kαbkβ + b†kβbkα + bkαb−kβ + b†kαb

†
−kβ

]
=
∑
〈αβ〉

∑
k 6=0

Uαβ [ukαukβ + vkαvkβ − ukαvkβ − ukβvkα]

×
[
c†kαckβ + c†kβckα + ckαc−kβ + c†kαc

†
−kβ

]
=
∑
〈αβ〉

∑
k 6=0

Ũk,αβ

[
c†kαckβ + c†kβckα + ckαc−kβ + c†kαc

†
−kβ

]
,

(4.13)

where the sum is over all pairs of boson components (disregarding order), indicated by 〈αβ〉.
Writing out Ũ2

k,αβ;

Ũ2
k,αβ =

εkαεk

ẼkαẼkβ
. (4.14)

4.2.1 First- and Second-Order Perturbation

With |Ψ(0)〉 = |GS〉 the first-order correction vanishes because (4.13) only consists of inter-
component terms and will leave the bra- and ket-vector in different orthogonal states.
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The second-order correction has more room to maneuver, so to speak, since the inner-
product is between the ground state and another state in Fock space. The terms that
contribute are those that bring the bra- and ket-vector of (4.9) to the same state and thus
have a non-zero inner-product. These are the terms with two destruction operators and
|Nm〉 = |GS + (k, α) + (−k, β)〉, α 6= β, so that the operators create a particle in (k, α) and
(−k, β) in the ground state, making it equal to |Nm〉. Em is the energy of the ground state
E(0) plus the energies of the excitations, i.e. Em − E(0) = Ẽkα + Ẽ−kα. The second-order
correction due to α and β from (4.13) yields

E(2) =
∑
m6=0

|V0m|2

E0m

= −
∑
|Nm〉

| 〈Nm|
∑
〈αβ〉

∑
k 6=0 Ũk,αβ

[
c†kαckβ + c†kβckα + ckαc−kβ + c†kαc

†
−kβ

]
|GS〉 |2

Em − E(0)

= −
∑
〈αβ〉

∑
k 6=0

Ũ2
k,αβ

Ẽkα + Ẽ−kβ
= −

∑
〈αβ〉

∑
k 6=0

Ũ2
k,αβ

Ẽkα + Ẽkβ + fkα − fkβ
.

(4.15)

The second-order contribution to the drag becomes

ρ
(2)
d,AB =

mAmB

Ns

(
∂2E(2)

∂k0Ax∂k0Bx

)
k0A,k0B→0

= 2
mAmBU

2
AB

Ns

∑
k 6=0

Ũ2
k,AB

(ẼkA + ẼkB)3

(
∂2fkAfkB
∂k0Ax∂k0Bx

)
k0A,k0B→0

=
8mAmBnAnBtAtBγ

2
ABa

2

Ns

∑
k 6=0

sin2(kxa)
Ũ2
k,AB

(ẼkA + ẼkB)3
.

(4.16)

4.2.2 Third-Order Perturbation

Next to consider is the third-order correction to the energy. The second term of (4.10)
vanishes for the same reason as the first-order correction. For the first term to be non-
zero the Fock states must be on the form |Nm〉 = |GS + (k, α1) + (−k, β1)〉 and |Nl〉 =
|GS + (k, α2) + (−k, β2)〉 due to their inner-product with |GS〉. The final inner-product
Vml determines how |Nm〉 and |Nl〉 are related; either α1 = α2 and have the c†−kβ1c−kβ2
term replace the (−kβ2) excitation in |Nl〉 with (−kβ1), making it equal to |Nm〉, or have
β1 = β2 and replace (−kα2) with (−kα1) in the same way. The resulting contributions can
be summarized as

|Nm〉 = |GS + (k, α) + (−k, β)〉
(i) : |Nl〉 = |GS + (k, α) + (−k, σ)〉
(ii) : |Nl〉 = |GS + (k, σ) + (−k, β)〉 ,

(4.17)
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with σ 6= β 6= α. The interchange of |Nm〉 and |Nl〉 gives the same contribution. The
third-order correction to the energy thus becomes

E(3) =
∑
ml 6=0

V0mVmlVl0
E0mE0l

− V00

∑
m 6=0

|V0m|2

E2
0m

= 2
∑
〈αβ〉

∑
σ 6=αβ

∑
k 6=0

Ũk,αβŨk,ασŨk,βσ

Ẽkα + Ẽ−kβ

(
1

Ẽkα + Ẽ−kσ
+

1

Ẽkσ + Ẽ−kβ

)
.

(4.18)

Note that for this to be non-zero there must be at least three distinct boson components
present.

Care must be taken when computing the third-order contribution to the superfluid drag
density between a boson pair α and β in a system of three or more components. In E(3), α
and β are used as sum indices, but for the drag between two components these are exchanged
with labels for the specific boson components, A and B. All the terms of E(3) that explicitly
contain the components A and B must therefore be included, so that no terms are left out
during the differentiation. These are obtained by the interchange of σ and B (or β in the
equation),

ρ
(3)
d,AB =

mAmB

Ns

(
∂2E(3)

∂k0Ax∂k0Bx

)
k0A,k0B→0

= −8mAmBtAtBa
2

Ns

∑
σ 6=AB

∑
k 6=0

Ũk,ABŨk,AσŨk,Bσ sin2(kxa)

×

[
2

(ẼkA + ẼkB)3

(
1

ẼkA + Ẽkσ
+

1

ẼkB + Ẽkσ

)

+
1

(ẼkA + ẼkB)2

(
1

(ẼkA + Ẽkσ)2
+

1

(ẼkB + Ẽkσ)2

)

− 1

(ẼkA + Ẽkσ)2(ẼkB + Ẽkσ)2

]
.

(4.19)

A third component C is therefore seen to affect the drag density between A and B in
third-order, and is proportional to the product of the three inter-component interactions,
γABγACγBC .



48 CHAPTER 4. SUPERFLUID DRAG DENSITY IN THREE-COMPONENT BEC

4.2.3 Fourth-Order Perturbation

Fourth-order is as far as we will go in this thesis. At this point arguments will not be provided
for all the non-zero contributions, but rather the list of "rules" for finding them;

(1) : V00 is always zero.
(2) : V0m demands that |Nm〉 = |GS + (kα1) + (−kβ1)〉 , α1 6= β1, via ckα1c−kβ1 .

(3) : Given |Nm〉 = |GS + (kα1) + (−kβ1)〉 , α1 6= β1, Vml demands
(i) : |Nl〉 = |GS + (kα1) + (−kβ1) + (k′α2) + (−k′β2)〉 , α2 6= β2, via ck′α2c−k′β2 .

(ii) : |Nl〉 = |GS + (kα1) + (−kβ2)〉 , β1 6= β2, via c†−kβ1c−kβ2 .

(iii) : |Nl〉 = |GS + (kα2) + (−kβ1)〉 , α1 6= α2, via c†kα1
ckα2 .

(4.20)

The contributions to

E(4) =
∑
mlr 6=0

V0mVmlVlrVr0
E0mE0lE0r︸ ︷︷ ︸
Term 1

−
∑
ml 6=0

|V0m|2

E0m

|V0l|2

E2
0l︸ ︷︷ ︸

Term 2

(4.21)

are

Term 1
(1) : |Nm〉 = |GS + (kα) + (−kβ)〉 , |Nr〉 = |GS + (kβ) + (−kα)〉 , α 6= β

(i) : |Nl〉 = |GS + (kα) + (−kα)〉
(ii) : |Nl〉 = |GS + (kβ) + (−kβ)〉

(2) : |Nm〉 = |Nr〉 = |GS + (kα) + (−kβ)〉 , α 6= β

(i) : |Nl〉 = |GS + (kα) + (−kσ)〉 , σ 6= β

(ii) : |Nl〉 = |GS + (kσ) + (−kβ)〉 , σ 6= α

(3) : |Nm〉 = |GS + (kα) + (−kρ)〉 , |Nr〉 = |GS + (kβ) + (−kρ)〉 ,
|Nl〉 = |GS + (kσ) + (−kρ)〉 , α 6= β 6= σ 6= ρ

(4) : |Nl〉 = |GS + (kα) + (−kβ) + (k′σ) + (−k′ρ)〉 , α 6= β, σ 6= ρ

(i) : |Nm〉 = |GS + (kα) + (−kβ)〉 , |Nr〉 = |GS + (k′σ) + (−k′ρ)〉
(ii) : |Nm〉 = |Nr〉 = |GS + (kα) + (−kβ)〉

Term 2
|Nm〉 = |GS + (kα) + (−kβ)〉 , |Nr〉 = |GS + (k′σ) + (−k′ρ)〉 , α 6= β, σ 6= ρ.

(4.22)

Before writing out E(4) an apparent issue must be addressed: Case (4) of term 1 and term
2 have two independent momenta, k and k′. These are problematic because they lead to
two independent k-sums, which in turn can be seen to scale as

∑
k

∑
k′ → N2

s

∫ ∫
d3k

(2π)d
d3k′

(2π)d
,
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where d is the dimensionality. The fourth-order energy thus scales as N2
s . This is a problem

for two reasons: First, the energy is no longer extensive, i.e. it no longer scales linearly with
the system size. When the size of the system doubles, the energy quadruples, and in the
thermodynamic limit Ns →∞, the energy density becomes infinite. This leads to the second
concern; if the fourth-order correction to the energy density can become arbitrarily large, then
the perturbation expansion must have broken down, since it is expected that E(4)/Ns ∝ λ4.
Fortunately, these scale-inconsistent terms turn out to cancel nearly exactly. There are some
"surplus" contributions when k = k′ because then state |Nl〉 can have doubly occupied
excitations, which when operated on by a creation or destruction operator gives extra factors
of
√

2, and are therefore not completely canceled. As an illustration of this we consider the
sum of 4(ii) of term 1 and term 2 when k = k′, σ = α, and ρ = β. We get for term 1 that
Vml = Vlr = 2Ũkαβ and E0l = −2(Ẽkα + Ẽ−kβ) due to the doubly occupied excitations, while
the remaining inner-products and energies are Ũkαβ and Ẽkα + Ẽ−kβ. Adding the two terms
yields

ETerm 1(4ii) + ETerm 2 = −
∑
k 6=0

4Ũ4
kαβ

2(Ẽkα + Ẽ−kβ)3
+
∑
k 6=0

Ũ4
kαβ

(Ẽkα + Ẽ−kβ)3

= −
∑
k 6=0

Ũ4
kαβ

(Ẽkα + Ẽ−kβ)3
.

(4.23)

For an explicit demonstration of the cancellation of the terms without doubly occupied
excitations the reader is referred to appendix B, and we proceed by neglecting them in the
following1.

The contributions to the fourth-order energy correction are

E
(4)
(1) = −

∑
k 6=0

∑
〈αβ〉

Ũ4
kαβ

(Ẽkα + Ẽ−kβ)(Ẽkβ + Ẽ−kα)

[
1

Ẽkα + Ẽ−kα
+

1

Ẽkβ + Ẽ−kβ

]
, (4.24)

E
(4)
(2) = −

∑
k 6=0

∑
〈αβ〉

Ũ2
kαβ

(Ẽkα + Ẽ−kβ)2

[∑
σ 6=β

Ũ2
kβσ

Ẽkα + Ẽ−kσ
+
∑
σ 6=α

Ũ2
kασ

Ẽkσ + Ẽ−kβ

]

= −
∑
k 6=0

∑
〈αβ〉

Ũ4
kαβ

(Ẽkα + Ẽ−kβ)2

[
1

Ẽkα + Ẽ−kα
+

1

Ẽkβ + Ẽ−kβ

]

−
∑
k 6=0

∑
〈αβ〉

∑
σ 6=αβ

Ũ2
kαβ

(Ẽkα + Ẽ−kβ)2

[
Ũ2
kβσ

Ẽkα + Ẽ−kσ
+

Ũ2
kασ

Ẽkσ + Ẽ−kβ

] (4.25)

E
(4)
(3) = −

∑
k 6=0

∑
〈αβ〉

∑
σ 6=αβ

∑
ρ6=αβσ

ŨkασŨkβσŨkαρŨkβρ

(Ẽkα + Ẽ−kρ)(Ẽkβ + Ẽ−kρ)(Ẽkσ + Ẽ−kρ)
, (4.26)

1The author would like to thank Jonas Lundeby Willadsen for the help he provided in showing this
explicitly.
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E
(4)
(4) =−

∑
k 6=0

∑
〈αβ〉

Ũ4
kαβ

(Ẽkα + Ẽ−kβ)3

−
∑
k 6=0

∑
〈αβ〉

∑
σ 6=αβ

Ũ2
kαβ

(Ẽkα + Ẽ−kβ)2

[
Ũ2
kασ

Ẽkα + Ẽ−kσ
+

Ũ2
kβσ

Ẽkσ + Ẽ−kβ

]
,

(4.27)

where the subscript indicates from which case of term 1 in (4.22) the expression originates.
To this order we find contributions that couple four components. However, the focus of this
chapter is the three-components case, with components A, B, and C, so E(4)

(3) = 0.
To find the fourth-order superfluid drag density ρ(4)d,αβ all terms that contain the specific

boson components A and B must be made explicit, as in third-order, and the fourth-order
drag density becomes

ρ
(4)
d,AB =

16tAtBmAmBa
2

Ns

∑
k 6=0

Ũ4
kAB sin2(kxa)

(ẼkA + ẼkB)3

[
1

ẼkAẼkB
+

3

(ẼkA + ẼkB)2

]

+
8tAtBmAmBa

2

Ns

∑
k 6=0

sin2(kxa)

{
Ũ2
kAB

[
Ũ2
kAC + Ũ2

kBC

]
×

(
3

(ẼkA + ẼkB)4

[
1

ẼkA + ẼkC
+

1

ẼkB + ẼkC

]

− 1

(ẼkA + ẼkC)2(ẼkB + ẼkC)2

[
1

ẼkA + ẼkC
+

1

ẼkB + ẼkC

]

+
1

(ẼkA + ẼkB)3

[
1

(ẼkA + ẼkC)2
+

1

(ẼkB + ẼkC)2

])

+ Ũ2
kACŨ

2
kBC

(
1

(ẼkA + ẼkB)2

[
1

(ẼkA + ẼkC)3
+

1

(ẼkB + ẼkC)3

]

+
1

(ẼkA + ẼkB)3

[
1

(ẼkA + ẼkC)2
+

1

(ẼkB + ẼkC)2

])}
.

(4.28)

All in all the drag is
ρd,AB = ρ

(2)
d,AB + ρ

(3)
d,AB + ρ

(4)
d,AB, (4.29)

which is compared to the exact result for two components in Figure 4.1, in which case
ρ
(3)
d,AB = 0, and the subscript AB is dropped to indicate that there are only two components

present. There is good agreement between the exact expression and fourth-order perturbation
theory at small inter-component interactions. In fact, expanding the exact two-component
drag to fourth order in γAB gives the same expression as the perturbation expansion when
γAC = γBC = 0, which is done in appendix C.
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Figure 4.1: The second- and fourth-order expression for the superfluid drag density
in the two-component case, ρ(2)d +ρ

(4)
d , is compared to the exact expression ρd,with

Ns = 106, a = 1, tα = 1, mα = 1, γα = γ = 1, and nα = 0.3, while varying the
inter-component interaction λ = γAB/γ.

The perturbation expansion can be illustrated as excitations moving in and out of the
condensate and their interactions, shown in Figure 4.2 as diagrams. Diagram (a) represents
the second-order, (c) a third-order, and (b) and (d) some of the fourth-order contributions.
Specifically, (b) can be interpreted as a four-body collision contributing to the usual two-
component drag, while (d) is a four-body collision where the drag is completely mediated
via C, i.e. A and B do not interact directly. Diagram (c), which causes the reduction of the
drag, can therefore be interpreted as the contribution from three-body collisions.
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Figure 4.2: The diagrams illustrate the Rayleigh–Schrödinger perturbation expan-
sion as excitations moving in and out of the condensate and their interactions with
one another. The large rectangles represent the components of the BEC which
play the part of particle reservoirs, the arrowed lines the path of the excitations,
and circled vertices the two-body interactions. The diagram "rules" are as fol-
lowed: (1) Particle type and number is conserved at each vertex and must always
include two distinct boson components moving in and two moving out. (2) Each
vertex contributes a factor proportional to γαβ where α and β are the boson com-
ponents connected to the vertex. (3) Each vertex has two lines connected to other
vertices, and two lines connected to BEC reservoirs. (4) All the excitation paths
are closed in the sense that each line exiting a BEC reservoir must return to the
reservoir. Diagrams (a) and (b) illustrate the second- and fourth-order processes,
respectively, contributing to the drag coefficient in a two-component condensate.
Diagram (c) illustrates a third-order process in a three-component condensate,
a process which has no counterpart in a two-component condensate. Diagram
(d) illustrates one of several fourth-order processes possible in a three-component
condensate.

In Figure 4.3 the higher-order diagrams of Figure 4.2, which correspond to three- and
four-body collisions, are drawn as two-body collisions between components A and B. In
this way the drag between A and B is understood as collision events where increasingly
complicated interaction mechanisms, in which bosons move in and out of the BEC in the
intermediate states, are renormalized into effective interactions.
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Figure 4.3: The higher-order contributions in Figure 4.2 are drawn as two-body
diagrams by renormalizing the intermediate states and interactions into effective
interaction vertices.

We return to the investigation of how the third component C affects the superfluid drag
density ρd,AB and its physical interpretation after the numerical approach has been covered
to make the comparison of the two approaches easier, which is done in Figure 4.5. However,
some initial statements can be made by inspecting the perturbative expressions:

• The third-order contribution implies that the drag can be enhanced or diminished,
depending on the combination of strengths and signs of the inter-component interaction.
From (4.19) the condition for enhancing the drag is γABγACγBC < 0, and diminishing it
is γABγACγBC > 0, though this inequality is not precise due to fourth-order corrections.
The drag is therefore no longer sign-independent.

• The third component needs only couple to one of A and B to affect the drag between
them, as seen from the fourth-order contribution (4.28). In this case the drag is only
enhanced.

• Even when the interaction between A and B vanishes, γAB = 0, the third component
can mediate the drag between them, as seen from the fourth-order contribution with
ŨkAB = 0. Second- and third-order contributions are zero in this case.

A criterion for the perturbation expansion to be useful is for the correction terms to be
small compared to the energy levels,

|Ũkαβ| � |Ẽkα + Ẽkβ|. (4.30)
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This yields in the limit of small k0α and k→ 0 where the perturbative expansion is expected
to be worst,

|γαβ|
(nαtαnβtβ

γαγβ

) 1
4 �

√
γαnαtα +

√
γβnβtβ, (4.31)

which should hold for all pairs of components present.

4.3 Drag From Numerical Diagonalization of Hamilto-
nian

In this section we again focus on the three-component BEC, with components A, B, and C,
and write the Hamiltonian on matrix from as in section 3.1.1. There is no need to worry
about the troublesome terms fkα since the diagonalization is performed numerically. The
basis

Φk =
(
bkA, bkB, bkC , b

†
−kA, b

†
−kB, b

†
−kC , b

†
kA, b

†
kB, b

†
kC , b−kA, b−kB, b−kC

)T
(4.32)

is used, which yields the matrix Ak on a block diagonal form,

Ak =

[
Nk 0
0 N ∗k

]
, (4.33)

Nk =


EkA + fkA UAB UAC FA UAB UAC

UAB EkB + fkB UBC UAB FB UBC
UAC UBC EkC + fkC UAC UBC FC
FA UAB UAC EkA − fkA UAB UAC
UAB FB UBC UAB EkB − fkB UBC
UAC UBC FC UAC UBC EkC − fkC

 . (4.34)

With this choice of basis we must be careful to write J on the correct form since this ordering
will yield a different commutation relation for Φk than in 3.1.1,

J = [Φk,Φ
†
k] = diag(J̃ ,−J̃ ), J̃ = diag(1, 1, 1,−1,−1,−1). (4.35)

Finding the eigenvalues of this block diagonal matrix is computationally less demanding
because the eigenvalues of each block matrix can be evaluated separately, and by evaluating
the characteristic equation it can be seen that when the block matrices are complex conjugates



CHAPTER 4. SUPERFLUID DRAG DENSITY IN THREE-COMPONENT BEC 55

of one another, their eigenvalues E are related;

det
[
AkJ − E

]
= det

[
NkJ̃ − E 0

0 −N ∗k J̃ − E

]
= det

[
NkJ̃ − E

]
det
[
−N ∗k J̃ − E

]
= (−1)6det

[
NkJ̃ − E

]
det
[
N ∗k J̃ − (−E)

]
= det

[
NkJ̃ − E

]
det
[
NkJ̃ − (−E)

]∗
= 0,

(4.36)

where it has been used that the determinant is essentially a polynomial, so the complex
conjugate can be taken outside, and that the eigenvalues are real. This shows that the
eigenvalues of the second block are the same as the first, but with opposite signs. For this
reason only the eigenenergies of Nk needs to be considered. Note that by eigenenergies of
Nk is meant the eigenvalues of NkJ̃ with positive signs, Eki, i = 1, 2, · · · , 6.

The resulting Hamiltonian is

H = H̃0 −
1

2

∑
k 6=0

[EkA + EkB + EkC ] +
1

4

∑
k 6=0

6∑
i=1

Eki +
1

2

∑
k 6=0

6∑
i=1

Ekic†kicki. (4.37)

The energies Eki actually yield three distinct bands, not six, since the diagonalization
procedure produces the eigenenergies of k and −k simultaneously, e.g. ck4 = c−k1 and
Ek4 = E−k1. However, we use the "six band"-picture in the following for computational
convenience, though care must be taken at finite temperatures. The zero temperature free
energy density becomes.

F =
H̃0

Ns

− 1

2Ns

∑
k 6=0

[EkA + EkB + EkC ] +
1

4Ns

∑
k 6=0

6∑
i=1

Eki. (4.38)

For ∂2F
∂k0Ax∂k0Bx

∣∣
k0α→0

a finite difference formula is employed,(
∂2F

∂k0Ax∂k0Bx

)
k0α→0

≈ F(∆,∆)−F(−∆,∆)−F(∆,−∆) + F(−∆,−∆)

4∆2
, (4.39)

where F(k0Ax, k0Bx) denotes the free energy density with k0A = (k0Ax, 0) and k0B = (k0Bx, 0),
and ∆ is a parameter which should be much smaller than the spacing between quantized
momenta due to boundary conditions, ∆� 2π/

√
Ns.

In the two-component case the numerical approach is in nearly complete agreement with
the exact expression (3.55), as seen in Figure 4.4. The small differences are attributed to the
finite difference approximation of the derivative and numerical errors.
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Figure 4.4: The drag from the numerical approach, ρnumd , is compared to the exact
expression (3.55) in the two-component case by turning off interactions with the
third component, γAC = γBC = 0. The parameters are Ns = 104, a = 1, tα = 1,
mα = 1, nα = 0.3, and γα = γ = 1, with λ = γAB/γ. In the numerical approach
∆ = 2π10−4.

4.4 Effect of Third Component on Superfluid Drag Den-
sity

4.4.1 Stability Condition

The stability of the system is determined by the energy spectrum remaining real, but as
mentioned at the end of section 3.2, minimizing H̃0 with respect to nA, nB provides the same
stability condition in the two-component case. While a similar correspondence may not exist
for three components, an indicator for the stability can be found by minimizing H̃0 with
respect to nA, nB, and nC . Solving the resulting three coupled equations for the number
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densities gives

nA =
µ̃A(γ2

BC − γBγC) + µ̃B(γCγAB − γACγBC) + µ̃C(γBγAC − γABγBC)

γAγ2
BC + γBγ2

AC + γCγ2
AB − γAγBγC − 2γABγACγBC

,

nB =
µ̃A(γCγAB − γACγBC) + µ̃B(γ2

AC − γAγC) + µ̃C(γAγBC − γABγAC)

γAγ2
BC + γBγ2

AC + γCγ2
AB − γAγBγC − 2γABγACγBC

,

nC =
µ̃A(γBγAC − γABγBC) + µ̃B(γAγBC − γABγAC) + µ̃C(γ2

AB − γAγB)

γAγ2
BC + γBγ2

AC + γCγ2
AB − γAγBγC − 2γABγACγBC

,

(4.40)

where µ̃α = 4tα + µα. By demanding that µ̃α > 0 and nα > 0, these equations can be used
as an indicator for whether the system is stable or not.

4.4.2 Zero Temperature

In the following the numerical approach is primarily used to investigate the effect of the
third component on the drag. However, perturbation theory provides the same qualitative
behaviour, as is illustrated in Figure 4.5.

It is evident from Figure 4.6 and Figure 4.7 that the statements made from the pertur-
bative expression at the end of section 4.2.3 remain true.

These mean-field results are supported by large-scale quantum Monte Carlo simulations,
shown in Figure 4.8, which yield the same qualitative behaviour, though the quantum Monte
Carlo results are in general 40% higher than the mean-field results [47].
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Figure 4.5: Comparison of the two approaches. (a) and (b) show the superfluid
drag density in a three-component BEC due to fourth-order perturbation theory,
while (c) and (d) are from the numerical approach. (b) and (d) are slices of the
diagrams (a) and (c) at various λBC . The parameters used in both approaches are
Ns = 104, a = 1, tα = 1, mα = 1, nα = 0.3, γα = γ = 0.8 for α =A, B and C. For
the inter-component interactions we write λαβ = γαβ/γ, and use λAB = 0.2. In the
numerical approach ∆ = 2π10−4. The two approaches yield the same qualitative
behaviour and shows that the drag can be both enhanced and diminished by the
introduction of a third component.
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Figure 4.6: Results from the numerical approach to the superfluid drag density
in a three-component BEC, where (b) and (d) are slices of (a) and (c) at various
λBC . The parameters are Ns = 104, a = 1, ∆ = 2π10−4, tα = 1, mα = 1,
nα = 0.3, γα = γ = 1 for α =A, B and C. For the inter-component interactions
we write λαβ = γαβ/γ, and use λAB = 0.2 for (a) and (b), and λAB = 0 for (c)
and (d). Note that since ρd,AB = 0 when λAB = λAC = λBC = 0, the lower plots
are normalized by ρd,AB with λAB = 0.2, as for the upper plots, so the scale is the
same. A third component C can both enhance and diminish the superfluid drag
density ρd,AB appreciatively when λAC and λBC are both non-zero. When one of
these are zero the drag is only enhanced, and if the interaction between A and B
vanishes component C can still mediate the drag.
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Figure 4.7: Results from the numerical approach to the superfluid drag density in
a three-component BEC, where (b) shows slices from the diagram (a) at various
λBC . The parameters are Ns = 104, a = 1, ∆ = 2π10−4, tα = 1, mα = 1, nα = 0.3,
γα = γ = 1 for α =A, B and C. For the inter-component interactions we write
λαβ = γαβ/γ, and use λAB = 0.02. The interactions of A and B to the third
component dominates the value of ρd,AB when the interactions between A and B
are very weak. For these slices in parameter space the drag is initially reduced
to a minimum, after which the drag is increased again, even enhancing it beyond
the value in the origin, where C is decoupled from A and B.
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Figure 4.8: The mean-field (MF) results compared to quantum Monte Carlo
(QMC) simulations at T = 0.1 with Ns = 100, a = 1, tα = 1, mα = 1, nα = 0.3,
γα = γ = 1 for α =A, B and C, with λαβ = γαβ/γ.

We can try to understand why the superfluid drag density changes the way it does for
the various combinations of interaction strengths intuitively with particle collisions, as in the
two-component case. As an example, consider the case γAB, γAC > 0, and γBC < 0, i.e. A
pushes on both B and C, while B and C attract one another and can be expected to reside in
pairs on the same lattice sites. When a type A boson is incident a BC-pair, the probability
of a collision event is increased because there are two particles instead of one at the lattice
site, and colliding with either results in both picking up momentum since B and C will in
turn pull on one another. The result is that the drag of A on B increases.

Another example is when A and B are decoupled, γAB = 0, but both interact with C,
γAC , γCB 6= 0. The non-zero, positive drag can be understood as in the two-component
case, but with C as the mediator of the interaction between A and B. This is essentially
the two-component case in two steps. An illustration of the two-body collisions for some
combinations of interactions are shown in Figure 4.9.
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Figure 4.9: An illustration of how a third component C can contribute to the drag
on a lattice. In (a)-(d) we have γAB = 0, and γAC , γBC < 0, and the two-body
collisions are as follows: (a) An A boson is incident a BC pair and (b) transfers
momentum to C, dragging it along because the system finds it energetically fa-
vorable to keep them on the same lattice site. (c) The C boson then transfers
momentum to B to drag it along as well, resulting in a positive drag from A on
B mediated by C. The situation in (e)-(h) is similar, but with γAC > 0, so that
A instead pushes C out of the lattice site since it is now energetically favorable to
separate A and C. Boson C pulls B with it, yielding once more a positive drag.

The general effect of the third component on the behaviour of the drag is seen in Fig-
ure 4.10: A third component C is added to the system and initially interacts only with A,
yielding a parabolic dependence on γAC with the minimum at γAC = 0, which is due to
fourth-order in perturbation theory. Then, as the interaction between B and C is turned
on, the parabola is shifted down and to the side, depending on the sign of γAB and γBC ,
which is due to third-order in perturbation theory. Now, recall the interpretation of the
Rayleigh–Schrödinger perturbative expansion, illustrated in Figure 4.2. Each contribution
can be attributed a diagram which shows the various interactions mechanisms taking place.
From this it can be conjectured that the shift in the drag is due to competition between
three- and four-body collisions, where the three-body contributions are not sign-definite.
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Figure 4.10: An illustration of how the behaviour of the drag is shifted as inter-
actions with the third component is turned on. When γAB, γAC 6= 0 and γBC = 0
the drag remains parabolic with respect to γAC with the minimum in the origin,
but as γBC is turned on the drag is shifted down and to the side, depending on
the sign of γBC . In the figure it is assumed that γAB > 0, but with γAB < 0 the
direction of the sideways shift is reversed.

4.4.3 Finite Temperatures

At finite temperatures the free energy is

F =
H̃0

Ns

− 1

2Ns

∑
k 6=0

[EkA + EkB + EkC ] +
1

4Ns

∑
k 6=0

6∑
i=1

Eki

+
1

2βNs

∑
k 6=0

6∑
i=1

ln
(
1− e−βEki

)
.

(4.41)

Recall that the energies Eki yields three distinct bands, not six, which is the reason for
including the 1/2 factor in front of the temperature dependent part of the free energy.

The temperature dependence of the superfluid drag density is shown is Figure 4.11 at
various combinations of the inter-component interaction strengths, and the distribution of
drag per k-vector in Figure 4.12 and Figure 4.13.
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Figure 4.11: The temperature dependence of ρd,AB is shown at various combi-
nations of the inter-component interaction strengths, normalized by the value at
T = 0, λAB = 0.5, and λAC = λBC = 0. The plots are numbered by decreasing
value at T = 0. The parameters used are Ns = 104, a = 1, ∆ = 2π10−4, tα = 1,
mα = 1, nα = 0.3, γα = γ = 1 for α =A, B and C. All the plots go towards zero in
the same manner at high T , not shown here. Three of the plots show behaviour
that differ from the rest. In (3) the drag initially decreases faster than the others,
even falling below (4) which has a smaller value at T = 0. The drag in (5) and (6)
remains nearly the same for small temperatures, though (6) has an slight initial
decrease at very small T .
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Figure 4.12: The contribution to the drag density as a function of momentum is
shown for (3), (a)-(c), and (5), (d)-(f), of Figure 4.11 at various temperatures in
units of the mean contribution per k-vector at T = 0; ρd,AB(T = 0)/Ns. The
parameters are the same as in Figure 4.11, but with Ns = 200 for increased
resolution on the k-plane. From the figure the temperature dependence can be
understood as the suppression of contributions in an increasing region around the
origin in k-space. This explains why (3) in Figure 4.11 initially decreases faster
than (5) with T ; the majority of the drag in (3) comes from momenta very close
to the origin, while in (5) the main contribution is at larger momenta and survives
longer as the region of suppression is increased with T .
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Figure 4.13: The contribution to the drag density as a function of momentum
is shown for (6) of Figure 4.11 at various temperatures, in units of the mean
contribution per k-vector at T = 0; ρd,AB(T = 0)/Ns. The parameters are the
same as in Figure 4.11, but with Ns = 200 for increased resolution on the k-plane.
The distribution of drag in the k-plane is seen to be a combination of the situation
in (3) and (5) in Figure 4.12: There are two inner and two outer lobes where the
contribution is centered.

The decrease in drag as the temperature increases is seen to depend on the inter-component
interactions, and can be understood as the suppression of contributions in an increasing re-
gion around the origin in k-space. The majority of the drag on the k-plane is distributed
as a symmetric pair of lobes around the origin. Varying interaction strengths changes the
proximity of the lobes to the origin and explains the various temperature dependencies: The
drag decreases faster with temperature when the lobes are close the origin and slower when
they are further away. The same is true for the two-component case. However, in the three-
component case an additional pair of lobes can emerge, as in Figure 4.13. This causes the
drag to experience an initial decrease followed by a plateau-like region. This feature is absent
for two-components.

4.5 Critical Superfluid Velocity

The critical superfluid velocities for the three-component BEC can also be found by Landau’s
criterion (2.39), though by numerical means since the analytic expression for the excitation
spectrum is unknown.

Recall that the criterion is (with ~ = 1)

vc = min
k

[
ε(k)

k

]
, (4.42)

which is applied to each of the three energy bands (having set k0α = 0), yielding three critical
velocities, vci. The minimum is reached at k → 0, where also Eki ∝ k → 0, just as in one-
and two-component interacting BECs. The following numerical approach can thus be used;

vci ≈
E∆i√
2∆

, (4.43)
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where E∆i means that the momentum is k = ∆ = (∆,∆), where ∆ is once more a small
value.

Figure 4.14: The critical superfluid velocities for the three-component BEC is
shown with varying λAC and λBC at various nA, normalized by the critical velocity
of component B in the uncoupled limit, vcB = a

√
2tBγBnB. The parameters are

tα = 1, γα = 1, nB = nC = 0.3, λAB = 0.2, and ∆ = π10−6.
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Figure 4.15: The critical superfluid velocities for the three-component BEC is
shown with varying λAC and λBC at various λAB, normalized by the critical ve-
locity of component B in the uncoupled limit, vcB = a

√
2tBγBnB. The parameters

are a = 1, tα = 1, γα = 1, nα = 0.3, and ∆ = π10−6.

It is the smallest vci that is physically meaningful with respect to the critical superfluid
velocity, and is seen to generally decrease with the introduction of the third component.
In the λACλBC-plane there are "ridges" along which the critical superfluid velocity remains
nearly the same. Increasing λAB makes the ridge larger, while increasing nA makes it smaller
in addition to rotating in the λACλBC-plane.

4.6 Numerical Diagonalization of N-Component Hamil-
tonian

Going beyond three-component BECs is more convenient to do via the numerical approach
than through perturbation theory for several reasons. Perturbation theory is expected to
yield increasingly erroneous results as a larger fraction of the Hamiltonian is treated as
perturbations, which happens when more components and their interactions with one another
are included. There is also the issue that the parameter space in which perturbation theory
is quantitatively reliable is small, even for just two components as is seen in Figure 4.1.
Additionally, computing the fourth-order perturbation terms is a cumbersome process for
three components, and even then some terms could be dropped since they required four or
more components to be non-zero. The number of terms needed to be computed will be very
large as more components are added. Finally, the perturbation scheme employed is only valid
at zero temperatures. The numerical approach has an advantage on all of these points; it
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has no restrictions on the parameter space that can be probed, as long as we remain in the
superfluid regime and do not transition into a Mott insulating phase, and have sufficiently
weak interactions that mean-field theory is still reliable. Expanding to more components
only requires expanding the basis Φk, which will yield a correspondingly larger matrix Ak,
and since the true energy spectrum is used, generalizing to finite temperatures is straight
forward. In fact, a general procedure can be given:

Choose the basis vector
Φk = (Φ̃k, (Φ̃

†
k)T)T, (4.44)

where
Φ̃k = (bk1, bk2, · · · , bkN , b†−k1, b

†
−k2, · · · , b

†
−kN), (4.45)

which, after using commutation relations and making −k terms in the Hamiltonian explicit,
yields the block diagonal matrix

Ak =

[
Nk 0
0 N ∗k

]
, (4.46)

where Nk is a 2N × 2N hermitian matrix. J will be

J = [Φk,Φ
†
k] = diag(J̃ ,−J̃ ), J̃ = diag(IN ,−IN), (4.47)

where IN is the N ×N unit matrix. After diagonalizing NkJ̃ and using the absolute values
of the eigenvalues to obtain the energy spectrum, the Hamiltonian becomes

H = H̃0 −
1

2

∑
k 6=0

N∑
i=1

Eki +
1

2

∑
k 6=0

N∑
i=1

Eki +
∑
k 6=0

N∑
i=1

Ekic†kicki, (4.48)

where it has been used that the diagonalization yields the excitations of k and −k simulta-
neously. From this the free energy density and superfluid drag density is readily found.





5 | Complications with Superfluid Drag
in SOC BEC

The initial aim of this thesis was to use the phase twist method of Ref [27] described in
section 2.3.2, which does not rely on Galilean invariance, to find the effect of SOC on the
superfluid drag density in a two-component BEC. Thus far the drag in a weakly interacting
two-component BEC has been re-derived in chapter 3, and the effect of a third component
investigated in chapter 4, where a generalization to N components was presented as well.
However, when introducing SOC complications arise. This chapter is therefore devoted to
the difficulties encountered when considering the contribution of SOC to the superfluid drag
density, focusing on weak SOC. This means sufficiently small coupling and large enough
chemical bias that the excitation spectrum remains non-degenerate in the ground state at
zero momentum (see section 2.5.3 and 2.5.4). Otherwise there should be additional order
parameters describing the condensation into the degenerate ground states whose relative
complex phases are of importance, as will be seen in chapter 6.

The starting point is, as usual, the Hamiltonian, and the only missing ingredient is SOC
since the rest has already been considered in chapter 3;

HSOC = −
∑
i

∑
αβ

∑
lδ

iηlδσ
αβ
l [a†αiaβi+δ − a

†
αiaβi−δ]. (5.1)

The order parameter is introduced as before, aαi = ψ0αi + φ̂αi, where ψ0αi = ψ0αe
ik0α·ri , and

replaced into (5.1),

HSOC =−
∑
i

∑
αβ

∑
lδ

iηlδσ
αβ
l

{
ψ∗0αψ0βe

−ik0α·ri
[
e−ik0β ·(ri+δ) − e−ik0β ·(ri−δ)

]
ψ∗0αe

−ik·ri
[
φ̂βi+δ − φ̂βi−δ

]
+ ψ0β

[
eik0β ·(ri+δ) − eik0β ·(ri−δ)

]
φ̂†αi

+ φ̂†αi
[
φ̂βi+δ − φ̂βi−δ

]}
.

(5.2)

Fourier transforming with the phase twist, performing the sum over lattice sites, and identi-

71
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fying ψ0α = ψ∗0α =
√
n0α yields

HSOC =
∑
αβ

∑
lδ

ηlδσ
αβ
l

{
2
√
Nsn0α sin(k0β · δ)b†−∆k0,α

+ 2
√
Nsn0α sin(k0α · δ)b∆k0,β

+
∑
k 6=0

[
sin
(
(k + k0β) · δ

)
b†k−∆k0,α

bk,β + sin
(
(k + k0α) · δ

)
b†k,αbk+∆k0,β

]}
,

(5.3)

where ∆k0 = k0α − k0β 6= 0. In the second line during the calculations there is a sum over
two momenta k and k′, where one of the sums is removed by the use of the delta function
δk−k′,∆k0 . To make HSOC Hermitian the delta function is solved for both k and k′ → k with
a factor 1/2 in front each, which is why the last line does not have the factor 2 from the
replacement eix − e−ix = 2i sin(x) as in the first line.

Unlike in chapter 3 the zeroth-order term in the operators vanishes since it includes the
factor δ∆k0,0, and first-order terms remain, but this is not the root of the complications with
SOC1. Instead, notice that the momentum of the operator pairs are not equal in magnitude,
but have a small difference ∆k0. This is the origin of the difficulties and have made attempts
at obtaining the energy spectrum unsuccessful.

Instead of diagonalizing the Hamiltonian, perhaps a perturbation expansion can be em-
ployed to investigate the weak SOC limit, as in section 4.2. As in the three-component case
the operators in HSOC are transformed into the partially diagonal basis via (2.16) and treated
as a perturbation. The first-order energy correction (4.8) vanishes, while the second-order
(4.9) yields a non-zero value. The contributions due to the terms linear in the operators in
(5.3) are

(i) : |Nm〉 = |GS + (∆k0, ↓)〉
(ii) : |Nm〉 = |GS + (−∆k0, ↓)〉
(iii) : |Nm〉 = |GS + (∆k0, ↑)〉
(iv) : |Nm〉 = |GS + (−∆k0, ↑)〉 ,

(5.4)

which yield, with the convenient definition skα =
∑

lδ nlδσ
ᾱα
l sin

(
(k + k0α) · δ

)
, the energy

1Linear terms can be removed by a redefinition of the operators. Consider

g1b
†
1 + g2b

†
1b2,

where b1 and b2 are boson operators, and g1 and g2 are complex numbers. By defining the operator c2 =
(g1/g2 + b2), whose commutator relation can be shown to be the same as b2, i.e. bosonic, the above can be
rewritten as

g2b
†
1

(
g1
g2

+ b2

)
= g2b

†
1c2 → g2b

†
1b2,

where in the last step the new operator is recast as c2 → b2. In the path integral formulation, where the
operators are replaced by complex numbers, this can be understood as a shift in the fields during integration.
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corrections

E
(2)
lin, (i) = −4Nsn↑|v∆k0,↓s0↑|2

Ẽ∆k0,↓ − f∆k0,↓
,

E
(2)
lin, (ii) = −4Nsn↑|u∆k0,↓s0↑|2

Ẽ∆k0,↓ + f∆k0,↓
,

E
(2)
lin, (iii) = −4Nsn↓|v∆k0,↑s0↓|2

Ẽ∆k0,↑ + f∆k0,↑
,

E
(2)
lin, (iv) = −4Nsn↓|u∆k0,↑s0↓|2

Ẽ∆k0,↑ − f∆k0,↑
.

(5.5)

Upon performing the differentiation2 and subsequent zero limit of the phase twist the
contribution of the above is found to be zero.

The contributions due to the bilinear terms of (5.3) are

(i) : |Nm〉 = |GS + (k −∆k0, ↑) + (−k, ↓)〉
(ii) : |Nm〉 = |GS + (−k + ∆k0, ↑) + (k, ↓)〉
(iii) : |Nm〉 = |GS + (k + ∆k0, ↓) + (−k, ↑)〉
(iv) : |Nm〉 = |GS + (−k −∆k0, ↓) + (k, ↑)〉 ,

(5.6)

so that

E
(2)
quad, (i) = −

∑
k 6=0

|sk↓uk−∆k0,↑uk,↓|2

Ẽk−∆k0,↑ + Ẽ−k,↓
,

E
(2)
quad, (ii) = −

∑
k 6=0

|sk↓vk−∆k0,↑uk,↓|2

Ẽ−k+∆k0,↑ + Ẽk,↓
,

E
(2)
quad, (iii) = −

∑
k 6=0

|sk↑uk+∆k0,↓vk,↑|2

Ẽk+∆k0,↓ + Ẽ−k,↑
,

E
(2)
quad, (iv) = −

∑
k 6=0

|sk↑vk+∆k0,↓uk,↑|2

Ẽ−k−∆k0,↓ + Ẽk,↑
.

(5.7)

It may thus appear as if the weak SOC limit has been solved and an expression3 of how
SOC alters the superfluid drag found. However, the drag from (5.7) suffers a fatal flaw,
namely that it is extremely sensitive to the lattice size: The resulting expression inside the
k-sum diverges for k → 0, so when the lattice becomes larger the spacing between momenta
decreases, and contributions increasingly close to k = 0 are included, making the drag density
diverge as Ns →∞. Perturbation theory therefore fails to yield the weak SOC contribution
to the drag.

2The symbolic computation Python library SymPy was used to perform the differentiation in this chapter.
3The final expression of the superfluid drag density from (5.7) is very large and is therefore not given for

the sake of brevity.





6 | Phases of SOC and Weakly Interact-
ing BEC

In this chapter the ground state phases of the SOC and weakly interacting BEC is considered
and found to be qualitatively similar to results from Monte Carlo simulations and previous
mean-field calculations [28], yielding four distinct phases characterized by the population
of spin-up and spin-down in addition to the degeneracy of the BEC and the distribution of
spin-up and spin-down among these. The contribution due to the Bogoliubov transformation,
which is neglected during the construction of the diagram, is considered and found to be of
significance, and the finite temperature behaviour is discussed qualitatively.

6.1 Mean-Field Model for SOC and Weakly Interacting
BEC

We start with
H = Hkin +Hcp +HSOC +Hint, (6.1)

where

Hkin = −t
∑
αi

∑
δ

[
a†αiaαi+δ + a†αiaαi−δ

]
,

Hcp = −
∑
αi

µαa
†
αiaαi,

HSOC = −
∑
αβi

∑
lδ

iηlδσ
αβ
l

[
a†αiaβi+δ − a

†
αiaβi−δ

]
,

Hint =
1

2

∑
αβi

γαβa
†
αia
†
βiaβiaαi.

(6.2)
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Fourier transforming with (2.99) is done as before, using (2.100), eix + e−ix = 2 cos(x), and
eix − e−ix = 2i sin(x) to get

Hkin = −2t
∑
kα

∑
δ

cos(k · δ)b†kαbkα,

Hcp = −
∑
kα

µαb
†
kαbkα,

HSOC = 2
∑
kαβ

∑
lδ

ηlδσ
αβ
l sin(k · δ)b†kαbkβ =

∑
k

[
skb
†
k↑bk↓ + s∗kb

†
k↓bk↑

]
,

Hint =
1

2Ns

∑
{kj}

∑
αβ

γαβb
†
k1α
b†k2βbk3βbk4αδk1+k2,k3+k4 ,

(6.3)

where we have defined sk = 2
∑

lδ ηlδσ
↑↓
l sin(k · δ).

Since we are interested in the superfluid phase of the BEC we apply mean-field theory on
b†kiα and bkiα, where ki are the momenta of the ground states which we anticipate may be
degenerate at ki 6= 0 from the discussion in section 2.5.4. However, instead of substituting
b†kiα and bkiα with real values we allow them to be complex, bkiα =

√
Niαe

−iθiα , where θiα
is the phase of the complex order parameter that depends on boson component and ground
state momentum. We assume Niα � 1, and define the number density niα = Niα/Ns. For
Hkin, Hcp, and HSOC the ki terms are extracted from the sum,

Hkin = −2tNs

∑
iα

∑
δ

cos(ki · δ)niα − 2t
∑
k 6={ki}

∑
α

∑
δ

cos(k · δ)b†kαbkα,

Hcp = −Ns

∑
iα

µαniα −
∑
k 6={ki}

∑
α

µαb
†
kαbkα,

HSOC = Ns

∑
i

[
sie

i(θi↑−θi↓) + s∗i e
−i(θi↑−θi↓)

]√
ni↑ni↓ +

∑
k 6={ki}

[
skb
†
k↑bk↓ + s∗kb

†
k↓bk↑

]
= Ns

∑
i

2|si| cos(φi + ∆θi)
√
ni↑ni↓ +

∑
k 6={ki}

[
skb
†
k↑bk↓ + s∗kb

†
k↓bk↑

]
.

(6.4)

The phase of si = ski , φi, and the difference ∆θi = θi↑ − θi↓ has been defined.
The interaction term Hint requires more consideration since the sum is over four momenta,

related by the delta function δk1+k2,k3+k4 . The possible combinations of momenta with mean-
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field theory are

(1) : k1 = k2 = k3 = k4 = ki

(2) : k1 = k3 = ki 6= k2 = k4 = kj

(3) : k1 = k4 = ki 6= k2 = k3 = kj

(4) : k1 = k3 = ki 6= k2 = k4 = k

(5) : k1 = k4 = ki 6= k2 = k3 = k

(6) : k2 = k3 = ki 6= k1 = k4 = k

(7) : k2 = k4 = ki 6= k1 = k3 = k

(8) : k1 = −k2 = ki 6= k3 = −k4 = k

(9) : k3 = −k4 = ki 6= k1 = −k2 = k.

(6.5)

When the ground state ceases to be degenerate, ki,kj → 0, the cases (2)-(3) do not contribute
since then they are equivalent to (1). Writing out Hint for the above possible combinations
of momenta yields

(1) :
Ns

2

∑
iαβ

γαβniαniβ

(2) :
Ns

2

∑
i 6=j

∑
αβ

γαβ
√
niαniβnjαnjβe

−i(θiα−θiβ)+i(θjα−θjβ)

(3) :
Ns

2

∑
i 6=j

∑
αβ

γαβniαnjβ

(4) :
1

2

∑
k 6={ki}

∑
iαβ

γαβ
√
niαniβb

†
kβbkαe

i(θiα−θiβ)

(5) :
1

2

∑
k 6={ki}

∑
iαβ

γαβniαb
†
kβbkβ

(6) :
1

2

∑
k 6={ki}

∑
iαβ

γαβniβb
†
kαbkα

(7) :
1

2

∑
k 6={ki}

∑
iαβ

γαβ
√
niαniβb

†
kαbkβe

−i(θiα−θiβ)

(8) :
1

2

∑
k 6={ki}

∑
iαβ

γαβ
√
niαn−iβbkβb−kαe

i(θiα+θ−iβ)

(9) :
1

2

∑
k 6={ki}

∑
iαβ

γαβ
√
niβn−iαb

†
kαb
†
−kβe

−i(θiβ+θ−iα).

(6.6)
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Performing the sum over spins, using relations such as∑
i 6=j

niαnjβ =
[∑

i

niα

][∑
i

niβ

]
−
∑
i

niαniβ,

nα =
∑
i

niα,
(6.7)

and assuming interaction strengths γ↑ = γ↓ = γ and γ↑↓ = γ↓↑ = λγ, yields the zeroth-order
Hamiltonian in the non-degenerate case as

H̃non-degen
0 =

1

2
γNs

[
n2
↑ + n2

↓ + 2λn↑n↓

]
−Ns

[
4t(n↑ + n↓) + µ↑n↑ + µ↓n↓

]
, (6.8)

and in the degenerate case

H̃degen
0 =

1

2
γNs

{
−
∑
i

n2
i↑ −

∑
i

n2
i↓ − 2λ

∑
i

ni↑ni↓ + 2n2
↑ + 2n2

↓ + 2λn↑n↓

+ 2λ
[∑

i

√
ni↑ni↓ cos(∆θi)

]2

+ 2λ
[∑

i

√
ni↑ni↓ sin(∆θi)

]2}
− 2tNs

∑
iδ

cos(ki · δ)
[
ni↑ + ni↓

]
− µ↑Nsn↑ − µ↓Nsn↓

+ 2Ns

∑
i

|si| cos(φi + ∆θi)
√
ni↑ni↓.

(6.9)

The bilinear terms of the Hamiltonian are

H̃2 =
∑
k 6={ki}

[
Ek↑b

†
k↑bk↑ + Ek↓b

†
k↓bk↓ + (sk +G↑↓)b

†
k↑bk↓ + (s∗k +G∗↑↓)b

†
k↓bk↑

+
1

2
F↑bk↑b−k↑ +

1

2
F ∗↑ b

†
k↑b
†
−k↑ +

1

2
F↓bk↓b−k↓ +

1

2
F ∗↓ b

†
k↓b
†
−k↓

+ U↑↓bk↑b−k↓ + U∗↑↓b
†
k↑b
†
−k↓

]
,

(6.10)

where the coefficients are defined as

Ekα = −2t
∑
δ

cos(k · δ)− µα + 2γnα + λγnᾱ,

Fα = γ
∑
i

√
niαn−iαe

i(θiα+θ−iα),

G↑↓ = λγ
∑
i

√
ni↑ni↓e

−i(θi↑−θi↓),

U↑↓ = λγ
∑
i

√
ni↑n−i↓e

i(θi↑+θ−i↓).

(6.11)

To determine the phases of the system the free energy is minimized with respect to the
variational parameters, which are the BEC densities niα, the complex phases θiα, and the
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ground state momentum vectors ki. From the discussion in 2.5.4 we expect the ground
state to be at k = 0, or four-fold degenerate at ki = (±k0,±k0). This yields 5 variational
parameters in the non-degenerate case, and 17 in the degenerate case. To reduce this number
we are motivated by results from the literature [48] and make the assumption that the
degenerate BEC will only condense into one or two of the ground states, with opposite
momenta. This reduces the number of variational parameters from 17 to 9. In the remainder
of this chapter we consider Rashba SOC, ηxy = −ηyx = η, so that sk = 2η[sin(kya) +
i sin(kxa)], and define µ↑ = µ+ ∆µ and µ↓ = µ−∆µ.

6.2 Phase-Diagram at Zero Temperature

To contstruct the phase diagram we only consider the zeroth-order of the Hamiltonian. There
are only two variational parameters in H̃non-degen

0 , n↑ and n↓, and 7 in H̃degen
0 , n1↑, n2↑, n1↓,

n2↓, ∆θ1, ∆θ2, and k0. Minimizing with respect to these, picking the lowest of them, yields
the λ-η diagrams shown in Figure 6.1, from which a phase diagram is constructed, show in
Figure 6.2.
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Figure 6.1: The diagrams show the characteristics of the BEC, by minimizing
H̃non-degen

0 and H̃degen
0 , in the λ-η plane with µ = −1, ∆µ = 0, t = 1, and γ = 2.

Diagram (a) shows the difference in population of spin-up and spin-down, and (b)
shows the difference in population of the ground state minima k1 = −k2. Diagram
(c) shows the ground state momentum, and (d) the total density of particles on
the lattice. Note that when k0 = 0 the difference in population of ground state
minima is 1, since then there is only one minima, and that the total density of
particles does not correspond to the physical density per site, since the BEC can
be inhomogeneous, but rather ntot =

∑
iα niα/Ns.
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Figure 6.2: The diagram is constructed from Figure 6.1 and shows four distinct
phases of the BEC in the λ-η plane. PZM is characterized by having the minimum
at k0 = 0, and favoring full spin imbalance. In PW the BEC is degenerate and
condensed into one of the minima, with equal amounts of spin-up and spin-down.
SW is also degenerate and has equal spin-up and spin-down, but is distributed
equally in two minima with opposite momentum. The final phase, ZM, which
occurs at η = 0 and λ < 1, has k0 = 0 with equal amounts of spin-up and spin-
down. The area of ZM is exaggerated in the figure to easier illustrate where it is
on the λ-η plane.

We identify four phases characterized by the following;

• ZM phase: The BEC is non-degenerate at k0 = 0, with equal populations of spin-up
and spin-down, and is referred to as the Zero-Momentum (ZM) phase. This phase is
in the η = 0 slice between λ = 0 and λ = 1, and therefore hard to see in Figure 6.1.

• PZM phase: The BEC is non-degenerate at k0 = 0, and favors full spin imbalance.
It is therefore referred to as the Polarized Zero-Momentum (PZM) phase.

• PW phase: The BEC is degenerate and condensed into one of the minima at k0 > 0,
with equal populations of spin-up and spin-down. The condensate is thus a plane-wave
and is referred to as the Plane-Wave (PW) phase.

• SW phase: The BEC is degenerate and condensed into two minima with opposite
momentum, k1 = −k2 6= 0, with equal populations of spin-up and spin-down. Since
the condensate is distributed in two oppositely moving plane waves it creates a standing
wave which has a striped density distribution, and is therefore referred to as the Stripe-
Wave (SW) phase.
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The SW phase is absent, replaced by the PW phase, if the substitution bkiα →
√
niα is

made instead during the mean field procedure, i.e. the complex argument set to zero. The
complex phases of the order parameters are therefore important for the existence of the SW
phase.

Adding a chemical bias ∆µ, e.g. an external magnetic field, causes an increase in spin-
imbalance in all the phases, and reduces the area of the SW phase in favor of PZM. This
can be understood as the tendency to align the spins with the external magnetic field that
causes the chemical bias.

6.3 Energy Spectra and Fluctuations of the Ground State

Ideally, the contribution due to the energy spectrum, i.e. the trace terms of the Bogoliubov
transformation (2.35), should be included in the determination of the variational parameters
and construction of the diagram. Unfortunately, for reasons the author is unable to explain,
this produces the incorrect energy spectrum in the zero SOC limit with λ < 1, the ZM phase,
for which the elementary excitations are known from (3.44). Therefore, the energy spectra
for various parameters and phases are instead obtained by inserting the result of minimizing
the zeroth-order Hamiltonian into H̃2, which can once more be expressed in matrix form, as
in section 3.1.1. A basis vector similar to that of section 4.3 is chosen,

Φk =
(
bk↑, bk↓, b

†
−k↑, b

†
−k↓, b

†
k↑, b

†
k↓, b−k↑, b−k↓

)T
, (6.12)

which is just a reordering of the elements. We must once again take care to write J on the
correct form since the reordering will yield a different commutation relation for Φk,

J = [Φk,Φ
†
k] = diag(J̃ ,−J̃ ), J̃ = diag(1, 1,−1,−1). (6.13)

With this choice of basis the matrix Ak is on the convenient block diagonal form

Ak =

[
Nk 0
0 N ∗k

]
, (6.14)

Nk =


Ek↑ sk +G↑↓ F ∗↑ U∗↑↓

s∗k +G∗↑↓ Ek↓ U∗↑↓ F ∗↓
F↑ U↑↓ Ek↑ −s∗k +G∗↑↓
U↑↓ F↓ −sk +G↑↓ Ek↓

 , (6.15)

and only the diagonalization of Nk needs to be considered to obtain the energy spectrum
(see the discussion of block diagonal matrices in section 4.3).

Note that the minimization of H̃non-degen
0 and H̃degen

0 only determines the relative phases
∆θi, but the elements of (6.15) are generally dependent on θiα. It therefore appears at
first glance that the minimization of the zeroth-order Hamiltonian does not provide enough
information to yield the elementary excitations. However, writing out the characteristic
equation of (6.15) and investigating the complex phases of each term shows that the energy
spectrum also only depends on ∆θi.
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Figure 6.3: The energy spectrum of the weakly interacting and SOC BEC for
various inter-component interaction and SOC strengths, λ and η, along (k, 0) and
(k, k) in k-space. The slices (0, k) and (k,−k) are equivalent, and the spectra are
even in k. The phase belonging to each energy spectrum is shown. The system
parameters are µ = −1, ∆µ = 0, t = 1, a = 1, and γ = 2. The energy spectrum
has two bands in the ZM, PZM and SW phases, i.e. Ek1 = Ek3 and Ek2 = Ek4,
while it has four bands in the PW phase.

The energy spectrum at various points in the phase diagram is shown in Figure 6.3, and
the zero SOC limit with λ < 1 yields the same spectrum as (3.44), as we would expect.
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Figure 6.4: The energy spectrum of the weakly interacting SOC BEC on the SW
side of the transition between the PW and SW phases at λ = 1. The system
parameters are µ = −1, ∆µ = 0, t = 1, a = 1, and γ = 2. The lowest band
is linear and gap-less near the minima, but quickly develops a gap and becomes
quadratic as λ is increased further.

The spectrum is gap-less in the ZM and PZM phases, and along the transition between PW
and SW. Thermal fluctuations, which depend primarily on the excitations near the ground
states, are therefore expected to be of importance in these regions. We can investigate the
thermal contribution further by computing the temperature dependent part of the free energy
density at small temperatures, denoted by Cth. When there are four distinct bands, as in the
PW phase, the thermal contribution is

Cth =
1

βNs

4∑
i=1

∑
k 6={ki}

ln(1− e−βEki/2), (6.16)

while for the phases where there are only two bands, ZM, PZM, and SW, the expression is
instead

Cth =
1

βNs

2∑
i=1

∑
k 6={ki}

ln(1− e−βEki). (6.17)

This will only provide a qualitative insight into the thermal effects since the parameters of the
zero-temperature diagram is used to compute the excitation spectrum, which are themselves
dependent on temperature.

The contribution of the terms that arise form the Bogoliubov transformation may also be
investigated;

Cbo =
1

4Ns

∑
k 6={ki}

(
Ek1 + Ek2 + Ek3 + Ek4

)
− 1

2Ns

∑
k 6={ki}

(
Ek↑ + Ek↓

)
. (6.18)
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Figure 6.5: The (a) free energy density and the relative (b) Bogoliubov and (c)
thermal contributions for the phase diagram in Figure 6.2, with Ns = 1012 and
T = 0.05. Note that the square root of the thermal contribution is shown to easier
illustrate differences in the diagram.

Both the Bogoliubov and thermal contributions relative to the free energy of the ground
state F0 are shown in Figure 6.5. The Bogoliubov contribution is of order 5%− 20% relative
to F0, except in the PW phase where it vanishes. This can be shown explicitly by computing
the energy spectrum when n1↑ = n1↓ = n/2 and n2↑ = n2↓ = 0, for which an analytic
expression is possible,

Eki = Ek±1±2 = Ek ±1

√
|sk|2 + |G↑↓|2 ±2 2|G↑↓||sk| cos(∆θ1 + φk). (6.19)

It is clear from (6.19) that Cbo = 0 in the PW phase. Otherwise, Cbo is generally large
relative to F0 and is of significance when constructing the full phase diagram. From a purely
energetic point of view, it can be expected that the area of PW is reduced, giving way to
both ZM and SW, and that the PZM phase expands into the region of SW.

The thermal contribution Cth in Figure 6.5 suggests that the boundary between the
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PW and SW phases is sensitive to thermal fluctuations and may favor PW. This is under-
stood from the elementary excitations; the spectrum of the PW phase has four bands and
is quadratic when the gap is closed near λ = 1, while SW has two bands and is linear, as
seen from Figure 6.4. The PW phase therefore provides a larger entropic gain than SW, and
we may postulate that the SW phase will give way to the PW phase as the temperature is
increased.

Similar arguments are applied to the transition line between the SW and PZM phases.
SW is gapped near the transition, while PZM is not. As the temperature is increased the
PZM phase is favored due to its superior gain of entropy, except possibly for small η where
the SW-PZM and SW-PW transition lines converge. Here the gap in the SW phase nearly
vanishes and is four-fold degenerate at k0 > 0, as opposed to the PZM phase which is non-
degenerate at k0 = 0, causing the SW phase to be favorable instead.

That the inhomogeneous, superfluid BEC with large SOC may favor spin-imbalance with
increasing temperature near the SW-PZM transition is consistent with the study of the
homogeneous, normal fluid BEC in Ref [49]. In this work it was found that with no SOC,
increasing the temperature causes a thermal remixing of spin-up and spin-down bosons, so
that stronger inter-component interaction is needed to cause a spin-imbalance. Turing on
the SOC, however, causes the imbalance to increase with temperature for some interaction
strengths. It was proposed that this effect is driven by entropy: The free energy of the
system depends on the the energy U and entropy S with temperature tuning their relative
importance, F = U−TS. The system therefore undergoes a compromise between minimizing
the former and maximizing the latter. From this we expect mixing of the spins at increased
temperatures because this provides more distinct configurations and thus a larger entropy,
and is indeed the case when there is no SOC. However, introducing SOC causes the entropy
to increase with spin-imbalance instead, a so-called entropic de-mixing.



7 | Summary and Outlook

In this thesis the Bose–Hubbard model and mean-field theory has been used to study the
Bose gas with two- and three-components on a square lattice. The work has been primarily
focused on the weakly interacting gas, but in chapters 5 and 6 SOC has been included.

The superfluid drag density has been re-derived for the two-component Bose gas in chapter
3. This set the stage for the main result of this thesis in chapter 4, which is the effect of a
third component on the drag at both zero and finite temperatures. It has been found that
by introducing a third boson component (C) and its interactions, the drag between the two
former (A and B) is altered in a non-trivial manner: Initially, the drag depends only on the
square of the inter-component interaction between A and B, meaning that the sign, i.e. the
interactions being repulsive or attractive, is irrelevant. The drag is also found to increase
monotonically with the inter-component interaction strength, and is consistent with results
from the literature in the weak coupling limit [22, 23, 24]. Introducing interactions with C,
however, makes the drag sign-dependent, and causes it to be either enhanced or diminished
with increasing inter-component interactions strengths. It has also been found that the third
component can support the drag completely, i.e. C can mediate the drag between A and
B even when A and B do not interact at all. While some of the results can be understood
intuitively by elastic two-body collisions, the general shift of the drag is conjectured to be
due to a complex competition between three-body and four-body collisions.

As pointed out in Ref [50], another way to understand the drag may be through quasi-
particles. In this picture the components are not independent because they participate in
the collective excitations, so that the flow of one component is accompanied by the flow of
the other components. The presence of a third component alters the content of the quasi-
particles, making the amount of one component relative to another increase or decrease, thus
altering the drag as well. However, an investigation into this picture has not been made in
this thesis.

The momentum-dependent contributions to the drag have also been found to change with
the introduction of a third component. The main bulk of the drag in the two-component case
is distributed on the k-plane as two symmetric lobes around the origin. As the temperature
increases contributions from momenta in an increasingly larger region around the origin
are suppressed, so that the size of the lobes determines how fast the drag decreases with
temperature. With the third component the size of the lobes is increased and decreased by
tuning the interactions, as for two-components. However, for some parameters an extra pair
of lobes emerges, which causes an initial rapid decline followed by a plateau in the drag as
temperature is increased, a feature that is absent in two-component condensates.

It would be interesting to see in future work how the presence of a third component affects

87
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the superfluid drag density in the strongly correlated regime near the Mott-insulating phase,
which in the two-component case has been found to yield negative drag [25, 26].

An attempt at finding the drag in an interacting Bose gas with SOC has been made,
but complications arise when using the method employed throughout this thesis since the
phase-twist induces a shift in the momentum of the operators. Finding the drag through
perturbation theory, as was done for the Bose gas without SOC, was also attempted, but the
result diverges in the thermodynamic limit, which indicates that the perturbation expansion
failed. The effect of SOC on the drag therefore remains unknown.

Finally, the phase diagram of an inhomogeneous, weakly interacting, and SOC superfluid
BEC at zero temperature was constructed by minimizing the zeroth-order Hamiltonian. From
this the energy spectrum for various parameters and phases was obtained. However, finding
the full zero and finite temperature diagram was unsuccessful because minimizing the full
free energy resulted in an incorrect energy spectrum in the zero SOC limit, for which the
elementary excitations are known. The contribution neglected in the free energy was therefore
considered only qualitatively and found to be of significance. Further work should therefore
focus on the structure of the full Hamiltonian and the energy spectrum it produces and, if
successful, investigate in more detail the phase diagram. It is also of interest to investigate
whether the inhomogeneous, superfluid SOC and weakly interacting BEC experiences the
same entropy driven spin-imbalance as was found for the homogeneous normal BEC in Ref
[49], which the qualitative discussion of the thermal contribution in thesis suggests.



A | Matsubara Sum

To obtain a useful expression for the second-order contribution of the phase twist at the end
of section 3.1.2 we will need to perform a Matsubara sum, which in the bosonic case is a
sum over the frequencies ωn = 2πn/β, where β = 1/T and n is an integer. The sum we are
concerned with is

∞∑
n=0

(1− 1
2
δn,0)(iωn)2[

(iωn)2 − E2
k+

]2[
(iωn)2 − E2

k−
]2 , (A.1)

which can be simplified by writing out the partial fraction

(iωn)2[
(iωn)2 − E2

k+

]2[
(iωn)2 − E2

k−
]2 =

E2
k+

(E2
k+ − E2

k−)2(ω2
n + E2

k+)2
+

E2
k+ + E2

k−

(E2
k+ − E2

k−)3(ω2
n + E2

k+)

−
E2
k+ + E2

k−

(E2
k+ − E2

k−)3(ω2
n + E2

k−)
+

E2
k−

(E2
k+ − E2

k−)2(ω2
n + E2

k−)2
.

(A.2)

There are now two kinds of sums; one over (n2 + a2)−1 and (n2 + a2)−2, both of which can
be computed by starting with the formula [51]

∞∑
n=1

1

n2 + a2
=

π

2a
coth(πa)− 1

2a
. (A.3)

The first is found by adding 1/2a to (A.3);

∞∑
n=0

(1− 1
2
δn,0)

n2 + a2
=

π

2a
coth(πa). (A.4)

The second is found by differentiating (A.4) with respect to a and rewriting;

∞∑
n=0

(1− 1
2
δn,0)

(n2 + a2)2
=

π

4a3
coth(πa) +

π2

4a2

1

sinh2(πa)
. (A.5)
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The Matsubara sum (A.1) is now readily found to be

∞∑
n=0

(1− 1
2
δn,0)(iωn)2[

(iωn)2 − E2
k+

]2[
(iωn)2 − E2

k−
]2 =

β

8(E2
k+ − E2

k−)2

{
coth(βEk+/2)

Ek+

+
coth(βEk−/2)

Ek−

+
β

2 sinh2(βEk+/2)
+

β

2 sinh2(βEk−/2)

+ 2
(E2
k+ + E2

k−)

(E2
k+ − E2

k−)

[coth(βEk+/2)

Ek+

− coth(βEk−/2)

Ek−

]}
.

(A.6)

In the T → 0 limit, so that β = 1/T → ∞, this can be simplify by using that
coth(βEk±/2)→ 1, and β2 sinh−2(βEk±/2)→ 0, yielding

∞∑
n=0

(1− 1
2
δn,0)(iωn)2[

(iωn)2 − E2
k+

]2[
(iωn)2 − E2

k−
]2 = − β

8Ek+Ek−(Ek+ + Ek−)3
. (A.7)

where β outside the cosh and sinh functions have been kept because it cancels out in the free
energy.



B | Cancellation of Scale-Inconsistent
Terms

Here we show explicitly the cancellation of the scale-inconsistent terms, and without doubly
occupied excitations, of section 4.2.3. We restate the perturbation Hamiltonian,

Hpert =
∑
〈αβ〉

∑
k

Ũkαβ

[
c†kαckβ + c†kβckα + ckαc−kβ + c†kαc

†
−kβ

]
, (B.1)

where Ũkαβ is even in k, and 〈αβ〉 indicates that the sum is over all pairs of boson components,
disregarding the ordering. The relevant fourth-order perturbation terms are

E(4) =
∑
mlr 6=0

V0mVmlVlrVr0
E0mE0lE0r︸ ︷︷ ︸
Term 1

−
∑
ml 6=0

|V0m|2

E0m

|V0r|2

E2
0r︸ ︷︷ ︸

Term 2

. (B.2)

We also recall that the size-inconsistent contributions are

Term 1
|Nl〉 = |GS + (kα) + (−kβ) + (k′σ) + (−k′ρ)〉 , α 6= β, σ 6= ρ

(i) : |Nm〉 = |GS + (kα) + (−kβ)〉 , |Nr〉 = |GS + (k′σ) + (−k′ρ)〉
(ii) : |Nm〉 = |Nr〉 = |GS + (kα) + (−kβ)〉

Term 2
|Nm〉 = |GS + (kα) + (−kβ)〉 , |Nr〉 = |GS + (k′σ) + (−k′ρ)〉 , α 6= β, σ 6= ρ.

(B.3)

We begin by considering term 1(i) and term 2. From term 1(i) we will have Vml = V ∗0r =

Ũk′σρ, Vlr = V ∗0m = Ũkαβ, and E0l = E0m + E0r since |Nl〉 contains both pairs of excitations
in |Nm〉 and |Nr〉. Term 2 has the same inner-products V0m and V0r, and energies E0m and
E0r. The sum of term 1(i) and term 2 is thus∑

mr 6=0

|V0m|2|V0r|2

E0mE0r(E0m + E0r)
−
∑
mr 6=0

|V0m|2|V0r|2

E0mE2
0r

=
∑
mr 6=0

|V0m|2|V0r|2
[

1

E0mE0r(E0m + E0r)
− 1

E0mE2
0r

]
.

(B.4)
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Next we can make explicit the contribution of interchanging |Nm〉 and |Nr〉 in the sum,
indicating that the sum is over all sets of states in Fock space where the order is disregarded
by 〈mr〉; ∑

〈mr〉6=0

|V0m|2|V0r|2
[

2

E0mE0r(E0m + E0r)
− 1

E2
0mE0r

− 1

E0mE2
0r

]
. (B.5)

Carrying out the summation of the terms in square brackets;

2

E0mE0r(E0m + E0r)
− 1

E2
0mE0r

− 1

E0mE2
0r

=
2

E0mE0r(E0m + E0r)
− E0m + E0r

E2
0mE

2
0r

=
2E0mE0r − (E0m + E0r)

2

E2
0mE

2
0r(E0m + E0r)

=
−E2

0m − E2
0r

E2
0mE

2
0r(E0m + E0r)

= − 1

E2
0m(E0m + E0r)

− 1

E2
0r(E0m + E0r)

.

(B.6)

Finally we consider term 1(ii), which has the inner-products V0r = V ∗0m = Ũkαβ and
Vml = V ∗lr = Ũk′σρ, and energies E0m = E0r and E0l = E0m + E0r, all of which are the same
quantities as in term 1(i) and term 2. The contribution of term 1(ii) is therefore∑

lr 6=0

|V0m|2|V0l|2

E2
0m(E0m + E0r)

=
∑
〈lr〉6=0

|V0m|2|V0l|2
[

1

E2
0m(E0m + E0r)

+
1

E2
0r(E0m + E0r)

]
,

(B.7)

where we once more made the terms due to the interchange of |Nm〉 and |Nr〉 explicit. This
is exactly equal to the sum of the other two size-inconsistent terms, but with opposite sign,
as seen from (B.5) and (B.6). Thus all the size-inconsistent contributions to the fourth-order
perturbation energy cancel exactly to zero and poses no problem to our perturbation scheme.



C | Expansion of Exact Two-Component
Drag

The exact two-component drag (3.55) can be expanded in powers of γAB, or equivalently
UAB, to yield the same expression as perturbation theory in (4.29) in the two-component
case, which is done here.

The energies Ẽk± can be expressed as

Ek± =
1√
2

√
Ẽ2
kA + Ẽ2

kB ±
√

[Ẽ2
kA − Ẽ2

kB]2 + 16U2
ABεkAεkB, (C.1)

where Ẽkα =
√
E2
kα − F 2

α) =
√
εkα(εkα + 2Fα). The factors Ek+Ek− and (Ek+ + Ek−)2 are

expanded to second order in UAB;

Ek+Ek− ≈ ẼkAẼkB

(
1− 2U2

ABεkAεkB

Ẽ2
kAẼ

2
kB

)
, (C.2)

(Ek+ + Ek−)3 ≈ (ẼkA + ẼkB)3
(

1− 6U2
ABεkAεkB

ẼkAẼkB(ẼkA + ẼkB)2

)
. (C.3)

This is inserted into (3.55) and one last expansion is performed on the denominator;

ρd =
8mAmBtAtBa

2

Ns

∑
k 6=0

sin2(kxa)
U2
ABεkAεkB

Ek+Ek−(Ek+ + Ek−)3

≈ 8mAmBtAtBa
2

Ns

∑
k 6=0

sin2(kxa)
U2
ABεkAεkB

ẼkAẼkB(ẼkA + ẼkB)3

×

[
1 +

2U2
ABεkAεkB

Ẽ2
kAẼ

2
kB

+
6U2

ABεkAεkB

ẼkAẼkB(ẼkA + ẼkB)2

]
.

(C.4)

Finally, using that
Ũ2
k,αβ =

εkαεk

ẼkαẼkβ
(C.5)
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the drag to fourth order in UAB becomes

ρd ≈
8mAmBtAtBa

2

Ns

∑
k 6=0

sin2(kxa)
Ũ2
k,AB

(ẼkA + ẼkB)3

×

[
1 + Ũ2

k,AB

(
2

ẼkAẼkB
+

6

(ẼkA + ẼkB)2

)]
,

(C.6)

which is the same as perturbation theory when γAC = γBC = 0.
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