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Abstract

We consider a single product maritime inventory routing problem in which the production
and consumption rates are constant over the planning horizon. The problem involves a
heterogeneous �eet and multiple production and consumption ports with limited storage
capacity.

Maritime transportation is characterized by high levels of uncertainty, and sailing
times can be severely in�uenced by varying and unpredictable weather conditions. To
deal with the uncertainty, this paper investigates the use of adaptable robust optimiza-
tion where the sailing times are assumed to belong to the well-known budget polytope
uncertainty set.

In the recourse model, the routing, the order of port visits, and the quantities to load
and unload are �xed before the uncertainty is revealed, while the visit time to ports and
the stock levels can be adjusted to the scenario. We propose a decomposition algorithm
that iterates between a master problem that considers a subset of scenarios and an
adversarial separation problem that searches for scenarios that make the solution from
the master problem infeasible. Several improvement strategies are proposed aiming at
reducing the running time of the master problem and reducing the number of iterations
of the decomposition algorithm. An iterated local search heuristic is also introduced to
improve the decomposition algorithm. A computational study is reported based on a set
of real instances.
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1. Introduction

In maritime transportation, large cargo quantities are transported between ports.
Often storages are placed at or close to the ports at both ends of a sailing leg. The
transportation at sea as well as the storages at ports are most often parts of a supply chain
from producers to end customers. When a single decision maker has the responsibility for
both the transportation of the cargoes and the inventories at the ports, the routing and
scheduling of the ships and the inventory management can be planned simultaneously.
The resulting problem is called a maritime inventory routing problem (MIRP).

The shipping industry is capital intensive with high investment and operating costs
for the ships as well as large and valuable cargoes, so a modest improvement in the �eet
utilization can imply a large increase in pro�t. Therefore, the MIRP is a very important
and common problem in maritime shipping. These reasons, as well as the di�culties
to solve the problem due to high degree of freedom in the routing, scheduling, number
of port visits, and the loaded and unloaded quantity, has lead to a solid amount of
research on MIRPs. The resulting publications have formed the basis of several surveys:
Papageorgiou et al. [40], Christiansen et al. [27], and Christiansen and Fagerholt [25, 26].
In addition, Coelho et al. [29] and Andersson et al. [11] surveyed both land-based and
maritime inventory routing problems.

Maritime transportation is characterized by high levels of uncertainty, and one of the
most prevalent sources of uncertainty is the sailing times that are a�ected heavily by
changing weather conditions. In practice, unpredictable delays may a�ect the execution
of an otherwise optimal deterministic plan. In order to compensate for such delays, it
is possible for the ships to speed up when necessary. However, in practice it will most
often be bene�cial to consider the uncertainty explicitly when �nding the optimal plan.

Therefore, we consider a maritime inventory routing problem (MIRP) with uncertain
sailing or travelling times. A heterogeneous �eet of ships is transporting a single product
between ports. There is one set of ports where the product is produced, and another
set of ports where the product is consumed. The production and consumption rates are
assumed constant over the planning horizon. In all ports, there exists a storage for the
product, and lower and upper inventory limits are given for each storage. Each port can
be visited once or several times during the planning horizon depending on the size of
the storage, the production or consumption rate, and the quantity loaded or unloaded at
each port visit. The MIRP with uncertain travelling times consists of designing routes
and schedules for a �eet of ships that are robust against delay in travelling times in order
to minimize the transportation and port costs, and to determine the quantities handled
at each port call without exceeding the storage capacities.

Even though maritime transportation is heavily in�uenced by uncertainty, most of the
research reported in the literature on maritime routing and scheduling consider static and
deterministic problems. We review some of the existing contributions within maritime
transportation considering uncertainties.

For a ship routing and scheduling problem with prede�ned cargoes, Christiansen and
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Fagerholt [24] design ship schedules that are less likely to result in ships staying idle at
ports during weekends by imposing penalty costs for arrivals at risky times (i.e. close
to weekends). The resulting schedule needs to be more robust with respect to delays
from bad weather and unpredictable time in port due to the restricted operating hours
each day and ports being closed during weekends. Agra et al. [8] solved a full-load ship
routing and scheduling problem with uncertain travel times using robust optimization.
Furthermore, Halvorsen-Weare and Fagerholt [35] analysed various heuristic strategies
to achieve robust weekly voyages and schedules for o�-shore supply vessels working un-
der tough weather conditions. Heuristic strategies for obtaining robust solutions with
uncertain sailing times and production rate were also discussed by Halvorsen-Weare et
al. [36] for the delivery of lique�ed natural gas.

For a crude oil transportation and inventory problem, Cheng and Duran [23] devel-
oped a decision support system that takes into account uncertainty in sailing time and
demand. The problem was formulated as a discrete time Markov decision process and
solved by using discrete event simulation and optimal control theory. Rakke et al. [41]
and Sherali and Al-Yakoob [45, 46] introduced penalty functions for deviating from the
customer contracts and the storage limits, respectively, for their MIRPs. Christiansen
and Nygreen [28] used soft inventory levels to handle uncertainties in sailing time and
time in port, and these levels were transformed into soft time windows for a single prod-
uct MIRP. Agra et al. [6] were the �rst to use stochastic programming to model uncertain
sailing and port times for a MIRP with several products and inventory management at
the consumption ports only. Recently, a heuristic stochastic approach is presented in
Agra et al. [9] to be able solve larger instances of the MIRP. Additionally, the authors
explain why using penalties for backlogged demands make the deterministic problem
much harder, which also motivates the recourse to robust approaches for MIRP.

Zhang et al. [52], see also Zhang [51], developed robust approaches for an Annual
Delivery Plan problem involving a single producer and multiple customers in the Lique-
�ed Natural Gas business. First, a maritime inventory routing problem with given time
windows for deliveries with uncertain travel disruptions is solved by use of a Lagrangian
heuristic scheme to obtain robust solutions. Second, a more general robust maritime in-
ventory routing problem with time windows is studied, where the length and placement
of the time windows are also decision variables. The problem is formulated as a two-
stage stochastic mixed-integer program, and the author proposes a two-phase solution
approach that considers a sample set of disruptions as well as their recovery solutions.

Robust inventory routing problems has also been considered in land transportation,
but the uncertainty is related to the demands. Solyali et al. [47] proposed a dualization
approach, while Agra et al. [10] developed a decomposition approach for inventory
models that can be combined with routing and uncertain demands. More general robust
inventory problems have been considered, see for instance [20], however the inventory
problems usually assume the time is discretized into a �nite set of time periods, which
contrasts with our problem where the time is considered continuous. For recent overviews
on robust optimization see [13, 15, 34, 33].
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Uncertainty has been considered for other related routing problems recently. Roldán
et al. [42] present three new customer selection methods for a dynamic and stochastic
inventory routing problem. Aghezzaf [3] considers a variant of the inventory routing
optimization problem where customer demand rates and travel times are stochastic but
stationary. He proposes an approach to generate optimal robust distribution plans. Li
et al. [37] consider an inventory routing problem under replenishment lead-time where
the inventory levels are uncertain. They propose and optimization approach based on
a genetic algorithm. Bertsimas et al. [16] introduce a scalable approach for solving a
robust and adaptive mixed integer formulation for an inventory routing problem with
demand uncertainty. Desaulniers et al. [31] consider a new mathematical formulation
for the IRP and develop a state-of-the-art branch-price-and-cut algorithm for solving
the problem. A survey on the inventory routing problem with stochastic lead times and
demands can be found in [43].

Zhang et al. [53] study a robust maritime inventory routing problem with time
windows and stochastic travel times, where the length and placement of the time windows
are decision variables. The problem is modeled as a two-stage stochastic mixed-integer
program, and a two-phase heuristic solution approach is proposed.

Adulyasak and Jaillet [2] consider the vehicle routing problem with deadlines un-
der travel time uncertainty, discussing both stochastic and robust problem variants.
Adulyasak et al. [1] solve the land production routing problem under demand uncer-
tainty considering a stochastic setting by using a Benders decomposition approach with
several enhancements. Other heuristic algorithms for the production routing problem
were proposed by Solyali and Süral [48] and Russell [44]. A comparison between two
scenario-based frameworks, a stochastic programming and robust optimization approach,
for supply planning under uncertainty is provided by Maggioni et al. [39].

The objective of this paper is to present a general robust optimization procedure
for solving single product MIRP with uncertain travelling times that results in robust
solutions that are immune to some sailing times delays and where the inventory limits
are not violated due to the delays. In the robust model, the travelling times belong to
an uncertainty set, which we assume to be the well known budget constrained polytope
introduced by Bertsimas and Sim [18]. The total deviation of the travelling times to
the nominal values is controlled by a parameter. This set has the advantage that it is
easy to interpret from a practical point of view, and its structure can be explored from
a computational point of view when decomposition techniques are employed [8, 10, 21].

In relation to existing literature, this paper provides the following contributions:

(i) introduces a robust model to a MIRP in order to derive solutions that are immune
to a certain number of delays in relation to inventory level deviations. This model
assumes that the routing, number of port visits and the quantities to load and
unload cannot be adjusted to the uncertain scenario, while the time for start of
service as well as the inventory levels are adjustable;

(ii) develops a decomposition algorithm, where the problem is relaxed into a master
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problem and each robust constraint is written for a small subset of scenarios only,
and a separation subproblem that checks whether the solution is feasible for the
omitted robust constraints;

(iii) introduces several improvement strategies for the decomposition algorithm. One
set of improvements aims to reduce the running time of each master problem,
while the other intends to reduce the number of iterations of the decomposition
algorithm. Most of these improvements can be extended to other related problems
solved by robust optimization;

(iv) a new iterated local search heuristic is presented. The heuristic provides good
quality solution and can also be extended to other robust optimization problems.
The heuristic is used to improve the exact decomposition approach.

The rest of the paper is organized as follows: The mathematical model of the deter-
ministic problem is presented in Section 2, while the robust optimization model and the
decomposition algorithm are described in Section 3. Section 4 is devoted to improve-
ment strategies for the decomposition approach. An iterated local search heuristic is
presented in Section 5. Furthermore, computational results are reported and discussed
in Section 6, followed by some concluding remarks in Section 7.

2. Mathematical model for the deterministic problem

In this section we present a mathematical formulation for a deterministic version of
our maritime inventory routing problem.

Routing constraints

Let V denote the set of ships and N denote the set of ports. Each ship v ∈ V must
depart from its initial position, which is either a port or a point at sea. For each port
we consider an ordering of the visits accordingly to the time of the visit.

The ship paths are de�ned on a network where the nodes are represented by a pair
(i,m), where i indicates the port and m indicates the visit number to port i. Direct ship
sailings (arcs) from node (i,m) to node (j, n) are represented by (i,m, j, n). Figure 1
depicts two ship paths. Ship 1 leaves its origin, sails to Port 1, for the �rst visit, then
Port 2 is visited for the �rst time, and �nally ship 1 terminates its route servicing Port
3. This is the second visit to Port 3, because Ship 2 visited Port 3 �rst on its route to
Port 1.

We de�ne SA as the set of possible nodes (i,m), SAv as the set of nodes that may be
visited by ship v, and set SXv as the set of all possible sailings (i,m, j, n) of ship v. For
the routing we de�ne the following binary variables: ximjnv is 1 if ship v travels from
node (i,m) directly to node (j, n), and 0 otherwise; xOimv indicates whether ship v travels
directly from its initial position to node (i,m) or not; wimv is 1 if ship v visits node
(i,m), and 0 otherwise; zimv is equal to 1 if ship v ends its route at node (i,m), and 0

5



O1

O2

D1

D21,1 1,2

2,1

3,1 3,2

Figure 1: Example of two ship routes. The route of Ship 1 is represented by solid lines and the route of
Ship 2 is represented by dashed lines.

otherwise; zOv is equal to 1 if ship v is not used and 0 otherwise; yim indicates whether
a ship is making the mth visit to port i, (i,m), or not. The parameter µ

i
denotes the

minimum number of visits at port i and the parameter µi denotes an upper bound on
the number of visits at port i.∑

(i,m)∈SAv

xOimv + zOv = 1, ∀v ∈ V, (1)

wimv −
∑

(j,n)∈SAv

xjnimv = 0, ∀v ∈ V, (i,m) ∈ SAv , (2)

wimv −
∑

(j,n)∈SAv

ximjnv − zimv = 0, ∀v ∈ V, (i,m) ∈ SAv , (3)

∑
v∈V

wimv = yim, ∀(i,m) ∈ SA, (4)

yim = 1, ∀(i,m) ∈ SA : m ∈ {1, . . . , µ
i
}, (5)

yi(m−1) − yim ≥ 0, ∀(i,m) ∈ SA : µ
i
+ 1 < m ≤ µi, (6)

ximjnv ∈ {0, 1}, ∀v ∈ V, (i,m, j, n) ∈ SXv , (7)

xOimv, wimv, zimv ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SAv , (8)

yim ∈ {0, 1}, ∀(i,m) ∈ SA. (9)

Equations (1) ensure that each ship either departs from its initial position and travels
to another node or the ship is not used. Equations (2) and (3) are the �ow conservation
constraints, ensuring that a ship arriving at a node either leaves that node or ends its
route. Constraints (4) ensure that a ship can visit node (i,m) only if yim is equal to one.
Equations (5) �x yim to 1 for the mandatory visits. Constraints (6) state that if port i
is visited m times, then it must also have been visited m− 1 times. Constraints (7)-(9)
de�ne the variables as binary.
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Loading and unloading constraints

Parameter Ji is 1 if port i is a producer and −1 if it is a consumer. The quantity on
ship v at the beginning of the planning horizon is given by QOv , and the capacity of ship
v is denoted by Cv. The minimum and maximum loading and unloading quantities at
port i are given by Q

i
and Qi, respectively.

In order to model the loading and unloading constraints, we de�ne the following
continuous variables: qimv is the amount loaded or unloaded from ship v at node (i,m);
fimjnv denotes the amount that ship v transports from node (i,m) to node (j, n), and
fOimv gives the amount that ship v transports from its initial position to node (i,m). The
loading and unloading constraints are given by:

fOimv +
∑

(j,n)∈SAv

fjnimv + Jiqimv =
∑

(j,n)∈SAv

fimjnv, ∀v ∈ V, (i,m) ∈ SAv , (10)

fOimv = QOv x
O
imv, ∀v ∈ V, (i,m) ∈ SAv , (11)

fimjnv ≤ Cvximjnv, ∀ v ∈ V, (i,m, j, n) ∈ SXv , (12)

Q
i
wimv ≤ qimv ≤ min{Cv, Qi}wimv, ∀v ∈ V, (i,m) ∈ SAv , (13)

fimjnv ≥ 0, ∀v ∈ V, (i,m, j, n) ∈ SXv , (14)

fOimv, qimv ≥ 0, ∀v ∈ V, (i,m) ∈ SAv . (15)

Equations (10) are the �ow conservation constraints at node (i,m). Equations (11)
determine the quantity on ship v when it travels from its initial node to node (i,m).
Constraints (12) require that the ship capacity is obeyed. Constraints (13) impose lower
and upper limits on the loading and unloading quantities. Constraints (14)-(15) are the
non-negativity constraints.

Time constraints

We de�ne the following parameters: TQi is the time required to load or unload one
unit of product at port i and Tijv is the travel time between port i and j by ship v. The
travel time also includes any set-up time required to operate at port j. TOiv indicates the
travelling time required by ship v to travel from its initial position to facility i. TBi is
the minimum time between two consecutive visits to port i. T is the length of the time
horizon, and Aim and Bim are the time windows for starting the mth visit to port i. Such
time windows are considered only for generality, since here we will consider Aim = 0,
and Bim = T. To ease the presentation we also de�ne, for each node (i,m), the following
upper bound for the end time of the visit: T ′im = min{T,Bim + TQi Qi}. Given time
variables tim that indicate the start time of each visit at each port, the time constraints
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can be written as:

tim +
∑

v∈V :(i,m,j,n)∈SXv

max{T ′im + Tijv −Ajn, 0}ximjnv

+
∑
v∈V

TQi qimv − tjn ≤ T
′
im −Ajn, ∀(i,m), (j, n) ∈ SA, (16)

tim − ti,m−1 −
∑
v∈V

TQi qi,m−1,v − TBi yim ≥ 0, ∀(i,m) ∈ SA : m > 1, (17)∑
v∈V

TOivx
O
imv ≤ tim, ∀(i,m) ∈ SA, (18)

Aim ≤ tim ≤ Bim, ∀(i,m) ∈ SA. (19)

Constraints (16) relate the start time associated with node (i,m) to the start time
associated with node (j, n) when ship v travels directly from (i,m) to (j, n). Constraints
(17) impose a minimum interval between two consecutive visits at port i. Constraints
(18) ensure that if ship v travels from its initial position to (i,m), then the start time
associated with (i,m) is at least the travelling time between the initial position and port
i. Time windows for the start time of visits are given by constraints (19).

Inventory constraints

The inventory constraints are considered for each port. They ensure that the stock
levels are within the corresponding limits and link the stock levels to the loading or
unloading quantities. For each port i, the rate of consumption or production, Ri, the
minimum Si, the maximum Si and the initial S0

i stock levels are given. We de�ne the
nonnegative continuous variables sim to represent the stock levels at the start of the mth

visit to port i. The inventory constraints are as follows:

si1 = S0
i + JiRiti1, ∀i ∈ N, (20)

sim = si,m−1 − Ji
∑
v∈V

qi,m−1,v + JiRi(tim − ti,m−1), ∀(i,m) ∈ SA : m > 1, (21)

sim +
∑
v∈V

qimv −Ri
∑
v∈V

TQi qimv ≤ Si, ∀(i,m) ∈ SA : Ji = −1, (22)

sim −
∑
v∈V

qimv +Ri
∑
v∈V

TQi qimv ≥ Si, ∀(i,m) ∈ SA : Ji = 1, (23)

siµi +
∑
v∈V

qi,µi,v −Ri(T − tiµi) ≥ Si, ∀i ∈ N : Ji = −1, (24)

siµi −
∑
v∈V

qi,µi,v +Ri(T − tiµi) ≤ Si, ∀i ∈ N : Ji = 1, (25)

sim ≥ Si, ∀(i,m) ∈ SA : Ji = −1, (26)

sim ≤ Si, ∀(i,m) ∈ SA : Ji = 1. (27)
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Equations (20) calculate the stock level at the start time of the �rst visit to a port, and
equations (21) relate the stock level at the start time of the mth visit to the stock level at
the start time of the previous visit. Constraints (22) and (23) ensure that the stock levels
are within their limits at the end of each visit. Constrains (24) impose a lower bound
on the inventory level at time T for consumption ports, while constrains (25) impose an
upper bound on the inventory level at time T for production ports. Constraints (26) and
(27) ensure that the stock levels are within their limits at the start of each visit.

Objective function

The objective is to minimize the total routing costs, including travelling and operating
costs. The travelling cost of ship v from port i to port j is denoted by CTijv and it includes
the set-up costs. CTOiv represents the travelling cost of ship v from its initial position to
port i. The objective function is de�ned as follows:

min C(X) =
∑
v∈V

∑
(i,m,j,n)∈SXv

CTijvximjnv +
∑
v∈V

∑
(i,m)∈SAv

CTOiv xOimv. (28)

3. Robust optimization

In this section we �rst present the robust optimization model and then describe the
solution method proposed.

3.1. Mathematical model for the robust formulation

In the robust model the travelling times belong to an uncertainty set. The uncertainty
set represents the situation where there can be at most a number Γ of delays in the ship
paths. Instead of the travelling time Tijv, we might add a delay T̂ijv to a nominal
travelling time value T̄ijv. As the travelling times do not depend on the visits, one
would increase all the travelling times between i and j if Tijv is increased. This increase
a�ects mostly those routes where a ship sails multiple times directly between the same
two ports. To have full control on the number of delays, we replace Tijv by ξimjnv in
constraints (16) and TOiv by ξOimv in constraints (18):

tim +
∑

v∈V |(i,m,j,n)∈SXv

max{T ′im + ξimjnv −Ajn, 0}ximjnv

+
∑
v∈V

TQi qimv − tjn ≤ T
′
im −Ajn, ∀(i,m), (j, n) ∈ SA, (29)∑

v∈V
ξOimvx

O
imv ≤ tim, ∀(i,m) ∈ SA. (30)

For ease of notation we will consider in the following TOimv as a particular case of Tjnimv
where j is the initial position of ship v, denoted as o(v), and n will be 1. The uncertainty
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set is now de�ned using the travelling times that depend on the visits, as follows:

ΞΓ = {ξ : ξimjnv = T̄ijv + T̂ijvδimjnv,

0 ≤ δinjmv ≤ 1, v ∈ V, (i,m, j, n) ∈ SXv ,
∑
v∈V

∑
(i,m,j,n)∈SXv

δimjnv ≤ Γ}.

This uncertainty set is the well-known budget polytope introduced by Bertsimas and
Sim [19], where T̄ijv is the nominal value corresponding to the expected travel time, T̂ijv
is the maximum allowed deviation (delay), δinjmv is the deviation of parameter Timjnv
from its nominal value, and Γ limits the number of deviations.

The model introduced here is an adjustable robust program [22, 14, 30, 49] which
features two levels of decisions: �rst-stage variables must be �xed before the uncertainty
is revealed, while adjustable variables can react to account for the uncertainty. Such a
concept has also been known as recoverable robustness [38].

The �rst-stage variables ximjnv, zimv, wimv, yim, and qimv are the routing, the port
visits sequence, and the loading and unloading decisions. The adjustable variables are
those related to the time and the stock levels. These variables now depend upon the
uncertain parameters. Hence, we de�ne tim(ξ), and sim(ξ) as the time and the stock
level of visit (i,m), respectively, when scenario ξ (vector of travel times) is revealed.

The �rst stage solution must ensure that, for each possible vector of travel times in
the budget polytope, the stock level at each port i is within the inventory bounds Si
and Si. For the robust model the time and inventory constraints are replaced by the
following constraints:

Time constraints:

tim(ξ) +
∑

v∈V :(i,m,j,n)∈SXv

max{T ′im + ξimjnv −Ajn, 0}ximjnv

− tjn(ξ) +
∑
v∈V

TQi qimv ≤ T
′
im −Ajn, ∀(i,m, j, n) ∈ SX , ξ ∈ ΞΓ, (31)

tim(ξ)− ti,m−1(ξ)−
∑
v∈V

TQi qi,m−1,v − TBi yim ≥ 0,∀(i,m) ∈ SA : m > 1, ξ ∈ ΞΓ, (32)∑
v∈V

ξo(v)1imvx
O
imv ≤ tim(ξ), ∀(i,m) ∈ SA, ξ ∈ ΞΓ, (33)

Aim ≤ tim(ξ) ≤ Bim, ∀(i,m) ∈ SA, ξ ∈ ΞΓ. (34)
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Inventory management constraints:

si1(ξ) = S0
i + JiRiti1(ξ), ∀i ∈ N, ξ ∈ ΞΓ, (35)

sim(ξ) = si,m−1(ξ)− Ji
∑
v∈V

qi,m−1,v

+ JiRi(tim(ξ)− ti,m−1(ξ)), ∀(i,m) ∈ SA : m > 1, ξ ∈ ΞΓ, (36)

sim(ξ) +
∑
v∈V

qimv −Ri
∑
v∈V

TQi qimv ≤ Si, ∀(i,m) ∈ SA : Ji = −1, ξ ∈ ΞΓ, (37)

sim(ξ)−
∑
v∈V

qimv +Ri
∑
v∈V

TQi qimv ≥ Si, ∀(i,m) ∈ SA : Ji = 1, ξ ∈ ΞΓ, (38)

siµi(ξ) +
∑
v∈V

qi,µi,v −Ri(T − tiµi(ξ)) ≥ Si, ∀i ∈ N : Ji = −1, ξ ∈ ΞΓ, (39)

siµi(ξ)−
∑
v∈V

qi,µi,v +Ri(T − tiµi(ξ)) ≤ Si, ∀i ∈ N : Ji = 1, ξ ∈ ΞΓ, (40)

sim(ξ) ≥ Si, ∀(i,m) ∈ SA : Ji = −1, ξ ∈ ΞΓ, (41)

sim(ξ) ≤ Si, ∀(i,m) ∈ SA : Ji = 1, ξ ∈ ΞΓ. (42)

The robust model is de�ned by (1)�(15), (28), (31)�(42).

3.2. Model analysis

The model has an in�nite number of variables tim(ξ) and sim(ξ), as well as time
constraints and inventory constraints. However, as the recourse model (31)�(42) is a
pure linear model with no binary variables, similarly to Lemma 1 in [8], it is easy to
show that the uncertainty set can be restricted to the extreme points of the budget
polytope. That is ξ ∈ ext(ΞΓ) in constraints (31)�(42), where ext(ΞΓ) is the set of
extreme points of ΞΓ.

For a given set Θ of scenarios the robust model will be denoted by R − IR(Θ).
Hence, the �nite model restricted to the set of extreme points ext(ΞΓ) will be denoted
by R− IR(ext(ΞΓ)).

In order to frame our work within robust optimization we make the following remarks:

Remark 1. (a) The model R − IR(Θ) has �xed recourse since the coe�cients of the
second stage variables in the objective function and constraints are deterministic.
Every variable is either non-adjustable or fully adjustable, and the uncertainty set
can be considered as a scenario-generated uncertainty set.

(b) The deterministic problem is NP-hard, and it is quite complex since it generalizes
and combines NP-hard problems such as the vehicle routing problem with time win-
dows (VRPTW) and inventory problems. Current research is being conducted on
that (deterministic) problem, such as valid inequalities and extended formulations.
As the focus is on the robust approaches, we will restrict ourselves to established
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results to the deterministic case and focus only on small/medium size instances
that can be solved to optimality. Remarks will be done on how the results can be
extended to larger instances.

(c) The value of the second stage (fully adjustable) variables do not a�ect directly the
objective function value. That is, for given routes and pick-up and delivery quanti-
ties (�rst stage decisions) all the robust feasible solutions lead to the same objective
function value. This is common to the robust VRPTW problem given in [8] where
the second-stage variables (the time of the visit to each node) do not a�ect the
value of the solution. As a result, any policy for the adjustable variables that �nds
a feasible solution for each scenario when such solution exists, is an optimal policy.

As we are dealing with �xed recourse, in theory the second stage variables, tim(ξ)
and sim(ξ), can be eliminated. That is, the set of feasible solutions can be projected
onto the space of the �rst stage variables. This approach was followed in [12] for a
simpler two-stage robust network �ow and design problem, and in [8] robust approaches
were used for the two dimensional spaces (with �rst stage and with �rst and second
stage variables) for the robust VRPTW problem, albeit the projection has not been
done explicitly. In [12] it was shown that even for simple graph structures the separation
of the inequalities resulting from the projection is NP-hard. In [8] a path formulation
was used for the formulation in the �rst stage variables space and the corresponding
approach was not considered preferable than the one working in the original space. As
in our case, the projection would become much more complex, we opted to eliminate
only the stock sim(ξ) variables. Moreover, keeping the time variables tim(ξ) allows us
to easily use implicitly the policy of assigning to tim(ξ) the earliest possible time of the
visit.

Next we eliminate the sim(ξ) variables. Equations (35) and (36) allow us to write
stock variables as functions of the time visits:

sim(ξ) = S0
i + JiRitim(ξ)− Ji

∑
v∈V

m−1∑
n=1

qinv, ∀(i,m) ∈ SA, ξ ∈ ΞΓ. (43)

Using equations (43), constraints (39) and (40), are converted into the following con-
straints

S0
i +

∑
v∈V

∑
m:(i,m)∈SA

qimv ≥ RiT + Si, ∀i ∈ N : Ji = −1, (44)

S0
i +RiT ≤

∑
v∈V

∑
m:(i,m)∈SA

qimv + Si, ∀i ∈ N : Ji = 1. (45)

These constraints depend only on the �rst-stage decisions (decisions with no recourse).
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For consumption ports, constraints (37) and (41) imply, respectively,

Ritim(ξ) ≥
∑
v∈V

m∑
n=1

qinv −
∑
v∈V

RiT
Q
i qimv

+ S0
i − Si, ∀(i,m) ∈ SA : Ji = −1, ξ ∈ Ξ∗, (46)

Ritim(ξ) ≤
∑
v∈V

m−1∑
n=1

qinv + S0
i − Si, ∀(i,m) ∈ SA : Ji = −1, ξ ∈ Ξ∗. (47)

For loading ports, constraints (38) and (42) imply:

Ritim(ξ) ≥
∑
v∈V

m∑
n=1

qinv −
∑
v∈V

RiT
Q
i qimv

− S0
i + Si, ∀(i,m) ∈ SA : Ji = 1, ξ ∈ Ξ∗, (48)

Ritim(ξ) ≤
∑
v∈V

m−1∑
n=1

qinv + Si − S0
i , ∀(i,m) ∈ SA : Ji = 1, ξ ∈ Ξ∗. (49)

In both cases ξ ∈ Ξ∗ = ΞΓ.
Henceforward we consider the robust model as the model de�ned by the objective

(28), and constraints (1)-(15), (44)-(49). For a given set of scenarios Ξ∗, it will be denoted
by R− IR(ext(Ξ∗)).

Remark 2. A common approach to handle adjustable robust problems is to employ ap-
proximation techniques such as the well known a�ne decision rules, see [14, 17]. In our
problem the approximation to use is not as clear as in the case where time periods are
considered. A reasonable possibility would be to write tim(ξ) as an a�ne function of the
travelling times:

tim(ξ) =
∑
v∈V

∑
(k,`,j,n)∈SXv

ηimk`jnξk`jnv +
∑
v∈V

ηimo(v)1imξo(v)1imv + ηim0

where the new (non-adjustable) variables are ηimk`jn and ηimo(v)1im.

This approximation has two main drawbacks: (i) it does not take into account other
factors that are relevant to de�ne the time of the visits, such as the inventory levels and
the time between consecutive visits, thus it may restrict the solution space and deteriorate
the quality of the solution; (ii) as we do not have time periods all possible ship paths
must be considered leading to a large number of variables. Comparing to the (exact) row-
column decomposition approach discussed in the next section we can see that, in general,
the number of variables used in the approximation would be larger.

Overall, from Remark 1, (c), optimal policies can be easily derived for the adjustable
variables which can be e�ciently used from a computational point of view as discussed
below. Thus, the approximation decision rules do not seem to help in our case as they
may deteriorate the quality of the solution and do not seem to simplify the problem much.
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3.3. Solution method

Though �nite, the model R−IR(ext(ΞΓ)) tends to be very large because the number
of extreme points of the uncertainty polytope tends to grow rapidly with the problem
size. However, as it happens with many MIP models that are de�ned through a large
number of constraints but where only a few of them need to be included in the model, an
e�cient solution method can be designed which can be seen as a variant of the Benders'
decomposition approach. The main di�erence is that here both columns and variables
are added. Within robust optimization such approaches became popular recently, see
[8, 10, 21, 49, 50]. This procedure is also known as the Adversarial approach [34].

The decomposition approach works as follows: the problem is relaxed into a master
problem (MP), where each robust constraint is written only for a small subset Ξ∗ ⊂
ext(ΞΓ). Given a feasible solution to the MP, we check whether the solution is feasible
for the omitted robust constraints by solving an adversarial separation problem (ASP). If
a scenario leading to infeasibility is found we expand Ξ∗ and the corresponding columns
and rows are added to the MP and the augmented MP is solved again.

The MP is de�ned by the objective (28), and constraints (1)-(15), (44)-(48) de�ned for
a subset Ξ∗ ⊂ ext(ΞΓ). Given a �rst-stage solution, the ASP amounts to check whether
constrains (46)-(48) are satis�ed for all ξ ∈ ext(ΞΓ), and if not, add the corresponding
violated constraints. The decomposition procedure is summarized in Algorithm 1.

Algorithm 1 A column-and-row generation approach for the robust problem.

1: Initialize the subset Ξ∗ ⊆ ext(ΞΓ)← {ξ0} where ξ0 is the scenario with no delays
2: Solve the restricted R− IR(Ξ∗) problem
3: while There is a scenario ξ∗ in ext(ΞΓ) \ Ξ∗, leading to a violation of a constraint

(46)�(48) do
4: Add ξ∗ to Ξ∗ (and add the corresponding variables and rows to the model)
5: Solve the new restricted R− IR(Ξ∗) problem
6: end while

3.4. Adversarial separation problem

Here we discuss the ASP considered in Step 3 of Algorithm 1. Given a solution that
considers the scenarios in Ξ∗, the ASP checks whether this solution is feasible for the
remaining scenarios, that is, when the �rst stage decisions are �xed we check if there is
a set of at most Γ delays that leads to a violation of an inventory level (lower or upper
bound) constraint.

Assume that the values of the �rst-stage variables are given by ximjnv, zimv, wimv,
yim, qimv. We can see that when variables qimv are set to qimv, the robust constraints
(46)�(48) de�ne time-windows Aim ≤ tim ≤ Bim for each visit (i,m).

Inequalities (46)-(47) imply the following time windows for tim, with (i,m) ∈ SA|Ji =
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−1, ξ ∈ ΞΓ,

−
∑
v∈V

TQi qimv +

∑
v∈V

∑m
n=1 qinv + S0

i − Si
Ri︸ ︷︷ ︸ ≤ tim(ξ) ≤

∑
v∈V

∑m−1
n=1 qinv + S0

i − Si
Ri︸ ︷︷ ︸,

Aim Bim

and, inequalities (49)�(48) imply the following time windows for Ji = 1, ξ ∈ ΞΓ,

−
∑
v∈V

TQi qimv +

∑
v∈V

∑m
n=1 qinv − S0

i + Si
Ri︸ ︷︷ ︸ ≤ tim(ξ) ≤

∑
v∈V

∑m−1
n=1 qinv + Si − S0

i

Ri︸ ︷︷ ︸ .
Aim Bim

For each port visit, we compute the earliest time of visit and then check whether
this time is below the upper time window limit. A recursive approach is followed. Let
α((i,m), γ) be the earliest arrival time at (i,m) when γ arcs are using their maximum
travel time. For γ = 0, . . . ,Γ, the value of α((i,m), γ) is given by

α((i,m), γ) = max



Aim
Aim
α((i,m− 1), γ) +

∑
v∈V T

Q
i qi,m−1,v + TBi ,m > 1

α((j, n), γ) + TQj qjnv + T jiv : xjnimv = 1

α((j, n), γ − 1) + TQj qjnv + T jiv + T̂ijv : xjnimv = 1

where α((i,m), γ) = −∞ if γ < 0. Aim is the lower time window limit to the visit, and
Aim is the lower limit forced by the stock level, as derived above. The third expression
accounts for the case where the earliest visit time results from the constraint imposing a
time limit between consecutive visits to the same port (forced by constraints (32)). The
fourth and �fth expressions account for the case where the service time results from the
visit to another port j (implied by constraints (31)). The fourth expression is for the
case where there is no delay in the travelling time, and the �fth expression is for the case
where a delay occurs.

The values α((i,m), γ) are computed following the order given by the times tim
observed in the solution of the MP. This is enough to ensure that α((i,m), γ) is computed
after the value α((i,m− 1), γ) and values α((j, n), γ), α((j, n), γ − 1), when xjnimv = 1
in the MP solution.

The earliest starting time of visit (i,m) is α(i,m) = max{α((i,m), γ) : γ ∈ {1, . . . ,Γ}}.
After computing α(i,m) for each port visit (i,m), we need to check whether α(i,m) ≤
min{Bim, Bim}. If there is a violated inequality, that means there is a scenario leading
to an inventory limit violation, and the constraints and variables corresponding to that
scenario are added. Notice that this separation algorithm generalizes the one given in
[8] where only time windows are considered.
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Example 1. Consider the example with T = 20, V = {1, 2} and N = {1, 2, 3}. Port 1 is
a supply port and ports 2 and 3 are demand ports. The production/demand rates, the ini-
tial stock levels, are given by R1 = 5, R2 = 1, R3 = 2, S0

1 = 22, S0
2 = 10, S0

3 = 10, respec-
tively. Consider Si = 0 and Si = 50, for all i = 1, 2, 3. The quantities loaded/unloaded
in the solution are q111 = 37, q211 = 10, q321 = 22, q312 = 8, q122 = 45. The initial
load onboard the ships are Q0

1 = 0, and Q0
2 = 8, and assume the operation times are

negligible TQ1 = TQ2 = 0. The routes are depicted in Figure 2. The values assigned to
each arc represent the travelling times. We consider an uncertainty set with Γ = 2 and
T̂ijv = 1 for all (i, j, v). The plus 1 next to the values assigned to arcs (1, 1, 2, 1) and
(2, 1, 3, 2) represent the delay of 1 unit. The values α((i, n), γ) are given for the criti-
cal path leading to node (3, 2). The value α((1, 1), 0) is given by A11 which is computed
from the initial stock (S0

1 = 22), the production rate R1 = 5, and the load quantity
(q111 = 37). The values of α((2, 1), 1) and α((3, 2), 2) are computed from the expression
α((i,m), γ) = α((j, n), γ − 1) + TQj qjnv + T jiv + T̂ijv for the routing arcs (1, 1, 2, 1) and
(2, 1, 3, 2). We can see that the solution presented is feasible for the deterministic problem
with the nominal travelling times but is infeasible for the robust problem since the earliest
arrival time to node (3, 2) is 10 leading to a stockout since B32 = 9.

O1

O2

1,1

α((1, 1), 0) = 3

1,2

2,1

α((2, 1), 1) = 7

3,1 3,2

α((3, 2), 2) = 10

3+1

2

2+1

3

4

Figure 2: Example of computation of α((i,m), γ) for Γ = 2 for an instance with three ports and two
ships.

4. Improvement strategies for the decomposition algorithm

In order to improve the performance of the decomposition approach we test two types
of improvements. The �rst aims to reduce the running time of each master problem, while
the second aims to reduce the number of iterations of the decomposition method.
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4.1. Solving the master problem

In order to improve the MP solution time we propose two improvements: the inclusion
of valid inequalities and the inclusion of a cuto� value. In both cases, these improvements
can lead to a signi�cant improvement in the solution times for some di�cult instances,
while having a negligible in�uence when solving easy instances.

Valid inequalities

Inequalities from knapsack relaxations have previously been used for MIRPs, see for
instance [4, 5]. Here we add a subset of those inequalities that has proved to provide
improvements on the integrality gap of related problems.

Let Di denote the total net demand of port i ∈ V during the planning horizon. For
i ∈ N with Ji = −1, Di = T ×Ri−S0

i +Si. For i ∈ N with Ji = 1, Di = T ×Ri+S0
i −Si

Then, the following integer set, for i ∈ N, is a relaxation of the feasible set.

Θi =

{
χ ∈ Z|V |+ :

∑
v∈V

Cvχv ≥ Di

}
,

where
χv =

∑
m:(i,m)∈SAv

wimv,

denotes the number of times vehicle v visits port i during the planning horizon T.
Valid inequalities for Θi, i ∈ N are valid for the set of feasible solutions. A particular

case of these inequalities is the following integer rounding cut∑
v∈V

∑
m:(i,m)∈SAv

⌈
Cv
Q

⌉
wimv ≥

⌈
Di

Q

⌉
, (50)

where Q can be any positive number. We consider a di�erent inequality for each v ∈ V,
taking Q = Qv.

Initial primal bound

A common upper bound can be obtained by solving the well-known box-constrained
problem by considering

ΞB = {ξ : ξimjnv = T̄ijv + T̂ijvδimjnv, 0 ≤ δimjnv ≤ 1, ∀(i,m, j, n) ∈ SX , v ∈ V }.

The worst case occurs when all the travelling times take their maximum value, that is,
when we consider the deterministic travelling times Timjnv = T̄ijv + T̂ijv. Any feasible
solution to this deterministic problem is feasible for the robust problem, and therefore,
its objective function value provides an upper bound, which can be embedded in the
decomposition procedure as a cuto� value to prune the search tree when solving each
optimization problem in Step 2 of Algorithm 1. The approach followed in this paper is
to solve the box-constrained problem until a desired optimality gap is attained.
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4.2. Minimizing the number of iterations of the decomposition approach

The running time of each instance depends greatly on the number of MPs solved.
Here we propose three improvement strategies to reduce the number of iterations of
the decomposition approach. The �rst one is aggregation of scenarios. The second
improvement strategy facilitates a warmer start considering an initial scenario that leads
to an initial solution which incorporates some degree of immunity against delays. Thus
the corresponding solution is likely to provide a better lower bound to the value of the
optimal solution than the one obtained with the deterministic case where no delays are
considered. Finally, we adjust our solution approach to choose values on the �rst-stage
variables that maximizes a given criterion of robustness.

Scenarios aggregation

An improvement introduced in [8] is to add, in each iteration, a scenario that results
from the aggregation of several scenarios. Instead of adding a delay on arc (i,m, j, n)
for a given ship, one can either add a delay to all arcs (k, `, j, n) that enter node (j, n) or
add a delay to all arcs (i,m, k, `) that leave node (i,m). This follows from the fact that
at most one such arc can be selected in each feasible solution. Hence, many scenarios
can be aggregated into one augmented scenario.

Warm start

A warmer start can be obtained by adding delays, that is, consider Timjnv = T̄ijv +
T̂ijv, for some arcs. These delays need to be carefully added since one need to guarantee
that no more than Γ delays are added to any feasible solution. An easy way to ensure
that no more than Γ delays are added is either to add delays to all leaving arcs from port
visit (i,m), or add delays to all those arcs entering port visit (j, n), for Γ selected port
visits. Preferably, the selected visits should be among those that are made in all feasible
solutions. Therefore, a natural selection starts by choosing the origins of each ship and
then consider the �rst visit to each port, for up to Γ ships.

Choice of �rst-stage solution maximizing a robustness criterion

The �rst-stage variables include both the binary variables ximjnv, zimv, wimv, yim,
and the continuous variables qimv. In general, for each vector of binary variables one can
�nd alternative values for the continuous variables qimv leading to the same objective
function value. Hence, given a binary vector representing the binary decisions, it makes
sense to choose among all alternative continuous solutions one that maximizes a given
robustness criterion. This results in a pure linear problem when the binary variables are
�xed as we explain next.

The ASP checks whether the time windows are consistent by assigning to tim the
earliest time of visit value and compare it with an upper bound resulting from the
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inventory level. Here, since the load/unload quantities qimv are variables, the upper
time-windows limit depends on these variables as follows:

Bim(q) =



(∑
v∈V

m−1∑
n=1

qinv + Si − S0
i

)
/Ri, Ji = 1(∑

v∈V

m−1∑
n=1

qinv + S0
i − Si

)
/Ri, Ji = −1

This means that the following constraints must be satis�ed:

tim ≤ Bim(q),∀(i,m) ∈ SA. (51)

Let
dim = Bim(q)− tim, ∀(i,m) ∈ SA (52)

denote the slack in the upper time window constraint that measures the delay that
can occur on the time visit (i,m) without having a violation. Intuitively, a feasible
solution with large values for slack variables dim will be more immune to delays than a
solution with small slack values. In order to chose a �rst-stage solution, two options are
considered. The �rst option (denoted as Option 1) is to maximize the sum of the slack
variables z =

∑
(i,m)∈SA dim. The second option (denoted as Option 2) is to maximize

the smallest slack dim value, that is, to maximize z = d where

d ≤ dim,∀(i,m) ∈ SA. (53)

For completeness, Algorithm 2 details the steps that replace Step 2 and Step 4 (solve
the restricted R− IR(Ξ∗) problem) in Algorithm 1.

Algorithm 2 A two-stage approach for the master problem R− IR(Ξ∗).

1: Solve the restricted R− IR(Ξ∗) problem
2: Fix the the variables ximjnv, zimv, wimv, yim to their solution values
3: Add nonnegative variables dim (and d for Option 2), and constraints (51) and (52)

(and constraints (53) for Option 2)
4: Solve the resulting linear problem by maximizing function z

Example 2. In Example 1 we can see that for the same routing decisions there are
alternative values of load and unload quantities. For instance, by decreasing q111 to 32
and increasing q122 to 50, the earliest time for visit (1, 1) is now set to 2, (α(1, 1), 0) = 2,
which leads to a situation where no shortage occurs at node (3, 2).

Remark 3. One can see that the �rst stage solution cannot be complemented with a
second stage solution if there is a delay in the route to node (i,m) greater than dim. A
lower bound for the worst case delay can be computed as the sum of the min{k,Γ} highest
values of T̂ijv in the route to node (i,m), where k is the number of arcs in that route.
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5. Iterated local search

As the robust MIRP considered is hard to solve, we present an iterated local search
heuristic based on local branching [32]. The idea is to consider as the starting solution
the most conservative one, the solution obtained for the box uncertainty set. This
choice has three advantages: (i) it guarantees that a feasible solution is found; (ii) the
starting solution is obtained solving a deterministic problem and can also be obtained
heuristically; (iii) for many instances the value of this solution is not far from the value
of the optimal robust solution. Therefore, any improvement obtained will generate good
upper bounds for those cases.

For the local search, following the local branching idea of Fischetti and Lodi [32], we
de�ne the neighborhood of a solution as the set of solutions that can di�er in at most Λ
of the wimv variables from the current solution. The local search can be done by adding
the following inequality to the model∑

(i,m)∈SAv ,v∈V |wimv=0

wimv +
∑

(i,m)∈SAv ,v∈V |wimv=1

(1− wimv) ≤ Λ. (54)

The iterated local search is given in Algorithm 3.

Algorithm 3 A MIP iterated local search based approach for a given set of scenarios
Ξ∗.
1: Solve the deterministic problem corresponding to the box uncertainty set for α sec-

onds
2: repeat

3: Add constraint (54) to the model R− IR(Ξ∗)
4: Solve the model for β seconds using the warm start enhancement
5: Update the solution w
6: until No improvement in the objective function is observed

The decomposition approach followed in Algorithm 1 decomposes the problem into
a MP and a ASP. While the ASP can be solved e�ciently, the MP is NP-hard. Solving
the MP to optimality in each iteration of the decomposition method may be too time
consuming. Moreover, to prove optimality, only the MP considered at the last iteration
must be solved to optimality. In order to use this fact we propose to use Algorithm 3
to solve the MP in each iteration of the decomposition algorithm. Only when no new
scenario is found we follow Algorithm 1 to prove optimality. The drawback is that we
do not know in advance which is the last iteration and whether a new better solution for
the MP with the same set of scenarios will be violated by a new scenario. In that case
the iterative process must be resumed. The new enhanced column-and-row generation
approach is given in Algorithm 4.
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Algorithm 4 The enhanced column-and-row generation approach.

1: Initialize the subset Ξ∗ ⊆ ext(ΞΓ) ← {ξ∗} where ξ∗ is a scenario with Γ delays (see
Warm start in Section 4)

2: Solve the restricted R− IR(Ξ∗) problem using Algorithm 3
3: Perform Steps 2-4 of Algorithm 2
4: while There is a scenario ξ∗ in ext(ΞΓ) \ Ξ∗, leading to a violation of a constraint

(46)�(49) do
5: Add ξ∗ to Ξ∗ (and add the corresponding variables and rows to the model)
6: Solve the new restricted R− IR(Ξ∗) problem using Algorithm 3
7: Perform Steps 2-4 of Algorithm 2
8: end while

9: Save the current best solution as incumbent
10: Solve the restricted R− IR(Ξ∗) to optimality using the incumbent solution
11: Perform Steps 2-4 of Algorithm 2
12: while There is a scenario ξ∗ in ext(ΞΓ) \ Ξ∗, leading to a violation of a constraint

(46)�(49) do
13: Add ξ∗ to Ξ∗ (and add the corresponding variables and rows to the model)
14: Solve the new restricted R− IR(Ξ∗) using the incumbent solution
15: end while

Note that the solution obtained through Steps 1 to 8 is feasible for the model R −
IR(Ω). Hence, the enhanced algorithm discussed in Section 4 corresponds to Steps 9-15
of Algorithm 4 where the warm start is replaced by the best robust solution obtained
(resulting from Steps 1− 8).

6. Computational tests

This section reports the computational experiments carried out to test the solution
approaches for a set of instances of a maritime inventory routing problem with possible
delays when travelling between ports. All tests were run on a computer with an Intel Core
i5-2410M processor, having a 2.30GHz CPU and 8GB of RAM, using the optimization
software Xpress Optimizer Version 21.01.00 with Xpress Mosel Version 3.2.0.

6.1. Instances

The instances are based on those presented in [4]. There are two main di�erences: one
is the computation of the travelling times, which we discuss in detail below, and the other
is the production and consumption which we assume here to be constant. The number
of ports and ships of each instance is given in the second column of Table 1. Operating
and waiting costs are time invariant. The size of the deterministic model is given in
the following three columns. A time horizon of 30 days is considered. The set of the
21 instances include both easy instances and di�cult instances where the deterministic
problem is already di�cult to solve.
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Table 1: Summary statistics for the 21 instances.

Deterministic Model
Inst. (| N |, | V |) # Rows # Col. # Int. Var.

A1, A2, A3 (4,1) 765 545 273
B1, B2, B3 (3,2) 767 590 302
C1, C2, C3 (4,2) 1214 1042 530
D1, D2, D3 (5,2) 1757 1622 822
E1, E2, E3 (5,2) 1757 1622 822
F1, F2, F3 (4,3) 1663 1539 787
G1, G2, G3 (6,5) 4991 5717 2909

The three instances in each group di�er from each other in the initial inventory levels.
The nominal travelling times T̄ijv are taken as the travelling times of the instances given
in [4]. To de�ne the maximum delays allowed, T̂ijv, we chose a constant delay α for each
instance. This delay was found by increasing the value of ∆ using steps of 0.1 until the
deterministic problem with Tijv(ξ) = T̄ijv + ∆ for all (i, j) becomes infeasible. The last
∆ leading to a feasible instance was selected. This deterministic case corresponds to the
box uncertainty set.

6.2. Summary of the computational results

In this section we report the computational results carried out to test and compare
the performance of both the iterated local search (ILS) heuristic and the decomposition
algorithm.

6.2.1. Decomposition Algorithm

We start by evaluating the bene�ts of the use of the improvement strategies in the
decomposition algorithm. Table 2 displays the results for the instances G1, G2 and
G3, which are the most di�cult instances. The �rst column gives the instance, the
second column gives the value ∆ and the third column indicates the maximum number
of delays, Γ, allowed. The values of Γ range from 0 (corresponding to the deterministic
model) to the number of delays leading to the same solution as the one obtained for
the box uncertainty set. The optimal objective function value is given in Column Cost.
The last three pairs of columns give the running time in seconds (Columns Seconds),
and the number of iterations (Columns Iter) of the decomposition algorithm for 1) the
case where no improvements are used (Columns No improvements), 2) the case where
all the improvements are included and Option 1 of minimizing the number of iterations
improvement is used in Algorithm 2 (Columns Improve Opt1), and 3) the case where all
the improvements are included and Option 2 is used (Columns Improve Opt2). When
Γ = 0, the improved versions are not run, and a sign �-� is used in the corresponding
columns. The case Γ = 0 corresponds to the deterministic case, and the corresponding
cost is therefore a lower bound for the instances with other values of Γ.
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Table 2: Computational results (time and number of iterations) for instances G1, G2 and G3.

No improvements Improve Opt1 Improve Opt2
Instance ∆ Γ Cost Seconds Iter Seconds Iter Seconds Iter

G1 0.2 0 645.8 975 0 - - - -

G2 1.6
0 560.0 536 0 - - - -
1 560.0 1791 2 1325 2 1375 2
2 589.9 13303 6 2818 6 1960 3
3 589.9 14881 9 4728 5 3010 5
4 631.4 > 604800 >22 123981 13 63734 13

G3 0.4
0 550.7 712 0 - - - -
1 576.2 20999 7 1907 1 3650 4

Note that the instance G2 with Γ = 4 could not be solved to optimality without
improvements, within one week.

Similar results were obtained for the remaining instances, however, in order to sim-
plify the text, those results were aggregated and are presented in Figures 3 and 4. In
these two �gures we display the aggregated time and the total number of iterations re-
quired by each strategy of the decomposition algorithm to solve all the instances in terms
of the di�erent levels of protection Γ, respectively.

Figure 3: Aggregated computational time for all instances, except for instances G1, G2 and G3, for the
di�erent values of Γ

The results show clear bene�ts of using the improvements in the decomposition algo-
rithm since, when the improvements are employed, the running times can be much lower
than in the case where no improvements are used. Instances G2 and G3 are the ones in
which more signi�cant improvements can be observed. Note that the bene�t of the use
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Figure 4: Aggregated number of iterations for all instances, except for instances G1, G2 and G3, for the
di�erent values of Γ

of the improvement strategies tends to increase when the level of protection increases.
Also the number of iterations is lower when the improvements are included and, in sev-
eral cases, mainly when Γ is small, no iterations are required. When comparing both
improvements options to choose a robust solution among alternative optimal solutions
to the master problem, we can see that the number of iterations is lower by using Option
2 than using Option 1. In terms of time there is no clear evidence indicating which is
the best improvement option. However, since for the most di�cult instance, instance
G2, optimal solutions are obtained faster by using the improvement Option 2, in what
follows we will only consider the decomposition algorithm enhanced by this option.

6.2.2. Comparison between the decomposition algorithm and the ILS heuristic

For the ILS heuristic, nine di�erent strategies were tested: the time limit in each
subproblem β was set to 50, 100 and 200 seconds, and the number of variables wimv that
are allowed to �ip their value from the value taken in the current solution, parameter Λ,
is set to 2, 4 and 5.

For the 21 instances, the solutions obtained by using the ILS heuristic and the decom-
position algorithm have the same cost. Hence, the comparison of the solution methods
is done only in terms of the running time. For all the instances, except for instances G1,
G2 and G3, the results obtained by the nine strategies tested are very similar. This can
be explained by the fact that most of the subproblems are solved to optimality within
the time limit. Hence, the results for these instances are aggregated and summarized
in Figures 5 and 6. In Figure 5, the aggregated computational time required by the
decomposition algorithm improved with Option 2 to obtain the robust solution for all
the instances, in terms of the values of Γ, is presented. In Figure 6, similar results for
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the number of iterations are presented.

Figure 5: Comparison between the aggregated computational time required by the decompositon algo-
rithm improved by Option 2 and by ILS heuristic to obtain the robust solution for all the instances,
except for instances G1, G2 and G3, for the di�erent values of Γ

Figure 6: Comparison between the aggregated number of iterations required by the decompositon al-
gorithm improved by Option 2 and by ILS heuristic to obtain the robust solution for all the instances,
except for instances G1, G2 and G3, for the di�erent values of Γ

For the instances G1, G2 and G3 the computational time required to �nd the robust
solution vary a lot from strategy to strategy. The complete results for those three
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instances are displayed in Table 3. The instance and the Γ value are indicated in the �rst
and second columns, respectively. Columns �Max�, �T̄ � and �Min� display, respectively,
the maximum, the average and the minimum computational time used to obtain the
robust solution over the nine di�erent parameter settings. Column �DT � displays the
computational time required by the decomposition algorithm improved by Option 2 to
get the robust solution and in column �dif � the di�erence between values of columns
�DT � and �T̄ � is computed. Column �TO� reports the additional computational time
used to prove the optimality of the solution obtained by the ILS heuristic. Column
� Ī� displays the average number of iterations required to �nd the robust solution and
the column �DI� reports the number of iterations required by decomposition algorithm
improved by Option 2 to get the robust solution.

Table 3: Comparison between the ILS heuristic and the decomposition algorithm for instances G1, G2
and G3.

Inst. Γ Max T̄ Min DT dif TO Ī DI

G1 0 273 272 271 975 703 88 − −
0 305 249 176 536 287 87 − −
1 630 433 232 1325 892 31 2 2

G2 2 931 938 689 1960 1022 471 5 3
3 4153 1831 1498 3010 1179 602 12 5
4 16948 7654 6666 63734 56080 6001 16 13

G3 0 201 195 174 712 517 58 − −
1 829 604 466 1907 1303 527 2 4

Results not reported here show that for the easiest instances there is no advantage
in using the ILS heuristic since it is necessary to spend some time in solving the box-
constrained problem. When the complexity of the instances increase, the ILS heuristic
becomes more e�cient than the decomposition algorithm. By using the ILS heuristic, in
some iterations, not all subproblems are solved to optimality, leading to worse solutions
and consequently a greater number of iterations, as shown in Figure 6.

Instances G1, G2 and G3 are the most di�cult instances, thus more computational
time is required to obtain a solution in each iteration, and this time vary a lot from
strategy to strategy. However, these are the instances that most re�ect the power of the
ILS heuristic since, independently of the strategy used, the corresponding computational
time is always lower than the one required by the decomposition algorithm. The obtained
results reveal a good performance of the ILS heuristic, since the optimal solution for each
instance was always found with a small computational time.

6.3. Results for instance E3

In order to better understand the in�uence of the levels of protection in a robust
solution we deeply analyse the computational results obtained for instance E3. Detailed
information of instance E3 is given in Table 4.
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Table 4: Detailed information for instance E3.
i 1 2 3 4 5

[Si, S̄i] [0,300] [0,350] [0,250] [0,145] [0,300]
Ri 11.63 9.60 7.17 4.27 11.03
Ji 1 1 -1 -1 -1

Table 5: Cost of the robust solution for instance E3 in terms of value Γ.
Γ 0 1 2 3

Cost 226.5 230.4 248.6 267.2

In table 5, for each level of protection Γ, the cost of the robust solution is displayed.
As an example of robustness, we can see that for this instance the optimal solution
changes for all values of Γ. That is not the usual behavior for the remaining instances
where the same solution may be optimal for more than one value of Γ. In fact we could
not determine instances characteristics that allow us to identify how sensitive an instance
is to the uncertainty set parameters.

For instance E3, Table 6 gives, for each value of Γ, the maximum slack time (Row
slack time) corresponding to the maximum delay that can occur in a single arc without
leading to an inventory bound violation. As expected, the slack increases as Γ increases.
Row ∆ gives the maximum delay that can be added to all travelling times while keeping
the solution feasible. This value is lower than the value of the box constraint (which is
2) since we have the routing decisions �xed. As expected, this value also increases with
the value of Γ.

Table 6: Slack time values for instance E3.
Γ 0 1 2 3

slack time 0 2 4.1 6.95
∆ 0 0.5 0.8 1.8

Figure 7 depicts the routing of an optimal solution with Γ = 0. The triple [tim, qimv, sim]
is shown next to each node. We can see that s41 = 0, meaning that when the ship arrives
at node 4 for the �rst visit the inventory level is zero, and therefore any delay in the
critical path to this node will imply a shortfall. Figures 8 and 9 give two alternative
optimal solutions for the case Γ = 1. The routing is the same, but the quantities loaded
and unloaded and the time of visits are di�erent. The solution in Figure 8 maximizes
the minimum slack time, which is determined by the inventory level at node (5,2). The
solution in Figure 8 is the one that maximizes ∆ (the value considered when the travel-
ling time in all arcs is increased by ∆), so the inventory level at nodes (5, 2) and (4, 1)
is zero. We see from the �gures that the ship travelling the dashed line route is cheaper
to use than the other ship (traveling the solid line route).
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Figure 7: Optimal solution of instance E3 with Γ = 0 and cost= 226.5.

Figure 8: Optimal solution of instance E3 with Γ = 1 that maximises the minimum slack time and
cost= 230.4.

Finally, Figure 10 depicts the minimum, the average and the maximum percentage
of increase in cost, among all instances, as a function of Γ. Such information gives the
price to obtain robust solutions. As we can see there is a wide range on the cost increase
variation accordingly to the instance, from a minimum of zero to a maximum that almost
doubles the cost when Γ = 4. On average, we can observe a steady increase in the cost
for protection against inventory level deviations with the protection level Γ.
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Figure 9: Routing of an optimal solution of instance E3 with Γ = 1 that maximizes ∆.
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Figure 10: Percentage increase in cost as a function of Γ.

6.4. Results for large size instances

Although the original set of instances include both easy and di�cult instances, in
order to evaluate the performance of our approaches for larger instances, a set of 14
instances with a time horizon of 60 days, was considered. These instances were derive
from those presented in Table 1 by extending the time horizon and keeping the maximum
number of visits allowed to each port. Since we aim to test the most di�cult cases, and
the instances A4, A5, B4 and B5 are easy to solve, we omit these four cases.

In Table 7, we display the results for both the deterministic (Γ = 0) and the box-
constrained problems. The instance is indicated in the �rst column. The last two pairs
of columns give the running time in seconds (Columns Seconds), and the cost of the
solution (Columns Cost).

For the box-constrained problem, instances G4 and G5 were not solved to optimality
within a time limit of 18000 seconds (5 hours) and the �nal gap is indicated in parenthesis.
This fact reinforces that these instances are di�cult since both problems are deterministic
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Table 7: Computational results for the two deterministic problems: Γ = 0 and box-constrained.

Deterministic (Γ = 0) Box-constrained
Inst. Seconds Cost Seconds Cost

C4 9 529 23 595
C5 22 546 215 675
D4 223 379 163 414
D5 16 289 40 375
E4 39 272 870 391
E5 86 285 278 362
F4 25 387 17 486
F5 6 419 47 507
G4 2104 672 18000∗ 766 (20%)
G5 4194 648 18000∗ 775 (14%)

Table 8: Computational results for both the Decomposition Algorithm enhanced with Option 2 and ILS
heuristic, for Γ = 1 and Γ = 2.

Γ = 1 Γ = 2
Inst. T imeDA CostDA T imeILS CostILS T imeDA CostDA T imeILS CostILS
C4 114 564 62 564 507 595 233 595
C5 838 602 483 602 838 602 486 602
D4 617 379 159 379 1522 414 1159 414
D5 137 327 97 327 141 327 147 327 (375)
E4 286 289 108 289 7702 369 6512 369
E5 412 289 112 289 (305) 3180 331 1674 331 (362)
F4 55 387 96 387 (486) 624 486 865 486
F5 1010 490 250 490 882 507 887 507
G4 2404 771∗ 2571 740∗ (787) 3604 761∗ 10800 761∗ (787)
G5 4800 785∗ 4032 736∗ (811) 10800 771∗ 12244 688∗ (820)

problems.
In Table 8 we present the results obtained for the robust problems with Γ = 1 and

Γ = 2. The instance is indicated in the �rst column. The last two pairs of columns give,
for both the decomposition algorithm improved with Option 2 and the ILS heuristic, the
running time in seconds (Columns TimeDA and TimeILS ) and the cost of the obtained
solutions (Columns CostDA and CostILS).

Instances from C4 to F5 were solved to optimality using both approaches, thus the
cost of the obtained solutions is the same. In columns CostILS , the value in parenthesis
is the cost of the solution obtained at the end of step 8 in Algorithm 4. This value is
presented only for those cases it di�ers from the optimal one. Recall that for all the
instances with a time horizon of 30 days, the solution obtained at the end of step 8 was
always the optimal robust solution.

Analysing the computational time required by each approach we can see that, in gen-
eral, the robust solutions are obtained faster when the ILS heuristic is used, as happened
in the case of the instances with a time horizon of 30 days.

Instances G4 and G5 were not solved to optimality. Note that even the deterministic
box-constrained problem can not be solved to optimality within a reasonable amount of
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computation time, as shown in Table 7. Hence, for both the approaches, a time limit
of 600 seconds was imposed to solve the restricted master problem in each iteration.
This means that the obtained solutions can be suboptimal. For these two instances,
better solutions were obtained using the ILS heuristic. However, the computational time
required to obtain those solutions is greater than the one required by the decomposition
algorithm, since more iterations were executed.

7. Conclusions

We consider a maritime inventory routing problem where the travel times are un-
certain. In order to handle practical cases where the decision maker wishes to avoid
inventory shortfalls at the consumers and exceed inventory capacities at producers, a
robust model with recourse is proposed. The routing decisions and the quantities to
load and unload are assumed to be �xed and the time of visit to ports and the inven-
tory levels are adjustable. A two-stage decomposition procedure that considers a master
problem restricted to a small subset of scenarios and a subproblem that checks whether
there are violated scenarios is presented. Several improvement strategies are introduced.
In particular, since the �rst stage has, in general, multiple alternative optimal solutions
corresponding to a single set of routing decisions, we discuss approaches to choose the
most robust alternative solution in relation to a given criteria. An iterated local search
heuristic based on local branching ideas is introduced that allows us to obtain good
quality robust solutions for all the tested instances.

A computational study based on a set of benchmark instances shows the e�ectiveness
of the decomposition procedure with the improvement strategies in solving the robust
maritime inventory routing problem. This study also shows that, in general, protecting
the solutions against possible delays makes the instances harder to solve, since the run-
ning times and the number of iterations tend to increase when the number of links that
can su�er a delay increases. Some insight on the robustness of solutions is obtained by
comparing robust solutions against the deterministic solution, and shows that robustness
is closely related to the slack time available for each time window that can be established
from the inventory levels for each port visit.
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